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Abstract 
 

Jamaica has struggled to curb the number of road crash fatalities, having had on average 25 

fatalities per month between 2010 and 2014, while many more persons have been injured.  

The causes of crashes are multidimensional, however this study focused on understanding 

one aspect of reducing crashes - safe road design.  The aim of this study was to determine the 

relationships between road design characteristics and fatal road crash distribution along the 

North Coast Highway (NCH) in Jamaica.  The Anselin Local Moran’s I and the Getis-Ord 

Gi* models were employed to look at the distribution of crash hotspots.  This paper also 

utilised Esri’s Weighted Sum Analysis tool to devise a scoring method for determining how 

safe or dangerous road segments were based on the presence, absence and type of road design 

features.  The design variables selected for this study included bus stops, pedestrian 

crossings, traffic lights, intersections, places of interest, sidewalks, speed limit, soft 

shoulders, medians, lanes and roadside barriers.  This study also used the zero-inflated 

negative binomial (ZINB) regression model to identify the empirical relationships between 

crash counts, crash types, road design features and safety scores.  The model identified road 

segments with many places of interest (POIs), single lane, medians and many intersections as 

being significantly related to the segments with the most crash counts (irrespective of crash 

type).  This study demonstrates how the spatial analysis of road design features and crash 

distribution can be used to determine how effective road design features are in advancing 

road safety and where to implement road safety plans. 

 

Keywords: Geography, Geographical Information Systems (GIS), hot spot analysis, road 

design features, zero-inflated negative binomial (ZINB) 
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Chapter 1. Introduction 
 

1.1 Background and context 

The World Health Organization (2009) in its Global Plan for the Decade of Action for Road 

Safety 2011 – 2010 paints a grim picture of the current state of road deaths and injuries from 

a global perspective: 

 

Each year nearly 1.3 million people die as a result of a road traffic collision— 

more than 3000 deaths each day—and more than half of these people are not 

travelling in a car. Twenty to fifty million more people sustain non-fatal 

injuries from a collision, and these injuries are an important cause of disability 

worldwide. Ninety percent of road traffic deaths occur in low- and middle-

income countries, which claim less than half the world's registered vehicle 

fleet. Road traffic injuries are among the three leading causes of death for 

people between 5 and 44 years of age. Unless immediate and effective action 

is taken, road traffic injuries are predicted to become the fifth leading cause of 

death in the world, resulting in an estimated 2.4 million deaths each year 

(World Health Organization, 2009, p 3 and 4). 

 

Locally, between 2010 and 2014, over 1,500 persons died in police reported traffic crashes 

and countless more were injured in Jamaica.  At this rate, about 25 persons died in road 

crashes each month for the 5-year period, making crashes the second leading cause of violent 

deaths in the country (Wilks et al., 2008).  According to the World Health Organization 

(2013a), the financial impact of crashes on Jamaica's economy is evident as about 0.2% of 

Jamaica’s gross domestic product (GDP), which was over US$300,000 in 2010, was lost due 

to road traffic crashes.  Despite the efforts by the National Road Safety Council (NRSC), 

Jamaica continues to struggle to have a sustained reduction in road traffic crashes (Figure 1). 

 

 

1.2 Justification and purpose 

The purpose of this research is to contribute meaningful information to the relevant 

stakeholders in the transportation sector such that informed decisions can be made as to the 

allocation of resources on road sections that are most prone to crashes. Improving road safety 

is the overarching goal of this paper which supports the Decade of Action for road safety 
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(2011 – 2020) that was proclaimed by the United Nations (UN) in 2010.  The aim of this UN 

initiative was to stabilise and reduce road fatalities globally by encouraging activities at the 

national, regional and global scales.  The Global Plan for the Decade of Action for Road 

Safety 2011-2020, identifies five pillars of road safety: road safety management, safer roads 

and mobility, safer vehicles, safer road users and post-crash response.  

 

 

Figure 1. Road fatalities per 100,000 population for 1991 – 2015 highlighting the various 

efforts by the NRSC in Jamaica aimed at increasing road safety awareness (NRSC, 

2015). 

 

This research focuses most on pillar 2, which the World Health Organization (2009, p. 12) 

states: 

 

Pillar 2: Safer roads and mobility 

Activity 3 Promote safe operation, maintenance and improvement of 

existing road infrastructure by requiring road authorities to: 

 identify the number and location of deaths and injuries by road user 

type, and the key infrastructure factors that influence risk for each 

user group; 
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 identify hazardous road locations or sections where excessive 

numbers or severity of crashes occur and take corrective measures 

accordingly; 

 conduct safety assessments of existing road infrastructure and 

implement proven engineering treatments to improve safety 

performance; 

 

This research is driven by how crucial road design and safety is in realising the targeted 

reduction of road fatalities and injuries during the ‘Decade of Action’ in Jamaica.  Generally, 

the human factor is given more focus than the road or vehicle components in a crash. Iyinam 

et al. (1997) theorises that if a roadway is properly and appropriately designed, then this may 

actually reduce the influence of the other factors and also cause a decrease in the number of 

fatalities and serious injuries.  Dewees et al. (1996) suggests that the way highways are 

designed and maintained can influence safety as road design features are known to have some 

relationship with safety.  Karlaftis and Golias (2002) also note how expensive highway 

crashes are and hence how important highway safety improvement is.  Roads can be deemed 

dangerous due to the presence or absence of various risk factors.  These roadways may 

benefit from safety treatments (Stephan and Newstead, 2011).  This study therefore highlights 

the important responsibility of those tasked with designing safe road transport systems.  The 

results from a study like this, should inform the relevant stakeholders by providing an 

evidence-based approach to influence strategic crash reduction methods in dangerous crash 

areas. 
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1.3 Research objectives 

The aim of this study was to determine the relationships between road design 

characteristics and fatal road crash distribution along the North Coast Highway (NCH) 

in Jamaica.  As a consequence, this will advance safety research and provide a new approach 

to safety evaluation and analysis in Jamaica. 

 

The research objectives of this study were to:   

 Objective 1: Identify high crash areas along the NCH based on crash incidences. 

 Objective 2: Classify road segments that are susceptible to high crash counts based on 

   road design features. 

 Objective 3: Determine the main road design features that are found on dangerous 

   crash road segments.            

 Objective 4: Assess the relationship between road design features and dangerous  

   crash road segments. 

 

 

1.4 Thesis organization 

This thesis has 7 chapters.  Chapter 1 introduces the issue of road safety, providing a global 

and local perspective and also presents the research objectives which underscore the 

importance of studies such as these for increasing road safety.  A background puts the study in 

a wider perspective in Chapter 2, while the location of the study area is presented in chapter 3, 

where the motivation for selecting this area of interest is explained.  In chapter 4, the methods 

employed while conducting this research is discussed, and entails data collection and creation 

along with the approaches to spatial and statistical analyses of crashes and road design 

features.  The results from the analyses are presented in chapter 5, where specific dangerous 

crash road segments are highlighted and relationships between the variables are indicated.  

Chapter 6 discusses the results obtained, looking also on what others have published on the 

matters arising out of this study and also the sources of error that were to be noted.  The final 

chapter provides a summary of the work done for this study along with recommendations on 

more research that can be conducted. 
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Chapter 2. Background 
 

This chapter presents a review of existing literature, providing a wider perspective of how 

road safety has been analysed.  A summary of the data and crash analysis techniques that are 

typically employed in this field of research are described.  The benefits of this study and the 

voids in existing literature are also mentioned. 

 

 

2.1 Benefits of the research 

Road safety is often assessed based on crash counts or rates and as such many studies have 

focused only on identifying areas with high concentrations of crashes and some focusing 

equally on the possible causes of these high crash areas.  Greater emphasis is also usually 

placed on the human factor as being the cause of crashes when compared to the influence of 

the road and vehicle. This research goes further to examine the relationships between crashes 

and road design features.  This approach is beneficial as it recognises the impact that the 

surroundings has on crashes and can therefore guide the decision-making process regarding 

the locations where resources are needed to lessen the occurrence and severity of crashes. 

 

 

2.2 Geographic Information Systems and spatial datasets 

Geographic Information Systems (GIS) is used by several researchers to map, analyse and 

visualise crash data (Abdulhafedh, 2017; Çepni and Arslan, 2016; Adebayo, 2015; Rahman et 

al., 2015).  The reason for the popularity of GIS in this field, when compared with other 

information systems, is its ability to know how crashes and other related features are 

geographically located (Goh, 1993).  GIS software provides the ability to accurately locate 

hot spots and is pivotal to the work done by transportation professionals, engineers and traffic 

safety analysts.  Good GIS methods can provide legally sound information for stakeholders to 

use as evidence for undertaking road safety initiatives.  Typically, studies with a focus on 

road safety tend to utilise a combination of spatial datasets, such as crashes, road geometry 

and road design features.  The availability, accuracy, coverage and usability of these datasets 

undeniably impact the choice and level of analysis that is conducted.   

 

2.2.1 Crash data 

Like several other countries, there is great underreporting of crashes which makes the 

analysis of crashes in Jamaica limited to just those reported crashes. Similar to Hoque et al. 

(2009), this shortcoming of the national crash database renders Jamaica's crash data virtually 

incomplete.   Hauer and Hakkert (1988) estimates that most crash fatalities are reported while 

only 50% of injured crash victims and an even lesser percentage for property damage only 
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crashes are made known to the police.  This obtains in Jamaica as well, whereby given the 

severity and the spotlight placed on fatal crashes, most of these crashes tend to be reported.  

There are also substantially less fatal crashes when compared to non-fatal crashes.  A 10-year 

study done by Lyew-Ayee (2012), based on reported crashes, found that fatal crashes 

accounted for only about 3% of all crashes across Jamaica, while crashes resulting in 

property damage was around 73%.  Serious crashes, where a person was hospitalized for at 

least 24 hours because of injuries sustained in a crash accounted for 10% of all crashes while 

minor crashes, which refer to crashes where a person was injured but hospitalized for less 

than 24 hours or not hospitalized at all accounted for 14%.  Ideally, an analysis of all crash 

types would provide greater understanding of the road safety problem along the North Coast 

Highway.  Based on data availability, however, only fatal crashes were studied. According to 

World Health Organization (2013a), road crash fatality is a person who dies immediately or 

within 30 days of a crash on a public road, the death being the result of the crash. 

   

2.2.2 Road segmentation 

It is common to divide roadways into analysis units (segments) to address safety. There is, 

however, no universally accepted optimal segment length for analysis (Harwood et al., 2010).   

Strathman et al. (2001) notes that the determination of segment length is generally chosen 

based on a fixed length or road feature composition.  

  

FIXED-LENGTH SEGMENTATION 

By using the fixed-length approach, one acknowledges that there may be within-segment 

variation of road geometry and design features.  The fixed-length approach is the less popular 

choice, however it has been found to be most appropriate for several studies that seek to 

analyse the impact of crashes on point features, such as traffic lights, speed limit signs and 

bus stops (Strathman et al., 2001). This method of segmentation has been used because it 

eliminates issues that can arise with using varying segment lengths, where there may be 

either too long or short road segments.  If the segment length chosen is too small, this may 

lead to many segments recording zero crashes and consequently over-dispersion may be 

common.  In addition, geocoding errors tend to be magnified when smaller road segments are 

used. The United States Road Assessment Program (usRAP) considers 2- to 3-mile segments 

as adequate, while studies done in Utah used quarter- and half-mile segments (Harwood et 

al., 2010).
 
 There are other ways segmentation can be performed, for instance, by using the 

sliding window method, where a predetermined size of cells/grids is used to cut the roadway 

by the cells into different segments (Choi and Park, 1996).  
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USER DEFINED SEGMENTATION 

Defining segments by road composition suggests that segments will be homogeneous as it 

relates to road features and hence have varying lengths, as a segment will start when the road 

design variables change. Determining segments by road features is more often used, 

especially in cross-sectional crash modelling studies (Strathman et al., 2001).  A number of 

studies have used this approach by creating long homogeneous segments (Harwood et al., 

2010; Hadi et al., 1995; Li, 2006; Bellomo-McGee Inc., 2003).  Another way uses the strip 

analysis tool that breaks the road into segments based on a user-specified number of crashes 

(Johnson, 2012). 

 

2.2.3 Study period 

It is important to study the roadway for a sufficient amount of time, such that a representative 

accident sample can be studied.  Hadi et al. (1995) and Cheng and Washington (2005) agree 

that a study period between three to five years should be sufficient for preparing crash risk 

maps, it is however not ideal to use a longer time period as there is a higher likelihood of 

significant changes to the road characteristics.   

 

 

2.3 Typical approaches to crash analysis 

Different approaches to analysing crash data have been taken, each with their own pros and 

cons.  Similar research has been conducted in other countries and has served as a guide for 

this study.  The unique situation in Jamaica has caused the adaptation of some of these 

methods. 

 

2.3.1 Identification of crash hot spots 

SLIDING WINDOW-BASED RANKING 

Traditionally the non-spatial method, sliding window-based ranking, was utilised to identify 

crash hot spots. This approach uses a predefined window size with a fixed length or 

predetermined cells or grids of a fixed size, to move along a roadway calculating crash 

frequency, vehicle miles travelled (VMT) and other explanatory covariate values. The crash 

rate is determined for each cell and then ranked by rates (Federal Highway Administration, 

2002; Choi and Park, 1996).
 
 The primary advantage of this scan based approach is the 

elimination of splitting an area with high crash averages between two sections. On the other 

hand, the "small area estimation" problem is one of the primary disadvantages of this method 

as it can bias the ranking rates (Miaou and Song, 2005).  Other limitations include the 

absence of statistical significance, inefficient use of data (Silverman, 1986) and absence of 

local peak compared to neighbours (Saha, 2012). 
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FREQUENCY AND CRASH RATE METHOD 

Other methods have become more popular, such as the frequency and crash rate method used 

by Qin and Wellner, (2011) to provide simple observational crash analyses, such as crash 

counts and the calculations of crash rate, density and frequency.  The crash rate is calculated 

by normalising crash data by traffic volume (or road length, if traffic data is not available) 

along each road segment, which is usually expressed as crashes per million vehicle miles 

travelled. Crash density is determined by analysing the number of crashes by road segment 

length. Crash frequency incorporates time as the number of crashes occurring on a road 

segment is normalised by the time span over which it occurred.    

 

KERNEL DENSITY ESTIMATION (KDE)  

The Kernel Density Estimation (KDE) method calculates the density of crash events within a 

specific search bandwidth and creates a surface to represent this (Bačkalić, 2013; Truong and 

Somenahalli, 2011; Schneider et al., 2001).  O’Sullivan and Unwin (2002) credits this 

method for its provision of useful outputs for visualisation as high crash intensity areas are 

clearly identified.  A major issue with the Kernel Density Estimation method, however, is 

that neither the planar KDE nor network KDE can be tested for statistical significance.  

 

ANSELIN LOCAL MORAN'S I AND THE GETIS-ORD GI* 

The most popular local measures of spatial association used by several researchers are the 

Anselin Local Moran's I and the Getis-Ord Gi* (Saha, 2012 and Khan et al., 2008).  There 

have been several instances where both statistics have been used together (Khan et al., 2009; 

Ohri et al., 2015).   

 

The Hot Spot Analysis tool, Getis-Ord Gi* has been found useful in determining where 

clusters of crashes occur and also for identifying spatial autocorrelation (Kuo et al., 2013; 

Prasannakumar et al., 2011; Songchitruska and Zeng, 2010).  This statistic assesses whether 

the clusters of crashes are statistically significant.  A limitation of this spatial autocorrelation 

method is that it requires aggregated data, instead of using an individual crash point location 

dataset.  The analysis is therefore based on a count or ratio of crashes along a roadway which 

is divided into smaller sections known as the modifiable area unit problem. Consequently, 

this analysis might produce varying results based on the scale and location of the aggregation 

units used (Plug et al., 2011; O’Sullivan and Unwin, 2002).   

 

The Anselin Local Moran's I identifies clusters of crashes spatially based on their attribute 

similarity and difference from the surrounding crashes.  The model determines statistically 

significant clusters of crashes. A limitation of the Anselin Local Moran's I is that spatial 
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autocorrelation suffers from the issue of not clearly defining specifications for the optimal 

number of neighbours (level of connection) and the value of weights (Anselin, 1995).  Moons 

et al. (2008) found it difficult to define an optimal distance between two points along a 

roadway for which both locations would still show any connection, as this distance would 

vary based on the type and characteristics of the road being studied. 

 

2.3.2 Road design features and identifying segments that are susceptible to high crash 

counts 

One is able to identify road segments that are considered more dangerous, not based on crash 

history but based instead on road design features.  Researchers have evaluated the impact of 

numerous road design features on road safety.  Some studies preferred a very simplistic 

approach, for instance Karlaftis and Golias (2002) only grouped roads into two classes, in 

contrast to Hadi et al. (1995) who considered several geometric design features in great detail 

for instance looking at the impact of different median types.  Hess et al. (2004) and Naderi et 

al. (2008) focused on road features and their likely risk to particular road users and their 

influence on specific types of road crashes, where pedestrian risk at street crossings and the 

impact of street trees as obstacles for off-road crashes were studied, respectively. 

 

There were few studies that took a GIS-based approach to identifying high risk areas based 

solely on road design features.  Risk assessment tools used by the International Road 

Assessment Program (iRAP) have been conducted in several countries to calculate a road's 

risk score and provided a somewhat similar approach to the weighted sum method utilised for 

this study.   iRAP's evidence-based risk assessment tools are sufficient to identify areas where 

road safety treatments should be prioritised (Stephan and Newstead, 2011; McInerney and 

Smith, 2009; Affum and Goudens, 2008).  The risk score is based on the type of road and 

roadside features that may influence a roadway's crash risk.  Johnson (2012) considers iRAP's 

star ratings, which is based on the inspection of roads to investigate how well they shield 

road users from different types of crashes, as being very useful when determining the safety 

hazards that exist.  The star rating is enhanced by the incorporation of GIS as it provides 

additional information than is usually unavailable in a crash database and allows for the 

stimulating visualisation of results. 

 

2.3.3 Relationship between crashes and road design features 

To truly assess the road safety situation in an area, one needs to focus not only on road design 

but also incorporate crash history or predictions into the analysis.  Crashes can be considered 

as random events and are often times characterized by road segments with a preponderance of 

zeros and overdispersion.  Unlike deterministic models, stochastic models such as Poisson 

regression, negative binomial regression, Zero-Inflated Poisson regression and the Zero-
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Inflated Negative Binomial Regression models have been considered better options for 

modelling random events like road crashes (Poch and Mannering, 1996; Sawalha and Sayed, 

2006; Sharma and Landge, 2013).  Overdispersion can violate the assumptions of some 

common count-data modelling methods (Lord and Mannering, 2010). 

   

Poisson regression models using quasi-likelihood estimation techniques have often been used 

to address the issues of overdispersion and underdispersion in crash data (Ma et al., 2014).  

Quasi-likelihood estimation considers crash counts by estimating the overdispersion or 

underdispersion parameters as part of the process (Ivan et al., 2000).  With overdispersion 

accounted for, Severini and Staniswalis (1994) expressed confidence in this method because 

it provides a semiparametric method for calculating the average of selected parameters and is 

therefore a legitimate approach to determine risk predications.  While the Quasi-Poisson and 

negative binomial regression models often give similar results and are best suited for the 

distribution of overdispersed crash counts, there are clear differences in their calculations.  

Several studies have noted the higher level of accuracy derived from the quasi-likelihood 

model, especially when working with count data, and so for some, this method is considered 

superior (Ver Hoef and Boveng, 2007).  

 

Unlike the Poisson regression model, negative binomial regression allows for overdispersion 

and effectively quantifies numerous parameters.  Further improvements in modelling, 

however, have been experienced with zero-inflated models which have been praised for their 

improved statistical fit and also their ability to handle a more significant amount of zeros.  

The Zero-Inflated Negative Binomial (ZINB) regression model can be used to identify an 

empirical relationship between crash hotspots and road design features, quantifying the effect 

of the various design factors on crashes based on the parameter estimates of the models.  The 

ZINB is considered by several transportation safety analysts as being the best and fittest 

model to use when analysing crash data (Ayati and Abbasi, 2014; Malyshkina and 

Mannering, 2010; Lord et al., 2007; Lord et al., 2005; Qin et al., 2004; Kumara and Chin, 

2003.
 
 Carson and Mannering (2001) and Lee and Mannering (2002) also used the ZINB 

model for analysing highway design attributes. 

 

The Methodology section of this report discusses in more detail the choices made for 

processing and analysing the research data.  The works by other authors have served as a 

guide and in some instances influenced the methods chosen so that the objectives of this 

study could be achieved. 
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Chapter 3. Study Area 
 

The location of the North Coast Highway, its importance to the country and the motivation 

for choosing this roadway is explained in this chapter.  The environment in which the 

highway is found along with the main construction details and concerns are also discussed. 

 

 

3.1 Location and boundary 

The North Coast Highway, located in Jamaica, West Indies, was selected as the study area for 

this research.  The original road which was constructed in the 1960s and 1970s was upgraded 

after almost 12 years of construction improvements. This entire highway was completed in 

2009 and stretches along the island's north coast, extending to about 260 km, linking the 

coastal towns of Negril, Montego Bay, Ocho Rios and Port Antonio (Figure 2).   

 

 
Figure 2.  The North Coast Highway stretching east to west on the northern coast of the island 

of Jamaica is highlighted. 
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The NCH was constructed in 3 segments: 

 

i. Segment One: The National Works Agency (NWA), which was the implementing 

agency of the Northern Coastal Highway Improvement Project (NCHIP), demarcates 

segment one of the NCH as extending 71 kilometers from the Negril round-a-bout in 

the parish of Westmoreland to the outskirts of the Bogue Main Road in Montego Bay, 

St. James (National Works Agency - Jamaica, 2015a), (Figure 3).  

 

 

Figure 3. Segment 1 of the North Coast Highway. 
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ii. Segment Two: This segment spans about 97 kilometres between Montego Bay in St. 

James to Ocho Rios in St. Ann (McNish and Morrison, 2010), (Figure 4).  

 

 

Figure 4.  Segment 2 of the North Coast Highway. 
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iii. Segment Three: This segment spans about 92 kilometres of roadway, located 

between Ocho Rios, St. Ann and Bryan's Bay, in Port Antonio, Portland (National 

Works Agency – Jamaica, 2015b), (Figure 5).  

 

 
Figure 5.  Segment 3 of the North Coast Highway. 
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3.2 Description 

3.2.1 Importance of the North Coast Highway (NCH) 

The Jamaican economy depends heavily on tourism, which in 2014 accounted for about 30% 

of the country's gross domestic product (Central Intelligence Agency, 2001).  In the early 

1990s the Jamaican government set out to revitalise and expand the tourism industry by 

encouraging several tourism-related projects along the North Coast tourism belt.  The NCH 

also provides vital arteries for several major ports (shipping and air) which stretch along the 

highway, providing logistics in imports and exports and the distribution of goods.  The North 

Coast Highway construction was considered an investment providing the movement of 

people, goods and services in the domestic economy and being critical to the country’s 

economic development, effectively linking the tourist belt to the rest of the country (McNish 

and Morrison, 2010).   

 

3.2.2 Environment along the NCH  

The North Coast Highway extends mostly along the northern coastline of the island crossing 

various landscapes.  The corridor is found mostly on relatively flat, low and elevating land 

ranging between 2 - 10 metres above sea level (Plate 1). The geology comprises of alluvial 

sand, gravel and clay all underlain by limestone. The geological formations seemed stable for 

construction of the highway.  Due to its coastal location, the highway may in some areas, be 

impacted by storm surges of 2 metres of more. In general, the highway is exposed to only a 

small tidal range of 0.5 meters between high and low tide.  The NCH runs through marshes, 

mangrove swamps, woodland forest, pasture, open woodland, scrub, cultivated lands and 

secondary forests.  In some instances, the highway passes through existing towns and urban 

areas, some of which are characterised by narrow roads, heavy traffic congestion and 

business activity (McNish and Morrison, 2010). 
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a)  

 

 

 

 

 

 

b)  

 

 

 

 

 

 

c)  

 

  

Plate 1.  Images along the North Coast Highway:   

(a) Roadway along coastline  

(Photography credit: http://www.stanleyconsultants.com/files/4113/4038/7523/13981-

Ministry-of-Transport-and-Works-Jamacia-North-Coast-Highway.jpg), 

(b) Elevated section of roadway 

 (Photography credit: http://farm4.staticflickr.com/3035/2617445621_5ca871f913_z.jpg), 

(c) Roadway passing through an urban area  

(Photography credit: http://static.panoramio.com/photos/1920x1280/57574484.jpg). 
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3.2.3 Construction of the NCH 

The overall project involved the reconstruction of the existing road alignment, curve 

flattening, road widening, installation of box culverts and ditches, repair of old bridges, the 

implementation of traffic control devices, right turn lanes and several bus turnouts.  This 

highway passes through various land use zones and as such the speed limits vary among 80 

km/hr (non built-up areas), 50 km/hr (built-up areas) and 30 km/hr (in school zones).  The 

design of the NCH also varies, with regard to the number of lanes, median strips, 

intersections, gradient and width of road and shoulder.  Due to variability in the design of this 

highway, it presents an opportunity to determine if certain design features impact crash 

occurrences.   

 

3.2.4 Concerns about the NCH 

The choice of material used for the road surface was cause of great concern as the limestone 

aggregate used is one that creates a slippery road surface.  Recommendations have been made 

to have these sections of the highway resurfaced instead with black stone aggregates (McNish 

and Morrison, 2010).   With the construction of the highway, other issues of concern have 

arisen, such as the need for the maintenance of the roadway as road deterioration may lead to 

higher rates of crashes and poor road use.  A Roads Maintenance Fund was established to 

deal with the maintenance of the highway along with funding from the Tourism Enhancement 

Fund (TEF) and hoteliers located along the corridor.  McNish and Morrison, 2010 also 

mentioned issues pertaining to squatting along the corridor, as persons seek to situate 

themselves in close proximity to the major transportation route and the emerging tourist 

developments which provide employment opportunities.  These developments, however, 

change the safety dynamic of the highway's use.  With the increasing number of 

developments occurring along the highway, it is necessary to monitor the corridor so as to 

maintain a viable transportation system.  Socially, the development of highway bypasses may 

also lead to socio-economic challenges as smaller towns experience reduced business activity 

which may lead to lower economic returns for these areas.  

 

 

3.3 Motivation for study area selection 

At the opening of segment two of the North Coast Highway in December 2006, the then 

Minister of Works in Jamaica, Honourable Robert Pickersgill, outlined that the Highway 

would not only reduce travel times between Ocho Rios and Montego Bay by more than 40% 

but would also reduce the accident rate. Based on a study of road crashes that occurred 

between 2000 and 2009, Lyew-Ayee (2012) identified the North Coast Highway as the 

deadliest stretch of road in Jamaica, claiming 363 lives from about 5,614 reported crashes. 

The North Coast Highway is a very important roadway in Jamaica, traversed by many locals 
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and foreigners. Crashes along this highway have great impact, not only on the lives of crash 

victims and families, but also on the day to day movement of many people and may cause 

economic loss.  Given its historically high number of crashes and its importance to the 

country's tourism sector and the local population, increasing road safety along this corridor is 

crucial for saving lives and resources.   



19 

 

Chapter 4. Methods 
 

This section will describe the three-part methodological approach that was employed for this 

cross-sectional study (Figure 6).  The first section presents the data collected for this study, 

while the second section looks at how the data was processed so that it would be in the 

requisite formats for analysis.  The third section explains the analytical methods employed to 

determine dangerous crash road segments and to examine associations between variables.   

 

 

4.1 Data collection and variable creation 

Various datasets were used for this research, the primary ones include fatal crash data, road 

geometry and road design features.  The data collection and creation processes were 

conducted by the author through Global Positioning System (GPS) field mapping and desktop 

mapping.  Other datasets were obtained from secondary sources and were used primarily as 

background data to facilitate the desktop mapping exercise, such as community, settlement, 

road and places of interest.  The ArcGIS Desktop software package was used for the 

preparation of the spatial data and also for the spatial analyses. 

 

All spatial data created and used in this study was referenced to the national coordinate 

system for Jamaica, that is, the Jamaica Grid 2001 (JAD 2001).   This projected coordinate 

system has the following parameters: 

 Projection:     Lambert_Conformal_Conic 

 Geographic Coordinate System:  GCS_JAD_2001 

 Datum:     D_Jamaica_2001 

 Prime Meridian:    Greenwich  

 Angular Unit:     Degree 
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Figure 6. Flowchart showing the main data processing and analysis phases 
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4.1.1 Crash data 

At the time of conducting the data collection process for this study, fatal crash data for the 

period 2010 to 2014 was the most recent crash data available.   Crash data is generally 

collated by the Jamaica Constabulary Force (JCF) Traffic and Highway Patrol Division and is 

recorded according to crash reports made to the police.  Based on the availability of crash 

data, the researcher was not able to access a comprehensive list of all types of crashes as only 

fatal crash data was readily available for the study period.  The crash data was provided by 

the JCF as Microsoft Excel files with information for the entire island.  Only those crashes 

occurring along the NCH were subsequently selected for this study based on the location 

information provided.  Other crash details were also provided about each fatal crash, which 

included the crash type, driver’s age, time of crash (day or night) and number of deaths.  For 

this study, the crash location and type of crash were the only variables considered. 

 

DESKTOP MAPPING 

For this research, it was necessary to have the crash locations mapped in a GIS, which was 

achieved by manual geocoding.  Jamaica unfortunately does not benefit like other developed 

countries from having police officers outfitted with GPS units for mapping crash scenes.  

Consequently, desktop mapping was dependent solely on the crash location description 

information that was recorded in the police reports.  This method, versus automatic 

geocoding, proved to be the only mapping option available as Jamaica does not have a 

structured addressing system where each road segment can be easily deciphered based on an 

organised method for street numbering.  Also, it was observed that the crash location 

information was not written in a standard format.  This was most evident in the rural areas 

where most addresses made reference only to a main road name, town and/or a landmark.  

Consequently, the desktop mapping of crashes was plagued by a reduced level of accuracy 

and comprehensiveness of crashes mapped as some crash location information was 

insufficient and vague and therefore some locations were not mapped.  The researcher, 

however, consulted the local newspapers for additional location information about crashes 

that received media attention.  In total there were 1,524 fatal crashes recorded across Jamaica 

over the 5-year period, with an average of 305 fatal road crashes each year.  This study 

examined the location of 298 fatal crashes that were mapped along the NCH (Figure 7 and 

Table 1).   
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Figure 7. Fatal crash locations (2010 - 2014) along the North Coast Highway. 

 
Table 1. Number of fatal crashes islandwide and along the NCH by type and year. 

Year 

Islandwide 

Fatal Crashes 
NCH Fatal Crashes 

Total Total 
% of Islandwide 

Crashes 

Pedestrian-

related crashes 

Driver-related 

crashes 
Other 

2010 319 49 15% 18 21 10 

2011 307 66 21% 24 38 4 

2012 260 58 22% 16 41 1 

2013 307 67 22% 16 42 9 

2014 331 58 18% 14 38 6 

Total 1,524 298 20% (5 yr avg.) 88 180 30 

 

This mapping method was utilised given the available data, time and budget constraints 

associated with this research. The crash locations were mapped individually and saved as 

point shapefiles where one point represented one crash, with its crash details appended.    
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4.1.2 Road Data 

DESKTOP DIGITISATION 

The highway was digitised as a road centreline shapefile from satellite imagery (circa 2014) 

obtained from Google Earth.  These images were first georeferenced in ESRI’s ArcMap 

software and then the highway digitised. The crash data provided from the JCF did not in all 

instances indicate on which side of the highway each crash occurred and as such a single 

centerline representing the NCH was considered sufficient for this study. The accuracy of the 

digitised roadway was further assessed and verified during a field visit where a Garmin GPS 

handheld device, which provides 5 m accuracy, was used to create tracks as the researcher 

travelled the length of the highway.  The plotted tracks were then compared to the previously 

digitised centreline and the necessary changes made to the shapefile to allow for proper 

alignment.   

 

4.1.3 Road Design Features 

FIELD MAPPING 

Data for road design features was collected during a field visit to the NCH, where a GPS 

device was used to capture all the various features seen on both sides of the roadway.  A 

Garmin nüviCam LMTHD, which is equipped with a built-in dash camera that continuously 

records the features along a route, was utilised for the field visit (Plate 2).  The in-built GPS 

records exactly where (using geographic coordinates) and when features were seen from the 

device's dashboard mounting location.  The researcher therefore captured in a video all the 

features observed along the entire length of the highway.  The field visit was done in July 

2015 and was completed within 1 day.  The design features were chosen based on the degree 

to which the features were expected to influence road safety, their prevalence and also the 

ease of data collection.  This research focused on eleven features (Table 2).   
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Plate 2. (a) Garmin nüviCam LMTHD mounted on windshield  

(Photography credit: http://www.fedingas.lt/garmin-nuvicam-lmt), 

(b) Screen grab from nüviCam device 

(Photography credit: Lisa-Gaye Greene, 2015). 
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Table 2. Description of road design features collected for study. 

Road Design Feature Description 

Sidewalk 

Sidewalks were considered to be paved areas along the roadway that was 

designated for use by pedestrians as they travelled along the road (Appendix 

1a). 

Bus stop 

Bus stops provide designated marked areas for persons to wait for, stop, 

board or alight from public transportation.  Bus stops may be identified by a 

posted sign or by shed/shelter structures (Appendix 1b). 

Pedestrian crossing 

 Pedestrian crossings were identified by black and white stripes painted 

across a roadway which provide pedestrians with a designated place to cross 

a road (Appendix 1c).   

Posted speed limit 
Traffic signs that indicated the maximum speed at which vehicles were 

allowed to legally travel along a roadway (Appendix 2a).  

Soft shoulder 
The soft shoulder was represented by paved and un-paved areas along the 

roadway, primarily for vehicles wishing to stop (Appendix 2b). 

Median 
Medians provided a central physical barrier that separated opposing lanes 

along a roadway.  (Appendix 2c). 

Lane 

A lane was a designated area on a road for a single line of vehicles travelling 

in the same direction, usually denoted by road surface markings (Appendix 

3a).  There may be several lanes observed along a roadway. 

Roadside barrier 

Safety barriers, also known as guardrails were normally found at the road 

side.  These features were constructed of various materials to dissipate 

impact energy and deflect when struck by an out of control vehicle 

(Appendix 3b). 

Traffic Light 

Traffic lights were signalized features installed along roadways to control the 

flow of vehicular and pedestrian traffic along a shared roadway allowing 

users to pass in turn (Appendix 3c). 

Place of Interest (POIs) 

Non-residential buildings offering public and private services, which include 

places such as hotels, gas stations, government offices, churches and shops 

(Appendix 4a).  

Intersections 
The place at which two or more roads met or crossed was considered an 

intersection (Appendix 4b). 
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4.2 Data management and processing 

4.2.1 Crash data processing 

CRASH CATEGORIZATION 

Subsequent to mapping the fatal crashes, they were divided into three categories for this 

study based on the different crash types indicated by the police.  Pedestrian-related crashes 

included those crashes that were categorised as being caused by or involving pedestrians.  

Driver-related crashes referred to incidents involving one or more vehicles, where the driver 

(including motorcyclists and cyclists) were at fault or were involved in a crash.  The third 

crash category, all crashes, is a sum of both pedestrian-related and driver-related crashes.  

The crash data was ultimately saved as point shapefiles consistent with the three crash 

categories.  

CRASH COUNT 

This research utilised crash counts, instead of a crash rate, frequency or density.  The 

homogeneous road length segments that were chosen for this study and the lack of traffic data 

made this approach most suitable.  Each road segment was assigned crash counts based on 

the number of crashes (by category) that occurred along the roadway using the Join Tool in 

ArcGIS (Appendix 5).  The crash count (by category) ultimately formed part of the 

information stored for the road line shapefile. 

 

4.2.2 Road Data Processing 

ROAD SEGMENTATION 

Like Johnson (2012), this study used equal increments to segment the roadway.  A simple 

sensitivity analysis was conducted to determine if a 1-km, 2-km or 3-km segment length 

would be ideal.  The 2-km segment length was ultimately used, where the entire NCH was 

divided into 141 segments.  It was determined that a 2-km segment length would be a 

sufficient length to conduct analyses of crashes and their relation to road design feature.  This 

length would allow for analysis at a micro-scale without providing too many segments with 

zero crashes or losing important details that would otherwise be lost from using longer 

segment lengths.  A segmented line shapefile representing the entire length of the NCH, was 

created so that the crash count (by category) and road design data could be joined to each 

segment of the highway. 

 

4.2.3 Road design feature processing 

Geographic coordinates for the selected road design features were saved as point locations, 

such as bus stops, pedestrian crossings, traffic lights, intersections and places of interest.  The 
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other features were processed as polyline datasets to capture the lengths of the features, 

which included sidewalks, speed limit road sections, soft shoulders, medians, lanes and 

roadside barriers.  The line features were processed using the start and end geographic 

coordinates of these features and later joined to create polyline features in ArcGIS.  Similar to 

the crash data, the road design features were also categorised as either pedestrian- or driver-

related features. 

 

For each road segment, the presence, absence and number of design features were coded as 

either ‘0’, ‘1’, ‘2’ or ‘3’ (Table 3).  This numbering method was based on the concept that the 

higher the score - the safer the roadway, and the lower the score - the more dangerous it was.   

Some studies have shown for instance that the absence of bus stops and soft shoulders would 

cause a road segment to be more dangerous and hence segments without these features were 

assigned “0”.  Other studies, for example Taylor et al. (2000) and Aarts & van Schagen 

(2006) found that driving at high speeds may often lead to a higher crash rate, crash 

frequency and greater severity of injuries and hence roadways with higher speed limits of 80 

km/hr were assigned “0”.  A similar approach was applied to the number of lanes along a 

road segment. 

 

For some features, which include traffic lights, points of interest, speed limits and 

intersections, ‘1’, ‘2’ or ‘3’ was applied based on the perception of how safe these features 

made the roadway.  For example, the lowest code was therefore applied to those road 

segments with many intersections as these segments are generally deemed more unsafe when 

compared to those segments with less or no intersections.  The count intervals were 

automatically determined based on the interquartile range. 

 

Table 3. Description of road design data variables 

Road Design Features Categorical Variables 

Pedestrian-related features 

Sidewalk 0 - Absent, 1 - Present 

Bus stop 0 - Absent, 1 - Present 

Pedestrian crossing 0 - Absent, 1 - Present 

Driver-related features 
 

Posted speed limit 0 - 80 km/hr, 1 - 30 or 50 km/hr 

Soft shoulder 0 - Absent, 1 - Present 

Median 0 - Absent, 1 - Present 

Lane 0 - More than one lane present, 1 - One lane or one-way lane present 

Roadside barrier 0 - Absent, 1 - Present 

Traffic Light 1: 0 traffic lights, 2: 1 - 2 traffic lights, 3: 3-4 traffic lights 

Place of Interest (POI) 1: 6 - 121 POIs, 2: 2 - 5 POIs, 3: 0 - 1 POI 

Intersection 1: 8 - 36 intersections, 2: 4 - 7 intersections, 3: 0 - 3 intersections 
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4.3 Data analysis 

4.3.1 Statistical methods 

Inferential statistics are obtained from tests of the statistical hypotheses and allow one to 

make inferences from the data.  For this study, inferential data analysis enabled determination 

of whether the occurrence of crashes was associated with any of the road design features and 

the identification of dangerous crash road segments.   Two approaches were used to 

determine this, namely Spatial Analysis and Investigations of Associations (Figure 8).  P-

values of less than 0.05 were regarded as being statistically significant. 

 

 

Figure 8. Flowchart showing the statistical analysis phases 

SPATIAL ANALYSIS 

This study utilised the two most popular local indicators of spatial association to analyse 

crash data, the Anselin Local Moran's I and the Getis-Ord Gi* (Saha, 2012 and Khan et al., 

2008).  The Getis-Ord Gi*Statistic and the Anselin Local Moran’s I are standard data 

analysis tools in Esri's ArcMap GIS software and were employed to compare the hot spots 

identified by both methods. According to Esri (2012c), the Hot Spot Analysis (Getis-Ord 

Gi*) and Cluster and Outlier Analysis (Anselin Local Moran's I) have a null hypothesis that 

supports Complete Spatial Randomness (CSR) which would apply to the crash incidents or 

would be based on the attributes linked to them. 
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 Getis-Ord Gi* Statistic 

The Hot Spot Analysis tool, Getis-Ord Gi*, assessed whether clusters of crashes were 

statistically significant.    In general, the Gi* statistic investigated road segments based on the 

concentration of high or low crash count values.  Esri (2012b) describes the Getis-Ord Gi* 

statistic as a tool that considers the distribution of features (crashes) in relation to the other 

crash incidents that surround it.  Statistical significance may be achieved if the values of the 

incidents are similar to the incidents surrounding it.  More specifically, when the local sum 

for crashes is compared to the sum of all crashes, statistical significance is attained if the 

sums are different.  The output is a z-score result. 

 

The formulation of the local version of the Getis-Ord Gi* statistic was conducted using the 

following equation (Esri, 2012b and Saha, 2012): 

 

     

(1)  

 

 

For this study xj represents the road segment crash count, wij is the spatial weight between 

road segments i and j which refer to their spatial interrelationship, n is the same as the total 

number of road segments,    is the average of the crash counts per segment and S the standard 

deviation and: 

 

  (2) 

 

 

(3) 

 

   

No other calculations are done since the Gi* statistic is a z-score. 

 

This method puts forward the null hypothesis that no spatial pattern exists or that spatial 

correlations do not exist among crashes.  In ArcMap, the Getis-Ord Gi* tool was used, with 

inverse distance being selected as the Conceptualization of Spatial Relationships.  This 

indicates that the neighbouring features will have a larger influence on the computations for a 

target feature than features that are far away.  The Euclidean Distance was selected as the 

Distance Method.  The hot spot areas for the Getis-Ord Gi* method were considered at the 

99% and 95% confidence levels.  For each road segment, a z-score and p-value was 

calculated from the Gi* statistic, indicating the hot spot segments.  Hot spots are evident 
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where the z-scores are positive and largest, while cold spots are present on segments where 

the z-scores are negative and smallest. 

 

 Cluster and Outlier Analysis - Anselin Local Moran's I 

The Cluster and Outlier Analysis tool was also used to identify hot spots, where it identified 

clusters of road segments with high or low crash counts by measuring values similar in 

magnitude and location proximity.  In general, the Moran’s I analysis is based on the 

similarity of nearby features. This tool was also able to distinguish spatial outliers.  

 

The formulation of the Moran's Index statistic is indicated below (Esri, 2012a): 

 

(4) 

 

For this study xi is the crash count for road segment i,    is the mean of the corresponding 

value, wi,j is the distance weighting between road segment i and j, which is the inverse of the 

distance, while  S
2

  is the variance of x, and: 

 (5) 

 

 

With n being the same as the total number of road segments. 

 

The zIi - score for the statistics are computed as: 

 

            (6) 

 

where: 

 

(7) 

 

(8) 

 

Like the Getis-Ord Gi* tool, the inverse distance was selected as the Conceptualization of 

Spatial Relationships parameter.  The Distance Band/Threshold Distance parameter was left 

blank such that a threshold distance was automatically generated, representing the minimum 

distance that ensures every feature has at least one neighbour.  The Euclidean Distance was 

also selected as the Distance Method.  The hot spot areas for the Anselin Local Moran’s I 

method were considered at the 95% confidence level. 

i 

http://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/cluster-and-outlier-analysis-anselin-local-moran-s.htm
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The tool's output was a local Moran's I index, along with a z-score, p-value, and a code 

representing the cluster/outlier type (COType) for each road segment.  The z-score and p-

value measured the statistical significance of the computed index value and essentially 

indicated if the spatial clustering of high or low crash values or the presence of spatial 

outliers was more pronounced than would be observed in a random distribution.  A positive 

value for the index indicated that the feature was surrounded by locations with similar 

frequency or high or low attribute values. Such a feature was part of a cluster and could be 

considered as belonging to crash hot spots. A negative index value indicated that the location 

was surrounded by features with dissimilar values, and the feature was considered an outlier.  

According to Esri (2012a), the COType output field indicates four types of statistically 

significant conditions.  The first two being HH and LL which are clusters of high values and 

low values respectively. The third result is HL, which in this case is a road segment with a 

high crash count that is surrounded by segments with mostly low crash counts and LH is vice 

versa. 

  

 Weighted Sum analysis tool 

Using the Weighted Sum Analysis tool in ESRI ArcGIS, this research adopted a scoring 

system for the North Coast Highway based on the road design features.  This score was 

allocated to each road segment to determine how safe or dangerous each segment was.  ESRI 

(2011) described this tool as providing the ability to combine multiple inputs to create an 

integrated analysis.  This tool is ideal for solving multi-criteria problems, which for this study 

referred to the various road design features that were considered in determining how 

dangerous each road segment was.  For this study, the design features were placed into two 

categories, driver-related and pedestrian-related design features.   

 

The scoring was based on a rating of the road features according to the level of protection for 

road users from death or serious injury.  The higher the score, the safer the segment was 

(more safety design features present) and the lower the score, the more dangerous the 

segments were. Ultimately, the derived scores were inputted into regression models to 

determine correlations between road features and crash counts.  The Weighted Sum Analysis 

tool is typically used for site selection and suitability analysis.  A similar approach was taken 

for this study to assess the characteristics of safe road segments based on the preferred 

attributes or requirements they possess.  

 

INVESTIGATION OF ASSOCIATION 

Summary statistics in the form of counts, proportions, medians and measures of variability 

were estimated to describe the distribution of crash data within and across categories defined 

by road design features. In addition, the summary statistics was also instrumental in 
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determining whether over-dispersion was observed in the study data.  These statistical 

analyses were performed in Stata 14®. 

 

Bivariate Analysis 

Bivariate analyses of the data were performed using several methods, namely the 

Spearman's rank correlation coefficient, Fisher's exact test and the Likelihood ratio test.  The 

Spearman's rank correlation coefficient (rho) was used to test the strength and direction of 

association between crash types and road design features and also crash types and road design 

scores.  The Spearman's rho was used only for road design features with quantitative values, 

which were summarised using tertiles and included the number of intersections, traffic lights 

and places of interest (POIs) found along road segments.  The Fisher's exact test was used to 

determine if there were non-random associations between the proportion of road segments 

that had zero or more crashes and the various road design features. This test would determine 

statistical significance in the data and confirm if there was dependency or contingency of one 

classification on the other.  Since the outcome variables were counts (number of crashes), the 

Likelihood ratio test was used to determine whether the use of the negative binomial 

regression model was a more suitable alternative to the standard Poisson regression model in 

the presence of overdispersion in the data.     

 

Multiple Regression Modelling 

In addition, as a number of road segments had no crashes, results of the Vuong test were used 

to determine whether the zero-inflated negative binomial (ZINB) model versus the standard 

negative binomial model should be used to assess association between number of crashes and 

road design features.   The ZINB model was also used to determine whether or not a single 

design variable had any significant association with the outcome.  Road design variables that 

were significantly associated with number of crashes in the bivariate analyses, were then 

included in multiple regression analysis using ZINB models.  These variables were used to 

arrive at the final best model based on the combinations of variables that resulted in the 

lowest Akaike Information Criterion (AIC).  The AIC was employed to compare goodness-

of-fit models. The variables that were not strongly associated were removed and the AIC was 

compared.  The rate ratios quantifying effects of the respective road design features on 

occurrence of crashes, with adjustment for possible confounding variables (other road design 

features), were estimated from these models.  The final best models that had the lower values 

for the Akaike Information Criterion, were then determined.  Thus, a final model with 

adjustments for the confounding variables that best described the relationship between 

crashes and road design feature variables was selected.  This study used the ZINB regression 

model to identify an empirical relationship between crash hotspots and road design features.    
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Chapter 5. Results 
 

This section begins with the results from the hot spot models that were calculated from crash 

counts for each of the three crash types.  This is followed by the weighted sum calculation of 

safety scores for each road segment based on pedestrian and driver related road design 

features.  The statistical modelling results are presented last, which describe the relationships 

between crashes and road design features.  ArcGIS was used to visualize the crash hot spot 

locations and road design safety scores by way of maps. 

   

 

5.1 Spatial analysis of crashes - Hot spot analyses 

5.1.1 Getis-Ord Gi* Statistic hot spot identification 

The output from the Gi* tool can be seen in Table 4, Table 5 and Table 6  where a portion of 

the outputs have been presented, to highlight the top road segments with clustering.  Saha 

(2012) explains the value of GiZscore and the GiPValue as indicating the statistical 

significance of the hot spots.  This is also represented by the GiPValue in the output table. 

The confidence level bin field identified statistically significant hot spots.  Road segments 

assigned +/-3 bins reflected statistical significance with a 99% confidence level.  Segments in 

the +/-2 bins reflected a 95% confidence level. 

 

ALL CRASHES 

When considering all crashes in total, 7 out of 141 (5%) road segments were considered as 

crash hot spots based on the Getis-Ord Gi*method. These hot spots were found in 5 of the 7 

parishes in which the NCH is found with Hanover, St. James and Trelawny having 2 hot spot 

segments each (Table 4).  The bright red colour areas in Figure 9a, represent the highest z-

scores or hot spots and navy blue represents points with the lowest GiZscores or cold spots.  

The hot spot segments had the most crashes, ranging from 14 to 10 being recorded.  The 

average number of crashes for the all crash type was 2 per segment. 
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Table 4. Hot spot locations identified by the Getis-Ord Gi*method for crashes in total. 

Hot Spot Location 
Crash 

Count 
GiZScore GiPValue GI_Bin 

Rose Hall - St. James, vicinity of Hilton Rose Hall Resort & Spa 14 3.81 0.00 3 

Oracabessa - St. Mary, vicinity of Boscobel Post Office 14 3.81 0.00 3 

Rio Bueno - Trelawny, vicinity of Braco 13 3.49 0.00 3 

Lilliput - St. James, vicinity of Iberostar Hotel 12 3.17 0.00 3 

Falmouth - Trelawny, Falmouth Bypass 11 2.85 0.00 3 

Jericho - Hanover, vicinity of Lucea Harbour Port 11 2.85 0.00 3 

Orange Bay - Hanover and Westmoreland, vicinity of Negril 

Beach Villa 
10 2.53 0.01 2 

 

DRIVER-RELATED CRASHES 

Hot spots for driver-related crashes were found on 8 out of 141 (6%) road segments. These 

high crash areas were found in 5 of the 7 parishes.  Trelawny had the highest number of hot 

spots, with 3 road segments (Table 5 and Figure 9b).  The crash counts for these hot spot 

segments were the highest, with crashes ranging between 13 and 7.  The mean crash count for 

driver-related crashes was 1 crash per segment. 

 

Table 5. Hot spot locations identified by the Getis-Ord Gi*method for driver-related crashes. 

Hot Spot Location 
Crash 

Count 
GiZScore GiPValue GI_Bin 

Rio Bueno - Trelawny, vicinity of Braco 13 4.58 0.00 3 

Falmouth - Trelawny, Falmouth Bypass 11 3.79 0.00 3 

Oracabessa - St. Mary, vicinity of Boscobel Post Office 10 3.39 0.00 3 

Jericho - Hanover, vicinity of Lucea Harbour Port 10 3.39 0.00 3 

Orange Bay - Hanover and Westmoreland, vicinity of Negril 

Beach Villa 
9 2.99 0.00 3 

Lilliput - St. James, vicinity of Iberostar Hotel 8 2.59 0.01 3 

Duncans - Trelawny, vicinity of Lancaster 7 2.20 0.03 2 

Flankers - St. James, vicinity of IAM Jet Centre 7 2.19 0.03 2 
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PEDESTRIAN-RELATED CRASHES 

Hot spot areas, based on pedestrian-related crashes, were found on 10 out of 141 (7%) road 

segments.  When comparing the 3 crash types, pedestrian-related crashes had the most hot 

spots.  These were found in 6 of the 7 parishes in which the NCH is found, with St. James 

having the most hot spot with 3 segments (Table 6 and Figure 9c).  The average number of 

pedestrian-related crashes stood at less than 1 crash (0.6) per segment, however these hot 

spots had crash counts ranging from 8 to 3. 

 

Table 6. Hot spot locations identified by the Getis-Ord Gi*method for pedestrian-related 

crashes. 

Hot Spot Location 
Crash 

Count 
GiZScore GiPValue GI_Bin 

Rose Hall - St. James, vicinity of Hilton Rose Hall Resort & Spa 8 6.17 0.00 3 

Downtown, Montego Bay - St. James, Barnett Street & Howard Cooke 

Boulevard 
5 3.66 0.00 3 

Priory - St. Ann, vicinity of Priory Police Station 4 2.82 0.00 3 

Oracabessa - St. Mary, vicinity of Boscobel Post Office 4 2.82 0.00 3 

Lilliput - St. James, vicinity of Iberostar Hotel 4 2.82 0.00 3 

Green Island - Hanover, vicinity of Green Island Police Station 4 2.82 0.00 3 

Salt Marsh - Trelawny, vicinity of Salt Marsh Church of God Prophecy 3 1.98 0.05 2 

Ocho Rios - St. Ann, vicinity of Ocho Rios Village Jerk Centre 3 1.99 0.05 2 

Negril - Westmoreland, vicinity of Grand Pineapple Beach Resort 3 1.99 0.05 2 

Annotto Bay - St. Mary, vicinity of Iter Boreale 3 1.98 0.05 2 

 

SUMMARY 

Sixteen (16) unique road segments along the North Coast Highway were considered hot spots 

by the Getis-Ord Gi* model (Table 7 and Figure 10). With the majority of these found in 

parishes of St. James (4), Trelawny (4) and Hanover (3).  Portland did not record any hot spot 

segments for this model.  Lilliput in St. James in the vicinity of Iberostar Hotel and 

Oracabessa in St. Mary in the vicinity of Boscobel Post Office were identified as crash hot 

spots for the 3 crash types. 
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Table 7. All unique hot spot road segments identified by the Getis-Ord Gi* model. 

Getis-Ord GI* Hot Spot Location Crash Count 

Rose Hall - St. James, vicinity of Hilton Rose Hall Resort & Spa 14 

Oracabessa - St. Mary, vicinity of Boscobel Post Office 14 

Rio Bueno - Trelawny, vicinity of Braco 13 

Lilliput - St. James, vicinity of Iberostar Hotel 12 

Falmouth - Trelawny, Falmouth Bypass 11 

Jericho - Hanover, vicinity of Lucea Harbour Port 11 

Orange Bay - Hanover and Westmoreland, vicinity of Negril Beach Villa 10 

Duncans - Trelawny, vicinity of Lancaster 7 

Flankers - St. James, vicinity of IAM Jet Centre 7 

Downtown, Montego Bay - St. James, Barnett Street & Howard Cooke Boulevard 5 

Priory - St. Ann, vicinity of Priory Police Station 4 

Green Island - Hanover, vicinity of Green Island Police Station 4 

Ocho Rios - St. Ann, vicinity of Ocho Rios Village Jerk Centre 3 

Negril - Westmoreland, vicinity of Grand Pineapple Beach Resort 3 

Salt Marsh - Trelawny, vicinity of Salt Marsh Church of God Prophecy 3 

Annotto Bay - St. Mary, vicinity of Iter Boreale 3 

 

 

 

 



 

 

 

Figure 9. Hot spot GIZscore for all crash types: a) all crashes, b) driver-related crashes and c) pedestrian-related crashes.

3
7
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Figure 10. All hot spot road segments identified by the Getis-Ord Gi* model. 

 

5.1.2 Anselin Local Moran's I Hot Spot Identification 

ALL CRASHES 

Based on the model calculations, only 6 out of 141 (4%) road segments proved to be hot 

spots for crashes in total. These segments were assigned a cluster/outlier type (COType) of 

HH and HL (Table 8 and Figure 11a).  These hot spots were found in 5 parishes with 

Trelawny having the most with 2 segments.  Unlike the Getis-Ord Gi* method, the hot spot 

segments identified by the Moran's I tool did not coincide with only segments with the 

highest crash counts.  The crash counts for these hot spots ranged from 14 to 5.  There were 

other segments with more than 5 crashes recorded, however these were not considered as hot 

spots by the Moran’s I tool. 

 

Table 8. Hot spot locations identified by the Anselin Local Moran's I method for crashes in 

total. 

Hot Spot Location 
Crash 

Count 
LMiIndex LMiZScore LMiPValue COType 

Duncans - Trelawny, vicinity of Lancaster 7 0.00 3.23 0.00 HH 

Negril - Westmoreland, vicinity of Grand 

Pineapple Beach Resort 
5 0.00 2.73 0.01 HH 

Rio Bueno - Trelawny, vicinity of Braco 13 0.00 2.11 0.03 HH 

Oracabessa - St. Mary, vicinity of Boscobel 

Post Office 
14 0.00 -2.01 0.04 HL 

Rose Hall - St. James, vicinity of Hilton 

Rose Hall Resort & Spa 
14 0.00 -2.60 0.01 HL 

Jericho - Hanover, vicinity of Lucea 

Harbour Port 
11 0.00 -2.90 0.00 HL 
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DRIVER-RELATED CRASHES 

With regards to driver-related crashes, the model identified 5 out of 141 (4%) road segments 

as being hot spots (Table 9 and Figure 11b).  These hot spots were found in only 3 of the 7 

parishes in which the NCH is found.  Most of these hot spots were found in Trelawny, with 3 

segments.   The driver-related crash hot spots had crash counts ranging between 13 and 4, but 

were not necessarily the segments with the highest crash counts. 

 

Table 9. Hot spot locations identified by the Anselin Local Moran's I method for driver-related 

crashes 

Hot Spot Location 
Crash 

Count 
LMiIndex LMiZScore LMiPValue COType 

Duncans - Trelawny, vicinity of Lancaster 7 0.00 6.45 0.00 HH 

Rio Bueno - Trelawny, vicinity of Braco 13 0.00 5.12 0.00 HH 

Negril - Westmoreland, vicinity of Grand 

Pineapple Beach Resort 
4 0.00 2.90 0.00 HH 

Duncans - Trelawny, vicinity of Stewart 

Castle 
6 0.00 2.11 0.03 HH 

Jericho - Hanover, vicinity of Lucea Harbour 

Port 
10 0.00 -2.81 0.00 HL 

 

PEDESTRIAN-RELATED CRASHES 

The model found 4 out of 141 (3%) road segments to be pedestrian-related crash hot spots 

(Table 10 and Figure 11c.  No HH clusters were identified.  These hot spots were found in 

only 4 parishes and had crash counts of 8 and 4.  As with the other crash types, these 

segments were not the only segments with high crash counts.  

 

 

 

 

  



40 

 

Table 10. Hot spot locations identified by the Anselin Local Moran's I method for pedestrian-

related crashes 

Hot Spot Location Crash Count LMiIndex LMiZScore LMiPValue COType 

Rose Hall - St. James, vicinity of 

Hilton Rose Hall Resort & Spa 
8 0.00 -3.40 0.00 HL 

Priory - St. Ann, vicinity of Priory 

Police Station 
4 0.00 -2.20 0.03 HL 

Oracabessa - St. Mary, vicinity of 

Boscobel Post Office 
4 0.00 -2.20 0.03 HL 

Green Island - Hanover, vicinity of 

Green Island Police Station 
4 0.00 -2.20 0.03 HL 

 

SUMMARY 

Only nine (9) unique road segments along the North Coast Highway were considered hot 

spots by the Anselin Moran’s I tool (Table 11 and Figure 12). The majority of these were 

found in Trelawny (3), followed by Hanover (2).  Once again, Portland did not record any hot 

spot segments.  There were also no similarities in the road segments identified as hot spots 

when comparing both driver and pedestrian related crashes. 

 

 



 

 

 

Figure 11. Hot spot Anselin Local Moran's I index for all crash types: a) all crashes, b) driver-related crashes and c) pedestrian-related crashes. 

4
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Table 11. All unique hot spot road segments identified by the Anselin Local Moran's I model. 

Anselin Local Moran's I Hot Spot Location Crash Count 

Rose Hall - St. James, vicinity of Hilton Rose Hall Resort & Spa 14 

Oracabessa - St. Mary, vicinity of Boscobel Post Office 14 

Rio Bueno - Trelawny, vicinity of Braco 13 

Jericho - Hanover, vicinity of Lucea Harbour Port 11 

Duncans - Trelawny, vicinity of Lancaster 7 

Duncans - Trelawny, vicinity of Stewart Castle 6 

Negril - Westmoreland, vicinity of Grand Pineapple Beach Resort 5 

Priory - St. Ann, vicinity of Priory Police Station 4 

Green Island - Hanover, vicinity of Green Island Police Station 4 

  

 

 

Figure 12. All hot spot road segments identified by the Anselin Local Moran's I model. 

 

 

 

 

 

  



43 

 

5.2 Spatial Analysis of Road Design Features 

5.2.1 Weighted sum analysis 

ESRI's Weighted Sum analysis tool was utilised to determine crash safety scores.  The road 

design features were saved as point and polyline datasets to capture the number, presence or 

absence and length of features (Table 12).   The scores are based on 3 categories: all road 

design features, driver-related design features and pedestrian-related road design features.  

Driver-related features included posted speed limits, the presence or absence of soft 

shoulders, medians and road side barriers and also the number of lanes, traffic lights, places 

of interest and intersections.  Pedestrian-related features included the presence or absence of 

sidewalks, bus stops and pedestrian crossings.  The occurrence of crashes can be influenced 

by these design features and consequently the scoring method utilised for this study was able 

to determine which road segments were considered dangerous or safe.  High scores indicated 

segments with a higher level of road safety (maximum score was 12), while lower scores 

represented dangerous road segments with lower safety (minimum score was 0). 

 

Table 12. Number and length of road design features 

Point Road Design Feature No. of Locations 

Bus stop 179 

Pedestrian crossing 57 

Traffic light 42 

Intersection 902 

Places of interest 889 

Polyline  Road Design Feature Length (km) 

Sidewalk 18 

Soft Shoulder 161 

Median 26 

Roadside barrier 214 

Speed Limit 30 or 50 km/hr 119 

80 km/hr 165 

Lane > 1 lane present 50 

1 lane or 1 way 234 

 

ALL DESIGN FEATURES 

The safety scores, based on all road design features, were between 5 and 12, with only 4 of 

141 (3%) segments getting a maximum score of 12 (safest segments) and 3 segments (2%) 

receiving a score of 6 and less representing the more dangerous segments (Figure 13 and 

Figure 17a).  The majority (95%) of the roads received scores between 7 and 11.  The 

average score was 9 out of 12.  There were therefore only a few segments that were 
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considered either very safe or very dangerous, while the majority of segments were relatively 

safe.  The eastern parishes (St. Mary, St. Ann and Portland) had the safest road segments.  

 

The most dangerous segments were found across 3 parishes in the following locations: 

 Salt Marsh - Trelawny, vicinity of Salt Marsh Church of God Prophecy (score: 6) 

 Green Island - Hanover, vicinity of Green Island Police Station (score: 6) 

 Discovery Bay - St. Ann, vicinity of Red Stripe Distribution Centre (score: 5) 

The safest segments were found in: 

 Ocho Rios - St. Ann, vicinity of Mystic Mountain (score: 12) 

 Prospect / Content Garden - St. Mary and St. Ann, vicinity of Couples San Souci 

(score: 12) 

 Oracabessa - St. Mary, vicinity of Boscobel Basic School (score: 12) 

 Snow Hill / Norwich - Portland (score: 12) 

 

 

Figure 13.  Frequency of road safety scores based on all road design features by parish. 
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DRIVER-RELATED DESIGN FEATURES 

The road segments received scores between 4 and 11 based on the driver-related design 

features.  Only 2 of 141 (1%) segments got a maximum score of 11 (safest segments) and 5 

road segments (4%) were considered the most dangerous with scores of 4 and 5 (Figure 14 

and Figure 17b).   The average safety score was 8 out of 11. The majority of road segments 

were considered relatively safe with about 71% of segments received a score between 8 and 

11 and only 29% of road segments were classified as dangerous with scores between 4 and 7.  

The most dangerous segments were found in 4 of 7 parishes, with St. Ann recording the most 

with 2 road segments.   

 

The most dangerous segments were found at: 

 Discovery Bay - St. Ann, vicinity of Red Stripe Distribution Centre (score: 4) 

 Runaway Bay - St. Ann, vicinity of Salem Baptist Church (score: 5) 

 Downtown, Montego Bay - St. James, Gloucester Avenue (score: 5) 

 Salt Marsh - Trelawny, vicinity of Salt Marsh Church of God Prophecy (score: 5) 

 Galina - St. Mary, vicinity of Galina Primary School (score: 5) 

The safest segments were found at: 

 Jericho - Hanover, between Paradise and Mosquito Cove (score: 11) 

 Oracabessa - St. Mary, vicinity of Boscobel Basic School (score: 11) 

 

 

Figure 14. Frequency of road safety scores based on driver-related road design features by 

parish. 
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PEDESTRIAN-RELATED DESIGN FEATURES 

Based on the pedestrian-related design features, the scores ranged between 0 and 3, with only 

6 of 141 (4%) segments getting  a maximum score of 3 (safest segments) while 80% of road 

segments were considered dangerous for pedestrians, with scores of either 1 or 0 (Figure 15 

and Figure 17c).  The average score received was less than 1 (0.9).  The safest segments were 

found across 4 parishes, with the majority being in St. Ann and St. James.  The most 

dangerous segments were more widespread in 6 of 7 parishes through which the NCH runs.  

The majority of which were found in Hanover and St. Mary (Figure 16). 

 

The safest segments were found across 4 parishes, more specifically in: 

 Discovery Bay - St. Ann, vicinity of Puerto Seco Beach (score: 3) 

 Ocho Rios - St. Ann, vicinity of Ocho Rios Village Jerk Centre (score: 3) 

 Downtown, Montego Bay - St. James, Barnett Street and Howard Cooke Boulevard (score: 3) 

 Downtown, Montego Bay - St. James, Gloucester Avenue (score: 3) 

 Port Maria - St. Mary, vicinity of Port Maria Catholic Church (score: 3) 

 Port Antonio - Portland, West Street, West Palm Avenue and Gideon Avenue (score: 3) 

 

 

Figure 15. Frequency of road safety scores based on pedestrian-related road design features by 

parish. 
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Figure 16. Frequency of most dangerous road segments (scores between 0 and 1) based on 

pedestrian-related road design features by parish.  

SUMMARY 

Based on the Weighted Sum analysis tool, it was determined that the majority of road 

segments were comparatively safe and only a few segments were considered dangerous when 

all crash designs in total and driver-related road design features were considered.  However, it 

was noticeable that unlike the other two design types, the majority of the road segments were 

considered dangerous based on the distribution of the pedestrian-related design features.  This 

result could however be linked to the fact that a part of the NCH (28%) actually passes 

through rural areas, where pedestrian activity may be low and likewise, the presence of 

pedestrian-related design features may be absent or unnecessary.  The safest segments were 

found in 5 of 7 parishes, St. Ann, St Mary, Portland, St. James and Hanover.  The most 

dangerous segments (if pedestrian-related features were not considered) were also found in 5 

of 7 parishes, St. Ann, Trelawny, Hanover, St. James and St. Mary, with one segment in Salt 

Marsh, Trelawny (vicinity of Salt Marsh Church of God Prophecy) being considered 

dangerous based on all crash designs in total and driver-related road design features. 
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Figure 17. Weighted Overlay Score for all road design categories: a) all design features, b) driver-related features and c) pedestrian-related features.  
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5.2.2 Comparison: Hot spots and road design feature scores 

For the most part, hot spots identified by the Getis-Ord Gi* model and the Anselin Moran’s I 

tool were similar but did not match the dangerous road segments found using the Weighted 

Sum analysis tool.  There was however four segments that were common among the results 

for the 3 methods employed.  A segment in Green Island, Hanover (vicinity of Green Island 

Police Station) was identified by both hot spot analysis methods (pedestrian crash type) and 

the weighted sum tool (all crash design features) as being a high crash location.  Salt Marsh, 

Trelawny (vicinity of Salt Marsh Church of God Prophecy) was the location of a segment 

identified by the Gi* statistic (pedestrian crash type) and the weighted sum tool (all crash 

design features).  The other two road segments were however considered crash hot spots but 

also safe road segments based on their high safety scores.  These segments were found in 

Ocho Rios, St. Ann (vicinity of Ocho Rios Village Jerk Centre) and Downtown Montego 

Bay, St. James (Barnett Street and Howard Cooke Boulevard).  The Getis-Ord Gi* model 

(pedestrian crash type) and the weighted sum tool (all crash design features) identified these 

segments with contradictory results.  These results suggest that there may be other underlying 

factors influencing the crash situation found at these sites.    

 

 

5.3 Investigation of Association 

5.3.1 Summary Statistics 

 
Road design features were not evenly distributed along the North Coast Highway (NCH).   

Table 13 reveals the absence of sidewalks (94%), medians (91%), traffic lights (83%) and 

pedestrian crossings (74%) along the NCH road segments.  On the other hand, most segments 

had roadside barriers (75%) and were predominantly 1 lane in each direction (82%).  Soft 

shoulders, bus stops and speed limits (≤50 km/h and 80 km/h) were found on about 50% of 

all road segments. 

 
Similar to the road design features, crashes were not evenly distributed along the NCH.  

Table 14 shows that pedestrian-related crashes were the least distributed occurring on only 

34% of road segments, while driver-related crashes were observed on more segments 

(43.2%).  Most segments (52%) had at least one crash type.  Concentrations of crashes were 

noticed on only a few segments, where only 5% of segments had more than 10 crashes with 

the maximum number of crashes found on a segment being 14 (Figure 18).  Several segments 

(48%) had no crashes, hence the 50
th

 percentile crash values were low, with 1 for total 

crashes and 0 for each of the two crash types (Table 14).  
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Table 13. Frequency distribution of road design features along the NCH. 

ROAD DESIGN FEATURE 

NUMBER OF SEGMENTS WITH DESIGN 

FEATURE 

COUNT PERCENTAGE 

Pedestrian-related features 

Sidewalk present 9 6.4 

absent 132 93.6 

Bus Stop present 78 55.3 

absent 63 44.7 

Pedestrian Crossing present 37 26.2 

absent 104 73.8 

Driver-related features 

Soft Shoulder present 80 56.7 

absent 61 43.3 

Median present 13 9.2 

absent 128 90.8 

Lane 1 lane/1 

way 
116 82.3 

> 1 lane 25 17.7 

Barrier present 106 75.2 

absent 35 24.8 

Maximum Speed Limit ≤50 km/hr 59 41.8 

80 km/hr 82 58.2 

Number of Intersections 0 - 3 57 40.4 

4 - 7 43 30.5 

8 - 36 41 29.1 

Number of Traffic Lights 0 117 83.0 

1 - 4 24 17.0 

Number of POIs 0 - 1 67 47.5 

2 - 3 28 19.9 

4 - 121 46 32.6 

 

 

Table 14. Summary statistics for number of road crashes by crash type. 

Crash Type 

Number of 

segments with 

crashes (%) 

Minimum 

Crash 

Count 

Maximum 

Crash Count 

Median 

(P50)  
IQR 

All crashes 74 (52.4) 0 14 1 3 

Driver-related crashes 61 (43.2) 0 13 0 2 

Pedestrian-related 

crashes 
48 (34.0) 0 8 0 1 
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Figure 18. Frequency distribution of crash counts along the NCH road segments. 

 

Road segments with certain road design features experienced more crashes relative to those 

segments where these features were absent.  Table 15 shows that segments with bus stops, 

pedestrian crossings, medians, more than 1 lane, intersections (>4 features), traffic lights (1-4 

features) and POIs (>2) had more crashes across all crash types relative to those segments 

without these features. 
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Table 15. Summary statistics (50th percentile and interquartile range) for number of crashes 

within design feature categories. 

ROAD DESIGN FEATURE 

ALL CRASHES 
DRIVER-RELATED 

CRASHES 

PEDESTRIAN-

RELATED CRASHES 

MEDIAN 

(P25/50/75) 
IQR 

MEDIAN 

(P25/50/75) 
IQR 

MEDIAN 

(P25/50/75) 
IQR 

Pedestrian-related features 
  

Sidewalk present 0/1/4 4 0/0/1 1 0/0/2 2 

absent 0/1/3 3 0/0/2 2 0/0/1 1 

Bus Stop present 0/1/4 4 0/0/2 2 0/0/1 1 

absent 0/0/2 2 0/0/1 1 0/0/1 1 

Pedestrian Crossing present 0/1/4 4 0/1/2 2 0/0/1 1 

absent 0/0/3 3 0/0/2 2 0/0/1 1 

Driver-related features 
  

Soft Shoulder present 0/1/3 3 0/0/2 2 0/0/1 1 

absent 0/0/3 3 0/0/1 1 0/0/1 1 

Median present 1/3/6 5 0/2/2 2 0/1/2 2 

absent 0/.5/3 3 0/0/2 2 0/0/1 1 

Lane 1 lane/1 

way 

0/0/3 3 0/0/2 2 0/0/1 1 

> 1 lane 1/3/6 5 0/2/5 5 0/1/2 2 

Barrier present 0/1/3 3 0/0/2 2 0/0/1 1 

absent 0/2/4 4 0/0/3 3 0/0/1 1 

Maximum Speed Limit ≤50 km/hr 0/1/4 4 0/0/2 2 0/0/1 1 

80 km/hr 0/1/3 3 0/0/2 2 0/0/1 1 

Number of Intersections 0 - 3 0/0/1 1 0/0/1 1 0/0/0 0 

4 - 7 0/2/4 4 0/1/3 3 0/0/1 1 

8 - 36 0/1/4 4 0/1/2 2 0/0/2 2 

Number of Traffic Lights 0 0/0/2 2 0/0/1 1 0/0/1 1 

1 - 4 1/3/6.5 5.5 0/2/4 4 0/1/2 2 

Number of POIs 0 - 1 0/0/2 2 0/0/1 1 0/0/1 1 

2 - 3 0/1/5 5 0/.5/2.5 3 0/0/1.5 1.5 

4 - 121 0/2/4 4 0/1/3 3 0/0/1 1 
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5.3.2 Bivariate Analyses 

SPEARMAN'S RANK COEFFICIENT 

Table 16 shows that the number of segments with traffic lights and POIs, were found to have 

statistically significant associations with the total counts of all crash types (taken together and 

looked at separately).  Segments with intersections were associated with the number of crash 

types in total and with pedestrian-related crashes but not with number of driver-related 

crashes..  A positive association was also found between each of the pedestrian and driver 

design scores and the total number of crashes (p = 0.0276 and p = 0.0158, respectively).  

Driver design scores had a weak negative relationship with pedestrian-related crashes (p = 

0.0275). 

 

Table 16. Spearman's rank correlation coefficient for the association between number of road 

design features, road design scores and number of crashes. 

ROAD DESIGN 

FEATURE 

ALL CRASHES 
DRIVER-RELATED 

CRASHES 

PEDESTRIAN-

RELATED CRASHES 

SPEARMAN 

rho 
p-value 

SPEARMAN 

rho 
p-value 

SPEARMAN 

rho 
p-value 

Number of Intersections 0.2163 0.01 0.1427 0.0914 0.2442 0.0035 

Number of Traffic Lights 0.2956 0.0004 0.2331 0.0054 0.3688 0.0000 

Number of POIs 0.2449 0.0034 0.2289 0.0063 0.2246 0.0074 

Pedestrian Design Score 0.1855 0.0276 0.1587 0.0601 0.1471 0.0817 

Driver Design Score -0.203 0.0158 -0.1362 0.1072 -0.1857 0.0275 

Total Design Score -0.1383 0.1019 -0.0884 0.2973 -0.1159 0.1709 

 

Highlighted Coefficients are significant at 5% 

 

FISHER'S EXACT TEST 

The Fisher’s Exact test was used to determine whether the distribution of segments with 

number of crashes equal 0, versus >0, differed significantly with the presence (or absence) or 

number of road design features.    

 

 

 

  



 

 

Table 17.  Fisher's exact test result - Proportions of road segments with or without crashes within category defined by road design features. 

ROAD DESIGN FEATURE 

ALL CRASHES 
DRIVER-RELATED 

CRASHES 

PEDESTRIAN-

RELATED CRASHES 

Number of 

crashes > 0 

Number of 

crashes = 0 

Number of 

crashes > 0 

Number of 

crashes = 0 

Number of 

crashes > 0 

Number of 

crashes = 0 

Pedestrian-related features 

Sidewalk 

present (9) 56% 44% 44% 56% 44% 56% 

absent (132) 52% 48% 43% 57% 33% 67% 

p-value 1.000 1.000 0.49 

Bus Stop 

present (78) 60% 40% 49% 51% 40% 60% 

absent (63) 43% 57% 37% 63% 27% 73% 

p-value 0.044 0.173 0.152 

Pedestrian Crossing 

present (37) 62% 38% 54% 46% 38% 62% 

absent (104) 49% 51% 39% 61% 33% 67% 

p-value 0.185 0.129 0.687 

Driver-related features 

Soft Shoulder 

present (80) 55% 45% 48% 53% 33% 68% 

absent (61) 49% 51% 38% 62% 36% 64% 

p-value 0.502 0.304 0.721 

Median 

present (3) 77% 23% 62% 38% 69% 31% 

absent (128) 50% 50% 41% 59% 30% 70% 

p-value 0.083 0.24 0.011 

Lane 

1 lane/1 way (116) 47% 53% 39% 61% 29% 71% 

> 1 lane (25) 76% 24% 64% 36% 56% 44% 

p-value 0.014 0.026 0.018 

     

5
4

 



 

 

 

 

Highlighted Coefficients are significant at 5% 

Barrier 

present (106) 51% 49% 42% 58% 33% 67% 

absent (35) 57% 43% 46% 54% 37% 63% 

p-value 0.563 0.844 0.684 

Maximum Speed Limit 

≤50 km/hr (59) 51% 49% 46% 54% 39% 61% 

80 km/hr (82) 54% 46% 41% 59% 30% 70% 

p-value 0.864 0.731 0.368 

Number of Intersections 

0 - 3 (57) 37% 63% 32% 68% 21% 79% 

4 - 7 (43) 65% 35% 51% 49% 42% 58% 

8 - 36 (41) 61% 39% 51% 49% 44% 56% 

p-value 0.01 0.07 0.025 

Number of Traffic Lights 

0 (117) 47% 53% 38% 62% 27% 74% 

1 - 4 (24) 79% 21% 67% 33% 71% 29% 

p-value 0.006 0.013 0.000 

Number of POIs 

0 - 1 (67) 42% 58% 31% 69% 25% 75% 

2 - 3 (28) 54% 46% 50% 50% 36% 64% 

4 - 121 (46) 67% 33% 57% 43% 46% 54% 

p-value 0.03 0.02 0.079 

5
5
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The results from the Fisher’s exact test are seen in Table 17 and are summarised as 

follow: 

 

 The presence of bus stops was significantly associated with the number of 

crashes (in total) with 60% of segments with bus stops present having crashes, 

while only 43% of segments without bus stops had crashes.   The presence of 

medians was significantly associated with the number of pedestrian-related 

crashes, as 69% of segments that had a median had crashes and only 30% of 

segments without medians had crashes.  

 Single lane segments were significantly associated with all crash types where 

the percentage of single-lane segments with no crashes (in total) was 53%, 

while driver-related crashes was 61% and pedestrian-related crashes was 71%.   

Similarly a larger percentage of segments without traffic lights had no crashes 

in all crash categories.  The percentage of segments without traffic lights was 

53% for total crashes, 62% for driver-related crashes and 74% for pedestrian-

related crashes. 

 The number of intersections was significantly associated with the number of 

total crashes and pedestrian-related crashes.  This was evident as 61% of 

segments with >8 intersections and 65% of segments with 4-7 intersections 

had more than one crash (in total). Only 37% of segments with <3 

intersections had >1 crash (in total).  For pedestrian-related crashes, 79% of 

segments with 0-3 intersections had no crashes while 58% of segments with 4-

7 intersections and 56% of segments with 8-36 intersections had no crashes. 

The number of POIs was significantly associated with the number of total 

crashes and driver-related crashes   This is evident as 67% of segments with 

>4 POIs had more than one crash (in total) while 54% and 42% of segments 

with 2-3 POIs and 0-1 POIs respectively, had more than 0 crashes (in total). 

Similarly, for driver-related crashes, 57% of segments with >4 POIs had more 

than one crash while 50% and 31% of segments with 2-3 POIs and 0-1 POIs 

respectively, had more than 0 crashes. 

 

IDENTIFICATION OF APPROPRIATE MODELS 

Similar to Ayati and Abassi (2014), the goodness-of-fit evaluation was used for this 

study and followed the modelling that identified the road design features that 

influenced the occurrence of fatal crashes along the NCH.  The likelihood ratio test 

and Vuong test were employed to evaluate the significance dispersion parameter.  The 

likelihood test confirmed that overdispersion was evident and consequently, the 

negative binomial regression model was found to be more appropriate than the 
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standard Poisson regression model.  The Vuong test was used to test for the relevance 

of the zero-inflated negative binomial versus the standard negative binomial 

regression models.  Table 18 shows that the Vuong test statistics achieved had 

statistical significance, with borderline statistical significance seen for only pedestrian 

score and driver-related crashes (p=0.0514).  Based on this test, it was determined that 

the zero-inflated negative binomial (ZINB) model was most suitable when compared 

to the standard negative binomial model. 

 

Table 18. Test results for Vuong Test. 

 ROAD FEATURE 
ALL CRASHES 

DRIVER-

RELATED 

CRASHES 

PEDESTRIAN-

RELATED 

CRASHES 

z p-value z p-value z p-value 

Driver Score 1.91 0.0283 1.65 0.0493 2.01 0.0223 

Pedestrian Score 1.95 0.0258 1.63 0.0514 2.08 0.0188 

Overall Score 2.00 0.023 1.71 0.0436 2.16 0.0154 

 

ZERO-INFLATED NEGATIVE BINOMIAL MODEL 

Bivariate analyses were done to assess whether the numbers of crashes of a specific 

type or all types were related to design safety scores using the zero-inflated negative 

binomial (ZINB) model. Using guidelines suggested by Montgomery and Peck 

(1992), p<0.2 was used (instead of p=0.05) as part of the model building process to 

indicate which features were to be included in subsequent multiple regression models.  

Results from the ZINB regression model revealed that there was a statistically 

significant relationship between driver design scores and pedestrian-related crashes 

(p=0.04), (Table 19).  There was no significant relationship between the road feature 

design scores and either one of total number of crashes or number of driver-related 

crashes.  As the respective p-values for association of number of pedestrian-related 

crashes with design scores fell below 0.2, the score variables were used in subsequent 

models as part of the model building process.  
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Table 19 – Unadjusted crash rate ratio for design scores and crash types. 

ROAD 

FEATURE 

ALL CRASHES 
DRIVER-RELATED 

CRASHES 

PEDESTRIAN-

RELATED CRASHES 

Crash Rate 

Ratio (CRR 

(95% CI)) 

p-value 

Crash Rate 

Ratio (CRR 

(95% CI)) 

p-value 

Crash Rate 

Ratio (CRR 

(95% CI)) 

p-value 

Driver Design 

Score 
0.96 (0.81 - 1.13) 0.6 1.01 (0.84 - 1.21) 0.9 0.82 (0.67 - 0.99) 0.04 

Pedestrian 

Design Score 
1.11 (0.81 - 1.54) 0.52 1.04 (0.69 - 1.55) 0.86 1.28 (0.91 - 1.79) 0.15 

Total Design 

Score 
0.98 (0.83 - 1.16) 0.85 1.02 (0.84 - 1.24) 0.83 0.87 (0.71 - 1.06) 0.17 

 

The Crash Rate Ratio (CRR) estimated from the ZINB models also determined 

whether the occurrences of crashes were higher in places with certain design features 

when compared to segments without (or with lesser counts) of the feature.  The results 

from the ZINB models are seen in Table 20 and are summarised as follow: 

 

 There was a statistically significant relationship between segments with 

median and pedestrian-related crashes.  Segments with medians present had 

about double the number of pedestrian-related crashes than segments without 

medians. 

 Statistically significant relationships were also observed between pedestrian-

related crashes and segments with single lanes, segments with 8-36 

intersections and segments with 1-4 traffic lights.  Road segments with single 

lanes had 50% more crashes than those with those segments with multiple 

lanes.  Segments with 8-36 intersections had about 3 times more pedestrian-

related crashes than segments with fewer intersections.  It was also found that 

pedestrian-related crashes doubled on segments with 1-4 traffic lights versus 

those segments with no traffic lights. 

 There were also significant statistical relationships between POIs and crashes 

in total, as there were 2 times more crashes (in total) present on segments with 

2-3 POIs present versus those segments with less POIs.  There was a 

statistically significant relationship also seen between POIs and pedestrian-

related crashes, where segments with 2-3 POIs had about 4 times more 

pedestrian-related crashes than those segments with less POIs and also 

segments with 4-121 POIs had double the pedestrian-related crashes than 

those segments with fewer POIs. 
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While only design features with p<0.05 were considered statistically significant, those 

features with p<0.2 were included in variables used for building the final best model 

for each crash outcome, thus , bus stops, soft shoulders, medians, lanes, intersections, 

traffic lights and POIs were used in different models. 

 

Table 20. Crash rate ratio for design features and number of road crashes by crash type. 

ROAD FEATURE 

ALL CRASHES 
DRIVER-RELATED 

CRASHES 

PEDESTRIAN-

RELATED 

CRASHES 

Crash Rate 

Ratio (CRR 

(95% CI)) 

p-

value 

Crash Rate 

Ratio (CRR 

(95% CI)) 

p-

value 

Crash Rate 

Ratio (CRR 

(95% CI)) 

p-

value 

Pedestrian-related features 

Sidewalk present (1) 1.0 (0.4 - 2.5) 1 0.6 (0.2 - 1.8) 0.34 1.7 (0.7 - 4.2) 0.29 

Bus Stop present (1) 1.2 (0.7 - 2.0) 0.45 1.1 (0.6 - 2.0) 0.68 1.6 (0.8 - 2.9) 0.17 

Pedestrian 

Crossing 
present (1) 1.1 (0.6 - 1.8) 0.77 1.1 (0.6 - 2.0) 0.8 1.2 (0.6 - 2.3) 0.57 

Driver-related features 

Soft Shoulder present (1) 1.2 (0.8 - 2.0) 0.37 1.7 (1.0 - 2.9) 0.06 0.7 (0.4 - 1.2) 0.17 

Median present (1) 1.4 (0.7 - 2.8) 0.31 1.1 (0.5 - 2.4) 0.89 2.3 (1.1 - 4.8) 0.03 

Lane 
1 lane/1 

way 
0.7 (0.4 - 1.1) 0.12 0.7 (0.4 - 1.3) 0.23 0.5 (0.3 - 0.9) 0.03 

Barrier present (1) 0.9 (0.5 - 1.4) 0.56 0.8 (0.5 - 1.5) 0.54 0.9 (0.5 - 1.7) 0.81 

Max Speed 80 km/hr 0.7 (0.5 - 1.2) 0.24 0.9 (0.5 - 1.5) 0.64 0.9 (0.5 - 1.6) 0.63 

Number of 

Intersections 

0 - 3 1 
     

4 - 7 1.5 (0.8 - 2.6) 0.19 1.4 (0.7 - 2.7) 0.33 2.1 (1.0 - 4.6) 0.06 

8 - 36 1.3 (0.7 - 2.4) 0.36 0.9 (0.5 - 1.8) 0.78 2.7 (1.3 - 5.8) 0.01 

Number of 

Traffic Lights 

0 1 
     

1 - 4 1.5 (0.9 - 2.6) 0.14 1.2 (0.6 - 2.3) 0.63 2.2 (1.2 - 4.1) 0.02 

Number of POIs 

0 - 1 1 
     

2 - 3 2.2 (1.2 - 4.1) 0.01 1.6 (0.8 - 3.4) 0.22 4.2 (2.0 - 9.0) 0 

4 - 121 1.5 (0.9 - 2.4) 0.14 1.2 (0.6 - 2.4) 0.6 2.3 (1.2 - 4.6) 0.01 

 

For the all crashes outcome, the following variables which had p<0.2 were included 

into the model: single lane segments, segments with 4-7 intersections, 1-4 traffic 

lights and 4–121 POIs, in addition to segments with 2-3 POIs, which had p<0.05.  For 

the pedestrian-related crash outcome, segments with bus stops and soft shoulders were 

the variables which had p<0.2 and were included into the model, in addition to single 

lane segments, segments with medians, 8-36 intersections, 1-4 traffic lights, 2-3 and 

4-121 POIs, which had p<0.05 (Table 20). 
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REGRESSION MODELLING 

 

Final Best Model 

Where, in bivariate analysis, crash rate ratios for association of road safety design 

features with number of crashes had p values <0.2, these road safety design 

features/scores were used in multiple regression models to determine the best final 

regression model.  For the best model, the variables that were found to have 

statistically significant relationships included: bus stops, soft shoulders, medians, 

lanes, intersections, traffic lights and POIs in relation to the various crash types (Table 

20). These variables were used to arrive at the final best model based on the 

combinations of variables that resulted in the lowest Akaike Information Criterion 

(AIC).   

 

Table 21 shows the final model best described by the relationship between crash type, 

road design features and scores and is summarised as follows: 

 Road segments with 2-3 POIs and 1 lane (or 1 way) had statistically 

significant relationships with segments with the most crashes in total.  It was 

observed that segments with 2-3 POIs had doubled the number of crashes (in 

total) when compared with segments that had less or more POIs.  Single lane 

road segments had 0.6 more crashes (in total) than segments with multiple 

lane roads. 

 For pedestrian-related crashes, significant relationships were also observed for 

segments with medians present, segments with 2-3 POIs and segments with 

more than 3 intersections.  Road segments with medians present had 2 times 

more crashes than those without medians.  Segments where there were 2-3 

POIs present had about 4 times more crashes than segments with fewer or 

more POIs.  The number of crashes on segments with 4-7 intersections were 

doubled when compared to segments with lesser intersections, while segments 

with >7 intersections had 1.2 more crashes than segments with lesser 

intersections. 

 Driver and pedestrian design scores also had statistically significant 

relationships with pedestrian-related crashes.  Segments with lower design 

scores, which were the more dangerous segments with fewer safety design 

features, had higher crash rates.  Soft shoulders were found to have a 

borderline statistical relationship with driver-related crashes, where segments 

with soft shoulders had almost doubled the number of driver-related crashes 

when compared to segments without soft shoulders. 
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Table 21 - Final Best Model for explaining variation in variables modelled. 

ROAD FEATURE 
Crash Rate Ratio 

(CRR (95% CI)) 
p-value 

ALL CRASHES 

POIs 

0 - 1 1.0 - 

2 - 3 2.2 (1.2 - 4.1) 0.01 

4 - 121 1.5 (0.9 - 2.4) 0.14 

Lanes 
One lane/one-way 

lane present 
0.6 (0.4 - 1.1) 0.00 

PEDESTRIAN-RELATED CRASHES 

Median present 2.3 (1.1 - 48) 0.01 

POIs 

0 - 1 - - 

2 - 3 3.9 (2.0 - 7.6) 0.00 

4 - 121 1.9 (1.0 - 3.7) 0.06 

Intersections 

0 - 3 - - 

4 - 7 2.1 (1.0 - 4.6) 0.03 

8 - 36 1.2 (1.2 - 4.5) 0.01 

Driver Design Score 
 

0.8 (0.7 - 1.0) 0.04 

Pedestrian Design Score 
 

1.3 (0.9 - 1.8) 0.15 

DRIVER-RELATED CRASHES 

Soft Shoulder 1.7 (1.0 - 2.9) 0.06 
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Chapter 6. Discussion 
 

The overarching goal of this study was to determine the influence of road design 

features on road crashes, with the view to promote an informed approach to road 

safety initiatives.   

 

The objectives included:  

1. Identifying high crash areas along the North Coast Highway based on crash 

incidences 

2. Classifying road segments that are susceptible to high crash counts based on 

road design features 

3. Determining the main road design features that were found on dangerous crash 

road segments and 

4. Assessing the relationships between road design features and dangerous crash 

road segments 

The rest of this Discussion chapter will provide a comparison of the findings with 

other existing research, strengths and limitations of this study, the importance of this 

study and road safety implications. 

 

 

6.1 Comparison of this study’s findings with other existing 

research  

Road safety studies in Jamaica have focused primarily on identifying areas with high 

concentrations of crashes, such as Lyew-Ayee (2012) and Hare et al. (2008) and some 

studies aimed to understand crash victims, for instance Crandon et al. (2009) and 

Crawford and McGrowder (2009).  No publicly accessible studies that assessed the 

impact of road design features on road crashes have been found for Jamaica, therefore 

a direct comparison with previous research in Jamaica was not possible. Studies done 

in other countries however provided ground upon which to compare the findings.  

 

This research corroborated the work done by many other studies that suggest that 

some road design features influenced how prone a roadway was to crashes.  The high 

crash counts along some NCH road segments was explained given the type of road 

design features found at these locations, while the existence or absence of some 

features provided no reasonable explanation as to why a hot spot was determined.  It 

was surprising that most of the design features that were found on the hot spot 

segments identified by the spatial models did not have the features that were found to 
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have strong relationships with crashes, based on the regression models. The following 

outlines the findings from other studies, as it relates to the influence of road design 

features on crashes. 

 

6.1.1 Points of interest 

This study found that segments that had between 2 and 3 POIs experienced a higher 

occurrence of pedestrian-related crashes and crashes in total.  POIs can present very 

complex and high roadside friction environments, where places such as restaurants, 

grocery stores and gas stations line a road corridor. These POIs tend to attract 

pedestrians and traffic which further complicates the road safety dynamics in an area.  

There are several other studies that had similar findings, such as Priyantha et al. 

(2006) and Jaworski (2012) who realised from their research that an increase in retail 

entities led to an increase in pedestrian incidents because land use that increases the 

population density will lead to an increase in pedestrian traffic.  Dumbaugh and Li 

(2010) go further to indicate that each strip of commercial land use caused a 3% 

increase in pedestrian incidents, which was attributed to the increased interaction 

between pedestrians and automobiles.  It has been said that increasing population 

density along a roadway will lead to increased pedestrian crash incidents unless 

supplementary safety measures in the built environment also come with density 

increase (Miranda-Moreno et al., 2011).    

 

6.1.2 Intersections 

The regression modelling conducted for this research found that road segments with a 

high number of intersections to experience higher incidents of pedestrian-related 

crashes.  Generally, other studies found that crashes were often times concentrated at 

intersections, because intersections are the points along the roadway system where 

traffic movements most frequently conflict with one another, where two or more 

roads cross each other and turning activities present opportunities for conflicts, 

resulting in crashes (Choi, 2010).  Like this study, other researchers such as Hadi et 

al. (1995) and Bernardo and Ivan (1998) found a relationship between crashes and 

intersections, as the presence of more intersections on highways increased crash rates 

significantly. 

  

Two things were however noticeable, firstly other studies did not necessarily find a 

relationship between intersections and pedestrian-related crashes, instead just an 

increase in crashes in general.  Secondly, unlike this study, others considered the 

relationships between crashes and intersections with signalization and those without 

and also the impact of intersection geometric elements (Agbelie and Roshandeh, 



65 

 

2014; Bagloee and Asadi, 2016; Huang et al., 2017).  Generally, intersection crashes 

were found to increase with signal installation, although the crashes tended to be less 

severe and led to a shift in crash types, with more rear-end collisions occurring 

(NCHRP, n.d.). 

  

Zegeer and Bushell (2012) along with others have suggested the conversion of un-

signalised intersections to roundabouts as a safety measure to reduce the number of 

crashes at intersections.  This suggestion was supported by SWOV (2009), as 

roundabouts were considered to be safer than a traditional 3- or 4-arm intersection as 

there are fewer conflict locations. 

 

6.1.3 Medians 

This research found that two times more pedestrian-related crashes were observed on 

road segments with medians.  Generally this finding differed from the majority of 

other research, where medians were typically seen as being safety features.  Harwood 

et al. (2010) recognised that there was an increased risk inherent in the absence of a 

median.  Iyinam et al. (1997) also found that the presence of a median on a highway 

contributed positively to road safety.  Hoque et al. (2012) considered the high 

overtaking demand on highways and saw where very little median separation 

contributed to a high risk of serious head-on crashes.  In addition, it has also been 

stated by Bahar et al. (2008) that raised medians have been found to reduce motor 

vehicle crashes by 15 percent.  As it relates to pedestrians, Hoque et al. (2012) also 

saw medians as a way to prevent pedestrians from wantonly crossing carriageways, 

consequently putting their lives and those of other road users at risk. 

   

On the other hand there is also an argument that suggests that while medians are 

capable of preventing nearly all cross-median collisions, they are fixed objects and 

their installation can result in collisions that might not otherwise occur (Caltrans, 

2012).  The results from a study done by Elvik (1995) also found that median barriers 

caused an increase in crash frequency, but reduced severity.  These finding also bring 

into focus the influence of different types of medians and the materials they are made 

of, which were not considered for this research. 

 

6.1.4 Lanes 

This study found that dangerous road segments along the NCH were associated with 

roads having only 1 lane in each direction.  The results from other studies differ.  

Strathman et al. (2001) found that holding traffic volume constant, crash frequencies 

were estimated to increase with the number of lanes. This finding most likely 
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highlighted the hazards associated with lane changing manoeuvres.  Sawalha et al. 

(2000), Milton and Mannering (1998) and Shankar et al. (1997) also found an 

increase in crash frequency being related to the increasing number of lanes present 

along a roadway. According to iRAP (2013), risk is assumed to be greatly reduced if 

more than one lane is in each direction and goes further to state that risk is assumed to 

be halved if there are 2-lanes in one direction.  More specifically, Bauer and Harwood 

(2000) found that an increase in the number of lanes was associated with a decrease in 

motorcycle crashes.  Elvik et al. (2009) also found that generally the number of 

crashes may increase as road lanes increase, but crash severity may decrease. 

 

6.1.5 Soft shoulders 

The results from this study, found road segments with soft shoulders had borderline 

statistical relationship with driver-related crashes, whereby few more crashes occurred 

on segments where soft shoulders were present.  This deviates from other studies that 

indicate that these features tend to increase road safety.  Soft shoulders provide a 

recovery space for vehicles that run off the carriageway and they also provide an area 

for defective vehicles to be attended to, which may otherwise cause an obstruction 

along a roadway.  A study by Gan et al. (2005) found that where soft shoulders were 

installed, that roadway experienced a reduction in certain crashes by up to 75%. 

Hoque et al. (2012) mentioned that soft shoulders limit the friction between road users 

who have to share the carriageway as this space also provides recovery and 

manoeuvring space.  It has also been found that creating paved shoulders helped to 

reduce pedestrian-crash rates (RISER consortium, 2006; Zegeer and Bushell, 2012).  

A report by Zegeer et al. (1981) also indicated that a paved shoulder that is widened 2 

feet on each side of a roadway would reduce crashes by 16%.  The width or condition 

of the soft shoulder was not considered for this research, but this is something that 

could be explored in future studies. 

 

6.1.6 Sidewalks 

Sidewalks provide a designated space for pedestrians to use as they travel along the 

roadway.  This research however did not find a statistically significant relationship 

between fatal crashes and sidewalks. This finding was somewhat unexpected 

considering that several studies have shown a considerable association between 

crashes and this design feature.  According to the Federal Highway Administration 

(1987), roadways without sidewalks are more than twice as likely to have pedestrian 

crashes as sites with sidewalks on both sides of the street.  It goes further to state that 

vehicle–pedestrian collisions are 1.5 to 2 times more likely to occur on roadways 

without sidewalks.  Up to 88% of crashes where pedestrians were killed while 
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"walking along the roadway" could have been prevented by providing designated 

walkways or sidewalks separated from the travel lanes (Federal Highway 

Administration, 2002).
    

The World Health Organization (2013b) similarly suggests 

that to improve pedestrian safety several measures, such as sidewalks, need to be 

utilised. 

 

6.1.7 Traffic lights 

Traffic signals facilitate the smooth and orderly flow of people and vehicles by 

directing traffic movements along segments, especially at intersections. While a 

statistically significant relationship was observed between crashes and intersections, 

this was not the case for traffic lights.  This finding is contrary to the results from 

several other studies, for instance Kennedy et al. (1998) found that on average the 

presence of traffic lights reduced collisions by up to 30% at some junctions. These 

design features were even found to reduce frequency and severity of certain types of 

crashes, especially right-angle collisions. Research by Datta (1991) and Agent (1988) 

also found that the presence of traffic signals reduced the number of crashes.  Corben 

(1989) went further to specify that traffic signals were found to be effective in 

reducing crashes involving vehicles on intersecting roads.  Some researchers have 

even posited that intersections controlled by roundabouts, instead of traffic lights, 

generally exhibit higher safety performance (Elivik, 2017; Ambros and Janoška, 

2015; Gross et al., 2013; Lord et al., 2007). 

 

6.1.8 Roadside barriers 

Roadside barriers are typically installed to prevent errant vehicles from colliding with 

hazardous roadside objects, such as cliffs, bodies of water, poles and culverts, thereby 

making them features that promote road safety. This study did not find any 

relationship between crashes and the location of roadside barriers.   Strathman et al. 

(2001) however found these features to have a positive effect on all highway types.  

Elvik (1995) also found that guardrails along the edge of the road and crash cushions 

reduced both the accident rate and accident severity.  For the most part, traffic barriers 

were found to reduce the severity of crashes that occur when a vehicle departs from 

the roadway. 

 

Shankar et al. (1997), however, found significant increases in crash frequency for 

segments with roadside walls.  Generally, it has been found that in some cases these 

features (for example rigid concrete barriers) can constitute a hazard as they become 

objects that can be struck by vehicles, especially motorcycles, causing greater crash 
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severity and crash frequency. Collision with a roadside barrier may result in a less 

severe collision than with an unshielded object, but consideration must be given to the 

possibility of a rebounding vehicle entering the opposing traffic lanes, which may 

result in an even more severe crash.   

 

6.1.9 Pedestrian crossings 

According to this study, pedestrian crossings did not have a strong relationship with 

crashes, which differs from the majority of similar studies where pedestrian crossings 

have been regarded worldwide as being a road safety feature as it helps pedestrians to 

cross roads safely.  In many instances, they were absent along the NCH and 

pedestrians were left to wantonly cross the roadway.  Several studies found a strong 

relationship between the lack of pedestrian crossings and crashes, for instance 

Schuurman et al. (2009) realised that the absence of marked and signalized 

crosswalks was associated with an increase in the risk of collisions between 

pedestrians and vehicles.  Other studies focused on a range of other treatments along 

with pedestrian crossings that have assisted with crossing a roadway safely, such as 

the use of signalised pedestrian crossings and yield pavement markings.  Koepsell et 

al. (2002) also found that well-marked crosswalks with a pedestrian-controlled signal 

can reduce pedestrian-vehicle conflicts.  Huybers et al. (2004) also saw a reduction in 

pedestrian/motor vehicle conflicts when "yield here to pedestrians" signs and advance 

yield pavement markings were utilised.   

 

Pedestrian crossings may however be considered inappropriate for roads carrying 

large volumes of traffic, such as the NCH and instead other safety features, such as 

overhead bridges should be constructed.   Other studies have also shown opposite 

results, for instance Sawalha et al. (2000) saw an increase in crash frequency being 

related to the presence of crosswalks. 

 

6.1.10 Posted speed limits 

Speed limit signs are posted in an effort to control drivers' speed and consequently to 

prevent speeding.  It is generally thought that driving at high speeds may lead to a 

higher crash rate, also with a greater likelihood of a severer outcome (Aarts & van 

Schagen, 2006). It is assumed that when motorists drive at the posted speed limit, this 

will prevent crashes and reduce the severity of injuries.   Several studies support this 

notion, for instance Taylor et al. (2000) who states that the frequency of accidents 

increases with the speed of traffic, and the higher the speed the more rapidly does 

accident frequency rise.   
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This study, however, along with a few others have found that the posted speed limit or 

the speed at which people drive has no effect or has a statistically insignificant 

relationship to the occurrence of crashes.  For instance, Kockelman and Ma (2007) 

found no statistically discernible relationship between the fatality rate and average 

speed. Garber and Gadiraju (1989) noted that drivers tend to drive at increasing 

speeds as the road conditions improve, regardless of the posted speed limit, and that 

accident rates do not necessarily increase with an increase in average speed but do 

increase with an increase in speed variance.  It was observed that most motorists 

along the NCH did not observe the speed limits posted.  The roadway is in relatively 

good condition and as such persons were seen exceeding the speed limits especially 

along the very straight segments, slowing down only if they observed a police 

presence or if they encountered traffic.   

 

6.1.11 Bus stops 

Safety for pedestrians are enhanced by the placement of bus stops, as these features 

prevent the haphazard boarding and alighting from public passenger vehicles, 

especially in hazardous locations, such as intersections. Bus stops are sometimes 

placed in a designated area, such as a lay-by, preventing the obstruction of the regular 

flow of traffic and reducing the need for dangerous manoeuvres by other vehicles that 

may need to pass.  Despite, however, the safety benefit of bus stops, there are studies 

that found a strong correlation between bus stops and crashes.  Walgren (1998) found 

that in Seattle, 89% of high crash locations were within 150 ft of a bus stop.  This 

correlation between bus stops and pedestrian crashes may have been due to visual 

impairments caused by buses that stopped to allow pedestrians to cross the road.  Truong 

and Somenahalli (2011) found that issues of pedestrian-vehicle crashes and bus stop 

safety are, in fact, raised by the lack of appropriate pedestrian facilities and high 

turning movements at the sites.  Similarly, the findings by Hess et al. (2004) show a 

positive relationship between bus stop usage and pedestrian accident locations and 

suggest that bus stops with high numbers of bus riders may need to accommodate 

people walking safely along and across the roadway so that crash counts are reduced.  

Unlike these studies, this research did not observe a strong relationship between crash 

types and bus stop locations. 

 

6.1.12 Summary 

Most of the findings from this research were unexpected, as only four of eleven 

design features were found to have a statistically significant relationship with the 

different crash types, these included the presence of single lane roads and medians 

and a high number of intersections and POIs.  Some of the other design features, such 
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as pedestrian crossings and sidewalks have been found by other studies to have a 

positive impact on road safety, more specifically for reducing crashes.  Some of the 

unexpected results may be explained by the homeostasis theory put forward by Wilde 

(1989).  He posits that people's perception of a hazard tends to cause an adjustment to 

their behaviour.  This is further explained with the example where the presence of 

wide soft shoulders and lanes would encourage safety as more space is available in 

the case of avoiding a crash or recovering from a crash.  In these instances, however, 

some motorists counteract these environments that seem safer by driving faster, 

tailgating and drive less cautiously.  This behaviour diminishes the improvement in 

road safety that is expected given the safety features that were implemented. One may 

contend therefore that based on the risk homeostasis theory the results of this study 

may reflect an adjustment in motorist and pedestrian behaviour along the NCH based 

on their reduced perception of how dangerous a road segment was.  Observations of 

road users along the NCH also revealed dangerous road behaviour which may have 

contributed significantly to the number of crashes, even more so than the impact of 

the highway’s road design.  Road user behaviour was improved when the police was 

present, by way of spot checks, which suggest that with continued police surveillance 

bad road behaviour could be curtailed along this highway.   

 

 

6.2 Strengths and limitations of the study 

This study offered a new dimension to how road safety was analysed in Jamaica, 

being the first of its kind to examine the relationship between road design features and 

fatal crashes.  The detailed inventory of road design features along the North Coast 

Highway and the spatial and statistical analyses to assess for relationships were the 

main strengths of this study.  There were, however, several limitations that are worthy 

of mention that influenced the accuracy and comprehensiveness of the analyses 

conducted.  The researcher made efforts to address some of these issues, however 

uncontrollably some remained. 

 

6.2.1 Identifying high crash areas along the highway based on crash incidences 

AVAILABILITY OF CRASH DATA 

Ideally, an analysis of both fatal and non-fatal crashes would provide greater 

understanding of the road safety problem along the North Coast Highway.  Based on 

data availability, however, only fatal crashes were studied, which according to Lyew-

Ayee (2012) accounts for only 3% of all crashes in Jamaica.  This focus on only fatal 
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crashes therefore rendered this research incomplete in truly assessing the crash 

problem along the NCH. 

 

CRASH LOCATION ACCURACY 

This study was not immune to the inclusion of inaccurate or vague crash locations 

based on the data provided by the police.  Due care was taken to correctly map the 

crash locations provided, however with the lack of specific location information (such 

as GPS coordinates or detailed addresses), many locations were not mapped with 

pinpoint accuracy and were instead placed as close to the reference point mentioned 

in the crash report.  It was also noticed that the crash data provided from the JCF did 

not in all instances indicate on which side of the highway the crash occurred.  This 

information can be useful and should be recorded for all crashes.  Other studies, for 

instance Austin (1995) found that about 20% of crash locations may be incorrectly 

mapped due to the provision of inaccurate location information. Inaccurately mapped 

crash locations can negatively affect a study's findings.  Studies benefit from GPS 

mapped crash locations being provided from the police, who visit the scenes of 

crashes, therefore providing data with greater location accuracy and subsequently 

enabling better analysis (Graettinger et al., 2001).  In the absence of GPS units, the 

importance of recording detailed location information for crashes should be reinforced 

among police officers, so that more crashes can be mapped from the information 

provided and with greater accuracy.   

 

SEGMENTATION OF ROADWAY 

Like Johnson (2012), this study used equal increments to segment the entire NCH as a 

way to better provide micro-scale information.  Using a fixed length was also utilised 

in an effort to prevent inequality in how many crashes were counted along the 

highway, where the roadway could have very long and short segments based on other 

criteria for segmentation.  The choice to use fixed length segments may be considered 

disadvantageous by some researchers as it causes within-segment variation of road 

geometry and design features.  The more criteria used to determine road segment 

lengths will result in greater control over extraneous factors that could cause a 

potential bias based on the estimated effects of road design on crash frequency 

(Strathman et al., 2001).  There is however no universally accepted optimal segment 

length for analysis (Harwood et al., 2010).  There may be some benefit to explore the 

determination of segments by road features, where varying road segment lengths 

would be used instead to examine a different perspective by which to analyse how 

dangerous the road segments along the NCH are.  Another approach could include the 
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segmentation of the roadway based on morphology, allowing the shape of the road to 

dictate how the road is divided. 

 

INFLUENCE OF TIME ON THE STUDY 

The road design features used were captured in 2015 and may not reflect the exact 

conditions found along the NCH during the study period (2010 - 2014).  With time, 

features along the corridor may have changed as new developments emerged.  Thus 

the results from this study may not be entirely accurate in describing the situation 

along each segment throughout the study period. 

 

In addition this study did not consider the temporal distribution of crashes, that is, 

distinguishing crash hot spots by the time of day or simply, day versus night or year 

by year.  Stakleff (2015) recognised that hot spots are often times analysed as if all 

crashes occurred at the same time.  Spatio-temporal hot spots however are more 

useful as crashes will differ over time and space.  

  

NON-INCLUSION OF TRAFFIC VOLUME DATA 

Upon review of the national traffic volume dataset that was available, a decision was 

made to not include it in this study.  The main problem stemmed from the traffic 

information not being continuous along the entire stretch of the North Coast Highway 

and there was temporal mismatch of the data.  The traffic data was available for time 

periods prior, during and after the 5-year study period chosen.  Using this data may 

have biased the results as traffic volumes varied based on the year the data was 

captured.  The exclusion of traffic volume and pedestrian volume data in the analysis 

may also have influenced the results as some studies, such as Strathman et al. (2001) 

found that crash frequencies increased with traffic volume.  One believes this study 

could have benefitted from the calculation of crash rates, which incorporate traffic 

(and pedestrian) volumes to decipher the factors that cause crashes or make roads 

dangerous. In lieu, however, of not having reliable traffic data, crash counts were 

used. 

 

HISTORICAL AND PREDICTIVE MODELLING OF CRASH DATA 

This study focused on the historical modelling of crash locations which some may 

argue is a reactive approach as opposed to a proactive one (Stakleff, 2015).  

Incorporating a predictive approach, using spatio-temporal data about crashes and the 

environment in which they occur may provide an innovative approach to 

understanding the pattern of crash distribution.    
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THE USE OF EUCLIDEAN DISTANCE 

By selecting the Euclidean Distance as the Distance Method in the hot spot models 

may have introduced biases in the results.  In some sections, the geometry of the 

roadway may have distorted the true distance to neighbouring road segments when 

using the Euclidean Distance.  On the other hand, the use of Network distance (or 

Manhattan Distance) may have provided more accurate results, as the distances 

between segments would have followed the roadway.  

 

For this research, crashes along a single highway way were studied instead of looking 

at crashes over a more complete road network.  Calculating clusters of crashes based 

on neighbouring road segments, to the left or right only, does not factor in the 

influence of crashes on adjoining roads and this may introduce biases and affect the 

results.  

 

 

6.2.2 Classifying road segments that are susceptible to high crash counts based 

on road design features 

HIGHWAY DESIGN FEATURES CHOSEN 

Another limitation of this study was that it did not consider the full range of highway 

design attributes.  Only eleven were considered, while many other studies have looked 

at more geometric and road conditions, such as road curvature, incline, road surface 

condition and soft shoulder width.  Strathman et al. (2001) suggested that a cross 

sectional study such as this one, may suffer from potential “omitted variable” 

specification bias as all the possible highway design features were not studied.  Future 

studies would benefit from the collection of more detailed data, for instance knowing 

the type of median or material from which it was made could prove useful in 

generating more accurate models for determining relationships between design 

features and crashes. The additional design features were not incorporated in this 

study due to a lack of resources, notably measuring equipment, time, money and the 

expertise required to capture particular datasets, since this data does not already exist.  

 

This study considered all design features as being equal in weight, that is, all features 

had the same impact on whether crashes occurred or not.  It may prove useful to 

conduct the Weighted Sum Analysis with varying weights for the design features 

based on the statistical associations identified from the preliminary results.  This 

recalculation may identify other road segments that are considered safe or dangerous.  

This may also explain the contradictions found in the research findings.  
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One agrees with Strathman et al. (2001) in that it is not possible to separate the effect 

of road design features from other crash determinants, for instance environmental 

conditions along a roadway or driver and pedestrian characteristics.  Like Hauer 

(1997) one also acknowledges that in reality many other factors aside from road 

design features, including conditions that change naturally over time (traffic, weather 

and road user behaviour) could be associated with the pattern of crash counts. 

 

6.2.3 Assessing the relationships between road design features and dangerous 

crash road segments 

USING CRASH COUNTS VERSUS HOT SPOT RESULTS 

For future studies, one could analyse the associations between crashes and road 

design features by using the actual calculated values from the hot spot models (z-

score) instead of crash counts. This would allow for the incorporation of true crash 

hot spot data into the regression models. This research used a simpler approach by 

using only the crash counts and safety scores to determine associations between 

crashes and design features. 

 

 

6.3 Road safety implications and importance of study restated 

There is a need to reduce all road crashes across Jamaica, not only fatalities.  Efforts 

have been made by international, national and private entities to do so; Jamaica 

however still struggles to maintain a steady decrease in the number of crashes.  One 

acknowledges that death, injury and loss from road crashes are multidimensional, 

spanning the five pillars of road safety: road safety management, safer roads and 

mobility, safer vehicles, safer road users and post-crash response.  A study like this 

provides an opportunity to better understand one aspect of the problem of reducing 

crashes, by focusing on safer road design.   

 

When a roadway is constructed it is expected to conform to international standards 

and be maintained so that these standards are upheld.  A part of that maintenance 

process should entail an evaluation of the effectiveness of the road's safety design 

mechanisms.  It is not sufficient to only identify hot spots based on crashes, one needs 

to be able to also identify what features exist along these dangerous crash segments. 

This research, though limited in its scope of design features studied, was able to 

identify crash hot spots along with the presence and absence of certain road design 

features that contributed to the high number of crashes observed.  This kind of 

information should provide the basis for determining how effective are the road safety 
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mechanisms, and where to implement road safety plans. A roadway such as the NCH 

is an important one for Jamaica, as this major corridor connects several parishes in the 

north that spans the major tourism belt on the island.  As such, the necessary 

resources should be sought to increase the safety of this roadway along with the many 

other major roads that connect the island.  The results from this study can inform 

stakeholders as to where to target their resources and what issues need to be addressed 

at these locations.  This makes for better use of funds as specific areas are remedied as 

opposed to a blanket approach to a road safety.     

 

Jamaica should keep at pace with the methods of improving road safety utilised in 

other countries, such as the use of traffic enforcement cameras and even the more 

traditional approaches such as delineators and rumble strips.  The effectiveness, 

however, of these devices in reducing crashes is dependent on where they are 

deployed. The local entities responsible for maintaining and evaluating the NCH 

should find a study like this useful, if even as a starting point in a data limited 

country, as a means of identifying specific locations that may warrant specific types 

of interventions.  An evidence-based approach to identifying problems and finding 

solutions is recommended to ensure resources are utilised efficiently, for instance, this 

study indicated that segments with several POIs and intersections experienced more 

pedestrian-related crashes.  Armed with this type of information, one may implement 

solutions that will regulate these areas so they are safer for road users. 

 

The Decade of Action for road safety (2011 – 2020) which was proclaimed by the 

United Nations in 2010 is fast coming to an end and Jamaica needs to take the 

necessary steps to stabilise and reduce road fatalities one road segment at a time.  It is 

hoped that this research presents a method, that may be adopted as is or improved 

upon, and consequently be employed on other roads across Jamaica so improved road 

safety can be achieved.    
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Chapter 7. Conclusion 
 

This study has investigated the spatial and statistical relationship between crash 

activity and roadway design attributes along the North Coast Highway.  This 

approach was used to ultimately identify dangerous crash road segments that would 

require attention by the relevant stakeholders in making them safer.  

 

The spatial analyses utilised the Anselin Local Moran's I and Getis-Ord Gi* models to 

identify crash hot spots and the Weighted Sum tool was used to assign scores to 

segments that were considered to be very dangerous based on the presence or absence 

of road design features.  The statistical approach included the use of the zero-inflated 

negative binomial distribution model to determine which design features were 

correlated with crash activity.  The results from each method chosen were compared 

and assessed to identify the truly dangerous segments.  Each method produced 

different results, however one was able to identify four of eleven design attributes that 

were strongly related to the different crash types.  These road design features included 

POIs, lanes (single lane), medians and intersections.  A few of the findings from this 

research were found to be consistent with other studies.   

 

Some of the results of this study were unexpected given the contrasting results seen 

for similar research studies.  In particular, the lack of statistically significant 

relationships between the various crash types and sidewalks, pedestrian crossings, soft 

shoulders, medians and intersections defied expectations of the researcher, given the 

results from many other studies that proved otherwise.  On the other hand, the 

relationships observed between the presence of places of interest and pedestrian-

related crashes stood out as an expected outcome from the study.  One may consider, 

however, these results as an indication that factors besides road design features may 

have contributed to the occurrence of crashes along the NCH.  Further studies to 

address the other 4 pillars of road safety are recommended to better understand the 

true cause of crashes along the NCH. 

 

This research demonstrates how the spatial analysis of data can be used to remove 

bias that may be involved in determining which roadways should receive road safety 

initiatives.  The research findings provide a foundation for extending similar research.   

It is necessary to conduct further research to better understand the various factors that 

may cause high crash counts along the highway and also analyze the effectiveness of 

road features in reducing rates of crash fatalities in areas highlighted in this study.  

Specifically, more design features can be assessed in relation to crashes and a 
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comparative study done to assess the impact of road design changes - before and after 

studies.   

 

The lessons learnt from this research will hopefully serve as a platform upon which 

further studies of this nature can be built upon.  Issues pertaining to data availability 

and accuracy, for instance the lack of reliable traffic and pedestrian volume data, 

should be addressed in order to produce relevant and useful bodies of work.  With the 

limitations addressed, one can see this type of research being applied to other 

important local roadways on the island and also overseas. 

  

The relevant stakeholders should find this and future studies of this nature useful in 

understanding the road safety problem in Jamaica.  A study like this is ultimately 

geared towards informing the decision-making process, in particular determining what 

engineering measures are required to reduce crashes in hot spot areas.  One agrees 

with the approach suggested by Hoque et al. (2012) which entails a reactive and 

proactive approach, where the former refers to the treatment of hazardous locations 

and the latter to perform road safety audits, inspections and assessments periodically 

to account for any shifts in the road safety situation in an area.  This research provides 

the impetus and concrete evidence to warrant a reactive approach with a repeat of a 

similar study in the future to demonstrate a proactive approach to support the UN 

Decade of Action for road safety programme.  
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Appendices 

 
Appendix 1. Locations of pedestrian-related road design features, with the following features present: a) sidewalks, b) bus stops and c) pedestrian 

crossings. 
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Appendix 2. Locations of driver-related road design features, with the following features present: a) speed limits, b) soft shoulders and c) medians. 
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Appendix 3. Locations of driver-related road design features, with the following features present: a) number of lanes, b) roadside barriers and c) 

traffic lights. 
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Appendix 4. Locations of driver-related road design features: a) points of interest count by road segment and b) intersection count by road segment. 
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Appendix 5. Crash count by crash type: a) pedestrian-related crashes, b) driver-related crashes and c) all crash type.
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