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Abstract

In an age-structured model originating from cancer research, the cell cycle is divided into two
phases: Phase 1 of variable length, consisting of the biologically so called G1 phase, and Phase
2 of fixed length, consisting of the so called S, G2 and M phases. A system of nonlinear PDEs
along with initial and boundary data describes the number densities of cells in the two phases,
depending on time and age (where age is the time spent in a phase). It has been shown that the
initial and boundary value problem can be rewritten as a coupled system of integral equations,
which in this M.Sc. thesis is implemented in matlab using the trapezoidal and Simpson rule. In
the special case where the cells are allowed to grow without restrictions, the system is uncoupled
and possible to study analytically, whereas otherwise, a nonlinearity has to be solved in every
step of the iterative equation solving. The qualitative behaviour is investigated numerically and
analytically for a wide range of model components. This includes investigations of the notions of
crowding, i.e. that cell division is restricted for large population sizes, and quorum sensing, i.e. that
a small enough tumour can eliminate itself through cell signalling. In simulations, we also study
under what conditions an almost eliminated tumour relapses after completed therapy. Moreover,
upper bounds for the number of dividing cells at the end of Phase 2 at time t are determined for
specific cases, where the bounds are found to depend on the existence of so called cancer stem
cells. Lastly, a careful error analysis of the matlab implementation is performed both in a linear
and in a nonlinear case.



Åldersbaserad modell av cellcykeln:
Analys och implementering

I en åldersbaserad modell av cellcykeln som härstammar fr̊an cancerforskning kan cellcykeln delas in
i tv̊a faser: en av variabel längd och en av fix längd. Det totala antalet celler i en tumör kan, till-
sammans med antalet celler som just avslutat en cykel och ska genomg̊a celldelning, beskrivas genom
ett system av integralekvationer. I arbetet studeras detta system dels analytiskt och dels numeriskt,
genom förfinad implementering av modellen i matlab och simulering för m̊anga olika val av modellens
ing̊aende komponenter. Bland annat undersöks huruvida återväxt av en tumör efter avslutad behand-
ling beror av s̊a kallade cancerstamceller.

Cellcykeln är den följd av processer en cell genomg̊ar under sin livstid fram till tidpunkten d̊a cellen
delar sig i tv̊a dotterceller. I den första av modellens tv̊a faser växer cellerna och samlar näring för att
i den andra fasen duplicera sitt genetiska material, växa ytterligare, syntetisera nödvändiga proteiner
och slutligen dela sig i tv̊a. Antalet celler i de tv̊a faserna beror av tidpunkt och ålder, där ålder avser
hur länge en cell befunnit sig i fasen. I arbetet visas inledningsvis att det g̊ar att beskriva antalet celler
som befinner sig i var och en av faserna vid en viss tidpunkt genom ett system av olinjära partiella
differentialekvationer (PDEer), med tillhörande initial- och randvärden. Randvärdena beskriver hur
celler lämnar en fas och g̊ar in i nästa, medan initialvärdena beskriver en ursprunglig åldersdistribution
för cellerna i respektive fas för tidpunkten d̊a simuleringen startar. För fasen med variabel längd (fas
1) gäller att cellerna lämnar denna fas och överg̊ar i nästa fas enligt en fördelningsfunktion, F (τ),
där det är större chans för en gammal cell att överg̊a i fas 2 än för en cell som befunnit sig i fas 1
en kortare tid. Modellen är dock helt deterministisk och det som avses med fördelningsfunktionen är
andelen celler som har överg̊att fr̊an fas 1 i åldersspannet [0, τ ]. I modellen förekommer även en s̊a
kallad trängselfunktion, f(p), som anger andelen celler som genomg̊ar celldelning efter fas 2 d̊a den
totala populationsstorleken är p. Trängselfunktionen används för att ta hänsyn till att celler inte alltid
antas växa ohämmat, utan har sv̊arare att dela p̊a sig b̊ade vid trängsel, dvs. om systemet inneh̊aller
för m̊anga celler p̊a liten yta s̊a att näringsbrist r̊ader, och vid eventuell s̊a kallad quorum sensing, där
cellerna signalerar varandra p̊a ett s̊adant sätt att tumören självdör. Vidare antas den första fasen
kunna f̊a input fr̊an dotterceller fr̊an s̊a kallade cancerstamceller. Dottercellerna är vanliga celler som
ing̊ar i modellen, medan cancerstamcellerna, som är väldigt f̊a till antalet, inte gör det. Cancerstamcel-
lerna kan vara en förklaring till att cancer inte sällan kommer tillbaka efter avslutat behandling. Det
är debatterat huruvida cancerstamceller existerar eller ej och i arbetet undersöks därför kvalitativt
skillnaden mellan att ta hänsyn till deras dotterceller och att inte göra det.

I en artikel i Journal of Mathematical Analysis and Applications som ligger till grund för detta
arbete visar Sara Maad Sasane att initial- och randvärdesproblemet kan skrivas om som ett system
av integralekvationer och att detta system har en entydig lösning. Integralekvationerna är enklare
att studera än det ursprungliga systemet av PDEer och gör det möjligt att studera modellen nume-
riskt. Lösningarna till integralekvationerna är funktioner av en variabel, medan lösningarna till det
ursprungliga systemet av PDEer är funktioner av tv̊a variabler. Detta gör att lösningarna till integra-
lekvationerna är enklare att visualisera. I detta examensarbete presenteras integralekvationerna och
den numeriska implementeringen av modellen förfinas genom att lösa systemet av integralekvationer
genom trapetsmetoden och Simpsons metod. När trängselfunktionen ej är konstant m̊aste en ickelinjär
ekvation lösas i varje steg. En utmaning är att hantera diskontinuiteterna som finns i integralekvatio-
nerna och en rigorös felanalys presenteras därför för att undersöka felet i de b̊ada numeriska metoderna.
Simuleringar görs för att undersöka lösningarna efter l̊ang tid för m̊anga olika val av trängselfunktion,
inputfunktion och initiala åldersdistributioner, samt ett par olika val av fördelningsfunktion.

D̊a det biologiskt är sv̊art att exakt bestämma modellens konstanter och ing̊aende funktioner,
genomförs kvalitativa undersökningar. För specifika parameterval kan en övre gräns för antalet cel-
ler som genomg̊ar celldelning vid tid t bestämmas. Trots relativt lite information om de biologiska
förh̊allandena kan det d̊a g̊a att f̊a fram approximativa resultat om antalet delande celler.
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1 Introduction

1.1 Background

The cell cycle, i.e. the sequence of processes from the moment a cell is born until it divides into two
daughter cells, is for eukaryotic cells (cells with a nucleus) traditionally divided into four different
phases: the G1, S, G2 and M phases [1, 2]. In the first and longest phase, the G1 phase (Gap 1
phase), the cell grows and accumulates nutrients. After completion of the G1 phase, the cell enters
the S phase (Synthesis phase) where the cell duplicates its genetic material. In the G2 phase (Gap 2
phase), the cell grows and prepares for mitosis (cell division), for instance by synthesising necessary
proteins. Finally, in the M phase, the Mitotic phase, the two sets of genetic material within the
mother cell is separated in two parts, followed by cell division into two daughter cells. Thereafter, the
daughter cells enter the G1 phase of a new cycle, see Figure 1.1 [2]. The four phases are discrete in
the way that a cell always must complete one phase to enter the next. The entire cycle is regulated
by a complicated process that also regulates signals that monitor the specialisation of cells [2].

Figure 1.1: Schematic picture of the four phases of the cell cycle of an eukaryotic cell.

In an age structured model originating from cancer research, the phases of the cell cycle is for
modelling purposes grouped into two new phases: Phase 1, of variable length, and Phase 2, of fixed
length, where Phase 1 corresponds to the G1 phase and Phase 2 corresponds to the S, G2 and
M phases. The reason for this specific assembling of phases is that it better captures the qualitative
behaviour of the system; nothing happens qualitatively that we take into account in the model between
the S, G2 and M phases and therefore they are clustered as one phase. The original phases could
have been used, but this would only have resulted in a model with four phases, where three of the
phases are mathematically identical (apart from their length). Therefore, it is more sound to combine
these phases into one phase. If the age lengths of the S, G2 and M phases are known however, it is
possible to translate the results from the current model to results for a model with the standard four
phases.

It is possible to describe the number of cells in each of the two phases at a specific time by a
system of nonlinear partial differential equations (PDEs), along with specified initial and boundary
data. The number of cells in the two phases depend on the two variables time and age, where age is
defined as the time a cell has spent in the phase. Note that neither size nor DNA content of the cells
are taken into account. The initial data describe an initial age distribution in each phase, whereas
the boundary data describe how cells enter one phase from the previous.

There are advantages of using an age structured model, in comparison to other types of models
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where e.g. cell size is considered. The reason for this is that the response to cancer therapies more
easily can be modelled, many of which delay or block a specific phase of the cell cycle [10]. In an
age structured model, it might be easier to investigate the location of the cells in terms of phase [1].
Having knowledge about how a population of cells move through the cell cycle is crucial to choose the
most efficient therapeutic method and, moreover, the effect of a certain therapy depends on where in
the cell cycle the cells are [1].

This project is based on the particular age structured model presented in an article by Sara Maad
Sasane in Journal of Mathematical Analysis and Applications [10]. The model is a simplified version
of the CelCyMUS model, developed by Norman Kirkby and collaborators at the University of Surrey,
see for instance [1, 5]. Having the advantage of being simple in its structure, the model of this M.Sc.
thesis does only address the parts of the cell cycle important for the larger picture of the life of the
cells, as they transfer from one state to the other. Despite the overall complexity of the cell cycle,
the model does not take into account specific intricate steps of sub phases of the cell cycle or detailed
chemical pathways, a property that makes the model an available tool for simulation and analysis
that however still captures the main traits of the cell cycle.

A few crucial functions have a large impact on the output of the equations of the model, more
thoroughly described in the Model Description chapter (2): In Phase 1, the cells leave the phase and
enter the next according to a cumulative distribution function, F (τ). The model is deterministic and
what we mean by the cumulative distribution function F (τ) is the proportion of cells that has left
Phase 1 and entered Phase 2 in the age span [0, τ ]. The proportion of cells that undergoes mitosis
after Phase 2 is described by the so called crowding function, f , where the remaining proportion that
does not undergo mitosis is assumed to die. Lastly, the so called input function, ψ, represents input
from an earlier stage as boundary data for Phase 1.

For instance, the input function could be interpreted as daughter cells from so called cancer
stem cells. The daughter cells are ordinary (cancer) cells included in the model, whereas the small
proportion of mother cells, which have different properties than the other cells and follow a different
cycle, are not. It is discussed whether cancer stem cells exist at all and to investigate this issue will be
one of the main focuses of this project. The cancer stem cells might be an explanation to relapse of a
cancer tumour after completed cancer therapy. Even if the cancer cells themselves might have become
extinct after successful medication, the tumour could start growing again via the daughter cells of the
cancer stem cells – stem cells that have not been affected by the medication [6, 11]. It is believed that
the stem cells not only have the potential of initiating the cancer but also of driving its progression
onward [8]. In addition, the amount of cancer stem cells present might affect the aggressiveness of
the tumour [8]. A second argument for the existence of cancer stem cells is that they can explain
the heterogeneity among cells in a tumour [6]. Cancer mortality has decreased as a consequence of
early detection, rather than effective treatment during the last decades [11]. It is a possibility that
the cancer drugs of tomorrow must take a new grasp of the problem by focusing on affecting and
eliminating the cancer stem cells (if it can be proven that they exist) and not only the cancer cells
themselves, to completely cure a cancer [6, 8, 11].

Sara Maad Sasane showed in [10] that the initial and boundary value problem in the model can
be written as a system of integral equations and that this system has a unique solution. The integral
equations are easier to study than the original system of PDEs and make it possible to study the model
numerically. The solutions of the integral equations are functions of one variable only, whereas the
solutions of the original system of PDEs are functions of two variables. This fact makes the solutions
of the integral equations easier to visualise and it is the set of integral equations that will be the main
focus of this project.
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1.2 Aim

The aim of the project is threefold:

I. To construct an efficient and accurate implementation of the integral equation representation of
the model in Matlab.

II. To investigate the qualitative behaviour of the system numerically for a wide range of choices
of the initial data, the cumulative distribution function, the crowding function and the input
function. The existence of cancer stem cells is investigated by examining qualitative differences
(e.g. growth properties or boundedness of the solution) in the cases with or without an input
function different from zero.

III. To analytically investigate both the impact of the input function and the growth properties of
the solution in general.

1.3 Disposition

After the introductory chapter, (2), describing the model in-depth, the report is divided into three
main parts: in the chapter Numerical Methods, (3), the numerical machinery of the implementation
of the model is described in detail. In the chapter Simulations, (4), tests with various combinations
of model components are carried out in order to numerically gain knowledge about the qualitative
behaviour of the system and to reproduce results from the article of Maad Sasane. A case study
is conducted, where it is assumed that almost all cells of a cancer tumour have been successfully
eliminated by some medical treatment. We investigate under what conditions the imagined tumour
will be kept zero-sized and for what conditions the tumour will relapse. In the following chapter,
Qualitative Behaviour, (5), the properties of the solutions are investigated analytically and we make
estimates of the long–term upper bound for the number density of dividing cells at time t. Finally, in
the chapter Investigation of Numerical Error, (6), a careful error analysis is performed for the matlab
implementation, where the order of accuracy of the implemented methods used to solve the system of
integral equations is validated and analytical expressions for the numerical error are presented.
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2 Model Description

The components of the model are next introduced in more detail, leading up to the system of PDEs
describing the amount of cells in Phase 1 and Phase 2. In an example, the system is solved for
a specific, simple choice of functions. In Section 2.2, the equivalent system of integral equations,
which will be the main focus of this project, is presented. For a proof of the equivalence of the two
representations of the model however, the reader is referred to [10].

2.1 PDE Representation

The cells in Phase 1 and Phase 2 are described by their number densities (number of cells per age
unit) n1(t, τ) and n2(t, τ) at age τ and time t. Let T > 0 be the total time for which the model is
investigated and t a specific time in the interval [0, T ]. The lengths of Phase 1 and 2 are denoted T1

and T2 respectively and represent the maximum time a cell can spend in each of the phases. It is
throughout this project assumed that T1 > T2 (This is not the case for all human cancer cells, but is
taken as a reasonable assumption based on experimental values from a so called hybridoma cell line
in [5]).

Any change of ni can for both phases be described as the directional derivative in the (1, 1)
direction,

Dni(t, τ) = lim
ε→0

ni(t+ ε, τ + ε)− ni(t, τ)

ε
. (2.1)

Remark. The number densities are not necessarily continuous functions, which means that it is not
always possible to replace Dni with the sum of partial derivatives ∂ni

∂t + ∂ni
∂τ . When the directional

derivative is used, ni will be continuous and differentiable along lines parallel to (1, 1).

Cells grow older at the same pace as time passes, which means that a cell of age τ at time t is of age
τ +∆τ at time t+∆τ . Cells from Phase 1 are assumed to enter Phase 2 according to a transition rate
h, defined as the rate of transition in the infinitesimal age span [τ, τ + ∆τ ] per time unit. We remark
that transition to Phase 2 is the only way a cell can leave Phase 1. Cells that have not transferred
from Phase 1 to Phase 2 in the interval [0, T1] are assumed to die and do not have an impact on the
future system. We define by N1(t, τ) the number of cells in Phase 1 at time t in the age span [0, τ ],
such that

N1(t, τ) =

∫ τ

0

n1(t, σ) dσ (2.2)

and n1(t, τ) = ∂N1

∂τ (t, τ). Thus, N1(t, τ + ∆τ) − N1(t, τ) denotes the number of cells in Phase 1 at
time t in the age span [τ, τ + ∆τ ]. The difference in the number of cells between time t and t+ ε can
therefore be expressed as

N1(t+ε, τ+∆τ+ε)−N1(t+ε, τ+ε)−(N1(t, τ + ∆τ)−N1(t, τ)) ≈ −h(τ) (N1(t, τ + ∆τ)−N1(t, τ)) ε,
(2.3)

assuming that ε is small. Dividing both sides with ∆τ and computing the limit as ∆τ → 0, (2.3) can
be rewritten as

n1(t+ ε, τ + ε)− n1(t, τ) ≈ −h(τ)n1(t, τ)ε. (2.4)

Taking the limit as ε→ 0 yields
Dn1(t, τ) = −h(τ)n1(t, τ). (2.5)

Definition 1. The cumulative distribution function F (τ) is a function representing the proportion
of the total number of cells that leave Phase 1 and enter Phase 2 in the age span [0, τ ], having the
properties that

i. F (T1) < 1, (not all cells reach the end of Phase 1),
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ii. F (τ) = 1 for τ > T1, (remaining cells die and disappear and all existing cells have transferred
after τ = T1),

iii. F is continuous on [0, T1],

iv. F (0) = 0 (no cells have left Phase 1 for Phase 2 at τ = 0),

v. F is nondecreasing.

Despite the name of the cumulative distribution function, we again stress that the model is determin-
istic. It is more convenient to work with F (τ) than the transition rate h(τ) and the expression in
(2.5) (the PDE for Phase 1) will therefore be rewritten in terms of F (τ).

As F (τ) denotes a cumulative distribution function, F ′(τ) can be identified as something similar
to a probability density function. In this way, F ′(τ)∆τ describes the fraction of the original number
of cells leaving Phase 1 and entering Phase 2 in the small age span [τ, τ + ∆τ ] (given that all cells are
still available for a transition to Phase 2). The notion of cumulative distribution function also justifies
that 1 − F (τ) is the fraction of cells that has not yet transferred from Phase 1 to Phase 2 at age τ .
Thus,

F ′(τ)∆τ

1− F (τ)
(2.6)

denotes the fraction of cells transferring from Phase 1 to Phase 2 in the age span [τ, τ + ∆τ ], that
have not already done so, see Figure 2.1. This amount of cells can also be described in terms of the
transition rate h(τ), as the rate cells are leaving Phase 1 to Phase 2 times an age span [τ, τ + ∆τ ],
i.e.h(τ)∆τ . Comparing h(τ)∆τ with (2.6) for an infinitesimal age span ∆τ → 0, it is now possible
to conclude that the transition rate h(τ) and the cumulative distribution function F (τ) are related
through

h(τ) =
F ′(τ)

1− F (τ)
. (2.7)

For the sake of completeness, identifying that

d

dτ
(log(1− F (τ))) = − F ′(τ)

1− F (τ)
(2.8)

makes it possible to rewrite F (τ) in terms of h(τ) as

d

dτ
(log(1− F (τ))) = −h(τ)

⇔ log(1− F (τ)) = −
∫ τ

0

h(s) ds

⇔ 1− F (τ) = exp

(
−
∫ τ

0

h(s) ds

)
⇔ F (τ) = 1− exp

(
−
∫ τ

0

h(s) ds

)
.

(2.9)

The PDE in (2.5) can now be rewritten in terms of F (τ) as

Dn1 = − F ′(τ)

1− F (τ)
n1(t, τ), t ∈ (0, T ), τ ∈ (0, T1). (2.10)

In Phase 2, which has fixed length, nothing happens to the cells within the phase that we take into
account in this model; the cells cannot leave the phase before the end of the phase and similarly as
for Phase 1 the cells grow older at the same pace as time passes. We will see that the number density
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Figure 2.1: The proportion of cells transferring from Phase 1 to Phase 2 in the small age span

[τ̂ , τ̂ + ∆τ ] is given by F ′(τ̂)∆τ
1−F (τ̂) . The dotted line marks τ = T1, above which all remaining cells that

have not transferred from Phase 1 to Phase 2 are assumed to die.

of cells are described by a transport equation: In correspondence to the derivation of the equation for
Phase 1, we define the number of cells in Phase 2 at time t in the age span [0, τ ] by N2(t, τ), such that

N2(t, τ) =

∫ τ

0

n2(t, σ) dσ (2.11)

and n2(t, τ) = ∂N2

∂τ (t, τ). Consequently, N2(t, τ + ∆τ)−N2(t, τ) denotes the number of cells existing
at time t in the age span [τ, τ + ∆τ ]. Given that there is the same number of cells in Phase 2 at time
t and at time t+ ε we have

N2(t+ ε, τ + ∆τ + ε)−N2(t+ ε, τ + ε) = N2(t, τ + ∆τ)−N2(t, τ). (2.12)

Dividing by ∆τ and taking the limit as ∆τ → 0 yields n2(t+ ε, τ + ε) = n2(t, τ), i.e.

Dn2 = 0, t ∈ (0, T ), τ ∈ (0, T2). (2.13)

Equation (2.13) is recognised as the transport equation.
We have now derived the PDEs for both Phase 1 and Phase 2. It remains to describe the initial

and boundary conditions. The initial conditions are less involved and are given by some initial age
distributions ϕ1 and ϕ2 in the two phases such that ni(0, τ) = ϕi(τ). The initial age distributions are
piecewise continuous functions with the properties that ϕ1 : (0, T1)→ [0,∞) and ϕ2 : (0, T2)→ [0,∞).

The number of dividing cells after Phase 2 at time t is determined as a proportion of the total
number of cells p at the same time t by a crowding function f(p).

Definition 2. The crowding function f is a locally Lipschitz continuous function such that f :
[0,∞)→ [0, 1].

Remark. The Lipschitz continuity of the crowding function is for theoretical purposes, making it
possible to prove existence and uniqueness properties for the system – proofs which however go beyond
the scope of this thesis but are found in [10]. For instance, all functions being C1 are locally Lipschitz
continuous.

The role of the crowding function is to adjust the behaviour of the system when the state of the system
is biologically sub-optimal in some sense. This includes two important cases: cells are less likely to
divide either due to space limitations if there are too many cells in the system (a phenomenon that
we call crowding) or, if the total number of cells are too few (a phenomenon called quorum sensing).
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In a system where crowding is taken into account, fast growing cells, such as cancer cells, might
grow too fast for blood vessels to develop, whose role is to provide the cells with necessary nutrients to
grow and duplicate. In addition, it seems realistic that a group of cells never can grow exponentially
without restrictions. A consequence is that cells might die in a system with a large population.

According to the theory of quorum sensing, for instance discussed in [9], cells in a cancer tumour
might be able to signal to each other similarly as bacteria do to other bacteria. When there are few
cells in a system, it might in this way be possible for cells to send signals affecting the gene expression
of surrounding cells. The effect can be decreased growth, a prohibited cell division and even cell death,
which results in a decrease in the number of cells and possibly to the extinction of a cancer tumour.

In the implementation of the model, it is assumed that none, one or two of these phenomena occur.
Crowding corresponds to a crowding function f(p) such that f(p)→ 0 as p→∞, whereas for quorum
sensing f(p)→ 0 as p→ 0, all in accordance with [10]. A constant crowding function corresponds to
neither crowding nor quorum sensing and will be used in some of the simulations of this thesis.

Before the boundary condition for Phase 1 can be described, we must introduce notation for the
number of cells in the system. Let P (t) denote the total number of cells at time t such that

P (t) =

∫ T1

0

n1(t, τ) dτ +

∫ T2

0

n2(t, τ) dτ. (2.14)

The number of cells that in the end of Phase 2 undergoes mitosis at time t is described by M(t) and
is now given by

M(t) = f(P (t))n2(t, T2). (2.15)

To be precise, M(t) denotes the number density of cells (number of cells per age unit) before cell
division at time t. The cells that do not undergo mitosis are assumed to die at the end of Phase
2. After mitosis, 2M(t) cells per age unit enter Phase 1 of the next cycle along with cells expressed
by the input function ψ(t), for instance representing daughter cells from cancer stem cells. That
is, the boundary condition at τ = 0 for the number density of Phase 1, n1, can be written as
n1(t, 0) = 2M(t) + ψ(t).

The input function is non-negative, piecewise continuous and has the unit of number of cells per
age unit at τ = 0. If ψ = 0, it is assumed that cancer stem cells do not exist at all. Regardless of their
existence, the proportion of cancer stem cells is assumed to be small and does not affect the crowding
of the system. In other words, the cancer stem cells never compete for room with the normal cancer
cells. However, the daughter cells – cells represented by ψ – can form a large part of the total number
of cells. In the simulations of this thesis we will assume that the number density of daughter cells ψ
is constant and compare the cases ψ = 0 and ψ > 0.

The boundary condition for n2 at τ = 0 represents the cells that transfer from Phase 1 to Phase

2 at time t. This quantity is obtained by integrating the transition rate, F ′(τ)
1−F (τ) , times the number

density in Phase 1, n1(t, τ), for all ages. Collected, the boundary conditions for n1 and n2 at τ = 0
are given by

n1(t, 0) = 2M(t) + ψ(t),

n2(t, 0) =

∫ T1

0

F ′(τ)

1− F (τ)
n1(t, τ) dτ.

(2.16)

We note that the set of PDEs is linear. However, if f is nonconstant, the system of PDEs together
with the initial and boundary data is nonlinear.

After this explanation of the components of the PDEs along with initial and boundary data, it is
now possible to visualise in a flowchart how cells transfer from Phase 1 to Phase 2 to Phase 1 of the
next cycle of the model, see Figure 2.2.

The system can be solved using the method of characteristics, which uses the idea that a first order
PDE, which is what we have here, can be rewritten as a system of ODEs. The ODEs are solved along

11



Figure 2.2: Flow chart of the model. Cells transfer from Phase 1 to Phase 2 according to a transition
rate h(τ). The number of cells that undergoes mitosis (per age unit) is represented by M(t) so that
2M(t) + ψ(t) cells enter Phase 1 of the next cycle of the model.

so called characteristics, which in this case are lines in the (t, τ)-plane parallel to the vector (1, 1). An
example of how this is done is demonstrated in Example 2.1.

Example 2.1. We let the cumulative distribution function take the form of a translated exponential
distribution, i.e.

F (τ) =

{
1− e−( τ−ca ), if τ > c,

0, otherwise.
(2.17)

With this choice of cumulative distribution function, the expression for the transition rate h(τ) be-
comes particularly easy: h(τ) = 1/a. In addition, we assume that the crowding function f is constant,
f = 1, that the input function ψ is constant and that the initial age distributions ϕ1 and ϕ2 are arbi-
trary. For this choice of f , the expression for M(t) can be simplified to M(t) = n2(t, T2). The system
of PDEs can be written as



Dn1 = −h(τ)n1(t, τ), t ∈ (0, T ), τ ∈ (0, T1),

Dn2 = 0, t ∈ (0, T ), τ ∈ (0, T2),

n1,2(0, τ) = ϕ1,2(τ), τ ∈ (0, T1,2),

n1(t, 0) = 2n2(t, T2) + ψ(t), t ∈ [0, T ],

n2(t, 0) =

∫ T1

0

F ′(τ)

1− F (τ)
n1(t, τ) dτ =

∫ T1

0

1

a
n1(t, τ) dτ, t ∈ [0, T ],

(2.18)

which we solve using the method of characteristics.
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We start by looking at the equations for n1. From the PDEs in (2.18), the ODEs for the characteristics
for n1 are given by 

dt

ds
= 1, t(0) = 0,

dτ

ds
= 1, τ(0) = τ0,

dn1

ds
= −h(τ(s))n1(s), n1(0) = ϕ1(τ0),

if t ≤ τ,



dt

ds
= 1, t(0) = t0,

dτ

ds
= 1, τ(0) = 0,

dn1

ds
= −h(τ(s))n1(s), n1(0) = 2M(t0) + ψ,

if t > τ.

(2.19)

Using the technique of integrating factor, the two systems in (2.19) yields

n1(t, τ) =


(

1− F (τ)

1− F (τ − t)

)
ϕ1(τ − t) = exp(−t/a)ϕ1(τ − t), if t ≤ τ,

(2M(t− τ) + ψ) (1− F (τ)) = (2n2(t− τ, T2) + ψ) (1− F (τ)), if t > τ,

(2.20)

where we in both expressions have used that exp(−
∫ τ

0
h(σ) dσ) = (1 − F (τ)). We note that the

solution for t < τ is given directly by ϕ1, whereas the solution for t > τ depend on the solution for
n2. The characteristics along which a solution for n2 can be found, are similarly given by

dt

ds
= 1, t(0) = 0,

dτ

ds
= 1, τ(0) = τ0,

dn2

ds
= 0, n2(0) = ϕ2(τ0),

if t ≤ τ,



dt

ds
= 1, t(0) = t0,

dτ

ds
= 1, τ(0) = 0,

dn2

ds
= 0, n2(0) =

∫ T1

0

1

a
n1(t, τ) dτ,

if t > τ.

(2.21)

The system in (2.21) has the solution

n2(t, τ) =

{
n2(0, τ − t), if t ≤ τ,
n2(t− τ, 0), if t > τ.

(2.22)

We already here remark that the solution for n2 for t > τ will always be dependent on n1 and that
the solution for n1 for t > τ will be dependent on n2: We identify that

n2(t, τ) = ϕ2(τ − t), if t ≤ τ, (2.23)

which now can be used to refine the expression for n1(t, τ) for t > τ , presented in (2.20):

n1(t, τ) = (2n2(t− τ, T2) + ψ) (1− F (τ)) = (2ϕ2(T2 − t+ τ) + ψ) (1− F (τ)). (2.24)
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The expression in (2.24) is valid for τ < t < τ + T2, as ϕ2 is defined on the interval [0, T2]. In turn,
using (2.24), the equation for n2(t, τ) for t > τ (for t < T2) can now be solved using the boundary
condition:

n2(t, 0) =

∫ T1

0

F ′(τ)

1− F (τ)
n1(t, τ) dτ =

∫ T1

0

1

a
n1(t, τ) dτ =

=

∫ t

0

F ′(τ)(2ϕ2(T2 − t+ τ) + ψ) dτ +

∫ T1

t

e−t/a

a
ϕ1(τ − t) dτ,

(2.25)

where we in the last equality have used the previously calculated solutions for n1, both for t ≤ τ and
t > τ . Thus,

n2(t− τ, 0) =

∫ t−τ

0

F ′(τ)(2ϕ2(T2 − t+ τ + σ) + ψ) dσ +

∫ T1

t

e−t+τ/a

a
ϕ1(σ − t+ τ) dσ. (2.26)

This solution can be used to compute n1 on the next interval, by again using the expression in (2.20)
valid for t ≥ τ ,

n1(t, τ) = (2n2(t− τ), T2) + ψ) (1− F (τ)). (2.27)

In this way, we can continue to compute n1(t, τ) and n2(t, τ) one interval at the time by finding a
solution to one of the equations using the other, up to any final time T we find suitable. For an
illustration of the calculations in this example see Figure 2.3. In comparison to the previous flowchart
in Figure 2.2, the time dimension is more carefully demonstrated and it is visualised how the solution
of the system of PDEs propagate along characteristics.

Figure 2.3: Alternative flowchart of the model. The solutions of the system of PDEs propagate along
characteristics. The system has to be solved one interval at the time as the solution for n1 is dependent
on the solution for n2 and vice versa: in region (i), n1(t, τ) and n2(t, τ) are computed for t < τ using
ϕ1 and ϕ2, in (ii), n1(t, τ) is computed for τ < t < τ + T2, using the previously calculated n2 and in
(iii), n2(t, τ) is computed using the already computed n1(t, τ).
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2.2 Integral Equations

The set of PDEs, 

Dn1 = − F ′(τ)

1− F (τ)
n1(t, τ), t ∈ (0, T ), τ ∈ (0, T1),

Dn2 = 0, t ∈ (0, T ), τ ∈ (0, T2),

n1,2(0, τ) = ϕ1,2(τ), τ ∈ (0, T1,2),

n1(t, 0) = 2M(t) + ψ(t), t ∈ [0, T ],

n2(t, 0) =

∫ T1

0

F ′(τ)

1− F (τ)
n1(t, τ) dτ, t ∈ [0, T ],

(2.28)

can be rewritten as an equivalent system of integral equations for M(t) and P (t), presented in Theorem
1 of [10]. It is also proved, in Theorem 2 of [10], that a unique solution of the system of integral
equations exists. Therefore, the equivalence of the two representations means that a given solution to
either of the representations assures the existence of a unique solution to the other.

Definition 3. The pair of non-negative functions (n1, n2), such that n1 : [0, T ] × [0, T1] → R and
n2 : [0, T ]× [0, T2]→ R, is a solution of the system of PDEs in (2.28) up to time t if

i. The directional derivatives Dn1 and Dn2 exist on [0, T ]× [0, T1] and [0, T ]× [0, T2] respectively.

ii. The number densities n1 and n2 are absolutely integrable in their second argument on [0, T1,2],
i.e.n1,2(t, ·) ∈  L1([0, T1,2]).

iii. The function P (t) =
∫ T1

0
n1(t, τ) dτ +

∫ T2

0
n2(t, τ) dτ , P : [0, T ]→ [0,∞), is continuous.

The relation between the two representations can now be presented as follows, here given without a
proof:

Theorem 2.1. Let (n1, n2) be a solution of the system of PDEs in (2.28) up to time t, let the lengths
of the phases be such that T1 > T2 and let the initial data ϕ1 and ϕ2 be piecewise continuous functions
such that ϕ1 : (0, T1) → [0,∞) and ϕ2 : (0, T2) → [0,∞). Then the number density of the dividing
cells at the end of Phase 2, M(t) defined by M(t) = f(P (t))n2(t, T2), and the total number of cells at

time t, P (t) defined by P (t) =
∫ T1

0
n1(t, τ) dτ+

∫ T2

0
n2(t, τ) dτ , satisfy the system of integral equations:

M(t) = f(P (t))

(∫ t

0

K(t, σ)(2M(σ) + ψ(σ)) dσ +

∫ T1

0

R(t, σ)ϕ1(σ) dσ + ϕ2(T2 − t)

)
,

P (t) =

∫ t

0

L(t, σ)(2M(σ) + ψ(σ)) dσ +

∫ T1

0

S1(t, σ)ϕ1(σ) dσ +

∫ T2

0

S2(t, σ)ϕ2(σ) dσ,

(2.29)

where the functions K and R are given by

K : [0,∞)× [0,∞)→ R, K(t, σ) =

{
F ′(t− T2 − σ), if T2 ≤ t− σ < T1 + T2,

0, otherwise,

R : [0,∞)× [0, T1]→ R, R(t, σ) =


F ′(σ + t− T2)

1− F (σ)
, if t ≥ T2 and 0 ≤ σ < T1 + T2 − t,

0, otherwise.
(2.30)
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and the functions L, S1 and S2 are defined by

L : R+ × R+ → R, L(t, σ) =


1, if 0 ≤ t− σ < T2,

1− F (t− T2 − σ), if T2 ≤ t− σ < T1,

F (T1)− F (t− T2 − σ), if T1 ≤ t− σ < T1 + T2,

0, otherwise,

S1 : [0,∞)× [0, T1]→ R, S1(t, σ) =



1, if t < min(T2, T1 − σ),

F (T1)− F (σ)

1− F (σ)
, if T1 − σ < t ≤ T2

1− F (σ + t− T2)

1− F (σ)
, if T2 ≤ t < T1 − σ

F (T1)− F (σ + t− T2)

1− F (σ)
, if max(T2, T1 − σ) ≤ t < T1 + T2 − σ,

0, otherwise,

S2 : [0,∞)× [0, T2]→ R, S2(t, σ) =

{
1, if σ + t ≤ T2

0, otherwise.

(2.31)
Here, M ∈ Cp([0, T ]; [0,∞))∩C([T2, T ]; [0,∞)) and P ∈ C([0, T ]; [0,∞)), where Cp denotes the set of
piecewise continuous functions. We remind that the functions ϕi and ψ satisfy ϕ1 : (0, T1)→ [0,∞),
ϕ2 : (0, T2)→ [0,∞) and ψ : [0, T ]→ [0,∞) and are all piecewise continuous.

We note that when f is a constant function, the integral equation for M(t) is a so called Volterra
equation of the second kind. To get a better grasp on the discontinuities in the integral kernels K(t, τ)
and L(t, τ), these are illustrated in Figure 2.4 and, for the same purpose, the discontinuities for the
functions S1(t, τ), S2(t, τ) and R(t, τ) are illustrated in Figure 2.5.

Figure 2.4: Illustration of the discontinuities in the kernels K(t, σ) and L(t, σ).
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Figure 2.5: Illustration of the discontinuities in R(t, σ), S1(t, σ) and S2(t, σ).
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3 Numerical Methods

The integral equations for M(t) and P (t) are solved in steps. As the solution of every step is dependent
on the previous, it is convenient to compute M(t) and P (t) at equidistant points. The step size h
is defined as h = t/n, where t is the total time of integration and n + 1 is the number of points in
the discretization grid on the interval [0, t]. The system is solved using three different integration
methods: the left point rectangle rule, the trapezoidal rule and Simpson’s 1/3rd rule, with an extra
step of Simpson’s 3/8 rule when n is odd, aiming at yielding first, second and fourth order accuracy
respectively. The reason for not implementing Simpson’s rule only – the theoretically most accurate
method – is both to understand the numerical characteristics of the equations thoroughly and the
fact that Simpson’s rule turns out to be an inferior choice in the case with a nonconstant crowding
function, something that will be discussed in detail in Section 3.5.

In the first section, the left point rectangle rule is mentioned briefly. The choice of discretization
grid, which is of great importance in the implementation of the trapezoidal and Simpson’s rules, is
discussed in the second section, 3.2. In Sections 3.3 and 3.4, it is demonstrated how the equations for
M(t) and P (t) are solved using the trapezoidal rule and using Simpson’s rule, keeping the crowding
function f constant. In the end of the chapter on numerical methods, 3.5, a nonconstant crowding
function f is considered in the numerical scheme, yielding a nonlinear equation that must be solved
in every step. The order of accuracy and numerical error of the implementations are described in
Chapter 6.

Before describing the implementations, we introduce for convenience the notation A(t) for the
rightmost term in M(t),

A(t) =

∫ T1

0

R(t, σ)ϕ1(σ) dσ + ϕ2(T2 − t), (3.1)

and B(t) for the rightmost term in P (t):

B(t) =

∫ T1

0

S1(t, σ)ϕ1(σ) dσ +

∫ T2

0

S2(t, σ)ϕ2(σ) dσ. (3.2)

The integrals in A(t) and B(t) are computed using the same integration rule as M(t) and P (t).
——-

3.1 The Left Point Rectangle Rule

In the simulation section in the paper of Maad Sasane [10], the left point rectangle rule was the only
implemented method, approximating an integral as∫ b

a

g(x) dx ≈ b− a
n

n∑
i=0

g(a+ ih). (3.3)

Solving the system of integral equations using the left point rectangle rule is a relatively simple task
as the system becomes uncoupled, despite the nonlinearity through the crowding function f in the
expression

M(t) = f(P (t))

(∫ t

0

K(t, σ)(2M(σ) + ψ(σ)) dσ +

∫ T1

0

R(t, σ)ϕ1(σ) dσ + ϕ2(T2 − t)

)
. (3.4)

In other words is it not necessary to know the value of P (t) to compute M(t), which we will see is
needed when using Simpson’s rule or the trapezoidal rule. However, the drawback is that the method
is only first order accurate and we wish to solve the system using a more accurate method. We will
therefore hereafter not return to discussions related to the left point rectangle rule.
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3.2 Choice of Grid

There are discontinuities in the terms A(t) and B(t) as well as in the kernels, L(t, σ) and K(t, σ).
In order to gain second order accuracy using the trapezoidal rule and fourth order accuracy using
Simpson’s rule, the grid points must be chosen with great care. By splitting an integral containing a
discontinuity into several integrals, each with a continuous integrand, this problem can be handled.
The number of steps is chosen so that there is a discretization point exactly in each discontinuity.
The first discontinuity occurs in A(t) at the point t = T2, as ϕ(T2 − t) hereafter is zero, whereas the

expression
∫ T1

0
R(t, σ)ϕ1(σ) dσ for the first time becomes different from zero. All computations of

M(t) and P (t) must therefore be split at this point. For the term related to S1(t, σ) in B(t) there is
first a discontinuity at σ = T2 − t for t ≤ T2 and then also at σ = T1 + T2 − t for t ≥ T2. Finally,
for the term related to S2(t, σ) the only discontinuity occurs at σ = T1 − t. Again we recall that all
discontinuities in A(t) and B(t) are illustrated in Figure 2.5 and that A(t) = B(t) = 0 for t > T1 +T2.
It is necessary to keep in mind that the bounds of the integrals in M(t) and P (t) change as t changes.
For the discontinuities in the kernels L and K, four different intervals for t are considered, where T is
the final point for which we want to compute M(t): 0 < t ≤ T2, T2 < t ≤ T1, T1 < t ≤ T1 + T2 and
T1 + T2 < t ≤ T . Shifts occur at different points:

i. 0 < t ≤ T2:
K(t, σ) = 0, 0 < σ ≤ t,
L(t, σ) = 1, 0 < σ ≤ t,

(3.5)

ii. T2 < t ≤ T1:

K =

{
F ′(t− T2 − σ), if 0 < σ ≤ −T2 + t,

0, if − T2 + t < σ ≤ t,

L =

{
1− F (t− T2 − σ), if 0 < σ ≤ −T2 + t,

1, if − T2 + t < σ < t.

(3.6)

iii. T1 < t ≤ T1 + T2:

K =

{
F ′(t− T2 − σ), if 0 < σ ≤ −T2 + t,

0, if − T2 + t < σ ≤ t,

L =


F (T1)− F (t− T2 − σ), if 0 < σ ≤ −T1 + t,

1− F (t− T2 − σ), if − T1 + t < σ ≤ −T2 + t,

1, if − T2 + t < σ < t.

(3.7)

iv. T1 + T2 < t ≤ T :

K =


0, if 0 < σ ≤ −T1 − T2 + t,

F ′(t− T2 − σ), if − T1 − T2 + t < σ ≤ −T2 + t,

0, if − T2 + t < σ ≤ t,

L =


0, if 0 < σ ≤ −T1 − T2 + t,

F (T1)− F (t− T2 − σ), if − T1 − T2 + t < σ ≤ −T1 + t,

1− F (t− T2 − σ), if − T1 + t < σ ≤ −T2 + t,

1, if − T2 + t < σ < t.

(3.8)

It is of course important to notice where T2 is located in relation to the other three discontinuity points
and to split the integrals accordingly. For instance, if t > T1 + T2 and −T1 − T2 + t < T2 < −T1 + t,
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then the integral for P (t) can be rewritten as

P (t) =

∫ T2

−T1−T2+t

(F (T1)− F (t− T2 − σ)) (2M(σ) + ψ(σ)) dσ+

+

∫ −T1+t

T2

(F (T1)− F (t− T2 − σ)) (2M(σ) + ψ(σ)) dσ+

+

∫ −T2+t

−T1+t

(1− F (t− T2 − σ)) (2M(σ) + ψ(σ)) dσ+

+

∫ t

−T2+t

(2M(σ) + ψ(σ)) dσ.

(3.9)

3.3 The Trapezoidal Rule

The composite trapezoidal rule is a second order method, approximating an integral of the general

form
∫ b
a
g(x) dx as

∫ b

a

g(x) dx ≈ b− a
2n

[
g(a) + 2

{
n−1∑
i=1

g(a+ ih)

}
+ g(b)

]
, (3.10)

where n + 1 is the number of points on the interval [a, b] (leading to n segments) and h = (b − a)/n
is the step size. By denoting the start and end point of the integral in M(t) by tstart and tend, where
tstart = max(0, t − T1 − T2) and tend = max(0, t − T2), the trapezoidal rule can be used to compute
M(t) on each of its intervals, assuming that the crowding function f is constant, as

M(t) =f

(∫ tend

tstart

K(t, σ)(2M(σ) + ψ(σ)) dσ ≈ h

2

[
K(t, tstart)(2M(tstart) + ψ(tstart))+

+ 2

{
n−1∑
i=1

K(t, tstart + ih)(2M(tstart + ih) + ψ(tstart + ih))

}
+

+K(t, tend)(2M(tend) + ψ(tend))

]
+A(t)

)
.

(3.11)

Here, n + 1 is the number of points in the discretization of the interval [tstart, tend]. It is noticeable
that no point in M(t) has to be computed implicitly as it always holds that tend < t. The equation for
P (t) is computed similarly as the one for M(t), with the difference that contributions from integrals
on different intervals are added to receive the result. Naturally, all values needed to compute P (t) is
for f is constant given directly by the values of M(t). The method is self-starting as we have in the
very first step on the first interval that

M(h) = f(p)A(h),

P (h) ≈ h

2
[(2M(0) + ψ(0)) + (2M(h) + ψ(h))] +B(h),

(3.12)

where M(0) = A(0) and P (0) = B(0).
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3.4 Simpson’s Rule

Using Simpson’s 1/3rd rule, which is a fourth order method, an integral of the form
∫ b
a
g(x) dx is

approximated as ∫ b

a

g(x) dx ≈ h

3

[
g(a) + 4g

(
a+ b

2

)
+ g(b)

]
, (3.13)

where the step size is h = (b − a)/2 and where the function g is assumed to be at least C3 on [a, b]
[3]. Splitting the interval of integration, [a, b], into n multiple segments and using Simpson’s rule
repeatedly over every two segments, the composite Simpson’s rule takes the form of

∫ b

a

f(x) dx =
b− a
3n

f(a) + 4

n−1∑
i=1
i odd

f(a+ ih) + 2

n−2∑
i=2
i even

f(a+ ih) + f(b)

 , (3.14)

using n + 1 points and h = (b − a)/n. However, this only works well if n is even. When n is odd,
the composite Simpson’s rule can for instance be used along with an extra step of the trapezoidal
rule. For stability, this extra step has to be taken as the last step [4]. An alternative is to use the
composite Simpson’s rule on the interval [a, a+hn] when n is even and a combination of the composite
Simpson’s rule on the interval [a, a+h(n−3)] and Simpson’s 3/8-rule, a method using four points, on
the interval [a+ h(n− 3), a+ hn] when n is odd. Using this last approach, all approximate values are
calculated to the same accuracy as both Simpson’s 1/3 rule and Simpson’s 3/8 rule are fourth order
methods [4].

In this section it is still assumed that f is constant so that the system is uncoupled. The expression
for the integral in M(t), first corresponding to a time t leading to an even number of segments (n
even), is

M(t) = f

(∫ tend

tstart

K(t, σ)(2M(σ) + ψ(σ)) dσ +A(t)

)
≈

≈ f
(
h

3

[
K(t, tstart)(2M(tstart) + ψ(tstart))+

+ 4


n−1∑
i=1
i odd

K(t, tstart + ih)(2M(tstart + ih) + ψ(tstart + ih))

+

+ 2


n−2∑
i=2
i even

K(t, tstart + ih)(2M(tstart + ih) + ψ(tstart + ih))

+

+K(t, tend)(2M(tend) + ψ(tend))
])
.

(3.15)

For n odd there are a few modifications for the same expression: the summation over i odd gets an
upper bound of n − 4, the summation over i even gets an upper bound of n − 5, the last term has
(t, tstart + h(n− 3)) as its argument and an extra term of

3h

8

[
K(t, tstart + h(n− 3)) (2M(tstart + h(n− 3)) + ψ(tstart + h(n− 3))) +

+ 3K(t, tstart + h(n− 2))(2M(tstart + h(n− 2)) + ψ(tstart + h(n− 2))) +

+ 3K(t, tstart + h(n− 1))(2M(tstart + h(n− 1)) + ψ(tstart + h(n− 1))) +

+K(t, tend)(2M(tend) + ψ(tend))
] (3.16)
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is added to the expression in (3.15). A scheme for calculating P (t) is given similarly, with the difference
that terms from different integrals are added to form the final result. In the same manner as with the
trapezoidal rule, the method is self-starting, as the values of M(t) up until t = T2 are given directly by
A(t) and the values needed to compute P (t) are given by the values of M(t). A fourth order scheme
based on Simpson’s 1/3rd rule is now ready to be used for the choice of a constant crowding function
f .

The described methods approximate the integrand on each segment by a constant, a first degree
polynomial or a second degree polynomial, see Figure 3.1 (Simpson’s 3/8 rule approximate by a cubic
polynomial in the last step for n odd).

Figure 3.1: Illustration of the three integration methods used (red) to integrate a function (black).
Simpson’s 1/3rd rule approximates the integrand over every two segments while the left point rectangle
rule and the trapezoidal rule approximate the integrand over every segment.

3.5 Impact from Crowding Function

When the crowding function f is nonconstant, the system is coupled and more work is required
compared to the linear case. Here, the expression for P (t) is used as argument in f to compute M(t)
at every step, as the equations for M(t) and P (t) are linked as

M(t) = f(P (t))

(∫ t

0

K(t, σ)(2M(σ) + ψ(σ)) dσ +

∫ T1

0

R(t, σ)ϕ1(σ) dσ + ϕ2(T2 − t)

)
,

P (t) =

∫ t

0

L(t, σ)(2M(σ) + ψ(σ)) dσ +

∫ T1

0

S1(t, σ)ϕ1(σ) dσ +

∫ T2

0

S2(t, σ)ϕ2(σ) dσ.

(3.17)

The integrating steps in P (t), i.e. the summation of terms for the trapezoidal or Simpson’s rule, up
until but not including time t, are now denoted Psteps for convenience. The discretized version of the
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integral
∫ t

0
K(t, σ)(2M(σ) + ψ(σ)) dσ is similarly denoted Msteps. We let µ denote the multiple of h

that is the factor in front of (2M(t) + ψ(t)) in the last step of the discretization of P (t). In general,
independently of the choice between our two methods (trapezoidal or Simpson’s rule), the expression
for M(t),

M(t) = f(P (t)) (Msteps +A(t)) , (3.18)

then takes the form

M(t) = f (Psteps + µ(2M(t) + ψ(t)) +B(t)) (Msteps +A(t)) . (3.19)

If f is not piecewise linear, (3.19) is a nonlinear equation in M(t). However, this equation can be
solved, for instance in matlab using the fzero command, based on the bisection algorithm. The
resulting value for M(t) is subsequently used to compute a solution for P (t), similarly as in the case
with a constant f , using the second part of (3.17) and the trapezoidal or Simpson’s rule.

The starting step for Simpson’s rule becomes a bit more involved than in the case with constant
crowding. Simpson’s rule uses the values of three points to make an approximation, whereas the
trapezoidal rule only needs two points. This fact might cause a problem at the very first step using
Simpson’s rule, where M(h) and P (h) are to be computed. In the first point at t = 0, the solution is
straightforward:

P (0) = B(0),

M(0) = f(P (0))A(0).
(3.20)

However, to get fourth order accuracy at the point t = h, the so called Romberg’s method must be
used, applying the trapezoidal rule for the step sizes h and h/2 and combining the expressions of
the approximations, as we will demonstrate below. To understand what happens, we introduce the
Euler-Maclaurin summation formula, expressing the size of the error for the trapezoidal rule.

Lemma 3.1 (Euler-Maclaurin). For the trapezoidal rule, the error from the approximation T (h) of
the integral ∫ b

a

g(x) dx, (3.21)

computed using n segments through the approximation formula (3.10), is given by the Euler-Maclaurin
summation formula:

T (h) =

∫ b

a

g(x) dx+
h2

12
[g′(b)− g′(a)]− h4

720
[g′′′(b)− g′′′(a)] +

h6

30240
[g(5)(b)− g(5)(a)]+

+ · · ·+ c2rh
2r[g(2r−1)(b)− g(2r−1)(a)] +O(h2r+2).

(3.22)

The generating function for the coefficients c2r is

1 + c2h
2 + c4h

4 + c6h
6 + · · · = h

2

eh + 1

eh − 1
. (3.23)

The Euler-Maclaurin summation formula holds under the assumption that g is sufficiently smooth.

A proof of the lemma is found in [3]. The Euler-Maclaurin summation formula states that the
error expansion E(h) for the trapezoidal rule takes the form of E(h) = C2h

2 + C4h
4 + C6h6 + . . . .

For the step size h, M(h) and P (h) are given by

M(h) = f(P (h))A(h),

P (h) = B(h) +
h

2
((2M(0) + ψ(0)) + (2M(h) + ψ(h))) + C2h

2 +O(h4),
(3.24)

where C2h
2 +O(h4) denotes the error. Similarly for the step size h/2,
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M(h/2) = f(P (h/2))A(h/2),

P (h/2) = B(h/2) +
h

4
((2M(0) + ψ(0)) + (2M(h/2) + ψ(h/2))) ,

M(h) = f(P (h))A(h),

P (h) = B(h) +
h

4
((2M(0) + ψ(0)) + 2(2M(h/2) + ψ(h/2)) + (2M(h) + ψ(h))) +

1

4
C2h

2 +O(h4).

(3.25)
A value of M(h/2) is received by combining the expressions for M(h/2) and P (h/2) in (3.25) and
solving for M(h/2). Combining the two expressions for P (h) in (3.24) and (3.25), the error constant
C2 can be eliminated. The simplified expression for P (h) becomes

P (h) = B(h) +
h

6
(2M(0) + ψ(0)) +

2

3
h

[(
2M

(
h

2

)
+ ψ

(
h

2

))]
+
h

6
(2M(h) + ψ(h)), (3.26)

which is recognised as a Simpson approximation of P (h), being of fourth order accuracy. It is now
finally possible to compute M(h) to the same accuracy.

In the computations with a nonconstant crowding function f , we find that the discontinuities in the
integral equations cause trouble, despite choosing the grid carefully. For the trapezoidal rule, second
order accuracy is found to be easily obtained for all t > 0 (this result will be validated in Section 6.1).
However, Simpson’s rule proves to be suboptimal and works properly, yielding fourth order accuracy,
only up until t = T2. We will now motivate this behaviour of the Simpson implementation: We let
A− denote A(t) before t = T2 and A+ denote A(t) after t = T2, i.e.

A(t) =

{
A−(t), t < T2,

A+(t), t ≥ T2.
(3.27)

An illustration of A(t) is found in Figure 3.2.

Figure 3.2: Discontinuity in A(t) at T2.

The discontinuity in A(t) at t = T2 makes it nontrivial to compute M(T2), as we in Psteps must use
M for t < T2 based on A−(t), while A+(t) is used in the computation of M(T2):

M(T2) = f (Psteps + µ(2M(T2) + ψ(T2)) +B(T2))A+(T2). (3.28)

An infinite derivative of the type which appears in M(t) at the discontinuity at T2 creates an error
that might be larger than the combined error of all the other steps combined [3]. The integrand is not
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C3, which is demanded if Simpson’s rule is to be used in a satisfactory way. The effect of this problem
is that it is not possible to obtain fourth order accuracy for Simpson’s rule after the point t = T2

with f nonconstant. The scheme based on Simpson’s rule performs here no better than the scheme
based on the trapezoidal rule. This is contrary to the case with a constant crowding function, where
the value of M(t) is given directly by the current value of A(t) and is not dependent on the history
of A or of M . The reason is that for f constant, M(t) = A−(t) for t ≤ T2. Then, the mentioned
discontinuity causes no problems as we have introduced a grid with an integration point exactly at
t = T2. The integral is split at this particular point into two distinct integrals, where each integrand
is sufficiently differentiable.

Due to the discontinuity, simulations where crowding is taken into account (i.e. where f is non-
constant) can only be based on the trapezoidal rule and a smaller step size (compared to when the
crowding function is constant and Simpson’s rule is applied).

However, there is one way to get around the problem and create an implementation of the model
that is as accurate as possible without applying Simpson’s rule. This is done by instead using combi-
nations of computations from the trapezoidal rule with varied and smaller step sizes. There is still a
chance to receive an error of the same magnitude as we would have expected from Simpson’s rule by
for instance applying Romberg’s method of integration, a recursive method that decreases the error
and improves the approximation of an integral.

Lemma 3.2 (Romberg’s method of Integration). Suppose that the true value of the integral∫ b

a

g(x) dx (3.29)

is I. Let Ik,j denote an approximation of I, where k denotes the order of extrapolation and j how
accurate the estimate of the integral is. By accuracy we mean that for every step that j is increased,
the step size h is halved. Romberg’s method can generally be stated as

Ik,j = Ik−1,j+1 +
Ik−1,j+1 − Ik−1,j

22(k−1) − 1
, k ≥ 2. (3.30)

Given that the function g is sufficiently smooth so that the Euler-Maclaurin summation formula holds,
every step of Romberg’s method reduces the error O(h2).

For a proof of the lemma, we refer to [3]. We are interested in making an extrapolation of order
two, i.e. k = 2, and motivate the lemma informally for this case. Note that this is the type of
approximation we already made to compute M(h). Let I1 denote the numerical approximation of the
integral (3.29) obtained by using the step h, and I2 the numerical approximation obtained by using
step size h/2. Remembering from the Euler-Maclaurin summation formula that the truncated error of
the composite trapezoidal rule ideally can be written as Et = α

n2 , where n is the number of segments
of the discretization and α is some constant, it holds that

I ≈ I1 −
α

n2
,

I ≈ I2 −
α

4n2
.

(3.31)

The constant α can be eliminated by combining the two expressions in (3.31), yielding

I ≈ I2 +
1

3
(I2 − I1). (3.32)

This is the second order extrapolation of Romberg’s method, by comparison with the expression in
(3.30).

By using the trapezoidal rule to integrate an arbitrary function g(t), the integral between the
points t = 2(i− 1)h and t = 2ih can be approximated as
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h [g(2(i− 1)h) + g(2ih)] , using step size 2h,

h

[
1

2
g(2(i− 1)h) + g((2i− 1)h) +

1

2
g(2ih)

]
, using step size h.

(3.33)

Applying Romberg’s method of second order from (3.32), the step between t = 2(i− 1)h and t = 2ih
can be represented as

h

(
1

2
g(2(i− 1)h) + g((2i− 1)h) +

1

2
g(2ih)

)
+
h

3

(
−1

2
g(2(i− 1)h) + g((2i− 1)h)− 1

2
g(2ih)

)
=

= h

(
g(2(i− 1)h)

3
+

4g((2i− 1)h)

3
+
g(2ih)

3

)
.

(3.34)
We see that this formula agrees with one step of Simpson’s 1/3rd rule. By decreasing the step size,
the error for the trapezoidal rule can thus be reduced to the same order of magnitude as computations
with Simpson’s rule ideally would have generated, for instance by repeated use of Romberg’s rule.

In conclusion, an accurate implementation of the model where a nonconstant crowding function is
applied can be obtained by using the trapezoidal rule only. However, Romberg’s method is valid only if
the integrand is sufficiently differentiable so that the Euler-Maclaurin summation formula applies, with
an error expansion with h in powers of 2: h2, h4 etc. We have already seen that there is a discontinuity
problem at t = T2 and we cannot guarantee that the integrand is three times differentiable, which is
demanded if fourth order accuracy is to be obtained from Romberg’s method. Therefore, we cannot
guarantee that the method is applicable. However, we will see that it is possible to reduce the error
by using Romberg’s method greatly. The order of accuracy obtained by applying Romberg’s rule is
investigated in Section 6.2.
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4 Simulations

Tests with various combinations of model components are carried out in order to numerically gain
knowledge about the qualitative behaviour of the system and to reproduce some of the analytical and
numerical results from the article of Maad Sasane. The simulations also serve to visualise the quality
of the new implementation of the model. In Section 4.3, a specific case study is performed where the
question is if a tumour decreased in size after medical treatment, so that only a very small number
of cancer cells remain, will die off or start growing again when medications have stopped. We also
investigate if the result depends on the existence of (daughter cells of) cancer stem cells, i.e. if the
result is dependent on whether ψ 6= 0 or not.

In all simulations, the cumulative distribution function F (τ) was chosen to follow a Weibull dis-
tribution in accordance with common practice in survival analysis and with the numerical results of
Section 7 in [10]:

F (τ) =

{
1− e−( τ−ca )

b

, if τ > c,

0, otherwise.
(4.1)

The constant b determines the rate of transition from Phase 1 to Phase 2, depending on age: if b = 1,
it is as likely to transfer from Phase 1 to Phase 2 for all cells, independently of age spent in Phase
1, if b < 1 it is more likely for young cells to transfer than for old ones, whereas if b > 1 it is more
likely for old cells to transfer than for young cells. In most of the simulations in this chapter, b = 2.
The delaying parameter, c, was set to c = 2.5 hours, corresponding to a first part of Phase 1 where
no cells transfer to Phase 2. It was assumed that the proportion 1 − d of all cells entering Phase 1
survives to Phase 2 and therefore, the constant a could be calculated to

a =
T1 − c

log(1/d)1/b
. (4.2)

The remaining proportion of the cells die and disappear at the end of Phase 1, i.e.F (τ) can be
rewritten as

F (τ) =


0, if τ < c,

1− e−( τ−ca )
b

, if c < τ ≤ T1,

1, if τ > T1.

(4.3)

The lengths of Phase 1 and Phase 2 were set to T1 = 12.5 hours and T2 = 9 hours, in correspondence
with experimental data in [5]. In all figures illustrating simulations, the scale of the time axis is
therefore in hours.

Tests were carried out both with and without crowding (no crowding corresponds to f(p) being
constant). In the case with no crowding, it can be good to keep in mind that some kind of space
limiting seems realistic. Therefore, one interpretation of the case without crowding is that the number
of cells are too few for crowding to contribute to the dynamics of the system. However, in the test
with f constant, such interpretations are left aside, and it is somewhat naively assumed that no space
limitations exist.

In the tests of Sections 4.1 and 4.2, investigating the system with and without crowding, the input
functions ϕ1 and ϕ2 were both varied as ten different continuous functions in different tests: first degree
polynomials, second degree polynomials and exponential functions with alternating parameters. In the
examples illustrating the properties of the system, the specific initial data chosen for illustrative figures
do not have any particular meaning biologically, but are only chosen to show interesting dynamics.

In order to investigate the contribution to M(t) and P (t) from the input function ψ(t), ψ(t) was
varied in different computations to a wide range of constant values, where daughter cells from cancer
stem cells were assumed to constitute either a very small or a larger proportion of the total population
of cells. When ψ = 0, it is assumed that cancer stem cells do not exist at all.

Combined, all the function choices described give a model that is simple to work with. Despite the
little or non-existent experimental or theoretical ground for many of the choices, interesting properties
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of the model can still be investigated. The step size in the simulations was put to h = 0.0125 when
Simpson’s rule was used (for f constant) and a combination of h = 0.125 and h = 0.125/2, when the
trapezoidal rule was used through Romberg’s method (for f nonconstant).

4.1 Constant Crowding Function

Two choices of the surviving proportion from Phase 1 to Phase 2 were considered: d = 0.05 and
d = 0.25. The corresponding cumulative distribution functions are illustrated in Figure 4.1. The
constant crowding function was put to five different values, f(p) = 1, f(p) = 0.95, f(p) = 0.75,
f(p) = 0.67 and f(p) = 0.6, and the input function ψ was kept to small constant values relative to the
size of M(t). We will start the section by looking at function choices leading to unbounded solutions
for M and P in Examples 4.1–4.3.

Figure 4.1: Cumulative distribution functions. Horizontal line marks t = T1 after which F (τ) = 1.

Example 4.1. Surviving proportion d = 0.05 and f = 0.95: All simulations have similar properties,
with M(t) → ∞ and P (t) → ∞ as t → ∞. In Figure 4.2 two such simulations are illustrated, where
ψ = 0. The population size seems to grow exponentially. The constant crowding function is chosen
so that more than half of the cells undergoes mitosis in each cycle, which can explain the unbounded
solutions. Choosing the input function as ψ = 0 or ψ 6= 0 give the same growth properties, i.e.ψ does
not affect whether the solution is unbounded or not, but only affects how fast the solution grows.

Example 4.2. Surviving proportion d = 0.25: The simulations for f = 1, f = 0.95, f = 0.75 and
f = 0.67 (having a crowding function such that f > 1/(2F (T1))), all have similar properties, with
M(t) → ∞ and P (t) → ∞ as t → ∞, as in Example 4.1. It can be noted that for f = 0.67, the
solution grows very slowly, see Figure 4.3. Again, the size of ψ does not affect the overall behaviour
of the system, but only how fast the solution grows.
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Figure 4.2: Example 4.1: Simulation of M(t) and P (t) for d = 0.05, f = 0.95, ψ(t) = 0, ϕ1(τ) =
25e−0.4τ and ten different choices of ϕ2(τ) (The specific choice of the initial data in ϕ1 does only serve
to illustrate overall trends of the system and does not have any particular meaning in itself.) Ten
choices of ϕ2 are illustrated and the unit of the time axis is in hours.

Figure 4.3: Example 4.2: Simulation of M(t) and P (t) for d = 0.25, f = 0.67, ψ(t) = 0, ϕ1(τ) =
25e−0.4τ and ten different choices of ϕ2(τ). Approximate solutions grow slowly in comparison to when
larger values for f are used. The unit of the time axis is in hours.

Example 4.3. The growth properties ofM(t) are more carefully investigated. It can be demonstrated,
plotting the y-axis on a logarithmic scale, that M(t) grows exponentially for all investigated constant
crowding functions yielding an unbounded solution. For an illustration, see Figure 4.4 where f = 1.
Exponential solutions are also obtained for varying choices of b and c in the cumulative distribution
function (b = 1 or b = 2, c = 0 or c = 2.5), varying choices of constant ψ and varying ϕ1(τ) and ϕ2(τ).
The choices of ψ, ϕ1(τ) and ϕ2(τ) however do affect the growth rate for M and P .
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(a) ϕ1(τ) = 2τ + 5 (b) ϕ1(τ) = 7e−0.7τ

Figure 4.4: Example 4.3: Investigation of the exponential growth of the numerical simulation when no
crowding is assumed to affect the system and f > 1/(2F (T1)). Here, ψ = 1 and ten different choices
of ϕ2 are used. The unit of the time axis is in hours. In the cumulative distribution function, b = 2
and c = 2.5.

If the proportion f of dividing cells at the end of Phase 2 is set to smaller values, we get bounded
solutions. This is illustrated in Examples 4.4–4.5 for the choice f = 0.6, chosen so that f < 1/(2F (T1)).

Example 4.4. If ψ > 0, M(t) and P (t) both tend to constant solutions M∞ and P∞ independently
of the choices of ϕ1, ϕ2 or ψ. We note that the choices of ϕ1 and ϕ2 do not affect the value at the
limit. In Figures 4.5] and 4.6, two simulations of this type are illustrated, using ψ = 1 and ψ = 5
respectively.

Figure 4.5: Example 4.4: Simulation of M(t) and P (t) for d = 0.25, f = 0.6, ψ = 1, ϕ1(τ) = 25e−0.4τ

and ten different choices of ϕ2(τ). The unit of the time axis is in hours.
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Figure 4.6: Example 4.4: Simulation of M(t) and P (t) for d = 0.25, f = 0.6, ψ = 5, ϕ1(τ) = 25e−0.4τ

and ten different choices of ϕ2(τ).

Example 4.5. Again, the surviving proportion is set to d = 0.25 and the crowding function chosen
to f = 0.6. When ψ = 0, M → 0 and P → 0 as t → ∞. This is illustrated in Figure 4.7 for five
different choices of ϕ2 and ϕ1 set to ϕ1(τ) = 5τ . Note that the limit values are independent of the
choices of ϕ1 and ϕ2.

Figure 4.7: Example 4.5: Simulation of M(t) and P (t) for d = 0.25, f = 0.6, ψ(t) = 0, ϕ1(τ) = 5τ
and five different choices of ϕ2(τ).
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4.2 Non-Constant Crowding Function

Three choices of the crowding function are considered: f1(p) = 1/ cosh(0.01p) and

f2(p) =


1, 0 ≤ p ≤ 30,

− 0.95

70
p+

197

140
, 30 < p ≤ 100,

0.05, p > 100,

(4.4)

representing crowding, i.e. such that f(p)→ 0 as p→∞ and f(p) decreasing, and

f3(p) =
1

0.09(p+ 0.05)
exp

(
− ln(0.05(p+ 0.05))2/2

)
, (4.5)

representing quorum sensing, having the property that f(p)→ 0 as p→ 0 (In fact, f3 also represents
the crowding property for large p). Concerning crowding, the advantage of the piecewise linear f2,
in relation to the smooth f1, is that the constant value of f(p) = 1 in f2 for small population sizes
p allows for exponential growth of the solutions when the number of cells is small. For the crowding
function f1, no such scenario is considered, and the space limiting acts already for very few cells. The
crowding functions f1, f2 and f3 are all illustrated in Figure 4.8 and have the desired property that
they map to the interval [0, 1], representing a proportion of the total number of cells.

Figure 4.8: Crowding functions

The surviving proportion is chosen to d = 0.25 in all simulations, along with five or ten different
choices of ϕ1 and ϕ2, in accordance with tests in the previous section.

Example 4.6. We choose the crowding function f = f1 to investigate the concept of crowding. The
input function ψ is chosen in the set {0, 0.5, 1, 3, 10, 20}. In all investigated cases the solution of M and
P tend to some constant limits M∞ and P∞. It can again be observed that the limits are independent
of the initial data, which can be seen in Figures 4.9 and 4.10 for the choice ψ = 1, where the same
limits are obtained for ten different choices of ϕ2 and two different choices of ϕ1. Crowding influences
the solutions to a varying extent at the same time t in the two figures due to the varying number of
initial cells for the two simulations, given by the initial data. To put it clearer, the number of cells
are adjusted to a varying extent by f at the same time t, due to the different sizes of P (t). This is
one explanation to the different dynamics in the two figures. The long-term limits are approximated
from the graphics to M∞ ≈ 3.07 and P∞ ≈ 115. The large difference between the number density of
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dividing cells in M∞ and the total number of cells in P∞ is due to the fact that only a small fraction
of the population undergoes cell division when P is large.

Figure 4.9: Example 4.6, crowding: Simulation of M(t) and P (t) for d = 0.25, f = f1, ψ = 1,
ϕ1(τ) = 7e−0.7τ and ten different choices of ϕ2(τ). The limits M∞ and P∞ are independent of ϕ1

and ϕ2.

Figure 4.10: Example 4.6, crowding: Simulation of M(t) and P (t) for d = 0.25, f = f1, ψ = 1,
ϕ1(τ) = 25e−0.4τ and ten different choices of ϕ2(τ). Again, we see that ϕ1 and ϕ2 do not affect M∞
and P∞.
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Observations show that simulations of crowding using the crowding function f2 give solutions with
the same properties in terms of solutions tending to limit values. The limits are different and we will
see in Section 5.1 how they can be determined.

Example 4.7. The concept of quorum sensing is next investigated, choosing the crowding function
f = f3. For the chosen initial data, M(t) and P (t) tend to constant values M∞ and P∞ similarly
as in the case with crowding. This is the case both when ψ = 0, see Figure 4.11 and when ψ > 0,
see Figure 4.12 where ψ = 10. In the case when ψ = 0, the limits can be approximated from the
numerical solution to M∞ = 0.51 and P∞ = 16.3, independently of the initial data.

Figure 4.11: Example 4.7, quorum sensing: Simulation of M(t) and P (t) for d = 0.25, f =
1

0.09(p+0.05) exp
(
− ln(0.05(p+ 0.05))2/2

)
, ϕ1(τ) = τ and five different choices of ϕ2(τ). Here, ψ = 0.

(a) P (t) for ϕ1(τ) = 5. (b) P (t) for ϕ1(τ) = 5τ

Figure 4.12: Example 4.7, quorum sensing: Simulation of M(t) and P (t) for d = 0.25, f =
1

0.09(p+0.05) exp
(
− ln(0.05(p+ 0.05))2/2

)
, ϕ1(τ) = τ and five different choices of ϕ2(τ). Here, ψ = 10.
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It is observed that the solutions converge faster to its limits for larger values of the constant ψ
than for smaller ψ in Example 4.6 and 4.7. The space limiting property of the crowding function
has an effect earlier for a larger ψ, as a large contribution from the input function ψ faster gives a
larger population compared to the case when ψ = 0. An interpretation can be that a larger value of
ψ, which might be interpreted as correspondent to a larger amount of cancer stem cells, results in a
more aggressive cancer.

4.3 Possibilities of Eliminating a Tumour

In this section we assume that a cancer tumour has been treated successfully using some medical
therapy. All or almost all the cancer cells have been killed off, leading to that not more than a very
small fraction of the original amount of cells remains (for practical reasons it is likely to assume that a
tiny part of all the cells still remain). What happens to the tumour if it is now left on its own without
medication – Does it grow or remain being (almost) zero-sized? Is the long term solution M = P = 0?
Is the reason behind the relapse of a tumour (when this happens) the cancer stem cells or the small
amount of remaining cancer cells? To investigate these questions, we perform tests where the initial
age distributions are put to ϕ1 = ϕ2 = 0 or ϕ1 = ε1 and ϕ2 = ε2 for some small ε1 > 0 and ε2 > 0 and
simulate the system, both in the case with a constant crowding function f = 1 (no crowding) and in
the case with crowding, where the crowding function is chosen to be

f4(p) =

{
1, 0 ≤ p ≤ 50,

1/ cosh(0.015(p− 50)), p > 50,
(4.6)

leaving room for the cells to grow exponentially when the population size is small (p ≤ 50), but
adjusting the population size when the population (possibly) grows larger and space and nutrients
are limited. See Figure 4.13a for an illustration of the nonconstant crowding function. The constant
crowding function is assumed to mimic a situation where the cells are too few for crowding to have
an effect.

(a) Crowding function f4 in Examples 4.8 and 4.9
representing crowding.

(b) Crowding function f5 in Example 4.10 representing
quorum sensing.

Figure 4.13
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Example 4.8. We assume that all the cells have been killed off. If ψ = 0, there is nothing that can
drive the growth of the tumour. However, if ψ = k for some k > 0, we get in the case with f = 1
the behaviour of Figure 4.14 where the solution grows exponentially regardless of the size of k. In the
case of crowding, using f = f4, we get the behaviour of Figures 4.15a and 4.15b, where the number
density of dividing cells (and the total number of cells) initially grows exponentially, but reaches a
limit value after some finite time. The constant total number of cells after long time is larger for a
system with a larger contribution from cancer stem cells (ψ larger), than for a system with a smaller
contribution from cancer stem cells (Figure 4.15b). The number density of dividing cells, M(t), on
the other hand is smaller when the impact from cancer stem cells is larger (Figure 4.15a).

To conclude, a zero-sized tumour can start growing again due to input from daughter cells of
cancer stem cells. The crowding function determines the growth properties of the tumour.

Figure 4.14: Example 4.8: Exponential growth is obtained for a zero-sized tumour that is left to grow
without space limitations, if ψ > 0.
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(a) (b)

Figure 4.15: Example 4.8: The number density of dividing cells and the total number of cells reach a
steady limit after long time when space limiting is used through the crowding function f4. The size
of the input function ψ affects both the size of the tumour (originally zero sized) and how it grows
after long time.

Example 4.9. We next assume that a small amount of the original cells remains after completed
therapy and that no cancer stem cells exist, i.e.ϕ1 = ϕ2 = ε, for some constant ε << 1 and ψ = 0.
Tests are carried out for ε = 0.001, ε = 0.01, ε = 0.05 and ε = 0.1.

It is found that solutions reach a nonzero limit when space limiting is considered, the limit for
the total number of cells being P∞ ≈ 114 (units) for the particular crowding function f4. The initial
number of cells are given from

P (0) =

∫ T1

0

n1(0, τ) dτ +

∫ T2

0

n2(0, τ) dτ =

=

∫ T1

0

ϕ1(τ) dτ +

∫ T2

0

ϕ2(τ) dτ = ε(T1 + T2)

(4.7)

and are considerably fewer than P∞, ranging from 2.15 for the largest considered value of ε to 0.02
for the smallest value of ε in the simulations. The total number of cells thus increases substantially
for the simulated cases. The limit is reached faster for larger values of the initial distribution ϕ1

than for smaller values, see comparison between Figures 4.16a and 4.16b, where ϕ1 = ε = 0.001 and
ϕ1 = ε = 0.1 respectively. An interpretation is that if a larger number of malignant cells are left after
the cancer treatment, the tumour returns faster. We note that if also cancer stem cells contribute
to the system so that ψ = k for some k > 0, some other limit values M∞ and P∞ are obtained,
depending on the size of ψ. It is observed that the larger the contribution from the input function ψ,
the larger is the limit value P∞, i.e. the total number of cells asymptotically.

The conclusion from the simulations where crowding is applied as a whole is that if the tumour is
not completely eliminated, it can start growing again due only to the remaining cancer cells. If there
in addition is a contribution from cancer stem cells, the tumour relapses to a different size, larger
than the final size for the case where no cancer stem cells are present. Mathematically, the crowding
function determines the growth properties of the tumour. We will see how in Section 5.1. We note by
comparing the solutions of Figure 4.15 and Figure 4.16 that the solutions for M and P have a more
oscillatory behaviour initially for ϕ1 = ϕ2 = ε and ψ = 0 than for ϕ1 = ϕ2 = 0 and ψ 6= 0.
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With constant crowding, solutions grow exponentially despite the small number of initial cells, see
Figure 4.17. In both Figure 4.16 and 4.17, the legends of the graphs correspond to different choices
of ϕ2 = ε.

(a) The initial age distribution in Phase 1 is ϕ1 = ε =
0.001.

(b) The initial age distribution in Phase 1 is ϕ1 = ε =
0.1.

Figure 4.16: Example 4.9: The number density of dividing cells reach a steady limit after long time
when space limiting is applied using the crowding function f4. The limit is reached faster when the
initial age distributions are larger. Legend represents choices of ϕ2 = ε. There is no contribution from
cancer stem cells, i.e.ψ = 0.

Figure 4.17: Example 4.9: Exponential growth is obtained for a tumour of size ε that is left to grow
without space limitations. Here, ϕ1 = ε = 0.001 and if also ϕ2 = ε, the total number of initial cells
are 0.02 (units unspecified). Legend represents different choices of ϕ2 = ε. There is no contribution
from cancer stem cells, i.e.ψ = 0.
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Lastly, we illustrate that we do not necessarily get the same behaviour of the system with growing
solutions and a relapsing tumour if quorum sensing is assumed to exist. For this purpose, we choose
the crowding function

f5(p) =
1

0.035(p+ 0.05)
exp

(
− ln(0.05(p+ 0.05))2/2

)
, (4.8)

illustrated in Figure 4.13b.

Example 4.10. First, the same test as in Example 4.9 is carried out, with ϕ1 = ϕ2 = ε and ψ = 0,
but in this example with f(p) = f5(p). For every small initial age distribution ε tested, it holds
that M → 0 and P → 0 when t increases, see Figure 4.18. In a second approach, the small initial
age distributions are kept but ψ = k, where k > 0, is varied. The dynamics of the system changes
and even for a very small input function such as ψ = 0.01, the solutions reach a nonzero limit. An
illustration is seen in Figure 4.19 for ψ = 0.5 and ϕ1 = 0.001.

Figure 4.18: Example 4.10: When ψ = 0, the number density of dividing cells, M(t), and the total
number of cells, P (t), decreases to zero when quorum sensing is applied through the crowding function
f5.

39



Figure 4.19: Example 4.10: When ψ 6= 0, the number density of dividing cells, M(t), and the total
number of cells, P (t), reaches a nonzero limit when quorum sensing is applied through the crowding
function f5.
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5 Qualitative Behaviour

In this part of the report, the qualitative behaviour of the system is investigated. As many components
of the model are hard to determine experimentally, it is of importance to be able to detect overall
properties of the solutions. In the first section, 5.1, the results of the simulations using a constant
or nonconstant crowding function in Sections 4.1 and 4.2 are investigated theoretically. In particular,
equations for the long-term solutions or limit values for M(t) and P (t) are presented (under the
condition that the solution is not unbounded). In the subsequent section, 5.2, we analyse the results
of the simulations in Section 4.3, where it is investigated whether an almost eliminated tumour still
can cause harm. In Section 5.3, upper bounds for M(t) are computed for f = 1 and F (T1) > 1/2. In
accordance with all other numerical investigations of this M.Sc. thesis, we assume that T2 > T1 − T2.
In the case with a constant crowding function f , the properties of P (t) are given directly by the
properties of M(t) and we therefore choose to focus on the properties of M(t) only. Finally, in Section
5.4, the difference between the solutions with a constant ψ > 0 and ψ = 0 are computed analytically
for a constant crowding function f .

5.1 Long-Term Solutions

The unbounded, exponentially growing solutions in Examples 4.1–4.3, where the constant crowding
function f was chosen so that f > 1/(2F (T1)), can be described as follows: after mitosis, 2M(t) =
2f(P (t))n2(t, T2) = 2fn2(t, T2) expresses the number density of cells already in the model entering
Phase 1 of the next cycle, whereas F (T1) denotes the proportion of cells transferring from Phase 1 to
Phase 2. Collected, the factor 2fF (T1) can be thought of as the proportion of surviving cells through
one cell cycle, see Figure 5.1. When this quantity is larger than one, we get exponential growth. It
was mentioned in Example 4.2 that the solution for f = 0.67 grows very slowly compared to when f
was chosen to a larger constant. The reason is that the factor 2fF (T1) in the case with f = 0.67 is
only slightly larger than one.

Figure 5.1: The factor F (T1)2f(P ) is a measure of the proportion of surviving cells through one cell
cycle.

The remaining numerical results presented in Sections 4.1 and 4.2 can be summarized theoretically
using the results of Proposition 4 from the article of Maad Sasane [10]. In this report, the proposition
is reformulated in Theorem 5.1, here stated without proof (for a proof, the reader is referred to [10]).
The theorem explains the behaviour of the solutions as t → ∞ in Examples 4.4–4.7, observed in
Figures 4.6–4.7 and 4.9 – 4.11. In all these cases, the solution of M and P tend to constant limits
M∞ and P∞. Note that the theorem does not assure that such limits exist, but only what the limits
are if they exist. However, in the case with bounded solutions, Maad Sasane reasons that parameter
choices that do not lead to limits are very rare [10].

Theorem 5.1. Given that the limits ψ∞ := lim
t→∞

ψ(t), M∞ := lim
t→∞

M(t) and P∞ := lim
t→∞

P (t) exist,

then M∞ and P∞ in the two cases ψ∞ = 0 and ψ∞ > 0 can be computed as follows:

i.) If ψ∞ = 0, then either M∞ = P∞ = 0 or

f(P∞) = 1/(2F (T1)),

M∞ =
P∞

2
(
T1 + F (T1)T2 −

∫ T1

0
F (σ) dσ

) , (5.1)
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ii.) If ψ∞ > 0, then f(P∞) < 1/(2F (T1)) and P∞ and M∞ satisfy

(1− 2f(P∞)F (T1))P∞ = ψ∞

(
T1 + F (T1)T2 −

∫ T1

0

F (σ) dσ

)
,

M∞ =
1

2

(
P∞

T1 + F (T1)T2 −
∫ T1

0
F (σ) dσ

− ψ∞

)
.

(5.2)

We note that the limit values M∞ and P∞ are independent of the choices of ϕ1 and ϕ2, a result that
we observed in our simulations. This is a property worth to put some emphasis on: regardless of
initial data, the long term solutions will be the same. We also remark that the theorem can be used

in an application only if f , F (T1) and
∫ T1

0
F (σ) dσ somehow are biologically known.

In the case with a constant crowding function f = 0.6 and no input (ψ = 0), the theoretical limit
values taken from the first part of Theorem 5.1 are M∞ = P∞ = 0, which also was the result obtained
in Example 4.5. In Example 4.6, with crowding and ψ = 1, the limit values where approximately
determined to M∞ ≈ 3.07 and P∞ ≈ 115 from the graphics. By using the second part of Theorem
5.1, a similar result is obtained, M∞ ≈ 3.09 and P∞ ≈ 115. In the case with quorum sensing and
ψ = 0, the values from the graphics of Figure 4.11 read M∞ = 0.51 and P∞ = 16.3, while the values
from the first part of Theorem 5.1 becomes M∞ = 0.51 and P∞ = 16.3. These few examples illustrate
that the numerical implementation seem to correspond well with the theorem.

We end the section by further studying how the size of ψ affects the limit values M∞ and P∞. As
mentioned in Example 4.7 and in Section 4.3, Possibilities of Eliminating a Tumour, a larger value
for the total number of cells after long time is obtained when ψ is large than for small ψ. We also
observed that the limit for M∞ was smaller for a larger values of ψ than for a smaller values of ψ.

Example 5.1. We compute limit values M∞ and P∞ using Theorem 5.1 for different values of
ψ and using two different crowding functions: f1(p) = 1/ cosh(0.01p), representing crowding, and
f3(p) = 1

0.09(p+0.05) exp
(
− ln(0.05(p+ 0.05))2/2

)
, representing quorum sensing and crowding. See

Figure 5.2 for an illustration of the result. It can be concluded that the observations from our
simulations correspond to the theorem.

Figure 5.2: Limit values M∞ and P∞ as functions of ψ, computed using Theorem 5.1. Observe that
M∞ > 0 for all ψ also in the case with quorum sensing.
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5.2 Possibilities of Eliminating a Tumour

We head back to the question of whether an almost eliminated tumour will cause any future harm,
according to our model. When the tumour initially was eliminated entirely (ϕ1 = ϕ2 = 0), there is a
clear distinction between the cases with or without cancer stem cells: In the case with no cancer stem
cells (ψ = 0), nothing drives the growth of the tumour and therefore it remains being zero sized, while
in the case when there is a nonzero sized input from daughter cells of cancer stem cells (ψ > 0), the
tumour will re-establish itself, regardless of the choice of crowding function. The tumour also relapses
when a tiny fraction of the original tumour is left (ϕ1 = ε1 and ϕ2 = ε2). The conclusion is that as
long as there is some input to the system, either from daughter cells of cancer stem cells (ψ > 0) or
from a few remaining cancer cells (ϕ1 = ε1 and ϕ2 = ε2) that starts dividing again, the tumour will
grow if no space limitations are considered (f = 1). In this case, the number of cells will be very large
regardless of initial age distribution after some finite time. The explanation is again the growth factor
f2F (T1), causing exponential growth.

With crowding, the solutions will reach limit values M∞ and P∞, again according to Theorem 5.1.
As the initial data do not affect the long term solution, this result is not surprising, i.e. large or small
initial data lead to the same limit values. However, for smaller initial age distributions ε, a longer
time (and more generations through the cell cycle) is required to reach the limit. An interpretation
might be that if a larger number of the cancer cells initially are removed so that a tinier fraction of
the original tumour remains, there is more time to detect a recurring tumour. Nevertheless, as the
solution grows until it reaches its limit, the final size of the tumour might still be many times larger
than the post-treatment size and as large as if a larger proportion of the original tumour had been
left untreated. The final size is depending on the properties of the crowding function and on the size
of the input function.

In conclusion, it is difficult to visually draw a distinction between the cases of having input from
cancer stem cells and not having, both when using a constant crowding function and when using a
crowding function representing crowding. The reason is that remaining cancer stem cells themselves
can cause relapse of a tumour. However in the case where limit values are reached, the size of the
limits M∞ and P∞ are determined by ψ. Theorem 5.1 states that the values for ψ = 0 and ψ 6= 0 fulfils
different equations and in this sense it is possible to separate the cases ψ = 0 and ψ 6= 0. In addition,
there is a more oscillatory behaviour initially for ϕ1 = ϕ2 = ε and ψ = 0 than for ϕ1 = ϕ2 = 0 and
ψ 6= 0 in Figures 4.15 and 4.16, which means that it could be possible to distinguish the cases ψ = 0
and ψ 6= 0 also visually. This is something that should be investigated further.

There is a possibility that a tumour decreased to being almost zero sized does not relapse if quorum
sensing exists. If there is no contribution from cancer stem cells, such a tumour dies off completely.
Observe that this is all in accordance with the first part of Theorem 5.1. However, if there is a
nonzero contribution from cancer stem cells, the solutions again reach limits, P∞ and M∞. The limits
obtained for P are larger for larger values of ψ than for smaller values. An interpretation can be that
the tumour is more aggressive the more cancer stem cells it contains, which was proposed in [8].

5.3 Investigation of Upper Bound

As seen in Examples 4.1–4.3 of the Simulations chapter, the solution is unbounded and grows expo-
nentially for choices of the constant crowding function f such that f > 1/(2F (T1)). In this section we
want to investigate the growth properties of such unbounded solutions further. Approximations and
general properties of the solutions will be given both in the case ψ = 0 and ψ > 0, valid also when
not all model components (ϕ1, ϕ2 and properties of F (τ)) are known. It is often necessary to work
with approximate solutions when the knowledge about biological parameters is scarce.

An analytical expression forM(t) becomes complicated to handle even for the simplest of parameter
choices. This is true already for the very first interval t ∈ [T1 + T2], as illustrated in Example 5.2.
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Example 5.2. We use the specific choice of cumulative distribution function

F (τ) = 1− exp

(
−τ − c

a

)
, (5.3)

for which F ′(τ) and the transition rate h(τ) become particularly easy (h(τ) = 1/a), along with
constant ϕ1, ϕ2 and ψ. On the very first interval, M(t) can be computed as

M(t) =



ϕ2, 0 < t ≤ T2,(
1− e−

t−T2−c
a

)
(2ϕ2 + ψ) +

ϕ1

a
e−( t−T2a )(T1 + T2 − t), T2 < t ≤ 2T2,

(2ϕ2 + ψ)e−( t−T2−ca )
(
eT2/a − 1

)
+

+ (2ϕ2 + ψ)

((
2e

c
a − 2e−( t−2T2−c

a )
)
− 2

a
e−

t−2T2−2c
a (t− 2T2)

)
+

+
2ϕ1

a2
e(
−t+2T2+c

a )
(

(T1 + T2)(t− 3T2)− t2

2
+ tT2

)
+

+ ψe
c
a

(
1− e

−t+2T2
a

)
+

+
ϕ1

a
e−( t−T2a )(T1 + T2 − t),

2T2 < t ≤ T1 + T2.

(5.4)
See Appendix A for computations of this result.

The example motivates the need of approximate results. A further motivation comes from the
computational difficulty of determining both exact and approximate results, as the integral deter-
mining M(t) (and the integral determining P (t)) must be split on intervals, whose boundaries are
dependent on t. As we already know, this is a consequence of the properties of the kernels K(t, σ)
and L(t, σ) in the integral equations and of the terms involving the initial age distributions, which
have an impact on the solution only up until t = T1 + T2. As a reminder, the equation determining
M(t) for the case f = 1 is given by

M(t) =

∫ max(t−T2,0)

max(t−T1−T2,0)

(2M(σ) + ψ(σ))F ′(t− T2 − σ) dσ + ϕ2(t− T2) +

∫ T1

0

R(t, σ)ϕ1(σ) dσ. (5.5)

Figure 5.3: Intervals needed to compute exact (and approximate) solutions for M(t).

An illustration of how the intervals for M(t) must be split can be seen Figure 5.3. For the computation
of M(t) on the first few intervals, the solution is constructed as follows:

– On interval I1 = [0, T2], there is no contribution from the integral or from the term involving
R(t, σ), but only from ϕ2.
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– On interval I2 = [T2, 2T2], the integral has lower bound 0 and upper bound t− T2 and only M
from interval I1 contributes. There is also a contribution from the term involving R(t, σ), but
ϕ2 = 0.

– On interval I3 = [T2, T1 + T2], the limits of the integral are still 0 and t− T2, but here M from
both I2 and I3 contribute. Again, there is also a contribution from the term involving R(t, σ).

– On interval I4 = [T1 +T2, 3T2], the integral has lower bound t−T1−T2 and gets a contribution
from intervals I1, I2 and I3.

– On interval I5 = [T1 + 2T2, 4T2], there is a contribution from intervals I2, I3 and I4.

This is valid for our current choices T1 = 12.5 and T2 = 9, for which the first intervals of Figure 5.3
have boundaries at 0, 9, 18, 21, 27, 30.5, 36, 39.5, 43, 45, 48.5, 52 . . . In other words is it a demanding job
to compute M(t) when t is large.

In this section we find an upper bound for M(t). As the properties of P (t) are given by M(t),
we choose to focus on M(t) only. Before approximating M , we make a coarse approximation of the
integral involving R(t, σ):∫ T1+T2−t

0

R(t, σ) dσ =

∫ T1+T2−t

0

F ′(σ + t− T2)

1− F (σ)
dσ ≤ 1

1− F (T1)

∫ T1+T2−t

0

F ′(σ + t− T2) dσ =

=
F (T1)− F (t− T2)

1− F (T1)
≤ F (T1)

1− F (T1)
.

(5.6)
We will also make use of the estimate

0 ≤
∫ t

0

K(t, σ) dσ =

∫ max(t−T2,0)

max(t−T1−T2,0)

F ′(t− T2 − σ) dσ ≤ F (T1)− F (0) = F (T1) (5.7)

to find upper bounds for M(t) on the intervals Ik = [k(T1 + T2), (k + 1)(T1 + T2)], k ≥ 1. Both
estimates are based directly on the integral equation determining M , presented in total in Theorem
2.1.

Theorem 5.2. Let γk := maxt∈Ik ψ(t). The upper bound Mk for M(t) on interval Ik is given by

Mk = M0

(
8F (T1)3

)k
+

k∑
j=1

(
8F (T1)2

)k−j
(4F (T1)3 + 2F (T1)2 + F (T1)) max(γk−1, γk), (5.8)

where M0 is the upper bound on the interval [0, T1 + T2], depending on ϕ1, ϕ2 and ψ.

Proof. It can be shown by using induction that M(t) < Mk on interval Ik, where Mk is given by

Mk = 8F (T1)3Mk−1 +
(
4F (T1)3 + 2F (T1)2 + F (T1)

)
max(γk−1, γk). (5.9)

We can find an estimate M0 such that M(t) ≤ M0 – we will return to what this estimate becomes.
Assume that M(t) ≤ Mk−1 on interval Ik−1. The interval [k(T1 + T2), (k + 1)(T1 + T2)] is divided
into subintervals of length T2. On the first of these intervals we have from the approximation of the
integral involving K(t, σ) in (5.7) that

M(t) ≤ 2F (T1)Mk−1 + F (T1) max(γk, γk−1), (5.10)

(and from the integral equation for M(t) directly, see the expression in (5.5)). On the next subinterval
of length T2, the estimate (5.10) is used along with (5.7) and we get
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M(t) ≤ 2F (T1) (2F (T1)Mk−1 + F (T1) max(γk−1, γk)) + F (T1) max(γk−1, γk) =

= 4F (T1)2Mk−1 +
(
2F (T1)2 + F (T1)

)
max(γk, γk−1).

(5.11)

Finally, on the last subinterval of length T1 − T2 (we still assume that 2T2 > T1 > T2), we get

M(t) ≤ 2F (T1)
(
4F (T1)2Mk−1 +

(
2F (T1)2 + F (T1)

)
max(γk, γk−1)

)
+ F (T1) max(γk−1, γk) =

= 8F (T1)3Mk−1 +
(
4F (T1)3 + 2F (T1)2 + F (T1)

)
max(γk−1, γk).

(5.12)
The estimate of Mk on interval Ik gives rise to a recursion equation with the solution:

Mk = C
(
(2F (T1))3

)k
+

k∑
j=1

(
(2F (T1))3

)k−j
(4F (T1)3 + 2F (T1)2 + F (T1)) max(γk−1, γk), (5.13)

where C is given by M0, the upper bound for M(t) on the interval [0, T1 + T2].

By assuming that ψ is constant and identifying the geometric sum in (5.13), we can rewrite Mk as

Mk =

M0ψ

(
(2F (T1))3

)k
+ (4F (T1)3 + 2F (T1)2 + F (T1))

(
(2F (T1))3)k − 1

(2F (T1))3 − 1

)
ψ, if ψ 6= 0,

M0

(
(2F (T1))3

)k
, if ψ = 0,

(5.14)
where M0ψ represents a value of M0 dependent on ψ which can be approximated using that

M(t) =

∫ t−T2

0

(2M + ψ)F ′(t−T2−σ) dσ+

∫ T1

0

R(t, σ)ϕ1(σ) dσ ≤M0 +ψF (t−T2) = M0 +ψF (T1).

(5.15)
One estimate of M0 is computed in Appendix B to

M0 = ‖ϕ2‖∞ (2F (T1) + 2(2F (T2)− 1)F (T1 − T2)) + ‖ϕ1‖∞
(

2F (T1)

1− F (T1)
F (T1 − T2) +

F (T1)

1− F (T1)

)
.

(5.16)
Using the expression for M0ψ , the upper bound Mk from (5.14) can be rewritten as

Mk =


(M0 + ψF (T1))

(
(2F (T1))3

)k
+ (4F (T1)3 + 2F (T1)2+

+ F (T1))

(
(2F (T1))3)k − 1

(2F (T1))3 − 1

)
ψ,

if ψ 6= 0,

M0

(
(2F (T1))3

)k
, if ψ = 0,

(5.17)

A comparison between the upper bound for M(t) given by Mk in (5.17) and the numerical solution
from the Simpson’s implementation is found in Figure 5.4a. We have found a coarse approximation
for the upper bound.

Subtracting the term M0((2F (T1))3)k from Mk in (5.17), it is possible to tell a difference between
the cases ψ = 0 and ψ 6= 0. An illustration of this is seen in Figure 5.4b for the choice ϕ1 = ϕ2 = 1.
This distinction is only possible to make if it is manageable to get a good approximation of M0,
i.e. if all function values and constants needed to determine M0 are known – in the way described in
Appendix B or in some other way. Here, we assume that this is the case. The remaining term for
ψ 6= 0 does not depend on the choices of ϕ1 and ϕ2, but only on ψ and F (T1) – quantities that we
assume that we have good knowledge of.
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(a) The solution to M(t) computed using Simpson’s
rule (solid line) compared to an upper bound from
(5.17) (marked as +).

(b) Distinction between ψ = 0 and ψ 6= 0 seen by sub-
tracting the term M0((2F (T1))3)k from the expression
Mk for the upper bound in (5.17). For ψ = 0 the re-
maining quantity is zero.

Figure 5.4: Simulation of M(t) for ϕ1(τ) = ϕ2(τ) = 1 and ψ constant.

We end the section by making a new, coarser approximation of M0ψ for the interval [0, T1 + T2],
where only knowledge of F (T1) and the maximum values of ϕ1 and ϕ2 are needed. We proceed
similarly as in the proof of Theorem 5.2. On the first interval, t ∈ [0, T2], M(t) can be approximated
by

M(t) ≤ ‖ϕ2‖∞. (5.18)

On the subsequent interval of length T2, using the upper bound of the integral involving K(t, σ) from
(5.7) and the upper bound of the integral involving R(t, σ), (5.6), we have

M(t) ≤ (2‖ϕ2‖∞ + ψ)F (T1) + ‖ϕ1‖∞
F (T1)

1− F (T1)
, (5.19)

where the upper bound from the first interval, ‖ϕ2‖∞, is used as an approximate value of M . On the
last interval of length T1 + T2 − 2T2 = T1 − T2, the upper approximation from the second interval is
used, (5.19), yielding

M(t) ≤
(

2

(
(2‖ϕ2‖∞ + ψ)F (T1) + ‖ϕ1‖∞

F (T1)

1− F (T1)

)
+ ψ

)
F (T1) + ‖ϕ1‖∞

F (T1)

1− F (T1)
. (5.20)

The expression in (5.20) gives a value for the approximation M0ψ .
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5.4 Impact from the Input Function in the Linear Case

In this section, we investigate the impact from the input function ψ by computing the differences
Mψ(t)−M0(t) and Pψ(t)−P0(t) analytically for a constant crowding function f . Here, Mψ(t) depends
on a constant ψ > 0, whereas for M0(t), ψ = 0. From the set of integral equations of Theorem 2.1,
Mψ(t) is given by

Mψ(t) =

∫ max(t−T2,0)

max(t−T1−T2,0)

(2M(σ) +ψ(σ))F ′(t−T2−σ) dσ+ϕ2(t−T2) +

∫ T1

0

R(t, σ)ϕ1(σ) dσ, (5.21)

leading to the difference

Mψ(t)−M0(t) = f

(∫ t

0

K(t, σ)ψ dσ

)
= ψf

(∫ max(0,t−T2)

max(0,t−T1−T2)

F ′(t− σ − T2) dσ

)
. (5.22)

The expression in (5.22) can easily be computed for a general choice of the cumulative distribution
function F (τ):

Mψ(t)−M0(t) =


0, t ≤ T2,

ψfF (t− T2), T2 < t < T1 + T2,

ψfF (T1), t > T1 + T2.

(5.23)

Note that for t > T1 +T2, we only need to have knowledge of the constants f , ψ and F (T1) to visualise
the difference for M . We next study the difference in the total of number of cells, Pψ(t)−P0(t), which
can be calculated using the expression from P (t) from the integral equations of Theorem 2.1 given by

P (t) =

∫ t

0

L(t, σ)(2M(σ) + ψ(σ)) dσ +

∫ T1

0

S1(t, σ)ϕ1(σ) dσ +

∫ T2

0

S2(t, σ)ϕ2(σ) dσ, (5.24)

so that

Pψ(t)− P0(t) =

∫ t

0

L(t, σ)ψ dσ. (5.25)

We remind of the expression for L(t, σ):

L(t, σ) =


1, if 0 ≤ t− σ < T2,

1− F (t− T2 − σ), if T2 ≤ t− σ < T1,

F (T1)− F (t− T2 − σ), if T1 ≤ t− σ < T1 + T2,

0, otherwise.

(5.26)

Let G(τ) denote the primitive function of F (τ). Then the difference Pψ(t)− P0(t) is given by

Pψ(t)− P0(t) =


ψt, t ≤ T2,

ψ (t+G(0)−G(t− T2)) , T2 < t ≤ T1,

ψ (F (T1)(t− T1) +G(0)−G(t− T2) + T1) , T1 < t ≤ T1 + T2,

ψ (F (T1)T2 +G(0)−G(T1) + T1) , t > T1 + T2.

(5.27)

Note that we in general only have knowledge of G(τ) if the function F (τ) is completely known.

Example 5.3. We investigate the differences Mψ(t)−M0(t) and Pψ(t)−P0(t) for the specific choice
of cumulative distribution function

F (τ) = 1− exp

(
−τ − c

a

)
, (5.28)

with c = 2.5, d = 0.25 and a = T1−c
log(1/d) , similarly as in previous simulations of this M.Sc. thesis. The

result is visualised in Figure 5.5 for f = 1 and ψ of varying magnitude.
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Figure 5.5: Impact from input function ψ computed by analytically taking the difference between the
solutions where ψ > 0 and ψ = 0.

Computations of the difference Mψ(t)−M0(t) and Pψ(t)−P0(t) are not possible to do analytically
if the crowding function f is nonconstant. However, the result from the case with f constant has an
important role as a constant crowding function is valid for a system where the population size yet is
too small for space limitations to have an effect.
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6 Investigation of Numerical Error

The error and order of accuracy of the trapezoidal and Simpson’s implementations are investigated
for a few numerical examples, to validate that the implementations are as accurate as stated in the
chapter Numerical Methods, (3), and that the error is kept sufficiently small. First, in Section 6.1, the
order of accuracy of the implementations is studied, both for f constant and f nonconstant. In Section
6.2, the error is computed against a reference taken to be the correct solution, obtained numerically
using a very small step size. Finally, in Sections 6.3 and 6.4, we derive analytical expressions for the
error in the linear and the nonlinear case (f constant and f nonconstant), in the linear case using
both the trapezoidal rule and Simpson’s rule and in the nonlinear case using the trapezoidal rule only.

6.1 Numerical Investigation on the Order of Accuracy

A method of order p has an error expansion of the form E(h) = Chp +O(hr), where C is some fixed
constant determined by the integrand and where p < r. See the Euler-Maclaurin summation formula
of Lemma 3.1, valid for the trapezoidal rule with a sufficiently smooth integrand, for comparison.
Supposing that the error from the computation of M(t) can be expressed in this way, we let Mh

denote M(T ) approximated using step size h and form the quotient

Mh −Mh/2

Mh/2 −Mh/4
=

Chp − C(h/2)p +O(hp+1)

C(h/2)p − C(h/4)p +O(hp+1)
=

1− 2−p +O(h)

2−p − 2−2p +O(h)
= 2p +O(h). (6.1)

A value p for the order of accuracy can thus be estimated as

p = log2

(∣∣∣ Mh −Mh/2

Mh/2 −Mh/4

∣∣∣) . (6.2)

The quotient (6.2) is computed multiple times to get a reliable measure of the order of accuracy
using a sequence of different step sizes, h, h/2, h/4, h/8, h/16, . . . . This is to assure that we have
reached the asymptotic region of the problem, i.e. that the step size h is made sufficiently small to
get approximately the same value of p in subsequent computations of (6.2). The order of accuracy
for P (T ) is computed in the same manner. It is of importance to compare the very same point in the
discretized solution of M(T ) and P (T ) for the various step sizes, i.e. to compare the points Mh(ih),
Mh/2(2i · h2 ), Mh/4(4i · h4 ) etc., where T = ih. If values are compared for points that are one step of

length h off from each other, i.e. if we for instance compare Mh(ih) and Mh/2(2i · h2 − h), it is not
possible to get a reliable measure of the accuracy. The quotient (6.2) does not tell anything about the
size of the error, but only about the relative error when solutions computed with varying step sizes
are compared. It is here assumed that the correct, analytical value of M and P are unknown.

In this way, it is possible to validate the numerical implementation and assure that the expected
order of accuracy is obtained. If this is not the case, there might be an error in the implementation.
Alternatively, in the case with crowding, the discontinuity at t = T2 might cause a reduction in the
order of accuracy. In the case with a constant crowding function, f = 1, the order of accuracy was
validated numerically both for the trapezoidal and for Simpson’s rule, yielding second and fourth order
accuracy (p = 2 and p = 4 respectively), see Figure 6.1. In the case with crowding (f nonconstant),
second order accuracy was validated using the scheme based on the trapezoidal rule, see Figure 6.2.
The order of accuracy was determined for the four intervals 0 < t ≤ T2, T2 < t ≤ T1, T1 < t ≤ T1 +T2

and T1 + T2 < t ≤ T . In the example calculations documented here, T = 100 (larger values of T were
also tested). Tests were performed for h = 1/2k, k = 1, 2, . . . , 9.
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Figure 6.1: Investigation of the order of accuracy for the case f = 1. Fourth order accuracy is obtained
for Simpson’s rule and second order accuracy for the trapezoidal rule. The choice of ψ, ϕ1 and ϕ2

does not affect the result.

Figure 6.2: Investigation of the order of accuracy for the case f(p) = 1/ cosh(0.01p) and the trapezoidal
implementation. Dark blue, dark yellow and green fields indicate an order of accuracy slightly different
from p = 2 for the largest step size h = 1/2. However, the discrepancy is small. The choices of ψ, ϕ1

and ϕ2 do not affect the result.

6.2 Numerical Investigation of the Error

We are now interested in determining the size of the absolute error in the implementation. This is
done numerically, where we assume that the correct, analytical value of M(T ) and P (T ) now are given
and want to determine the error introduced by approximating the true values M and P by Mh and
Ph, computed using the step size h. In practice, M and P are computed using a much smaller step
size than what is normally chosen (in this particular case we choose h = 0.001 and T = 100, solving

51



the system using 105 points). The error can be written as an expansion of the form

Mh −M = C1h
p + C2h

r + . . . , (6.3)

where C1 and C2 are some constants given by the problem and where p < r. Ideally, p = 2 for the
trapezoidal rule and p = 4 for Simpson’s rule (under the condition that the integrand is sufficiently
differentiable). In Section 6.1, we obtained the expected results for the both methods (where Simpson’s
rule was used only for a constant crowding function where the integrand always is C3). We will now
give further evidence for this. Using (6.3), we can approximate the constant p1 from

log |Mh −M | = log |C1|+ p1 log h+O(h). (6.4)

In Figures 6.3–6.5, the error is plotted against the step size h for varying crowding functions f . The
largest step size that theoretically can be used is h = 0.5 for our current choice of T1, as we must
choose the grid so that a grid point hits T1 exactly. It is again validated that we obtain second order
accuracy using the trapezoidal rule and fourth order accuracy using Simpson’s rule. The absolute
error is slightly larger in the computations for P than in the computations for M . As Simpson’s rule
for a constant crowding function is fourth order accurate, the error can be decreased with an increased
number of integration point much more rapidly than in the case with a nonconstant crowding function.

Figure 6.3: Error (solid line) plotted against step size for constant crowding function f = 1 and input
function ψ = 0. Dotted line has slope four and a comparison yields that the solution is fourth order
accurate using Simpson’s rule.
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Figure 6.4: Error (solid line) plotted against step size for a crowding function representing crowding,
f(p) = f1(p) = 1/ cosh(0.01p). The input function is chosen to ψ = 0. Dotted line has slope two (note
that the slope is the same for M and P ) and a comparison yields that the solution is second order
accurate using the trapezoidal rule.

Figure 6.5: Error (solid line) plotted against step size for a crowding function representing quorum
sensing and crowding, f(p) = f5(p). The input function is chosen to ψ = 2. Dotted line has slope two
and a comparison yields that the solution is second order accurate using the trapezoidal rule.

We return to Romberg’s method, described in Lemma 3.2, and ask the question whether it is
possible to improve the second order accuracy obtained through the trapezoidal rule to fourth order
accuracy by using this method. The result is visualised in Figures 6.6–6.8. It can be validated both for
crowding functions representing crowding and crowding functions representing quorum sensing that it
is possible to obtain an order of accuracy of at least three. Tests are performed for various end points
T , to study whether the same order of accuracy is obtained for the computations regardless of in what
point the solution is investigated. The results are visualised here for T = 12, T = 50 and T = 100.
For large T , fourth order accuracy is obtained, see Figures 6.6-6.7. The reason why we have a more
accurate solution for larger T than for e.g.T = 12, close to the discontinuity, is that the discontinuity
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does not affect the computation of M or P for large t. Third order accuracy is obtained for T = 12,
see Figure 6.8. This is a much better result than the second order accuracy obtained using Simpson’s
rule. In the latter case, the error caused by the discontinuity at the point t = T2 propagates and
introduces an error for t > T2, Using Romberg’s method, the error does not have as large an impact.

Figure 6.6: Applying Romberg’s method: Error (solid line) plotted against step size for a crowding
function representing crowding, f(p) = f1(p). The input function is chosen to ψ = 0 and T = 100.
Dotted line has now slope four and a comparison yields that the solution is fourth order accurate.

Figure 6.7: Applying Romberg’s method: Error (solid line) plotted against step size for f(p) = f1(p).
The input function is now chosen to ψ = 2 and T = 60. Dotted line has slope four and a comparison
yields that the solution is fourth order accurate.
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Figure 6.8: Applying Romberg’s method: Error (solid line) plotted against step size for a crowding
function representing quorum sensing and crowding, f(p) = f5(p). Now, T = 12 and ψ = 0. Dotted
line has slope three. A comparison yields that the solution is third order accurate.

We saw in Section 3.5 that Romberg’s method of order two, which is here applied, agrees with
Simpson’s rule and yields fourth order accuracy under the condition that the integrand is C3. If this
was the case when crowding is taken into account, we should have obtained a slope of four, illustrating
fourth order accuracy, in Figures 6.6–6.8 and in fact, we do for large t. The order of accuracy obtained
is maximally four and always considerably larger than two in the examples. It can thus be concluded
that it is possible to improve the order of accuracy notably using Romberg’s method. However, the
degree of improvement seems to vary between different T . We also note that for small h, the absolute
size of the error is very small.

6.3 Analytical Investigation of the Error - the Linear Case

After having assured numerically that the size of the error decreases as expected when h is increased
and that the numerical error is sufficiently small, we end the chapter by finding analytical expressions
for the error, in this section first in the linear case (for a constant crowding function f). We will see
that is not trivial to make such computations. A constant input function ψ is used, similarly as in the
simulations section, and in accordance with all other numerical work of this report, we assume that
2T2 > T1 > T2. We choose to focus on the case t > T1 + T2 and to find an expression for the error in
the equation determining M(t):

M(t) =

∫ t−T2

t−T1−T2

F ′(t− T2 − σ)(2M(σ) + ψ) dσ. (6.5)

We note that the distance between the end points of the integral in (6.5) is T1.
Returning to the Euler-Maclaurin summation formula from Lemma 3.1, we remember that the

trapezoidal rule approximates the integral
∫ b
a
g(x) dx as

∫ b
a
g(x) dx ≈ T (h), where

T (h) =

∫ b

a

g(x) dx+
h2

12
[g′(b)− g′(a)]− h4

720
[g′′′(b)− g′′′(a)] +

h6

30240
[g(5)(b)− g(5)(a)]+

+ · · ·+ c2rh
2r[g(2r−1)(b)− g(2r−1)(a)] +O(h2r+2),

(6.6)

for some constants c2r. Neglecting higher order terms, the error E from computing
∫ b
a
g(x) dx in one
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step (so that h = b− a), can be written as

E =
(b− a)3

12
g′′(ξ) =

h3

12
g′′(ξ), for some ξ ∈ [a, b]. (6.7)

This follows from the mean value theorem, stating that

g′(b)− g′(a)

b− a
≈ g′′(ξ), for some ξ ∈ [a, b] (6.8)

(given that g is C2). Using a composite method, the global truncation error is obtained by taking the
sum of the local truncation errors [3]. Thus, using the composite trapezoidal rule with n segments,
where each segment is given by [a+ (i− 1)h, a+ ih] and the step size is h = (b− a)/n, the total error
Et is given by a summation of the errors on each segment, Ei. In other words,

Et =

n∑
i=1

Ei =
h3

12

n∑
i=1

g′′(ξi) =
(b− a)3

12n3

n∑
i=1

g′′(ξi), (6.9)

where ξi is a point on segment i. The total error can be rewritten as

Et =
(b− a)3

12n2

n∑
i=1

g′′(ξi)

n
, (6.10)

where
g′′(ξi)

n
can be interpreted as a mean value of g′′ on the interval [a, b].

In the equation determining M(t), Ei is given by

Ei =
T 3

1

12n3

(
2M ′′(ξi)F

′(t− T2 − ξi)− F ′′(t− T2 − ξi)4M ′(ξi) + (2M(ξi) + ψ)F (3)(t− T2 − ξi)
)

(6.11)
for ξi ∈ (t−T1−T2, t−T2). The value of M(t) must be known to calculate the error, which is an issue,
as M(t) hardly can be calculated analytically. We must therefore replace M(t) by some approximated
upper bound, for instance the one determined in Section 5.3. The error formula then reduces to

Ei =
T 3

1

12n3
(2M(ξi) + ψ)F (3)(t− T2 − ξi). (6.12)

For Simpson’s rule, the error E from calculating
∫ b
a
g(x) dx, using one segment only and neglecting

higher order terms, becomes

E = − (b− a)5

2880
g(4)(ξ) = −h

5

90
g(4)(ξ), where a < ξ < b and b− a = 2h [7]. (6.13)

For a multiple-segment implementation of Simpson’s rule, the error for one segment, [a+2(i−1)h, a+
2ih], becomes

Ei = − (a+ 2(i− 1)h− (a+ 2ih))
5

2880
g(4)(ξ) = −h

5

90
g(4)(ξ), where a+ 2(i− 1)h < ξi < a+ 2ih, (6.14)

leading to the total error

Et =

n/2∑
i=1

Ei = −h
5

90

n/2∑
i=1

g(4)(ξi) = − (b− a)5

90n5

n/2∑
i=1

g(4)(ξi) = − (b− a)5

90n4

n/2∑
i=1

g(4)(ξi)

n
. (6.15)
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The upper summation bound n/2 is due to the fact that two segments of length h are joined to compute
one approximate value using Simpson’s rule. In the trapezoidal implementation, an approximation
is computed for every segment of length h. It is now possible to identify from (6.13) that the local
error in the Simpson implementation is O(h5) whereas the global error, in (6.15), is O(h4), as stated
earlier. In the computation of M(t), using an upper bound for M on each interval, the total error can
be written as

Et = − (T1)5

90n5

n/2∑
i=1

(2M(ξi) + ψ)F (5)(t− T2 − ξi). (6.16)

This holds under the assumption thatM(t) is calculated at a time t such that the number of integration
points n are even. As we know that the distance between the end points of the integral determining
M is T1, we can for the computation of M specifically choose n = T1/h in such a way that n is even.
However, for the sake of completeness, we also investigate the error in the case when n is odd. The
error formula is slightly different in this case, as one step of Simpson’s 3/8 rule is applied in the last

step of the computations. In general, computing the integral
∫ b
a
g(x) dx using one step of Simpson’s

3/8 rule yields the error

Et = − (b− a)5

6480n5
g(4)(ξ) = −3h5

80
g(4)(ξ), where a < ξ < b and b− a = 3h [7]. (6.17)

The total error for M(t) when n is odd thus becomes

Et = − (T1 − 3h)5

90n5

(n−3)/2∑
i=1

(2M(ξi) +ψ)F (5)(t−T2− ξi)−
3h5

80
(2M(ξi) +ψ)F (5)(t−T2− ξend), (6.18)

where ξi ∈ (t− T1 − T2, t− T2 − 3h) and ξend ∈ (t− T2 − 3h, t− T2).
However, using a very coarse estimate as the upper bound for M on each interval, the estimates

of the error becomes coarse, both for the trapezoidal and for the Simpson implementation. As the
methods are convergent, meaning that |M −Mh| → 0 as h→ 0, the reference computed numerically
in Section 6.2 gives a reliable measure of the error that fits our purpose well and we do therefore not
compute an upper bound of the error using the derived analytical expression.

6.4 Analytical Investigation of the Error - the Nonlinear Case

For a nonconstant crowding function f , the numerical error is investigated analytically only for the
trapezoidal rule. We start by introducing the notation in Table 1.

Table 1: Notation used in the nonlinear error analysis

Notation Explanation
Pcorr(t), Mcorr(t) Correct, analytical value of P (t) and M(t),
Pdist(t), Mdist(t) Disturbed value of P (t) and M(t), influenced by errors,
Perr(t), Merr(t) Total error in P (t) and M(t) at time t,
∆P (t), ∆M(t) Truncation error from the trapezoidal scheme in the

computation of the main integrals in P (t) and M(t),

Rcorr(t) Correct, analytical value of the integral
∫ T1

0
R(t, σ)ϕ1(σ) dσ,

∆R(t), ∆S1(t), ∆S2(t) Error from the computation of the respective integrals
(exist only up to t = T1 + T2.).
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The error in the equation determining P (t) is given by

Perr(t) = Pdist(t)− Pcorr(t) =

∫ t

0

L(t, σ)(2Merr(σ)) dσ + ∆S1(t) + ∆S2(t) + ∆P (t)

⇔ Perr(t)−
h

2
L(t, t)Merr(t) =

∑
[Merr : Lterms] + ∆S1(t) + ∆S2(t) + ∆P (t)

⇔ Perr(t)−
h

2
Merr(t) =

∑
[Merr : Lterms] + ∆S1(t) + ∆S2(t) + ∆P (t),

(6.19)

where we denote by
∑

[Merr : Lterms] the summation of terms approximating the integral∫ t
0
L(t, σ)2Merr(σ) dσ with the trapezoidal rule, (involving the computations on separate intervals

given by the discontinuities in L(t, σ)). To get an estimate of the error from the equation determining
M(t) we start be linearising f around Pcorr(t),

f(Pdist(t)) ≈ f(Pcorr(t)) + f ′(Pcorr(t))Perr(t). (6.20)

Then,

Mdist(t) =
(
f(Pcorr(t)) + f ′(Pcorr(t))Perr(t)

)(∫ tend

tstart

K(t, σ)(2M(σ) + 2Merr(σ) + ψ(σ)) dσ+

+Rcorr(t) + ∆R(t) + ϕ2(T2 − t) + ∆M(t)

)
,

(6.21)
where tstart and tend are the boundaries of the integral determining M(t). We introduce the notation

Φ(t) =

∫ tend

tstart

K(t, σ)(2M(σ) + 2Merr(σ) +ψ(σ)) dσ+Rcorr(t) + ∆R(t) +ϕ2(T2 − t) + ∆M(t) (6.22)

to simplify the expression for Mdist(t) so that

Mdist(t) =
(
f(Pcorr(t)) + f ′(Pcorr(t))Perr(t)

)
Φ(t). (6.23)

Subtracting the correct solution,

Mcorr(t) = f(Pcorr(t))

(∫ tstart

tend

K(t, σ)(2M(σ) + ψ(σ)) dσ +Rcorr(t) + ϕ2(T2 − t)
)
, (6.24)

from Mdist(t) gives an equation in Perr(t) and Merr(t):

Merr(t)− f ′(Pcorr(t))Perr(t)Φ(t) = f(Pcorr(t))

(∫ tstart

tend

K(t, σ)(2Merr(σ)) dσ + ∆R(t) + ∆M(t)

)
≈

≈ f(Pcorr(t))
(∑

[Merr : Kterms] + ∆R(t) + ∆M(t)
)
,

(6.25)
where we denote by

∑
[Merr : Kterms] the summation of terms approximating the integral∫ tstart

tend
K(t, σ)(2Merr(σ)) dσ. Collected, the system from which Perr(t) and Merr(t) can be determined

thus becomes

[
1 −f ′(Pcorr(t))Φ(t)
−h2 1

] [
Merr(t)
Perr(t)

]
=

[
f(Pcorr(t)) (

∑
[Merr : Kterms] + ∆R(t) + ∆M(t))∑

[Merr : Lterms] + ∆P (t) + ∆S1(t) + ∆S2(t)

]
. (6.26)
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The system is of the form [
1 a
b 1

] [
Merr(t)
Perr(t)

]
=

[
C
D

]
. (6.27)

Assuming the matrix is non-singular, a solution is given by
Merr(t) =

C − aD
1− ab

,

Perr(t) =
D − bC
1− ab

.

(6.28)

For the very first interval, where t < T2, the system reduces to[
1 −f ′(Pcorr(t))ϕ2(T2 − t)
−h2 1

] [
Merr(t)
Perr(t)

]
=

[
0∑

[Merr : Lterms] + ∆P (t) + ∆S1(t) + ∆S2(t)

]
.

(6.29)
Using upper estimates for all terms denoting an error, ∆P , ∆M , ∆S1 and ∆S2, it can be concluded
that

Merr(t) /
(f ′(Pcorr(t))ϕ2(T2 − t)) (

∑
[Merr : Lterms] + ∆P (t) + ∆S1(t) + ∆S2(t))

1− h
2 f
′(Pcorr(t))ϕ2(T2 − t)

,

Perr(t) /

∑
[Merr : Lterms] + ∆P (t) + ∆S1(t) + ∆S2(t)

1− h
2 f
′(Pcorr(t))ϕ2(T2 − t)

.

(6.30)

It now remains to find expressions for the terms involved in the solutions, in order to be able to
draw a conclusion about the order of the error:

– The expressions Mcorr and Pcorr are treated as constants and if the error is to be determined
numerically, Mcorr and Pcorr are replaced by the numerical solution for M(t) and P (t).

– The trapezoidal approximations
∑

[Merr : Kterms] and
∑

[Merr : Lterms] are given by αh and βh,
for some constants α and β. The integrals are divided in different intervals depending on for
what t we investigate the error and the properties of K(t, σ) and L(t, σ).

– The errors ∆P and ∆M are given from the calculations of the integrals
∫ t

0
L(t, σ)(2M(σ) +

2Merr(σ) + ψ(σ)) dσ and
∫ tend

tstart
K(t, σ)(2M(σ) + 2Merr(σ) + ψ(σ)) dσ, where the error can be

approximated using the error formula for the trapezoidal rule in (6.9) and where M(σ) and
Merr(σ) are approximated from above by constants determined by the maximum value on the
interval of integration for the numerical solution of M(t) and Merr respectively.

– The errors ∆S1, ∆S2 and ∆R can be computed directly using the error formula for the trape-
zoidal rule in (6.9).

– The expression Φ(t) can be computed as

Φ(t) =
Mcorr(t)

f(Pcorr(t))
+
∑

[Merr : Kterms] + ∆R(t) + ∆M(t), (6.31)

for t > T2.

Computing the error in the very first points, t = 0 and t = h, we get

Perr(0) = ∆S1(0) + ∆S2(0) = A1h
2,

Merr(0) = f ′(Pcorr(0))Perr(0)ϕ(T2) = A2h
2,

(6.32)
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for some constants A1 and A2 and

Merr(h) /
f ′(Pcorr(h))ϕ(T2 − h) [(h/2)Merr(0) + ∆P (t) + ∆S1(h) + ∆S2(h)]

1− h
2 f
′(Pcorr(h))ϕ2(T2 − h)

= A3h
2,

Perr(h) /
(h/2)Merr(0) + ∆P (t) + ∆S1(h) + ∆S2(h)

1− h
2 f
′(Pcorr(h))ϕ2(T2 − h)

= A4h
2,

(6.33)

for some constants A3, A4. By recursive computation of Merr(t) and Perr(t) in this way, it is possible
to see that the error at every point is O(h2).

Sample calculations are not performed to compute a bound for the error using the derived formulas.
However, the section demonstrates how an error analysis could be performed for the problem.
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7 Discussion and Future Work

In this M.Sc. thesis, the system of PDEs describing the number densities in the two phases of the cell
cycle was initially derived. The equivalent system of integral equations was implemented and solved
numerically in Matlab using the trapezoidal and Simpson rules, and in the former case, also by
applying Romberg’s method. Simulations of the notions of crowding and quorum sensing have been
done along with simulations with constant crowding, visualising systems that grow exponentially or
approach a steady state for the total number of cells. In a case study examining whether an almost
zero sized tumour can relapse, it was found that the choices of crowding function, input function and
initial age distributions all contribute. A tumour is kept zero sized only if it is assumed that quorum
sensing exists or if the tumour is removed completely and no cancer stem cells exist.

Due to the characteristics of the coupled integral equations, it was not manageable to solve the
system involving nonlinearities (the system for f nonconstant) using Simpson’s rule, but only using the
trapezoidal rule, a second order method. An improvement of the solution could therefore have been to
adopt a method of variable step length to solve the set of coupled integral equations, yielding a more
accurate implementation. An alternative is to use so called Richardson extrapolation to eliminate the
constants of the error expansion

E = C1h
p + C2h

r + . . . (7.1)

Romberg’s method is a special version of Richardson extrapolation useful when the powers of h are
multiples of 2. We have been able to demonstrate the usefulness of the method for our particular
problem. It was shown, in Section 6.2, where the order of accuracy and numerical error were studied
using Romberg’s rule, that the order of accuracy could be improved using Romberg’s method of second
order to third or even fourth order accuracy. As the integrand of the integral determining M is not
C3 at the point t = T2, the error expansion (7.1) for M does not have only even powers of h when t
is small and therefore, only third order accuracy is obtained.

For choices of f such that f is constant for small population sizes and where the initial population
size for t ≤ T2 is below this value, it could in fact be possible to avoid the problem with the discontinuity
totally. However, such an f , being piecewise differentiable, adds further complications as the integrals
determining M and P must be split wherever the population size reaches a level P where f(P ) is
nondifferentiable. This is not taken into account in the current implementation and therefore it is
equally difficult to use Simpson’s rule in a satisfactory way in the case with such a crowding function
described.

Despite the issues with Simpson’s rule, the numerical implementation has served its purpose well
also in the case with f nonconstant, enabling qualitative studies of the model through numerical
simulations. In addition, we have been able to numerically validate second order accuracy for the
trapezoidal rule and fourth order accuracy using Simpson’s rule (when applicable). For step sizes in
the order of h = 10−4, the error in the computations could be decreased to machine epsilon.

An advantage of the current implementation of the model is that model components easily can be
altered. On a long term, it would be interesting to compare the model to experimental data to gain
knowledge about reasonable choices of the initial age distributions ϕ1 and ϕ2, the crowding function
f , the cumulative distribution function F (τ) and the duration of each phase, T1 and T2. In its current
stage, the model should be thought of as a simplified model of the cell cycle, yielding qualitative
results. As no experimental data is used to design a precise crowding function or the initial age
distributions, the results of the simulations will of course not tell the size in number of cells of some
real life tumour. Nor are the function choices scaled in such a way that the time in number of hours
for a solution to reach its limits M∞ and P∞ are the ones stated in the chapter, in real life.

Concerning the investigations on qualitative behaviour, it might be challenging to experimentally
have knowledge about the values of the cumulative distribution function at more points than only
F (T1), i.e. for instance F (T2) and F (T1 − T2). The choice of a Weibull distribution for the cumu-
lative distribution function in the simulations of this M.Sc. thesis was only theoretical. The lack of
information is a strong reason to why an approximation where as few data as possible are needed is
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preferred to use, to find for instance the upper bound for M . The upper bounds obtained in this
study are very coarse. It would therefore be beneficial if the numerical scheme introduced could be
used to analytically approximate a narrow upper and/or lower bound for M(t). However, the lengths
of the phases T1 and T2, being such that T2 < T1 < 2T2, in combination with the characteristics of
the kernels of the integral equations, complicates the analytical computations of such approximations
of the solutions even in the easiest of settings. The reason is that the time line must be split into
many small intervals, where the solution for M from multiple of these small intervals contribute to
the computation of M(t), a situation described in the section Investigation of Upper Bound, 5.3. The
consequence is that computations quickly become hard to overlook. Returning to the coarse upper
approximation, it might however still be useful in a situation where a constant crowding function is
applied to model the system only for small population sizes, before space limitations have an impact
on the system.

The differences between ψ = 0 and ψ 6= 0 can be seen in simulations where quorum sensing is
assumed to exist and the initial number of cells is small. The total number of cells turns to zero
if no cancer stem cells are present (ψ = 0), but grows otherwise to some limit value (determined
by Theorem 5.1). The value of ψ also matters where a constant crowding function is chosen such
that f < 1/(2F (T1)). The solution decreases to zero if ψ = 0 but reaches a nonzero limit if ψ > 0.
Moreover, there are differences between ψ = 0 and ψ > 0 in the upper bound for the number density
of dividing cells at time t for f constant, as discussed in Section 5.3. The impact of ψ can also be
investigated by analytically studying the difference in M(t) for ψ = 0 and ψ 6= 0 with f constant, as
in Section 5.4.

7.1 Future Work

Future work includes to further investigate the impact from cancer stem cells. One possibility is to
create an input function dependent on the total number of cells in the system, i.e.ψ(t) = ψ(P (t)). In
this way it could be possible to model cancer stem cells that act only when the total number of cells
is small. The consequence could be for a tumour with this property that it relapses more easily, as
the cancer stem cells always take over for small enough population sizes. In the altered model, there
would be competition between the effect of the crowding function and the input function.

Other questions of interest are:

– The growth properties and growth rate of M(t) and P (t) in general and how they depend on
input from cancer stem cells, ψ(t),

– The convergence rate to limits M∞ and P∞ dependent on ψ (already briefly discussed at the
end of Section 4.2),

– The fluctuating behaviour of M(t) before it reaches a steady limit. For small initial data it was
found in Section 4.3 that the solutions are more fluctuating if the system is driven by remaining
cancer cells than if it is driven by daughter cells of cancer stem cells only. Investigating this
difference could be a useful approach to distinguish the cases ψ = 0 and ψ 6= 0 for small initial
data.

– The study of the impact from cancer stem cells represented by ψ using statistical methods,
where the model is compared to and used together with experimental data. A goal would be to
try the hypothesis ψ = 0.
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Appendices

A Solution on First Interval

The solution for M(t) on the interval t ∈ [0, T1 + T2] is computed, using the cumulative distribution
function

F (τ) = 1− exp

(
−τ − c

a

)
(A.1)

and arbitrary constant ϕ1, ϕ2 and ψ.
On the first subinterval of length T2, M(t) is given directly by

M(t) = ϕ2. (A.2)

For the consecutive subintervals, we need the computation∫ T1

0

R(t, σ)ϕ1(σ) dσ =

∫ T1+T2−t

0

F ′(σ + t− T2)

1− F (σ)
ϕ1 dσ =

=

∫ T1+T2−t

0

1

a
e−( t−T2a )ϕ1 dσ =

ϕ1

a
e−( t−T2a )(T1 + T2 − t) := Rterm(t).

(A.3)

On the second interval of length T2, i.e. where t ∈ [T2, 2T2], M(t) is calculated as

M(t) =

∫ t−T2

0

F ′(t− T2 − σ)(2M(σ) + ψ) dσ +

∫ T1

0

R(t, σ)ϕ1 dσ =

= F (t− T2)(2ϕ2 + ψ) +Rterm(t) :=

=
(

1− e−
t−T2−c

a

)
(2ϕ2 + ψ) +

ϕ1

a
e−( t−T2a )(T1 + T2 − t).

(A.4)

Finally, on the last subinterval, where t ∈ [2T2, T1 + T2], M(t) is given in all its ugliness from

M(t) =

∫ t−T2

0

F ′(t− T2 − σ)(2M(σ) + ψ) dσ +

∫ T1

0

R(t, σ)ϕ(σ) dσ =

=

∫ T2

0

F ′(t− T2 − σ)(2ϕ2 + ψ) dσ +

∫ t−T2

T2

F ′(t− T2 − σ)(2M(σ) + ψ) dσ +Rterm(t),

(A.5)

where ∫ T2

0

F ′(t− T2 − σ)(2ϕ2 + ψ) dσ = e−( t−T2−ca )
(
eT2/a − 1

)
(2ϕ2 + ψ) (A.6)

and ∫ t−T2

T2

F ′(t− T2 − σ)(2Mii + ψ) dσ =

= (2ϕ2 + ψ)

((
2e

c
a − 2e−( t−2T2−c

a )
)
− 2

a
e−

t−2T2−2c
a (t− 2T2)

)
+

+
2ϕ1

a2
e(
−t+2T2+c

a )
(

(T1 + T2)(t− 3T2)− t2

2
+ tT2

)
+ ψe

c
a

(
1− e

−t+2T2
a

)
+Rterm(t).

(A.7)
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All in all, M(t) on the third interval is thus given by

M(t) = (2ϕ2 + ψ)e−( t−T2−ca )
(
eT2/a − 1

)
+ (2ϕ2 + ψ)

((
2e

c
a − 2e−( t−2T2−c

a )
)
− 2

a
e−

t−2T2−2c
a (t− 2T2)

)
+

+
2ϕ1

a2
e(
−t+2T2+c

a )
(

(T1 + T2)(t− 3T2)− t2

2
+ tT2

)
+ ψe

c
a

(
1− e

−t+2T2
a

)
+

+
ϕ1

a
e−( t−T2a )(T1 + T2 − t).

(A.8)
It is possible to continue calculating an expression for M(t) for arbitrary t in a similar manner.

Only a slight modification of the calculations gives an upper approximation of M(t) in the case with
arbitrary, non-constant ϕ1 and ϕ2 where ϕ1 and ϕ2 in the expressions are replaced by the constant
maximal values of the functions, ‖ϕ1‖∞ and ‖ϕ2‖∞. However, calculations show that it is beyond
doubt quite exhausting to handle the expressions from the integral equations analytically, even in the
simplest of settings!

To get a coarse upper approximation of M(t) for the entire interval [0, T1 +T2], which can be used
to calculate approximations and upper bounds for M further, we may take the maximum of M(t) for
the entire interval.

B Upper Bound on First Interval

We try to approximate an upper bound M0 for M(t) on the interval t ∈ [T1 +T2] for f = 1 and ψ = 0
along with arbitrary F (τ), ϕ1(τ) and ϕ2(τ). The value is needed to calculate an upper bound Mk on
interval Ik = [k(T1 + T2), (k + 1)(T1 + T2)], k ≥ 1 in Theorem 5.2.

For the first interval of length T2, i.e. where t ∈ [0, T2], there is only contribution from ϕ2 and we
get an upper bound MA as

MA := ‖ϕ2‖∞. (B.1)

On the second interval of length T2, i.e. where t ∈ [T2, 2T2], we have

M(t) =

∫ t−T2

0

(2M(σ))F ′(t− T2 − σ) dσ +

∫ T1

0

R(t, σ)ϕ1(σ) dσ ≤

≤
∫ t−T2

0

(2MA)F ′(t− T2 − σ) dσ +

∫ T1

0

R(t, σ)ϕ1(σ) dσ ≤

≤ 2MAF (t− T2) + ‖ϕ1‖∞
F (T1)

1− F (T1)
≤

≤ 2MAF (T2) + ‖ϕ1‖∞
F (T1)

1− F (T1)
=: MB ,

(B.2)

where we have used that F (τ) is monotonically increasing and attains larger values the larger the
argument. In a general setting it depends on the characteristics of F (T2), ϕ1 and ϕ2 whether MB >
MA. If 2F (T2) < 1 and ϕ1 = 0 this is not the case. However, if we have an F such that F (T2) > 1 it
always holds that MB > MA and many choices of ϕ1 and ϕ2 for other choices of F (T2) lead to the
same situation. With this function choices in mind, we compute the upper bound MC for the final
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interval, t ∈ [2T2, T1 + T2], as

.

M(t) =

∫ t−T2

0

2M(σ)F ′(t− T2 − σ) dσ +

∫ T1

0

R(t, σ)ϕ1(σ) dσ ≤

≤ 2MA

∫ T2

0

F ′(t− T2 − σ) dσ + 2MB

∫ t−T2

T2

F ′(t− T2 − σ) dσ + ‖ϕ1‖∞
∫ T1

0

R(t, σ) dσ =

≤ 2MAF (t− T2) + (2MB − 2MA)F (t− 2T2) + 2MBF (0) + ‖ϕ1‖∞
F (T1)

1− F (T1)
≤

≤ 2MAF (T1) + (2MB − 2MA)F (T1 − T2) + ‖ϕ1‖∞
F (T1)

1− F (T1)
=: MC .

(B.3)
Comparing MB and MC , we see that MC > MB as F (T1) > F (T2) and as the second term in MC is
positive. For the chosen parameters, the upper bound on the entire interval [0, T1 + T2] is thus given
by

M0 := MC = 2MAF (T1) + (2MB − 2MA)F (T1 − T2) + ‖ϕ1‖∞
F (T1)

1− F (T1)
=

= ‖ϕ2‖∞ (2F (T1) + 2(2F (T2)− 1)F (T1 − T2)) + ‖ϕ1‖∞
(

2F (T1)

1− F (T1)
F (T1 − T2) +

F (T1)

1− F (T1)

)
.

(B.4)
However, this approximation of M on the first interval relies on that we know or can approximate a
maximum value of ϕ1 and ϕ2 and that we know F (T2) and F (T1 − T2). If this is not possible, we
have to rely on a coarser approximation.
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