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Abstract

Small ARM Cortex CPU based system boards, called controllers, are used

in building automation for regulation of heating, ventilation, and air condi-

tioning. A controlling project can incorporate several thousands of these con-

trollers. The controllers communicate with a SCADA system over the TCP/IP

protocol. For the purpose of testing the Supervisory Control And Data Acqui-

sition (SCADA) system when communicating with several hundred controllers

simultaneously, a software implementation of a controller that can run in mul-

tiple instances, is needed. In this thesis, three different kinds of virtual con-

trollers are proposed and evaluated for their performance. The performance

data is based on controller’s response time and is acquired in a benchmark tool

that is simulating SCADA. The implementation work consisted of designing

and implementing a benchmark tool and three controller solutions: emulated,

ported and simulated. The three solutions differ significantly in the number

of instances that can be run simultaneously on the same machine. The con-

clusion is that the simulated solution is the most suitable since it can run in

6000 instances contra the ported with 200 instances. The emulated solution

was eventually deemed as impractical to accomplish in the scope of this thesis.

Keywords: Virtual controllers, RTOS, Building automation, Response time, Porting,

SCADA
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Chapter 1
Introduction

In these times of digital revolution, smart homes and buildings are extensively using prod-

ucts for building automation. That is, heating, ventilation, and cooling are automated and

centrally controlled, providing more comfortable living and working environment. The

main benefits of building automation in large scale facilities such as hotels, offices, and

industrial plants are improved life cycle of utilities and reduced energy consumption, and

thus operational cost [1]. Furthermore, benefits on reduced energy consumption reduce

the negative impact on the climate and decreases environmental pollution.

AB Regin is a company that develops controllers and software used for controlling,

monitoring, and testing various systems in building automation. The controllers are em-

bedded systems running a real time operating system and applications for controlling sen-

sors and actuators in building projects. A building project can in some cases incorporate

several thousands of these controllers, and can use several hundreds of communication

routes when connected with a governing SCADA system [2]. When interacting with such

large projects, the system’s simultaneous data flow increases the workload in the SCADA

system. Regin has identified the need for future projects of sizes that has not been realized

yet, and the behaviour of the SCADA system in interaction with such project sizes has to

be tested.

This thesis examines the possibilities of developing virtual controllers, software imple-

mented imitations of physical controllers, for testing Regin’s SCADA system. The idea is

to propose and develop virtual controllers developed using three different techniques, and

to evaluate their performance in a simulated test. The examined techniques are emulation,

porting, and simulation which are described in detail later in this chapter.

1.1 Background
Building automation is a term that refers to systems of electrical devices that are centrally

and automatically controlled. Such systems can consist of multiple subsystems which in
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1. Introduction

turn consist of multiple distributed networks of electronic devices. This system is used to

control a building’s Heating Ventilation and Air Condition (HVAC). Modern systems con-

trol even lighting, security, fire alarms, and generally anything that is electrical. All these

can be provided on a scheduled basis depending on occupancy or the seasons of the year.

This reduces the energy consumption, operational and maintenance costs in comparison

to a non-automated building.

Regin’s software consists of a real time operating system, control applications, an ap-

plication interpreter, design tools and monitoring applications. The controllers can have

functionality for logging data, status reporting, and malfunction alarms. Regin has de-

veloped their own communication protocol for the communication, EXOline, that can be

used for communication over serial, local, and wide area network. The controllers can

communicate with each other and also with a governing system, EXOscada, which is a

type of SCADA system [3].

A station is a term describing a system consisting of a station master and any number

between zero and up to 254 slave controllers, which are interconnected in some network

topology. A station master is a single controller with a master role within its station. A

building project is a system consisting of stations. It can incorporate several hundreds of

such stations and also several hundreds of communication routes. A communication route

is a communication channel between a station master and EXOscada.

When EXOscada is connected to a building project it uses communication routes to

communicate with station masters. For a project consisting of hundreds of stations, EX-

Oscada uses hundreds of communication routes for fetching data. For instance, accumu-

lated logs, alarms, and other data can be retrieved. With increased number of commu-

nication routes the data flow increases resulting in a higher workload on the CPU and

thus longer data queues. The concurrent data flow from the routes into EXOscada implies

greater demands on system correctness.

With customer demands for ever larger systems, some that could consist of thousands

of controllers and hundreds of communication routes, there is a need to be able to test the

EXOscada system in a practical way. Past experiences have shown that bugs can appear in

EXOscada in such very large systems. Performing tests when connected to real building

project systems is not viable nor acceptable because of the impact the unknown behaviour

could cause to the systems. But systems consisting of virtual controllers can offer an op-

portunity for behaviour testing. It can eliminate the need for an environment with physical

controllers and implicitly eliminate the cost for buying and setting up these controllers.

An additional benefit of virtual controllers is the possibility of implementing and testing

new features. In this way, research and development of physical controllers can be bene-

fited. Customers have also expressed interest in having virtual controllers for testing their

project applications without having to use the physical products.

Controllers
The controllers are small CPU based systems with STM32F20x CPU family manufactured

by STMicroelectronics [4]. The particular model used in controllers is STM32F207ZE

with high-performance ARM Cortex-M3 32-bit RISC core with frequency up to 120 MHz.

The built-in memory is high-speed embedded flash memory up to 1 Mbyte, 128 Kbytes of

system SRAM, 4 Kbytes of backup SRAM [5].
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1.1 Background

It provides an extensive range of inputs and outputs and peripherals [6]. It features

standard and advanced communication interfaces such as 5 volt input and output ports,

UARTs (Universal Synchronous/Asynchronous Receiver Transmitter), CAN (Controller

Area Network), USB and Ethernet interfaces for communication purposes. The inputs

and outputs can be either analog, digital, or, in some cases, both.

Figure 1.1: EXOscada in connection to a project [7].

A station can consist of solely one station master controller or one station master and

up to 254 slave controllers, see Figure 1.1 for an example of controller organisation in a

building project. Each station master provides a communication route. The controllers

use EXOline protocol to communicate with each other within its own station and with

EXOscada over local and wide area network communication lines. Each controller in a

station has a unique EXOline address in a project.

A building project is designed using a design tool, EXOdesigner, into applications for

controlling sensors and actuators, malfunction alarms, and logging and reporting func-

tions. The applications are compiled in EXOdesigner into code called EXOL, and is an

intermediate code format. The EXOL application code is loaded into controllers from

EXOdesigner via the EXOline protocol. In the controller, the EXOL code is interpreted,

scheduled, and executed by the EXOcol scheduler. Controllers also have a persistent mem-

ory structure for storing variables. Some examples of what is stored in this structure is the

EXOline address, the current time, and all variables related to EXOL applications. All

logging data is also stored here. The operating system that runs on the controllers is a

real time operating system called FreeRTOS [8]. The EXOcol interpreter is scheduled by

FreeRTOS as a task and executed by FreeRTOS on the controllers. The collection name

for all the controller software is EXOreal and consists of FreeRTOS, the EXOcol sched-

uler, EXOL tasks, and others, such as for instance communication managers, see Figure

1.2 for the structural layer of the EXOreal software.
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1. Introduction

Figure 1.2: EXOreal software

EXOline
EXOline is half duplex protocol. It is of the type Master / Slave and is independent of

physical media. It can be incorporated over the protocols Modbus, BACnet and TCP/IP.

An EXOline query looks like this:

<SoM><EXOline address><OPC><DATA n><CS><EoM>

It starts with a start-of-message token (SoM) and ends with an end-of-message (EoM)

token. It has a command type (OPC) and has a one byte check-sum (CS). DATA is depen-

dant on the specific command. For example if an integer value in the variable storage is

requested, DATA is the variables location. Multiple such commands can be combined into

a so called MulCmd. The recipient is specified using the EXOline address. The recipient

replies with:

<SoA><DATA n><CS><EoM>

where SoA is start-of-answer.

EXOscada
The term SCADA refers to Supervisory Control and Data Acquisition and is a supervisory

tool. EXOscada is Regin’s own developed supervisory software. It is used for monitoring

and setting set points for control processes in a user friendly web based graphical interface.

Pulling alarm and logging data from controllers on demand or on regular basis is one of

most used functionalities. This one generates the most communication data. The data is

stored in databases and can be used for viewing current status and for report generation.

All controllers in a project are organized by their communication route meaning the

controllers in one station share the same thread in EXOscada. EXOscada is aware of build-

ing projects and thus knows all of the stations and their controllers.

Any controller in a station, regardless of being a master or a slave, is accessed through

the same communication route and by the controller’s unique EXOline address. EXOscada

supports multiple communication lines and TCP/IP connections. More specifically, it can

communicate with several or all stations in a project simultaneously. EXOscada can estab-

lish a connection in two different ways. EXOscada can connect directly to a station in the
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1.2 Problem definition

traditional case where a station master has a static IP that has been assigned in the project

design phase. When a station master has a dynamically assigned IP, it must be the one to

contact EXOscada. When a station establishes this connection with the EXOscada server

for the first time it does a so called BackConnect. In the BackConnect phase, the station

master takes the initiative by contacting the EXOscada server, exchanging some feature

commands and finally presenting its id. After that, the station switches to the normal For-

wardConnect phase and starts listening for messages from the server. The EXOscada’s

role in a communication route with a station is the EXOline master role and the station’s

role is slave.

1.2 Problem definition
With increased number of communication routes in a building project the data flow into

EXOscada increases. When the connections to a project, over all routes, is established the

amount of communication data leads to higher CPU load and longer data storage queues.

An example of a particular problem that was encountered in EXOscada while commu-

nicating with a project of the described size was a race condition bug. The amount of

communication routes was around 250 and the communication speed with EXOline over

TCP/IP was unlimited which caused the rendering of slave (station) answers to overload

the CPU as the data flowed in. This discovery emphasizes the need to test the EXOscada’s

behaviour when connected to a project exceeding several hundred communication routes.

For testing purposes a virtual controller that can to some extent emulate the behaviour

of physical controllers is needed. The most basic and necessary functionality is that con-

trollers have to be able to establish connection to the EXOscada server and make use of the

EXOline protocol. In this thesis three proposed techniques for controller virtualization that

are assumed to be feasible are investigated. The main goal of this thesis is to clarify which

solution is the best one for testing purposes. This is based on communication responsive-

ness and scalability aspects of the solutions when communicating with test program that

simulates EXOscada.

1.3 Method
The work method in this thesis is of an exploratory nature. This section provides a general

description of the methods used in this thesis work. In order to reach the main goal, a

prototype virtual controller for each proposed solution was developed.

Each prototype is based on one of the following techniques:

Emulated solution
Use ARM CPU and platform emulation with QEMU [9] for running the entire virtual

hardware stack in multiple instances.

Ported solution
Porting the controller’s software for the x86 architecture.

5



1. Introduction

Simulated solution
Develop a software prototype to only simulate the parts of controller’s behaviour that

EXOscada is interested in.

First some clarifying of terms related to virtualization, simulation and emulation with

regards to implementation aspects of the software. Virtualization in this work is the tech-

nique of developing software that replicates the behaviour of a physical controller. Emula-

tion uses unmodified software that is actually run on the physical controller. This provides

the opportunity to use all the features of a controller and to test even the hardware related

code. Simulation, on the other hand, uses a simplified stack of controller software and

puts focus on testing specific aspects or features of the software. When considering the

scalability aspects of virtual controllers, the simulation focuses on simplifying the oper-

ating conditions of the real controller environment for the sake of scalability, whereas the

emulation focuses on the behaviour accuracy rather then scalability.

Each solution is to some degree based on existing EXOreal code. The non-essential

parts were stripped away while retaining the main functionality. The first controller solu-

tion is based on unmodified EXOreal code and the complete controller is emulated in a

virtual machine. In the second solution, all hardware dependant code is removed and is

replaced by a compatibility layer for the Intel x86 architecture. The third controller solu-

tion is based on reused code for EXOline functionality, and reading and writing a flash file

holding variables. New code for handling TCP communication is added. The motivation

for the choice of these solutions was based on the solution’s natural delimitation ant the

solutions were appreciated as doable in the time frame for the thesis.

The controller prototype of each solution in connection with EXOscada over TCP/IP

was tested. The test data consisting of response time for each controller had to be col-

lected. And for this purpose a test environment was developed. The responsiveness of the

controllers were tested in this environment with varying numbers of controllers. The test

environment was run on a separate machine in order to not affect the test. More detailed

method approach is described in Chapter 3.

1.4 Related work
In this section, the related work performed in the areas of software porting, simulation,

and emulation are presented. In our search for academical work and research, we found

published work describing the virtualization techniques and the evaluation of these. Al-

though virtualization has been popular and used for decades the amount of academic work

on emulating an ARM based device running a Real Time Operating System (RTOS) with

its applications seems to be quite sparse. Further, application migration to a different ar-

chitecture is the area of software porting. There are approaches for different architectures

suggesting different methods for porting. These approaches differentiate the porting into

processes with contrasted host migration paradigms. Additionally application migration

involves challenges, solutions, and benefits for each target architecture.

Magnus Granberg Opsahl, 2013 [10] has performed evaluation of the most prominent

open source virtualization technologies and did architecture comparisons in the terms of

resource usage. The main purpose was to evaluate the performance based on CPU, mem-

ory, and IO benchmark and to present a conclusion for what operations the compared

6



1.5 Scope

technologies are best suited for when emulating a RTOS system for ARM devices. In their

CPU and memory intensive benchmark results, Quick EMUlator (QEMU)/Kernel-based

Virtual Machine (KVM) stood out in terms of performance and that supported the idea of

QEMU as plausible tool for full emulation of the ARM controller in many instances.

Mehdi Aichouch, Jean-Christophe Prevotet and Fabienne Nouvel, 2013 [11] evaluated

RTOS running in virtualized environment. They chose to measure in detail the internal

fine-grained overheads and latencies instead of global results from an application perspec-

tive. They claim that this approach is fundamental in analysis of a real time system in real

time critical perspectives while sharing the same hardware with another operating system

and executing applications with different priorities. In our work we are not concerned with

the issues of real time criticality but more of the performance aspects since our goal is to

run our solution of the virtual controller in several hundreds of instances. It is valuable for

our work to get appointed on the factors that have cause on the performance degradation

for QEMU and KVM.

William Weinberg, 2007 [12] has written a guide for migrating applications from

legacy RTOS to Linux. The report describes several approaches: virtualization, porting

to native application, and creating a compatibility layer1. The guideline for each approach

is presented and also several decisions for architectural options that need to be considered,

are described. Some important considerations are whether to implement RTOS tasks us-

ing processes or threads and what synchronization methods are appropriate for that choice,

and what types of inter/intra-process communication channels are available. These aspects

are considered useful in this thesis for both the process of migrating the EXOreal to x86

platform and also for simulating the required basic functionality of a physical controller.

1.5 Scope
It is a fact that embedded real time operating systems have stringent timing and perfor-

mance constraints. Virtual controllers developed in this thesis work will not control any

actual hardware or regulation processes. Since the virtual controllers are to be executed

on top of a general purpose operating system the real time requirements can not be met

nor is it considered an issue as it is outside the scope for this thesis work.

In our work we are making use of few different Operating System (OS) for desktop

computers of x86 platform. So when a particular solution of a virtual controller is devel-

oped and proved working in one OS, it is considered as sufficient and no work will be done

on adjusting the controller software for any other operating system of the same platform.

The basic functionality that virtual controllers need to have is the ability to make a net-

work connection to an EXOscada server over TCP/IP and make use of an essential subset

of the EXOline protocol. The virtual controller solution that is ported to x86 might actu-

ally provide more functionality over the basic ones since they are already implemented in

the original code and remain unchanged. The QEMU emulated controller is also assumed

to provide additional functionality since the controller code is executed unmodified. For

the simulated solution the extent of the functionality implemented will focus entirely on

EXOline over TCP/IP only. This is considered to be sufficient for acquiring the response

data when testing the solutions. In a case where there is time left this solution will include

1Described in more detail in Section 2.2
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1. Introduction

support for EXOcol tasks, as long as the implementation complexity is acceptable. Includ-

ing the support for the EXOcol tasks to the simulated controller solution would actually

make the comparison more equal since all solutions would execute the same EXOcol tasks.

QEMU supports emulation of quite a few ARM based device models and two of the

ones listed in the specification [13] are STM’s device models. The virtual controller so-

lution emulated in QEMU is assumed to almost work out of box. It is needed to confirm

that QEMU can emulate the right networking interface and that the controller can actu-

ally establish a network connection and make use of the EXOline protocol. In the case

where a QEMU emulated device model does not satisfactorily emulate the network inter-

face so the virtual controller lacks the networking ability, no additional time will be spent

on implementing this or any extra virtual hardware functionality. This is mainly based on

the complexity of the physical controller’s hardware and to keep focus on exploring the

solution and not extending QEMU’s device model support.

1.6 Individual contributions
With regard to the practical work, Christian wrote the ported solution and the benchmark

program and Dalibor explored the possibilities of using emulation. The simulated solution

was written together. Testing the solutions in the benchmark program was done together.

The report was mostly written together but everything related to emulation was written

by Dalibor and Christian wrote the majority of the porting content.

1.7 Outline
This section briefly summarizes the layout of the remaining part of the report. Chapter 2

describes the technologies and tools used in the work of developing and testing virtual

controllers. Further, the underlying theory, required to understand these technologies and

techniques is also included here. The approach chosen in order to achieve the goals set in

this work is outlined in Chapter 3. The results achieved in development and testing work

are presented in Chapter 4. In Chapter 5 the discussion regarding controller prototypes

and test results is presented. The conclusion based on benchmark data and future work

proposals are presented Chapter 6.

8



Chapter 2
Theory and Tools

In this chapter, the theory relevant for the proposed virtual controller solutions is presented.

2.1 Emulation
The idea of virtualization originates from the concept of virtual memory and time sharing.

Virtualization is a software technique that allows simultaneous existence of one computer

in another [10]. Some reasons for virtualization are, among many, isolation and perfor-

mance. In the isolation case, it is beneficial to separate machines to run on their own

systems and thus not affecting or conflicting with each other or other machines in a case

of errors.

In the case of performance, providing an application with exclusive access to system’s

resources benefits the application with better performance in contrast to using resources

shared with other applications [14]. It is possible to consolidate multiple physical ma-

chines if they are not fully utilized, possibly with different operating systems, and run

them all on a single machine using virtualization. A Virtual Machine (VM) is software

that is executed on an hardware abstraction layer and it is usually referred to as a guest. A

Virtual Machine Monitor (VMM) is software that provides the hardware abstraction layer

to VM and is referred as host, see Figure 2.1 for virtualization structure. Hypervisor is an

other term for VMM. Based on the implementation VMMs can be classified to:

• Type 1, runs natively in direct communication with the hardware, resource allocation

and scheduling is performed by kernel.

• Type 2, runs inside host operating system (OS), all the resource allocation and

scheduling is managed by the host OS.

• Hybrid Virtual Machine (HVM), privileged instructions are interpreted in software

and hardware access is manged by special driver for the guest.

9



2. Theory and Tools

Figure 2.1: Virtualization basic structure. Hardware at the bot-

tom and the abstraction layer providing resources to the operating

systems which are unaware of the abstraction.

Hardware virtualization was the first one to be developed. A lot of work has been done

on hardware virtualization over the last few decades and several different techniques have

been used. The common techniques for the x86 architecture are hardware-assisted, full

virtualization, and paravirtualization [10].

In hardware-assisted virtualization, the distinction between the host and guest running

mode on the processor is facilitated by the hardware. The support for this type of virtual-

ization is added to x86 through hardware extensions. Intel and AMD provide the hardware

extensions for their x86 architecture processors.

On the other hand, full virtualization, as the name suggests, makes it possible for an

operating system and its kernel to run on the original hardware using a binary translation

technique. Binary translation is a virtualization technique where the guest is allowed to

execute its translated instructions directly on the hardware except for the privileged in-

structions which are caught and emulated by the hypervisor. This way, the guest does not

need to be modified in order to be run.

In the paravirtualization technique the virtualized guest needs some modifications in

order to be able to execute on the host, see Figure 2.2. The guest operating system is mod-

ified by adding hyper-calls which are used for calls to the VMM and thus the guest OS

have to be aware of being virtualized. The guest is provided a software interface that sup-

ports calls to the hardware. Intel and AMD provide the interface support through hardware

extensions.

Other advantage that virtualization offers, besides the isolation of virtual machines are

the advantages of using virtualization tools in software development. The virtualization

tools like KVM and QEMU provide developers with flexible environment for testing and

debugging purposes. Since the environment is more easily created and reconfigured than

the real hardware application testing and debugging is possible in the early development
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2.1 Emulation

Figure 2.2: The paravirtualization layers with the modified

drivers in operating systems.

stages and it is widespread among Linux developers. Additional advantage is that it can

eliminate the necessity of real hardware as for example QEMU does. This feature is of

particular interest in this project.

There are both proprietary and open source virtualization tools. QEMU is an open

source tool and it will be explored and used in this project. Another such tool is kernel-

based virtual machine KVM and since it can be used in conjunction with QEMU it will be

considered for use in this project. It actually originates form the QEMU project and uses

the hardware virtualization extensions on the X86 architecture through the Linux kernel

device drivers.

2.1.1 KVM
Kernel-based virtual machine is a open source virtualization solution for Linux for the

x86 platform. Essentially it is a kernel module integrated into the Linux kernel. It uses

hardware assisted virtualization through hardware extensions. Intel and AMD provide

the hardware extensions with the Intel VT-x [15] and AMD-V [16] technology and KVM

makes use of these technologies.

Usually a hypervisor is most importantly composed of a scheduler, memory manager,

I/O-stack manager and drivers for the hypervisor target architecture. KVM is a kernel

module implemented in such way that the Linux kernel has the hypervisor role and KVM

is solely handling the guest emulation. Since the Linux kernel already has the scheduler

among other kernel modules, the scheduling responsibility is left to the Linux scheduler.

The KVM module handles all the communication between the guest and the hardware,

see Figure 2.3. The KVM kernel module is exposed to the guest via dev/KVM inter-
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face. A guest is usually initialized with a user space tool/program for instance QEMU that

has KVM support. KVM is responsible for the management of the guest to host context

switches. This entails managing processor registers, MMU registers and the hardware

associated registers for the emulated PCI hardware.

Figure 2.3: The overview of the KVM layer structure.

A guest processor is emulated by executing a thread in the user space and is scheduled

with the other Linux processes by the hypervisor, i.e. the Linux kernel. A guest’s physical

memory is mapped to the host’s virtual and is handled by the user-space tool by keeping

a shadow page tables. Usually the memory translation is emulated in the software but

addition of Intel’s and AMD’s new technologies for virtualization support, the handling

of the memory mapping has moved to the hardware. This allows the guest to manage its

own page tables. I/O accesses and the storage is also handled by the user-space tool.

2.1.2 QEMU
QEMU is abbreviation for Quick Emulator and is open source processor emulator that can

run unmodified operating systems in a virtual machine [17]. See Figure 2.4 for QEMU

illustration. QEMU can be installed on several operating systems such as Linux, Mac

OS X and Windows and a few others. The host and target processor architectures can be

different or the same.

QEMU consists of several subsystems, CPU emulator, emulated devices, generic de-

vices, machine description for instantiation of emulated devices, debugger and user inter-

face. It can emulate several hardware architectures such as ARM, x86, PowerPC. It can
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also emulate hardware devices such as network cards, VGA displays and other peripherals

[18].

QEMU uses a portable dynamic translator for the guest CPU instruction translation

to the host CPU instructions. Usually the dynamic translation of the guest CPU instruc-

tions to the host CPU instruction set is performed as just-in-time compilation at run-time.

Blocks of instructions are fetched and translated into Translation Blocks (TB) in host bi-

nary. These translation blocks are stored in the cache (Translation Cache) for future use

and therefore the instruction decoding is only performed once. This translation process is

simplified in QEMU where chunks of offline pre-generated machine code are concatenated

instead [18].

The hardware like network, storage, IO interface, PCI that are exposed to the guest

are emulated and handled by QEMU except for when KVM is invoked in the conjunction

with QEMU. Then QEMU is started with the -enable-KVM parameter and the CPU

emulation in QEMU is switched off. The physical memory of the guest is emulated by

mapping it into its own process address space. QEMU allocates the memory for the guest

at start. On the host QEMU is executed in the user space and is scheduled by the operating

system.

Figure 2.4: The QEMU architecture layer overview.

The guest CPU instructions are executed on the host CPU through the hypervisor with-

out the instruction translation in the case where the guest and host CPU architectures are

identical.

Portable dynamic translation
The translation process is started by dividing all the guest CPU instructions into smaller

and simpler units called micro operations. These micro operations are then manually

coded into C functions and compiled by GCC to a host object file. The micro operation set

is much smaller then the guest CPU instruction set. QEMU then uses the dyngen tool

at run-time to disassemble the guest instructions to micro operations. The dyngen tool

maps these micro instructions to the pre-compiled ones in the object file and concatenates
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them for the execution on the host. The binary translation can achieve almost the same

execution speed as the host machine [18].

QEMU Usage
In a UNIX environment the QEMU is started from command line. Depending on what

architecture is to be emulated the command differs but for ARM it is QEMU-system-arm
followed by command parameters for memory size, disc, flash file, network configuration,

and many more. Since the list of command parameters can get long QEMU provides a

possibility to read the the parameters from file with -readconfig and to save them to

file with -writeconfig parameters.

QEMU has a list of supported embedded devices that it can emulate. The command

QEMU-system-arm with parameter -machine help reveals the list. The command

-QEMU-system-arm -M device is used to list the CPU models that are supported

for a specific device followed by the parameter -cpu model. A example of command

for starting emulation is:

QEMU-system-arm -M MACHINE -cpu cortex-m3
-singlestep -kernel Controller.elf

where MACHINE is the argument that specifies the board to emulate.

QEMU can emulate several models of network cards and these can be connected to

an arbitrary number of Virtual Local Area Networks (VLANs). See Figure 2.5 for an

example of QEMU’s Virtual Local Area Network configuration. The standard way of

connecting QEMU to a real network is using host’s virtual network device called tap that

can be configured as a real Ethernet card. On Linux the device /dev/net/tun must be

present in the host kernel.

Figure 2.5: The QEMU network [19].
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To connect the QEMU network card to the communication for the outside world the

tap interface can be connected to a to a virtual bridge on the host. For this network con-

figuration additional arguments had to be supplied

sudo QEMU-system-arm -semihosting -M MACHINE
-cpu cortex-m3 -kernel VirtualController.elf

-net nic,vlan=0,macaddr=52:54:55:55:55:55
-net bridge,br=virbrN -net tap,ifname=tapN

where bridge is the host’s virtual network interface and tap is a tap interface. Mac address

on the QEMU’s VLAN can also be supplied along with the other network parameters.

Instrumenting the QEMU with GBD
QEMU is flexible since it provides the possibility to define new hardware and to include it

for emulation. Besides using QEMU for running guest operating system different from the

host, it can be used for debugging the software since the virtual machine can be stopped

for state inspection, saving, or even reloading. This is very useful for simulating embed-

ded devices while they are still in development phase. QEMU includes a built-in GDB

stub that can emulate the functionality of the usual JTAG interface debugging [20]. The

GDB stub controls the instruction flow to the guest machine and thus it emulates de-

bugging from the very first guest instruction. The GDB stub routines are executed di-

rectly on the host and the communication between a GDB client and the stub is forwarded

through the virtual network of the host. When QEMU is started with the ’-s’ command

parameter, it waits for a GDB connection on the localhost network interface. The GDB is

started as usual and is then provided with the connection parameters target remote
localhost:1234. Tracing is enabled when QEMU is run in debug mode. The QEMU

emulator generates complete tracer logs of the PC register for tracking the software exe-

cution flow.

2.2 Porting
With this solution we wanted to use the existing EXOreal code base that compiles to a

complete operating system based on FreeRTOS and instead convert it into an application

for Windows or Linux. This means we have to remove or replace any processor-specific

code such as, in-line assembly, and hardware interacting code. This also includes a hard-

ware tick interrupt which FreeRTOS needs to be able to support preemptive multitasking.

In our project we tried to change the original code as little as possible so as to minimize

the work required and also so that the code could easily be incorporated back into the main

development branch. One important thing to note is that since the controller software will

be running as an application on a non-real time operating system. Therefore it is impossi-

ble to guarantee real time performance. This is not a problem since we already restricted

our scope in Section 1.5.

Porting is the process of converting and adapting software from one computing envi-

ronment to a different one. A computing environment can be an operating system, a CPU

architecture , or a particular library. In our case we want to move from ARM to x86 and
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from FreeRTOS to Windows or Linux. There are a couple of different techniques that

can be used. The software can be changed to not rely on features that are specific to the

original environment. Another possible technique is to make some kind of compatibility

layer that emulates the behaviour of the previous environment [12].

Figure 2.6: The architectural differences between the ported so-

lution and the physical controller.

A famous example of the latter is Wine1 which is a compatibility layer that allows for

running Windows applications on Unix-like operating systems such as Linux. It is also

possible to do a hybrid approach, change some parts and use a compatibility layer for

some parts. This unfortunately runs the risk of introducing inconsistencies between the

two approaches. The third approach mentioned in Weinberg’s article [12], virtualization,

is talked about in Section 2.1.

Since it was desired to change the original code as little as possible, the compatibility

layer approach appear to the best suited. Basically the entire controller software stack

would run as an application on Windows or Linux with a layer in-between (see Figure 2.6).

To simulate more controllers, more instances of the program are simply run.

32-bit vs. 64-bit
Another important consideration is whether to make the x86 program 32-bit or 64-bit.

Since common integer types and especially pointers can have different sizes on different

architectures it is an advantage if at least the word size and pointer size remains the same.

If the data types size changes it could mean that bugs might be introduced which could

be hard to find. Another consideration is that bigger data types obviously also means

higher memory usage. An initial concern was that the total memory usage might become

a bottleneck. On the other hand, code compiled for 64-bit on x86 is usually slightly faster.

One source reports a 5-15% increase in performance for an average program simply from

recompiling existing software to take advantage of the 64-bit architecture [21]. This is in

part because of the additional general purpose registers that can be taken advantage of.

There are also vector instructions that can be taken advantage of for computing intensive

1https://www.winehq.org/
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tasks but that does not apply in this case. The original software on the controllers is 32-bit

and for these reasons it made sense to also make our port 32-bit.

2.2.1 FreeRTOS
The FreeRTOS is a open source real time operating system developed in partnership with

world’s leading chip companies [8]. It is a very small operating system that is designed to

be easy to port to new architectures. There is official support for ports to over 30 architec-

tures.

The kernel largely consists of three C-files: tasks.c, queue.c, and list.c.

Tasks.c contains functions for task creation and management. It handles, amongst others,

task creation and the scheduling for FreeRTOS. Queue.c implements message queues that

can be used to pass messages between tasks and is also used for synchronization. List.c

implements a doubly linked list that is used to implement the queue. Those three files

contain no platform dependant code and are thus portable. The parts that need to be ported

are the hardware initialization code and other boot related code, drivers, and code that

handles context switching and interrupts on an assembler level [22].

FreeRTOS is also very configurable and different parts can be turned on or off as de-

sired in the FreeRTOSConfig.h file. You can turn on or off things like mutexes, timers,

and co-routines.

The system tick on FreeRTOS is normally a hardware generated interrupt that happens

with some configured frequency. On the controllers the tick period is 1 ms. On each tick

FreeRTOS will do a context switch and the highest priority task will be run [23]. This

is true as long as interrupts are not disabled, which you would do in a critical section for

example.

2.2.2 lwIP and PCAP
Lightweight IP (lwIP) is the networking stack that is used on the controllers. Since the

program obviously needs to be able to use Ethernet there was a need to port lwIP as well.

This includes both the parts that form an interface with FreeRTOS and the parts that in-

terface with hardware. Fortunately there exists a port of lwIP for FreeRTOS that utilizes

Packet CAPture (PCAP).

PCAP is a library that can be used to capture packets and is used by many tools to

analyze network traffic and is for example used by the very popular packet analyzer Wire-

shark. It captures link-layer packets directly from the network adapter [24]. Contrary to

what the name suggests, PCAP also has the capability to send raw link-layer packets to the

network adapter. This makes PCAP a perfect choice for imitating a network adapter. A

program can pretend to be a whole computer (or multiple computers) with its own hard-

ware and Internet address. For Windows there is a fork of PCAP called WinPCAP which

has diverged slightly from the original but the two are still mostly compatible.
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2.3 Simulation
Simulation is software technology consisting of designing a model of a real or theoretical

system, execution of that model on a computer and the analysis of the execution outcome

[25]. The main benefit of simulation is that it can provide valuable knowledge about sys-

tems or products before any actual time and money investments are done [26]. Besides

knowledge about the system’s behavior, the simulation can provide detailed insights into

the design, processes, and architectures. Simulation is useful in critical areas since it can

be used to discover issues with systems before they become problems. It can also be a

great support tool in training.

The usual simulation practice is to simulate hardware in some simulation tool where

input parameters are provided and output data acquired for the analysis purpose. The sim-

ulation in this work differs from the usual one in such way that no such simulation tool is

used and the software that simulate controller and EXOscada functionality communicate

over the physical Ethernet line. The simulated solution’s role in the simulation is to com-

municate with the SCADA system, meaning the network functionality of the controller is

the only thing that has to be simulated. On the other side of the communication channel is

the benchmark program that simulates only basic functionality of the EXOscada. It awaits

back connection from simulated controller then sends requests and receives replies over

the establishes forward connection and collects the response time.

2.3.1 Threads and processes
An important consideration for this solution was whether to use threads or processes to

achieve concurrency. Threads have the advantage of being easily portable between Linux

and Windows. Pthreads (POSIX threads) is available for both. Threads are also faster to

start up but start-up time is not very relevant for this thesis. Processes have the advantage

of being more robust [12] and giving each process their own memory which means you

won’t have to think about synchronization and thread safety. Processes are also very easy

to use on Linux with a simple fork call. Processes on Linux utilize copy-on-write (COW)

which means that it’s still very fast to make a new process while still allowing each process

to write to their own memory if they so choose. Communication is arguably more diffi-

cult between processes since you cannot simply communicate via shared memory. In this

project however, it is not necessary to communicate between different virtual controllers

(except, perhaps, using the normal communication protocols over TCP/IP). In the end, we

implemented this solution using both processes and threads.
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All the work was divided and structured into three phases. The first phase was the de-

velopment of prototypes based on their proposed solutions. The factor that decided when

the work on a controller was completed was when the controller could be discovered over

the network and supported the EXOline protocol. For this discovery, the network sniffing

package tool Wireshark was used. Designing and implementing a tool for measuring the

responsiveness of controllers was the second phase. The last phase was the testing itself.

3.1 QEMU emulation

The available source code of QEMU was downloaded from the QEMU homepage and

from the git repositories for three similar QEMU fork projects. Each project code had to

be configured and compiled separately on a x86 machine running Linux. The idea was to

examine and emulate QEMU boards similar to the physical controller board. The proce-

dure was straight forward using the trial and error method. The QEMU project was given

the priority and was tested first, because this project involves lot larger group of experts

than the fork versions. For each QEMU version that failed, the examination continued

with version that had implemented more support for STM32 board device.

The virtual machine was started via the command line with arguments for emulating a

STM device with ARM Cortex-M3 CPU. The arguments consisting of the executable file

of pre-compiled EXOreal code, parameters for debugging and parameters for emulated

interfaces such as a network interface were provided to the virtual machine. A debugging

was done the whole test time for each QEMU version in order to confirm the correctness

of the controller’s code execution.
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3.2 Software porting
All the software on the controllers in total add up to about 175 000 lines of C-code and 660

lines of assembly code (not counting in-lined assembly). The absolute vast majority of the

C code is well written in a platform independent way. Almost all integer type declarations

use fixed bit-length integers1, as an example, which is good for portability. The code

specifically for the drivers is around 14 000 lines of code.

The original controller software was compiled with a collection of make-files, a port

of Eclipse specifically designed for ARM C/C++ development called Atollic, and GCC

for cross-compiling the source code for the specific ARM architecture. Keeping with the

theme of wanting to keep things simple, the only significant change that was made to the

build environment was to change the compiler to GCC for 32-bit Intel x86 instead.

The approach taken in process of porting the software follows the model outlined in

Weinberg’s paper [12]. The process can be divided into eleven steps:

1. Set up a Linux-based cross development environment including cross development

tools.

2. Copy RTOS application source tree to development environment.

3. Modify build scripts and IDE configurations to link emulation libraries (if any).

4. Modify/alias pathnames and/or modify source files to reference substitute header

files (original RTOS header files can introduce conflicts with native Linux headers).

5. Add #includes for Linux header files to your application sources themselves (usu-

ally stdio.h, stdlib.h, string.h, unistd.h, and errno.h) or via emulation headers (if

any).

6. Attempt to make/build and examine results.

7. FIRST resolve symbolic issues for implemented APIs (e.g., simple naming and type-

safe linkage issues).

8. Address unimplemented APIs and data structures. (See below.)

9. Repeat steps 5-8 as needed (a.k.a. “whack-a-mole”).

10. Tune performance, as needed.

11. Selectively recode and re-architect to leverage native Linux constructs.

The steps above are taken from Weinberg’s paper but modified to not refer to any particular

products.

1Like uint8_t, for instance
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3.3 Simulated prototype
When developing the simulated virtual controller solution, the technique of software port-

ing was mainly used. Parts of RTOS applications were moved to Linux applications in

order to simulate the RTOS applications to some extent. Out of the eleven steps for soft-

ware porting proposed by Weinberg, seven were useful and directly applicable, namely the

steps five to eleven.

Parts of code that involved the desired network functionality, which are referred to as

a module, were identified so that modularity and code reuse is exploited as well for this

software solution. The controller solution is built up of modules in our persistence to keep

the reused modules as minimally modified as possible. One reason is that extending the

functionality in the future would remain simple. All it would take is including additional

modules from the EXOreal code base. The already included module would still coexist

with the newly added ones. Another reason is the time saving factor by reducing the effort

since there be no need to implement all the functionality from the beginning. The EXOreal

software modules that are reused in the controller are the modules that constitutes the

EXOline functionality, the module for EXOreal data types, and the module for reading

and writing a flash file holding the variables2. An additional module was developed to

handle TCP socket connections, and receiving and sending TCP messages.

After a backward connection has been established, the controller uses the socket mod-

ule to receive request messages and interprets the message and extracts commands using

the EXOline module. It then reads and writes variable values from the memory structure

and constructs the answer with the EXOline module. Finally, it sends the data back with

the socket module.

After baseline functionality with EXOline was achieved, support for EXOcol tasks was

added via the inclusion of the EXOcol module from EXOreal. This was done in order to

make the comparison between solutions “fairer” since the other solutions support these

tasks. Another reason was because Regin wanted support for alarms and logging which

are implemented as EXOcol tasks in EXOreal.

3.4 Testing
What we want to do in this thesis is find out, for each different solution, how many virtual

controllers we can have up-and-running without losing communication with them. Initial

experiments showed that the response time of simple ICMP echo request (ping) remained

relatively constant as the number of virtual controllers where added until the number of

controllers hit a critical point. At this point the response time started increasing very

rapidly until all the requests completely timed out. At this point the computer obviously

could not process requests faster than it received them.

What we want to do in our tests is to measure the responsiveness of the virtual con-

trollers in a simple benchmark. In order to accomplish this, we have designed a benchmark

program that is solution agnostic. The program was designed so that it acts as EXOscada

server when communicating with stations. The virtual controllers (or even real controllers)

2The module handling flash files is taken from the porting solution
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Figure 3.1: Test environment setup

will establish a connection to the benchmark tool. When all the initial connection estab-

lishment is complete, the test suite waits for an operator to start the benchmark. The

benchmark will issue simple requests, selected by cycling through a small set of four re-

quests, to the connected controllers. The requests were selected to be representative of real

world requests, and were in fact captured from an actual communication session between

EXOscada and a controller. They all consist of reading variables from the variable stor-

age. Each request consists of one or more commands. Each command is roughly the same

length which means that the length of the request is a rough estimate for its complexity.

There are many possible sources of errors that need to be taken into account. Care

needs to be taken so that the performance of the computer running the test is not what is

measured. Neither can the network’s performance be allowed to be a bottleneck. Transient

errors such as sudden spikes in activity on either the client side or on the server that is

running the test tool can introduce some noise in the sampling process. Spikes in network

activity is avoided by running the test in an isolated network. The benchmark program

and the virtual controllers were run on separate machined in order to reduce the affect on

performance. The test environment can be seen in 3.1.

Based on this reasoning, initially two kinds of benchmarks were designed. The first

kind, that is called periodic benchmark, sends a request every second to all controllers and

measures the response time. Because the benchmark always waits until it gets a response,

the critical point that was observed when testing with ping will not appear. Instead, it

was decided to set a limit for responsiveness of one second so that the test would not get

“easier” since the request rate would fall below one per second. This benchmark will never

saturate the network because the data flow per controller is just the average message length

which is 40 B/s.

The second kind, that we call intensive benchmark, has no explicit delay between re-

quests, and will send a new request as soon as it has received the answer for the previous

request. This benchmark examines how much data the virtual controllers are able to re-

ceive and produce and also how the responsiveness is affected when the controllers are

under heavy load.

The response times was measured for each request that was sent to each controller.

When the test was done, the results was stored in separate file for each controller. The

groups started with only one virtual controller and were gradually increased in size. The

limiting factor for the size of groups was the one that occurs first of the following: an

operating system limit that could not be circumvented, or when the maximum average
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response time in a group of virtual controllers reached one second. Mean values were

computed for every controller using a simple script. Then, using the same script the median

value were computed for each test group and presented in a box-plot. The data flow for

the intensive benchmark was presented as a simple graph.
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Chapter 4
Results

This chapter describes the results obtained in development work of the virtual controller

prototypes and the response data from testing of the successful controller prototypes.

4.1 Emulated solution
One of the proposed solutions was to investigate possibility of executing the controller’s

compiled software on emulated controller hardware in QEMU. The emulated controller

solution did not work satisfactorily and was considered as failed. The QEMU implemented

board devices were unable to execute the controller’s code correctly and it was anticipated

to be the reason for the failure. The results obtained working on this solution with different

QEMU versions are presented further down in this section.

4.1.1 The QEMU project
The minimum requirement, for this controller solution, is that the Cortex-M3 family CPU

can be emulated with at least flash memory and an Ethernet interface. The QEMU project

supports a collection of board devices from various manufacturers. Using the help com-

mand provides a list of supported board devices qemu-system-arm -M help. Closer

examination using the command

qemu-system-arm -M machine-name -cpu help

reveals a device list of supported CPU models. The device board Stellaris LM3S6965EVB

from Texas Instruments’ Stellaris family has support for ARM Cortex-M3. Examination

and comparison of the Stellaris board’s and the real controller’s data sheets revealed that

the LM3S6965EVB board provided almost identical features as the real controller. The

CPU operation speed differed slightly; it was only 50 MHz which is half of the real con-

troller’s.
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Initially, the only required hardware to be emulated was the CPU so that it could be

verified that the EXOreal code executes without errors. The execution is started with the

line:

qemu-system-arm -M lm3s6965evb -cpu cortex-m3
-kernel VirtualController.elf

The execution of the program code crashed when it was executed for the first time. The

crash was caused by a segmentation fault. Debugging followed, and for that purpose the

-s -S -singlestep arguments in the command line were supplied.

qemu-system-arm -M lm3s6965evb -cpu cortex-m3
-s -S -singlestep -kernel VirtualController.elf

This way, the QEMU stops the code execution in the virtual machine and awaits for a

connection of a GDB debugging session to the GDB-stub in QEMU. Once a GDB session

is started with arm-none-eabi-gdb VirtualController.elf, it connects to

QEMU with target remote localhost:1234 and then the debugging is done

as usual.

On the physical controller the code is stored in flash memory. First section in the code

is interrupt handler vector (ISR vector) and is stored at a predetermined address starting

at 0x0600 0000. This address is specified in the linking file. The execution starts from the

ISR vector in function called Reset_Handler. When QEMU starts to execute the code, it

starts at the address 0x0 and the ISR vector should be placed here. This address mismatch

caused the segmentation fault and the execution to crash. Adjusting the addresses fixed the

crash problem and the code did run without errors. Debugging of the code followed, and

it was revealed that the execution could not reach the main function where a break point

had been placed. It started in Reset_Handler, did some hardware initialisation and

then got stuck in the interrupt vector table. It proved that the code did not execute properly

on the emulated board. This solution was considered as failed.

4.1.2 Other QEMU project forks
Beside the Qemu project there are other projects that originate in QEMU, but have imple-

mented support for additional boards, namely the support for the STM32 microcontroller.

The source code of these projects is available on GitHub. The assumption was made that

the emulation of the STM boards from these projects would make the code execution more

accurate. The emulation results for these development boards are presented further down

in the report.

Beckus
Beckus’ project is a copy of QEMU that has been modified in a manner to include an im-

plementation of the STM32 microcontroller [27]. It also includes implementations of an

Olimex STM32-P103 and STM32-MAPLE, a couple of Arduino like development boards.

Both boards have been emulated and the controller code executed on them. It ran without

apparent errors but debugging revealed that the code executed incorrectly. The execution
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started in Reset_Handler as it should, and it was trapped in a break point in the main
function. After that, it invoked the functions systemHardwareInit , xTaskCreate
, vTaskStartScheduler, and then got stuck in the function ADC_GetFlagStatus.

This board was considered as insufficient in correctness for the Virtual Controller emula-

tion.

martijnthe
Another fork of QEMU can be found in martijnthe’s GitHub repository [28]. This repos-

itory includes the implementation of both Beckus’ STM32F1xx and additionally support

for STM32F2xx has been added. The execution in this fork trapped in main break point

and was followed by the functions systemHardwareInit, xTaskCreate, and

vTaskStartScheduler which is similar to Beckus. The difference was that it got

stuck in static __INLINE void __DSB which is STM firmware core function.

This QEMU fork was considered as insufficient as well.

Wallacollo
This QEMU fork is a version of GNU ARM Eclipse’s QEMU fork repository [29]. This

repository supports some additional CPU/board definitions such as Kinetis chips. But most

importantly it supports STM’s STM32F3-Discovery and STM32F4-Discovery boards that

can execute the EXOreal code. The execution on STM32F3-Discovery emulated board

did not trigger the break point in the main function. It started in Reset_Handler
but got stuck in the function g_pfnVectors. When executed on STM32F4-Discovery

emulated board, it followed the same pattern as the martijnthe fork. In the end, it got stuck

in static __INLINE void __DSB. So finally, this QEMU fork could be added to

the others as insufficient in execution correctness.

4.1.3 Emulation STM32F1xx board
The EXOreal code is possible to compile to few different target boards. One such target is

STM32F107 board. The EXOreal code compiled for this target did execute correctly on

the Beckus QEMU implantation of this board. Debugging and stepping through the code

showed that the controller executed logically correct and corresponded to the intentions in

the code. The biggest drawback was that the board did not supply any network interface

and when compiled for this target did not include the code for TCP support as it is specified

in code definitions. This solution was insufficient for the communication purposes.

4.2 Ported solution
Porting the EXOreal code to x86 followed the steps outlined in Section 3.2 fairly closely.

The development environment on Linux in the beginning consisted of GCC, the original

EXOreal make-files, and VIM as the code-editor. Later on, when the work moved on to

porting the software to Windows, Atollic was used as the editor. The source code was
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fetched from the internal Regin subversion repository and the work was ready to start. In

the beginning, no particular libraries were needed to be included in the build script.

The first thing after that was to simply get every non-driver C-file to compile. The work

first started on a version for Linux. As EXOreal had always been compiled on Windows be-

fore there were some difficulties. Windows file-system is usually not case-sensitive which

meant that a lot of header-files became “misspelled” on Linux, i.e. the capitalization was

wrong. Another problem was that the Make-files were written for use with Windows-style

paths, and with Windows specific shell commands. With some quick butchering of the

Make-files and after renaming a lot of inclusions, the C-files finally compiled into object

files.

Next step was to get the object files to link into an executable program. It was real-

ized that trying to compile the drivers was not only very difficult, but also quite point-

less so those were the first to go. Removing all the FreeRTOS and lwIP source code as

well, resulted in over 200 undefined references1 when trying to link the software. It was

suggested, that a closer look should be taken at a demo application that had successfully

ported FreeRTOS+lwIP (using WinPCAP to simulate an Ethernet adapter) to Windows.

The demo application was quite outdated and some work was required to make it interface

correctly with the existing code. The code also had optimizations for the demo application

like filtering away all IP traffic that was not intended for a specific, source code defined,

IP-address. Since our application needed to be able to change its IP-address and be able to

use the DHCP protocol, that optimization had to be removed. Further the lwIP and FreeR-

TOS code was imported from that project but there were many incompatibilities because

that project used FreeRTOS 7.0 while EXOreal used version 8.2. After a while it was re-

alized that it was easier to use the original FreeRTOS 8.2 code and update the FreeRTOS

platform dependant code from the demo application to 8.2. The missing functions were

implemented as stub functions and finally managed to link the solution into an executable.

Step three consisted of replacing some of the stub functions so that the virtual controller

could actually do something. And therefore, the work included implementation of a virtual

flash memory and methods that could read and write a “flash-file” that had been taken from

a real controller’s flash memory. Some preliminary work for future virtual input and output

capabilities were completed. The application actually worked surprisingly well almost

from the start. It still crashed a lot, though, and it was much slower than a real controller.

A lot of time was spent polishing this solution to improve stability and performance.

In the end, the ported solution turned out to be a very faithful imitation of a real con-

troller. There are a couple of functions that have not been implemented such as the ability

to change the time, and all the digital and analog inputs and outputs are always zero. The

tick frequency is also around 5% slower because it is currently implemented using a thread

that continuously sleeps for (around) a millisecond, sets an event, sleeps, and repeats ev-

erything again. The application very rarely crashes, whether under load or not.

4.2.1 Porting difficulties
One of the first non-trivial bug was a pretty interesting one. It turned out that a segmen-

tation fault was generated when the program was trying to read a variable from the con-

troller’s variable storage. It was very confusing because it was known that the variable was

1missing functions and variables
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there and the variable could be accessed manually in the debugger. The bug only appeared

when the optimization flag to GCC was not -Os2. A pointer to a stack variable suddenly

became null between function calls. It turned out to be caused by an optimization com-

piler directive for a particular function. When this compiler directive was removed, the

bug magically disappeared. A couple of looks at the generated assembly code did not

result in finding a reason for the bug.

Early testing with the ported application revealed that most packets were not recognized

at all by the EXOline client on the virtual controller. On closer inspection, it was discovered

that the packets were discarded because the checksum appeared to be incorrect. It turns out

that the checksum calculation is often offloaded to hardware on modern network adapters

[30]. Disabling checksum validation in lwIP solved this problem.

Another annoying problem that was discovered was a deadlock that made debugging

difficult. It turned out that the debug messages themselves were the culprit. When multiple

threads wanted to write to the console, the application got stuck. Changing the way debug

messages worked solved this problem.

4.3 Simulated solution
This controller solution is built up of modules from the EXOreal code that contribute

to the needed network functionality. The EXOreal software modules that are reused in

the controller are EXOline and EXOcol. The EXOline module constitutes the network

functionality and the EXOcol module contributes with data types and the functionality

for reading from and writing to a memory structure holding the variables. An additional

module, called the main module, was developed to handle TCP socket connections, and

for receiving and sending TCP messages. Figure 4.1 shows the module overview.

Figure 4.1: The design overview.

The original code in the EXOcol and EXOline modules had to be modified. The

code lines that referred to non existing modules had to be excluded. Large chunks got

2Optimizations based on code size
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surrounded with the #ifndef MULTICONTROLLER and #endif compiler directives,

and single lines were commented out.

Figure 4.2: High level design of the simulated controller.

The interaction between the modules is outlined in Figure 4.2 and an explanation fol-

lows further down this section. The entry point of the controller is the main method in

the the main module. Initiation functions from the EXOcol module are also invoked from

here. When compiled for Linux, a process for each controller is created in main. The

worker starts the EXOcol scheduler for each process in a separate thread, and invokes the

exolineTcpStart function in the EXOline module, which uses sockets for establish-

ing a TCP connection with the EXOscada server. The number of virtual controllers and the

EXOscada server address is defined in the config header file. The TCP port to the server

is a predetermined number, used as standard port, and is hard coded in the source code.

EXOline implementation in this solution uses sockets to send and receive all TCP mes-

sages. An EXOline message is processed in exolineProcSlaveMsg and forwarded

to read/write functions in the EXOcol module. Read/write functions access the memory

structure for variables, and also return data to the exolineSendSlaveAnswer func-

tion in the EXOline module, which prepares EXOline messages and sends them back via

sockets.

In this solution, the controller has to initiate the communication with the server since

all the virtual controllers will have the same IP address. The controller starts with the

BackConnect procedure, invoking the exolineTcpReverseConnect function. See

Figure 4.3 for the reverse connection scenario. The controller sends requests for capa-

bilities and set-feature-reverse initiative to the EXOscada server, and in turn receives the

answer for each. When the Ok! answer is received, the controller gets request for its ca-

pabilities and station ID which it replies on. With the ID reply the BackConnect phase

is finished and the controller switches to the ForwardConnect phase. In this phase the

controller is waiting for requests from the EXOscada server.
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Figure 4.3: BackConnect scenario. The messages in the dashed

rectangle are usually sent together.

4.4 Benchmark tool
The benchmark tool is developed for two types of testing, periodic and intensive. The

periodic benchmark sends a request every second to all controllers and measures the re-

sponse time while the intensive sends requests without delays. The tool behaves as the EX-

Oscada server; after start, the tool waits for the controllers to establish the BackConnect-

connection and to switch to ForwardConnect phase. Then, the test can be started by enter-

ing a start command in the tool. When the test is finished, the tool writes the results to files

and waits for the stop command to exit the test. Initially, the tool was designed to start the

test for all controllers at the same time. The analysis of the very first testing results revealed

a very high variance for the simulated solution when there was a high number of virtual

controllers, 6000 controllers. This led us to examine the individual response times for

each controller. The result can be seen in Figure 4.7 which shows response times for each

controller in the tests that are close to the maximum number of controllers. This extreme

stratification was unexpected. The response results from the equivalent test for the ported

solution is more uniformly distributed, as it can bee seen in Figure 4.4. The comparison of

the two test results motivated the modification of the benchmark program so that it waits

a short, random time for each connected controller before starting the benchmark. The

result of the modification was an extreme improvement in median response time and the

stratification was no longer present, as can be seen in Figure 4.8.

4.5 Test results
The goal in this thesis was to determine the best virtual controller solution based on the

same response data and scalability factor. The solutions differed, not only in the imple-

mentation structure, but also in the number of controllers that could be run simultaneously
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���������������Solution

Message type 1

(length 11)

2

(length 17)

3

(length 46)

4

(length 86)

Ported (203 controllers) 426.427 ms 410.070 ms 404.776 ms 424.495 ms

Simulated (6000 controllers) 20.7682 ms 16.4916 ms 17.4357 ms 16.8450 ms

Table 4.1: The average response time for each message type for

each successful solution.

on same computer.

The reason for choosing different message types in the first place was of course to see

if it affected the results in a significant way. In Table 4.1 it can bee observed that there is

at most a very small difference. A one-way ANOVA (ANalysis Of VAriance) reveals that

there is no significant difference for the ported solution (p = 0.63), but a very significant

difference for the simulated solution(p < 10−16). This result seems to indicate that the time

spent processing the requests contributes an insignificant portion to the response time in

the ported solution. On the other hand, processing the requests in the simulated solution

apparently takes a significant amount of time. What the shortest command does, is to fetch

the IP-address as a string from the variable storage. The way strings are stored is slightly

more convoluted than the way integers and floating point values are because there is an

additional layer of indirection. The string also has to copied to a intermediate buffer. It

is believed that this explains why that particular command is slower. The ANOVA tables

can be found in Chapter A.1 in the appendix.

First some clarification of the boxplots used in Figures 4.6, 4.9, 4.10 and 4.12. The

line connects the median values of the response time for the tested controller groups. The

box bottoms represent the first quartiles (Q1) and the box tops represent third quartiles

(Q3). The whiskers, upper and lower, represent the largest and smallest non-outliers, re-

spectively. The lower whisker is calculated by median - 1,5 * IQR and the upper

whisker is calculated by median + 1,5 * IQR, where IQR is the interquartile range

calculated by Q3 - Q1. Outliers are represented with small circles and the straight hori-

zontal line represents the response time limit of 1 second.

The graphs, Figure 4.9 and Figure 4.10, in the following sections show the response

time performance of the two successful solutions from the periodic benchmark. In each

test group, consisting of a certain number of virtual controllers, the mean response time

for each controller was calculated. What is shown in the graph are boxplots of the median

response times for each such mean response time with a line between each median. In

order to not clutter the graph unnecessarily, boxplots for some test groups are omitted.

Figures 4.4, 4.7 and 4.8 are scatter plots from the periodic benchmark of the median

response times for each, for every individual controller when running 185 ported and 6000

simulated controllers. Results from the intensive benchmark tool representing the response

time for ported and simulated controllers are presented in Figure 4.6 and Figure 4.12. The

data flow for ported and simulated solution captured by the intensive benchmark tool is

presented in Figure 4.11 and Figure 4.5.
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4.5.1 Emulated solution
While it was not feasible to run the benchmark program with the emulated solution, it it was

found as highly interesting to do an estimation of the kind of performance one could expect.

In order to do this estimation, a CPU benchmark, CoreMark3, was run inside QEMU. The

QEMU board ARM Versatile/PB was used for the test in Linux in QEMU. This provided

an “emulated CPU speed” of a single core when compared with the performance of a real

controller running the same benchmark. From talking to Regin’s experts, it was learned

that the load on the controllers can be anywhere between 10 and 90%, typically. This gives

an estimation of the lower and upper bound on the number of controllers one would be able

to run inside QEMU. The number of controllers, n, becomes bounded by the formula:

CQ
R · 0.90

≤ n ≤ CQ
R · 0.10

where C = 6, is the number of cores on our machine’s CPU, Q is the CPU benchmark score

in QEMU and R = 398 [31] is the score of a real STM32F2xx board. The benchmark was

run twice with the results 2363 and 2386, resulting in an average Q = 2375. This gives a

bound on n of

39 ≤ n ≤ 358

4.5.2 Ported solution
The ported solution was run on machine with the Windows 10 operating system. This

controller solution could run in approximately 203 simultaneous instances. In this case, it

was the operating system on the side of the running virtual controllers that set the limit.

For some reason, it was not possible to run more than this number. This solution of virtual

controller did not quite reach the limit for a mean response time of 1 second, except for

few outliers, for both periodic and intensive benchmark, as can be observed in Figure 4.9

and Figure 4.6. The spread of the response times increases with the number of controllers.

The widest distribution range is approximately 500 milliseconds, excluding the outliers,

otherwise it is approximately 800 milliseconds. The number of outliers, in this solution,

increases with the number of controllers as well. Further, the intensive benchmark tool

captured the data flow sent to and received from controllers while performing the test. It

is clear form the Figure 4.5 that the amount of data increases with increased numbers of

controllers, hitting a peak at around 100 controllers and then to starting to decrease. It is

obvious when compared with the equivalent results from the simulated solution (Figure

4.11) that the limiting factor for the data flow is not because the network got overloaded.

4.5.3 Simulated solution
The simulated solution could be run in approximately 6200 instances on Linux machine

while communicating with the benchmark tool on another machine running Linux. In this

case, it was Linux that set the limit for the number of controllers. Simply, it hit the limit

for how many processes it could create for virtual controllers on one side and the number

of processes for the connecting controllers on the other side of the connection.

3http://www.eembc.org/coremark/about.php

33



4. Results

0 50 100 150 200

100

150

200

250

Number of controllers

m
ed
ia
n
re
sp
o
n
se

ti
m
e
(m

s)

Figure 4.4: A scatter plot of the median response times for each

individual controller in the ported solution for 185 virtual con-

trollers.

Overall, the median response time for all controller groups is in the span of few dec-

imal milliseconds up to under hundred milliseconds when running in several thousands

instances simultaneously. So, this solution of virtual controller was far from reaching the

limit for mean response time of 1 second, as it can be observed in Figure 4.10 and Figure

4.12. It is obvious that with increasing number of controllers, the distribution of response

time increases as well but does not exceed 100 milliseconds even with the outliers included.

The growth of response time when looking at the graph appears to be linear4, but further

analysis would be needed to confirm this hypothesis.

The response times for the simulated solution obtained in the intensive benchmark, can

be seen in Figure 4.12. It can be observed that response times are similar to the periodic

benchmark. The graph shows a truly beautiful curve that is almost definitely linear. The

analysis of the data flow was also done, as can be seen in Figure 4.11. It looks like it hits

a relatively constant maximum between around 1000 and 4000 controllers.

4note that the y-axis is logarithmic
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Figure 4.5: The total data flow for the ported solution as a function

of the number of virtual controllers in the intensive benchmark.
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Figure 4.6: A box-plot with the mean response times for the

ported solution for selected values of controller instances with the

intensive benchmark.
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Figure 4.7: A scatter plot of the median response times for each

individual controller in the simulated solution for 6000 virtual

controllers.
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Figure 4.8: A scatter plot of the median response times for each

individual controller in the simulated solution with the benchmark

program modification described in Section 5.3, for 6000 virtual

controllers.
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Figure 4.9: A box-plot with the mean response times for the

ported solution for selected values of controller instances in the

periodic benchmark.
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Figure 4.10: A box-plot with the mean response times for the

simulated solution for selected values of controller instances in

the periodic benchmark.
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Figure 4.11: The total data flow for the simulated solution as

a function of the number of virtual controllers in the intensive

benchmark.
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Figure 4.12: A box-plot with the mean response times for the

simulated solution for selected values of controller instances in

the intensive benchmark.

38



Chapter 5
Discussion

In this chapter a discussion is given on failed controller solution and the differences of the

succeeded ones. It has been anticipated from the start that the simulated solution would

have the best performance since it is the solution that does the least. It was unexpected,

that there would be such a big difference compared to the ported solution. It is surprising

considering that both solutions include an implementation for the relatively performance

heavy EXOcol tasks and EXOline functionality. Further down this section, we discuss in

detail the reasons for this performance disparity.

5.1 Emulated solution
For practical reasons, and because of the ease of use of an emulator, the emulated solu-

tion was considered the easiest one of the proposed. The EXOreal code was anticipated

to execute in the emulator without the need for any modifications. Even a few modifica-

tions would be acceptable since it would not have much effect on the complexity of this

solution. That was one of the reasons to state the scope of this solution to not implement

or modify the emulator’s device support. The other reason was that implementing the full

functionality of the physical controller’s hardware for QEMU, would actually move the

focus from the goal set in this project to a completely different one, and thus exceed the

time frame assigned for it. So, when debugging through the code, while emulating in all

the presented QEMU versions, revealed that the effort of solving problems exceeds the

intended, and the solution was considered as insufficient.

The emulation in some QEMU forks resulted in the execution getting stuck in the in-

terrupt table, and it did not even reach the break point of the main function. One possible

explanation could be that the emulated board triggered an interrupt that was not defined in

the interrupt table of the EXOreal code. On other QEMU forks that had better support for

STM32, the execution on the emulated device started from ResetHandler, as it is supposed

to. It then proceeded through the main function, hardware initialization, task creation and
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task scheduler starting functions, to finally get stuck in a hardware CPU core function.

This could also point to differences between the supported hardware in the QEMU imple-

mentation and the real hardware.

One might think that compiling the EXOreal code for the target without TCP support

was not so meaningful in achieving the goal in this work. More precisely, when the EXO-

real code was compiled for STM32F107 target board in the Beckus QEMU version, which

lacks a network hardware interface, and the TCP code was stripped out by the compiler.

The reason for doing that, is that it could be useful for determining if the insufficient net-

work implementation in QEMU was the source of the problems.

The result of developing this controller solution is unsatisfactory and because of the

inability to perform the test, it lacks response time data. This leaves few questions unan-

swered. One is, what performance would the solution have in test. The other is, how

would it preform in comparison with other solutions, what would be the maximum num-

ber of controllers instances that could be run simultaneously.

Performance estimation
We did an estimate in Section 4.5.1 that the number of controllers we could run in QEMU,

n, was between 39 and 358. Since the EXOcol tasks that run on the virtual controllers dur-

ing the benchmark does not do very much, the higher number is far likelier than the lower

one. It should be noted that this is just a very rough estimate. The system board emulated

is not the same as the one that real controllers use. The estimate assumes there are no ad-

ditional costs with running multiple instances of QEMU (i.e. a linear increase), CoreMark

is run on top of the relatively performance demanding operating system Linux, the num-

bers for the STM board is taken from STM who have presumably been very careful when

choosing the compiler and optimizations, and CoreMark is not perfectly representative of

EXOreal.

Still, it is possible that this solution could have been faster than the ported one which is

very interesting. The biggest reason to believe that it would not, though, is the estimation’s

validity depends on the assumption that the increase in performance requirements is linear

when more instances of QEMU are run. Processes are fairly resource demanding and the

increasing need for process scheduling and task switching are not negligible.

5.2 Ported solution
Using the PCAP port of lwIP obviously has a performance cost compared to a native

TCP/IP stack. However, disconnecting the EXOreal code from the lwIP code would be a

significant undertaking, and using normal sockets would limit the controller functionality

significantly. There would, for instance, be no way to use DHCP without simulating a

network adapter in some way. WinPCAP has relatively good performance and it can easily

saturate an Ethernet link without maxing out the processor [24]. Therefore, we felt that

using PCAP in this solution was an acceptable trade-off between simplicity, performance,

and functionality.

In Figure 4.4, the responses here are more uniformly distributed and this is what we

expected, in contrast to the results for the simulated solution in Figure 4.7. This was the
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case even before the benchmark program was modified as described in Section 4.4. This

is almost definitely because the number of processes were much lower.

While the ported solution is undeniably slower than the simulated solution, and may

be unsuitable for the purpose of overloading EXOscada, it is still very useful in other cir-

cumstances. A common request from developers for Regin’s controllers is that they would

like to have a “simulated” controller, running as an application so that they can test their

control applications. It is also useful for debugging and trying out new features instead

of using physical controllers. It is also useful if more realistic behaviour is required for

testing EXOscada. If we have a complete project already designed, with routing between

controllers and other features that the simulated solution does not have, then this solution

is still relevant. If more virtual controllers are required, more or more powerful computers

can be used. With ten consumer grade computers or one powerful server, 2000 virtual

controllers can be run.

5.3 Simulated solution
The extreme stratification revealed in the very first test results was not at all what we ex-

pected, see Figure 4.7. We determined that the most probable cause was that the network

got overloaded when the test started and 6000 TCP packets got sent, more or less, at the

same time. We modified the benchmark program to wait a short, random time for each con-

nected controller before starting the benchmark. The result was an extreme improvement

in median response time and the previous stratification was not present in the new results,

which can be observed in Figure 4.8. But, another phenomenon can be seen here, where

the last thousand or so virtual controllers have markedly lower median response times. We

believe that this is a result of some scheduling inequality. If one wanted to explore further,

it would be interesting to try different schedulers and see if it can significantly affect the

outcome.

The results from the intensive benchmark was surprisingly impressive. Even with the

very small TCP-packets, the data flow still exceeded 100 Mb/s as can be seen in Fig-

ure 4.11. In Figure 4.12, we can see that the responsiveness does not appear to be impacted

much by the more intensive request rate when compared with periodic benchmark results

in Figure 4.10. This seems to indicate that something other than the network is the bot-

tleneck for the simulated solution. But on the other hand, in the data flow graph in Figure

4.11 we can see that the data flow becomes more or less constant after around a thousand

controllers which seems to indicate that the network can indeed be a bottleneck. It is also

interesting that for some reason the variance, in intensive benchmark, seemed to decrease

a huge amount when compared to the periodic benchmark. We have so far not been able

to determine the reason for this.

5.4 Benchmark tool
During testing, the benchmark tool did not get overloaded to the same degree as EXOscada

could be when getting log data. This was not the intention, either, but rather collecting the

response data for controller evaluation. Another reason was that communicating larger
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amount of data could presumably congest the network. If that were the case, the response

data would not reflect the performance of the controllers, but rather the responsiveness of

the network. It is reasonable to presume that distribution of virtual controllers on multiple

nodes (machines) would circumvent the network congestion problem on the controller

side of the network. For those reasons the EXOline requests were selected to not ask

the controllers for large response data, but only variable values and simple strings. The

assumption was made that the message types did not have any significant affect on the

response times, but as it can be see in Section 4.5, it did have some effect.

The periodic benchmark is assumed to not overload the network since there is an ex-

plicit delay of 1 second between sending new request. As described in Section 3.4 the data

flow is almost negligible. On the other hand, the intensive benchmark could cause con-

gestion on the network to some degree. But, we still believe, based on the comparison of

the response data of the two benchmarks, that the limitation lies on the virtual controller’s

side of the communication channel and not the network.
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Chapter 6

Conclusion

In this thesis, the performance of three different solutions for virtual controllers have been

examined. In order to accomplish this, a simulated virtual controller was implemented

specifically for this thesis. The existing controller software was also ported to be able run

as a native application. Unfortunately the emulation solution did not result in state to work

well enough to be tested in the benchmark program. But an estimation was done of the

number of controllers it could have achieved based on Coremark performance estimation

data. Of the tested solutions, the simulated solution has undoubtedly the best performance.

It can easily run 6000 virtual controllers while still being highly responsive. The ported

solution, on the other hand, can only just run 200 virtual controllers. However, while the

simulated solution is clearly faster, the ported solution is a more faithful imitation of the

original controllers which is useful in other circumstances. One such circumstance is for

developing new features for actual controllers. Another one is for customers to be able to

initially test their software in a virtual environment. It is also possible to use a mixture of

the two successful solutions if different characteristics are desired for some subsets of the

controllers. For example, a hundred virtual controllers could be run on the ported solution

and a thousand could be run on the simulated solution.

The performed performance estimation shows that it is possible that the emulated so-

lution could have been better than the ported solution. It is a shame that this estimation

could not be verified in a test. If successful, the emulated solution would clearly have been

the most faithful imitation of a virtual controller in terms of capabilities.

For the purposes of trying to overload EXOscada with a high number of simultaneous

network connections, at the present time, the simulated solution is clearly the best.
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6. Conclusion

6.1 Future work
Emulated solution
An obvious improvement of the emulated solution is possible by forking QEMU and im-

plementing either Beckus’ or marijnthe’s QEMU fork project. The debugging indicated

that these two could execute hardware independent code and got stuck in hardware specific

functions. Work would be required on examining and implementing the needed support

for the actual hardware of the STM32F2xx board. It is suitable as a future development

project of the emulated controller solution.

An other possible improvement is to modify the EXOreal code; to port it to a new

ARM board that is officially supported by QEMU. The EXOreal code has been ported to

new boards before, and the expertise required should be available at Regin.

Ported solution
Some improvements can be made on all IO ports functionality so that it would, to some

degree, correspond to the functionality of physical controller. For instance a graphical

board with switches and sliders for value visualization and manipulation. This would

improve the suitability of this type of virtual controller for the contribution in development

work of future functionality for the physical controller.

Improving the performance of the ported solution is definitely a valuable avenue of

improvement. Not much time has been spent on optimizing the performance so there is

definitely room for improvement.

Simulated solution
One possible improvement for the simulated controller is to develop a graphical user in-

terface (GUI). The purpose of the GUI, in first place, is not to improve any functionality

of the controller, but rather to make handling easier. Mainly, it is needed for configuration

management of the controllers, like specifying IP address and TCP port of the EXOscada

server, assigning EXOline id’s to controllers, and the number of controllers to instantiate.

Test environment
While testing, the benchmark tool collected the response data for controller responsiveness

evaluation. In order to reduce the risk of network congestion, the test environment could

be enhanced. The benchmark could be distributed between multiple nodes, each with a

dedicated gigabit (or better) connection, for example.
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Appendix A
Other tables and graphs

A.1 ANOVA

Df Sum Sq Mean Sq F value Pr(>F)

Message type 3 68120.50 22706.83 116.86 0.0000

Residuals 23612 4587882.85 194.30

Table A.1: ANOVA table for message types for the simulated so-

lution

Df Sum Sq Mean Sq F value Pr(>F)

Message type 3 69274.63 23091.54 0.57 0.6349

Residuals 808 32731924.28 40509.81

Table A.2: ANOVA table for message types for the ported solution

A.2 Graphs
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Figure A.1: A plot with the mean response times for the ported

solution compiled with -O2 for different numbers of controllers

with box-plots for selected values of controller instances.
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