
Summarizing Product Reviews Using
Dynamic Relation Extraction

Oskar Handmark, Mikael Gråborg

MASTER’S THESIS | LUND UNIVERSITY 2016

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2016-40

Summarizing Product Reviews Using
Dynamic Relation Extraction

(Combining Dependency Parse Trees with Statistical

Prediction Models to Identify Feature Opinions)

Oskar Handmark
dat11oha@student.lu.se

Mikael Gråborg
dic11mgr@cs.lth.se

October 18, 2016

Master’s thesis work carried out at
the Department of Computer Science, Lund University.

Supervisor: Pierre Nugues, pierre.nugues@cs.lth.se

Examiner: Jacek Malec, jacek.malec@cs.lth.se

mailto:dat11oha@student.lu.se
mailto:dic11mgr@cs.lth.se
mailto:pierre.nugues@cs.lth.se
mailto:jacek.malec@cs.lth.se

Abstract

The accumulated review data for a single product on Amazon.com could po-
tentially take several weeks to examine manually. Computationally extracting
the essence of a document is a substantial task, which has been explored pre-
viously through many different approaches. We explore how statistical predic-
tion can be used to perform dynamic relation extraction. Using patterns in the
syntactic structure of a sentence, each word is classified as either product fea-
ture or descriptor, and then linked together by association. The classifiers are
trained with a manually annotated training set and features from dependency
parse trees produced by the Stanford CoreNLP library.

In this thesis we compare the most widely used machine learning algo-
rithms to find the one most suitable for our scenario. We ultimately found
that the classification step was most successful with SVM, reaching an FS-
core of 80 percent for the relation extraction classification step. The results of
the predictions are presented in a graphical interface displaying the relations.
An end-to-end evaluation was also conducted, where our system achieved a
relaxed recall of 53.35%.

Keywords: review analysis, relation extraction, nlp, data mining, machine learning

2

Acknowledgements

First and foremost, we would like to thank Pierre Nugues for his open mind, persistant ef-
forts and invaluable advice. Thanks to him, we have been given the opportunity to explore
new endeavors, think on our feet and develop as engineers. We would also like to thank
all the great people at Tactel, specifically Olof Råborg and Jonas Neldeborn for trusting us
when we came up with this project. Finally, we would like to acknowledge the teams be-
hind Stanford CoreNLP and scikit-learn, thank you for creating these wonderful libraries.

3

4

Contents

1 Introduction 7
1.1 Problem Definition . 7
1.2 Purpose . 7
1.3 Related Work . 8
1.4 Research Questions . 9
1.5 Limitations . 9
1.6 Contributions . 10

2 Theory 11
2.1 Natural Language processing . 11

2.1.1 Relation Extraction . 11
2.1.2 Depedency grammar . 11
2.1.3 Phrase structure grammar . 12
2.1.4 SentiWordNet . 12
2.1.5 Stanford CoreNLP . 14

2.2 Machine Learning . 15
2.2.1 Machine Learning Features . 15
2.2.2 Support Vector Machines . 15
2.2.3 Nearest Neighbors Classification 16
2.2.4 Decision Tree . 16
2.2.5 RandomForest . 16
2.2.6 AdaBoost . 17
2.2.7 Logistic Regression . 17

3 Method 19
3.1 About the Review Data . 19
3.2 Preprocessing . 20

3.2.1 Correcting reviews . 20
3.2.2 Spell Correction . 20

3.3 Relation Extraction . 21

5

CONTENTS

3.3.1 Annotation . 21
3.3.2 Machine Learning Features . 23
3.3.3 Training the model . 25
3.3.4 Initial Product Feature and Description Extraction 26
3.3.5 Chunking . 26
3.3.6 Linking . 27

3.4 Finalization . 27
3.4.1 Aggregation . 27
3.4.2 Product Feature & Descriptor Disambiguation 28
3.4.3 Scoring the sentiment with SentiWordNet 28
3.4.4 User Interface . 29

3.5 Evaluation . 30
3.5.1 Evaluation . 30
3.5.2 End-to-End Evaluation . 30
3.5.3 Evaluating the Winning Classifier 31

4 Results 33
4.1 Classifier Comparison . 33
4.2 Best Classifier . 34
4.3 End-To-End . 36
4.4 Pre-processing . 37

5 Discussion 39
5.1 Data Selection . 39
5.2 The Annotation Process . 40
5.3 Pre-processing . 40
5.4 The Machine Learning Process . 41

5.4.1 Features . 41
5.4.2 Best Classifier . 41
5.4.3 Confusion Matrix . 42
5.4.4 Learning Curve . 42

5.5 End-to-End Evaluation . 42
5.6 Stanford CoreNLP Issues . 43
5.7 Sentiment Analysis . 43
5.8 Alternate Approaches . 44
5.9 Future Work . 44

6 Conclusions 45

Bibliography 51

Appendix A POS-tags 57

6

Chapter 1
Introduction

1.1 Problem Definition
Tactel is a consultancy company that aims to bring intelligent systems to its customers.
As a part of taking the next step in data analysis, we have been tasked to create a smart
system for product recommendation. We will investigate the possibility to accomplish this
by analysing Amazon reviews and applying several Natural Language Processing (NLP)
and Machine Learning (ML) tools.

The research is primarily focused on relation extraction with the aim of extracting
reviewers’ opinions about product features. E.g "the design" or "battery life" of a certain
product. A small UI will be created to demonstrate the work.

The problem can be formulated as an relation extraction task where we try bind a
product feature (PF) to a descriptor (DESC). The task is visualized in Table 1.1 .

Input Extracted Product Feature(s) Extracted Description(s)

The battery is great battery great
The auxiliary battery is short-lived auxiliary battery short-lived
I was super impressed by the sound sound super impressive
The design is crisp and colorful design crisp, colorful
The base and treble is terrible base, treble terrible

Table 1.1: The goal of the relation extraction task.

1.2 Purpose
The objective of this thesis is to provide a system that can perform review summariza-
tion using relation extraction. The main focus is to explore ways to dynamically extract

7

1. Introduction

product features and their respective descriptors. The dynamic part refers to the process
of not needing any manual tools, such as word lists or domain knowledge to perform the
extraction. Furthermore, we research different ways to effectively:

• Modify text and perform preprocessing.

• Tokenize text.

• Do semi-automatic annotation to train a classifier.

• Use the proper machine learning algorithm for each purpose.

• Identify relevant machine learning features through feature engineering.

• Perform chunking and linking.

• Associate words with a sentiment.

• Aggregate results.

Combining dependency parsing with ML, another purpose is to improve upon earlier
work in the field of Natural Language Processing and develop the field even further within
our specific niche.

1.3 Related Work
The use of machine learning to perform statistical prediction is a broadly researched sub-
ject which can be encountered in multiple fields. In language processing, it is widely used
to measure the accuracy of an algorithmic task. The foundation of our research will mainly
focus on using relation extraction to identify product features and their respective descrip-
tors in reviews. This has been attempted in various ways before by, among others, Popescu
and Etzioni who used an unsupervised system called OPINE [22], which is built on top of
the KnowItAll Web information-extraction system by Etzioni et al [12].

More closely, our endeavor is related to the work of Minqing Hu and Bing Liu [15].
They explicitly aim to identify product features and the corresponding opinions to present
a summary for every product. Somewhat similarly to our feature set, Hu and Liu uses
Part-of-Speech tags and the Apriori [1] algorithm to identify product features. This is
then used as a foundation to identify opinions and thus implicitly also which sentiment the
users have towards that product feature. Hu et al. uses WordNet to determine sentiment,
while our system relies on its successor; SentiWordNet.[26]

Sentiment analysis or opinion mining, is an active research field that uses more or
less the same core strategies for scoring. Each token is given a score (optionally passed
through some function) and the sentence or paragraph is scored by averaging or summa-
rizing the total score (depending on the scoring method). Previous research by Dave et al.
[10] shows moderate success in classifying sentiment in product features using machine
learning methods, and Pang et al. [21] sentiment in entire review corpora.

8

1.4 Research Questions

1.4 Research Questions
Research will be conducted to mainly verify the feasibility of extracting, chunking and
linking product features and descriptors as well as conducting a sentiment analysis on the
descriptors. Implementing such a system to behave intelligently requires knowledge about
multiple aspects of the problem. Hence, our research questions can be summarized as:

• Can we alleviate discrepancies in the analysis by performing intelligent preprocess-
ing?

• Which approaches and algorithms are suitable in our scenario?

• How can we perform intelligent product feature extraction and find relevant descrip-
tors?

• How can product feature & descriptor ambiguation be reduced?

1.5 Limitations
The main focus of the thesis was to make use of NLP and ML for the intended domain.
Thus, less focus was targeted towards business analysis and presentation. Although these
parts are still present they were kept to a minimum to fit in the current time frame. We felt
it important to provide some visual presentation of the results, and this is probably where
we could have made the most improvements given a little more time.

It is often assumed that a larger training set yields better results, and that a smaller
training set is more prone to overfitting. We use a relatively small training set, and one
major limitation is related to the required resources to annotate a large training set with
high quality. Given more resources and time, we probably would have outsourced this part
of the project to e.g Mechanical Turk[17] or similar. If the data would be of high quality
and correctly annotated, this would likely reduce the effect of outliers and erroneous data.
In the same sense, high quality review data from difference sources would probably also
benefit our system. TheAmazon data does contain a large amount of text, but if the training
set was extended to include other data sources about the same products, it is possible that
the end-to-end result would be improved.

As always when dealing with large sets of data and complex computations, hardware
is a limitation. In turn this is correlated with the time limitation since more sophisticated
hardware often enable computations to be done in less time.

To further narrow the scope we decided to take the flexible approach and not be depen-
dent on anymanually written product feature list. It is possible that an alternative approach
with a list would produce higher accuracy and recall, but reducing the flexibility of finding
new, to the writer unknown, product features. Naturally, this approach would only work
with a very extensive product feature list, or for a narrow product category with unclear
certainty on new categories.

When trying out different classifiers we limited ourselves to use the machine learning
library Scikit-learn [24]. At the time of writing the thesis, neural networks was not offered

9

1. Introduction

as a classifier-option. If made available, it would have been logical to assess the perfor-
mance in our system. But with the current situation, we made the decision not to include
another machine learning library, just for the sake of neural networks.

1.6 Contributions
We wrote this report in complete collaboration. Very few chapters were written individu-
ally.

10

Chapter 2
Theory

2.1 Natural Language processing
2.1.1 Relation Extraction
A general definition of Relation Extraction and Information Extraction is the processes
of extracting structured information from unstructured documents or text. Although the
terms are similar, information extraction generally differs from relation extraction due to
it being able to extract information about many different relations, whereas relation ex-
traction usually aims to extract a single relationship. Extracting tuples, instead of triplets.
Therefore, relation extraction, rather than information extraction, will be the term used to
describe our process.[2] [4]

2.1.2 Depedency grammar
Dependency grammar describes various theories for syntactic structuring of a sentence.
In dependency grammar there generally exist directed links between lexical items that
makes up a sentence such as words and dots etc. The syntactic sentence structure is often
determined by relations between a head word and dependant words which modify the head
word.

In order to create a structured graph of links between the lexical items, a dependency
parser is used. There exist multiple dependency parsers and they generally analyze a com-
bination of word classes and grammatical structure to create a dependency structure. In
Figure 2.1 and example of a dependency parse tree is shown. It was generated by the
Stanford CoreNLP’s dependency parser [7]. The structure is generally comprised of three
main components:

• Head - dependant relations.

11

2. Theory

• Arc labels.

• Part of speech labels.

The headphones are remarkably robust
DT NNS VBP RB JJ

root

det

nsubj

cop

advmod

Figure 2.1: A dependency parse tree.

2.1.3 Phrase structure grammar
A constituency parser structures a text by breaking it down into sub phrases. In a con-
stituency parse tree (visualized in Figure 2.2, all the non-leaf nodes are phrase groups and
the leaves are the lexical items. The edges between nodes are unlabelled. This is differ-
ent from a dependency parse tree, where the edges have labels indication the relationship
between the lexical items.

ROOT

S

VP

ADJP

JJ

robust

RB

remarkably

VBP

are

NP

NNS

headphones

DT

The

Figure 2.2: A constituency parse tree.

2.1.4 SentiWordNet
SentiWordNet[26] is a polarity dictionary that has positive and negative scores for a large
number of nouns, verbs, adverbs and adjectives. It is an extension to WordNet[28] and is
currently in version 3.0, but was first made available to the public as SentiWordNet 1.0
in 2006[11]. In order to understand how SentiWordNet was created, we must first briefly
discuss WordNet.

12

2.1 Natural Language processing

WordNet
The development of WordNet started in 1985 at the Cognitive Science Laboratory of
Princeton University. WordNet is a database where words are grouped into sets of cog-
nitive synonyms (synsets), i.e the representation is consistent with the way our brain pro-
cesses the meaning of words. WordNet’s power comes from its net-like structure, since
there are links between the synsets which forms a hierarchy that can lead you back to one
distinct root[19]. This is used in NLP applications to perform word sense disambiguation
and similarity computation. The data set consists of English nouns, verbs, adverbs and
adjectives and is composed by 155287 unique words.

Improvements
WordNet is powerful, but it doesn’t differentiate between positive or negative words, or
how strong sentiment each synset expresses. SentiWordNet solves this problem, and also
adds the finesse of objectivity scoring. SentiWordNet was created in two steps: the semi-
supervised learning step and the random-walk step.[3]

The Semi-supervised learning step
In order to classify the synsets as negative or positive, a manually labelled seed set was
created. Then, using the net-like structure of WordNet, these seed sets were expanded
to a larger set by traversing connected synsets. The synsets were labelled as positive or
negative (binary) and the expansion uses rules to either preserve the label, or flip it. For
example by following the "also-see"-relation or "direct antonymy”"-relation. This auto-
matic expansion annotation is quite efficient and results in a larger training set, one for
positive synsets, and one for negative.

Two binary classifiers are then trained by using the training sets, which consists of
the glosses of the synsets. SentiWord 1.0 used a "bag of words" model by just using the
glosses, but in SentiWord 3.0, glosses were linked to the PrincetonWordNet Gloss Corpus,
where each gloss is a sequence of WordNet synsets, forming a "bag of synsets" model.
These two classifiers are used to classify synsets as positive or not positive, and negative
or not negative. If a synset {Pos,Neg} is classified as {1, 1} or {0, 0} it is considered to be
objective. In total, this builds a ternary classifier that labels {Pos,Neg,Ob j}.

The random-walk step
The random walk algorithm is similar to Google’s Pagerank algorithm. It is a graph based
method that gives more weight to nodes with a large amount of incoming links. The algo-
rithm is run until convergence onWordNet as a graph. The graph consists of links between
glosses in synsets to other synsets. If two synsets share context, it is very likely they share
the same sentiment. For example, if the synset definiens) occurs in the gloss of another
synset defiendum they tend to have the same polarity. Using this comparison, a number of
negative and positive edges are set between each node. Thus, a node (synset) is classified
as either positive or negative on a scale {0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0}
by iteratively flowing throw the graph.

13

2. Theory

SentiWordNet 3.0 structure
SentiWordNet 3.0 structure visualized in Table 2.1. The Part of speech (POS) tag of the
words (limited to nouns, verbs, adverbs and adjectives) allows the same word to appear
multiple times, but with different meanings. For example the words slow (verb) and slow
(adjective) belong to different synsets. The objectivity score can be calculated as

Ob j = 1 − (PosScore + NegScore).

Table 2.1: SentiWordNet 3.0 structure. TheWordNet ID has been
omitted for clarity. The SynsetTerms column reports the terms,
with sense number, belonging to the synset

POS PosScore NegScore SynsetTerms Gloss

a 0 0.625 wrecked#1 destroyed in an accident; "a wrecked ship"
a 0.25 0 preserved#2 kept intact or in a particular condition
a 0 0.625 conserved#1 protected from harm or loss
a 0.75 0 well-kept#1 maintained#1 kept_up#1 kept in good condition
a 0.5 0 preservable#1 capable of being preserved

2.1.5 Stanford CoreNLP
Stanford CoreNLP is a annotation pipeline framework developed and maintained at Stan-
ford University by the Stanford NLP Group. We use this as our main library to perform
the required text processing. It is a suite of core NLP tools that allows you access to a
wide range of functionality, such as tokenization, part of speech tagging, named entity
recognition (NER), co-referencing, dependency parse trees and more. There are multiple
core libraries for text processing, such as NLTK [25] and SpaCy [27] to name a few. This
chapter is dedicated towards explaining the functionality in CoreNLP that we use the most;
dependency parse trees.

When annotating, CoreNLP provides both the dependency and constituent representa-
tion of a sentence, as described in 2.1.2 and 2.1.3. The main difference between Stanford
CoreNLP and the other predominant parsers, such as NLTK, Spacy, etc. is which element
is being selected as root, and thus the main entry point in the sentence. In CoreNLP, the
root of the the sentence is often selected as the adjective of the sentence, instead of the
verb. As in figure 2.3 displayed below.

The headphones are remarkably robust
DT NNS VBP RB JJ

CoreNLP rootSpaCy root

Figure 2.3: Contrast between two parsers when selecting root el-
ement.

14

2.2 Machine Learning

CoreNLP uses a transition-based parser based on the arc-standard system. The arc-
standard consists of a stack, a buffer and a set of dependency arcs, which will storing the
resulting parse tree. For example:

s = [ROOT]
b = [”The”, ”battery”, ”is”, good”]
A = φ

The words are then successively popped from the buffer and considered for three types
of transitions until the buffer is empty and the stack only contains the ROOT. The three
types of transitions are as follows, with si being the top ith element on the stack:

1. LEFT-ARC: adds an arc s1 → s2, with the corresponding label to arc set and removes
s2 from the stack. Assuming stack has at least two elements.

2. RIGHT-ARC: adds an arc s2 → s1 with the corresponding label to arc set and re-
moves s1 from the stack. Assuming stack has at least two elements.

3. SHIFT: moves first element from the buffer to the stack. Assuming buffer has at
least one element.

The transition and label selection at each state is done with a neural network classifier.
The classifier is trained using an oracle, with an annotated training set containing sen-
tences and their correct parse. The sentences are split into many training examples by the
oracle with different transition selection sequences for reaching a correct final parse state.
The training examples are in turn used to train the neural network with adaptive gradient
descent (AdaGrad) with hidden unit dropout. [7][20]

2.2 Machine Learning
2.2.1 Machine Learning Features
A feature is a characteristic that might be useful when the model is performing predictions.
Although an abstract definition, it’s much easier to understand given the problem context.
For example, given the task of classifying fruits, possible features could be the fruit’s
weight, form and color. Hence, the classifier will predict all items being round, green and
weighing around 150g as apples, while round, orange items weighing around 200 g will
be predicted to be oranges.

2.2.2 Support Vector Machines
Support vector machines is a supervised learning algorithm that learns a hyperplane to
classify data into classes. It can be used for both classification and regression, but is mostly
used in classification problems. This extends to very high dimensions, but for just two
classes, the hyperplane can simply be a line of the form y = mx+b. Themodel creates such
a hyperplane by maximizing what’s called themargin. Support vectors are computed from

15

2. Theory

data points close to the boundaries between two classes. From these vectors, two parallel
hyperplanes are chosen to separate the data, and the distance between is called the margin.
The optimal hyperplane lies in the middle of the two parallel hyperplanes. SVM performs
classification by checking which side of the optimal hyperplane a data point falls in to.
SVM also uses a kernel function to map data points to higher dimensions. This is done
without affecting the hyperparameters. Using this kernel strategy is incredibly powerful
and is one of the reasons why SVM often performs so well even in high dimensions. SVM
is very memory efficient since it uses a subset of training points for creating the support
vectors. The drawback is that the training time is long for large data sets. [13]

2.2.3 Nearest Neighbors Classification
Nearest neighbors is a broad subject that is the base of many learning methods. It works
both unsupervised or supervised and even if themethods vary from algorithm to algorithm,
the basic principle is to find the closest (in distance) set of points (from the training set) to
the the new, unknown data point. In a supervised nearest neighbors algorithm, the class
is predicted from which neighbors it is assigned to. The number of neighbors is often
named as K , and different algorithms focus on this metric to perform classification (such
as K-nearest neighbor learning) whereas other algorithms use radius-based methods. This
simply means that a specific radius limits howmany neighbors should be assigned to a new
data point. What’s interesting about nearest neighbors methods is that they do not create a
dedicated, internal model. Instead, whenever it’s tasked to perform prediction, a majority
vote is held by the nearest neighbors of the new point to compute the classification. Since
it makes no assumptions of the training data distribution, it is well suited to deal with
irregular decision boundary situations. [9]

2.2.4 Decision Tree
Decision Trees are constructed through dissecting the annotated training set with every
feature as a node. The tree is not necessarily binary and thus both features and classes can
hold discrete values. The tree is constructed node first and the subsequent tree nodes are
selected by their corresponding information gain. The information gain defines how well
a feature separates the annotated training set. In other words; if the feature information is
closely related to the result it will have a high information gain. In the classic example of
predicting if the day is optimal for playing tennis; the training data might show that e.g
the data for the feature "Forecast" being "Sunny" almost always correlates to "Yes" and
"Rainy" almost always correlates to "No" more than say the data of feature "Wind", then
that node will be placed closer to the root node. In turn this will result in a more compact
thus more optimal tree. Smaller trees are usually favored, especially in the case of ID3,
where deep trees have tendencies to overfit the training sets. [18]

2.2.5 RandomForest
To solve the previously mentioned problem with overfitting in Decision Trees, Random
Forest (RF) extends the method with modified tree bagging. Instead of creating an exten-
sive tree for the entire training data, RF differs by randomly selecting, with replacement,

16

2.2 Machine Learning

several subsets from the annotated set and formsmany smaller trees with it. To enhance ac-
curacy and enable generalization error the procedure of tree construction also differs from
regular decision trees. Instead of selecting the best node from all features, the best split
from a random sample of features is chosen. A prediction can then be made by averaging
the results from the trees, or by selecting the majority vote. This reduces variance and
usually doesn’t increase bias. Making it a better algorithm than decision trees on complex
models. [6]

2.2.6 AdaBoost
AdaBoost defined as a boostingmethod to, by combination and iteration, improve the result
of other, weak, learning algorithms. A weak learning algorithm classifies with little more
prediction accuracy than chance. The classifier used in this project, as it is the default base
estimator by Scikit-learn, is the DecisionTreeClassifier. The algorithm is "boost iterated"
on a single data set, meaning that different weights are applied to the training samples in
each iteration. The weights are increased on the samples previously classified falsely and
thus increasing the likelihood of the samples being predicted correctly in the next round.

As concluded by Robert Schapire [23] it is difficult to comprehend the true advantages
and disadvantages of this method, though he concludes that noise can be a noticeable
problem, though through enough training data, generalization error can be reduced to close
to zero, which is ideal.

2.2.7 Logistic Regression
In contrast to its name, Logistic Regression is linear model for classification. Other
names for Logistic Regression is Logit Regression, Maximum-entropy classification or
Log-Linear classification. Given a set of training data, Logistic Regression uses a logistic
function to classify the probabilities for different classes. This means that it can perform
classification with probabilistic outcomes. The logistic function stems from the basic stan-
dard logistic function which has the form:

f (x) =
1

1 + e−x

For example, if you have 5 years of data from different scientific experiments with la-
bels describing wether the experiments were successful or not, Logistic Regression can
be trained with this data, and perform classification predictions on a scale from 0 to 1.0.
When you input your current experiment parameters the model might predict 0.87. This
means that the experiment has a 87% to be successful. In ordinary regression the model
tries to minimize the the sum of squared errors. Logistic Regression however, tries to
maximize the likelihood of recognizing the sample values. For classification problems,
each class receives a probability which describes to likelihood of that sample belonging to
that class. However, in order to produce stable results a very large training set is required.
[14]

17

2. Theory

18

Chapter 3

Method

3.1 About the Review Data

We got access to the Stanford SNAP data, which is a collection of Amazon reviews (in en-
glish) from 1996-2014. It also includes meta data about the products the reviews are for,
such us as the price of the product. There are a few different subsets for download, where
each subset is a collection of reviews belonging to products in a specific category. We
chose electronics because we already have domain knowledge about products regarding
that area. For each category, there are dense "K-core" subsets. This means that the re-
views have been reduced to just include reviews such that each item has at least K reviews,
and each user has reviewed at least K reviews. We use 5-core in our thesis. Since we’re
interested in aggregating our results, having products with just 1 single review doesn’t
contribute much to the end result. Also, requiring that each user has written at least 5
reviews has the effect of getting rid of a lot of fake reviews. In total, 1.7 million reviews
for products in the electronics category were downloaded and used for our task.

As for the reviews themselves, the number of reviews per product varies a lot, from 5
up to a couple thousands. The length of the reviews varies as well, since some people like
to keep themselves short, or simply didn’t have the time or effort to write a long review.
The biggest challenge in when it comes to the review data is that the text itself is comprised
of paragraphs with poor grammatical structure. It is important to bring this up, because
it affects every part of a system, especially statistical parsers, that are trained on properly
written text. This complicated things for us, and in order to alleviate some of the damage
caused by this, we performed some preprocessing of the text, which we will talk about in
the next chapter.

19

3. Method

3.2 Preprocessing
In order to perform consistent computations without having to parse a text file every time,
we extracted the review texts and meta data and put them in our MongoDB database. The
Stanford Snap data comes in a very convenient JSON format, which we restructured to fit
our needs, and saved to our database. This also allowed us to analyze and understand the
data set in a simpler way by querying the information using the Mongo shell. Using this
convenient data structure, we could experiment and figure out what we needed to correct
in the reviews in order to achieve better results. The preprocessing steps will be described
in this chapter.

3.2.1 Correcting reviews
Unfortunately, reviews written by humans are seldom linguistically correct. These faults
range from spelling to grammar and can cause the tokenization of text to produce erroneous
results. In order to help the tokenizer, we performed some sanitation and correction of the
reviews before feeding it to the tokenizer. In order to reduce the complexity of dependency
parse trees we broke up sentences to smaller sentences whenever possible. Also, we found
a few discrepancies that caused the tokenization to produce weird results. Table 3.1 shows
a list of problems and their respective solutions.

Table 3.1: Corrections performed

Problem Example Solution

No space after dot
causes the tokenizer
to treat the two sur-
rounding words as
one.

The sound is great.I like
them

Insert a space after dot
where this is the case.

Multiple dash charac-
ters does not produce a
new sentence

Don’t get a unit that
simply insulates the
sound — you might as
well use earplugs.

Replace two or more
dashes with a dot.

"..." does not produce a
new sentence

My wife thought it
was heavy... when she
picked it up.

Replace multiple dots
with a single dot.

3.2.2 Spell Correction
Reviews written by humans are seldom linguistically correct, especially on the Internet.
Thus, we implemented a simple heuristic to spell correction, in order to avoid missing
some product features and descriptors just because the were misspelled. We used PyEn-
chant, which is based on the Enchant library. The algorithm is based on edit distance and
statistics and we use it to auto correct some misspelled words. During the preprocessing

20

3.3 Relation Extraction

step, we analyze eachwordwith the spell checker, checks if it flags it as a spelling error, and
use the first (most relevant) suggested word. We do not allow the spell checker to change
words that contain numbers or uppercase letters, since these words could potentially be
product names or specs, such as "iPhone" or "20M".

3.3 Relation Extraction
Our type of relation extraction is a difficult task, primarily because the semantic structure
of sentences vary depending on the multiple possible ways to phrase sentences containing
descriptors for product features. For example, the sentence "The sound is impressive" and
"I was impressed by the sound" has major dependency parse tree differences. Additionally,
what makes relation extraction of review texts produced by humans is the fact that a many
of the reviews has poor structure or grammar, which complicates dependency parsing. To
provide an overlook, these are the steps we took to perform our tuple extraction:

• Annotation - Construction of a training set using semi-automatic annotation.

• Feature selection - Using NLP tools to induce features.

• Chunking - A separate classification step to chunk for example groups of descriptors

• Linking - Manual rules to provide correct links between product features and de-
scriptors, so that descriptors doesn’t get attached to a product featured that was not
linguistically intended in the original text.

• Testing - Evaluation of the extraction process using cross validation and a separate
test set.

3.3.1 Annotation
As the method involves a supervised machine learning it implicitly also involves a man-
ually annotated training set and with it an implicit or explicit test set. The end result and
accuracy of the classifiers are much dependent on the training set’s quality and size. To
achieve the optimal size, it is therefore necessary to perform ameasurement of the learning
curve. While keeping the explicit test set static the training set was dynamically changed
with more annotations, measuring both the learning curve from the explicit test set and
cross validating the training set.

Requiring a fairly big test and training set the annotation was done semi-automatically,
to simplify the processes for the annotator. Thus, a set of manual rules was used together
with the data pre-processing before presenting the words to be annotated to the annotator
through a minimal user interface in the terminal. Through the terminal the user could enter
if the rules had annotated the words correctly or not. If the words were classified incor-
rectly the UI enabled the annotator to type the indexes of all product features followed by
the indexes of all the descriptors. The system then annotated a text file automatically in
a format readable by our parser. With the word-to-be-classified occupying the first col-
umn, the second column was thusly filled with the word’s first label with ’DESC’, ’PF’ or

21

3. Method

’-’. This allowed training of our main classifier. The second classifier which was imple-
mented to predict product feature/descriptor groups, also known as the chunker, needed
additional information. Manual additions was thus inserted directly into the annotated text
file, adding a third column to the file with the labels ’b.PF’, ’i.PF’, ’b.DESC’ and ’i.DESC’.
An extraction of the annotation set can be seen in Figure 3.2.

Table 3.2: Extraction of annotation file

Word PF/DESC Group

The - -
sound PF b.PF
is - -
pretty DESC b.DESC
good DESC i.DESC
. - -

These PF b.PF
are - -
perfect DESC b.DESC
with - -
really DESC b.DESC
good DESC i.DESC
sound PF b.PF
. - -
. . .
. . .

Review data from the retail site Amazon.com was used to assemble the sentences to
be annotated. The reviews were read from a JSON text file aggregated and formatted by
McAuley et al. for their quest in "Inferring networks of substitutable and complementary
products"[16]. The data was collected fromMay 1996 - July 2014. The data sets available,
referred to as SNAP sets, is organized by category. To limit the scope of the thesis, the
’Electronics’ set was used. This set was also stripped of any duplicates and only contains
items with 5 reviews or more. Consisting of 1.7 million reviews accounting for a total of
1.478 Gigabyte.

To train our classifier, only sentences serving our objective of mining sentiment from
product features were selected for inspection, and thus removing the noise from our train-
ing set. Meaning only sentences containing pre-defined product features were selected,
and with no or very little ambiguity concerning the product feature and the sentiment.
Finally the sentences was also corrected as per the pre-processing.

Realizing the possibility of potentially confusing the classifier with inconsistent anno-
tations a set of of manual checks was written as seen in the list below, specified as explicit
as possible. The primary purpose of the check list was to help the human annotator and
was thus not included in the internal annotation tool.

Many iterations were made to perfect the training set and the check list. In the end, the
decision was made to focus on being consistent with labelling sentences uniformly regard-

22

https://www.amazon.com/

3.3 Relation Extraction

ing their sentences structure, while assuming grammatically correct English, realizing that
everything can not be filtered in the first classification.

Annotation check list

1. Select every possible product feature (PF)

(a) Typically a noun
(b) Can be an actual PF or something referring to the product itself e.g product

name, ’it’, ’they’, ’these’
(c) Has to be described
(d) Never a determiner, e.g ’the’
(e) Never ’I’

2. Select every possible descriptor (DESC)

(a) Typically an adjective
(b) Can be a determiner, e.g ’the’ if neighboring to other DESCs
(c) Can be a verb if other than lemma of be
(d) Can be preposition ’in’, ’for’, ’than’ etc, if directly assisting a DESC and not a

subordinate clause

The semi-automatic annotation also served a secondary purpose. While annotating, the
manual rules were updated as problems arose with the current guidelines. Thus raising the
accuracy of the automatic part of the annotation and requiring less manual intervention,
but more importantly it simultaneously provided insight about how to design the machine
learning features.

3.3.2 Machine Learning Features
Identifying the most effective features to use for prediction is a complicated task. One
must use domain knowledge and experiment with data points to figure out patterns and
the most effective feature composition. This is called feature engineering and albeit often
overlooked in research papers, it is a fundamental process in order to make machine learn-
ing algorithms work effectively and accurately. Choosing the right features often yield
better results and a more flexible model when it is time to expand your machine learning
task. An overview of the iterative feature engineering process can be seen Figure 3.1. In
summation we:

• Investigated the domain and analyzed what patterns might exist

• Identified how we could represent that pattern as a feature

• Created algorithms which yielded a viable feature representation

• Checked how well the new features work with our model

23

3. Method

• Experimented with different feature combinations to see what gave the best result

• Evaluated the recently created features and went back to further investigation

Evaluation
Feature
Combining

Pattern
Brainstorming

Pattern
Implementation

Figure 3.1: The feature engineering process

We started by overseeing the domain and all the raw data available. Since it’s text-
based, creating a phrase structure tree and a dependency parse tree, as seen in Figure 3.2,
are the main components when we analyze possible feature candidates. We started with
just one feature, the word’s POS, see appendix: Section 6. We then included the word
string itself, (e.g "Battery") but removed this feature due to the size of the training set.
Since individual words occur scarcely, the result thus biases the prediction towards the
word itself and away from the syntactic structure, and as follows binding the system to
the training set itself, removing much of the dynamism. By analyzing the dependency
parse tree further, extracting the linking of the sentence structure proved to be essential.
This in combination with POS-tag proved to be very useful. Yielding a very dynamic
extraction process, not minding which product or product category is under investigation.
The procedure of extracting the link features are shown in algorithm 1.

We also experimented with a POS-tag window. This allows the classifier to more
confidently predict groups of words that belong together.

We also experimented with features from the constituency parse tree but without any
improvement.

The battery life is great
DT NN NN VBZ JJ

root

det

compound

nsubj

cop

Figure 3.2: A dependency parse tree.

For the word "life" in the sentence "The battery life is great." the following vector in
Table 3.3 would thusly be generated to be used by the main classifier:

24

3.3 Relation Extraction

input : Word; A tokenized word containing dependency parse tree information
Sentence; A list of words

output : FeatureList; A list of features for this word
Function FindLinkFeatures (Word, Sentence)

for each outgoing Edge from Word do
F← "out_" + Edge
Add F to FeatureList

end
for each OtherWord in Sentence do

for each outgoing Edge from OtherWord do
if Edge’s target is Word then

F← "in_" + Edge
Add F to FeatureList

end
end

end
return FeatureList
Algorithm 1: Extracting outgoing and incoming links to use as features

pos : NN
in_nsubj : True
out_det : True
out_compound : True
pos_before_1 : NN
pos_before_2 : DT
pos_after_1 : VBZ
pos_after_2 : JJ

Table 3.3: An example how a feature vector could look

Note that the model will set all other features (that are implicitly present in the feature
space due to other words) to false.

3.3.3 Training the model
Once we had an annotation set, we parsed the annotation file and separated the data into
a list of the original words, and a list of labels. We used our feature extraction pipeline
to derive features for each word into a list of feature vectors. This list of feature vectors
and the list of labels were fed to a machine learning classifier for training. In order to see
what produced the best results, we experimented with a few different machine learning
algorithms, namely:

• Nearest Neighbors

• SVM

• Decision Tree

25

3. Method

• Random Forest

• AdaBoost

• LogisticRegression

For each classifier we performed an extensive grid search to search for optimal estima-
tor parameters. To evaluate each estimator, we performed 100 iterations of cross-validation
with 10 random splits with about equal amounts of labels in each split (StratifiedKFold).
The results (accuracy, recall and FScore) were calculated as mean values of the results
from the 100 iterations. As we tried to improve the classifier, we continuously studied
the confusion matrix to see what our main problems were in terms of false positives or
negatives. We also plotted the learning curve for the model to see if it’s trainable at all,
and whether variance or biasing was a problem. Iteratively improving the model eventu-
ally resulted in a relatively accurate classifier that we could now use to confidently predict
product features and descriptors in any given text.

3.3.4 Initial Product Feature and Description Ex-
traction

With the model trained and everything in place, we can begin to extract relevant product
features and descriptors from a review. We performed the relation extraction using the
following steps:

1. pre-process the review text

2. Tokenize the text by feeding it to the Stanford CoreNLP Java server.

3. For each sentence, build feature vectors for each word using the feature extraction
pipeline.

4. Classify each word as "-", "PF" or "DESC" using the trained model.

This gives us a list of all product features and descriptors for a sentence. Moreover,
there needs to be a distinction between words that are classified to the same class. For
example, lets say that "Battery" and "Life" were classified as product features (PF). In order
to link descriptors to these words, we need to figure out whether the descriptors relates to
one of the words, or to both words as a group. Therefore, we perform further processing
to be able to group words together, and to figure out which links should be created to
preserve the intended targets for the descriptors. All in all, we call these steps chunking
and linking, and we add these intermediate steps after performing the basic extraction. We
will talk more about these in the next couple of chapters.

3.3.5 Chunking
In order to be able to group words together, we use a chunking classifier. Assume the first
prediction step (described in the previous chapter) performs the following classification:

26

3.4 Finalization

The : -
battery : PF
life : PF
is : -
super : DESC
good : DESC

The chunker’s main task is to group "battery" and "life" together, as well as "super" and
"good", forming two separate entities. We trained the chunker classifier using the same
training set as for the first classifier, but with additional labels added following the begin
inside outside notation BIO (see glossary). Moreover, we used the same features as the
first classifier, with the addition of the predicted label. This is obviously a very prominent
feature, which together with the link features proved to be very effective. We also use the
POS-window features, but this time with a size of 6 instead of 4. Additionally, we used
a window of size 6 for the predicted labels from the first classifier. This helps the model
with prediction since it’s very likely that the word to be predicted belongs to a group if it
has previously been predicted as a product feature and it’s neighbours are also in the same
class.

The prediction is almost perfect (10-fold cross-validation, see results), which means
that it could probably have been done in the same step as the first classification, using
just one model. The reason we choose not to do this was because of the highly iterative
approach we’ve chosen. In a more flexible, modular system such as this, we were able to
identify problems more easily and implement improvements add a quicker rate.

3.3.6 Linking
With the words classified more specifically as chunks of product features and descriptors,
they were linked together using a manual written procedure, consisting of mainly checking
if there existed a syntactic link in the dependency parse tree between the two chunks. More
explicitly, if any of out the outgoing links from any of the words in the product feature
chunk pointed on any of the words in the description chunk, or vice versa, a link was said
to be existing between the two. A tuple was thus created.

The linking procedure is not entirely unproblematic in the complexity of a written
sentence, even provided that the previous classifications has been done correctly. To be
able to catch as many true tuples as possible, we opened up for the possibility of a product
feature chunk being linked to two descriptors in the same sentence, as well as vice versa.
Demonstrated in the simple examples: "The battery is good and solid" and "The battery
and sound is great".

3.4 Finalization
3.4.1 Aggregation
Several steps were taken to structure the data in a usable way after extracting the raw
information together with adding additional meta data to the results. The final stage of the

27

3. Method

system was thus to aggregate the data into something interpretable by the User Interface.
The tuples was thus expanded into a larger data structure containing meta data about

the relation. The final data structure was product feature-first oriented, meaning that the
data proceeds from the product feature chunk-string.

Apart from containing the chunks describing the product feature, the data structure also
contains the sentence containing both chunks, as well as how often the product feature has
been described with the exact same string in the extent of the entire corpus and which
sentiment the descriptor carries. Additional meta data consists of a potential ASIN-string,
how often the product feature has been mentioned in the corpus and its total registered
sentiment.

3.4.2 Product Feature & Descriptor Disambiguation
To attain the most comprehensive and perspicuous overview of the results when amassing
many reviews for single product, the extracted information was linked together. As the
results were product feature-oriented, the main approach was to link together different
variations of the product feature string. The product features are firstly sorted by the size
of their string, this assures that the main product features to be displayed in the end will be
the shortest of the variations. The first step of linking is then to reduce the product feature
to its lemma-form. If the product feature is a single word, it’s directly chained with its
lemma-form. If the product feature consists of two or more words, e.g "battery life" it’s
first stripped of any appendage that are doubtlessly remains from the classification such as
"these", "its" but does not helpfully describe a product feature. The product feature is then
linked together with another product feature if any part of the remaining word’s sequences
matches with a previously inserted pf. Meaning that "battery life" will be linked with
"battery", as will "extra battery life". If a conflict emerges when linking sequences, for
example in the case of linking "front camera" with "front" or with "camera", the product
feature is linked with the product feature with most relevance. When the two two product
features are linked, the accumulated sentiment score and relevance points will be stored in
the PF to be displayed. Thus, even if a product feature is mentioned in many different ways,
the resulting product feature will percolate up, to be displayed further up in the results in
an extended UI.

To also chain the descriptors inside the product features one could apply a similar
method. However, being a lesser problem than product feature linking and which further
introduces programmatic design questions to preserving the transparency in the overview
of the results, we decided against implementing such a feature.

3.4.3 Scoring the sentiment with SentiWordNet
To use SentiWordNet in Python, the text file containing the scoring of the words had to be
translated into a python dictionary. The SentiWordNet file was constructed as following

• POS the lexical class, e.g. verb, noun, adjective, etc.

• ID

• PosScore

28

3.4 Finalization

• NegScore

• SynsetTerms all words relating to that score, indexed with a "Sense Number" how
closely they relate. Meaning there might be a more accurate score for the word used
in a different context.

To create the dictionary, the text file containing SentiWordNet was scanned line by line
and each word put into the dictionary with their corresponding weighted average score.
The weighted average score was calculated as shown in the algorithm below.

A(w) =

n∑
i=1

s(wi)
i

n∑
i=1

1
i

(3.1)

Where i is the sense number and s(wi) is the polarity score of wi

To reach a conclusion about the product features, all descriptor-chunks were evaluated
by adding together the sentiment score, stored in the newly created dictionary, correspond-
ing to each individual word. The exception was when the chunk contained ’not’, then the
sentiment score was flipped for that chunk. All descriptors were then added together to
reach a total score for the product feature, in the provided corpus.

3.4.4 User Interface

To present the end-to-end classification of our the project a user interface was built using
a combination of the open sourced annotation tool brat rapid annotation tool (brat)[5]
and the CSS-framework Bootstrap. To simplify the processes of setting up the user inter-
face a previously made brat template was used, published as open source by the Stanford
CoreNLP team on Github[8] and contributed to by several Github users. The template
was modified to show relations between the selected chunks as well as indicative coloring
showing if the description was of positive or negative sentiment exemplified in the Figure
3.3. To show a summarized view of a products features, a table is used to display the data
effectively. As shown in the example in Figure 3.4

29

3. Method

Figure 3.3: The User Interface for displaying relations

Figure 3.4: The User Interface summarizing a product

3.5 Evaluation

3.5.1 Evaluation
To answer the research questions fully, four sets of evaluations were made. To evaluate the
best classifier the following evaluations were made:

1. Cross validation

2. End-to-end evaluation

3. Learning curve

4. Confusion matrix

As mentioned in Section 3.3.3, the different classifiers were trained and with grid
searched under cross validation under the same conditions. With the parameters in place,
the classifiers were evaluated both in respect to the training set with cross validation, but
also with a end to end evaluation.

3.5.2 End-to-End Evaluation
As the system was built with the end user in mind, we found it important to evaluate
how well it satisfies the purpose of extracting, and delivering, not only from a classifier’s
perspective but rather through the whole procedure, from pre-processing to the final ag-
gregation.

30

3.5 Evaluation

To evaluate the end-to-end result we created a test-set of product reviews taken straight
from Amazon the 9th of August 2016. The top six reviews, as classified by Amazon, were
taken from five different categories, Adding up to a total number of 30 reviews to be tested.
The reviews were annotated sentence by sentence and the humanly interpretable result
was extracted manually. As the system never claims to solve the issue with translating
implicit product features and descriptors the test-set will only be annotated with the words
available in the sentence. For example, from the sentence "Its simply beautiful." the system
is expected to try and and extract "It" as "simply beautiful", rather than realizing that
beautiful probably is related to the design and more explicitly label "Design" as "simply
beautiful".

The method of scoring the end-to-end evaluation is presented as follows. Going
through every sentence in the test-set a tuple is created for every relation, the first field
containing the PF-result for that relation and the other the DESC-result. The results are
the fractions of the number of correctly extracted PF/DESC part over the anticipated num-
ber of PF/DESC part in that relation.

The scoring of the result is then displayed as:

• If all the PF and DESC parts are extracted, score as totally correcy

• If at least one word in the PF and one word in the DESC, score as partly correct

• Otherwise score the relation as missed.

This produces an interpreted recall result. Although the the overall accuracy of the
system is also presented in its current state it is not as relevant, given the purpose of our
implementation. This noise that would be reviewed in such an analysis is expected to be
filtered away when classifying bigger amounts of data, and thus never reach the potential
end-user.

3.5.3 Evaluating the Winning Classifier
Apart from Cross validation and end-to-end evaluation, a confusion matrix and learning
curve was constructed for the winning classifier, to justify future improvements to the
system.

The confusion matrix is constructed for both the main classifier and the chunking clas-
sifier. The confusion matrix is a 3x3 and 5x5 matrix, respectively, where each field repre-
sents the number of predicted entities labelled as i but classified as j.

The learning curve was constructed with the StratifiedKFold cross-validation genera-
tor, splitting the original training-set 10 times into training and test data-sets. The results
from the subsets will be averaged and plotted, showing how the classifier training score
and the cross-validation score relate.

31

3. Method

32

Chapter 4

Results

4.1 Classifier Comparison

The relation extraction process described in chapter 3.3 uses two different classifiers. As
such, we were able to optimize which features to use as well as which model and hyperpa-
rameters we should use for each classifier to achieve the best FScore. In Table 4.1 and 4.2
accuracy, recall, Fscore and variance are in percentages.The Fscore was computed using
scikit-learn’s ’weighted’ option. The results below shows averaged cross-validation results
(100 iterations, 10-fold) where the best two scores for each column are in bold.

Estimator Hyperparameters Acc Recall Fscore Variance
AdaBoost n_estimators = 50 75,97 75,96 75,84 7,09
Decision Tree max_depth = 6 76,47 76,45 76,37 7,00
KNeighborsClassifier n_neighbors = 10 79,28 79,27 79,36 6,79
Logistic Regression C = 2.3, solver = "newton-cg" 80,59 80,58 80,45 6,75
Random Forest n_estimators = 75 80,54 80,50 80,50 6,83
SVM C=0.35, kernel = ’linear’ 80,78 80,78 80,72 6,62

Table 4.1: Results for the first classifier. SVM outperforms the
other classifiers.

33

4. Results

Estimator Hyperparameters Acc Recall Fscore Variance
AdaBoost n_estimators = 50 91,38 91,38 89,92 8,99
KNeighborsClassifier n_neighbors = 10 91,30 91,30 90,87 4,45
Logistic Regression C = 2.3, solver = "newton-cg" 95,77 95,77 95,59 3,22
Random Forest n_estimators = 75 96,60 96,56 96,50 2,96
SVM C=0.35, kernel = ’linear’ 98,16 98,16 98,14 2,07
Decision Tree max_depth = 6 98,26 98,25 98,24 2,08

Table 4.2: Results for the chunking classifier. Interestingly, Deci-
sion Trees proved better than SVM for this task.

4.2 Best Classifier

In this section, we look at the best classifier for both experiments (main classification and
chunking). This is meant to illustrate which problems the classifiers run into when running
on our data set. Figure 4.1 and 4.2 shows the learning curve for the classifiers.

Figure 4.1: Learning curve for the main classifier

34

4.2 Best Classifier

Figure 4.2: Learning curve for the chunking classifier

While learning curve is a way of getting an understanding how the classifier performs
given an increase in training samples, a confusion matrix visualizes what classifications
are frequent, so that improvements can be implemented to correct miss-classified samples.
In Figure 4.3 we can see the confusion matrix for the main classification.

85 12 238

29 133 15

592 28 78-

PF

DESC

- PF DESC

Figure 4.3: Confusion matrix for the main classification. We can
see that the most common mixup is to differentiate between "-"
and "DESC"

35

4. Results

0 0 0 3 178

0 0 0 151 2

0 9 30 0 0

2 129 6 0 0

698 1 0 1 0-

b.PF

i.PF

b.DESC

i.DESC

- b.PF i.PF b.DESC i.DESC

Figure 4.4: Confusion matrix for the chunking classification.
There are very few mixups.

4.3 End-To-End
The end-to-end evaluation process is described in Section 4.3. The end-to-end test set
is comprised of 30 reviews from 5 different categories. In the review text, we selected
306 relations that we found relevant. In total, there are 451 PFs and 703 descriptors to be
found. We fed the test set through our system to get a sense of how it performs on real
data. Our main objective was to get a high recall. The more relations we found, the better.
The results (recall only) can be found in Table 4.3.

Fully correct Almost correct Missed Total
105 62 146 313

33.55% 19.81% 46.64% 100%
53.36% 46.64% 100%

Table 4.3: End-to-End evaluation recall results. 53.36% of the
relations were extracted either fully correctly or almost correctly.

However, in order to give the full story of how our system performs, we provide some
interesting statistics of the results. Table 4.4 shows some statistics of the results for the end-
to-end evaluation. We treat noise as the situation where our system suggests a relation, but
there was in fact no relation to extract according to the test set.

36

4.4 Pre-processing

Metric Relations
Fully correct 105
Almost correct 62
Missed 146
Noise 534

Table 4.4: End-to-End evaluation statistics. Our system suggests
534 relations that were not supposed to be found, indicating that
noise is a substantial problem.

Table 4.5 shows the accuracy, recall and Fscore. The results were computed by using
a relaxed setting, meaning that we treat a relation as correct if it was found to be fully
correct, or almost correct (as explained above).

Accuracy Recall Fscore
23.82% 53.35% 32.94%

Table 4.5: End-to-End evaluation results including accuracy and
Fscore (relaxed)

4.4 Pre-processing
The end-to-end evaluation results with pre-processing can be seen in Figure 4.3 above, to
be differed against the results without pre-processing, seen below in Figure 4.6.

Fully correct Almost correct Missed Total
94 75 144 313

30.03% 23.96% 46.00% 100%
53.99% 46.00% 100%

Table 4.6: End-to-End evaluation recall results without spell cor-
rection. 53.99% of the relations were extracted either fully cor-
rectly or almost correctly.

The major numerical differences when applying pre-processing are thus as follows:
Fully correct: +3.52 %. Almost correct: -4.15 %. Total recall: -0.63 %.

37

4. Results

38

Chapter 5

Discussion

As we started this thesis, we defined that the system would consist of six separate parts
in total. The first of which is considered pre-processing, which turned out to be crucial
to make sense of some of the sentences that were fed to the system. The following three
making up the foundation of the thesis and the system. With the final two, aggregation
and presentation being post-processing. Realizing that there were three natural steps in the
foundation, we also made the decision to separate them programmatically. Resulting in
two classifiers and a set of manual methods. With this approach we could feature engineer
with each classifier and insert manual rules as we found appropriate, creating a modular
design. We found that not all features fitting the first classifier fit the second one, and
vice versa. The linking stage is manual to remain as flexible, simplified and transparent as
possible. This turned out to be a difficult taskmanually and if more time and thought would
have gone into the linking process, it is possible that would have boosted the end-to-end
results.

5.1 Data Selection
In the beginning, we wanted to analyze every product on Amazon. Due to time limitations
we had to pivot from that idea and instead focus on something a bit smaller. Using the full
data set would have included over 34 million reviews, which would have slowed us down
too much. Just working on the electronics category, we just had to deal with around 1.7
million reviews. This simplified things, since handling a smaller portion of the data is a
lot easier and more efficient to work with. Furthermore, electronics is an area we know
well. Having some kind of domain knowledge is important when it comes to continuously
analyzing and improving the system.

39

5. Discussion

5.2 The Annotation Process

Even if annotation is semi-automatic, one of the main challenges is to keep annotating in
a consistent and stable manner. Every sentence is manually checked by a human, meaning
that it may have been annotated in a faulty way. It is especially hard to annotate when the
review text itself is poorly written or has bad grammatical structure. Should you include
such a sentence? Probably not, but if the actual domain consists of review text like this,
should you just ignore it? These are some of the issues we’ve been trying to make sense of.
We ended up building the annotation set from real review data, but withminor justifications
so that sentences would be grammatically correct, at least to a certain point. Another
problem with annotation is when to stop adding words to a certain chunk. For example,
given the sentence: The sound in the back is not very good for parties, what should be
labelled as PF, and what should be descriptors? Certainly it’s important to include that
it is the sound in the back that is not very good. But should you include the part about
the parties? Well, maybe. This is definitely interesting information. The problem that
arises with labelling too freely is that the classifier suddenly starts labelling a majority
of the words as either PFs or descriptors. This is fine until a certain point, because this
implicates a lot of relations that can be treated as noise. However, when the noise because
the main part of your extracted relations, you know you have a problem. Therefore, we
decided to not label descriptors following words such as for, of, in etc. In the example, we
would label the descriptor as not very good. The example highlights some of the decisions
you need to make when performing manual annotation, with the point being that there
may be some examples across the whole training set that were not annotated in the same
manner, especially when the annotation ismade by two different persons. Either way, using
manual annotation to create a training set proved to be very powerful because it allowed us
to define certain examples and then explicitly state what piece of information is valuable
to extract, and then let the classifiers decide how it wants to perform the separation. We
will talk more about this in the next chapter, which relates to the classification process.

5.3 Pre-processing

Not particularly suprising, the pre-processing part only changed the end-to-end results by a
few percentage. Probably because not a excessive amount of time was spent on this matter
and a lot of grammatical and problems remains along with many misspelled words. What
is interesting is how the result differed. We can see that the overall recall was almost the
same with pre-processing but that the amount of ’fully correct’ relations were increased,
meaning that the amount of ’almost correct’ also decreased. The reason for this is open for
interpretation but a logical conclusion is that our pre-processing actually helps the system
with ambiguous sentences, to a draw fully correct conclusion. But also that it can not help
the system make correct interpretations on ’lost-causes’.

40

5.4 The Machine Learning Process

5.4 The Machine Learning Process

5.4.1 Features
The feature selection process is crucial in order to provide the models with the information
they need to make good predictions. Extracting the features algorithmically from the data
points was neither time consuming or difficult in our scenario. What’s hard, however,
is to know which features should be included. You can’t afford to miss any important
patterns in the data, so doing feature selection thoroughly is essential. We did this very
experimentally, and in the end, we could probably have implemented a few more features
if we had a larger data set and more time. For example, we do not include the word as a
feature. This stems mainly from the fact that our data site is too small (1226 samples) in
order to perform consistently with these features. The model would probably be overfitted
since the number of features would exceed the number of training samples.

5.4.2 Best Classifier
For chunking, decision trees proved to be the best classifier. For the first classification
step, SVM produced the best results. So why did not the other classifiers come up to the
same accuracy and Fscore? Is it obvious that SVM should yield the best results, given our
data set? These are hard questions, but we will try to answer them in this chapter. First
and foremost, learning algorithms make very different assumptions about the data. They
converge with different speeds, meaning that they try to minimize different cost functions,
and this cost function converges with different rate for different algorithms. The algorithm
that converges good enough to its error rate and also make consistent assumptions about
the data generally performs well.

For example, is the data spread into multiple small clusters? Well then KNeighbors
would probably perform well since it makes the assumption about the data that it is clus-
tered in small neighborhoods, whereas SVM separates the data with high-dimensional
hyperplanes, meaning that some clusters might generalize away from it’s original class.
However, SVM is very popular in text classification because it is extremely good at work-
ing in high-dimensional spaces. Since we don’t have a lot of training instances, the algo-
rithms that perform best are the ones that are able to adapt to the small training set and
the feature space. This is especially true for the chunking classifier, where one feature,
namely if the word has been classified as a PF or descriptor before, is more prominent and
important than all the others. Decision Trees adapt well to this, since the major decision
can be done early in tree. SVM adapts well as well, since the high-dimension hyperplane
can be chosen to make distinct boundaries where this feature is present. They perform very
close in terms of Fscore (98.14% vs 98.24%). The worst classifier over both classification
processes is AdaBoost in the chunking classification step with a mediocre 89.92% Fscore.

The variance in AdaBoost is high at 8.99%. A high variance indicates that it causes a
lot of overfitting; it models the random noise in the data. In contrast, if a model underfits
the traning data, it fails to capture important patterns or regularities in data, causing a lower
accuracy and recall.

41

5. Discussion

5.4.3 Confusion Matrix
A confusion matrix reveals what classification errors were made. This is a great tool
to use for debugging. As we can see in Figure 4.3 and Figure 4.4 the highest numbers
appear on the diagonal. This means that they were correctly classified. For example, the
cell in the middle in 4.3 shows how many of the instances that should have classified as
PFs (row), were actually classified as PFs (column). Similarly, the cell in the bottom left
corner shows how many instances that were labelled to be classified as "DESC", but were
actually classified as "-". This appears to be our main problem, since this is our highest
value that doesn’t lie on the diagonal. Conversely, the cell in the top right corner indicates
the opposite, i.e the instance should have been classified as "-", but were in reality classified
as "DESC". If further improvements should be implemented, it should focus on sorting
this out.

The chunking classifier has an easy job, because it already knows if the instance was
classified as a PF or as a DESC in the first classification step. This can be visualized in
Figure 4.4. Very few values lie outside the diagonal, meaning that it classified almost all
instances correctly.

5.4.4 Learning Curve
Looking at the learning curves gives us insight about the bias and variance in our model.
When we increase the size of the training set, we can see that the cross validation score
increases while the training score doesn’t drop significantly, for both classifiers. As seen
in other machine learning experiments, the convergence of the two curves is often a good
sign. Assuming that they converge at a low error score. Training error is determined when
applying the model to the same data from which we trained. Explaining why training
error usually increases when increasing the size of the training set and thus the complexity
of the model. Maintaining a low training error, as in our case, therefore means that our
model fits the training data reasonably well, that the bias is low. In other words it indicates
that we have no major issues concerning underfitting. The validation score curve in our
diagrams implies low variance, that the model is generalizing well and hence combats
overfitting with increasingly better predictions on new data, the more training samples
involved. Thus, these curves indicate very satisfying results and shows that the model
overall is reasonable. With the validation score curve leveling out we can also assume
that more annotated training data will only benefit the model slightly in terms of cross-
validation. More training data would benefit the end-to-end evaulation, sincemore training
examples are seen.

5.5 End-to-End Evaluation
The end-to-end evaluation could be seen as the true evaluation of the complete system.
With the purpose of determining what information a raw input text would give the end
user. Though, this is not entirely true looking at the purpose of the project itself. The
project aims to analyze the possibility of creating a system that can perform review sum-
marization. Classifying is, although the most prominent one, only a part of that goal. The

42

5.6 Stanford CoreNLP Issues

summarization goal is harder to evaluate and would probably be more relevantly evaluated
through a user perspective. To proceed with such an evaluation, one would first need to
summarize a number of reviews. It is a likely feature that our system provides more rele-
vant results to the user with an increased number of analyzed reviews. It is reasonable to
assume that the more reviews the system is fed with, the less noise will surface and the rel-
evant result will prevail. Thus the process of manually summarizing the reviews to achieve
a justified result for the system would probably take a significant time. This would be the
target values. The user would then need to evaluate the system for the said reviews, the
user’s perception can then be measured against the pre annotated summarizations. This
would give a more appropriate, although subjective, result. Naturally, this would take a
lot of time to accomplish and was therefore not included in the thesis. We regret to inform
that our system captures a lot of noise. This is the core reason why the accuracy is so low.
However, what’s truly relevant is the recall, since a majority of that noise gets filtered out
in the aggregation step.

5.6 Stanford CoreNLP Issues

Since Stanford CoreNLP uses statistical methods to decide how to build the dependency
tree, it sometimes gives incorrect results. Stanford CoreNLP is extremely good, with
92.2% accuracy [7] on the English Penn Treebank. However, reviews are seldom writ-
ten with the same quality as the English Penn Treebank, leading to reduced accuracy for
our text. Obviously, this is not Stanford CoreNLP’s fault per se, but it affects our results,
since our whole analysis is based on the output from CoreNLP. If the parsed text gets tok-
enized wrongfully, wemight miss an entire relation just because someone wrote a sentence
with weird grammatical structure, and CoreNLP couldn’t make sense of it.

5.7 Sentiment Analysis

As a final addition to our system we applied an analysis of sentiment on the descriptors.
Time spent on this task was limited, due to it not being a fundamental part of the classifi-
cation. Therefore, no extensive analysis was made on the result of the sentiment. Instead
it is to be seen as an indicator and to give a better overview in a possible extended UI, built
on our system. Sentiment analysis is a big field of interest in the world of NLP research at
the moment. With many different options it is a big possibility that our take on sentiment
analysis is not the most optimal one. Our approach is thusly a more ease of implementa-
tion and availability oriented rather than accuracy oriented. With more time and a bigger
project scope, different sentiment analysis methods could have been evaluated to find the
one more suitable for our system. It would have been possible to extend the sentiment
analysis, adding more classes like "Very good" / "Very bad", resulting in a more relevant
distinction between sentiments.

43

5. Discussion

5.8 Alternate Approaches
Our first and initial thought was to use a word cloud (constructed using TF-IDF) in order
to find product features in a review. In hindsight, this would probably have worked just as
well. We built a word cloud for some products, and found that it included a lot of words that
were not very interesting or unrelated to the product’s features. Removing these manually
would be tedious, especially if needs to be done for each product, or even category. Since
our aim was to do the extraction automatically and dynamically, we ended up not using
the word cloud.

There are alsominor difference in the classification pipeline that could have beenmade.
For example, another library could have been used for the NLP processing, which might
give different results. Scikit-learn could also have been replaced with another machine
learning library like NLTK[25].

5.9 Future Work
The scope of our thesis ranged only to experimenting and creating a foundation of a product
feature classification system. It is thus possible to addmany things in future work. In terms
of machine learning accuracy it is possible to come up with approaches to combine with
ours, both in terms of extra features and manual additions like a list of features among
other things.

To further increase the value for the potential user, our approach has been quite re-
strictive when including long descriptors, a suggestion for a more complete system would
therefore be to in some way allow for longer descriptors to included, capturing more con-
text. With the example sentence "The sound level is very good for parties", it would then
not only capture "Sound level" -> "very good" but instead "Sound level" -> "very good
for parties". To increase the end-to-end result even further, it would be suitable to in the
future experiment using a classifier to perform the linking step in our system, instead of
the current manual implementation.

In terms of non-machine learning, the system would benefit from a well composed
extended UI to filter the noise still prominent in the simple UI. Moreover also evaluate the
system from a user’s perspective.

As stated in the limitations section, using neural networks as classifiers was not in-
cluded in our scope. To optimize the classification steps in the future, it is suggested to
also evaluate the result using it. Since it generally is considered a prominent classifier in
machine learning.

Naturally, increasing the size of the training set, or at least reiterating and correcting
annotations even more, is a final suggestion to achieve at least marginally better results.

44

Chapter 6
Conclusions

We managed to finish an end-to-end system, although we would have liked to implement
the improvements mentioned in Section 5.9. Overall, we managed to implement a fully
dynamic relation extraction system with classifiers that perform in a consistent manner
with an FScore at 80%. The end-to-end evaluation proves that about half (53%) of all
relevant relations are found, which can be aggregated to summarize a review. However,
our model produces a lot of noise, and even if this could be filtered out by either a list
of stop words or aggregation with relative ease, it is a problem that we hoped we would
have had time to deal with. Furthermore, had the annotation set been larger, we would
have covered a lot more variations that reviewers use to express opinions about product
features. Pre-processing the data turned out to be crucial to make sense of some of the
sentences that were fed to the system. Given more time, we would have improved this part
of the system to break sentences into smaller sub-sentences using the link structure from
the dependency parse tree, as described by Angeli et al, 2015 [2].

It turned out to be very hard to stay on target and be consistent in annotation both
training and test sets. We often changed the way we wanted to annotate, and this step was
particularly prone to human error. After annotating together for a while and coming to a
shared understanding of what should be labelled as what, we probably should have let one
person do the annotation by himself. This would have reduced some of the inconsistencies
in the annotation set.

In the end, SVM was the overall winner in the classification comparison, winning
the relation extraction classification (80.78% FScore), and also closely followed Decision
Trees in the chunking classification step (98.14% vs 98.24%).

We were content with the way we performed product feature and descriptor disam-
biguation by using lemmatization to allow words with different word endings to reference
the same product feature or descriptor. Additionally, this was improved upon by using
sequence permutations to link entities together (as described in Section 3.4.2), while pre-
serving the original information.

Our iterative approach has been crucial for the success of the project. Building an infor-

45

6. Conclusions

mal baseline and then improving upon that with clever preprocessing, annotation, feature
engineering and classifier comparison in small steps proved to be an efficient approach.
This is particularly true when dealing with complex systems such is this, where there are
so many small parts of the system that affect the end results.

In conclusionwe are satisfiedwith our results, even if we left some loose ends for future
work due to time restrictions. We successfully fulfilled the purpose of the thesis, answered
our research questions and, most importantly, completed our goal of fully dynamic relation
extraction.

46

Glossary

ASIN Amazon Standard Identification Number is a product identification number. 28

BIO Begin Inside Outside. A way of annotating words indicating that they belong to
the same group. E.g the in the following sentence: "The sound(B) quality(I) is
amazing(B)", "sound" and "quality" is in the first group and "amazing" is (alone) in
the second group.. 27

confusion matrix A confusion matrix is used to display the spread of the classifier pre-
dictions compared to the expected result. Thus one matrix axis corresponds to the
expected results and the other to the actual results. This matrix is commonly used
to reveal what classification errors were made, to be able to combat them.. 26

POS Part-of-Speech tag. Defining the word-category. 24

Scikit-learn Open Source Machine Learning library in Python. 9, 44

tokenization Tokenization is the process of extracting phrases, words and symbols from
a sentence. This includes breaking out commas, whitespace and other characters
that builds up a sentence. Each element extracted results in a token. It’s essential to
perform tokenization, since tokens are what’s passed to a parser or tagger in order
to e.g assess part of speech tags to each token. [29]. 14

47

Glossary

48

Acronyms

DESC descriptor. 7

ML Machine Learning. 7, 8

NLP Natural Language Processing. 7

PF product feature. 7

49

Acronyms

50

Bibliography

[1] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining association
rules. In Proc. 20th int. conf. very large data bases, VLDB, volume 1215, pages 487–
499, 1994.

[2] Gabor Angeli, Melvin Johnson Premkumar, and Christopher DManning. Leveraging
linguistic structure for open domain information extraction. Linguistics, (1/24), 2015.

[3] Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani. Sentiwordnet 3.0: An
enhanced lexical resource for sentiment analysis and opinion mining. In LREC, vol-
ume 10, pages 2200–2204, 2010.

[4] Nguyen Bach and Sameer Badaskar. A review of relation extraction. Literature
review for Language and Statistics II, 2007.

[5] Brat rapid annotation tool. http://brat.nlplab.org/index.html. [On-
line; accessed 14-May-2016].

[6] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[7] Danqi Chen and Christopher D Manning. A fast and accurate dependency parser
using neural networks. In EMNLP, pages 740–750, 2014.

[8] Stanford CoreNLP, on github. https://github.com/stanfordnlp/
CoreNLP. [Online; accessed 14-May-2016].

[9] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE trans-
actions on information theory, 13(1):21–27, 1967.

[10] Kushal Dave, Steve Lawrence, and David M Pennock. Mining the peanut gallery:
Opinion extraction and semantic classification of product reviews. In Proceedings of
the 12th international conference on World Wide Web, pages 519–528. ACM, 2003.
[Online; accessed 29-june-2016].

51

http://brat.nlplab.org/index.html
https://github.com/stanfordnlp/CoreNLP
https://github.com/stanfordnlp/CoreNLP

BIBLIOGRAPHY

[11] Andrea Esuli and Fabrizio Sebastiani. Sentiwordnet: A publicly available lexical
resource for opinion mining. In Proceedings of LREC, volume 6, pages 417–422.
Citeseer, 2006.

[12] Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu, Tal Shaked,
Stephen Soderland, Daniel SWeld, andAlexander Yates. Unsupervised named-entity
extraction from the web: An experimental study. Artificial intelligence, 165(1):91–
134, 2005.

[13] Marti A. Hearst, Susan T Dumais, Edgar Osman, John Platt, and Bernhard
Scholkopf. Support vector machines. IEEE Intelligent Systems and their Applica-
tions, 13(4):18–28, 1998.

[14] David W Hosmer Jr and Stanley Lemeshow. Applied logistic regression. John Wiley
& Sons, 2004.

[15] Minqing Hu and Bing Liu. Mining opinion features in customer reviews. In AAAI,
volume 4, pages 755–760, 2004.

[16] Julian McAuley, Rahul Pandey, and Jure Leskovec. Inferring networks of substi-
tutable and complementary products. In Proceedings of the 21th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, pages 785–794.
ACM, 2015.

[17] Amazon Mechanical Turk. https://www.mturk.com/. [Online; accessed 17-
May-2016].

[18] Ryszard S Michalski, Jaime G Carbonell, and Tom M Mitchell. Machine learning:
An artificial intelligence approach. Springer Science & Business Media, 2013.

[19] George A Miller. Wordnet: a lexical database for english. Communications of the
ACM, 38(11):39–41, 1995.

[20] Stanford Neural Network Dependency Parser. http://nlp.stanford.edu/
software/nndep.shtml/. [Online; last accessed 18-August-2016].

[21] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up?: sentiment clas-
sification using machine learning techniques. In Proceedings of the ACL-02 confer-
ence on Empirical methods in natural language processing-Volume 10, pages 79–86.
Association for Computational Linguistics, 2002. [Online; accessed 29-june-2016].

[22] Ana-Maria Popescu and Orena Etzioni. Extracting product features and opinions
from reviews. InNatural language processing and text mining, pages 9–28. Springer,
2007.

[23] Robert E Schapire. Explaining adaboost. In Empirical inference, pages 37–52.
Springer, 2013.

[24] scikit-learn, Open Source Machine Learning in Python. http://
scikit-learn.org/. [Online; accessed 17-May-2016].

52

https://www.mturk.com/
http://nlp.stanford.edu/software/nndep.shtml/
http://nlp.stanford.edu/software/nndep.shtml/
http://scikit-learn.org/
http://scikit-learn.org/

BIBLIOGRAPHY

[25] NLTK, Natural Language Toolkit. http://www.nltk.org/. [Online; accessed
14-May-2016].

[26] SentiWordNet, A lexical resource for opinion mining. http://sentiwordnet.
isti.cnr.it/. [Online; accessed 10-May-2016].

[27] SpaCy, Industrial-strength Natural Language Processing. https://spacy.io/.
[Online; accessed 14-May-2016].

[28] WordNet, A lexical database for English. https://wordnet.princeton.
edu/. [Online; accessed 10-May-2016].

[29] Jonathan J Webster and Chunyu Kit. Tokenization as the initial phase in nlp. In
Proceedings of the 14th conference on Computational linguistics-Volume 4, pages
1106–1110. Association for Computational Linguistics, 1992.

53

http://www.nltk.org/
http://sentiwordnet.isti.cnr.it/
http://sentiwordnet.isti.cnr.it/
https://spacy.io/
https://wordnet.princeton.edu/
https://wordnet.princeton.edu/

BIBLIOGRAPHY

54

Appendices

55

Appendix A
POS-tags

1. CC Coordinating conjunction

2. CD Cardinal number

3. DT Determiner

4. EX Existential there

5. FW Foreign word

6. IN Preposition or subordinating conjunction

7. JJ Adjective

8. JJR Adjective, comparative

9. JJS Adjective, superlative

10. LS List item marker

11. MD Modal

12. NN Noun, singular or mass

13. NNS Noun, plural

14. NNP Proper noun, singular

15. NNPS Proper noun, plural

16. PDT Predeterminer

17. POS Possessive ending

57

A. POS-tags

18. PRP Personal pronoun

19. PRP$ Possessive pronoun

20. RB Adverb

21. RBR Adverb, comparative

22. RBS Adverb, superlative

23. RP Particle

24. SYM Symbol

25. TO to

26. UH Interjection

27. VB Verb, base form

28. VBD Verb, past tense

29. VBG Verb, gerund or present participle

30. VBN Verb, past participle

31. VBP Verb, non3rd person singular present

32. VBZ Verb, 3rd person singular present

33. WDT Whdeterminer

34. WP Whpronoun

35. WP$ Possessive wh pronoun

36. WRB Whadverb

58

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2016-08-25

EXAMENSARBETE Summarizing Product Reviews Using Dynamic Relation Extraction
STUDENT Mikael Gråborg, Oskar Handmark
HANDLEDARE Pierre Nugues (LTH)
EXAMINATOR Jacek Malec (LTH)

Produktöversikt med hjälp av artificiell
intelligens

POPULÄRVETENSKAPLIG SAMMANFATTNING Mikael Gråborg, Oskar Handmark

Amazon är världens största säljsajt med upp emot tusentals recensioner för en enskild
produkt. Men hur får man som kund en överblick i recensionsdjungeln?

Genom att analysera över 1.7 miljoner recensioner
fann vi ett sätt att komprimera brödtexten till-
hörande individuella produkter till ett fåtal ord,
innefattande endast essensen av textmassan. Med
andra ord sammanfattas produktens egenskaper
med recensenternas egna synpunkter. Ta ett par
hörlurar som exempel: Vad tycker egentligen an-
vändarna om batteritiden, designen eller ljudet?
Genom att jämföra huruvida dessa egenskaper
benämns positivt eller negativt har vi skapat ett
verktyg som ger en översikt för produkters fördelar
respektive nackdelar.
De senaste trenderna visar att konsumenter inte

längre lägger lika stor vikt på vad produkter har
för prestanda på pappret, utan påverkas mer av
vad andra tycker och tänker. Användare har blivit
bättre på att jämföra produkter på webben i takt
med att informationen som finns online blivit mer
öppen och tillgänglig. I vårt examensarbete ville
vi bli av med bruset som finns i skriven informa-
tion och på så sätt ge användaren kontroll över
informationen.
Examensarbetet som berör området artificiell

intelligens och språkteknologi skrevs tillsammans
med IT-företaget Tactel, som på senare tid börjat
utforska möjligheterna att använda dataanalys för
att skapa affärsvärde.
Amazon gör själva en del för att underlätta för

konsumenter. Bland annat visas de omdömen som
markerats av andra användare som “hjälpsamma”
överst i flödet. Detta underlättar, men ger inte
alltid en rättvis bild av produkten, till exempel
lyfts sällan de defekter eller problem en produkt

har. Våra efterforskningar tyder på att användare
letar efter nya sätt att effektivt jämföra produk-
ter. Vår teknik hjälper till med just detta, och
förhoppningen är att kunna underlätta för kon-
sumenter i deras produktletande.
Textanalys är ett komplext problem i sin natur,

men blir extra svårt för användarskrivna recen-
sioner eftersom meningsbyggnaden ofta är dålig.
Med hjälp av avancerade algoritmer analyseras
den grammatiska strukturen av meningar för att
hitta mönster som sedan används för att bygga en
statistisk modell. Denna model kan sedan förutse
om ett ord är en produktegenskap eller något som
beskriver en egenskap. Med andra ord lär sig
datorn att fatta egna beslut för tusentals omdö-
men. Det samlade resultatet visualiseras sedan i
ett lättsmält format.
Den nya kunskapen från examensarbetet kom-

mer att användas till att utveckla nya spännande
tjänster inom området textanalys och artificiell in-
telligens.

	Introduction
	Problem Definition
	Purpose
	Related Work
	Research Questions
	Limitations
	Contributions

	Theory
	Natural Language processing
	Relation Extraction
	Depedency grammar
	Phrase structure grammar
	SentiWordNet
	Stanford CoreNLP

	Machine Learning
	Machine Learning Features
	Support Vector Machines
	Nearest Neighbors Classification
	Decision Tree
	RandomForest
	AdaBoost
	Logistic Regression

	Method
	About the Review Data
	Preprocessing
	Correcting reviews
	Spell Correction

	Relation Extraction
	Annotation
	Machine Learning Features
	Training the model
	Initial Product Feature and Description Extraction
	Chunking
	Linking

	Finalization
	Aggregation
	Product Feature & Descriptor Disambiguation
	Scoring the sentiment with SentiWordNet
	User Interface

	Evaluation
	Evaluation
	End-to-End Evaluation
	Evaluating the Winning Classifier

	Results
	Classifier Comparison
	Best Classifier
	End-To-End
	Pre-processing

	Discussion
	Data Selection
	The Annotation Process
	Pre-processing
	The Machine Learning Process
	Features
	Best Classifier
	Confusion Matrix
	Learning Curve

	End-to-End Evaluation
	Stanford CoreNLP Issues
	Sentiment Analysis
	Alternate Approaches
	Future Work

	Conclusions
	Bibliography
	Appendix POS-tags

