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Abstract

A new type of Remotely Operated Vehicle (ROV) has been designed by Marin Mät-
teknik (MMT) in cooperation with Reach Subsea and Kystdesign AS; the Surveyor
ROV. Although MMT is successfully using the SROV in day-to-day operations, no
mathematical model describing the system has previously been derived. In this the-
sis project, a mathematical model describing the SROV is developed through sys-
tem identification techniques. Experiments to facilitate parameter estimation of the
model are designed and consequently performed. The gathered data sets are investi-
gated to determine how well they are suited for parameter estimation. Estimation of
the continuous-time model parameters are carried out using a Kalman filter running
on the input-output data obtained through the experiments. Comparisons between
this method and results obtained through a subspace-based identification Matlab
method are performed. Model validation is carried out using numerous performance
measures. The thesis has shown that a coupled LPV model may be a feasible ap-
proach to the modeling problem, and also makes suggestions that could possibly
improve on the results.

As an alternative to the current control system, simulations of closed-loop re-
sponses of the identified system model using a Model Predictive Control (MPC)
structure are undertaken and presented. The simulations show that good perfor-
mance is achievable using the MPC algorithm. Noticeably, the current control sys-
tem has difficulties attenuating deviations from angular velocity set points. The
MPC scheme has been shown to effectively suppress such control errors in sim-
ulations.
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1
Introduction

A Remotely Operated Vehicle (ROV) is a class of subsea vehicles designed to carry
out different tasks, such as construction or inspection work. Previously, ROVs have
been designed with a focus on station keeping to allow for construction work. In-
spection has been carried out using the same type of ROV. Although this approach
is possible, it is far from optimal in a time consumption sense.

MMT has, in cooperation with Reach Subsea and Kystdesign AS, developed a
new type of ROV. The new model is called Surveyor ROV (SROV). An image of the
SROV can be seen in Fig. 1.1. The new model differs from the previous standard in
a number of ways. Most prominently, the SROV is used for survey work only. Typ-
ically, the SROV is used for surveying cable routes. This task is usually carried out
at forward velocities that are large compared to lateral and vertical velocities. The
physical design of the SROV differs from that of other ROVs. It is more streamlined
than common ROVs, which allows for larger operational velocities. The SROV is
about 5 m long, 2 m wide, and 1.4 m high. The weight of the vehicle is about 5
metric tons. The actuation of the SROV is performed using 9 hydraulic thrusters,
powered by a hydraulic power unit (HPU) capable of supplying 200 HP. Using the
thrusters, it is possible to actuate forward, lateral and vertical velocity, as well as
roll, pitch, and yaw angular velocity. The thruster configuration of the SROV can
be seen in Fig. 1.2. All SROV subsea activities are undertaken using a surface ves-
sel, from which launch, recovery, and operation is performed. Communication and
power transmission to the SROV is performed through a tether, which is connected
to the vessel. Numerous sensors are fitted to the SROV. These include (but are not
limited to) Inertial Navigation Systems (INS), multi-beam echo-sounders, HD cam-
eras, light rigs, sub-bottom profilers and sound velocity profilers. Of particular in-
terest to this thesis research are the INS units, as these will provide measurements of
the SROV velocities, positions and orientations. The accuracies of the primary INS
system used on-board the SROV are given in table 1.1. A special software running
on a computer will also make it possible to record the control actions put out to the
SROV.

The current control system is having some issues with deviations from set-points
(typically zero rad/s) in angular velocities. As can be seen in Fig. 1.3, the control
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Chapter 1. Introduction

Table 1.1 INS accuracies as reported by the INS data sheet.

Parameter Accuracy

Forward velocity 5 ·10−3m/s
Lateral velocity 5 ·10−3m/s
Vertical velocity 10−3m/s
Roll velocity 10−2deg/s
Pitch velocity 10−2deg/s
Yaw velocity 10−1secant latitude / s
Roll 10−2deg
Pitch 10−2deg
Heading 10−1secant latitude

Figure 1.1 Photography of the SROV used for the trials on Stril Explorer.
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1.1 Goal

Figure 1.2 The thruster configuration of the SROV used in the trials. As can be
seen in the sketch, nine thrusters are available and located according to the figure.
There are four thrusters in the aft, two lateral thrusters, and three thrusters in the
vertical plane of the SROV.

system is unable to remove oscillations in the angular velocity states. This is some-
thing that is not desired by MMT, as such oscillations affect survey data quality in
a negative way.

Although the SROV is successfully being used in the day-to-day operations of
MMT, no mathematical model describing the system has been developed. The con-
trol system of the SROV is based on older ROV standards. Many approaches to
the problem of controlling underwater vehicles have been evaluated in the past. In
[Fossen, 1994], many methods are described. Advantages and shortcomings of lin-
earization techniques and non-linear controllers are discussed. In [Sangrok et al.,
2015], a back-stepping strategy is used to control an underwater robot with tilting
thrusters in simulations. Adaptive control schemes have been shown to work on
a small-scale ROV in [Hayatolgheibi and Mazinan, 2017]. H-infinity control has
been applied to an Autonomous Underwater Vehicle (AUV), as described in Feng
and Allen [2010].

1.1 Goal

The goal of this thesis project is to develop a mathematical model suitable to de-
scribe the SROV. Further on, a model-based control system is to be identified and
shown to work in simulations. The controller should ultimately be able to follow
reference changes in linear velocities, while deviations from angular velocities (es-
pecially in yaw) should be attenuated. To facilitate the modeling procedure, exper-
iments will be carried out on the SROV. The experiments have to be designed such
that consistent parameter estimates can be made.
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Figure 1.3 System velocities acquired during normal operations. Oscillations are
present in the angular velocity states.

1.2 Reference Frames

It will be convenient to use two different coordinate systems to describe the dy-
namics of the SROV [Fossen, 1994]. One coordinate system will be inertial and
used to describe the position and orientation of the SROV. Six states are needed to
fully describe an object in the inertial reference frame; three describe position and
three describe orientation. The states expressed in the inertial reference frame will
be denoted η , and we have that

η = (x,y,z,φ ,θ ,ψ)T (1.1)

where the first three coordinates describe the position of an object, and the last
three the rotations around the coordinate axes. In the context of this report, φ is the
roll and describes rotation around the x-axis, θ is the roll and describes rotation
around the y-axis, and ψ describes the rotation around the z-axis. It is customary to
define the coordinate system as a right-handed Cartesian coordinate system, with z
pointing downwards (towards the center of the earth).

The second coordinate system will be fixed to the SROV itself. The body-fixed
reference frame is used to describe the speeds and angular velocities of the SROV.
By choosing the origin of the body-fixed reference at the Center Of Gravity (COG)
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1.2 Reference Frames

Figure 1.4 The two different reference frames used in this project. Transformation
between the two coordinate systems may be performed using the rotation matrices
J1 and J2.

of the SROV, symmetries can be exploited to get a simpler model expression [Fos-
sen, 1994]. The body-fixed reference frame is denoted ν , and the states describing
the body-fixed velocities is given by

ν = (u,v,w, p,q,r)T (1.2)

where the first three entries describe linear velocities and the last three entries give
the angular velocities of the object, expressed in the body-fixed reference frame. A
depiction of the different reference frames may be seen in Fig. 1.4.

To be useful for modeling purposes, it must be possible to move between the
two coordinate systems. This can be done [Fossen, 1994] by using the fact that(

η̇1
η̇2

)
=

(
J1(η2) 03×3
03×3 J2(η2)

)(
ν1
ν2

)
where J1 and J2 are rotation matrices given by

J1(η2) =

cψ cθ −sψ cφ + cψ sθ sφ sψ sφ + cψ cφ sθ

sψ cθ cψ cφ + sφ sθ sψ −cψ sφ + sθ cφ sψ

−sθ sφ cθ cθ cφ


and

J2(η2) =

1 sφ tθ cφ tθ
0 cφ −sφ

0 sφ/cθ cφ/cθ


Here, s· denotes sin(·), c· denotes cos(·), and t· denotes tan(·). This representation
of the rotation matrices is based on Euler angles, and exhibits singularities for θ =
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Chapter 1. Introduction

±90deg. This is not considered an issue in this project, as the SROV is usually
stabilized around θ = 0 rad, and should never operate close to the singularity.

1.3 System Identification

Modeling
In order to accurately describe the properties of any plant, it is necessary to have
a mathematical framework describing the dynamics of the system. Typically, a set
of differential equations are used to model continuous-time systems, and difference
equations are used for discrete-time systems [Ljung, 1987]. The structure of the
model can be derived in many different ways. One way to do it, is to use only
theoretical arguments. Model parameters are calculated based purely on theoretical
data. This approach is called white box models and is often insufficient due to the
idealizations that have to be made in many physical equations.

Another way to build models is to only consider relations in input-output data.
The identification is then concerned with finding proper model orders and paramet-
ric values that relate the inputs to the outputs. This approach is referred to as black
box modeling. An obvious drawback with this approach is that physical information
that may be present, can not be included in the identification process. By mixing
theoretical arguments, and the use of input-output data in the identification pro-
cess, a third approach is obtained, called gray box modeling. By using a gray box
approach, theoretical information and derivations may be used to obtain a model
of the process. This model may have parametric values that can be found through
estimation techniques. Different estimation techniques are described in this section.

The ultimate goal of a mathematical model is to describe the evolution of the
states being modeled. In other words, we want to find a model that can predict future
states of the process as accurately as possible [Ljung, 1987]. Once a model that can
feasibly well describe the physical process is obtained, it is possible to find model-
based controller structures such as the Model Predictive Control (MPC) [Johansson,
2015] algorithm. It is also possible to run simulations, and thus minimize the time
needed in field running costly experiments on the real process.

A lot of work has been done in the modeling of underwater vehicles. Fossen
[1994] suggested a model of the dynamics that resembles that of a robotic system
[Johansson, 2017]. The proposed model is

Mν̇ +(C(ν)+D(ν))ν +g(η) = τ (1.3)

This model is quite general as it allows for cross-coupling, non-linearities and is
time-varying (state dependent). The different matrices in Eq. (1.3) describe differ-
ent physical representations. M is describing the added mass of the system. As
mentioned in Sec. 1.2, the structure of M depends on different design choices. If
the process being modeled has three symmetry planes, it can be shown that M is
positive definite and diagonal.
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1.3 System Identification

C(ν) is a matrix describing the Coriolis effect and can be shown to be skew
symmetric (i.e., CT (ν) =−C(ν)).

D(ν) describes the damping effects due to the speed of the ROV. This matrix is
state dependent, as the damping effect is larger for larger speeds through water. As
discussed in [Fossen, 1994], D(ν) may be highly non-linear and contain coupling
terms, and can thus be hard to identify. However, a rough approximation is that
D(ν) is diagonal and contains only linear and quadratic terms.

The term g(η) is a vector describing the restoring forces and moments of the
system. The entries of g(η) depend on several parameters, and in its most general
form looks like

g(η) =


(W −B)sθ

−(W −B)cθ sφ

−(W −B)cθ cφ

−(yGW − yBB)cθ cφ +(zGW − zBB)cθ sφ

(zGW − zBB)sθ +(xGW − xBB)cθ cφ

−(xGW − xBB)cθ sφ − (yGW − yBB)sθ

 (1.4)

where W describes the weight of the system, and B denotes the buoyancy forces.
(zGW − zBB) is a term where zG denotes the z-coordinate of the (COG), and where
zB is the z-coordinate of the center of buoyancy (COB) (all coordinates expressed
in the body-fixed reference frame). As described in Sec. 1.2, the origin of the body-
fixed reference frame may be arbitrarily placed. A common choice is to place the
origin of the body-fixed reference frame at the COG. Drawings and a discussion
with the mechanical engineer of the SROV manufacturer, suggest that the COB is
located in COB = (0,0,zB) with zB < 0. The term g(η) thus simplifies to

g(η) =


(W −B)sθ

−(W −B)cθ sφ

−(W −B)cθ cφ

(zGW − zBB)cθ sφ

(zGW − zBB)sθ

0

 (1.5)

As discussed in Sec. 1.5, the tether is affecting the dynamics of the SROV. Using
the assumption that the effect of the tether may be modeled as additive, g(η) may
be augmented to include the torque τθ exerted by the tether as

g(η) =


(W −B)sθ

−(W −B)cθ sφ

−(W −B)cθ cφ

(zGW − zBB)cθ sφ

(zGW − zBB)sθ + τθ

0

 (1.6)
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Chapter 1. Introduction

The term τ is a vector describing the exogenous input in each degree of freedom that
may be used to affect the system. Since the reference frame has six coordinates, it
holds that τ ∈R6×1. The SROV has nine thrusters to generate an input uc. A thruster
map T is needed to move from the force generated by each thruster to the total thrust
in each degree of freedom:

T : R9×1→ R6×1 : τ = uT (1.7)

T should take into consideration how different thrusters may be used to actuate
different degrees of freedom. The thruster map T must generally be estimated in
some way. However, the control system logger software records τ , meaning there
is no need to estimate it explicitly. A static stability and maneuverability analysis
based on the thruster configuration in Fig. 1.2 and the dimensions of the SROV, gave
similar values of τ as the ones recorded by the logger software.

LPV Models
ROVs are highly non-linear processes [Fossen, 1994]. Identification of a non-linear
process is difficult, and an approach often used to handle non-linear plants is to pa-
rameterize the model based on one or more of its states. This technique is called
Linear Parameter-Varying (LPV) modeling, and has been successfully used in ef-
forts to model an Autonomous Underwater Vehicle (AUV) [You et al., 2016]. As
drag coefficients and Coriolis effects change with the speed through water, it is
reasonable that the parametrization is scheduled on the SROV forward speed. This
is motivated by the main operation mode of the SROV, which is following a pre-
defined trajectory with u > v, u > w. By using an LPV model scheduled on forward
speed, where the local model used is the one described in Eq. (1.3), one obtains

Mxν̇ +(Cx(ν)+Dx(ν))ν +gx(η) = τ (1.8)

where x is the scheduling variable (the forward speed). For instance, if the model is
to cover u ∈ [1,2], one way to choose the grid is as x = (1,1.5,2). For each of the
scheduling points in x, one set of parameter values has to be estimated. This implies
that one set of experiments has to be carried out for each of the scheduling points, in
order to generate the input-output data needed for the parameter estimation. When
the LPV model is used for predictions of future system states, one first has to pick a
model from the LPV set corresponding to the current scheduling state, after which
predictions can be performed. If the system at hand is highly non-linear, one may
choose to make the scheduling grid finer, such that the linear approximation has
to cover a smaller span of the scheduling state. The down-side of making the grid
too fine, is that many experiments have to be carried out for parameter estimation
purposes. This takes time and costs money.

Continuous-Time Identification
Many systems operating in the real world are of a continuous-time nature. However,
many of the system identification techniques are focused on discrete-time systems.
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1.3 System Identification

There are many advantages to be gained if a continuous-time system is modeled
using a continuous-time system identification approach. In [Rao and Unbehauen,
2006], which is a survey of the field of continuous-time system identification, some
of the advantages are discussed. A continuous-time model may have a physical in-
terpretation, which would inevitably be lost if a discrete-time model is identified.
Further on, issues regarding the discretization process are discussed. In order to esti-
mate the parameters of a continuous-time model, there are many available methods.
One is through the use of "state-variable filters". The method is discussed in [Rao
and Unbehauen, 2006] and [Johansson, 2017]. As an alternative, [Johansson, 1994]
suggests a model transformation of the form

λ (s) =
1

1+ sT
, T > 0 (1.9)

By filtering all signals through this filter, an input-output model may be designed.
This takes the form

y(t) =−α1[λy](t)−·· ·−αn[λ
ny](t)+β1[λu](t)+ · · ·+βm[λ

mu](t) (1.10)

where [λ ·] denotes a signal filtered through Eq. (1.9). The parameters of the model
can be estimated using any suitable method, and the original system parameters
can be found by using an inverse transform. More information on continuous-time
modeling can be found in [Johansson et al., 1999] and [Chou et al., 1999].

Persistence of Excitation
Persistence of excitation is a property of the input signal supplied to the process. If
an input signal is persistently exciting enough, parameter estimates will be consis-
tent. The concept of persistence of excitation can be viewed as an indicator of how
informative the input signal is. One may also check how exciting a pair (x,y) of
input-output data obtained from experiments is. The number of non-zero singular
values of the regressor matrix

Φ =
(
Φy Φx

)
(1.11)

give the experimental excitation [Johansson, 2017].

Parameter Estimation
Once a set of input-output data is available, different techniques may be used to
obtain a set of parameter values that relates the inputs to the output. The techniques
may be recursive or non-recursive. Different estimation techniques have different
properties. In this thesis project, a Kalman filter is used to carry out the parameter
estimation. This approach has previously been shown to work in the efforts to model
an AUV [Tiano et al., 2007].

The Kalman filter is a recursive equation, which makes use of knowledge of a
dynamic model to predict future states of a system. Under certain conditions on the
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Chapter 1. Introduction

system dynamics and noise processes acting on the system, it can be shown that the
Kalman filter is the optimal state estimator in the sense that

E[(xk− x̂k)
2], k = 1,2, · · · (1.12)

where xk is the actual state and x̂k is the state estimate at time instant k, is mini-
mized [Johansson, 2017]. If a parameter estimation problem is formulated properly,
a Kalman filter may be applied to the input-output data in order to estimate the pa-
rameter values recursively. The Kalman filter provides tools to handle finite data
lengths, as the filter may be initialized using a guess of what the parameter value
might be, and how certain this guess is. The initial guess should incorporate avail-
able theory and/or past estimation efforts. Further on, measurement noise levels may
be incorporated in the filter equations. For more information on the Kalman filter,
the reader is referred to [Jakobsson, 2015] and [Johansson, 2017].

Model Validation
To determine what model structure and what parameter set describes a process the
best, some sort of measure of performance must be defined. As discussed earlier
in this section, the main purpose of a model is to predict future states, given the
current states and input signals. A measure that can be used for model validation
is the Normalized Root-Mean-Square Error (NRMSE) of the one-step prediction
errors. The NRMSE is calculated as [Olofsson et al., 2014]

1− ||xN− x̂N ||2
||xN− x̄N ||2

(1.13)

where xN is the sequence of measured validation data, x̂N is the sequence of 1-step
predictions, and where x̄N is the mean of the measured validation data. As discussed
in [Ljung, 2009], a NRMSE value of 100% means that the predicted and measured
values coincide. A value of 0% indicate that the model does no better than randomly
guessing.

Statistical validation methods include checking the properties of the one-step
prediction errors [Johansson, 2017]. Given a hypothesis, one wishes to show that
the prediction errors have the same statistical properties as in the hypothesis. For
instance, one may want to check the autocorrelation of the prediction errors for
a certain number of lags. If the hypothesis is that the noise acting on the system
is white, the objective of the model is to produce prediction errors such that this
sequence is also white. Further tests include counting the number of zero-crossings
of the prediction errors in order to detect offsets in the prediction errors.

It is quite common that all the checks above are performed using the assumption
that the underlying disturbances are white, i.e. that the disturbances are uncorrelated
in time [Johansson, 2017]. Consequently, the tests try to assert whether the predic-
tion errors are white, and that all the available structure has been captured by the
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1.4 Controller Structures

model. However, it is of course not necessary that the underlying noise distribu-
tion is white. An advantage of the Kalman filter, is that noise models are estimated
as a natural step of the parameter estimation. These noise models may be used to
simulate the statistical properties of the noise. More specifically, one may simulate

xk+1 = Φxk +Kwk (1.14)
yk =Cxk + vk (1.15)

(1.16)

where Φ is the obtained discrete-time system matrix, K is the noise model, and
where wk are realizations of a normal distributed random process. vk represent mea-
surement noise and should be selected to correspond to the expected noise levels
of the sensors. If the statistical properties of yk resemble those of the prediction
errors, one may more confidently say that the model has successfully captured the
dynamics of the system being modeled.

1.4 Controller Structures

Current Controller Design
The current SROV control system is based on multiple gain scheduled SISO PID
controllers. In general, a SISO PID will calculate a control signal according to

u(t) = K
(

e(t)+ 1
Ti

∫
e(τ)dτ +Td

de(t)
dt

)
(1.17)

where e(t) denotes the control error r(t)− y(t). The existing field of knowledge on
PID control is vast. For a discussion on the properties of PID control, the reader
is referred to any elementary text on control theory. The overall control system
of the SROV has numerous automatic functions, such as automatic depth/altitude,
automatic pitch, and automatic roll. Given an automatic function, the control system
calculates a desired action for each thruster. Once all automatic functions have been
considered, the sum of all actions for each thruster is calculated, and consequently
put out as the control signal. The thrusters operate in open loop, as the current
design of the hydraulic system does not admit any measurements of the differential
pressure across the thrusters to be made.

Model Predictive Control
Model Predictive Control (MPC) is a model-based control scheme. The idea behind
MPC control, is that system responses for different control actions can be predicted
(simulated) using an available system model. The predictions can incorporate con-
straints on the input signals and output states. The costs of different input sequences
are evaluated using some sort of performance index. One possible choice of index
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Chapter 1. Introduction

is a quadratic cost function, for which convex optimization solvers exist. A typical
cost function is

J(u) =
p

∑
i=0

(xk+i− xr
k+i)

T Qx(xk+i− xr
k+i)+ (1.18)

m

∑
i=0

(∆uk+i)
T Qu(∆uk+i)

Using the different weight matrices Qx and Qu, the user may tell the controller
what states are deemed more important than others. All in all, a convex constrained
optimization problem has to be solved. Once an optimal control sequence has been
found, the first control action is applied to the system, after which all other samples
are discarded and the process of predicting system outputs is repeated. A deeper
discussion on MPC is given in [Johansson, 2015].

1.5 Limitations

Some limitations to the scope of this project are given in this section of the report.

Depth
The coefficients of Eq. (1.3) will vary with depth. The model is thus limited to a
certain depth range. All experiments should be carried out at similar depths.

Tether Angle
A crucial point that was made during an interview with the designer of the SROV
control system, was the fact that the angle at which the tether attaches to the SROV
(which is variable, hereafter denoted θTA) has a big impact on the dynamics of the
system. A schematic drawing of the tether angle can be seen in Fig. 1.5. If only the
dynamics of the SROV were to be modeled, the tether could be neglected. However,
the aim of this thesis is to model the entire system comprising the SROV, which in-
cludes the effect of the tether. If, for instance, the tether attaches to SROV from
straight behind the vehicle, the tether will exert a torque in the pitch degree of free-
dom. This effect has to be considered. In order to build a functioning model, θTA has
to be taken into account. As this state cannot be measured using any of the SROV
sensors, some difficulties arise. In this thesis project, camera feeds available during
the trials will be used to estimate θTA, and to keep it fixed through all experiments.
The LPV model identified will be limited to the θTA used during the experiment
session.

Experiment Limitations
The trials were carried out on a campaign with the vessel Stril Explorer from 2018-
01-04 to 2018-01-08. Prior to the trials, the experiment plan (refer to Sec. 3.1) was
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1.5 Limitations

Figure 1.5 The tether angle is defined as the angle at which the tether attaches to
the SROV. This angle is variable and affects the dynamics of the SROV.

reviewed together with the ROV supervisor on Stril Explorer. It was concluded that
the experiments designed for the recursive estimation scheme were not executable
in practice. The ROV pilots were not comfortable with operating the vehicle in all
degrees of freedom simultaneously. Instead, it was decided that the recursive and
dynamic experiments would coincide. After all, an assumption made early on in the
project, was that the system could be considered decoupled at low forward speeds.

The SROV could not be operated in open loop for all freedom degrees. Before
any experiments were carried out, the SROV pilot tried to fly the SROV at low
velocities without any control systems. It quickly became clear that this was unsafe,
and it was thus decided to use control systems when deemed appropriate to make
sure that the system would not be damaged in any way.

In the experiment plan, the scheduling points of the LPV model were picked
according to Eq. (3.2). During the trials, some of the experiments using x = 4.0 knts
could not be carried out. In particular, it was deemed unsafe to perform experiments
in the vertical degree of freedom. When the SROV was moving at higher forward
velocities, the pitch angel grew larger than what was deemed safe. Figure 1.6 depicts
some of the problem. During the initial part of the experiment, the resulting pitch
angle is moderate. This part of the experiment was carried out at lower forward
velocities. In the later part of the experiment, performed at higher forward velocities,
the SROV pitch angle grows quite large even for moderate references. Due to this
safety concern, no experiments were carried out for x = 4.0 knts. The LPV scope
thus had to be limited to only the first seven entries of Eq. (3.2).
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Chapter 1. Introduction
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2
Methodology

2.1 Literature Study

The project work started off with a literature study, in which different modeling
approaches were compared. Since there is some knowledge of the physics of ROVs
in general, it was decided that a gray-box approach would be preferable to black-
box models. As every literature source encountered have successfully been using
the model described by Eq. (1.3), it was decided that this model should be used in
the thesis research.

2.2 Simulations

Prior to the experiments were designed, simulations were carried out to get an un-
derstanding of how the process should be excited to allow the model parameters to
converge. Data was simulated using the model described in Eq. (1.3), and parame-
ter values were estimated using a Kalman filter. By choosing different input signals
when generating the input-output data through simulations, and evaluating the per-
formance of the found models on a validation set, it could be concluded what input
signals were likely to be good and what signals were less likely to be apt. Based on
this data, the input signals for the experiments could be chosen.

2.3 Experiment Design

Two different experiments were designed prior to the trials. The experiment design
can be reviewed in Sec. 3.1.

2.4 Trials

On top of the input-output data that were collected, a set of validation data was also
recorded during the trials. This data contained motions in the entire spectrum of all
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Chapter 2. Methodology

signals that the LPV model is expected to cover. Thus, the validation data contained
signals satisfying u ∈ [0.5,4] knts, v ∈ [−1,1] knts, w ∈ [−1,1] knts, r ∈ [−0.3,0.3]
rad/s, p∈ [−0.3,0.3] rad/s, and q∈ [−0.3,0.3] rad/s. These data were not used when
building the parameter estimates, but only when validating the identified models.

The data sets were logged using two programs on different computers. The
SROV control logger sampled the controller actions at 10 Hz. This sample fre-
quency could not be changed. Thus, the software logging motion data from the
SROV INS had to be limited to 10 Hz as well. The output of both data sources
were time stamped, but there was no synchronization between the computers run-
ning the different pieces of software. To make sure that motion data corresponding
to the correct controller inputs would be obtained for the parameter estimation al-
gorithms, a Matlab script was created that automatically found the index that one of
the signals needed to be shifted in order to match the other. This script was based on
the fact that some of the signals were recorded by both softwares (e.g., depth). By
matching these signals, an appropriate number of lags could be found to synchro-
nize the signals. Once a complete set of signals were at hand, it was saved and used
as input-output data for the parameter estimation algorithm.

2.5 Parameter Estimation

Kalman Filter Identification
The identification of the full model described in Eq. (1.3) can be carried out in
several consecutive steps. The first step is concerned with estimation of the entries
of g(η) given experiment data. The experiments for the estimation of g(η) were
designed such that all velocities were constant and equal to zero. Thus, Eq. (1.3)
simplifies to

g(η) = τ (2.1)

Using the known structure of g(η) (see Eq. (1.5)) and the recorded values of τ and
η , the constant unknowns of g(η) were estimated. For clarification, the entries of
g(η) being estimated were Ŵ = W −B and ŴzGB = zGW − zBB. Further on, since
the tether is attaching to the SROV from straight behind the vehicle, a constant pitch
moment will be exerted on the SROV by the tether. This moment is denoted τθ , and
was estimated together with the constant entries of g(η). The estimators used were

Ŵ =
1
N

N−1

∑
k=0

τw(k)
cos(θ(k))cos(φ(k))

(2.2)

ŴzB =
1
N

N−1

∑
k=0

τw(k)
sin(θ(k))

(2.3)

τ̂θ =
1
N

N−1

∑
k=0

τq(k) (2.4)
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2.5 Parameter Estimation

where τw denotes the input signal in the vertical degree of freedom, and where τq is
the input in the pitch degree of freedom. The estimators were based on experiments
designed such that

sin(θ(k)) 6= 0, k = 0,1, · · ·N−1 (2.5)

and
cos(θ(k))cos(φ(k)) 6= 0, k = 0,1, · · ·N−1 (2.6)

to ensure that the estimators defined by Eqs. (2.2-2.3) were well-defined. As the
effect of the tether is not modeled (since there are no measurable inputs to use),
all further estimations work with the identified pitch moment canceled from τ . The
second step of the model parameter estimation is to transform Eq. (1.3) to

Mν̇ +(C(ν)+D(ν))ν = γ(η) (2.7)
γ(η) = τ−g(η) (2.8)

That is, the part of the input signal needed to cancel the restoring forces and mo-
ments is removed from the total input. As a final simplification, it is assumed that
the entries of the term C(ν)+D(ν) can not be estimated separately. Instead, Eq.
(2.7) is written

Mν̇ + D̄(ν)ν = γ(η) (2.9)

It should here be noted that Eq. (2.9) can be written

ν̇ =−M−1D̄ν +M−1
γ (2.10)

under the condition that M is invertible. This is not a too restrictive assumption,
as symmetry implies that M is positive definite. In other words, the system can be
written on state-space form with

A =−M−1D̄ (2.11)

B = M−1 (2.12)

As a continuous-time model was wanted, the time series ν and γ(η) were filtered
through known filters given by Eq. (1.9). The resulting signals were used to estimate
parameters of the transformed system

ẋ = Aλ x+Bλ u (2.13)

as discussed in Sec. 1.3. There are many techniques that may be used for the pa-
rameter estimation. In this report, a Kalman Filter was used. The filtered time series
xk = [λν ]k, uk = [λγ]k were used to estimate the entries of the state-space model
matrices. The initial guess in the Kalman Filter algorithm was based on the Rigid
Body transformation data of the SROV. Since filtered signals have been used for the
estimation, the estimated state-space model is describing a transformed system. It
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Chapter 2. Methodology

can be shown that the transformed system matrices Âλ and B̂λ relates to the real
system matrices via

Â = (Âλ − I)/T (2.14)

B̂ = B̂λ/T (2.15)

A derivation is provided in Appendix 7.1. After the transformation back to the
continuous-time system is performed, the matrices M and D̄ may be calculated from
Eqs. (2.11-2.12).

A script for estimation of the full LPV model was implemented in Matlab. Input-
output data were supplied to the scripts as input arguments, and a full LPV model
was returned by the script. The LPV script implemented the method described
above. As an alternative, support for using a Matlab native system identification
function was also implemented. The Matlab function n4sid , which is a subspace-
based method for estimation of state space models, was intended to be used as a
supplement to the Kalman Filter estimation scheme.

2.6 Validation

Define τ as the input signals to the SROV, and ν as the outputs. Before parameter
estimation was carried out, the properties of the input-output data were investigated.
To evaluate the aptitude of the input-output data for estimation, the following prop-
erties were investigated:

• Power spectral density of the input

• Cross spectral density of the input and output

• Estimated coherence spectrum from input to output

• Estimated transfer function magnitude from input to output

• Singular values of the regressor matrix (to determine the number of identifi-
able parameters).

Verification of the identified models were carried out on validation data collected
during the trial campaign. The validation data set was not used for the estimation
of parameters. To evaluate how well the models could describe the validation data,
the identified LPV models were discretized using a zero order hold approximation.
The discretization time h = 0.1s was used. Two different methods for making 1-step
predictions were implemented. The first implementation was

x̂(k+1|k) = Φux(k)+Γuu(k) (2.16)
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2.6 Validation

where the subscript u indicates that the discretized state-space model satisfying

argmin
i

(u− r(i)), x = {0.5,1.0, · · · ,3.5} (2.17)

where the entries of x are the LPV scheduling variables, has been used for the
predictions. The second prediction scheme performs the predictions based on a
weighted interpolation of the output of the closest matching LPV sub models:

x̂(k+1|k) = (Φu−1x(k)+Γu−1u(k))w(k) (2.18)
+(Φux(k)+Γuu(k))(1−w(k))

w(k) ∈ [0,1]

The edge cases (i.e., for u < 0.5 knts and u > 3.5 knts), only the model closest
matching the scheduling variable was used for predictions. Some of the validation
was performed on the 1-step prediction errors, defined as

e(k+1) = x(k+1)− x̂(k+1|k) (2.19)

Several different measures of validity based on 1-step predictions were evaluated.
The measures used in this thesis were

• Diagrams of actual and predicted outputs

• Estimated autocorrelation functions of the error sequences

• Estimated cross correlation functions of the input and error sequences

• Normalized root-mean-squared error

• Norm plots of error sequences

• Number of zero-crossings of error sequence

• Qualitative study of simulations of the estimated noise model

Another validation method approached, was to evaluate 10-step predictions. A
model capable of generating accurate k-step predictions is desirable, as the model
may then be used as a foundation for the MPC algorithm.

Further validation measures were also evaluated. Simulations using the identi-
fied LPV model and a known input sequence were performed. The resulting simu-
lated states were then compared to the recorded states. The simulations were per-
formed according to

x̂(k+1|k) = Φx̂(k|k−1)+Γ(k)u(k) (2.20)
x̂(0) = x(0) (2.21)

where Φ and Γ were chosen according to one of the two schemes described previ-
ously. Note that the sequence u was pre-processed such that the effect of g(η) and
θtether was removed. Obviously, a good fit of the simulated data to the data obtained
during the test run is attractive.
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Chapter 2. Methodology

2.7 Controller Simulations

Simulations of closed-loop system responses, using the identified model for one for-
ward speed (e.g., 2 knts), were performed to evaluate different controller behaviors.
The controllers used for simulations were PID (diagonal to reflect the current sys-
tem limitations) and a full-state MPC controller. All simulations were carried out
in Simulink and using a sampling frequency of 20 Hz, reflecting the sampling fre-
quency of the SORV. To implement the MPC regulator, MPCtools [Åkesson, 2018]
was used. The MPC structure was initialized using a prediction horizon of Hp = 20
samples and a control horizon corresponding to Hu = 14 samples. Constraints on
the input signals were chosen to reflect the constraints posed by the real system
(i.e., limits on thruster actuation and total HPU power supply). The model used by
the MPC regulator was perturbed (using an additive perturbation of a magnitude of
about 10% of the entries in the system matrices) to account for model uncertainty,
and only added on the main diagonal of the state-space matrices (as these terms are
dominating in the identified system). The MPC controller was also augmented with
integral states to make the system states go to the set points.

The simulations were carried out using measurement noise (normally distributed
with zero mean and variance corresponding to that observed in the data records
from the campaign on Stril Explorer), and load disturbances of magnitudes similar
to what would be expected. In the case of underwater vehicles, load disturbances
typically come in the shape of ocean currents which may be modeled as slowly
varying random walks [Fossen, 1994]. Different trajectories and set-points, typical
for the usage of the SROV, were simulated and qualitatively evaluated.
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3
Experiment Plan

The experiments presented in this chapter of the report were designed prior to the
trials were to be carried out. Before any experiments were performed, the suggested
experiment plan was discussed with the SROV manager on Stril Explorer. It turned
out, that some of the experiments were not possible to execute in practice. Some
limitations were posed by time constriants, while safety considerations made other
experiments infeasible. All dynamic experiments could be executed. Only very few
of the static experiments could be performed, and none of the experiments in Sec.
3.3 could be undertaken.

3.1 Experiment Plan

The mathematical model that has been identified in the literature is given in Eq.
(1.3). Using the sensors of the SROV, it is possible to measure/estimate the entries
of the vector

z =
(

ν

η

)
(3.1)

hereafter referred to as the measurement vector. We have that z ∈ R12×1. The com-
ponents of z are discussed in section Sec. 1.2. The input signals to the SROV
thrusters, denoted uc, will be recorded. Since the SROV has 9 thrusters, we have
uc ∈ R9×1. Further on, the command in each degree of freedom will be recorded.
This signal is denoted τ , and we have that τ ∈ R6×1. If this was not the case, a
thruster map would also be needed in order to move from the control input to each
thruster to a command in each degree of freedom.

Two main approaches to the estimation of the parameters of the mathematical
model have been identified:

1. Through the use of a recursive estimation technique (Kalman filter)

2. By performing static and dynamic experiments to identify parameters of Eq.
(1.3) consecutively
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Chapter 3. Experiment Plan

After all experiments to be used for parameter estimation have been completed,
some data have to be gathered for verification purposes. This data will only be used
to verify the performance of the obtained model. The validation data set should
contain all SROV output signals that the model is expected to cover. That means
that all accelerations and speeds in the domain of the model should be contained in
the validation set.

3.2 Experimental Setup

During the trials, the following actions should be performed:

• Experiments to allow for recursive estimation

• Experiments to allow for static and dynamic identification

• Collection of validation data

As the dynamics of the SROV are expected to be nonlinear, experiments will be
carried out at equally spaced forward speed references according to

x = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0} (3.2)

The unit of the entries in x is knots. This is done in order to build a LPV model
scheduled on forward speed, as discussed in Sec. 1.3.

3.3 Recursive Estimation Experiments

It is important that the input signals are sufficiently exciting. This means that a
random input or some sort of square wave should be used as reference signal. The
input signal cannot be constant or some sort of sinusoid in any degree of freedom.
The input should ultimately be a square wave with a sufficiently long period. For
every forward speed in the positive longitudinal degree of freedom given by x, the
following actions should be taken:

• Movement in the lateral degree of freedom of the SROV. The speed should
vary and satisfy v ∈ [−1.5,1.5] knots.

• Movement in the vertical degree of freedom of the SROV. The speed should
vary and should satisfy w ∈ [−1.5,1.5] knots.

• Angular speed in the roll degree of freedom with speeds in the interval p ∈
[−0.3,0.3] rad/s.

• Angular speed in the pitch degree of freedom with speeds in the interval q ∈
[−0.3,0.3] rad/s.
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3.4 Static and Dynamic Experiments

Table 3.1 Table describing the experiment conditions for recursive estimation of
the parameter values, with a = 1.5 knts and b = 0.3 rad/s.

u v w p q r

∈ [0.2,0.8] ∈ [−a,a] ∈ [−a,a] ∈ [−b,b] ∈ [−b,b] ∈ [−b,b]
∈ [0.7,1.3] ∈ [−a,a] ∈ [−a,a] ∈ [−b,b] ∈ [−b,b] ∈ [−b,b]
∈ [1.2,1.8] ∈ [−a,a] ∈ [−a,a] ∈ [−b,b] ∈ [−b,b] ∈ [−b,b]
∈ [1.7,2.3] ∈ [−a,a] ∈ [−a,a] ∈ [−b,b] ∈ [−b,b] ∈ [−b,b]
∈ [2.2,2.8] ∈ [−a,a] ∈ [−a,a] ∈ [−b,b] ∈ [−b,b] ∈ [−b,b]
∈ [2.7,3.3] ∈ [−a,a] ∈ [−a,a] ∈ [−b,b] ∈ [−b,b] ∈ [−b,b]
∈ [3.2,2.8] ∈ [−a,a] ∈ [−a,a] ∈ [−b,b] ∈ [−b,b] ∈ [−b,b]
∈ [4.7,4.3] ∈ [−a,a] ∈ [−a,a] ∈ [−b,b] ∈ [−b,b] ∈ [−b,b]

• Angular speed in the yaw degree of freedom with speeds in the interval r ∈
[−0.3,0.3] rad/s.

As mentioned earlier, the experiments should be carried out with square wave or
random control inputs in all degrees of freedom. It is important that enough time
is given for the control action to have a noticeable effect on the system, before
the control action is changed again. For each entry of x, an experiment lasting for
at least 100 seconds should be run. In Table 3.1, a test schedule for the recursive
estimation approach is proposed. Every row describes the setup of one experiment.
All in all, 8 tests should be run in this part of the trial. The actions in all degrees of
freedom stay in the same interval, except for the speed in the x-direction, which is
varied around different mean values.

3.4 Static and Dynamic Experiments

The static and dynamic experiments have been designed to populate the entries
of Eq. (1.3) consequtively. In this approach, a constant input signal would first be
used to estimate the entries of C(ν)+D(ν) using linear regression. The entries of
M would not affect the system outputs as ν̇ would be the zero-vector after initial
transients have died out. Once the entries of C(ν)+D(ν) are known, the speed of
the SROV can be varied in order to find the entries of M.

Static Experiments
The following experiments will be run to facilitate static and dynamic identification
at the speeds defined in x. It should be noted that the LPV approach is scheduled
on forward speed. First, make the SROV move at a constant speed in the posi-
tive longitudinal direction. The forward speeds are given by the entries of x. No
other movement should be induced. Next, for every forward speed in the positive
x-direction given by x, the following actions should be taken in consecutive order:
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Chapter 3. Experiment Plan

Table 3.2 Table describing the experiment conditions for static identification of
damping and Coriolis coefficients in the y-direction of the SROV. The unit of the
first three columns is knots, and the unit of the following three columns is rad/s.

u v w p q r

0.5 ±1 0 0 0 0
1.0 ±1 0 0 0 0
1.5 ±1 0 0 0 0
2.0 ±1 0 0 0 0
2.5 ±1 0 0 0 0
3.0 ±1 0 0 0 0
3.5 ±1 0 0 0 0
4.0 ±1 0 0 0 0

• Constant linear speed of ±1 knot in the lateral degree of freedom of the
SROV.

• Constant linear speed of ±1 knot in the vertical degree of freedom of the
SROV.

• Constant angular speed of ±0.3 rad/s in the roll degree of freedom of the
SROV.

• Constant angular speed of ±0.3 rad/s in the pitch degree of freedom of the
SROV.

• Constant angular speed of ±0.3 rad/s in the yaw degree of freedom of the
SROV.

Note that ±x implies that one experiment should be run for x and one experiment
should be run for −x. All in all, this gives 88 static experiments to run. Each exper-
iment should be run until the set-point is reached and all transients have died out.
After this steady-state is reached, the experiment should continue for at least 20 sec-
onds. It is important that we have no acceleration in any freedom degree at the end
of the experiments. Tables 3.2 and 3.3 show the setup for some of the experiments.
Each row corresponds to two experiments; one where a positive speed is generated,
and one where negative speed is generated in the specified DOF. Please note that
these experiments should be performed in all degrees of freedom when applicable,
even if only two tables have been presented. It may not be possible to perform the
tests for the given angular speeds in the roll and pitch directions, as such inputs
could cause the SROV to flip. If this is the case, the experiments should be run for
shorter time sequences and using lower angular velocities.
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3.4 Static and Dynamic Experiments

Table 3.3 Table describing the experiment conditions for static identification of
damping and Coriolis coefficients in the yaw-direction of the SROV. The unit of the
first three columns is knots, and the unit of the following three columns is rad/s.

u v w p q r

0.5 0 0 0 0 ±0.3
1.0 0 0 0 0 ±0.3
1.5 0 0 0 0 ±0.3
2.0 0 0 0 0 ±0.3
2.5 0 0 0 0 ±0.3
3.0 0 0 0 0 ±0.3
3.5 0 0 0 0 ±0.3
4.0 0 0 0 0 ±0.3

Dynamic Experiments
Next, dynamic experiments should be performed. In these experiments, it is impor-
tant that there are accelerations in the different degrees of freedom. First, make the
SROV move at an alternating speed in the positive x-direction. The forward speeds
should vary around the entries of x. No other movement should be induced. Next,
for every forward speed in the positive x-direction given by x, the following actions
should be taken (note that the speed in the x-direction should be constant):

• Movement in the lateral degree of freedom of the SROV. The speed in the
y-direction should vary and should satisfy v ∈ [−1.5,1.5] knots.

• Movement in the vertical degree of freedom of the SROV. The speed in the
z-direction should vary and should satisfy w ∈ [−1.5,1.5] knots.

• Angular speed in the roll degree of freedom of the SROV, with speeds in the
interval p ∈ [−0.3,0.3] rad/s.

• Angular speed in the pitch degree of freedom of the SROV, with speeds in the
interval q ∈ [−0.3,0.3] rad/s.

• Angular speed in the yaw degree of freedom of the SROV, with speeds in the
interval r ∈ [−0.3,0.3] rad/s.

Every experiment should be run for a sufficient amount of time, but at least 30
seconds as this time allowed for parameter estimate convergence in simulations.
Tables 3.4 and 3.5 show the experimental conditions for some of the tests to be
carried out.
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Chapter 3. Experiment Plan

Table 3.4 Table describing the experiment conditions for estimating the entries of
the mass and inertia matrix M in the y-direction of the SROV. The unit of the first
three columns is knots, and the unit of the following three columns is rad/s.

u v w p q r

0.5 ∈ [−1.5,1.5] 0 0 0 0
1.0 ∈ [−1.5,1.5] 0 0 0 0
1.5 ∈ [−1.5,1.5] 0 0 0 0
2.0 ∈ [−1.5,1.5] 0 0 0 0
2.5 ∈ [−1.5,1.5] 0 0 0 0
3.0 ∈ [−1.5,1.5] 0 0 0 0
3.5 ∈ [−1.5,1.5] 0 0 0 0
4.0 ∈ [−1.5,1.5] 0 0 0 0

Table 3.5 Table describing the experiment conditions for estimating the entries of
the mass and inertia matrix M in the roll-direction of the SROV. The unit of the first
three columns is knots, and the unit of the following three columns is rad/s.

u v w p q r

0.5 0 0 ∈ [−0.3,0.3] 0 0
1.0 0 0 ∈ [−0.3,0.3] 0 0
1.5 0 0 ∈ [−0.3,0.3] 0 0
2.0 0 0 ∈ [−0.3,0.3] 0 0
2.5 0 0 ∈ [−0.3,0.3] 0 0
3.0 0 0 ∈ [−0.3,0.3] 0 0
3.5 0 0 ∈ [−0.3,0.3] 0 0
4.0 0 0 ∈ [−0.3,0.3] 0 0

3.5 Validation Data

The validation data set is collected to verify the functionality of the mathematical
model that is built on the training data sets. The validation data should contain con-
stant speeds in all directions, as well as alternating speeds. All speeds used for the
scheduling must be covered by the validation data. This implies that u ∈ [0.2,4.3].
The following experiments will be run to obtain validation data

• Movement at variable speeds in the xyz-directions with the forward speed
in the range specified above. Variations in pitch, roll and yaw must also be
obtained. The validation set should contain constant as well as changing ve-
locities.

• Collect at least 300 seconds worth of validation data.
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4
Results

4.1 Simulations

Simulations based on the model structure identified in the literature study, showed
that a square-wave like input signal would be appropriate. This is also in accordance
with the notation of persistence of excitation [Ljung, 1987], [Johansson, 2017]. It
was further concluded that the input steps in the different freedom degrees must be
applied for a sufficient amount of time, such that a measurable effect on the output
signals can be recorded.

The recursive estimation algorithm was implemented and tested on simulated
continuous-time model data. Simulations were carried out for N = 4000 samples.
The system matrix A was changed at t = 2000. The state-space model used for the
first half of the experiment was

ẋ = Ax+Bu (4.1)

with

A =

(
−1 3
−1 −4/3

)
(4.2)

B =

(
0.0003 0.0001
0.0001 0.0003

)
(4.3)

C =

(
1 0
0 1

)
(4.4)

D =

(
0 0
0 0

)
(4.5)

and the system matrix was later changed to

A =

(
−1/2 −3

2 −4/3

)
(4.6)

The resulting parameter estimates using two square wave signals as input can be
seen in Fig. 4.1-4.2. In Fig. 4.3-4.4, the parameter estimates using two PRBS inputs
can be seen.
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Figure 4.1 Continuous-time parameter estimate evolution using the Kalman filter
scheme discussed in Sec. 2.5. The input signal was selected to be two square-wave
signals. The plots were created to verify the functionality of the implementation of
the Kalman filter scheme for continuous-time model estimation.
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Figure 4.2 Simulated input and output signals of the experiments to verify the
functionality of the implemented Kalman filter using a square wave input.
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Figure 4.3 Continuous-time parameter estimate evolution using the Kalman filter
scheme discussed in Sec. 2.5. The input signal was selected to be two PRBS sig-
nals. The plots were created to verify the functionality of the implementation of the
Kalman filter scheme for continuous-time model estimation.
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Figure 4.4 Simulated input and output signals of the experiments to verify the
functionality of the implemented Kalman filter using a PRBS input.
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Figure 4.5 Linear and angular velocities recorded during the sea trials on board
Stril Explorer. These are considered output signals of the SROV.

4.2 Trials

During the trials, numerous signals were recorded. To give the reader an under-
standing of what the signals looks like, a small portion of the data is presented in
Figs. 4.5-4.7.

During the trial campaign, other tests than the ones needed for this thesis were
also carried out. These trials had higher priority than the thesis research. The time
consumption estimated for the tests of the thesis were too optimistic, and thus not
all of the tests could be carried out. All dynamic/recursive tests were completed,
as were the static experiments carried out to identify the vector of restoring forces
and moments g(η). Of all the tests designed to identify drag coefficients, only tests
for a forward speed of 2 knts could be completed before the trials had to be broken
off. This will still allow for comparisons between the performance of the static and
recursive methods to be carried out, but only for the case when the forward speed
of the validation data set is 2 knts. However, this will at least give a hint about the
performance of the different models.
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Figure 4.6 References in each freedom degree (as recorded by the SROV control
logger software), and the control action for each thruster. Note that the signals are all
in % of full positive/negative reference/thrust.

4.3 Signal Properties

The signal investigation was evaluated for all inputs and all outputs, and for all LPV
grid variables. It was found that, for low frequencies, there was a coherence of ac-
ceptable magnitude between some of the signals, whereas coherence was weak be-
tween other signal pairs. Figures 4.8-4.9 show the signal properties for the dynamic
experiments carried out in roll for a fixed forward speed u = 0.5 knts. All figures
depicting the signal properties of the different experiments are shown in Appendix
7.2.
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Figure 4.9 Signal properties of one of the dynamic experiments in roll, when the
forward speed was fixed to u= 0.5 knts. The upper left plot shows the power spectral
density of the input signal γp. The upper right plot shows the cross PSD of γp and p,
where p is the resulting roll angular velocity (i.e., the output signal). The lower left
plot shows an estimate of the transfer function magnitude from input to output, and
the lower right plot shows the coherence spectrum. All functions are plotted versus
frequency.
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4.4 Uncoupled Dynamics

Parameter Estimation
The matrices presented were obtained for the LPV grid variable u = 3.0 knts. The
added mass matrix was estimated to be

MKF = 1.0 ·109


0.01 0 0 0 0 0

0 0.068 0 0 0 0
0 0 1.3083 0 0 0
0 0 0 0.5896 0 0
0 0 0 0 0.1887 0
0 0 0 0 0 2.8955




kg
kg
kg

kgm2

kgm2

kgm2


and combined damping and Coriolis matrix

DKF = 1.0 ·107


0.0172 0 0 0 0 0

0 0.1165 0 0 0 0
0 0 2.2428 0 0 0
0 0 0 1.0782 0 0
0 0 0 0 0.2894 0
0 0 0 0 0 4.1288




kg/s
kg/s
kg/s

kgm2/s
kgm2/s
kgm2/s


As a comparison, the Matlab native function n4sid was used to calculate the system
matrices. The model matrices obtained for u = 3.0 knts were

Mn4 = 1.0·107


0.2699 0 0 0 0 0

0 0.5232 0 0 0 0
0 0 0.7646 0 0 0
0 0 0 0.2146 0 0
0 0 0 0 1.3751 0
0 0 0 0 0 0.5830




kg
kg
kg

kgm2

kgm2

kgm2


and the combined Damping and Coriolis matrix was calculated as

Dn4 = 1.0 ·105


0.2889 0 0 0 0 0

0 1.7653 0 0 0 0
0 0 2.9973 0 0 0
0 0 0 0.7480 0 0
0 0 0 0 0.4788 0
0 0 0 0 0 1.3617




kg/s
kg/s
kg/s

kgm2/s
kgm2/s
kgm2/s


As can be noted, the magnitude of the system matrices obtained through the use of
the different algorithms differ by a factor 100 in magnitude. The reason for this dis-
crepancy is unclear, but one can at least say that the diagonal models are estimated
to be very hard to affect using the input signals. As the control system is acting on
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4.4 Uncoupled Dynamics

Table 4.1 Estimated values of the constant entries of the vector of restoring forces
and moments, g(η).

Parameter Value

(W −B) 3.55 ·104 N
(zGW − zBB) 1.81 ·105 Nm
τtether −1.57 ·104 Nm

the system though M−1, it will be virtually impossible to change the system states
using the input signals. This is an indicator that the diagonal models are not suitable
for describing the SROV.

The estimates of the entries of g(η) and the effect of the tether are shown in
Table 4.1.

Validation
The LPV models were evaluated on the validation set, which was recorded during
the trials. In the following, the results of the residual analysis will be presented.

Residual Analysis of Kalman filter Estimated System The model evaluated here
is a diagonal system obtained through the method described in Sec. 2.5. One-step
predictions of the identified system on 4000 samples of the validation data can be
seen in Fig. 4.10. In Figs 4.11-4.13, the estimated autocorrelation functions for
some of the prediction error sequences are shown, together with (approximative)
99% confidence interval for a zero mean normal distribution. Norm plots of the in-
novation sequence are also provided. In Fig. 4.14, the estimated cross correlation
functions of input signals and error sequences are provided. The NRMSE of the
diagonal Kalman filter on the 4000 sample sequence of validation data are

NRMSEKF =


fitu
fitv
fitw
fitp
fitq
fitr

=


0.9797
0.9635
0.9524
0.8508
0.9160
0.8868

 (4.7)

As a further measure of the model accuracy, the number of prediction error sequence
zero crossings are calculated. These data may be used as a test of normality of the
prediction error, but also give a clue about persistent offsets in predictions. For the
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Figure 4.10 One-step predictions for the model estimated from the dynamic tests
carried out on the SROV. Parameters estimated using a diagonal Kalman filter, and a
discretization time of 0.1s. The predictions are carried out using the full LPV model
using the interpolation scheme described in the method section.

diagonal Kalman filter estimation technique, the number of zero crossings were

nzKF =


851

1703
1796
1358
1774
1357

 (4.8)

Since the length of the entire validation data set is 4000 samples, the number of zero
crossings indicate that there are some offsets in the prediction errors, especially in
the longitudinal degree of freedom.

To test whether the estimated model is capable of performing k-step predictions
for longer time horizons (which is important for an MPC controller), predictions
using k = 10 was performed. The resulting predictions and the corresponding auto-
correlations of the prediction errors can be reviewed in Figs. 4.15-4.18. Figure 4.19
provide zoomed diagrams of the 10-step predictions carried out using the uncou-
pled system. Here it can clearly be seen that the produced predictions are basically
delayed versions of the output state vectors.

As a further measure of the aptitude of the estimated model, simulations using
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Figure 4.11 Estimated autocorrelation functions of the one-step prediction error
sequence obtained using a diagonal LPV model estimated using a Kalman filter. The
norm plots of the innovation sequences are also provided.
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Figure 4.12 Estimated autocorrelation functions of the one-step prediction error
sequence obtained using a diagonal LPV model estimated using a Kalman filter. The
norm plots of the innovation sequences are also provided.

a known input-output signal pair were carried out. For the distinction between this
approach and k-step predictions, please refer to Sec. 2.6. The results of the simula-
tions are shown in Figs. 4.20-4.21. The diagrams indicate that the uncoupled LPV
model estimated using a Kalman filter is struggling in particular concerning the an-
gular velocities. The high-frequency content of the recorded outputs are completely
ignored by the simulations. All the results presented in this section indicate that an
increase in model order would probably be suitable.

Residual Analysis of n4sid Estimated System As a comparison, the results of a
diagonal system estimated through the subspace based Matlab function n4sid are
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Figure 4.13 Estimated autocorrelation functions of the one-step prediction error
sequence obtained using a diagonal LPV model estimated using a Kalman filter. The
norm plots of the innovation sequences are also provided.
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Figure 4.14 Estimated cross correlations between input and error from the differ-
ent freedom degrees, using predictions based on a diagonal LPV model estimated
using a Kalman filter.
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Figure 4.15 10-step predictions for the model estimated from the dynamic tests
carried out on the SROV. Parameters estimated using a Kalman filter and uncoupled
dynamics, and a discretization time of 0.1s. The predictions were carried out using
the full LPV model and the interpolation scheme described in the method section.
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Figure 4.16 Estimated autocorrelation functions of innovation sequence in forward
and lateral velocity for 10-step predictions using a diagonal LPV model. The entries
of the LPV model were estimated using a Kalman filter. The norm plots of the inno-
vation sequences are also provided.
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Figure 4.17 Estimated autocorrelation functions of innovation sequence in vertical
and roll velocity for 10-step predictions using a diagonal LPV model. The entries of
the LPV model were estimated using a Kalman filter. The norm plots of the innova-
tion sequences are also provided.
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Figure 4.18 Estimated autocorrelation functions of innovation sequence in pitch
and yaw velocity for 10-step predictions using a diagonal LPV model. The entries of
the LPV model were estimated using a Kalman filter. The norm plots of the innova-
tion sequences are also provided.

presented below. One-step predictions of the identified system on the same 4000
samples of the validation data as in Sec. 4.4 can be seen in Fig. 4.22. In Figs.
4.23-4.25, the estimated autocorrelation functions for some of the prediction er-
ror sequences are shown, together with (approximative) 99% confidence interval
for a zero mean Normal Distribution. Norm plots of the innovation sequence are
also provided. In Fig. 4.26, the estimated cross correlation functions of input sig-
nals and error sequences are provided. The NRMSE of the diagonal n4sid on the
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ŵ(k|k − 10)

(a) Lateral

180 190 200 210 220 230 240

Time [s]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L
in

e
a

r 
v
e

lo
c
it
y
 [

m
/s

]

10-step Velocity Predictions

w(k)
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Figure 4.19 Zoomed-in plots of the 10-step predictions carried out using the di-
agonal LPV model. The entries of the LPV model were estimated using a Kalman
filter.

0 20 40 60 80

Time [s]

0.8

1

1.2

[m
/s

]

Simulated and Recorded System Response in Forward Velocity

û
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Figure 4.20 Simulated system response using the uncoupled LPV model estimated
using a Kalman filter. The simulated linear velocities are presented. The discretiza-
tion time of the continuous-time models was set to 0.1s. The simulated states were
obtained using the interpolation scheme described in the method section. The data
record used was collected during the trials, and was not used for the parameter esti-
mations.
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Figure 4.21 Simulated system response using the uncoupled LPV model estimated
using a Kalman filter. The simulated angular velocities are presented. The discretiza-
tion time of the continuous-time models was set to 0.1s. The simulated states were
obtained using the interpolation scheme described in the method section. The data
record used was collected during the trials, and was not used for the parameter esti-
mations.

4000 sample sequence of validation data is

NRMSEn4 =


fitu
fitv
fitw
fitp
fitq
fitr

=


0.9816
0.9636
0.9528
0.8509
0.9159
0.8868

 (4.9)

For the diagonal n4sid estimation, the number of zero crossings were

nzn4 =


1599
1710
1910
1368
1762
1349

 (4.10)

Notably, there are almost twice as many zero crossings in the longitudinal degree
of freedom using the n4sid algorithm than when using the diagonal LPV model
estimated using a Kalman filter.
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Figure 4.22 One-step predictions for the model estimated from the dynamic tests
carried out on the SROV. Parameters estimated using a diagonal n4sid, and a dis-
cretization time of 0.1 s. The predictions are carried out using the full LPV model
using the interpolation scheme described in the method section.
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Figure 4.23 Estimated autocorrelation function of innovation sequence in forward
velocity. The entries of the LPV model were estimated using the subspace-based
n4sid algorithm. The norm plot of the innovation sequence is also provided.
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Figure 4.24 Estimated autocorrelation functions of innovation sequence in vertical
and roll velocity. The entries of the LPV model were estimated using the subspace-
based n4sid algorithm. The norm plots of the innovation sequences are also provided.
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Figure 4.25 Estimated autocorrelation functions of innovation sequence in pitch
and yaw velocity. The entries of the LPV model were estimated using the subspace-
based n4sid algorithm. The norm plots of the innovation sequences are also provided.
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Figure 4.26 Estimated cross correlations between input and error from the differ-
ent freedom degrees, using predictions based on a diagonal LPV model estimated
using the sub-space based Matlab function n4sid.
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4.5 Coupled Dynamics

Parameter Estimation
The matrices presented were obtained for the LPV grid variable u = 3.0 knts. The
structure of the added mass matrix was found by investigating the coherence spectra
in Appendix 7.2. The estimated add matrix was found to be

MKF = 105 ·


0.3437 0 −0.4223 0 0.1433 0

0 0.2183 0 −0.0014 0 −0.0386
0.1496 0 −.6774 0 0.0186 0

0 −0.0514 0 −0.0301 0 0.0091
−0.3544 0 1.0199 0 0.0111 0

0 −0.0074 0 0 0 0.2979




kg
kg
kg

kgm2

kgm2

kgm2


and combined damping and Coriolis matrix

DKF = 104 ·


0.4239 0 −1.1815 0 0.9776 0

0 0.6001 0 −0.0064 0 −0.0154
−0.0303 0 −1.9059 0 0.3370 0

0 −0.3641 0 −0.0275 0 0.0036
−0.5384 0 2.877 0 −0.705 0

0 −0.0465 0 0.0002 0 0.4986




kg/s
kg/s
kg/s

kgm2/s
kgm2/s
kgm2/s


Validation
The coupled LPV model was evaluated on the validation set, similarly to the vali-
dation methods used for the uncoupled LPV models. In the following, the results of
the residual analysis will be presented.

Residual Analysis of Kalman filter Estimated System The model evaluated here
is a diagonal system obtained through the method described in Sec. 2.5. One-step
predictions of the identified system on 4000 samples of the validation data can be
seen in Fig. 4.27. In Figs 4.28-4.30, the estimated autocorrelation functions for
some of the prediction error sequences are shown, together with (approximative)
99% confidence interval for a zero mean Normal Distribution. Norm plots of the
innovation sequence are also provided. In Fig. 4.31, the estimated cross correlation
functions of input signals and error sequences are provided. The NRMSE of the
diagonal Kalman filter on the 4000 sample sequence of validation data is

NRMSEKF =


fitu
fitv
fitw
fitp
fitq
fitr

=


0.8971
0.9575
0.9615
0.8473
0.9207
0.8816

 (4.11)
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As a further measure of the model accuracy, the number of prediction error sequence
zero crossings are calculated. This data may be used as a test of normality of the
prediction error, but also give a clue about persistent offsets in predictions. For the
diagonal Kalman filter estimation technique, the number of zero crossings were

nzKF =


123
848
886

1316
1591
1165

 (4.12)

These results show that the coupled LPV model generate predictions that render in
even less prediction error zero crossings than the uncoupled LPV models. Also, the
NRMSE score of the coupled LPV model in the longitudinal degree of freedom is
lower. To test whether the estimated model is capable of performing k-step predic-
tions for longer time horizons (which is important for an MPC controller), predic-
tions using k = 10 was performed. The resulting predictions and the corresponding
autocorrelations of the prediction errors can be reviewed in Figs. 4.32-4.35. As can
be seen in Fig. 4.36, the coupled LPV model is actually producing predictions that
are not just delayed versions of the state vector.

As a further measure of the aptitude of the estimated model, simulations using a
known input signal were carried out. For the distinction between this approach and
k-step predictions, please refer to Sec. 2.6. The results of the simulations are shown
in Figs. 4.37-4.38. As in the case of the uncoupled LPV model, the coupled model is
struggling with the high-frequency content of the angular velocity states. However,
the coupled LPV model is performing better considering the linear velocities. In
particular, the simulations of the lateral and vertical velocities capture the shapes of
the corresponding recorded outputs.

To give the reader an idea of how the Kalman filter estimations converge, the
filter evolution for two of the experiments are provided. In Fig. 4.39, the parameter
estimates for an experiment in forward velocity (when u =) are shown as a function
of time. The estimated parameter variances and the input signals to the Kalman filter
are also shown. Figure 4.40 show the results for an experiment in roll (when u = 3.5
knts).

Noise Model Simulations
In Figs. 4.41 to 4.43, the results of a simulation using the estimated noise model are
presented. As discussed in Sec. 1.3, the noise models obtained through the use of
the identification algorithms were used to obtain the simulation results.
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Figure 4.27 One-step predictions for the model estimated from the dynamic tests
carried out on the SROV. Parameters estimated using a Kalman filter and coupled
dynamics, and a discretization time of 0.1s. The predictions are carried out using the
full LPV model and the interpolation scheme described in the method section.
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Figure 4.28 Estimated autocorrelation functions of innovation sequence in forward
and lateral velocity when using a coupled LPV model to obtain predictions. The
norm plots of the innovation sequences are also provided.
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Figure 4.29 Estimated autocorrelation functions of innovation sequence in vertical
and roll velocity when using a coupled LPV model to obtain predictions. The norm
plots of the innovation sequences are also provided.
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Figure 4.30 Estimated autocorrelation functions of innovation sequence in pitch
and yaw velocity when using a coupled LPV model to obtain predictions. The norm
plots of the innovation sequences are also provided.
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Figure 4.31 Estimated cross correlations between input and innovation from the
different freedom degrees, using predictions based on a coupled LPV model esti-
mated using a Kalman filter.
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Figure 4.32 10-step predictions for the model estimated from the dynamic tests
carried out on the SROV. Parameters estimated using a Kalman filter and coupled
dynamics, and a discretization time of 0.1s. The predictions were carried out using
the full LPV model and the interpolation scheme described in the method section.
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Figure 4.33 Estimated autocorrelation functions of innovation sequence in forward
and lateral velocity for 10-step predictions when using a coupled LPV model to
obtain predictions. The norm plots of the innovation sequences are also provided.
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Figure 4.34 Estimated autocorrelation functions of innovation sequence in vertical
and roll velocity for 10-step predictions when using a coupled LPV model to obtain
predictions. The norm plots of the innovation sequences are also provided.
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Figure 4.35 Estimated autocorrelation functions of innovation sequence in pitch
and yaw velocity for 10-step predictions when using a coupled LPV model to obtain
predictions. The norm plots of the innovation sequences are also provided.

60



4.5 Coupled Dynamics

100 105 110 115 120 125 130 135 140

Time [s]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

L
in

e
a
r 

v
e
lo

c
it
y
 [
m

/s
]

10-step Velocity Predictions

v(k)
w(k)
v̂(k|k − 10)
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Figure 4.36 Zoomed-in plots of the 10-step predictions carried out using the cou-
pled LPV model.
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Figure 4.37 Simulated system response using the coupled LPV model estimated
using a Kalman filter. The simulated linear velocities are presented. The discretiza-
tion time of the continuous-time models was set to 0.1 s. The simulated stated were
found using the interpolation scheme described in the method section. The data
record used was collected during the trials, and was not used for the parameter esti-
mations.

61



Chapter 4. Results

0 20 40 60 80

Time [s]

-0.05

0

0.05

[r
a

d
/s

]

Simulated and Recorded System Response in Roll Velocity

p̂

p

0 20 40 60 80

Time [s]

-0.02

0

0.02
[r

a
d

/s
]

Simulated and Recorded System Response in Pitch Velocity

q̂

q

0 20 40 60 80

Time [s]

-0.02

0

0.02

[r
a

d
/s

]

Simulated and Recorded System Response in Yaw Velocity

r̂

r

Figure 4.38 Simulated system response using the coupled LPV model estimated
using a Kalman filter. The simulated angular velocities are presented. The discretiza-
tion time of the continuous-time models was set to 0.1 s. The simulated stated were
found using the interpolation scheme described in the method section. The data
record used was collected during the trials, and was not used for the parameter esti-
mations.
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Figure 4.39 Parameter estimates as a function of time, where the estimates were
produced using a Kalman filter. The data was obtained as the dynamic experiment in
the longitudinal degree of freedom for u= 2.0 knts.
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Figure 4.40 Parameter estimates as a function of time, where the estimates were
produced using a Kalman filter. The data was obtained as the dynamic experiment in
the roll degree of freedom for u= 3.5 knts.
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Figure 4.41 Estimated autocorrelation function of simulated noise sequence in for-
ward and lateral velocity. The norm plot of the innovation sequence is also provided.
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Figure 4.42 Estimated autocorrelation functions of simulated noise sequence in
vertical and roll velocity. The norm plots of the innovation sequences are also pro-
vided.
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Figure 4.43 Estimated autocorrelation functions of simulated noise sequence in
pitch and yaw velocity. The norm plots of the innovation sequences are also provided.
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Figure 4.44 Simulated step responses using a PI controller and no measurement
noise. Sample time used for the simulation was h = 0.05 s.

4.6 Controller Simulations

Note that all simulations described in this section assumes that the effect of the
restoring forces and moments vector g(η) has been canceled out by a feed-forward
controller.

Simulations of closed-loop system responses for two controller structures have
been carried out. The closed-loop response of one of the LPV sub-models (corre-
sponding to u = 2.0 knts) when controlled using a set of parallel SISO PID reg-
ulators are displayed in Figs. 4.44-4.45. When noise was added, the system went
unstable.

Figures 4.46-4.47 show the simulated system response for a simulation length of
t = 100 s. It should be noted that the MPC controller is able to attenuate deviations
from the issued angular velocity commands (all being 0 rad/s) effectively.

In the current SROV design, there are two front vertical thruster, but only one
aft vertical thruster. By adding an additional aft vertical thruster (all four vertical
thrusters symmetrically located around the Center Of Mass), better performance
may be achievable. Figures 4.48 and 4.49 show simulation results using the same
conditions as before, with the only exception that an additional aft vertical thruster
has been added.
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Figure 4.45 Control actions given by the PI controller, no measurement noise
present. Sample time used for the simulation was h = 0.05 s.

0 20 40 60 80 100

Time [s]

-0.5

0

0.5

1

L
in

e
a
r 

V
e
lo

c
it
y
, 
[m

/s
]

Simulated Step Responses, MPC

u

v

w

ru

rv

rw

0 20 40 60 80 100

Time [s]

-0.02

0

0.02

0.04

A
n
g
u
la

r 
V

e
lo

c
it
y
, 
[r

a
d
/s

]

Simulated Step Responses, MPC

p

q

r

rp

rq

rr

Figure 4.46 Simulated step responses using an MPC controller and measurement
noise (zero mean, variance corresponding to that obtained in the experimental data).
Prediction horizon was set to Hp = 20, and control horizon was set to Hu = 14 sam-
ples. The system was simulated using a sample period of h = 0.05 s. The constraints
on the control inputs have been set to mirror the real constraints imposed by the
SROV thruster models.
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Figure 4.47 Simulated step responses using an MPC controller and measurement
noise (zero mean, variance corresponding to that obtained in the experimental data).
Prediction horizon was set to Hp = 20, and control horizon was set to Hu = 14 sam-
ples. The system was simulated using a sample period of h = 0.05 s. The constraints
on the control inputs have been set to mirror the real constraints imposed by the
SROV thruster model.
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Figure 4.48 Simulated step responses using an MPC controller and measurement
noise (zero mean, variance corresponding to that obtained in the experimental data).
Prediction horizon was set to Hp = 20, and control horizon was set to Hu = 14 sam-
ples. The system was simulated using a sample period of h = 0.05 s. The constraints
on the control inputs reflect the situation when an additional vertical thruster is being
used.
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Figure 4.49 Simulated step responses using an MPC controller and measurement
noise (zero mean, variance corresponding to that obtained in the experimental data).
Prediction horizon was set to Hp = 20, and control horizon was set to Hu = 14 sam-
ples. The system was simulated using a sample period of h = 0.05 s. The constraints
on the control inputs reflect the situation when an additional vertical thruster is being
used.
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5
Discussion

5.1 Modeling Results

The first approach pursued in this thesis research, was to use the very rough ap-
proximation that the LPV sub-models could be considered decoupled. The resulting
NRMSE scores and the number of zero crossings were quite promising. A weakness
of the diagonal LPV model was that the predictions produced were only delayed
versions of the measured states. In other words, the predictions were (more or less)
given by

ν̂(k+1) = ν(k) (5.1)

This type of model is clearly inferior for many purposes, including MPC control.
The reason that this type of predictions were being produced, is the quite large
values populating the added mass matrix M. As discussed in Sec. 2.5, the input
signal τ affects the system states through the inverse of M. Thus, a diagonal matrix
M with large entries will suppress any input supplied to the system.

The observation that the diagonal LPV models were inferior was further sup-
ported by the plots of the autocorrelation functions of the prediction errors. These
clearly indicated that there was still some structure in the residual data. Ultimately,
the model should take this structure into consideration. Even when one considered
that the residuals were not normally distributed (as was clear from the norm plots
provided), and that the confidence intervals may because of this be too tight, there
is still structure in the prediction errors. It is also clear from some of the experi-
ment data that coupling between some of the states were present. All of these facts
implied that a coupled model may achieve better than an uncoupled LPV. Thus,
the order of the LPV model was increased by allowing off-diagonal entries in the
system matrices.

When the coupled LPV model was evaluated, quite different results were ob-
tained. First of all, the magnitudes of the estimated entries of the LPV model ma-
trices were significantly smaller. This, in turn, rendered in a model better suited to
actually predict changes in the states. However, the NRMSE scores were generally
slightly lower than in the case of an uncoupled system. Noticeably, the decrease in

69



Chapter 5. Discussion

fitu was about 0.1 units. Also, the number of zero crossings were drastically lower
in the case of the coupled LPV model. When zooming in on the predictions and
the actual states, it is clear that a small offset is present in some of the degrees
of freedom. The prediction errors are in other words not zero mean. This may be
for several reasons. One possibility is that the experiment durations may have been
too short. This would not allow the parameter estimates to converge. A couple of
the plotted parameter evolutions (see Figs. 4.39-4.40) suggest that convergence is
perhaps not an issue, but that system excitation is a large problem. Parameter co-
variances increase linearly, indicating bad excitation. Yet another issue is of course
that the state dependency of the combined Coriolis and damping matrix is so strong,
that the LPV approximation fails for that reason.

The question why the statistic validation methods fail remains unanswered. A
few proposals follow. It may be that the SROV dynamics are too non-linear for the
proposed LPV structure to be able to approximate the system. As the literature sug-
gests that ROVs are generally highly non-linear systems, it is not a too far fetched
thought that also the SROV will be a highly non-linear system. This assumption
is also (at least partly) indicated by the weak coherence between inputs and out-
puts to the system. If this is the case, a possible approach would be to use a finer
scheduling grid. This would, however, demand more experiments to be run. There
is no guarantee that this approach would work. Another plausible explanation to
the poor statistical results, is that some of the collected input-output data is badly
corrupted by measurement noise. This is unlikely, as the INS of the SROV is quite
accurate. According to the data-sheet of the INS, it should be able to give measure-
ments with an accuracy of 10−3 m/s for linear velocities and 10−3 rad/s for angular
velocities, rendering in a good signal-to-noise ratio. The most likely explanation to
the poor statistical results, is that the underlying noise distribution is actually not a
white process. As a matter of fact, it is quite likely that the noise and disturbances
are non-white. The environment in which the SROV is operating, can be assumed
to be affected by ocean currents. These may, in turn, be modeled as slowly varying
random walks [Fossen, 1994]. Thus, the prediction errors should not be white but
follow the statistics of a random walk. The simulations presented in Figs. 4.41-4.43
show the obtained results when performing simulations as described in Eq. (1.16).
These autocorrelations actually resemble those obtained in some of the degrees of
freedom using a coupled LPV model, which might indicate a good model fit. In any
case, it seems as if the coupled LPV model approximates the behavior of the SROV
in a more suitable way than the diagonal LPV models, as these produce inferior
predictions.

The SROV control system is updating the control signal at 20Hz. However, the
software recording all control actions during the trials had a fixed sample rate of
10Hz. The sampling frequency could not be changed. This means that the control
signals observed satisfy

τ(k)obs = τ(2k)real , 0,1, · · · ,N (5.2)
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where N denote the length of the recorded sequence. Of course, this will affect the
identification of the system dynamics pursued in this report. First of all, the control
actions will change between the entries in the sequence of recorded control actions.
This is a problem both in terms of parameter estimation and in terms of predictions.
The parameter estimation will suffer from increased levels of uncertainty as the sys-
tem is responding to input signals unknown to the estimation algorithm. Hopefully,
this is not too severe a problem as the system response to high-frequency content is
attenuated. This is indicated by the recorded time series and by the transfer function
estimates in Appendix 7.4, as these show a roll-off for frequencies above approxi-
mately 1Hz. Only low-frequency content of the input signals will have a large effect
on the system outputs, and thus the unknown control signals that are actually giv-
ing a noticeable effect on the system states might not differ very much from the
recorded signals.

When performing predictions of future states, a zero-order-hold approximation
has been used. This approximation is violated by the system generating the val-
idation data, as the control actions change in between the samples known to the
validation algorithm. It is fair to assume that the prediction results would be more
accurate if the intermediate control actions were also known. If for no other reason,
the LPV models would have a finer sampled representation of the system states, and
the prediction algorithms described in Eqs. (2.14) and (2.16) would have to predict
the states a shorter distance into the future. For this reason, the results of the project
would likely improve if the sampling frequency of the system was to be increased.

A further issue with the lower than necessary sampling rate, is that the fre-
quency content which the model can be expected to cover is affected. According
to the famous Shannon sampling theorem [Johansson, 2017], continuous-time sig-
nals sampled using a sample rate Fs will admit a unique frequency representation
up to Fs/2. Signals at higher frequencies than Fs/2 may alias into the frequency
region of interest, distorting the frequency content of the discrete-time signal. The
proper way of handling aliasing in practice is to incorporate an anti-aliasing filter
(which is a low-pass filter). It has in this thesis research been assumed that the ROV
dynamics are of low-pass character. This assumption is supported by most of the
estimated transfer functions in Appendix 7.4, as discussed above. Thus, the system
itself is in a sense a low-pass filter which may alleviate aliasing problems. However,
an increased sampling frequency would most likely not hurt the results in terms of
aliasing either.

All in all, the under-sampling of the SROV is an error source that has to be
considered in this project. If the sampling frequency of the control action logging
software was to be increased in the future, it is likely that better results could be
obtained. As a final note on the discussion of the sampling rates, one also need to
keep in mind that when the sampling time is decreased, the prediction and control
horizons of the MPC algorithm need to be modified.
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Error Sources
A number of assumptions and uncertainties, that may have effected the results of
the project, have been identified. A possibly large source of error, is the fact that the
thrusters are being run in open loop. There is, in other words, no way of knowing
what the actual control actuation acting on the SROV is. In the project, the control
input has been calculated using the thruster data sheets, which provide typical input-
output curves. However, this will not alleviate the problems caused by the open-loop
operation. Since all estimates are based on the calculated input signals, uncertainties
in the parameter estimates will be inevitable. A further issue on the same note, is
that predictions are based on the open-loop control signals. As these need not be the
actual input signals, prediction errors (affecting the validation process) may arise.

5.2 Controller Simulations

It is very clear that controlling the system described by the identified coupled model
is extremely hard when using PID controllers. This is further verified by the cur-
rently implemented SROV controller, which is gain scheduled on forward and lat-
eral speeds using a very fine scheduling grid (and consequently many controller
parameters). The SROV can, obviously, be stabilized using a gain scheduled PID
controller. Little time was for this reason spent on finding suitable controller pa-
rameters. However, the results in Sec. 4.6 show what typical limits may be expected
by a parallel SISO PID controller structure. First of all, the control signals are dis-
continuous, and change at very high rates. The hydraulic system of the SROV would
not be able to follow such a reference, as changing the differential pressure over a
thruster involves moving hydraulic fluid. This takes time, and can’t be done in the
way suggested in Fig. 4.45. Further on, the PID regulator does not consider limits
on the magnitude of the control input. It is thus quite possible that the PID regu-
lated system saturates, which is undesirable for many reasons. This problem has
been noted on numerous occasions during survey operations with the SROV. Lastly,
the fact SISO PID controllers are unable to suppress the coupling of the identified
SROV model is clear from Fig. 4.44. At t = 1 s, a reference step in forward velocity
is applied. This causes large deviations in pitch angular velocity, and small devia-
tions in vertical velocity. There is no way of handling this coupling, other than by
tuning the controller parameters. This is a cumbersome task, and is made even more
difficult when measurement noise and load disturbances are considered.

An MPC approach is able to handle all of the shortcomings of the PID structure.
Limits on the control signals and their derivatives may be included in the controller
description. By using the weight matrices described in Sec. 1.4, it is possible to tune
the closed-loop responses based on what states are deemed more important. The
MPC structure can also handle the coupled states of the SROV, and noise models
may be incorporated in the structure. It is also possible, as shown in the simulation
results, to augment the MPC with integral states in order to avoid stationary errors.
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The main challenge of using an MPC design, is to obtain the actual model on which
the controller is based.

A brief discussion on the simulated closed-loop responses using an MPC fol-
lows. The responses in some of the degrees of freedom exhibit damped oscillations
when the set-point is changed. This problem may be alleviated by tuning the weights
on state errors and control inputs further. One could also try to change the prediction
and control horizons. However, a fundamental limit to the actuation of the SROV is
posed by the limited actuation capabilities in the vertical direction.

5.3 Future Work

During the course of the thesis research, some scopes have been left out. The rea-
sons have been multiple. Sometimes, time consumption of an extended scope has
made such endeavors infeasible. On other occasions, limits have been imposed by
the existing technology. In any case, some topics have been identified as possible
future work, which would most likely improve on the results already achieved in
the current project.

Thruster Actuation
The most obvious limitation to the current project, is the fact that all actuation of
the SROV is being run in open-loop. That is, the control system outputs a signal
to each thruster, but does not make sure that the output is what it should be. This,
of course, poses a number of difficulties both in the case of control and that of
identification. Ultimately, the thrusters themselves should be considered a control
system, and should be operated in closed loop (taking as reference signal the output
from the SROV control system). In order to do this, it would probably be a good
idea to build models of the thrusters. It is of course possible to operate the thrusters
in closed loop without any knowledge of a mathematical model, but it is quite likely
that performance is increased by modeling the thrusters. This is not a new idea, and
has been shown to work in [Natarajan et al., 2012][Fossen, 1994]. Once a thruster
model is obtained, a cascaded control system with thrusters operating in an inner
control loop at higher sampling rates is likely to increase the overall performance.

Another possible improvement to the current thruster actuation, is to reconsider
how the actions for each thruster are being decided upon by the controller. Currently,
for each thruster, each automatic function has its’ own controller. The sum of all
outputs of all controllers for each thruster is calculated and output to the thruster.
An alternative approach would be to calculate the total command in each freedom
degree (this signal is calculated already), and distribute the control action on the
thrusters based on the thruster map. This allows for optimisation, as discussed in
[Fossen, 1994]. On the same note, it may be a good idea to investigate the thruster
map (see Eq. (1.7)) thoroughly.
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Additional States
Some assumptions were made at an early stage of the project. After the interview
with the control engineer at Kystdesign, it was decided that the effect of the tether
should be kept as constant as possible by keeping θTA constant, and by having a con-
stant amount of tether in the water (θTA is described in Fig. 1.5). This is a very lim-
iting assumption, as normal survey conditions include operation at various depths
and with the SROV moving in relation to the vessel. A possible generalization of the
identified LPV model, is to include θTA in the LPV model. This would of course re-
quire additional sensors to be fitted to the SROV, and new identification experiments
would have to be carried out.

Changes to the Control System
The simulations of the MPC structure, show that a lot of additional performance
may be gained if one vertical thruster is added to the current thruster configuration.
The additional thruster would be placed in the aft, and the already existing moved
such that all four vertical thrusters are symmetrically positioned around the COG.
This change would increase the available control action in the vertical direction,
as well as in roll and in pitch. The current design is limited by the non-symmetric
vertical thruster configuration. If the vertical velocity is to be changed, only half
of the available power of the front thrusters may be used, as a moment around the
y-axis would otherwise be generated. Similarly, only some of the available front
thruster power may be be used to create a roll moment. This problem is alleviated
by the proposed design change, and better closed-loop performance can be achieved
as shown in Sec. 4.6.

For high forward velocities, it gets increasingly hard to actuate some of the
degrees of freedom using the thrusters. It would in that case be advisable to use
rudders rather than the thruster for actuation. One could, in that case, use a penalty
on the use of thrusters to force the control system to use the rudders. This would
further relieve the hydraulic system, which currently risks saturating.
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6
Conclusions

A model with potential of describing the SROV has been identified. Two different
approaches to the problem of estimating the parameters of the model were proposed.
Experiments to facilitate the two approaches were consequently designed. One of
the schemes turned out to be infeasible in real life, as it was difficult to obtain certain
behavior assumed by the experiment plan. The experiments for the other approach,
could partly be performed.

Model parameters have been estimated using input-output data obtained during
a trial on Stril Explorer. Due to the implementation of the actuation of the system,
coherence is sometimes weak. This may explain some of the difficulties that the
LPV model experiences. The efforts to approximate the SROV as a decoupled sys-
tem showed that this approach is infeasible. The resulting predictions were only
delayed versions of the actual states. This conclusion holds true regardless of what
estimation technique is being used, implying that the approximation of a decoupled
system is too crude.

As a continuation of the modeling efforts, a coupled LPV model was estimated.
The properties of this model were promising, but not perfect. The coupled model
was superior when following changing states, but a slight bias made some of the
scores go down.

Using the identified LPV model as the the plant, and a perturbed version of the
LPV model to initialize an MPC controller, gave promising results in simulation.
The MPC controller was able to follow reference changes under the influence of
noise and load disturbances. Deviations from the yaw velocity set point could be
attenuated, which was one of the aims of the project.
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7
Appendicies

7.1 Transformation Derivation

Given is a state-space model on the form

ẋ(t) = Ax(t)+Bu(t) (7.1)

A Laplace tranform (ignoring initial conditions) give

sX(s) = AX(s)+BU(s) (7.2)

The transform
λ (s) =

1
1+ sT

, T > 0 (7.3)

may be reformulated as

s =
1
T

1−λ (s)
λ (s)

(7.4)

By substituting Eq. (7.4) into Eq. (7.2), one obtains

1
T

1−λ (s)
λ (s)

X(s) = AX(s)+BU(s) (7.5)

⇔ (7.6)
X(s) = TA[λX(s)]+T B[λU(S)]+ [λX(s)] (7.7)

⇔ (7.8)
X(s) = (I +TA)[λX(s)]+T B[λU(s)] (7.9)

= Aλ [λX(s)]+Bλ [λU(s)] (7.10)

Thus, the original matrices A and B may be obtained using the relation

A = (Aλ − I)/T (7.11)
B = Bλ/T (7.12)

since Eq. (7.3) requires T > 0.
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Ĝr

10 -2 10 -1 10 0 10 1

Frequency [Hz]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
q

u
a

re
d

 C
o

h
e

re
n

c
e

 [
]

Coherence From Input in y to Velocities when u = 0.5

Ĝv
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Figure 7.1 Figures showing coherence for different input-output configurations
when u = 0.5 knts.
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Ĝp

Ĝq
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Figure 7.2 Figures showing coherence for different input-output configurations
when u = 0.5 knts.

7.2 Coherence Spectra

In this appendix, the coherence spectra obtained as a result of the input-output data
validation are presented. Note that the subscripts in the legend of the diagrams in-
dicate what output data was considered. For instance, the left diagram of Fig. 7.1
shows the resulting coherence from input in forward velocity (as indicated in the
title of the figure, as well as in the sub caption) to all measured output velocities.
The legend Ĝv thus denotes the estimated squared coherence from input u to output
v (i.e., measured lateral velocity). All other legends should be interpreted similarly.
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Ĝu

Ĝv
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Figure 7.3 Figures showing coherence for different input-output configurations
when u = 0.5 knts.
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Figure 7.4 Figures showing coherence for different input-output configurations
when u = 1.0 knts.
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Ĝq

Ĝr

Figure 7.5 Figures showing coherence for different input-output configurations
when u = 1.0 knts.
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Figure 7.6 Figures showing coherence for different input-output configurations
when u = 1.0 knts.
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Ĝu

Ĝv
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Ĝr

Figure 7.7 Figures showing coherence for different input-output configurations
when u = 1.5 knts.
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Figure 7.8 Figures showing coherence for different input-output configurations
when u = 1.5 knts.
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Figure 7.9 Figures showing coherence for different input-output configurations
when u = 1.5 knts.
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Ĝv

Ĝu
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Figure 7.10 Figures showing coherence for different input-output configurations
when u = 2.0 knts.
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Figure 7.11 Figures showing coherence for different input-output configurations
when u = 2.0 knts.
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Ĝw

Ĝp
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Figure 7.12 Figures showing coherence for different input-output configurations
when u = 2.0 knts.
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Figure 7.13 Figures showing coherence for different input-output configurations
when u = 2.5 knts.
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Figure 7.14 Figures showing coherence for different input-output configurations
when u = 2.5 knts.
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Ĝp

Ĝr
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Figure 7.15 Figures showing coherence for different input-output configurations
when u = 2.5 knts.
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Figure 7.16 Figures showing coherence for different input-output configurations
when u = 3.0 knts.
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Figure 7.17 Figures showing coherence for different input-output configurations
when u = 3.0 knts.
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Ĝu

Ĝv
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Figure 7.18 Figures showing coherence for different input-output configurations
when u = 3.0 knts.
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Ĝr

10 -2 10 -1 10 0 10 1

Frequency [Hz]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
q

u
a

re
d

 C
o

h
e

re
n

c
e

 [
]

Coherence From Input in y to Velocities when u = 3.5

Ĝv
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Figure 7.19 Figures showing coherence for different input-output configurations
when u = 3.5 knts.
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Figure 7.20 Figures showing coherence for different input-output configurations
when u = 3.5 knts.
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Figure 7.21 Figures showing coherence for different input-output configurations
when u = 3.5 knts.
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Ŝr

Figure 7.22 Figures showing PSD for different input-output configurations when
u = 0.5 knts.

7.3 Cross PSD

In this appendix, the PSD spectra obtained as a result of the input-output data vali-
dation are presented. Note that the subscripts in the legend of the diagrams indicate
what output data was considered. For instance, the left diagram of Fig. 7.22 shows
the resulting PSD from input in forward velocity (as indicated in the title of the
figure, as well as in the subcaption) to all measured output velocities. The legend
Ŝv thus denotes the estimated squared PSD from input u to output v (i.e., measured
lateral velocity). All other legends should be interpreted similarly.
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Figure 7.23 Figures showing PSD for different input-output configurations when
u = 0.5 knts.
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Ŝp

Ŝr
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Figure 7.24 Figures showing PSD for different input-output configurations when
u = 0.5 knts.
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Ŝw

Ŝp
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Figure 7.25 Figures showing PSD for different input-output configurations when
u = 1.0 knts.
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Figure 7.26 Figures showing PSD for different input-output configurations when
u = 1.0 knts.
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Figure 7.27 Figures showing PSD for different input-output configurations when
u = 1.0 knts.
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Ŝu

Ŝv
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Figure 7.28 Figures showing PSD for different input-output configurations when
u = 1.5 knts.
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Figure 7.29 Figures showing PSD for different input-output configurations when
u = 1.5 knts.
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Ŝv

Ŝw
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Figure 7.30 Figures showing PSD for different input-output configurations when
u = 1.5 knts.
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Ŝu

Ŝw
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Figure 7.31 Figures showing PSD for different input-output configurations when
u = 2.0 knts.
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Figure 7.32 Figures showing PSD for different input-output configurations when
u = 2.0 knts.
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Figure 7.33 Figures showing PSD for different input-output configurations when
u = 2.0 knts.
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Ŝp

Ŝq

Ŝr

Figure 7.34 Figures showing PSD for different input-output configurations when
u = 2.5 knts.
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Figure 7.35 Figures showing PSD for different input-output configurations when
u = 2.5 knts.
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Figure 7.36 Figures showing PSD for different input-output configurations when
u = 2.5 knts.
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Figure 7.37 Figures showing PSD for different input-output configurations when
u = 3.0 knts.
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Ŝw

Ŝu
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Figure 7.38 Figures showing PSD for different input-output configurations when
u = 3.0 knts.
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Figure 7.39 Figures showing PSD for different input-output configurations when
u = 3.0 knts.
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Ŝv

Ŝu
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Figure 7.40 Figures showing PSD for different input-output configurations when
u = 3.5 knts.
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Ŝr

Figure 7.41 Figures showing PSD for different input-output configurations when
u = 3.5 knts.
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Ŝp

Ŝq

Figure 7.42 Figures showing PSD for different input-output configurations when
u = 3.5 knts.

7.4 Transfer Functions

In this appendix, the estimated transfer functions obtained as a result of the input-
output data validation are presented. Note that the subscripts in the legend of the
diagrams indicate what output data was considered. For instance, the left diagram
of Fig. 7.43 shows the resulting TF from input in forward velocity (as indicated in
the title of the figure, as well as in the subcaption) to all measured output velocities.
The legend Ĥv thus denotes the estimated squared TF from input u to output v (i.e.,
measured lateral velocity). All other legends should be interpreted similarly.
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Ĥp

Ĥq
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Figure 7.43 Figures showing TF for different input-output configurations when
u = 0.5 knts.
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Ĥu

Ĥv
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Ĥv

Ĥw
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Figure 7.44 Figures showing TF for different input-output configurations when
u = 0.5 knts.
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Ĥr

10 -2 10 -1 10 0 10 1

Frequency [Hz]

-160

-150

-140

-130

-120

-110

-100

-90

-80

M
a

g
n

it
u

d
e

 [
d

B
]

Estimated TF from yaw to Velocities when u = 0.5

Ĥr
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Figure 7.45 Figures showing TF for different input-output configurations when
u = 0.5 knts.
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Figure 7.46 Figures showing TF for different input-output configurations when
u = 1.0 knts.
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Figure 7.47 Figures showing TF for different input-output configurations when
u = 1.0 knts.
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Ĥr

10 -2 10 -1 10 0 10 1

Frequency [Hz]

-170

-160

-150

-140

-130

-120

-110

-100

-90

-80

-70

M
a

g
n

it
u

d
e

 [
d

B
]

Estimated TF from yaw to Velocities when u = 1.0

Ĥr
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Ĥv

Ĥw
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Figure 7.48 Figures showing TF for different input-output configurations when
u = 1.0 knts.
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Ĥu

Ĥw
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Figure 7.49 Figures showing TF for different input-output configurations when
u = 1.5 knts.
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Figure 7.50 Figures showing TF for different input-output configurations when
u = 1.5 knts.
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Figure 7.51 Figures showing TF for different input-output configurations when
u = 1.5 knts.
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Ĥp

Ĥq
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Figure 7.52 Figures showing TF for different input-output configurations when
u = 2.0 knts.
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Ĥr

10 -2 10 -1 10 0 10 1

Frequency [Hz]

-150

-140

-130

-120

-110

-100

-90

-80

-70

M
a

g
n

it
u

d
e

 [
d

B
]

Estimated TF from roll to Velocities when u = 2.0

Ĥp
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Ĥv

Ĥw
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Figure 7.53 Figures showing TF for different input-output configurations when
u = 2.0 knts.
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Figure 7.54 Figures showing TF for different input-output configurations when
u = 2.0 knts.
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Ĥr

Figure 7.55 Figures showing TF for different input-output configurations when
u = 2.5 knts.
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Figure 7.56 Figures showing TF for different input-output configurations when
u = 2.5 knts.
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Figure 7.57 Figures showing TF for different input-output configurations when
u = 2.5 knts.
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Figure 7.58 Figures showing TF for different input-output configurations when
u = 3.0 knts.
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Figure 7.59 Figures showing TF for different input-output configurations when
u = 3.0 knts.
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Ĥw

Ĥp
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Figure 7.60 Figures showing TF for different input-output configurations when
u = 3.0 knts.
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Figure 7.61 Figures showing TF for different input-output configurations when
u = 3.5 knts.
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Figure 7.62 Figures showing TF for different input-output configurations when
u = 3.5 knts.
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Figure 7.63 Figures showing TF for different input-output configurations when
u = 3.5 knts.
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