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Abstract

The observed and expected changes in the environment due to human
actions implies risks that future food production will be insufficient. Pre-
dicting the impact these changes have on the agricultural system could
be beneficial by allowing for proactive mitigating efforts. The prediction
of these impacts often involve large computer programs that simulate the
behavior of the environment. By implementing a statistical representation
of the simulator, called an emulator, our hope is that these predictions
could be obtain at a lower computational cost. This master thesis has
implemented and evaluated a Gaussian process emulator for a vegeta-
tion model that is used for predicting the annual production of spring
wheat based on climate data at different locations around the world. The
problem of accurately modeling the simulator using a Gaussian process
approach was split into two parts. The first part was to model the average
yield at each location given average climate input at that location. The
second part was to model the yield at a specific year for a location given
the average yield at that location and the climate input anomalies dur-
ing that year. The results was far from satisfactory and a more complex
approach is probably needed before the emulator can be of any practical
use. Based on our findings, possible extensions that might improve results
are discussed.
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1 Introduction

1.1 Problem description

General concepts are provided in sections 1.2 - 1.3. The problem is described in
section 1.4. Section 1.5 - 1.6 gives an introduction to emulators and discusses
different emulator strategies. The main purpose of the thesis is given in section
1.7.

1.2 Simulator

A simulator is essentially a complex model that is constructed to imitate a real-
world process over time. These models are usually large computer programs
that take hours to run (O’Hagan, 2006). The simulator can be deterministic,
i.e. the simulator gives the same output every time for the same input or it can
give stochastic outputs generated from a random number seed.

1.3 Dynamic global vegetation models (DGVM)

A DGVM is in essence a simulator used to model different natural ecosystems
and their response to climate change (Hillel, 2015, page 180). The word dy-
namic means that the computer program operates iteratively to model complex
systems that are evolving over time (O’Hagan et al., 2009). By spatially di-
viding the earth’s surface into a grid the DGVM may be used to simulate the
behaviors of vegetation at a particular area or region. An error between the
output from the computer model and the real-world phenomena will inevitably
exist (O’Hagan, 2006).

1.4 Problem description

The increase in world population along with observed and expected changes in
the environment due to human actions implies risks that future food production
will be insufficient. Many initiatives have started in order to construct large
and informative DGVMs for agricultural systems that can predict how food
production will be affected by future climate. One of these initiatives is AgMIP
which is a large multinational collaboration to improve agricultural predictions
when the environment is affected by a diversity of climate changes (AgMIP,
2017). A problem AgMIP faces is that their agricultural models, which provides
simulated harvests, are computationally demanding. Thus creating predictions
where the impact of many potential future climate scenarios are considered will
be expensive.

1



Introduction

1.5 Emulator

One option to reduce the computations needed to retrieve the predictions from
the DGVM is to construct an emulator. An emulator is a common name for
a statistical representation of a simulator that is constructed using a training
sample of simulator runs (O’Hagan et al., 2009). The simulator is viewed as a
unknown mathematical function f(·) of its input although the outputs can be
obtained by running the computer code. The idea of the emulator is that once
it is constructed it can be used to cheaply obtain the output of the simulator
without actually running it, drastically reducing the execution time for obtaining
these results (O’Hagan, 2006). An error exists between what the emulator
returns for a given input and what the simulator would have returned for the
exact same input. A good emulator gives accurate predictions of the simulator
as well as a prediction of the uncertainty related to using it. The concept of an
emulator is illustrated in figure 1.

Expensive simulator

Cheap emulator

Input points: X = [x1, x2...] Output: f(X)

New point to be predicted: x? 6∈ X Output: f(x?) + ε

Figure 1: The idea behind an emulator is to use a training sample of simulator
runs to construct the emulator. The emulator can later be used to cheaply
obtain future simulator outputs. The difference, or error, between the emulator
and simulator output for a point x? is denoted ε.

1.6 Emulator strategies

The problem of finding the optimal emulator to represent the behavior of a given
simulator is difficult. This relates to the famous ”no free lunch theorem” by
Wolpert (1996) which implies that there is no universally good model that works
for all problems (Murphy, 2012, page 24). As a consequence of this theorem
there exist a variety of different models to choose from. Common emulator
strategies include pattern scaling (Castruccio et al., 2014), empirical orthogonal
function (Castruccio et al., 2014), regression models (O’Hagan, 2006), neural
networks (O’Hagan, 2006) and Gaussian processes (O’Hagan, 2006). Finding the
best strategy among all these possibilities is called the model selection problem.
The solution usually involves trying each strategy and compare their results
respectively (Murphy, 2012, page 156). In practice this procedure is so time
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Introduction

consuming that it becomes practically impossible to perform. Instead experience
and knowledge about the problem are used to determine a suitable trade-off
between which models to try and and their likelihood of success.

When searching for the best emulator strategy the mathematical structure
of the actual simulator can be investigated and analyzed. The benefits of this
analysis might be that relationships can be discovered and incorporated in the
model, resulting in a more favorable emulator (Kennedy and Ohagan, 2001),
sometimes called ”grey box” models. However, the implementation of ”grey
box” models are often much more complex (Kennedy and Ohagan, 2001). An
alternative is to treat the model as a ”black box” where only the input and
outputs are analyzed.

1.7 Purpose of thesis

The purpose of this thesis is to implement and evaluate a Gaussian process
emulator for the yearly production of spring wheat modeled by one DGVM
at different locations and using different climate data as input. The accuracy,
benefits and drawbacks of this method will be examined and discussed. The
thesis will also investigate the practical usability of the implemented emulator
and give recommendations for further research.

3
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2 Vegetation model - LPJ-GUESS

LPJ-GUESS or the Lund-Potsdam-Jena General Ecosystem Simulator is a DGVM
originally developed by Ben Smith at Lund University (Smith et al., 2001). LPJ-
GUESS models the structure and dynamics of terrestrial ecosystems at different
areas and it can be used to predict a variety of ecological processes including
annual harvest yield1. LPJ-GUESS spatially divides Earth’s surface into a grid
and then models the vegetation within each grid cell based on climate, CO2

levels and other inputs. The grid specific inputs needed to predict the annual
production of spring wheat are described below2.

2.1 Time series input for each grid cell

Following subsections provides a brief description of the inputs needed at each
grid cell for LPJ-GUESS to predict wheat yield at that grid cell.

2.1.1 Surface downwelling shortwave radiation flux (rsds)

This will be denoted ”radiation” or ”R” in the plots, measured in W/m2. The
input describes the daily radiative energy that reaches Earth’s surface per time
and surface unit at a specific location. The shortwave (280 to 2800 nm) ra-
diation flux is often the most important quantity when calculating the total
available energy at the surface. (Geiger et al., 2008). The shortwave radiation
greatly impacts certain vegetation processes such as transpiration, evaporation
and photosynthesis which profoundly affects the outcome of an agricultural sys-
tems (Klassen and Bugbee, 2005). Shortwave radiation is highly variable and it
is especially sensitive to solar zenith angle, i.e. season, and clouds stopping the
radiation from reaching the surface (Klassen and Bugbee, 2005).

2.1.2 Precipitation flux

Denoted ”precipitation” or ”P” in the plots, measured in kg/(m2). Precipitation
describes all the aqueous (both liquid and solid) particles that fall from the
atmosphere to the surface of the earth. Precipitation is generally beneficial for
plants. Excessive rainfall can however drown plant roots and cause significant
soil erosion. The agricultural effect of precipitation also depends on the current
temperature. For example, rainfall or drizzle during very cold temperatures can
damage plants (NC-University, 2013).

1More information about LPJ-GUESS can be found at http://iis4.nateko.lu.se/

lpj-guess/index.html and http://iis4.nateko.lu.se/lpj-guess/guess.pdf
2 LPJ-GUESS also needs global non-climate parameters such as global CO2 concentration

and fertilization supply. For a full list see http://www.agmip.org/wp-content/uploads/2016/

01/GGCMI_phase_2_CTWN_protocol_v75.pdf
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Vegetation model - LPJ-GUESS

2.1.3 Surface air temperature at 2 meter (tas)

Denoted ”temperature” or ”T” in the plots, measured in Kelvin. The air tem-
perature influences photosynthesis and affects soil temperature. The optimal
air temperature is different for different plants. Too high or too low temper-
atures can affect growth indirectly by causing drought or frost damages (NC-
University, 2010).

2.2 Output - Spring wheat

LPJ-GUESS can be used to predict a variety of different agricultural processes
such as crop yield, CO2 uptake, optimal harvest date and start of growing season
for different crops. Here the annual yield of spring wheat is used as a test case for
the emulators. Spring wheat is wheat that is sown in the spring and harvested
in late summer or early fall (Merriam-Webster, 2017) The annual yield of spring
wheat from LPJ-GUESS is measured in ton/(ha · year), dry matter.

6



3 Data

The available data contained inputs and corresponding outputs of spring wheat
from 196 locations scattered around the world, predicted using LPJ-GUESS.
See figure 2.

Figure 2: The 196 different locations where simulator input and output were
available.

The inputs for LPJ-GUESS at each of these 196 different locations mainly con-
sisted of three 31 year long time-series containing daily measurements of ra-
diation, temperature and precipitation3. LPJ-GUESS was executed with the
inputs needed to predict the annual yield of a spring wheat variety called
T0P0C480/TeSW60. This output is collected when LPJ-GUESS has zero tem-
perature difference from normal (T0), the change in precipitation from normal
is zero (P0), 60kgN/ha fertilization is applied and the concentration of CO2

in the atmosphere is 480 ppm (C480). Thus representing present day climate
conditions but an elevated CO2 concentration. The ultimate aim would be to
fit the emulator using a variety of different future climate scenarios. For sim-
plicity this particular output will only be called ”spring wheat” or ”yield” and
is considered the response variable in this thesis. Table 1 displays a summary
of the collected inputs and outputs.

Variable Type Min Mean Max Unit
Plotted
in figure

Spring wheat output 0.0 1.57 10.5 Annual ton/ha 24
Precipitation input 0 0.000025 0.0034 kg/m2 25
Radiation input 0 178 411 W/m2 26
Temperature input 228 288 316 Kelvin 27

Table 1: Describing input and output variables gathered from LPJ-GUESS. The
plots displays these time-series for one grid cell.

3The inputs were collected from the AgMERRA data set from 1980-2010, available at:
https://data.giss.nasa.gov/impacts/agmipcf/agmerra/
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4 Theory - Gaussian process emulator

4.1 Definition

A GP-emulator used to model an unknown function f(·) typically consists of
two to three components. A mean value that captures large scale behaviors, a
Gaussian process4 that represents the variability of the unknown function and
white noise which describes the differences between the GP and the computer
model it tries to emulate. The GP emulator can thus be described by:

y(xi) = µ(xi) + η(xi)︸ ︷︷ ︸
f(xi)

+εi (1)

Where η ∼ N(0,K) and ε ∼ N(0, σ2
nI). The observations y(xi) are Gaussian

with mean µ(xi) and a covariance matrix where the noise variance (σ2
n) has

been added to the diagonal of K (Roberts et al., 2012):

y(x) ∼ N(µ(x),K + σ2
nI), (2)

where I is an identity matrix. To effectively apply Gaussian processes for re-
gression one important assumption for the underlying function f(·) is required:
It must have similarity between data-points. This basically means that if two x-
values (x1, x2) are close in x-space then their corresponding values (f(x1),f(x2))
should be close (Rasmussen and Williams, 2008, page 79). The main part of
applying a Gaussian process emulator is choosing the mean and covariance func-
tions used to represent prior knowledge of the unknown function. Each mean
and covariance function may also depend on parameters which needs to be esti-
mated (Rasmussen and Williams, 2008, page 106). The model selection problem
for Gaussian processes thus includes both finding the optimal values for these
parameters for a specific choice of mean and covariance function and to compare
different choices of mean and covariance functions (Rasmussen and Williams,
2008, page 106).

4.2 Mean function

The mean function should represent prior expectations of the underlying large
scale mean structure of the data and the choice should be driven by both ex-
perience and simplicity (O’Hagan et al., 2009). It is not uncommon to choose
mean function µ(x) = 0 and let the covariance function try to model the mean
behavior as well (Murphy, 2012, page 516). However this approach has two
main disadvantages: 1) if the process is used to predict points in regions far
from the training data, the lack of the mean function will lead to worse fore-
casts (Roberts et al., 2012). 2) The covariance function is forced to capture

4General properties of Gaussian processes can be found in Lindgren et al. (2014, page
111-112)

9



Theory - Gaussian process emulator

large scale structures, reducing its ability to model small scale behaviors in f
(Roberts et al., 2012). Common approaches include no mean, constant mean
(Roberts et al., 2012) and linear mean, i.e µ(x) = xβ (O’Hagan et al., 2009).

4.3 Covariance function

4.3.1 Definition and requirements for a valid covariance function

A covariance function for any stochastic process is defined as (Lindgren et al.,
2014, page 21):

k(t, t′) = C[X(t), X(t′)] (3)

A common name for a function k of two arguments mapping a pair of inputs
t ∈ T , t′ ∈ T into R is a kernel (Rasmussen and Williams, 2008, page 80). An
arbitrary kernel k(t, t′) is in general not a valid covariance function. The kernel
must fulfill some requirements before it can serve as a covariance function. First
of all a covariance function must be a symmetric function in R, (k(t, t′) = k(t′, t))
(Rasmussen and Williams, 2008, page 80). The second requirement is that the
covariance matrix corresponding to a covariance function needs to be positive
semidefinite (Rasmussen and Williams, 2008, page 80). This requirement implies
that the kernel needs to be a positive semidefinite function (Rasmussen and
Williams, 2008, page 80):∫

k(t, t′)f(t)f(t′)dtdt′ ≥ 0 where

∫
f2(t)dt <∞ and f(t) 6= 0 (4)

Since these requirements are quite tolerant many different covariance functions
exists. Different covariance functions can be combined since the sum and/or
product of two valid covariance kernels is a valid covariance kernel. (Rasmussen
and Williams, 2008, page 95). The covariance function can also be designed to
have certain properties which are explained below.

4.3.2 Special cases

To simplify understanding the covariance function is rewritten as k(t′t′) =
k′(r(t, t′)).

Stationary
A Stationary covariance function only depends on the difference between
t and t′, i.e. r(t, t′) = t − t′, these covariance functions are invariant to
translations. Valid stationary covariance functions can be created with
the help of Bochner’s theorem, see Wilson (2013, section 3) for a detailed
explanation.

Isotropic
A stationary covariance function that only depends on the distance in
input space, i.e r(t, t′) = |t − t′| is called isotropic. Isotropic covariance
functions are invariant to all rigid motions, i.e to both translations and
rotations (Rasmussen and Williams, 2008, page 80).

10
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Anisotropic
A stationary anisotropic covariance functions behaves differently for differ-
ent directions of the input space. They can be created from an isotropic
covariance function by modifying r(t, t′). For example; using a linear
transformation i.e r(t, t′) = |A(t − t′)| (Wackernagel, 2010, chapter 9) or
by setting r2(t, t′) = (t−t′)TM(t−t′) for some positive semidefinite matrix
M = ATA (Rasmussen and Williams, 2008, page 89).

Axis anisotropy
A stationary axis anisotropic covariance function behaves differently along
each axis in the input space. The behavior can be achieved by scaling each
dimension with a parameter, i.e setting r2(t, t′) = (t− t′)TM(t− t′) where
M is a diagonal matrix (Murphy, 2012, page 520).

4.3.3 Choice for GP emulator

The choice of covariance function for the Gaussian process is the most important
part when constructing a GP emulator (Rasmussen and Williams, 2008, page
79). The covariance function should try to encode the prior assumptions of
the behavior and variability of the unknown function.(Rasmussen and Williams,
2008, page 79). Given the vast number of potential covariance functions making
an optimal choice is almost impossible. Instead one, or a few, of the ”standard”
covariance functions are commonly used, see Rasmussen and Williams (2008,
page 94) for a list. Among these the Matérn covariance function is a popular
and flexible choice and it will be described below.

4.3.4 Matérn covariance function

If |t− t′| denotes the euclidean distance between two points the Matérn covari-
ance function is defined as (Matérn, 1960; Rasmussen and Williams, 2008, page
84):

kMatérn(t, t′) = σ2
f

21−υ

Γ(υ)

(√
2υ|t− t′|

l

)υ
Kυ

(√
2υ|t− t′|

l

)
(5)

where Γ is the standard gamma function and Kυ is a modified Bessel function of
second kind (Roberts et al., 2012). The parameter l is called the characteristic
length scale, or sometimes range, and describes the distance needed in input
space to make the function values uncorrelated (Rasmussen and Williams, 2008,
page 106). The length scale also describes how quickly the function values can
change. σ2

f is called the signal variance and controls how much the function
can vary from its mean value. The parameter υ determines the differentiability
of of the covariance function (Roberts et al., 2012). Therefore υ controls how
smooth the resulting GP is. If υ is chosen to be a half-integer (υ = p+ 1/2, p =
1, 2, 3, 4....) the expression for the Matérn covariance function simplifies to a
polynomial multiplied by an exponential. As υ → ∞ the Matérn covariance
function becomes:

kυ→∞(t, t′) = e−
|t−t′|2

2l2 (6)

11
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This special case of the Matérn covariance function is infinitely differentiable
and also known as the squared exponential. The squared exponential is proba-
bly the most commonly used covariance function for emulators (Rasmussen and
Williams, 2008, page 83). However the infinitely differentiability may give a too
smooth representation of the actual physical behavior (Rasmussen and Williams,
2008, page 83). For the same reason the exponential covariance, kυ=1/2, which is
common in spatial statistics (Gelfand, 2010, page 37), might be too rough (Ras-
mussen and Williams, 2008, page 85). According to Rasmussen and Williams
(2008, page 85) the most interesting cases for machine learning are kυ=3/2 and
kυ=5/2.

4.4 Estimate the parameters

The chosen mean and covariance function often include parameters that have
to be estimated. If the observed data contains noise, the noise variance, σ2

n is
included among the parameters. The parameters are estimated using maximum
likelihood, i.e to maximize the likelihood of the observations.

argmax
µ,θ

p(y) (7)

Where y is the observations. If y ∼ N(µ,Ky) the expression in (7) becomes
(Murphy, 2012, page 521):

argmax
µ,θ

(
1

2πn/2|Ky|1/2
e−

1
2 (y−µ)TK−1

y (y−µ)

)
(8)

where |Ky| denotes the determinant of Ky. Assuming a linear mean, the optimal
can be solved analytically using generalized least squares:

µ̂ = ~xβ̂ = ~x
(
~xTK−1

y ~x
)−1

~xTK−1
y y (9)

For any parameter θ, substituting (9) into (8) gives the profile likelihood p(y):

p(y) =
1

2πn/2|Ky|1/2
e−

1
2y

TPy,

P = K−1
y −K−1

y ~x
(
~xTK−1

y ~x
)−1

~xTK−1
y

(10)

Maximizing this w.r.t θ gives ML estimates of θ. The optimization can be aided
by calculating analytic derivatives (see appendix, A.1).

4.5 Estimate new points given data and parameters

Assume that an unknown function, f(·), should be modeled by a Gaussian
process. Further assume that all prior knowledge of f(·) is incorporated in a
mean value function, µ(·) and a covariance function, k(t, t′), with known or
estimated parameters and that a set of n known points s = {xi, f(xi)|i = 1...n}

12



Theory - Gaussian process emulator

is available. The goal of Gaussian process prediction is to provide estimates of
f(·) at new points x? given estimated parameters and the set s. The predictions
will use the covariance function to determine how similar the predictions should
be to the data in s (Rasmussen and Williams, 2008, page 79). Given these
assumptions the joint multivariate Gaussian distribution for f(x) and f(x?) is:[

f(~x)
f(~x?)

]
∼ N

([
µ(~x)
µ(~x?)

]
,

[
Kxx Kxx?

Kx?x Kx?x?

])
(11)

Where ~x = {xi|i = 1...n}, ~x? = {x?} and Kab is the covariance matrix contain-

ing all pairs of points between the vectors ~a and ~b. Calculating the posterior
distribution p(f(~x?)|f(~x)) from the joint distribution of f(~x) and f(~x?) can
be done by conditioning the joint Gaussian prior distribution on the observa-
tions (Rasmussen and Williams, 2008, page 16). The resulting predictions for
p(f(~x?)|f(~x)) are now given by:

p(f(~x?)|f(~x)) ∼ N(µ(~x?)+Kx?xK
−1
xx (f(~x)−µ(~x)),K??−Kx?xK

−1
xxKxx?

) (12)

Hence this distribution gives the estimated posterior mean and variance for
f(x?). If the observed data contains noise the algorithm used for prediction
can be modified accordingly. If observations containing noise variance σ2

n are
denoted y(·) the joint prior distribution can be written as (Rasmussen and
Williams, 2008, page 16):[

y(~x)
f(~x?)

]
∼ N

([
µ(~x)
µ(~x?)

]
,

[
Kxx + σ2

nI Kxx?

Kx?x Kx?x?

])
(13)

And the posterior distribution becomes (Rasmussen and Williams, 2008, page
16):

p(f(~x?)|y(~x)) ∼ N(µ(~x?) +Kx?x[Kxx + σ2
nI]−1(y(~x)− µ(~x)),

K?? −Kx?x[Kxx + σ2
nI]Kxx?

)
(14)

Computational aspects of the algorithm are given in appendix A.2.

4.6 Evaluation

General methods for evaluating a system in computer science or engineering of-
ten involves two steps; verification and validation (Bastos and O’Hagan, 2009).
The verification is the process of determining if the system is built according to
specification and that it represents the developers conceptual description of the
model (Bastos and O’Hagan, 2009). During verification the developers should
ask ”are we creating the the system right?”(Balci, 2010). Common techniques
for verification often involves developing and running different tests on the ac-
tual system (Balci, 2010). The second step is validation which is the process
of determining to what degree the system manages to represent its intended
usage(Bastos and O’Hagan, 2009). During validation the developers should ask
”are we creating the right system?”(Balci, 2010).
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4.6.1 Validation of Gaussian process model used in regression

The accuracy of the predictions given by a Gaussian process can be evaluated
using a variety of different methods. A common approach is to study differ-
ent residuals (Bastos and O’Hagan, 2009). Both the marginal residual which
is the difference between the observed values and the values returned by the
model and the conditional residuals which is the error between the predictive
values for observed values not used to build the model could be used (Bastos
and O’Hagan, 2009).

k-fold cross-validation
k-fold cross-validation is a technique for calculating the conditional residuals.
The technique divides the original data into k disjoint sets of equal size and
then training is performed on all data except for one of these k sets which is
used for validation. This procedure is then repeated k times with a different
validation set each time. This allows more data to be used for training and that
all data points in the original data set are used for validation (Rasmussen and
Williams, 2008, page 111). The number of different sets, k, can be chosen to
be any number but is typically between 3 and 10 (Rasmussen and Williams,
2008, page 111). To ensure that maximum amount of data is used for training
k could be chosen to be equal to the number of data points in the original
data set. This special case is called leave-one-out cross-validation and it can,
because of its computational cost, be difficult to apply in practice (Rasmussen
and Williams, 2008, page 111).

4.6.2 Possible problems

Even if the Gaussian process is a very flexible class it can sometimes give poor
predictions (Bastos and O’Hagan, 2009). Large residuals from cross validation
can usually be explained by at least one of two basic reasons. The first reason
is that the assumed mean and covariance functions used to train the Gaussian
process are inappropriate (Bastos and O’Hagan, 2009). The second basic reason
is that the parameters of the model are poorly estimated (Bastos and O’Hagan,
2009). Bad estimates can be the result of an unfortunate choice of training
data or that the optimization algorithm was unable to find a global maximum
(Bastos and O’Hagan, 2009; Rasmussen and Williams, 2008, page 116).

Another indication of problems with the Gaussian process is if it displays
a systematic bias in its predictions. This bias often indicates an inappropriate
mean structure or bad parameter estimates (Bastos and O’Hagan, 2009). The
confidence interval returned by the Gaussian process could also indicate prob-
lems. For example a too wide or too narrow interval can indicate inappropriate
covariance structure such as non-stationary of the underlying process or again
that the parameters of the covariance function have bad estimates (Bastos and
O’Hagan, 2009).

In addition to numerical evaluations graphical tools can be used for model
evaluation:
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Individual errors vs the Gaussian process predictions
This plot can show if there are regions that are systematically to high
or to low indicating an incorrect mean function (Bastos and O’Hagan,
2009). The plot can also display if the errors are heteroscedastic or not. If
the individual errors are heteroscedastic it could indicate that the actual
process is non-stationary (Bastos and O’Hagan, 2009).

Standardized errors vs inputs
This plot can be used to see if errors are different across the input space,
indicating that the actual process isn’t stationary (Bastos and O’Hagan,
2009). The plot should display a horizontal band containing all the errors
(Bastos and O’Hagan, 2009). If the plot displays a clear pattern it may
indicate incorrect mean function (Bastos and O’Hagan, 2009).

Quantile quantile plot
Can be used to see if the normality assumption of the model holds. If the
normality assumption holds the standardized errors should be distributed
with a student-t distribution (Bastos and O’Hagan, 2009). If the points
lie close to the line y = x the normality assumption is reasonable (Bastos
and O’Hagan, 2009). If the points cluster to a line with a different slope it
may indicate that the variance of the errors were over or underestimated
(Bastos and O’Hagan, 2009). Outliers at the endpoints of the QQ plot
indicates non-stationarity or local fitting problems (Bastos and O’Hagan,
2009).

4.6.3 Comparing two models with each other

The performance of a Gaussian process can be evaluated using a variety of meth-
ods, see Bastos and O’Hagan (2009) for a comprehensive summary of different
techniques. This thesis will use the cross validated root mean squared error,
RMSE, to determine which emulator that is most suitable. The root mean
squared error is defined as:

RMSE =

√√√√ 1

n

n∑
k=1

(rk)2 (15)

Where rk is the residual between the observed and estimated value, calculated
using cross validation and n is the number of points. This thesis will also use
the cross validated mean absolute error, MAE defined as:

MAE =
1

n

n∑
k=1

|rk| (16)

The confidence intervals returned by the emulator will be compared using the
mean absolute interval, |I|, defined as:

|I| = 1

n

n∑
k=1

|ik| (17)
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where ik is the length of the confidence interval for point k.

4.7 The gpml package

The actual emulators were implemented in matlab using the gpml package5.
Many alternative environments and packages exists6. The gpml package was
chosen since it is extensive and written by one of the authors of ”Gaussian
processes for machine learning” (Rasmussen and Williams, 2008), making it
easy to map functions to this reference.

5Available at: http://www.gaussianprocess.org/gpml/code/matlab/doc/index.html
6A list of available packages can be found at: http://www.gaussianprocess.org/#code
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5 Implementation

5.1 Reducing input data

When all available data was gathered from LPJ-GUESS it became obvious that
some sort of reduction or aggregation was needed before it could be used for
training a Gaussian process emulator. The main reasons being that the amount
of training points needed increases with the number of inputs and that the
computations needed for creating the emulator increases as O(n3). Training
an emulator on all climate data would also be difficult in practice since the
amount of available climate data is huge implying large memory usage. Each
of the three time-series for each location were therefore reduced by calculating
the mean, min, max and range values. Table 2 describes information about the
annual mean value of these time-series. To reduce table size the min, max and
range values where omitted from the table since they had lower correlation to
the annual yield compared to the mean.

Variable Min Max
Correlation
(Pearson’s r)

Precipitation mean (P̄ ) < 0.00001 0.00018 0.05
Radiation mean (R̄) 108 263 -0.55
Temperature mean (T̄ ) 270 302 -0.50

Table 2: Describing the aggregated data for all 196 locations. The table also
displays the correlation between the aggregated input variable and the output
variable spring wheat. The mean for each location was calculated as the mean
value of the time-series (31 years).

Since spring wheat is cultivated during the spring and summer period of the year
it seemed reasonable to assume that some of the input data could be removed.
This could also explain the low correlation values seen in table: 2. The optimal
plant date for spring wheat differs for different locations of the world. Both
plant date and harvest date for a location where calculated by LPJ-GUESS and
included in the output. These outputs were used to remove all data from the
inputs except 120 days before harvest. 120 days was chosen since it represented
4 month of growth and was close to the average number of growing days for
spring wheat. Information about the aggregated data for these 120 days can
be seen in table 3. The table values are collected from the average over the 31
years for each location.
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Variable Min Max
Correlation
(Pearson’s r)

Precipitation mean (P̄120) < 0.00001 0.00013 0.26
Radiation mean (R̄120) 125 300 -0.14
Temperature mean (T̄120) 262 304 -0.19

Table 3: Describes the aggregated data during 120 days before harvest for all
196 locations. The table also displays the correlation between the aggregated
input variable and the output variable spring wheat. The mean for each location
was calculated as the mean value of the time-series (31 years), only including
the data 120 days before harvest.

The dependence between the lon, lat -coordinates and the annual yield was also
studied, see table 4.

Variable
Correlation
(Pearson’s r)

Longitude -0.25
Latitude 0.19

Table 4: Describes the correlation between coordinates and average output of
spring wheat.

Each aggregated variable was plotted using histograms and analyzed to see their
distributions. These plots indicated that some variables may benefit from a
transformation, especially the input variable precipitation since its distribution
was very skew. Both the logarithm and the cubic root transformation7 was
considered.

5.2 Model describing LPJ-GUESS

The mathematical structure of LPJ-GUESS was not investigated, instead the
simulator was treated as a ”black box”. The problem to accurately model LPJ-
GUESS using a Gaussian process approach was split into two parts. 1) Model
the average yield at location i given average input, i.e climate, at that location,
c̄i:

ˆ̄yi = γ(c̄i) (18)

2) Model the yield at a specific year, t, for a location given the average yield at
that location and the input anomalies, i.e weather, during that year (cit − c̄i).

ŷit = ˆ̄yi + η(cit − c̄i) (19)

where γ and η are Gaussian process emulators. The following subsections will
describe the implementation of each of these parts.

7The transformation was considered since it has been used to effectively model rainfall (Fu
et al., 2009).
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5.3 Modeling average yield at location

Several emulators where constructed using different combinations of the inputs
from table 2, table 3 and table 4. Each emulator used the Matérn covariance
function with υ = 3/2. Both isotropic and axis-anisotropic versions of Matérn
covariance function was tested. Different mean functions of the emulator was
also implemented and tested. Since the emulator only had 196 training points
leave-one-out-cross validation was used for comparing and evaluating each em-
ulator. The emulator performance was measured using RMSE.

Table 5 contains some of the created emulators and their corresponding
RMSE.

Inputs
Mean
Function

Covariance
Function

RMSE

P̄ , T̄ , R̄ Constant Matérnυ=3/2
isotropic

0.66

P̄ , T̄ , R̄ Constant Matérnυ=3/2
anisotropic

0.65

P̄ , T̄ , R̄ Linear Matérnυ=3/2
anisotropic

0.64

P̄ , T̄ , R̄, lon, lat Constant Matérnυ=3/2
anisotropic

0.57

P̄120, T̄120, R̄120 Constant Matérnυ=3/2
anisotropic

0.72

P̄120, T̄120, R̄ Constant Matérnυ=3/2
anisotropic

0.58

log(P̄120), T̄120, R̄ Constant Matérnυ=3/2
anisotropic

0.44

log(P̄120), T̄120, R̄, lat Constant Matérnυ=3/2
anisotropic

0.40

log(P̄120), R̄ Constant Matérnυ=3/2
anisotropic

0.53

Table 5: Describing a subset of all created emulators for predicting the average
yield at a location.

The emulator that gave the smallest RMSE when predicting the average yield
at a location was:

γ = Constant +GP (0,Matérnυ=3/2
anisotropic

(c̄i)) + ε (20)

Where c̄i = [log(P̄120), T̄120, R̄, lat]. The emulator had RMSE = 0.40,MAE =
0.27 and |I| = 1.59. The estimated parameter values for this emulator can be
seen in table 6 where σ2

f is the signal variance and σ2
n is the noise variance. The

parameters li describes the diagonal element of matrix M , i.e. characteristic
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length scale for input i, used for modeling the axis anisotropy, see section 4.3.2.
The reason why the table contains min, max and mean values for the parameters
is that the optimal parameters for the emulator are different depending on the
training and validation data.

Parameter Min Mean Max
Constant 0.93 1.02 1.16

eσ
2
f -0.16 -0.10 -0.06

ellog(P̄ ) 0.35 0.50 0.60
elT̄ 2.35 2.46 2.55
elR̄ 4.62 4.70 4.88
ellat 3.06 3.39 3.55

eσ
2
n -1.24 -1.15 -1.13

Table 6: Parameter estimates for the emulator described in equation (20)

The emulator predictions and their corresponding ±2 standard deviation inter-
val are depicted together with the actual output for each of these 196 locations
in figure 3. The predictions have been sorted to increase interpretation. Figure
4 displays the observed values vs the predicted outputs from this GP emulator.
Figure 5 depicts the residuals vs the Gaussian process predictions. Figure 6 dis-
plays a QQ-plot of the residuals. Figure 7 − 10 contains plot of the standardized
errors vs inputs for the GP.

Figure 3: Emulator predictions, uncertainties and corresponding observed out-
puts for each of the 196 locations.
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Figure 4:
Observed values vs the
predicted outputs from
the GP emulator. The
line indicates a perfect
fit.

Figure 5:
Residuals vs Gaussian
process predictions.

Figure 6:
QQ plot for the resid-
uals. The blue line is
y = x.

Figure 7:
Standardized
residuals
vs log(P̄120)

Figure 8:
Standardized
residuals vs T̄120

Figure 9:
Standardized
residuals vs R̄

Figure 10:
Standardized
residuals vs
lattitude

5.3.1 Reference model

As a baseline model the mean yield was also modeled using multiple linear re-
gression with the same covariates as the best emulator (c̄i = [log(P̄120), T̄120, R̄, lat]).
All covariates showed significant p-values and the regression had a RMSE =
0.62,MAE = 0.44 and |I| = 1.59, calculated using in-sample validation. The
in-sample predictions are plotted together with the actual yield for each location
in figure 11.

Figure 11: Multiple linear regression predictions, uncertainties and correspond-
ing observed outputs for each of the 196 locations.
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5.4 Model change in yield for a specific year

Several emulators where constructed using annual anomalies for the yearly data
and the anomalies for the data collected 120 days before harvest. All the anoma-
lies where calculated as the input for that year minus the average input over
all 31 years at that specific location. Table 7 contains information of all the
calculated anomalies.

Anomaly Min Mean Max
Yield -1.7 ≈ 0 7.1
P̄ −3.5 · 10−5 ≈ 0 5.6 · 10−5

R̄ -56 ≈ 0 48
T̄ -4.6 ≈ 0 7.8
P̄120 −5.1 · 10−5 ≈ 0 8.0 · 10−5

R̄120 -55 ≈ 0 42
T̄120 -5.6 ≈ 0 6.3

Table 7: Describes the calculated anomalies.

Again each emulator used the Matérn covariance function with υ = 3/2 for cre-
ating the covariance matrix. Both isotropic and anisotropic versions of Matérn
covariance function was tested. Different mean functions of the emulator were
also implemented and tested. Since the emulator had 196 · 31 = 6076 training
points k-fold cross validation with k = 7 was used for comparing and evaluating
each emulator. The emulator performance was measured using RMSE. Table 8
contains some of the created emulators and their corresponding RMSE.

Inputs
Mean
Function

Covariance
Function

RMSE

P̄ , T̄ , R̄ Constant Matérnυ=3/2
isotropic

0.411

P̄ , T̄ , R̄ Constant Matérnυ=3/2
anisotropic

0.409

P̄ , T̄ , R̄ Linear Matérnυ=3/2
anisotropic

0.409

P̄ , T̄ , R̄, lon, lat Constant Matérnυ=3/2
anisotropic

0.404

P̄ , T̄ , R̄, lat Constant Matérnυ=3/2
anisotropic

0.406

P̄120, T̄120, R̄ Constant Matérnυ=3/2
anisotropic

0.415

P̄120, T̄120, R̄120 Constant Matérnυ=3/2
anisotropic

0.415

Table 8: Describing a subset of all created emulators for predicting the change
in yield during a specific year.
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The emulator that gave the smallest RMSE when predicting the average change
in yield during a specific year at a location was:

γ = Constant +GP (0,Matérnυ=3/2
anisotropic

(c̄i)) + ε (21)

Where c̄i = [P̄ , T̄ , R̄, lon, lat] and ε ∼ N(0, σ2
n). The emulator had RMSE =

0.404,MAE = 0.22 and |I| = 1.60. The estimated parameter values for this
emulator can be seen in table: 9.

Parameter Min Mean Max
Constant 0.01 0.10 0.23

eσ
2
f -2.14 -1.24 -0.50

elP̄ 4.58·10−5 4.59·10−5 4.60 ·10−5

elT̄ -1.12 -0.36 0.48
elR̄ 0.074 2.17 3.21
ellon 1.55 3.92 5.22
ellat 1.36 2.68 3.64

eσ
2
n -1.01 -0.95 -0.92

Table 9: Parameter estimates for the emulator described in equation (21).

The predictions from the emulator with lowest RMSE are plotted together with
a ±2 standard deviation interval in figure 12. Figure 13 displays the observed
values vs the predicted outputs from this GP emulator. Figure 14 depicts the
residuals vs the Gaussian process predictions. Figure 15 displays a QQ-plot of
the residuals. Figure 16 − 20 contains plots of standardized errors vs inputs for
the emulator.

Figure 12: Emulator predictions and corresponding outputs of change in annual
yield of spring wheat. Only a subset of the total number of points is plotted.
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Figure 13:
Observed values vs the
predicted outputs from
the GP emulator. The
line indicates a perfect
fit.

Figure 14:
Residuals vs the Gaus-
sian process predictions

Figure 15:
QQ plot for the residu-
als. The blue line is y =
x.

Figure 16:
Standardized residuals
vs P̄ .

Figure 17:
Standardized residuals
vs T̄ .

Figure 18:
Standardized residuals
vs R̄.

Figure 19:
Standardized residuals vs longitude.

Figure 20:
Standardized residuals vs latitude.

5.4.1 Model each location independently

As a test the change in yield for a specific location at a given year was also
modeled by constructing a GP emulator for each location. This was done to
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investigate if the predictions could be improved by assuming that each loca-
tions behaved differently to changes in input space. Each GP emulator were
constructed using the same structure and covariates (except longitude and lat-
itude) as the model in (21). Hence 196 different emulators were constructed.
Each of these emulators were then evaluated by excluding one of the 31 years
before training and then using this year for validation. Since the performance
measurements depends on which years that are randomly excluded during train-
ing and validation the approach was done 10 times and then the average of all
these runs was calculated to ensure a reliable values. The approach gave an
average RMSE=0.483, MAE= 0.24 and |I| = 1.26. The predictions for one of
these runs are plotted together with the actual change in yield for each loca-
tion in figure 21, note the difference in scale on the y-axis from figure 12. The
emulator prediction and the corresponding observations are plotted in figure 22

Figure 21: Emulator predictions and corresponding outputs of change in annual
harvest. Each location is predicted independently.

Figure 22: Emulator predictions and corresponding observations. Each location
is predicted independently. The red line indicates a perfect fit.
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6 Results and analysis

6.1 Emulator for predicting the average yield

The emulator for predicting the average yield at a specific location managed to
capture some of the points and performed better than multiple linear regres-
sion. The estimated signal variance, i.e. variance in k(t, t′), of the underlying
function was larger than the estimated noise variance, i.e. σ2

n, indicating that
the emulator manages to capture most of the variance in the response variable.

As seen in figure 5 and figure 7 − 10 the emulator had heteroscedastic er-
rors. The QQ-plot indicated that the estimated variance was too high with
heteroscedastic errors mainly for large values, consistent with the model’s in-
ability to capture large yields. These results indicate that the underlying process
might be non-stationary. Figure 7 displays heteroscedasity due to precipitation,
indicating that the non-stationary behavior might depend on this input. The
choice of using a stationary covariance function to model the behavior may
therefore be insufficient. The locations corresponding to the highest residuals
can be seen in figure 23. The plot shows that the emulator typically gives poor
predictions for a few places in north America and at remote islands. However,
predictions for nearby points are often good, making it hard to draw consistent
conclusions.

Figure 23: Locations where the emulator had large residuals are plotted in red.

6.2 Emulator for predicting the change in yield for a spe-
cific year

The emulator used for predicting the change in yield from the average yield
at different locations was unable to capture much of the underlying structure
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as seen in figure 12 and 13. The estimated parameters also indicates poor
performance since the noise variance was larger than the signal variance, indi-
cating that most of the variability is ”explained” by noise. The emulator had
heteroscedastic errors, again most severely so for large yields. The QQ-plot in-
dicated that the estimated variance was too high since the points clustered to a
line with slope less than 1. The performance of the emulator might be explained
by the skewness of the response variable or that different changes in the inputs
affects the harvest differently at different locations around the world. However
no particular improvement in RMSE were achieved when a GP emulator was
constructed for each of the 196 locations. Since both approaches gave poor
estimates the reason might be poor choice of covariates. It is not unrealistic
that important information is lost by building the emulator on aggregated data
and that the yearly change in yield depends on changes in daily measurements
instead of changes in mean values during 365 days for the different inputs. A
more extensive research of the yearly behavior of LPJ-GUESS for each location
is needed to discover these behaviors.
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7 Conclusion

Several Gaussian process emulators where constructed and as seen in figure 4
and 13 the results was far from satisfactory. However the emulator used for
modeling the average yield at a location indicated that the Gaussian process
approach may work if researched further. Possibly by using a more complex
covariance function and by researching different aggregations of the inputs fur-
ther.

The created emulators for modeling the change in yield for a specific year was
unable of LPJ-GUESS. The performance measurements for these predictions
didn’t increase much whether an emulator was constructed at each location or
if it was constructed for all locations at once. This may imply that poor choices
of covariates was used for training the emulators.

7.1 Discussion

The behavior of LPJ-GUESS was much more complex to model than antici-
pated. To be able to model LPJ-GUESS a more extensive analysis on how to
aggregate the inputs and a more complex covariance structure than presented
in this thesis is likely needed. A starting point would be to investigate the het-
eroscedasticity due to precipitation, see figure 7, and try to incorporate this in
the emulator. Even if the results from this thesis are unsatisfactory it can be
seen as a starting-point for further and related research.

While reading the report it might seem incorrect to only try to model LPJ-
GUESS using a Gaussian processes with the Matérn covariance function since
this decision was done before any research or evaluations was performed. How-
ever the work-load of this master thesis would have been too large to perform
within the time-frame if multiple emulator strategies and different covariance
functions would be implemented and evaluated. The decision to use a Gaussian
process approach as the emulator strategy is although not entirely unsupported.
Gaussian processes are very flexible and often used as a first choice for emulators.

Worth noting is that the implemented emulators in this thesis uses the data
120 days before harvest as input for a new location. The exact harvest-date
however is not known before LPJ-GUESS is executed which implies that this
needs to be predicted as well for the emulator to be able to predict new points.
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8 Future work

This thesis only covers a small subset of all the possible solutions for modeling
the behaviors of LPJ-GUESS. Future research includes trying a different em-
ulator approach from section 1.6 or research and implement a more complex
Gaussian process emulator. Techniques that could increase the performance of
the emulator includes opening LPJ-GUESS and perform an extensive analysis of
its internal mathematical structure and researching the inputs more throughly.
The performance can also be increased by collecting more training data from
LPJ-GUESS and by configuring it to execute grid cells with inputs related to
high uncertainty within the emulator. A more formal method for choosing and
comparing different mean value and covariance functions could also be devel-
oped to increase the chances of finding a better emulator.
Another thing that could increase the performance might be to research tech-
niques to implement an emulator for each grid cell.
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A Appendix

A.1 Maximizing the profile likelihood

Since the expression for the profile likelihood contains an exponential function
the logarithm of the profile likelihood is often used. Assuming a zero mean,
µ = 0, the derivatives of the log profile likelihood w.r.t each parameter can be
calculated as (Rasmussen and Williams, 2008, page 114):

∂

∂θj
log(p(y|µ)) =

1

2
yTK−1

y

∂Ky

∂θj
K−1
y y − 1

2
tr

(
K−1
y

∂Ky

∂θj

)
(22)

The inverse of the matrix Ky takes O(n3) to compute and the gradient takes
O(n2) per parameter to compute (Murphy, 2012, page 521). When estimating
θ by maximizing the log profile likelihood in this manner there is no guarantee
that the the global maximum is found. This is because the marginal likelihood
may suffer from multiple local optimas (Rasmussen and Williams, 2008, page
115).

A.2 Computer considerations. Estimation of new points
given data and parameters

The main step when predicting mean and variance of an unknown point f(~x?)
is the calculation of K−1. See section 4.5.
Since the covariance matrix K is designed to be a positive definite matrix it can
be represented as a product of two matrices using the Cholesky decomposition:

A = LLT (23)

Where L is a lower triangular matrix (Rasmussen and Williams, 2008, page 202).
The decomposition offers a more numerical stable way to solving linear equations
on the form Ax = b by first solving the triangular system Ly = b by forward
substitution and then the triangular system LTx = y by back substitution.
The decomposition can also be used to calculate the inverse of a matrix since
(Murphy, 2012, page 524):

A−1 = (LT )−1L−1 (24)

The Cholesky decomposition takes n3/6 = O(n3) operations to compute for an
n×n matrix. Both the forward and backward substitution steps require n2/2 =
O(n2) operations. (Rasmussen and Williams, 2008, page 202). The actual
algorithm for performing the calculations can be seen in (Murphy, 2012, page
524). The Cholesky decomposition can be used to calculate the determinant
of a positive definite symmetric matrix since (Rasmussen and Williams, 2008,
page 203):

|A| =
n∏
i=1

L2
ii (25)
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A.3 Figures

Figure 24: Annual yield of spring wheat at lon=12.75, lat=56.25. This location
is close to Lund.

Figure 25: Plot of precipitation between 1980 and 2010 at lon=12.75, lat=56.25.
The bottom panel displays precipitation from the year 2000.
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Figure 26: Plot of radiation between 1980 and 2010 at lon=12.75, lat=56.25.
The bottom panel displays radiation from the year 2000.

Figure 27: Plot of temperature between 1980 and 2010 at lon=12.75, lat=56.25.
The bottom panel displays temperature from the year 2000.
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The increase in world population along with observed and expected changes in the
environment due to human actions implies risks that future food production will be
insufficient. These risks can be minimized by predicting these changes using complex
computer programs called simulators. These simulators are usually computationally
expensive, implying that predictions where many different future climate scenarios
are considered will be expensive. This thesis investigates a method for modeling the
behavior of the simulator using a machine learning technique.

The ability to understand and predict the nat-
ural behaviors surroundings us has been one of
mankind’s biggest challenges. We are now able
to predict phenomenons such as the weather quite
accurately and the models are constantly improv-
ing. One of the things we are trying to predict is
the future impact different climate changes have
on the environment in which we live. Knowing
how the environment will behave in the future is
essential for proactively respond to these changes.
Predicting the environment is difficult and the

models usually involves simulating the real world
processes day by day until it reaches the state it
should predict. The predictions from these sim-
ulators can therefore take many hours to obtain,
even for a modern supercomputer. The simulator
would be of much more practical use if the predic-
tions could be obtained much faster. What if the
behavior of the simulator could be predicted just
like the behavior of the real world phenomenon
could be predicted by the simulator? It would be
a model trying to predict a model that tries to
predict the real world. This is exactly what this
thesis has tried to implement.
By using recent advances in machine learning

and computer science it can be possible for a com-

puter program to ”learn” how the simulator be-
haves in different situations. The aim of the thesis
was to ”learn” the behavior of a simulator used
to predict future production of spring wheat at
different locations around the world when it was
affected by different climate changes.
The problem of accurately modeling the simula-

tor was split into two parts. The first part was to
model the average yield at each location given av-
erage climate input at that location. The second
part was to model the yield at a specific year for
a location given the average yield at that location
and the climate input anomalies during that year.
Modeling the simulator was difficult in practice

and the results was far from perfect, however they
managed to show that the used strategy might be
useful for predicting some quantities within the
simulator. With more time and further research
about the internal structure of the simulator and
the different simulator inputs the model might be
improved so it could be used for practical applica-
tions.
One may say that the current version of the

model is of little use but at the same time the
models used for predicting the weather is far from
perfect but we still use and rely on them everyday.
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