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Abstract

In this thesis methods for finding state space representation parameters for low in-
ductance DC-motors are found and evaluated. Theory previously tested in simula-
tions is verified experimentally and improved upon for both linear behaviour when
the motor is controlled with a DC-source as well as nonlinear behaviour when con-
trolled with pulse width modulation (PWM). For the linear behaviour a linear re-
gression model with multiple regression sets proved satisfactory at identifying the
motor dynamics. For the nonlinear behaviour caused by the PWM signal it was
found that a Hammerstein model was sufficient to model the dynamics and several
rotor speed estimators were tested and compared. Based on these results a design
for a Crazyflie expansion board is suggested.
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Popular Scientific Summary

To achieve agile flight of quadcopters it is important to control the rotor speed of
their motors and make sure that they reach their desired values. This can be done
by meassuring the rotor speed and adapting the amount of current supplied to the
motor thereafter. Measuring the rotor speed directly can be done in several ways
and there are many sensors available for this task, for example optical encoders
or hall sensors. For applications where these are not applicable, maybe because of
restrictions on cost or weight, other approaches might be needed. In this thesis a
different method was explored where the rotor speed is measured indirectly.

Instead of measuring the speed it is possible to measure the current being sup-
plied to the motor and to use a simple linear model for the dynamics of a DC-motor,
which describes the relation between rotation speed, voltage and current, to calcu-
late the speed. This model used a certain number of parameters for which the values
were unknown. To find the values of these parameters experiments were carried
out were the rotor speed and current was measured for different voltage sequences.
These data recordings was then used with so called linear regression, which is a
method commonly used in statistics and for system identification, to find the val-
ues of the parameters. This method was proven to be feasible when the motor was
supplied with a DC-source with variable amplitude.

The motors mounted on a quadcopter is however not supplied with a DC-source
with variable amplitude but instead uses a fixed voltage source. The amount of cur-
rent supplied to the motor is instead controlled by opening and closing a transistor
so that the relation between the time it is open and the time it is closed is pro-
portional to the desired current. When running the motor with this, so called pulse
width modulation, it was discovered that the linear model prevoiusly used was not
sufficient to describe the behaviour of the motor. It was also discovered that the cur-
rent measuring became more difficult. The motors had very low inductance which
means that the current changes very quickly giving us large amounts of noise. To
handle this analog filters were used on the measurement signal as well as on the
voltage supplied to the motor.

To capture this changed behaviour the motor model had to be expanded with
a nonlinearity. The shape of this nonlinearity was found both by a trial and error
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approach as well as a mathematical identification method. The later approach was
deemed to give the best results while the trial and error method is simpler to imple-
ment on the actual hardware. Therefore it can be concluded that there are severall
ways to achieve satisfactory rotor speed estimation by measuring the motor current
and that it is a feasible approach for applications where an indirect measurement
method is needed.
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1
Introduction

During the greater part of 2016 Marcus Greiff, a student at LTH, worked on im-
proving many parts of the Crazyflie platform which is a small size, open source
quadcopter, further presented in chapter 2. His work covered several different top-
ics ranging from dynamic modeling to state estimation and control. The results were
well grounded in both theory and simulations as well as largely supported by real-
time experiments.

One topic that was covered in theory and simulations but not experimentally
was that of rotor control. The rotor speed control is presently implemented as an
open-loop system and it was theoreticized that closing this loop would enable more
agressive flight.

This thesis therefore attempts to build further upon the work done by [Greiff,
2017] and to give experimental results from real-time implementations where re-
sults previously have been obtained from simulations.

Though the flight performance of the quadcopter was greatly improved, a topic
not covered in the thesis of [Greiff, 2017] was that of landing. With the goal of
enabling landing on moving surfaces a first step was taken to set up an experimental
platform for future experiments, the results are covered in Appendix B.

1.1 Goals of Thesis

The thesis will be divided into two parts. The first is to develop the identification
methods and measurement hardware needed to design an expansion board that will
enable closed-loop control of the rotor speeds. The main goals are here to

• Verify identification simulation results of [Greiff, 2017].

• Implement rotor speed estimation.

• Design PCB for feedback loop measurements.
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Chapter 1. Introduction

• Implement and compare control methods, mainly PID and model reference
adaptive control (MRAC). (This goal was however not completed due to lack
of time.)

The second focus is to make preparations for further work on autonomous land-
ing on a moving surface.

• Program a moving platform to be able to follow angular and translational
trajectories.

• Implement simple fly-over landing with laser height detector. (This topic was
however not completed due to lack of time.)
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2
Crazyflie Platform

The Crazyflie 2.0 is a small-size, low-weight quadcopter designed by the Swedish
company Bitcraze AB. It is an open source project and is at the moment mainly
used in research and education by several leading research labs around the world,
for example MIT and ETH.

This chapter briefly presents details regarding the hardware and control struc-
tures already implemented on the Crazyflie that are the foundation upon which this
thesis aims to improve. Many details are omitted and the interested reader is referred
to [Greiff, 2017] and [Bitcraze, 2017a].

Figure 2.1 The Crazyflie 2.0 quadcopter. Picture obtained from [Bitcraze, 2017b].
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Chapter 2. Crazyflie Platform

2.1 Motor Control

Motor Hardware
The Crazyflie uses brushed coreless DC motors. The motors are connected to the
battery where the connection to ground is controlled by one transistor per motor.
These transistors are opened and closed by 328 kHz PWM-signals which has a duty
cycle d ∈ [0,1], see Figure 2.2 for schematics.

Figure 2.2 Schematics illustrating the wireing of one of the motors. MOTOR1
is the schematic name of the PWM output port of the microcontroller. Schematics
obtained from [Bitcraze, 2017b].

Since the motor is not connected via an H bridge the rotors can only be run in
one direction

Open Loop Control
The dynamics of the quadcopter is described by [Greiff, 2017] as a nonlinear MIMO
state space model with 13 states and 4 input signals where the states represent the
position, speed and rotation of the quadcopter and where the inputs, u, are thrust,
T , and torques, τ , formulated as the vector

u =

[
T
τ

]
. (2.1)

Since the motors are controlled by setting the duty cycle, not a desired thrust or
torque, a transformation from u to d has to be obtained.

The thrust generated by each motor is assumed to be proportional to the rotor
speed squared, θ̇ 2, and the total thrust T to be the sum of the separate motor thrusts
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2.2 Expansion Port

T =
4

∑
i=1

kθ̇
2
i . (2.2)

The torque generated by each motor is approximated as

τi ≈ bθ̇
2
i + Iθ̈ (2.3)

where b is a drag constant and I is the rotor inertia. The parameter identification
was carried out for the unknown parameters and the map M

θ̇ 2→u from rotor speed
to control signals was defined as

[
T τ

]T
= M

θ̇ 2→uθ̇
2 (2.4)

A map Md→T from duty dycle to thrust was also obtained experimantally as a
second order polynomial.

Knowing these mappings the desired duty cycle can be calculated as

d = M−1
d→T (Mθ̇ 2→T (M

−1
θ̇ 2→u(

[
T τ

]T
))). (2.5)

This also means that the rotor speed is estimated as a function of the duty cycle
and is given as

θ̇ =
√

M−1
θ̇ 2→T

(Md→T d) (2.6)

where θ̇ ≥ 0 since, as previously mentioned, the motors are only run in one direc-
tion.

2.2 Expansion Port

The Crazyflie is equipped with 20 input/output pins that can be used for customizing
the quadcopter with extra hardware. This is usually done by adding an expansion
board. The functionality of the expanions ports ranges from IO pins to communi-
cation and power supply. An illustration of pin functionality can be seen in Figure
2.3.
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Chapter 2. Crazyflie Platform

Crazyflie epansion port

Figure 2.3 Expansion port pin functionalities. Figure obtained from [Bitcraze,
2017b].

In this thesis the analog input pins were the ones of main interest as well as
those enabling SPI communication, as described in Appendix B.
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3
Rotor Speed Estimation -
DC-Input

In this chapter the motor model and parameter identification method used for the
rotor speed estimation and closed loop control previously tested in simulations by
[Greiff, 2017] is presented.

The validity of the method is investigated by applying the same methods exper-
imentally. Improvements for the parameter identification are thereafter suggested.

3.1 Theory

The modeling and parameter identification of a brushed DC motor is covered by
[Greiff, 2017] but will be restated here for readability and a slightly changed nota-
tion.

Rotor Model
We assume that the torque on the rotor is proportional to the current i(t) and that
there is viscous friction with the parameter b. Newton’s second law of motion then
gives us

Jθ̈(t) = T −bθ̇(t)↔ θ̈(t) =
1
J
(Kt i(t)−bθ̇(t)) (3.1)

The inertia J was found to be nonlinear and dependent on whether
∣∣θ̇ ∣∣ is in-

creasing or decreasing so that it can be described by

J =

{
J+ i f sgn(θ̇ θ̈)> 0
J− i f sgn(θ̇ θ̈)< 0

(3.2)

By using Kirchoff’s law we can model the relations between the current, voltage
V (t) and rotor speed θ̇(t) in the motor if we assume the electro-motive force e(t) to
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Chapter 3. Rotor Speed Estimation - DC-Input

be proportional to the rotor speed by a constant Ke and assume the motor to have an
inductance L and a resistance R.

L
di(t)

dt
=−Ri(t)+V (t)− e(t)↔ di(t)

dt
=

1
L
(−Ri(t)+V (t)−Keθ̇(t)) (3.3)

By disregarding the previously described mechanical nonlinearity and approxi-
mating it as linear these continous differential equations can be discretised and put
togheter into the discrete time state space form

x =
[

θ̇

i

]
xk+1 = Φxk +Γuk Φ =

[
φ11 φ12
φ21 φ22

]
Γ =

[
γ11
γ21

]
(3.4)

which will have the transfer functions

[
HV→θ̇

(z)
HV→I(z)

]
= I(Iz−A)−1B =

1
(z−φ11)(z−φ22)−φ12φ21

[
(z−φ22γ11)+φ12γ21
φ21γ11 +(z−φ11)γ21

]
(3.5)

These transfer functions can be expressed in a general form as:

Hu→y(z) =
B(z)
A(z)

, A(z) = z2 +a1z+a0, B(z) = b1z+b0 (3.6)

for which a linear regression model is

yk = ϕ
T
k θ + ek (3.7)

with the regressor and the parameter vector

ϕ
T
k =

[
−yk−1 −yk−2 uk−1 uk−2

]
,θ =

[
a1 a0 b1 b0

]
(3.8)

By calculating two different linear regressions, one for the rotor speed and one
for the current, the transfer functions in Equation 3.5 are identified. It is assumed
that the regression results in approximatly equal values for a1 and a0 for both trans-
fer functions. Once these transfer function parameters have been identified the orig-
inal model parameters in Equation 3.4 can be calculated as



φ11 =−a1−φ22

φ12 =− a0+(a1+φ22)φ22
φ21

φ21 =
bi

0−(a1+φ22)γ21
γ11

φ22 =
a0γ11γ21+bθ̇

0 bi
0−bθ̇

0 a0γ21

bθ̇
0 γ21−bi

0γ11

,

{
γ11 = bθ̇

1

γ21 = bi
1

(3.9)

With the state space model parameters found a Kalman filter can be imple-
mented that uses current measurements as input to estimate the rotor speed.
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3.2 DC-Input Experiment Setup

Linear Model Correlation Coefficient
To check the feasability of a linear static model an analysis can be done of the
correlation between input and output [Johansson, 2011]. For a finite discrete-time
measurement series this can be done with the sample correlation coefficient

rxy =

n
∑

i=1
(xi− x̄)(yi− ȳ)√

n
∑

i=1
(xi− x̄)2

n
∑

i=1
(yi− ȳ)2

(3.10)

For a linear static system a correlation coefficient close to 1 should be obained.

3.2 DC-Input Experiment Setup

The methods presented above were tested on a seperate setup where a crazyflie
motor was connected to a DC power source with a variable DC amplitude.

To measure the current, a 0.5Ω resistor was placed in series with the motor,
between the motor and the battery. Measuring the voltage across this so called sense
resistor gives us the current by Ohm’s law. The placement of the sense resistor
means that it is a high side current sensing. Therefore a differential amplifier has to
be used [Regan et al., 2005], even though we do not necessarily want to amplify the
measurement.

−

+

R1

R3

R2

R4

V1

V2

VOut

Figure 3.1 Unit gain differential amplifier where R1 = R2 = R3 = R4 = 1MΩ re-
sistances. The op-amp used was a CA3140.

A general differential amplifier can be made of resistors and an op-amp as il-
lustrated in Figure 3.1. The gain is determined from the resistances and the output
voltage Vout is given by
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Chapter 3. Rotor Speed Estimation - DC-Input

Vout =−V1(
R3

R1
)+V2(

R4

R2 +R4
)(

R1 +R3

R1
) (3.11)

A unit gain amplifier is obtained when all the resistors have equal resistances.

Vout =V2−V1 (3.12)

When Out+ is connected to V2 and Out- is connected to V1, Vout will equal the
filtered voltage drop across the motor but relative to ground and is connected to one
of the analog inputs on the expansion port.

When the end of the resistor that is connected to the battery is connected to V2
and the end that is connected to the motor is connected to V1, Vout will equal the
voltage across the resistor. The current can then be obtained with Ohm’s law.

An optical switch is used for RPM measurements and is connected to a digital
input on the crazyflie. An interrupt is triggered and a timer is read each time the
switch goes from low to high. The time difference between two consecutive reads
is obtained from which the rotor speed can be calculated.

Measurements
A measurement sequence was carried out where the input voltage from the DC-
source was varied in a sinusoidal-like way with different frequencies and amplitudes
and rotor speed and current were logged with a frequency of 50 Hz. See Figure 3.2
for result plots.

Figure 3.2 Left: Input voltage sequence. Center: Measured RPM. Right: Measured
current.

The correlation coefficients, given by equation 3.10, for these sequences are
ruθ̇

= 0.979 and ruI = 0.981 which indicate linear relations.
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3.3 Identification

3.3 Identification

With the obtained data sets the identification methods described earlier could be
used on the data sets seen in Figure 3.2 and the following parameters were acquired

Table 3.1 Identified parameter values using the technique described by [Greiff,
2017].

aI
1 aI

0 aθ̇
1 aθ̇

0 bI
1 bI

0 bθ̇
1 bθ̇

0
-0.7628 -0.1780 -1.8028 0.8042 0.2173 -0.2081 1314.6 -1299.5

Because the resulting values of a1 and a0 are different it is problematic to use
these values in the state space form. An improved identification method is needed.
To solve this issue two different methods were tried. First a brute force, parameter
sweep method and then an improved regression model.

Parameter sweep (PS)
The transfer function HV→θ̇

(z) is identified with linear regression as previously de-
scribed. The transfer function HV→I(z) is then constructed by using the denominator
polynomial of HV→θ̇

(z) and the numerator parameters, bi
0 and bi

1, are found exper-
imantally in simulations.

The numerator values are swept and each combination and its resulting transfer
function is tested in simulink. The simulated response is compared with the mea-
sured and the coefficient combination that has the least squared difference between
simulated and measured values is chosen.

Multiple Linear Regression (MLR)
As stated by [Ljung, 1987] it is possible to combine different regressor sets for
different components of y. The θ that minimizes the LS criterion is given by

θ̂ =

[
1
N

N

∑
k=1

ϕϕϕ(k)Λ−1
ϕϕϕ(k)T

]−1[
1
N

N

∑
k=1

ϕϕϕ(k)Λ−1
ϕϕϕ(k)T

]
(3.13)

where Λ can be used to give different weights to different components of y. Here
set to the identity matrix.

Since we have two different regressor sets, one for the RPM, θ̇ , and one for the
current, I, we have the regressor matrix

ϕϕϕ(k) =
[
ϕ

θ̇
(k) ϕI(k)

]
(3.14)

where the separate regressor vectors for
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Chapter 3. Rotor Speed Estimation - DC-Input

ϕ
T
θ̇
=
[
−y

θ̇
(k−1) −y

θ̇
(k−2) u(k−1) u(k−2) 0 0

]
(3.15)

and

ϕ
T
I =

[
−yI(k−1) −yI(k−2) 0 0 u(k−1) u(k−2)

]
(3.16)

are combined according to the parameter vector

θ =
[
a1 a0 bθ̇

1 bθ̇
0 bI

1 bI
0

]T
(3.17)

The expression in the left parentheses of Equation 3.13 can in our case, since
we have uniform weighting, then be further simplified as

1
N

N

∑
k=1

[
ϕ

θ̇
(k) ϕI(k)

][ϕT
θ̇
(k)

ϕT
I (k)

]
=

1
N

N

∑
k=1

(ϕ
θ̇
(k)ϕT

θ̇
(k)+ϕI(k)ϕT

I (k))=
1
N
(ΦT

θ̇
Φ

θ̇
+Φ

T
I ΦI)

(3.18)
and a similar simplification is done on the expression in the right parentheses

1
N

N

∑
k=1

[
ϕ

θ̇
(k) ϕI(k)

][y
θ̇
(k)

yI(k)

]
=

1
N

N

∑
k=1

(ϕ
θ̇
(k)y

θ̇
(k)+ϕI(k)yI(k))=

1
N
(ΦT

θ̇
Y

θ̇
+Φ

T
I YI)

(3.19)
where

Φ
θ̇
=


ϕT

θ̇
(1)

ϕT
θ̇
(2)
...

ϕT
θ̇
(N)

 ,ΦI =


ϕT

I (1)
ϕT

I (2)
...

ϕT
I (N)

 (3.20)

This means that the original least squares parameter esimation, Equation 3.13,
can be calcuated as

θ̂ = (ΦT
θ̇

Φ
θ̇
+Φ

T
I ΦI)

−1(ΦT
θ̇

Y
θ̇
+Φ

T
I YI) (3.21)
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3.4 Estimator Evaluation

3.4 Estimator Evaluation

Using the two methods described above, parameter sweep and multiple linear re-
gression, we get the parameters presented in Table 3.2.

Table 3.2 Identified parameter values.

a1 a0 bθ̇
1 bθ̇

0 bI
1 bI

0
PS -1.7297 0.7324 0.1960 -0.1931 0.2078 -0.2062

MLR -0.8954 -0.0540 0.5920 -0.5153 0.6440 -0.6182

These parameter values give the following open loop RPM responses, given by
the transfer function HV→θ̇

(z), as shown in Figure 3.3.

Figure 3.3 Open loop responses with parameters from parameter sweep and MLR.

Using the estimated parameters, discrete state space coefficients are calculated
with Equation 3.9 and then implemented in a standard Kalman filter, as formulated
by [Åström and Wittenmark, 2011], where the current is used as the measurement
signal. P(0) is chosen as the identity matrix and appropriate covariance matrices
were found by trial and error. These observers are then tested with the test sequence
and the results are displayed in Figure 3.4.
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Chapter 3. Rotor Speed Estimation - DC-Input

Figure 3.4 Results for the Kalman filter implementation of the system obtained
with MLR and PS.

The estimated RPM was then compared with the measured and the size of the
error was computed with the l2-norm

E =

√
N

∑
i=1

(yi− ŷi)2 (3.22)

The estimator errors are compared and their relative values are displayed in
Table 3.3 where the method with the least error has been chosen as the referene
value.

Table 3.3 Error norm relative values where the smallest error size, the result of the
MLR Kalman, is chosen as reference.

MLR Kalman PS Kalman MLR open PS open

1.0 5.622 1.490 5.80

It is now clear that the Kalman filter implementation of the MLR parameters
results in the estimator that produces the smallest error.

Conclusion
One could question the reason for the greater static error of the parameter sweep
approach. The difference in the method results can probably be attributed to the
fact that the sweep does not have a high enough resolution when chosing parameter
values. The optimal value is therefore missed.

Using two seperate regression calculations for the transfer functions, HV→θ̇
(z)

and HV→I(z), results in denominator parameters that differ too much and therefore
do not fulfill the requirements for calculating the state space parameters with Equa-
tion 3.9.
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3.4 Estimator Evaluation

By using methods that force the denominator parameters to the same value this
problem is avoided. A Kalman filter estimator based on the results from the mul-
tiple linear regression proved to give the best results followed by the open loop
implementation of the same parameters.
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4
Rotor Speed Estimation -
PWM-input

This chapter covers the process of implementing the estimator described in the pre-
vious chapter. It was discovered that the motor exhibits nonlinear behaviour when
controlled with PWM and therefore several esimation methods, based on either a di-
rect mapping between measurement and RPM or a Hammerstein model, were tested
and evaluated. It was also discovered that measuring the current is more difficult
when using PWM instead of a DC-source. To handle this, three different hardware
configurations for feedback measurements will be presented as well as filter designs
for the measurement signal, .

4.1 Pulse Width Modulation (PWM)

When controlling a DC-motor with PWM we expect the dynamics of the motor to
act as a low-pass filter and therefore smooth out the current so that most of the AC-
components are removed and the DC-component remains. The concept is illustrated
in Figure 4.1. If this is the case we should see that the results from the previous chap-
ter should hold even though the input signal is changed from a DC-power source
with variable amplitude to a PWM source with variable duty cycle.
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4.1 Pulse Width Modulation (PWM)

PWM low pass filtering illustration

Figure 4.1 Illustration of low pass filtering of a pwm signal with a 50% duty cycle.
Most of the periodic components are removed and the filtered signal has an average
proportional to the duty cycle.

To verify the low pass filter characteristics of the motor a duty cycle of 0.5 was
set and the voltage across a current sense resistor was measured with an oscilloscope
and the result can be seen in Figure 4.2.

Motor current at 50 % duty cycle

Figure 4.2 Measured motor current when a 50% duty cycle was applied. The lack
of smoothing indicates a low inductance in the motor. Ground level is marked with
a red line.

From Figure 4.2 it is clear that the motor does not have the desired low pass
characteristic. This is not entirely unexpected since low inductance is charecteristic
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Chapter 4. Rotor Speed Estimation - PWM-input

for coreless motors [MachineDesign, 2002]. This does not only influence the dy-
namics of the motor but it also makes it more problematic to measure the desired
feedback variable. The differential amplifier used previously has its own dynamics
and distorts different frequencies of the measurement signal unequally. It is there-
fore needed to filter the signal before amplifying it.

4.2 Hardware

Measurement Methods and Filter Design
Just as in the previous chapter where a DC-input was used, a viable measurement
method is to measure the voltage across a sense resistor. However, it might also be
possible to measure the motor voltage and use it as feedback variable since the low
inductance of the motor should make it approximately proportional to the current.
For both of these measurement approaches it is necessary to filter the signal before
putting it to the amplifier because of the previously mentioned distortions. A low-
pass RLC-filter was designed for this purpose and the details are covered below.

For the current sense approach it is difficult to design a filter that is aggressive
enough to completely remove AC-components. The measurements can be signif-
icantly improved by also filtering the PWM-signal applied to the motor. This is
usually done by connecting an inductor in series with the motor and a capacitor in
parallell. The schematics for the complete setup with measurement signal filter and
PWM-filter is illustrated by Figure 4.3.

An inductor with high enough inductance and low winding resistance was not
found. The current sense configuration that was tested therefore only used a 100µF
capacitor.

Current sense configuration

Lpwm

R f L f

C f

Out−

Out+

Rs

M

MOSFET

Cpwm

Battery

Figure 4.3 Current sense measurement setup. The Out-pins are connected to the
amplifier.
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When measuring the motor voltage it is not necessary to use a PWM-filter to
get good measurements. Adding a capacitor might still be a good idea though since
the changed dynamics might be easier to identify. It was also found that adding
a capacitor increases the rotor speed. Two different configurations were therefore
tried, one without and one with a 100 µF capacitor.

Motor voltage measuring configurations

M

Battery

R f L f

C f

MOSFET

Out−

Out+

Cpwm

Figure 4.4 Motor voltage measurement setup. The Out-pins are connected to the
amplifier.

To find parameters for the RLC-filter used for the measurements, calculations
and simulations were done in Matlab and Simscape. Two feasible filters were tested
on the motor voltage configuration without a PWM-filtering capacitor, Figure 4.4
with Cpwm = 0.

When testing the filters it was discovered that because of the poor performance
of the OP-amp at high frequencies the PWM-frequency had to be lowered to 20 kHz
from the normal frequency of 328 kHz.

Filter 1
When filtering the measurement signal the goal is to remove the AC-components,
leaving the DC-component. Since the measured signal is periodic, as illustrated
by Figure 4.2, the first DC-component, called the fundamental harmonic, should
have the same frequency as the PWM-frequency [Smith, 1997], in our case 20 kHz,
which means that a cutoff frequency below this value is desired.

The first filter that was tried had the following parameters: R = 30Ω, L = 2.2
mH, C = 10µF. These gave a promising cutoff frequency, as can be seen in Figure
4.5, and the Simscape simulations gave satisfactory results.
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Figure 4.5 Bode plot and pole placement for RLC-filter 1. Poles located at -5800
rad/s and -7830 rad/s.
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When tried on the real hardware the following results were obtained:

Filter 1 oscilloscope measurements

Figure 4.6 Top row: Voltage drop between BAT+ and Out-. Middle row: Voltage
drop between Out+ and Out-. Bottom row: Voltage drop between Vout and ground.
Left column: Duty cycle = 20%. Middle column: Duty cycle = 60%. Right column:
Duty cycle = 100%. First row: X-axis: 20 us/div, Y-axis: 2 V/div. Second row: X-
axis: 20 us/div, Y-axis: 1 V/div. Third row: X-axis: 10 us/div, Y-axis: 1 V/div.

We can see that the filter does not succeed in averaging the motor voltage drop
into a constant value. The oscillative behaviour of the filtered signal is then further
distorted by the amplifier. This result does not fulfill the requirements so a second
filter was tried.
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Filter 2
The aim of the second filter was to increase the impedance compared with the first
one to evaluate if this would improve its performance. The following filter param-
eters were chosen: R = 33kΩ,L = 6.8mH,C = 10uF , and the corresponding bode
plot and pole placement can be seen in Figure 4.7. Compared with the first filter this
pole placement should act more like a first order low-pass filter which has a lower
cutoff frequency.

Figure 4.7 Bode plot and pole placement for RLC-filter 2. Poles placed at -
4850000 rad/s and -3.03 rad/s.

The filter was tried and the results were first measured with an oscilloscope and
can be seen in the following table of figures.
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Filter 2 oscilloscope measurements

Figure 4.8 Top row: Voltage drop between BAT+ and Out-. Middle row: Voltage
drop between Out+ and Out-. Bottom row: Voltage drop between Vout and ground.
Left column: Duty cycle = 20%. Middle column: Duty cycle = 60%. Right column:
Duty cycle = 100%. X-axis: 10 us/div, Y-axis: 2 V/div. Last row 1 V/div.

Since the filtered voltage before the amplifier seemed to be constant and in-
creasing with an increased duty cycle the filter was deemed to be satisfactory. There
are however still transients present, as can be seen in the bottom row, where they
have been distorted by the amplifier. This distortion is further reduced by placing a
capacitor at the amplifier output, as is illustrated in Figure 4.9.
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−

+

R1

R3

R2

R4

V1

V2

VOut

COut

Figure 4.9 Unit gain differential amplifier with 1MΩ resistances. The op-amp used
was a CA3140. The output signal is filtered with a 10 uF capacitor.

Measured Voltage to Current Mapping
To verify that the filter and amplifier also works for the current sense measurements
we have to verify that the measured voltage across the sense resistor is proportional
to the current. The motor is therefore replaced with a strictly resistive load and the
setup is connected to a signal generator, providing the voltage V (t), as illustrated in
Figure 4.10.

Sensor linearity evaluation setup

R f L f

C f

Out−

Out+

Rs

Rload

+
−V (t)

Figure 4.10 Schematics for experiment set up to find measured voltage to current
mapping. The Out-ports were connected to the previously described amplifier. Rs =
0.6 Ω and Rload = 5 Ω.

The sensor was tested with a ramp sequence and the amplifier output was
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logged. The result can be seen in Figure 4.11.

Sensor linearity evaluation results

Figure 4.11 The input voltage, blue line, measured voltage, orange line, used to
find the y→ I map.

From this figure it seems that the relation between input uk and output yk is
linear but with an offset which can be described by the map

Muk→yk(uk) = a1uk +a0 (4.1)

Therefore we try a linear regression model with the parameter vectors

ρ
T
k =

[
uk 1

]
,θ =

[
a1 a0

]
(4.2)

for which the following model parameters were obtained.

a1 a0
0.3958 0.003

The current can now be calculated with the inverse mapping, M−1
uk→yk

.

4.3 Sensing Modeling

Now that a capacitor has been added in parallell to the motor the model has to
be updated. The motor is modeled with the standard dc-motor model presented in
the previous chapter where the inductance and resistance of the filter and sensing
resistor have been added to the motor parameters and where a capacitor is connected
in parallell to the motor. A similar system model has previously been described by
[Lyshevski, 1998]. The voltage source has an internal resistance to capture its non
ideal behaviour. The circuit is illustrated in Figure 4.12.
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Circuit diagram for motor model with PWM-filter

Lm

Rm

+
−e(t)

imic

Cpwm

Rsource

+
−V (t)

itotal
Vm(t)

Figure 4.12 Equivalent circuit of the motor model with a PWM-filter and a non-
ideal current source.

Lm is the sum of the motor’s internal inductance and the added inductane Lpwm,
Rm is the sum of the motors internal resistance, Rs and the resistance of the added
inductor Lpwm.

The mechanical behaviour of the motor is captured by Newton’s law as de-
scribed by equation 3.1 and the motor current dynamics are described as in equation
3.3 but with changed parameters because of the PWM filter.

Li̇m(t) =−Rim(t)+Vm(t)− e(t)↔ i̇m(t) =
1
L
(−Rim(t)+Vm(t)−Keθ̇(t)) (4.3)

The current across the capacitor is given by

ic(t) =C
dVm

dt
(4.4)

which can be substituted for the difference between the total current supplied by the
battery and the motor current:

ic(t) = itotal(t)− im(t) (4.5)

The total voltage supplied will be equal to the sum of the motor voltage and the
voltage drop in the voltage source. This is used to calculate the total current as

V (t) =Vm(t)+ itotal(t)Rsource↔ itotal(t) =
V (t)−Vm(t)

Rsource
(4.6)
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which finally lets us describe the derivative of the motor voltage as a function of
V (t),Vm(t) and im(t).

V̇m(t) =
1
C

(
V (t)−Vm(t)

Rsource
− im(t)

)
(4.7)

A new state space model can now be formulated.

x =

 θ̇(t)
im(t)
Vm(t)

 , ẋ =
− b

J
Kt
J 0

−Ke
L −R

L
1
L

0 − 1
C − 1

CRsource

x+

 0
0
1

CRsource

V (t) (4.8)

The transfer functions for this system are

HV (s)→θ̇
(s)

HV (s)→im(s)
HV (s)→Vm(s)

= I(Is−A)−1B =
1

CRsourcedet(Is−A)

 Kt
JL

Js+b
JL

s2 + s( bL+JR
JL )+ bR+KeKt

JL


(4.9)

If we do the name swap Rsource = Rs to make the expressions more compact,
then

det(Is−A) = s3JCLRs+s2(JCRsR+JL+LCRsb)+s(JR+bRCRs+bL+JRs+Kt KeCRs)+b(R+Rs)+Kt Ke
JCLRs

(4.10)
which means that the transfer functions denominator becomes

CRsdet(Is−A) = s3JL+s2(JCRsR+JL+LCRsb)+s(JR+bRCRs+bL+JRs+Kt KeCRs)+b(R+Rs)+Kt Ke
JL

(4.11)
We can note that when C = 0 the denominator in equation 4.9 becomes

s2(JL)+ s(JR+ JRs +bL)+b(R+Rs)+KtKe

JL
(4.12)

This corresponds to the system without a capacitor and the transfer functions
described by [Greiff, 2017].

We are interested in analysing the transfer function from V (s) to θ̇ and how
the capacitance effects the mean value. If we look at the static gain of the transfer
function

HV (s)→θ̇
(0) =

Kt

b(R+Rs)+KtKe
(4.13)

where we can see that the transfer function in stationarity is independent of the
value of C which means that we can not explain the increased rotor speed by simply
looking at the static gain.
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We will assume that except for this increased RPM the capacitor does not further
influence the dynamics of the system and can simply be viewed as a low pass filter of
the PWM-input. We assume that the two state representation with θ̇ and y, whether
it is the current or the motor voltage, still is applicable.

4.4 Measurements and Data Sets

All measurements of RPM, current and motor voltage are from now on normalized
with max values according to the following table.

Table 4.1 Max values used for normalisation

θ̇ [rpm] Vm [V ] I [A]

24000 3.3 1

To check linearity the following duty cycle sequence, seen in Figure 4.13, was
run.

Input step sequence.

Figure 4.13 The stepwise increasing control signal sequence used for measuring
linearity.

For which the following RPM and current/voltage was measured.
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Hardware configuration step sequence responses.

Figure 4.14 Measured RPM, left, feedback variable, middle, and RPM vs feed-
back variable, right, for the three hardware configurations. Top row: current sense.
Middle row: motor voltage with capacitance. Bottom row: motor voltage without
capacitance.

These measurements sequences have the correlation coefficients presented in
Table 4.2.
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Table 4.2 The correlation coefficients obtained from the measurements seen in
Figure 4.14.

ruθ̇
ruy r

θ̇y

CS 0.837 0.942 0.891

Vm cap 0.881 0.876 0.977

Vm 0.975 0.979 0.990

As previously mentioned a correlation coefficient close to 1 indicates linear re-
lations. From these correlation coefficients and the plots in Figure 4.14 we can con-
clude that there are nonlinearities present, though to different degrees depending
on configuration. A higher level of noise present in the current measurements com-
pared with the voltage measurements can also be noted.

The data sets used for the identification was obtained by setting the duty cycle to
u = 0.5+0.3sin(tω(t)) where the angular frequency increases linearly, ω(t) = 2πt

40 ,
for 80 seconds. The data set used for verification of the identification was obtained
by using a duty cycle sequence recorded from a test flight, the sequence can be seen
in Figure 4.15.

In-flight duty cycle recording.

Figure 4.15 Duty cycle sequence obtained from a flying Crazyflie used to evaluate
the aquired estimators.

4.5 Identification Methods

Because of the nonlinear behaviour of the configurations, the identification meth-
ods from the previous chapter are not directly applicable. Two different approaches

40



4.5 Identification Methods

are tried to circumvent this limitation. One is to find a direct mapping from the
measured signal to the rotor speed, thus eliminating the need to find a state space
representation. The other is to complete the linear model with a nonlinearity on
the input, a so called Hammerstein model which is described by [Narendra and
Gallman, 1966]. This nonlinearity can be found both experimentally or with more
mathematical approaches.

The Hammerstein identification methods described below are all described as
ways of identifying transfer functions. The methods can however be extended so
that a state space model is obtained by parameter sweep or multiple linear regression
as described in the previous chapter. The greater performance and computational
efficiency of the multiple linear regression approach makes it superior and will be
the method used when state space parameters are needed.

Below, six different estimator models and the method that identifies the required
parameters are presented.

Measurement to RPM Mapping
The most simple form of RPM estimation would be to find a direct mapping be-
tween the measured signal y, whether it is current or motor voltage, and RPM.

By studying the step responses in Figure 4.14 it seems like a power function can
be a good approximation.

θ̇ = kyp (4.14)

By using logarithms the parameters can be found using linear regression.

log(θ̇) = p log(y)+ log(k) (4.15)

An attempt at improving the model was made by adding a constant term to
equation 4.14.

θ̇ = kyp + c (4.16)

This can not be solved with a linear regression model. The parameters were
instead found using MATLABs nlinfit function.

Heuristic Hammerstein
We assume that the non linear system dynamics can be described as a linear system
in combination with a nonlinearity on the input as illustrated by the block diagram
i Figure 4.16.
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ϕ(u) Linear system A
y(k)u(k) w(k)

Figure 4.16 Hammerstein model block diagram.

By studying the plots in Figure 4.14 we conclude that the nonlinearity can be
assumed to be approximately on the form

ϕ(u(k)) = 1− e−au(k) = w(k) (4.17)

For which a value of a = 4.2 was found to be adequate by trial and error. By
using equation 4.17 on the data sets the new input data set wk was calculated and
could be used to identify the linear system with multiple regression as described in
the previous chapter.

The identified system can then be formulated as

x(k+1) = Ax(k)+Bϕ(u(k)) (4.18)

which could be implemented in a Kalman filer or as open loop estimation.

Duty Cycle to Motor Voltage Transfer function
To account for the added capacitor and the extended state space model, presented in
section 4.3, we study the relation between duty cycle and Vm. From equation 4.9 we
can see that there is a transfer function from the input voltage to motor voltage. We
assume that a transfer function can be added to the previous exponential nonlinearity
as illustrated in Figure 4.17.

ϕ(u) G(s) Linear system A
y(k)u(k) w(k)

Figure 4.17 Hammerstein model block diagram with added transfer function G(s)
to model PWM-filtering.

The voltage across the motor was measured for the motor voltage configuration
with a capacitor and a first order continous transfer function was added to fit the
simulated response to the measured in combination with the previously described
non-linear function 4.17 but with a different exponential constant value, a = 3.8,
found experimentally. The following transfer function was found by trial and error
and gave promising results
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G(s) =
0.873

0.35s+1
(4.19)

which can be seen in Figure 4.18.

Figure 4.18 By measuring the voltage across the motor for the configuration with a
capacitor the measurement results marked with brown lines were obtained. A transfer
function and nonlinearity was then fitted heuristically in simulations to give the result
marked with the blue line.

In the figure to the right a large error can be noticed for voltages below 0.55 V.
This is assumed to be negligable since the voltage normally is higher during flight,
as can be seen in Figure 4.15.

Linear Regression Hammerstein
So far the methods that have been used to handle the non-linearity have been of
an experimental nature which can be both time consuming and yield poor results.
A more systematic approach is therefore needed. By assuming the nonlinearity to
be on the form of a unknown polynomial, methods to identify the transfer function
presented below have been used on a similar nonlinear identification problem by
[Kara and Eker, 2004].

Open loop
We consider a Hammerstein model on the form illustrated in Figure 4.16. The model
for the linear part is given as

A(q−1)y(k) = B(q−1)w(k)+ e(k) (4.20)

where ek is white gaussian noise, yk is the output of the linear system and wk is the
input. Here
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A(q−1) = 1+a1q−1 +a2q−2 + ...+anaq−na (4.21)

and

B(q−1) = b0 +b1q−1 +b2q−2 + ...+bnbq−nb (4.22)

where q−1 denotes the backward shift operator. We assume that the nonlinear map-
ping between uk and wk can be expressed as a polynomial of order n:

w(k) = γ1u(k)+ γ2u2(k)+ ...+ γnun(k) (4.23)

which means that equation 4.20 can be rewritten as

A(q−1)y(k) = B(q−1)
n

∑
j=1

γ ju j(k)+ e(k). (4.24)

The assumption that γ1 = 1 can be made which means that equation 4.24 can be
rewritten as

A(q−1)y(k) = B(q−1)u(k)+
n

∑
j=2

nb

∑
i=0

biγ jq−iu j(k)+ e(k). (4.25)

By defining the polynomial

S j(q−1) = γ jB(q−1) = s j0 + s j1q−1 + ...+ s jnbq−nb (4.26)

the final equation is obtained:

A(q−1)y(k) = B(q−1)u(k)+
n

∑
j=2

S j(q−1)u j(k)+ e(k). (4.27)

Which can be expressed on linear regression form with the regression vector

φ T = (−y(k−1),−y(k−2), ...,−y(k−na),u(k),u(k−1), ..,u(k−nb),u2(k), ...,u2(k−nb), ...,un(k), ...,un(k−nb))

(4.28)
and the parameter vector

θ = (a1,a2, ...,ana ,b0,b1, ...,bnb ,s20, ...,s2nb , ...,sn0, ...,snnb)
T . (4.29)

Since the coefficients of the polynomial S j(q−1) are dependent on the polyno-
mial B(q−1) according to equation 4.26 it is not possible to identify the parameters
in such a way so that γ1 . . .γn can be retrieved using linear regression. Linear regres-
sion can however be used to identify the parameters of the parameter vector if the
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polynomials S j(q−1) instead are considered to be independent. Once the parameters
are identified equation 4.25 can then be rewritten as

y(k) =
B(q−1)

A(q−1)
u(k)+

n

∑
j=2

S j(q−1)

A(q−1)
u j(k)+ e(k) (4.30)

which can be used as an open loop estimator, as illutstrated by the block diagram in
Figure 4.19.

Linear system A1u(k)
y1(k)u(k) w1(k)

u2(k) Linear system A2

w2(k) y2(k)

un(k) Linear system An

wn(k) yn(k)

Figure 4.19 Hammerstein model approximation. If the nonlinearity is approxi-
mated as an unknown polynomial

The estimated output is given by the sum of the system outputs yi

y(k) =
n

∑
i=1

yi(k). (4.31)

An evaluation of the results of this method can be found in the next section.
This approach is not as computationally efficient as if the coefficients γ1 . . .γn

had been identified but it should still be a feasible solution for applications without
strict restrictions on the computation capacity.

State Space and Kalman Filter
An improvement to the open loop hammerstein model would be to express it on
state space form and implement it in a Kalman filter.
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By using multiple linear regression it is possible to identify the system and in-
put matrices, A1 . . .An and B1 . . .Bn which then can be combined into a complete
hammerstein model state space model

ẋh = Ahxh +Bhuh (4.32)

where

Ah =


A1 02×2 . . . 02×2

02×2 A2 . . . 02×2
...

...
. . .

...
02×2 02×2 . . . An

 (4.33)

and

Bh =


B1 02×1 . . . 02×1

02×1 B2 . . . 02×1
...

...
. . .

...
02×1 02×1 . . . Bn

 (4.34)

with the state and input vectors

xh =



xθ̇
1

xI
1

xθ̇
2

xI
2
...

xθ̇
n

xI
n


,uh =


u
u2

...
un

 . (4.35)

The output is given by equation 4.31 which has the matrix equivalent

yh =Chy, Ch =
[
0 1 0 1 . . . 0 1

]
. (4.36)

4.6 Results and Conclusion

To evaluate the identification methods each was implemented and tested for all three
hardware configurations; current sensing and motor voltage feedback with and with-
out capacitance. Because of high measurement noise, noticeable in Figure 4.14, a
low pass filter was added to the current sensing configuration. The estimators were
tried on the test sequence shown in Figure 4.15. Every Hammerstein method is
evaluated by analysing the open loop model response and comparing it with the
measured RPM and Voltage/Current. A Kalman filter implementation of the linear
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regression Hammerstein is also tested to verify that the state space representation
presented in the previous section is feasible.

Error Analysis
Like in the previous chapter the error is calculated with the error norm as described
in equation 3.22. The identified models for each hardware configuration are com-
pared and the relative errors for the RPM estimators are displayed in Table 4.3 and
for the current/voltage estimators in Table 4.4 where just as in the previous chapter
the method with the least error has been chosen as the referene value. Here the es-
timator named open is the current duty cycle to RPM mapping implemented on the
Crazyflie as given by equation 2.6 which will be used as a reference to evaluate if the
developed estimators are an improvement to the existing open loop solution. map1
and map2 are the measurement to RPM mappings described by equation 4.14 and
equation 4.16, h ham is the heuristic Hammerstein described by equations 4.17 and
4.18, V →Vm the Hammerstein model with the duty cycle to motor voltage transfer
function, equation 4.19, and ham kal and ham open is the Kalman filter and open
loop implementation of the Hammerstein models found through linear regression.

Table 4.3 Relative error norm for the RPM estimators for each hardware config-
uration. The smallest error norm has been chosen as the reference value for each
configuration.

open map1 map2 h ham V →V m ham kal ham open

CS 8.068 1.263 1.421 3.561 4.810 1.027 1

Vm cap 4.572 1 1.245 2.402 2.362 1.631 1.531

Vm 5.159 2.069 2.496 1.156 1 1.975 1.967

Table 4.4 Relative error norm for the open-loop voltage/current estimators for each
hardware configuration. The smalles error norm has been chosen as the reference
value for each configuration.

h ham V →V m ham open

CS 1.019 1.009 1

Vm cap 2.018 2.690 1

Vm 1.299 1.003 1

To compare the hardware configurations the sample mean error Ē = E
N , where

E is the error size according to equation 3.22 and N is the number of samples, was
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calculated for the methods that proved to have the least error according to Table 4.3
and Table 4.4.

Table 4.5 Sample mean error for the least error estimator of each hardware config-
uration for both RPM and current/voltage calculated from the normalized data sets.

CS Vm cap Vm

RPM 0.135×10−3 0.337×10−3 0.262×10−3

Current/Voltage 0.723×10−3 0.229×10−3 0.407×10−3

Apparently the current sense method yielded the smallest error for RPM esti-
mation and motor voltage measuring with capacitance yielded the smallest error
for the feedback variable estimation, which is current or voltage depending on the
hardware configuration. It might be misleading to simply look at this error metric
though since the estimator with the smallest error does not necessarily capture the
dynamics of the system in the best way. For example, if we study the results for the
RPM estimation in Figure 4.20 and Figure 4.21 and compare the current to RPM
mapping with the heuristic Hammerstein we can see that the second method cap-
tures the behaviour better but has a static error that leads to the larger error size. A
small static error can probably be compensated for by the outer control loop, though
this has to be evaluated in flight, and should therefore be considered to be the better
estimator. To measure how well the system captures the system dynamics we can
study the variance of the error. An estimator which captures the system dynamics
perfectly except for a static error would have zero variance. We therefore compute
the population variance for each of the estimators and configurations. As with the
error norm, the variances are displayed relative to the smallest variance in Table 4.6
and Table 4.7.

Table 4.6 Relative error variance of the RPM for the estimators and hardware con-
figurations. The variance is used as a metric to compare how well the estimator
captures the system dynamics.

open map1 map2 h ham V →V m ham kal ham open

CS 77.497 5.179 5.459 1.122 2.089 1 1.0

Vm cap 34.084 1.605 2.155 1.250 1.842 1 1.251

Vm 7.161 1.877 2.308 1.924 1.420 1.002 1
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Table 4.7 Relative error variance of the current/voltage for the open-loop estima-
tors and hardware configurations.

h ham V →V m ham open

CS 1.023 1 1.065

Vm cap 1 1.033 1.299

Vm 6.207 5.731 1

Care has to be taken when looking at the variance since the noise of the mea-
surements effect different estimator results unequally. The mappings from measure-
ment signal to RPM are especially sensitive to this since the estimator results here
are given without any filtering of the measurement signals.

Current Sense Configuration
Taking the results from Table 4.3 and Table 4.6 into consideration while studying
Figure 4.21 and Figure 4.22 we see that the open and closed hammerstein models
seem to be the best estimators for the RPM. The experimental Hammerstein has a
larger static error but otherwise captures the dynamics nicely which also is illus-
trated by its low variance. The results for the current estimation is similar with the
open Hammerstein resulting in the least error size and variance.

Current sense configuration, results for the measured current to rotor speed
mapping.

Figure 4.20 Results for the current sense configuration estimators. Here the y→
RPM mappings are compared with the real value and the currently implemented open
loop estimator. The mapping seems to capture the mean value but does not follow
changes in the rotor speed fast enough.
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Current sense configuration, results for the heuristic Hammerstein estimators.

Figure 4.21 Results for the current sense configuration estimators. Here the heuris-
tic hammerstein methods are compared with the real value and the currently imple-
mented open loop estimator. Both models capture the dynamics in a good way but
with a static error. The static error of the model with an added transfer models can
be seen to have a sligthly larger static error.

50



4.6 Results and Conclusion

Current sense configuration, results for the linear regression Hammerstein
estimator and its Kalman filter implementation.

Figure 4.22 Results for the current sense configuration estimators. Here the linear
regression hammerstein methods are compared with the real value and the currently
implemented open loop estimator. Both estimators capture the dynamics and with a
smaller static error than the heuristic models. No difference can be noticed between
the open loop and the kalman implementation.

Voltage Measuring with Capacitance Configuration
The results for the motor voltage measuring configuration with a capacitance dif-
fer quite a bit from those presented in the previous section. The V → RPM mapping
provides the smallest error norm but does not have the smallest error variance, which
instead can be found with the Hammerstein Kalman implementation, for which the
results can be seen in Figure 4.25. However by studying Figure 4.23 we can con-
clude that a part of the higher variance can be attributed once again to the noise of
the measurement signal, though not as much because of the increased signal to noise
ratio compared with the current sense configuration. Unfortunately the performance
of the voltage estimation does little to clarify the situation since the method with the
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least error size provides the highest variance. From these error metrics it is therefore
difficult to tell which estimator is to be considered the best for this configuration.

Voltage measuring with capacitance configuration, results for the measured
voltage to rotor speed mapping.

Figure 4.23 Results for the motor voltage measuring configuration with capacitor
estimators. Here the V → RPM mappings are compared with the real value and the
currently implemented open loop estimator. The estimated rotor speed seems to be
following the actual speed quite accurately, however with a static error.
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Voltage measuring with capacitance configuration, results for the heuristic
Hammerstein estimators.

Figure 4.24 Results for the motor voltage measuring configuration with capacitor
estimators. Here the heuristic hammerstein methods are compared with the real value
and the currently implemented open loop estimator. Compared with the V− > rpm
mappings the static error is larger for these estimators but more accurately captures
the dynamics.
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Voltage measuring with capacitance configuration, results for the linear
regression Hammerstein estimator and its Kalman filter implementation.

Figure 4.25 Results for the motor voltage measuring configuration with capacitor
estimators. Here the linear regression hammerstein methods are compared with the
real value and the currently implemented open loop estimator. Both estimators cap-
ture the dynamics but with a static error. The kalman filter implementation does not
make any noticable improvements.

Voltage Measuring without Capacitance Configuration
For the motor voltage configuration without capacitor it is obvious when studying
Figure 4.27 that the heuristic and V → Vm Hammerstein methods, although having
the smallest error, do a poor job at mimicking the system dynamics. The linear
regression Hammerstein methods, for which the results can be seen in Figure 4.28,
are therefore to be preferred for this configuration, despite the bigger error size
noted in Table 4.3. The voltage to RPM mapping seen in Figure 4.26 seems to
capture the dynamics well but is still outperformed by the Hammerstein method
both regarding variance and error size.
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Voltage measuring configuration, results for the measured voltage to rotor
speed mapping.

Figure 4.26 Results for the motor voltage measuring configuration without capac-
itor estimators. Here the y→ RPM mappings are compared with the real value and
the currently implemented open loop estimator.
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Voltage measuring configuration, results for the heuristic Hammerstein
estimators.

Figure 4.27 Results for the motor voltage measuring configuration without capac-
itor estimators. Here the heuristic hammerstein methods are compared with the real
value and the currently implemented open loop estimator. The estimators does a poor
job at capturing the rotor speed dynamics even though the mean error is low.
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Voltage measuring configuration, results for the linear regression
Hammerstein estimator and its Kalman filter implementation.

Figure 4.28 Results for the motor voltage measuring configuration without capac-
itor estimators. Here the linear regression hammerstein methods are compared with
the real value and the currently implemented open loop estimator. The estimators
captures the dynamics but has a static error. The Kalman filter implementation did
not manage to improve the result in any noticable way compared to the open loop
estimator.

Estimator Methods Conclusions
y → RPM mapping: The measurement to RPM mapping is the simplest way to
construct a closed loop estimator and it proved to be surprisingly efficient, especially
for the motor voltage measuring configurations. This estimator can easily be imple-
mented on the Crazyflie and is not computationally demanding. The identification
process is also simple since the mapping obtained via linear regression proved to be
the best one, and no time has to be spent on finding parameters experimentally.

Heuristic Hammerstein: The heuristically determined Hammerstein method suc-
ceds in capturing the dynamics of the system for both hardware configurations that

57



Chapter 4. Rotor Speed Estimation - PWM-input

uses a PWM-filtering capacitance. The worse performance for the configuration
without this filtering is explained by looking at Figure 4.14 and noting that the non-
linearity is different compared to the previous ones which leads us to the main draw-
back of this method. Namely that it is time consuming to experimentally find the
coefficients for the nonlinearity and an optimal solution is not guaranteed. Though
if decent parameter values are found the estimator is easily implemented both as
open loop and in a Kalman filter.

V → Vm Hammerstein: The attempt at extending the nonlinearity with a transfer
function to mimic the V → Vm was not succesful. Surprisingly, it is the method
that results in the least RPM error norm for the voltage measuring configuration
without capacitor. This is likely more of a coincidence and a result of the fact that
the methods that are better at capturing the system dynamics have a static error. The
fact that it fails to outperform the heuristic Hammerstein method for the current
sense configuration proves that this was not an effective method.

Linear Regression Hammerstein: These methods have proven to be the best at
capturing the dynamics of the system even though a static error might be present.
The drawback is the increased computational cost which for the open loop estimator
increases linearly with the polynomial order. The results for the Kalman implemen-
tation here can be seen as an indication that it is possible to have a filter that outper-
forms the open loop estimator though this depends on correctly tuned covariance
matrices for which further analysis is needed. The Kalman filter implementation
depends on multiplication of large matrices for which the computational time and
its effect on the feasability for a real time implementation has to be analysed.

Hardware Configuration Conclusions:
If a static error is acceptable it is possible to find estimators for all three configu-
rations. The question which configuration is to be prefered is therefore not decided
from this criterion. It is instead a question of production cost and energy efficiency.
Since adding a capacitance in parallell to the motor increases the RPM it might
mean that it is more energy efficient since the duty cycle can be lowered while main-
taining the same RPM. That this corresponds to a lower energy consumption has to
be verified. If the capacitance does not contribute to greater power consumption
the motor voltage measuring configuration with a capacitor should be the preferred
solution since the cost and space needed for the current sense resistor can be saved.

4.7 Future Work

The Hammerstein method has to be considered to be the approach with the most
potential though there are improvements that can be made. As previously men-
tioned further analysis of the covariance matrices has to be done for a succesful
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Kalman filter implementation. The alternative would be to find a method that cor-
rectly finds the nonlinearity polynomial coefficients in equation 4.23. Further work
is also needed to minimize the static error that is the result of the current identi-
fication. As previously mentioned a small static error can be handled by the outer
contol loop but it is still to be considered prefferable to remove it. Implementing
the estimators on the Crazyflie and testing them as a part of a simple control loop,
for example a PID controller, is also something that needs to be done before finally
settling for a specific hardware configuration and estimator. Expansion boards for
on flight testing have been designed and can be found in appendix A, they have
however not yet been produced and tested.
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A
Expansion Board Designs

To implement the current or voltage sensing described in this report on the Crazyflie
a expansion board has to be developed. In this section two PCB-design concepts are
briefly presented, a simple one without a microcontroller unit (MCU) and a more
complex one with a MCU, which should be printed on a 25× 27 mm board. The
amplifier and the filters used would be the same for both designs but the components
used during the system identification experiments in this thesis report should not be
considered optimal. Before being produced a more thorough evaluation would be
needed to find optimal filter parameter values and amplifiers.

A.1 PCB without MCU

The simplest way to construct an expansion board for the feedback measurements
is to add the differential amplifier and the filters described previously in Chapter 4
and connect the amplifier outputs to the analog inputs of the Crazyflie expansion
ports. However, the Crazyflie normally uses another expansion board for position
estimating, the Loco positioning deck [Bitcraze, 2016], which uses the available
analog input pins for SPI (Serial peripheral interface bus) communication. These
pins are therefore not availabe. A local ADC IC with a SPI serial interface, for
example a Microchip MCP3004, can therefore be used to both convert the analog
values and transfer them to the MCU of the Crazyflie. A circuit diagram for this
design can be seen in Figure A.1. A problem with using this design might be delays
in the communication between the ADC on the expansion board and the MCU.

A.2 PCB with MCU

To eliminate the risk of measurement signal delays that can arise when using SPI
is to have a separate MCU, programmed via serial wire debug (SWD), on the ex-
pansion board with its own analog inputs as well as output pins with PWM-support.
The MCU would obtain rotor speed reference values from the MCU on the Crazyflie

62



A.2 PCB with MCU

using UART communication. This would mean that the expansion board acts as a
servo drive for the motors. To control the motors with the added MCU, motor con-
trol transistors like the ones on the Crazyflie have to be added to the expansion
board, see Figure A.2.
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Appendix A. Expansion Board Designs

Figure A.1 A simple expansion board design for measuring motor voltage. The
measured values are locally converted in an ADC IC and communicated to the
Bitcraze MCU using SPI.
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A.2 PCB with MCU

Figure A.2 An expansion board design using a on board MCU for controlling the
motors. This MCU gets rotor speed reference values from the main MCU on the
Crazyflie via UART communication.
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B
Landing Platform

Since a goal of the thesis work was to implement functionality on the quadcopter
to land on moving surfaces, a moveable platform had to be obtained. The 6-DOF
Stewart-like-platform seen in figure B.1 was used. It is controlled by an Arduino
UNO and uses 6 rotational servos for arm positioning.

Landing platform

Figure B.1 The stewart-like-platform.

In this section we derive the equations describing the kinematics of the landing
platform.

B.1 Approximate Length Model

In the case where the platform is controlled by linear actuators the inverse kinemat-
ics have a unique solution which has been derived by [Liu et al., 1993].

An intertial frame (X, Y, Z) is fixed at the center of the base platform with the
Z axis pointing upward. Another coordinate system (x, y, z) is fixed at the center
of the top platform. The location of the origin of the top frame relative the base
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B.2 Complete Inverse Kinematics

frame is denoted by [px, py, pz] and (α,β ,γ) represtents the rotation angles defined
by rotating the top frame first about the X axis with α degrees, then about the Y axis
with β degrees and then about the Z axis with γ degrees.

The transformation from the top to the base frame is described by the transfor-
mation matrix

TTT TOP
BASE =


cos(β )cos(γ)+ sin(α)sin(β )sin(γ) −cos(β )sin(γ)+ sin(α)sin(β )cos(γ) cos(α)sin(β ) px

cos(α)sin(γ) cos(α)cos(γ) −sin(α) py
−sin(β )cos(γ)+ sin(α)cos(β )sin(γ) sin(β )sin(γ)+ sin(α)cos(β )cos(γ) cos(α)cos(β ) pz

0 0 0 1

 (B.1)

which is a function of the location and rotation of the top frame.
The coordinates of a top frame node can be expressed in base frame coordinates

by the calculation 
XTi
YTi
ZTi
1

= TTT TOP
BASE(px, py, pz,α,β ,γ)


xTi
yTi
zTi
1

 (B.2)

The desired lengths of the actuators are then determined by

Li =
√
(XTi−XBi)2 +(YTi−YBi)2 +(ZTi−ZBi)2 (B.3)

Now taking into account that we are using servos instead of linear actuators
an approximation is made to obtain the desired servo angle. We assume that the
rotation of the servo arm is made in the same plane as the base and top node and
that the desired angle can be obtained from trigonometry as

θ = arccos(
L2

i + l2
si− l2

li
2Lilsi

) (B.4)

where θ is the deviation from the servo position where the servo arm and the plat-
form arm are parallell, lsi is the length of the servo arm and lli is the length of the
arm connecting the servo arm to its respective top platform node.

B.2 Complete Inverse Kinematics

Denote the servo arm endpoint position xxx, the servo center position xxxB and the posi-
tion of the top node xxxT . All positions are expressed in base frame coordinates. For
a desired top platform position the problem is to find the corresponding servo arm
positions and can be stated as three constraint equations.

|xxx− xxxB|= ls
|xxxt − xxx|= ll
aT xxx = b

(B.5)
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Here the first equation is the constraint of the servo arm length, the second equa-
tion is the constraint given by the length of the platform arm. The third equation
constrains the servo arm to one plane.

The equations can be simplified by rewriting the absolute values
xxxT xxx−2xxxT

Bxxx = l2
s − xxxT

BxxxB

xxxT xxx−2xxxT
t xxx = l2

l − xxxT
t xxxt

aT xxx = b
(B.6)


xxxT xxx−2xxxT

Bxxx = l2
s − xxxT

BxxxB

2(xxxT
B − xxxT

t )xxx = l2
l − l2

s + xxxT
BxxxB− xxxT

t xxxt

aT xxx = b
=⇒


xxxT xxx−2xxxT

Bxxx = l2
s − xxxT

BxxxB

aT xxx = b
cT xxx = d

(B.7)
where c = 2(xxxT

B − xxxT
t ) and d = l2

l − l2
s + xxxT

BxxxB− xxxT
t xxxt

The system of equations with three unknows now consists of one quadratic and
two linear equations. By solving the linear part of the system, we should be able to
obtain a solution depending on one parameter{

aT xxx = b
cT xxx = d

=⇒ AAAxxx =
[

b
d

]
=⇒ AAAxxx = [ÂAA|AAA3]

[
x̂xx
x3

]
(B.8)

ÂAAx̂xx =
[

b
d

]
−AAA3x3 = h(x3) =⇒ x̂xx = ˆAAA−1h(x3) (B.9)

if we choose the parameter x3 = t

xxx =

K1 +K2t
K3 +K4t

t

 (B.10)

where 
K1 = Â−1

1,1b+ Â−1
1,2d

K2 =−(Â−1
1,1a3 + Â−1

1,2c3)

K3 = Â−1
2,1b+ Â−1

2,2d
K4 =−(Â−1

2,1a3 + Â−1
2,2c3)

(B.11)

t = p±
√

p2 +q (B.12)

where p = xB1K2+xB2K4+xB3−K1K2−K3K4
1+K2

2+K2
4

and q =
l2
s−xxxT

B xxxB+2(K1xB1+K3xB2)−K2
1−K2

3
1+K2

2+K2
4

The solution that will be used in the implementation is the one with the negative
sign.
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B.3 Real Time Implementation

To calculate the desired angle that is to be used as reference value for the servo,
the angle between the vector (xxx− xxxB) and the Z-axis unit vector is obtained with
their dot product.

φ = arccos(
x3− xB3

|xxx− xxxB|
) (B.13)

A matlab implementation was made where the platform followed sinusoidal
displacement and rotations in pz and α , both simultaneously and independently,
showing that the angles are calculated correctly.

Platform kinematic simulations

Figure B.2 A visualization of the Stewart platform matlab simulation used to ver-
ify the inverse kinematics. Left: The simulated platform when displacement and rota-
tion are set to zero. Right: The simulated platform with a rotation around the x-axis.
These simulation results indicate that the servo angles are calculated correctly.

B.3 Real Time Implementation

The platform controller is implemented as a ROS-node on a host PC. From a desired
position and rotation this node calculates the corresponding servo angles and uses a
publisher to send the data to the Arduino. The Arduino uses the <ros.h> library and
a subscriber can therefore be set up which reads the servo angles sent by the PC.
These angles are then set as reference values to the servos.
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