
Implementation and Benchmarking
of a Crypto Processor for a NB-IoT
SoC Platform
LUIS CAVO
SÉBASTIEN FUHRMANN
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2018

LU
IS C

A
V

O
 &

 SÉB
A

STIEN
 FU

H
R

M
A

N
N

Im
plem

entation and B
enchm

arking of a C
rypto Processor for a N

B
-IoT

 SoC
 Platform

LU
N

D
 2018

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2018-649
http://www.eit.lth.se

Implementation and Benchmarking
of a Crypto Processor for a NB-IoT

SoC Platform

Department of Electrical and Information Technology
Lund University

MASTER OF SCIENCE THESIS

— December 10, 2017 —

Examiner:
ERIK LARSSON

Supervisors:
LIANG LIU

MICHAL STALA

Authors:
LUIS CAVO

SÉBASTIEN FUHRMANN

c© 2017
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

The goal of this Master’s Thesis is to investigate the implementation of crypto-
graphic algorithms for IoT and how these encryption systems can be integrated
in a NarrowBand IoT platform. Following 3rd Generation Partnership Project
(3GPP) specifications, the Evolved Packet System (EPS) Encryption Algorithms
(EEA) and EPS Integrity Algorithms (EIA) have been implemented and tested.
The latter are based on three different ciphering algorithms, used as keystream
generators: Advanced Encryption Standard (AES), SNOW 3G and ZUC. These
algorithms are used in Long Term Evolution (LTE) terminals to perform user data
confidentiality and integrity protection.

In the first place, a thorough study of the algorithms has been conducted. Then,
we have used Matlab to generate a reference model of the algorithms and the
High-Level Synthesis (HLS) design flow to generate the Register-Transfer Level
(RTL) description from algorithmic descriptions in C++. The keystream genera-
tion and integrity blocks have been tested at RTL level. The confidentiality block
has been described along with the control, datapath and interface block at a RTL
level using System C language. The hardware blocks have been integrated into
a processor capable of performing hardware confidentiality and integrity protec-
tion: the crypto processor. This Intellectual Property (IP) has been integrated and
tested in a cycle accurate virtual platform. The outcome of this Master’s The-
sis is a crypto processor capable of performing the proposed confidentiality and
integrity algorithms under request.

i

ii

Popular Science Summary

The Internet of Things (IoT) is one of the big revolutions that our society is ex-
pected to go through in the near future. This represents the inter-connection of
devices, sensors, controllers, and any items, refereed as things, through a network
that enables machine-to-machine communication. The number of connected de-
vices will greatly increase. The applications taking advantage of IoT will enable
to develop a great amount of technologies such as smart homes, smart cities and
intelligent transportation. The possibilities allowed are huge and not yet fully
explored.

Picture yourself in the near future having a nice dinner with some friends. Then,
you suddenly recall that your parking ticket expires in five minutes and unfor-
tunately your car is parked some blocks away. You are having a good time and
feel lazy to walk all the way to where you parked your car to pay for a time ex-
tension. Luckily enough, the parking meter is part of the IoT network and allows
you, with the recently installed new application in your smart-phone, to pay this
bill from anywhere you are. This payment will be sent to the parking meter and
your time will be extended. Problem solved, right?

Well, the risk comes when you perform your payment, not knowing that your
"worst enemy" has interceded this communication and is able to alter your trans-
action. Perhaps, this individual decides to cancel your payment and you will
have to pay a fine. Or even worse, this person steals your banking details and
uses your money to take the vacations you’ve always wanted.

There are many examples in our everyday life where we expose our personal
information. With an increasing number of devices existing and using wireless
communications without the action of an human, the security is a key aspect of
IoT. This Master’s Thesis addresses the need to cover these security breaches in
a world where an increasing amount of devices are communicating with each
other. With the expansion of IoT where billions of devices will be connected
wirelessly, our data will be widely spread over the air. The user will not be able

iii

to protect their sensible data without these securing capabilities. Therefore, dif-
ferent security algorithms used in today’s and tomorrow’s wireless technologies
have been implemented on a chip to secure the communication. The confidential-
ity and integrity algorithms aim to solve the two aspects of the problem: protect
the secrecy of banking details and prevent the alteration of the communication’s
information.

In this Master’s Thesis we have developed a hardware processor for securing data
during a wireless communication, specifically designed for IoT applications. The
developed system is realized with minimal area and power in mind, so that they
can be fitted even in the smallest devices. We have compared many different
hardware architectures, and after exploring many possible implementations, we
have implemented the security algorithms on a hardware platform.

We believe the content of this Thesis work is of great interest to anybody inter-
ested in hardware security applied to the IoT field. Furthermore, due to the pro-
cesses and methodology used in this work, it will also be of interest to people who
want to know more about how higher level programming languages can be used
to describe such a specialized circuit, like one performing security algorithms. Fi-
nally, people interested in hardware and software co-simulation will find in this
project a good example of the utilization of such system modeling technique.

iv

Acknowledgements

First of all, we would like to thank Michal Stala and Magnus Midholt for their
trust in having offered us this great Master’s Thesis opportunity, first as part of
Mistbase, then at ARM. We also show our gratitude towards all our colleagues
at ARM who supported us and participated to create the pleasant environment
during our time at ARM.

We are grateful to Liang Liu for accepting to supervise our work on this thesis
and providing us with excellent ideas and support. Furthermore we thank Erik
Larsson, our examiner, for the helpful feedback on the report he provided us with.
We would like to express our thank to all our teachers and teachers’ assistants at
EIT who shared their knowledge during these 2 years.

Last but not least, we would like to thank our families and partners for their love
and support that carried us through all the challenges we have faced.

Luis Cavo & Sébastien Fuhrmann

v

vi

Table of Contents

Abstract i

Popular Science Summary iii

Acknowledgements v

Table of Contents vii

List of Figures xi

List of Tables xiii

List of Algorithms xv

Acronyms xvi

1 Background 1
1.1 Goals and Challenges . 1
1.2 The Internet of Things . 3

1.2.1 NarrowBand IoT 4

1.2.2 3GPP Specifications 4

1.3 Security Algorithms for NB-IoT . 7
1.3.1 Cipher Algorithms 7

1.3.2 Finite Field Arithmetic 7

1.3.3 Substitution Boxes 9

1.3.4 Confidentiality Algorithms 9

1.3.5 Integrity Algorithms 9

1.4 HLS Design Flow . 9
1.4.1 Catapult Synthesis 10

1.4.2 Frame Based vs Sample Based Processing 11

1.5 Thesis Contributions . 11

2 Security Algorithms 13
2.1 Ciphering Algorithms . 13

vii

2.1.1 SNOW 3G Cipher 13

2.1.2 AES Cipher 16

2.1.3 Inverse Cipher 21

2.1.4 ZUC Cipher 23

2.2 Confidentiality Algorithms . 26
2.2.1 128-EEA1: SNOW 3G Based Algorithm 27

2.2.2 128-EEA2: AES Based Algorithm 27

2.2.3 128-EEA3: ZUC Based Algorithm 28

2.3 Integrity Algorithms . 28
2.3.1 128-EIA1: SNOW 3G Based Algorithm 29

2.3.2 128-EIA2: AES Based Algorithm 30

2.3.3 128-EIA3: ZUC Based Algorithm 31

3 Architecture Exploration 33
3.1 Rijndael S-box SR Implementation . 34

3.1.1 Multiplication in Galois Field 28 35

3.1.2 Division in Galois Field 28 36

3.1.3 Implementation Results and Comparison 36

3.2 S-box SQ Implementation . 39
3.3 Mulα and Divα Implementation . 40
3.4 ZUC S-box S0 Implementation . 42
3.5 SNOW 3G and ZUC Combination . 44

3.5.1 Combined LFSR 44

3.5.2 Combined Feedback 44

3.5.3 Combined FSM 44

4 Crypto Processor 47
4.1 Top Overview . 47

4.1.1 AHB Interface 48

4.1.2 Data Path 51

4.1.3 Channel Multiplexing 51

4.1.4 FIFOs 52

4.2 Controller . 53
4.2.1 Memory Mapped Registers 53

4.2.2 FIFO Channels Interface 54

4.3 Cipher Block . 54
4.3.1 SNOW 3G Cipher Block 54

4.3.2 AES Cipher Block 56

4.3.3 ZUC Cipher Block 60

4.3.4 Stream Cipher Block 62

4.4 Confidentiality Block . 63
4.5 Integrity Block . 65

4.5.1 SNOW 3G Integrity Block 66

4.5.2 AES Integrity Block 67

4.5.3 ZUC Integrity Block 69

4.6 Results . 70

viii

5 Verification and Benchmarking 73
5.1 C++ Verification . 73
5.2 RTL Verification . 75
5.3 Cycle Accurate Simulations . 79

6 Conclusions and Further Work 83
6.1 Conclusion . 83
6.2 Comparison with State-of-the-Art . 84
6.3 Further Work . 85

References 87

A Register Bit Mapping 91

ix

x

List of Figures

1.1 Simplified block diagram of the security architecture developed 3
1.2 Ciphered text produced by the EEA/EIA keystream generators 8
1.3 Catapult HLS flow . 10

2.1 SNOW 3G ciphering . 14
2.2 Input data block into AES state array 16
2.3 ASMD of AES encryption . 17
2.4 Key Expansion diagram . 18
2.5 SubBytes() transformation . 19
2.6 ShiftRows() transformation . 19
2.7 MixColumns() transformation . 20
2.8 AddRoundKey() transformation . 21
2.9 ASMD of AES decryption . 22
2.10 ZUC ciphering . 24
2.11 SNOW 3G confidentiality . 27
2.12 AES confidentiality using the CTR mode 28
2.13 SNOW 3G integrity diagram . 30
2.14 AES integrity using the CMAC mode 30

3.1 Flow graph Inverse(x) in Galois Field 36
3.2 Flow graph Mul(x, y) in Galois Field 37
3.3 Flow graph Div(x, y) in Galois Field 38
3.4 S-box SQ simplified hardware diagram 39
3.5 Mulα and Divα implementation . 41
3.6 Mulx and MulxPow . 41
3.7 Different implementations of Mulα and Divα 42
3.8 Alpha operators pipelining . 43
3.9 ZUC S-box S0 implementation . 43

4.1 Block diagram of Security IP top . 48
4.2 Timing diagram of AHB address/data cycles 48
4.3 Timing diagram of AHB write . 50
4.4 Timing diagram of AHB read . 51
4.5 Timing diagram of data handshake . 52

xi

4.6 FSM of SNOW cipher block . 55
4.7 FSM of AES cipher block . 57
4.8 ZUC feedback implementation . 61
4.9 Confidentiality block diagram . 64
4.10 Integrity block diagram . 65
4.11 FSM of SNOW 3G integrity block . 66
4.12 Diagram of EVAL_M . 67
4.13 FSM of AES integrity block . 68
4.14 FSM of ZUC integrity block . 69
4.15 Diagram of UPDATE_T . 70

5.1 RTL simulation of the SNOW 3G cipher with various data delay 76
5.2 RTL simulation of the SNOW 3G cipher generating 2 keystream words 76
5.3 RTL simulation of the AES cipher . 77
5.4 RTL simulation of the AES integrity 77
5.5 RTL simulation of the SNOW 3G integrity 78
5.6 RTL simulation of the ZUC integrity 78
5.7 Test environment on SoC Designer 79
5.8 Succesful test cases results on SoC Designer 80
5.9 SNOW 3G AHB bus transactions . 81
5.10 SNOW 3G initialization cycles . 81

xii

List of Tables

1.1 3GPP Technical Specification Series 35 6
1.2 SNOW 3G Technical Specification and Technical Report 6
1.3 AES Technical Specification . 6
1.4 ZUC Technical Specification and Technical Report 7

3.1 Comparison of different implementations of S-box SR 37
3.2 Comparison of different implementations of S-box SQ 40
3.3 Comparison of different implementations of combined Mulα and Divα 42
3.4 Comparison of different implementations for ZUC S-box S0 43
3.5 Comparison between individual and combined FSM implementation . 44

4.1 List of security IP register . 53
4.2 ZUC feedback adder tree vs. time multiplexed results 62
4.3 Stream cipher algorithms combined 63
4.4 Catapult synthesis results . 71

6.1 Impact of optimizations on final design 84
6.2 Comparison with state-of-the-art . 85

A.1 CONTROL/STATUS register . 91

xiii

xiv

List of Algorithms

2.1 Snow integrity parameters . 29
2.2 Subkey generation in AES integrity 31
2.3 MAC generation in EIA3 . 31

5.1 Pseudo-code of the testbench function run_test 74

xv

xvi

Acronyms

3G Third Generation.
3GPP 3rd Generation Partnership Project.

AC Algorithmic C.
AES Advanced Encryption Standard.
AHB AMBA High-performance Bus.
AMBA Advanced Microcontroller Bus Architecture.
ARIB Association of Radio Industries and Businesses.
ASIC Application-Specific Integrated Circuit.
ASMD Algorithmic State Machine with Datapath.
ATIS Alliance for Telecommunications Industry Solu-

tions.

CCSA China Communications Standards Association.
CMAC Cipher-based MAC.
CPU Central Processing Unit.
CTR Counter.

DACAS Data Assurance and Communication Security
Research Center of the Chinese Academy of Sci-
ences.

EEA EPS Encryption Algorithm.
EIA EPS Integrity Algorithm.
eMTC enhanced MTC.
EPS Evolved Packet System.
ETSI European Telecommunications Standards Insti-

tute.

FIFO First-In, First-Out.
FPGA Field-Programmable Gate Array.

xvii

FSM Finite-State Machine.

GF Galois Field.
GPRS General Packet Radio Service.
GSM Global System for Mobile Communications.

HLS High-Level Synthesis.

IF Interface.
IoT Internet of Things.
IP Intellectual Property.
IV Initialization Variable.

kGE kilo-Gate Equivalent.

LFSR Linear-Feedback Shift Register.
LSB Least Significant Bit.
LTE Long-Term Evolution.
LUT LookUp Table.

MAC Message Authentification Code.
MSB Most Significant Bit.
MTC Machine-Type Communications.

NB-IoT NarrowBand IoT.
NIST National Institute of Standards and Technology

of the United States.

QoS Quality of Service.

RAM Read-Access Memory.
RO Read-Only.
ROM Read-Only Memory.
RTL Register-Transfer Level.
RW Read-Write.

SAE System Architecture Evolution.
SoC System on Chip.

TR Technical Report.
TS Technical Specification.
TSDSI Telecommunications Standards Development So-

ciety, India.
TTA Telecommunications Technology Association.
TTC Telecommunication Technology Committee.

UEA UMTS Encryption Algorithm.

xviii

UIA UMTS Integrity Algorithm.
UMTS Universal Mobile Telecommunications System.
UUT Unit Under Test.

WO Write-Only.

xix

xx

Chapter1
Background

In this chapter, we will first describe the context in which this Master’s Thesis is
encompassed. The importance of security during a communication will be ad-
dressed, discussing the main problems and the reasons leading to our solution.
Furthermore NarrowBand IoT (NB-IoT), the recently introduced radio interface
by 3rd Generation Partnership Project (3GPP) will be briefly introduced, focusing
on the security architecture defined for this and other Long-Term Evolution (LTE)
technologies.
In this context, we will detail the specifications followed to implement the secu-
rity algorithms for NB-IoT. Then, we will briefly define some mathematical tools
used in this document.
A short introduction to the High-Level Synthesis (HLS) design flow will be given.
The HLS flow has been used in this Master’s Thesis to generate the Register-
Transfer Level (RTL) description of our hardware platform. Finally, the contribu-
tions of this thesis to state-of-the-art hardware security implementations will be
detailed.

1.1 Goals and Challenges

One of the problems that arise during a communication is how to secure sensible
data. The wireless communication medium is susceptible to security issues, and
therefore sophisticated security architectures are required to protect the confiden-
tiality of data during a communication.
Within the framework of Internet of Things (IoT), these cryptographic algorithms
must be adapted to the needs of embedded devices with limited resources, and
therefore must meet limited area and power demands. The implementation of
these algorithms can be done at both hardware and software level. The latter al-
lows the reuse of resources and enables support to different cellular standards.
However, the results obtained from software implementations are found to be

1

2 Background

slower and less secure than their hardware counterpart [28]. Furthermore, the
processor subsystem in an NB-IoT node would become too overloaded with se-
curity processing if these were to be implemented as software functions.
Therefore, the security functionalities that must be implemented in this technol-
ogy will be handed to a hardware accelerator capable of performing the security
functions needed to secure data. The implementation of such hardware accelera-
tor is the main objective of this Master’s Thesis work. This hardware module will
handle the following security algorithms:

EEA1 – EIA1 SNOW 3G based algorithms
EEA2 – EIA2 AES based algorithms
EEA3 – EIA3 ZUC based algorithms

The meaning of these codes will be explained in the following sections. For now,
let us state that they represent certain algorithms that must be implemented dur-
ing communication as specified in [6]. This document also specifies that the first
two set of algorithms in the above list must be implemented on a NB-IoT device,
whereas the last one may be implemented.
Six different processing cores, one for each EEA and EIA algorithm, can be inde-
pendently developed to perform the security functions defined above. However,
an unified solution in which the algorithms can share the maximum amount of
hardware resources, including a common datapath and common control logic
has been identified as the best solution in order to fulfill the low power, low area
requirements that have been imposed for this work. This unified solution is what
we call the Crypto Processor and represents the second main objective of this
thesis work.

Figure 1.1 shows the different components that are going to be analyzed in this
work. The challenge of this work is ambitious, since we must be able to develop
the three blocks observed in this diagram, ensure they are fully compliant with
3GPP’s specifications, and be able to integrate them in a common cryptographic
processor.

The confidentiality block will ensure the data is protected against unwanted lis-
teners during a communication. For this reason, the sender encrypts data with
secret key and thus only the receiver, which is in possession of this secret key will
be able to decrypt the message.
On the other hand, the integrity block will be used to verify that a received mes-
sage has not been altered during the transmission. Both of these blocks will use
a cipher block or keystream generator block to be able to effectively perform the
confidentiality and integrity algorithms. The confidentiality block will use the
keystream provided by the cipher block to mask the input plaintext data, hence
generating secured ciphertext data. The integrity block will use the keystream
provided by the cipher block to produce a Message Authentification Code (MAC)
used to distinguish whether the received data is legit or not.

All the blocks previously defined will ensure the communication in the NB-IoT

Background 3

FIGURE 1.1: Simplified block diagram of the security architecture
developed

node is secure. The following section will expand more on the IoT and NB-IoT,
as they represent the target platform for the work developed in this Thesis work.

1.2 The Internet of Things

The IoT is enabling the deployment of a massive amount of devices which are
interconnected to communicate and exchange data. It is projected that around 22
billion connected devices by 2022, of which 18 billion will be related to IoT falling
in both wide-area and short-range categories [17].

Numerous technologies are being standardized to address the needs of different
use cases and connectivity requirements. Successive releases of LTE have opti-
mized Machine-Type Communications (MTC) with improved support for low-
power wide-area connectivity. In LTE Release 12, low cost devices with mate-
rial cost similar to General Packet Radio Service (GPRS) was introduced. In LTE
Release 13, enhanced MTC (eMTC) and NB-IoT have been introduced, which
provide further improvements such as device cost and complexity reduction, ex-
tended battery lifetime and enhanced coverage [37] [39] [38].

4 Background

1.2.1 NarrowBand IoT

LTE NB-IoT is targeted for low-power, low-throughput applications that require
excellent coverage and deployment flexibility. It is based on LTE and is therefore
compatible with existing LTE networks, spectrum, and supports most LTE ser-
vices, including simplifications and optimizations for low-cost, low-power and
low data rate. NB-IoT standard also provides end-to-end security, which entails
trusted security and authentication features.

1.2.2 3GPP Specifications

The radio interface described in the previous section, NB-IoT, was specified by
3GPP as part of Release 13. The following sections explain how these specifica-
tions are developed and maintained by 3GPP. Also, the specifications regarding
the security architecture and standards used in this work will be detailed.

3GPP

The 3GPP is a collaborative group between seven telecommunication standard
development organizations present around the world: Association of Radio In-
dustries and Businesses (ARIB), Alliance for Telecommunications Industry Solu-
tions (ATIS), China Communications Standards Association (CCSA), European
Telecommunications Standards Institute (ETSI), Telecommunications Standards
Development Society, India (TSDSI), Telecommunications Technology Associa-
tion (TTA) and Telecommunication Technology Committee (TTC). They are re-
ferred as Organizational Partners of the 3GPP. The group was founded in 1998
with the scope of making the Third Generation (3G) derived from evolved Global
System for Mobile Communications (GSM) standard globally applicable. Later,
the goal of the organization with its partners widened to encompass the mainte-
nance and development of GSM, Universal Mobile Telecommunications System
(UMTS) and LTE. The 3GPP covers all aspect of the cellular communications in-
cluding radio access, core transport network and the services (codecs, security,
Quality of Service (QoS)).

Specifications

The specifications are defined and written by 3GPP. It is made publicly and freely
available on the 3GPP specification website [3]. The documents are organized
in different series of Technical Specification (TS) that cover every aspect of the
communication standard. The specifications that are of interest for the security
features can be found in the series 33 and 35.

Background 5

Series 33 contains the documents that describes all security aspects of the stan-
dard. Technical Specification 3GPP System Architecture Evolution (SAE); Secu-
rity architecture [6], numbered 33.401, includes a section dealing with the algo-
rithms used for confidentiality and integrity protection as well as a set of test-
cases with data. As we remarked in Section 1.1, Confidentiality algorithms de-
fine how the data, called plain text, is secured by encrypted it into a ciphered text.
Integrity algorithms define how the data is authenticated as original unaltered in-
formation. More details are provided in Section 1.3.4 and Section 1.3.5.

Each Evolved Packet System (EPS) Encryption Algorithms (EEAs) possesses an
identifier:

128-EIA0 Null confidentiality algorithm
128-EEA1 Confidentiality algorithm based on SNOW 3G
128-EEA2 Confidentiality algorithm based on Advanced Encryption Standard

(AES)
128-EEA3 Confidentiality algorithm based on ZUC

The same exists for each EPS Integrity Algorithms (EIAs):

128-EIA0 Null integrity algorithm
128-EIA1 Integrity algorithm based on SNOW 3G
128-EIA2 Integrity algorithm based on AES
128-EIA3 Integrity algorithm based on ZUC

Details of the ciphers are present in other TS referenced by this main document.
Excepted for AES algorithm, they are part of the series 35.

Series 35 comprises the documents related to the security algorithms. Most of
them are place holders that refer to external specification resources from the own-
ers of the algorithms. Table 1.1 list the series 35 TS.

These documents point to the specifications from ETSI and are listed in Table 1.2.
EEA1 and EIA1 retake respectively the UMTS Encryption Algorithm (UEA) and
the UMTS Integrity Algorithm (UIA) from ETSI. UEA2 and UIA2 are based on
the stream cipher SNOW 3G.

The main Technical Specification, TS 33.401, directly refers to AES specification
documents from National Institute of Standards and Technology of the United
States (NIST). Table 1.3 lists these three publications. The first document de-
scribes the block cipher AES for encryption and decryption. The second docu-
ment defines different modes of operation for how the cipher AES can be chained
through multi call to secure a data stream. The third and last document presents
the specific mode of operation used for authentication.

Data Assurance and Communication Security Research Center of the Chinese

6 Background

TABLE 1.1: 3GPP Technical Specification Series 35

Number Document title

TS 35.21x Specification of the 3GPP Confidentiality and Integrity Algorithms UEA2 & UIA2

TS 35.215 Document 1: UEA2 and UIA2 specifications [7]

TS 35.216 Document 2: SNOW 3G specification [8]

TS 35.217 Document 3: Implementors’ test data [9]

TS 35.218 Document 4: Design conformance test data [10]

TR 35.919 Document 5: Design and evaluation report [5]

TS 35.22x Specification of the 3GPP Confidentiality and Integrity Algorithms EEA3 & EIA3

TS 35.221 Document 1: EEA3 and EIA3 specifications [11]

TS 35.222 Document 2: ZUC specification [12]

TS 35.223 Document 3: Implementors’ test data [13]

TR 35.924 Document 4: Design and Evaluation Report [4]

TABLE 1.2: SNOW 3G Technical Specification and Technical Report

Place holder Document title

TS 35.215 uea2uia2d1v21 [19]

TS 35.216 snow3gspec [20]

TS 35.217 Doc3-UEA2-UIA2-Spec-Implementors-Test-Data [23]

TS 35.218 conformance [25]

TR 35.919 uea2designevaluation [26]

TABLE 1.3: AES Technical Specification

Document title

Advanced Encryption Standard (AES) (FIPS PUB 197) [33]

Special Publication 800-38A: "Recommendation for Block Cipher Modes of Operation" [34]

Special Publication 800-38B: "Recommendation for Block Cipher Modes of Operation: The CMAC
Mode for Authentication [35]

Academy of Sciences (DACAS) is the holder of the patents for the ZUC algo-
rithms. Nevertheless these specifications are available from ETSI and are listed in
Table 1.4.

Background 7

TABLE 1.4: ZUC Technical Specification and Technical Report

Place holder Document title

TS 35.221 EEA3_EIA3_specification_v1_7 [18]

TS 35.222 eea3eia3zucv16 [21]

TS 35.223 eea3eia3testdatav11 [22]

TR 35.924 EEA3_EIA3_Design_Evaluation_v2_0 [24]

1.3 Security Algorithms for NB-IoT

This section describes how the security algorithms defined in the security archi-
tecture are used to protect data in the NB-IoT communication standard. First,
the base ciphering algorithms and their underlying concepts are introduced, fol-
lowed by details on their adoption as core elements to realize the confidentiality
and integrity algorithms implemented in the NB-IoT device.

1.3.1 Cipher Algorithms

The ciphering algorithms to be implemented have been defined in the previous
section. AES is a block ciphering algorithm that works with fixed 4 × 4 bytes
array. Several transformations are performed over the plain text message in or-
der to produce the ciphered text output. The other two ciphering algorithms fall
under the stream cipher algorithms type, which means that they will work on
individual words. The Figure 1.2a illustrates a plain text in the form of bytes
incrementing linearly. The Figure 1.2b, Figure 1.2c and Figure 1.2d show the ci-
phered text produced by respectively SNOW 3G, AES and ZUC algorithms. We
observe how the output sequence produced is a pseudo random signal.

1.3.2 Finite Field Arithmetic

Apart from the field of mathematics, finite field are extensively used in coding
theory and cryptography. Finite field arithmetic, also named Galois Field (GF)
is a field containing a limited number of elements. The notation GF(pn) defines
a field of pn elements where p is a prime number called the characteristic of the
field, and n a positive integer number called dimension of the field. The opera-
tions of addition, subtraction, multiplication and division are defined in this field.
They are performed followed a modulo of an irreducible polynomial R. For finite
field with a characteristic of 2, the addition and subtraction operations realized
in the finite field become XOR.

8 Background

64 128 192 256
0

32

64

96

128

160

192

224

256

Sample

By
te

da
ta

va
lu

e

(a) Linear plain text

64 128 192 256
0

32

64

96

128

160

192

224

256

Sample
By

te
da

ta
va

lu
e

(b) SNOW 3G

64 128 192 256
0

32

64

96

128

160

192

224

256

Sample

By
te

da
ta

va
lu

e

(c) AES

64 128 192 256
0

32

64

96

128

160

192

224

256

Sample

By
te

da
ta

va
lu

e

(d) ZUC

FIGURE 1.2: Ciphered text produced by the EEA/EIA keystream gen-
erators

Additions and subtractions are the same operation.

a + b ≡ a− b ≡ a⊕ b

The multiplication in GF is an usual multiplication with the product modulo the
irreducible polynomial R that defines the finite field.

a • b ≡ (a× b) mod R

The division in the finite field is the multiplication by the inverse modulo the
irreducible polynomial. The multiplicative inverse is obtained with the extended
euclidean algorithm.

Background 9

1.3.3 Substitution Boxes

Substitution Boxes, also names S-boxes, is a critical element of the security al-
gorithms. It is used to substitutes a value by another one in order to mask the
relation between the ciphered text and the key. The relation between the input
and output of the substitution box must diverge as much as possible from a lin-
ear or affine function. The S-boxes defined in the NB-IoT algorithms are constant
and designed to offer an increased resistance against attacks.

1.3.4 Confidentiality Algorithms

The scope of the confidentiality algorithms is to guarantee the inaccessibility to
the information from unauthorized entities, keeping the information secret dur-
ing a communication. The data is obscured in a way that only the knowledge of
the required context, such as the key, provides the possibility of decrypting the
plain text information.

1.3.5 Integrity Algorithms

These algorithms ensure the integrity of the information from the source to the
target. This allows to detect that the data has not been modified or partially de-
stroyed during the transmission. This type of algorithms provide a MAC as a
result of processing a message integrity.

1.4 HLS Design Flow

A traditional hardware design flow will in most cases start with a project speci-
fication. Often, an algorithm that is able to meet the proposed requirements and
specifications is developed in languages like C, C++, Matlab, etc. This description
aims to tackle the functional design with almost no knowledge on the actual hard-
ware implementation. Therefore, this high-level behavior is usually much faster
to implement than the next step in the hardware design flow: the RTL design.
This level of abstraction is really dependent on the actual hardware architecture
of the design, caring not only on the functional side.

Furthermore, RTL is hand-coded by the design teams and therefore any error
encountered in this description, any late minute changes in the specification, a
change in technology or architecture can lead to long design processes. HLS
emerges as a solution to the long design times in RTL description. By using
HLS the designer is capable of making the architectural choices and lets the HLS

10 Background

implement them. These tools provide the opportunity to implement different
solutions of the same algorithm by exploring the design space looking for the im-
plementation that best matches the specifications and providing the best trade-off
between power, area and performance. Furthermore, they will enable to retarget
these models to new fabrication technologies making designs more reusable.

Many leading industry companies have developed a HLS during the last decade,
and the interest has arisen in the past years. Cadence Stratus, Synopsys Syn-
phony, Xilinx Vivado HLS, Mentor Catapult HLS, all claim to deliver from 5 to
10X higher design and verification productivity than traditional RTL flows, espe-
cially in the field of communications and multimedia applications.

In [36] it is shown how high level synthesis represents a powerful tool for design
space exploration. In this paper they show that HLS will need of architectural
refinements, especially when dealing with memory interfacing to assist and im-
prove the results of the HLS tool.

1.4.1 Catapult Synthesis

Catapult Synthesis is a HLS tool by Mentor that takes as input the model-based
description of the design, specified in C, C++ or System C, and synthesizes it to
generate an RTL description. Figure 1.3 shows Catapult HLS design flow.

FIGURE 1.3: Catapult HLS flow

Background 11

1.4.2 Frame Based vs Sample Based Processing

The input to Catapult HLS is usually an algorithmic untimed description, written
in a high-level language (C or C++). Then, the designer will impose some archi-
tectural constraints to help the tool generate the desired RTL description. This is
referred to as frame based processing in this document.

On the other hand sample based C++ description will describe an algorithm in
a timed manner. The implementation of such algorithms will take longer time
and will be less versatile but will ensure the resulting RTL is what the designer
expects. In this Master’s Thesis, we have used the sample based approach to
describe the different hardware blocks synthesized using Catapult.

1.5 Thesis Contributions

The main contribution of this Thesis work is a cryptographic processor capable
of performing the 3GPP EEA and EIA algorithms as defined in [6] for the IoT
field. There are some similar works, both academic literature [15] and commercial
products. Perhaps the most similar commercial processor is found in [41]. The
comparison with these works will be covered in chapter 6.

This Master’s Thesis uses, as described in the previous section, the HLS design
flow. This, together will the hardware and software co-simulation capability pro-
vided by a virtual simulation platform has enabled for an easy architecture explo-
ration, fast prototyping of the hardware system and agile testing and integration.
No prior evidence of applying the HLS design flow to cryptography has been
found.

Going into more detail into the architecture, a partial combination of two of the
ciphering algorithms, SNOW 3G and ZUC, has been realized. After exploring
both algorithms independently some hardware resources have been combined
due to the structural similarities of these algorithms.

Also, many different computations perform in finite field arithmetic have been
studied in detail, resulting in a computational model for each of these operations.
For instance, the different substitution boxes (S-boxes) have been analyzed and
compared against their LookUp Table (LUT) implementation. Furthermore, mul-
tiplication, division and inversion in GF has been implemented as on-the-fly com-
putations. Finally, the Mulα and Divα operators, used in SNOW 3G, have been
explored leading to a successful and optimized implementation for area mini-
mization.

12 Background

Chapter2
Security Algorithms

The following chapter details the 128 bits ciphering algorithms used to perform
the confidentiality and integrity algorithms as defined by 3GPP specifications.
Furthermore, the confidentiality and integrity algorithms based on the ciphering
cores, which are used as keystream generators, are also presented. Each block of
the design is detailed following a top-down hierarchy, starting from the top level
and going to the internal architecture of each sub-block. The hardware imple-
mentation of these blocks is presented in the following chapter.

2.1 Ciphering Algorithms

The ciphering algorithms implemented in this work are presented in the follow-
ing sections. These ciphering algorithms, which are used to generate a keystream
used to mask the plaintext, all use a 128-bit key. This section aims to give a theo-
retical view of the algorithms disregard of the hardware implementation.

2.1.1 SNOW 3G Cipher

SNOW 3G is one of the three standardized algorithms in the 3GPP architecture.
It is a stream cipher algorithm, which will generate a 32 bit word output, called
keystream, under a 128 bit secret key and a 128 bit publicly known Initialization
Variable (IV). The output word will be used to mask a plaintext input producing
this way the ciphertext output.

The keystream generator is based on three major modules. The first building
block is a Linear-Feedback Shift Register (LFSR) consisting of 16 registers of 32
bits. The LFSR feeds a Finite-State Machine (FSM) with its input values. The

13

14 Security Algorithms

FSM consists of three 32-bit registers, updated based on two permutation boxes
and some other operators. The output of the FSM is XORed with the data from
register s0 in the LFSR or connected to the feedback loop. This third module with
accept inputs from the LFSR (and the FSM out during initialization mode), and
will produce an output by performing some field operations over its inputs. The
main sub-blocks in the feedback path, Mulα and Divα operators, perform the
aforementioned field operations.

(a) SNOW 3G during initialization mode

(b) SNOW 3G during keystream mode

FIGURE 2.1: SNOW 3G ciphering

SNOW 3G specification [20] defines two work modes, initialization mode and
keystream mode. Clocking the system means shifting the LFSR to the right in

Security Algorithms 15

Figure 2.1 and updating the registers in the FSM. The two working modes operate
as follows:

Initialization mode: during initialization mode, the LFSR is initialized using the
input key and the IV. The FSM registers are initialized to zero and both
the LFSR and the FSM are clocked 32 times with the output of the FSM
connected to the input of the feedback path.

Keystream mode: during keystream mode, the system is clocked once discard-
ing the first output. Then, each time the system is clocked, a 32-bit output
from the FSM is produced and XORed with the content of register s0 of the
LFSR, producing an output word zt.

The following sections give a deeper insight on the construction of SNOW 3G
main building blocks.

LFSR

The LFSR consists of 16 stages of 32 bits, which results in a total of 512 bits. It is
initialized during initialization mode with the key and IV as given by [20].

Feedback

The feedback polynomial is given by f (x) = αx16 + x14 + α−1x15 + 1 defined over
GF(232). SNOW 3G will use these field operators (multiplication/division) along
with 32-bit XOR operations to produce its output.

The Mulα and Divα Operators

These functions will map an 8 bit input to a 32 bit output. It can be implemented
as a precomputed table and will be used to initialize and feed the LFSR correctly.
The operation of Mulα is governed by Mulα(x) = x4 + β23x3 + β245x2 + β48x +
β239 where x takes a value between 0 and 255 and β is a root of the polynomial
x8 + x7 + x5 + x3 + 1.

Divα is governed by Divα(x) = x4 + β16x3 + β39x2 + β6x + β64.

Both operators can be implemented using a 1 kB table each. Different implemen-
tations will be explored in Section 3.3.

16 Security Algorithms

FSM

SNOW 3G FSM is composed of the following sub-blocks:

• Three 32-bit registers R1, R2 and R3.

• Two S-boxes S1 and S2, based on S-box SR and S-box SQ respectively.

• Two 32-bit XOR (⊕).

• Two 32-bit modulo adders (�). The modulo adders are used as a non-linear
combining function. In this manner, one modulo adder will combine s15
with R1 through (s15 � R1) ⊕ R2, and the other modulo adder combines
R2 with (R3⊕ s5).

When clocking the FSM, the internal registers will be updated as R3 = S2(R2),
R2 = S1(R1) and R1 = (s15 � R1)⊕ R2.

The details on the implementation of SNOW 3G will be given in Chapter 3, where
different implementations of SNOW 3G building blocks are explored using Cat-
apult Synthesis. In Section 4.3.1, the final architecture of SNOW 3G is explained.

2.1.2 AES Cipher

The AES is a block cipher using a fix block size of 128 bits. As defined by the
specifications [33], the key size used is also 128 bits. The principle of operation
of AES cipher is to pass a block of data to encrypt, defined as the state, through
a network of substitutions and permutations in order to secure the original plain
text. The design of this algorithm is made to allow fast processing in both soft-
ware and hardware implementations [40]. The 128-bit block of data is stored as
a state, which is organized in 16 bytes as represented in Figure 2.2. The block
experiences several rounds of successive transformations as shown in Figure 2.3
to encrypt the plain text.

in0 in4 in8 in12

in1 in5 in9 in13

in2 in6 in10 in14

in3 in7 in11 in15

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

input bytes state array

FIGURE 2.2: Input data block into AES state array

Security Algorithms 17

Key Expansion

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

Inital
round

Rounds

Final
round

key

input

9
iterations

output

FIGURE 2.3: ASMD of AES encryption

The different stages of AES are described in Figure 2.3. The first stage is the key
expansion routine, which transforms the 128 bits key into a larger expanded key
resulting in a total of 44 words of 32 bits, i.e. 1408 bits. The next transformation,
AddRoundKey(), consumes part of the expanded key to substitute the data state.
The following four operations are recurrently called 9 times in the same order:
SubBytes(), ShiftRows(), MixColumns() and AddRoundKey(). Finally, during
the last round, the MixColums() transform is skipped to keep only SubBytes(),
ShiftRows() and AddRoundKey(). In total, each transformation is performed 10
times, except for MixColumns() which is applied 9 times while AddRoundKey()
is processed 11 times. The Key Expansion is carried out a single time. The differ-
ent substitution and permutation transforms are presented with more detail later
in this section.

18 Security Algorithms

Key Expansion

This operation grows the key in order to be used by AddRoundKey() transforma-
tion as previously specified. The 128-bit key is expanded into 44 words of 32 bits
setting the total size to 1408 bits for the expanded key. The expansion routine is
represented in Figure 2.4. The first 4 words are directly copied from the 4 words
of the cipher key. Permutations and substitutions are then applied to the word
w3. The RotWord() operation realizes a cyclic byte shift to left. The word gets all
its bytes substituted using the S-Box SR. The word is finally XORed with a word
constructed from the constant vector of bytes Rcon. Rcon is composed of 10 bytes
defined by the following hexadecimal values in equation (2.1).

Rcon =
[
01 02 04 08 10 20 40 80 1B 36

]
(2.1)

For i = 0, (w0, w1, w2, w3) = KEY

∀i ∈ (1, . . . , 10) :

RotWord() SubWord()

WordRconi
w(i−1)×4+3

w(i−1)×4+0

wi×4+0

w(i−1)×4+1

wi×4+1

w(i−1)×4+2

wi×4+2

w(i−1)×4+3

wi×4+3

FIGURE 2.4: Key Expansion diagram

The word derived from Rcon uses one byte from the constant as its most signifi-
cant byte while the other least significant bytes are set to 0. This generated word
is XORed with the word from the substitution operation. The expanded key word
wi×4 results from the XOR operation between the word w(i−1)×4, where i repre-
sents the iteration index, and the word resulting from the previous operation,
wRcon. The next 4 words of the expanded key, wi×4+1, wi×4+2, wi×4+3, are con-
structed using the previous word wi×4+c−1 and the word w(i−1)×4+c, with c equal
to 1, 2 and 3 respectively. This is summarized with the following equations:

For c = 0:
wi×4+c = wi×4+(c−1) ⊕ wRcon (2.2)

For c = 1, 2 and 3:
wi×4+c = wi×4+(c−1) ⊕ w(i−1)×4+c (2.3)

Security Algorithms 19

SubBytes

This substitution transform is applied on each byte of the state matrix. Using the
Rijndael S-Box SR, mapping a byte value to another byte, the data block bytes are
transmuted.

S0,0 S0,1 S0,2 S0,3

S1,0 Sr,c S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S′0,0 S′0,1 S′0,2 S′0,3

S′1,0 S′r,c S′1,2 S′1,3

S′2,0 S′2,1 S′2,2 S′2,3

S′3,0 S′3,1 S′3,2 S′3,3

SubBytes()

FIGURE 2.5: SubBytes() transformation

ShiftRows

This transformation permutes the bytes on the rows of the data block. It performs
a cyclic shift of the bytes in each row with a different offset. The first row is
unmodified. The second row gets all its bytes moved by one position to the left.
The leftmost byte is moved to the rightmost place. The same operation is applied
to the third and fourth row with an offset of respectively two and three. Figure 2.6
illustrates this transformation.

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S0,0 S0,1 S0,2 S0,3

S1,1 S1,2 S1,3 S1,0

S2,2 S2,3 S2,0 S2,1

S3,3 S3,0 S3,1 S3,2

ShiftRows()

FIGURE 2.6: ShiftRows() transformation

MixColumns()

This transformation realizes the multiplication in GF(28) of a byte vector by a
constant matrix defined in equation (2.4).

20 Security Algorithms


S′0,c
S′1,c
S′2,c
S′3,c

 =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 •


S0,c
S1,c
S2,c
S3,c

 (2.4)

The resulting byte vector is replaced with the four computed bytes following
equation (2.5).

S′0,c = 2 • S0,c ⊕ 3 • S1,c ⊕ S2,c ⊕ S3,c

S′1,c = S0,c ⊕ 2 • S1,c ⊕ 3 • S2,c ⊕ S3,c

S′2,c = S0,c ⊕ S1,c ⊕ 2 • S2,c ⊕ 3 • S3,c

S′3,c = 3 • S0,c ⊕ S1,c ⊕ S2,c ⊕ 2 • S3,c

(2.5)

Here, • represents a multiplication in GF(28) and ⊕ represents an XOR, which is
an addition in GF(28). Details about the finite field operations are given in Sec-
tion 1.3.2. This multiplication operates on the state column by column, illustrated
in Figure 2.7.

S0,0 S0,c S0,2 S0,3

S1,0 S1,c S1,2 S1,3

S2,0 S2,c S2,2 S2,3

S3,0 S3,c S3,2 S3,3

S′0,0 S′0,c S′0,2 S′0,3

S′1,0 S′1,c S′1,2 S′1,3

S′2,0 S′2,c S′2,2 S′2,3

S′3,0 S′3,c S′3,2 S′3,3

MixColumns()

FIGURE 2.7: MixColumns() transformation

AddRoundKey()

This transformation operates column wise on the state. All of the bytes in a col-
umn of the state matrix are grouped to form a 32 bits word. This word is XORed
with an expanded key word. This word index is defined by l = round ∗ Nb, Nb
being the number of words in a state and round the index of the round iteration as
previously defined. Each of the 44 words composing the expanded key is used.
Figure 2.8 illustrates the transformation by showing the state words and the ex-
panded key words. One AddRoundKey() transformation is composed of 4 XOR
operations on 32 bits words.

Security Algorithms 21

S0,0 S0,c S0,2 S0,3

S1,0 S1,c S1,2 S1,3

S2,0 S2,c S2,2 S2,3

S3,0 S3,c S3,2 S3,3

wl wl+c wl+2 wl+3

S′0,0 S′0,c S′0,2 S′0,3

S′1,0 S′1,c S′1,2 S′1,3

S′2,0 S′2,c S′2,2 S′2,3

S′3,0 S′3,c S′3,2 S′3,3

state array

expanded key

AddRoundKey()

FIGURE 2.8: AddRoundKey() transformation

2.1.3 Inverse Cipher

Being the AES algorithm a block cipher, a different flow is defined for decryp-
tion. Most of the operations operate following the same principles defined for
the encryption process.

Key Expansion remains exactly the same.

InvAddRoundKey() transformation is the inverse cipher version of the opera-
tion AddRoundKey(). The difference is the expanded key word utilization
order. InvAddRoundKey() processes the expanded key word in reverse
order.

InvShiftRows() applies the same transformation as ShiftRows() except for the
cyclic shift being to the right instead of the left.

InvSubBytes() substitutes the bytes of the state as SubBytes() transformation but
with a different S-Box called Inverse SR.

InvMixColumns() transformation that performs the multiplication in GF(28) of
a byte vector by a constant 4× 4 matrix. The operation is as specified by
MixColumns() except for the constant polynomial matrix, which is defined

22 Security Algorithms

Key Expansion

InvAddRoundKey

InvShiftRows

InvSubBytes

InvAddRoundKey

InvMixColumns

InvShiftRows

InvSubBytes

InvAddRoundKey

Inital
round

Rounds

Final
round

key

input

9
iterations

output

FIGURE 2.9: ASMD of AES decryption

by the hexadecimal values in equation (2.6).

Mpoly inv =


0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

 (2.6)

The AES inverse cipher processes the different transformations in a different or-
der. Figure 2.9 illustrates the flow. During the rounds, the order of InvShiftRows()
and InvSubBytes() are inversed compare the the transformation ShiftRows() and
SubBytes() in the AES flow for encryption. The same rearrangement for InvAd-
dRoundKey() and InvMixColumns() can be noticed.

Security Algorithms 23

2.1.4 ZUC Cipher

ZUC is a word-oriented stream cipher algorithm, which takes a 128 bit secret key
and a 128 bit publicly known IV as input and generates a 32 bit word output,
called keystream. The output word will be used to mask a plaintext input pro-
ducing this way the ciphertext output.

The keystream generator is based on four major modules: a LFSR, a feedback
path which we separate from the LFSR module for convenience, a non-linear
FSM, and bit reorganization module. The LFSR consists of 16 registers of 31 bits
each and the feedback path is constructed by a primitive polynomial in GF(231 − 1).
This is a major difference with SNOW 3G algorithm, since ZUC will produce se-
quences over the prime field GF(231 − 1) instead of being over a GF(2m), like
SNOW 3G cipher. This methodology for generating sequences contributes to this
algorithm’s resistance to bit-oriented cryptographic attacks, fast correlation at-
tacks, linear distinguishing attacks and algebraic attacks [4].

The LFSR feeds a FSM with its input values. The bit reorganization module will
take the higher or lower 16 bits of some LFSR registers as shown in Figure 2.10,
and will create 32-bit words that become inputs to the FSM. The FSM consists of
two 32-bit registers, updated based on two linear functions L1 and L2 and two
non-linear transformations S0 and S1.

The output W of the FSM is XORed with the data from X3, which is formed from
the concatenation of the lower 16 bits of s2 and the higher 16 bits of s0, there-
fore X3 = s2L‖s0H . The feedback has 6 inputs and are formed as depicted in
Figure 2.10.

Like SNOW 3G, ZUC has 2 modes of operation:

Initialization mode: during initialization mode the LFSR is initialized using the
input key and the IV. The FSM registers are initialized to zero and both the
LFSR and the FSM are clocked 32 times. The output of the FSM is shifted
right 1 bit to remove the rightmost bit and is then added modulo 231 − 1
with the output of the feedback.

Keystream mode: during keystream mode, the system is clocked once discard-
ing the first output. Then, each time the system is clocked, a 32-bit output
from the FSM is produced and XORed with X3, producing an output word
zt.

LFSR

The LFSR consists of 16 stages of 31 bits, which results in a total of 496 bits. It
is initialized during initialization mode with the key and IV as given by [12].

24 Security Algorithms

(a) ZUC during initialization mode

(b) ZUC during keystream mode

FIGURE 2.10: ZUC ciphering

Security Algorithms 25

The bit reorganization will take data from the LFSR and produce four 32-bit words
X0, X1, X2, X3 defined as:

1. X0 = s15H‖s14L

2. X1 = s11L‖s9H

3. X2 = s7L‖s5H

4. X3 = s2L‖s0H

Feedback

The feedback performs the function:

v =
[
215s15 + 217s13 + 221s10 + 220s4 + (1 + 28)s0

]
mod (231 − 1)

Then, this value is input to register s15 of the LFSR during keystream mode. Dur-
ing initialization mode it is added modulo 231 − 1 and then fed to the LFSR. Fur-
thermore, as described in section 10.1.5 of [4], the operation a · x over GF(p),
where a = 2i + 2j + 2k can be implemented with cyclic shifts and a modulo p
addition as ax ≡ (x≪31 i) + (x≪31 j) + (x≪31 k) mod p.

FSM

ZUC FSM encompasses the following blocks:

• Two 32-bit registers R1 and R2.

• Two S-boxes S0 and S1.

• Two 32-bit XOR.

• Two 32-bit modulo 232 adders.

• Two linear transformations L1 and L2.

• ≪ 16 module.

The FSM is defined by the following operations:

1. W = (X0 ⊕ R1) + R2

2. W1 = R1 � X1

3. W2 = R2 ⊕ X2

4. R1 = S(L1(W1L‖W2H))

26 Security Algorithms

5. R2 = S(L2(W2L‖W1H))

The internal registers will be updated as given above. The non-linear substitution
box S is a 32 × 32 S-box composed of 4 juxtaposed 8 × 8 S-boxes S0, S1, S2, S3,
where S0 = S2 and S1 = S3.

The≪ 16 module will feed (W1L‖W2H) to the S · L1 transformation and (W2L‖W1H)
to the S · L2 transformation. It performs the concatenation of two 32-bit words,
performs a cyclic left shift on the resulting 64-bit word and then splits back into 2
32-bit words.

2.2 Confidentiality Algorithms

In this section, the confidentiality algorithms are presented. The objective of these
algorithms is to keep the plain text confidential by transforming the plaintext into
a ciphered text that does not bear any meaning to an external entity without the
necessary parameters to decode it.

The algorithms are based on the cipher algorithms described in the previous
section, and their usage is defined by 3GPP in the technical specifications Secu-
rity Architecture TS 33.401 [6]. The input parameters of the confidentiality algo-
rithms are a 128 bits confidentiality key KEY, a 32 bits COUNT, a 5 bits identity
BEARER, a 1 bit DIRECTION defining uplink or downlink transmission and a
keystream length referred as LENGTH. The confidentiality algorithms use the
ciphers described in Section 2.1 to produce a keystream of length LENGTH with
the aforementioned parameters. The encryption is realized by XORing the plain
text with the keystream to result in a confidential text. This allows to perform ex-
actly the same operation for encryption and decryption as long as the keystream
is identical.

3GPP characterizes 4 EEAs listed here:

128-EEA0 Null ciphering that provides no security.
128-EEA1 Confidentiality algorithm based on SNOW 3G confidentiality algo-

rithm.
128-EEA2 Confidentiality algorithm based on AES using the Counter (CTR) mode.
128-EEA3 Confidentiality algorithm based on ZUC confidentiality algorithm.

This section introduces each confidentiality algorithm except for EEA0.

Security Algorithms 27

2.2.1 128-EEA1: SNOW 3G Based Algorithm

3GPP’s 128-EEA1 algorithm is identical to the ETSI/SAGE UEA2 Confidentiality
algorithm specified in [7]. Therefore, the keystream produced by the cipher block
described in Section 2.1.1 will be used to mask the plaintext data using an XOR
operation as shown in Figure 2.11. The confidentiality algorithm will work on
32-bit blocks of data and the IV is constructed as specified in [7].

(a) SNOW 3G confidentiality: encryption (b) SNOW 3G confidentiality: decryption

FIGURE 2.11: SNOW 3G confidentiality

2.2.2 128-EEA2: AES Based Algorithm

The AES confidentiality algorithm is based on the AES cipher in CTR mode. This
mode defined by NIST in the block cipher modes specification [34]. 3GPP speci-
fies the usage of this recommended mode to generate a keystream with the block
cipher AES. Figure 2.12 illustrates the encryption and decryption using the CTR
mode.

CTR mode features the production of input blocks passed to the AES cipher (en-
cryption). The returned encrypted blocks are interpreted as a keystream that is
XORed with the plain text. The same process is executed on the ciphered text to
recover the plain text, using the same generated input blocks. The input blocks
T1, T2, . . . , Tn, defined as a sequence of 128 bits counter blocks, are built as fol-
lows: the most significant 64 bits of the block Ti is constant and constructed as
a concatenation of COUNT, BEARER and DIRECTION, with the Least Signif-
icant Bits (LSBs) set to 0. The 64 least significant bits of the block Ti is the value
of a 64 bits counter. This counter increments by 1 for every new block, the value
being module 264.

28 Security Algorithms

OUTPUT BLOCK 1

INPUT BLOCK 1

OUTPUT BLOCK 1

CIPHER

COUNTER T1

⊕PLAINTEXT 1

CIPHERTEXT 1

INPUT BLOCK 1

⊕CIPHERTEXT 1

PLAINTEXT 1

EN
C

R
YP

T
D

EC
R

YP
T

.
INPUT BLOCK n

OUTPUT BLOCK n

⊕PLAINTEXT n

OUTPUT BLOCK n

CIPHERTEXT n

INPUT BLOCK n

⊕CIPHERTEXT n

.

PLAINTEXT n

CONSTANT

COUNTER Tn

CONSTANT

CIPHER

COUNTER Tn

CONSTANT

COUNTER Tn

CONSTANT

CIPHER CIPHER

FIGURE 2.12: AES confidentiality using the CTR mode. Source [34]

2.2.3 128-EEA3: ZUC Based Algorithm

This algorithm is specified in [11]. The operation is identical to what is shown in
Figure 2.11 but using the ZUC keystream generation as defined in Section 2.1.4 to
produce the keystreams.

2.3 Integrity Algorithms

The purpose of these algorithms is to protect the integrity of the information, i.e.
to authenticate the text as being the original one without any tampered informa-
tion.

The algorithm processes the data from which it generates an integrity MAC in the
form of a 32 bits word. The integrity of the text is valid when the MAC is com-
pared and identical with the expected one. The input parameters of the integrity
algorithms are a 128 bits integrity key KEY, a 32 bits COUNT, a 5 bits identity
BEARER, a 1 bit DIRECTION defining uplink or downlink transmission and
a keystream length referred as LENGTH. These parameters are identical to the

Security Algorithms 29

ones defined for confidentiality.

The integrity algorithms use the ciphers described in Section 2.1 to produce a
32-bit MAC with the aforementioned parameters.

3GPP characterizes 4 EIAs listed here:

128-EIA0 Null integrity that provides no protection. The resulted MAC is set
with all zeros and is not checked.

128-EIA1 Integrity algorithm based on SNOW 3G in integrity implementation.
128-EIA2 Integrity algorithm based on AES in Cipher-based MAC (CMAC) mode.
128-EIA3 Integrity algorithm based on ZUC in integrity implementation.

This section introduces each integrity algorithm excepted for EIA0.

2.3.1 128-EIA1: SNOW 3G Based Algorithm

3GPP’s 128-EIA1 algorithm is implemented the same way as ETSI/SAGE UIA2
Integrity algorithm, specified in [7].

The IV is constructed as specified in this document, with the only difference be-
ing that the 32-bit word FRESH[0], . . . , FRESH[31] is replaced by:
BEARER[0]‖BEARER[1]‖ . . . ‖BEARER[4]‖027. In this notation FRESH[0] and
BEARER[0] represent the most significant bits of the words FRESH and BEARER.

set D = dLENGTH/64e + 1
set P = z1‖z2
set Q = z3‖z4
set z5 = OTP[0], OTP[0], . . . OTP[31]
for i=0 to D− 3 set

Mi = MESSAGE[64i]‖MESSAGE[64i + 1]‖ . . . ‖MESSAGE[64i + 63]
end
set MD−2 =Mi = MESSAGE[64(D− 2)]‖ . . . ‖MESSAGE[LENGTH− 1]‖0 . . . 0
set MD−1 =LENGTH[0]‖LENGTH[1]‖ . . . ‖LENGTH[31]

Algorithm 2.1: Snow integrity parameters

Figure 2.13 describes how the 128-EIA1 algorithm is implemented with its pa-
rameters defined in Algorithm 2.1.

The EVAL_M function is implemented as described in [7]. The MUL_GF(264)
block performs a modulo 64-bit multiplication between Q and EVAL_M(Mi, P)⊕
MD−1.

30 Security Algorithms

FIGURE 2.13: SNOW 3G integrity diagram

2.3.2 128-EIA2: AES Based Algorithm

The AES integrity algorithm is based on the AES cipher in CMAC mode. This
mode is defined by NIST in the block cipher modes specification [35] for authen-
tication. 3GPP specifies the usage of this mode to generate a MAC with the AES
cipher. Figure 2.14 illustrates this process using the CMAC mode.

The message data is divided into blocks of 128 bits, which is the input size of
data for the AES cipher as described in Section 2.1.2. The resulting data from the
cipher is XORed with the next block of the message and encrypted in another call
of AES cipher. This is repeated until all the message has been utilized. The 32
Most Significant Bits (MSBs) of the last cipher generation defines the MAC.

CIPHERCIPHERCIPHER

(a) without message padding

CIPHERCIPHERCIPHER

(b) with message padding

FIGURE 2.14: AES integrity using the CMAC mode. Source [35]

The input data of the last ciphering is created differently and depends on the
message length LENGTH. If the final message block M∗n has a size of 128 bits, i.e.
the message length is a multiple of 128 bits, M∗n is XORed with both the previous
cipher output and with the subkey K1. Figure 2.14a illustrates the AES integrity
algorithm on a message without padding. On the contrary, if LENGTH is not a
multiple of 128 bits, then the message is padded with 10 . . . 0 in order to form a

Security Algorithms 31

complete block, and is then XORed with the previous cipher output and a subkey
K2. This is showed in Figure 2.14b.

The subkeys K1 and K2 are constructed from the output L of a ciphering process-
ing input data composed of all zeros. This 128-bit data entirely depends on the
integrity key. The following computations determine the value of the subkeys:

L← CIPHER(0)
if MSB(L) = 0 then

K1← L� 1
else

K1← (L� 1) ⊕ Rb
end
if MSB(K1) = 0 then

K2← K1� 1
else

K2← (K1� 1) ⊕ Rb
end

Algorithm 2.2: Subkey generation in AES integrity

2.3.3 128-EIA3: ZUC Based Algorithm

This algorithm is specified in [11]. The operation of this algorithm to produce an
output word MAC is shown in Algorithm 2.3.

Let zi be a 32-bit word.
Let T be a 32-bit word.
Let ZUC generate a keystream of

L = dLENGTH/32e+ 2 words
foreach i in 0 to 32(L− 1) let

zi = z[i]‖z[i + 1]‖ . . . ‖z[i + 31];
end
foreach i in 0 to LENGTH− 1

if M[i] = 1 then T = T ⊕ zi;
end
Set T = T ⊕ zLENGTH

MAC = T ⊕ z32×(L−1)

Algorithm 2.3: MAC generation in EIA3

32 Security Algorithms

Chapter3
Architecture Exploration

In the previous chapter we observed how the security algorithms are based on
certain mathematical operators. AES uses a Rijndael substitution box SR in the
subbytes operation, the original SNOW 3G algorithm uses four different lookup
tables: Mulα, Divα, S1 and S2 and ZUC uses two non-Rijndael substitution boxes.

In both SNOW 3G and ZUC, different substitution functions are used during the
FSM operation and will transform the content of the registers. SNOW 3G has

three registers R1, R2 and R3 which will be updated as R1 S1−→ R2 S2−→ R3 whereas
ZUC has only two registers R1 and R2 and the next values for these registers will
updated as specified in Section 2.1.4.

The following sections will cover the different possibilities when implementing
these substitution boxes, the easiest one being a LUT approach. A computation
model has been developed for most of the tables and have been compared against
a LUT approach.

The first S-box covered is Rijndael box SR, which is used in both AES and SNOW
3G algorithms. SNOW 3G uses this substitution box internally in the FSM to
compute S1. As we will see in the following section, 4 iterations of the S-box will
be needed to produce one result of S1. On the other hand, AES must perform
the subbytes operation on each byte of the state matrix, resulting in a total of 16
calculations. Exploring the possibility of speeding up this computation and/or
reducing the area with respect to the matrix implementation is worthwhile and
will be covered in the following section.

Later sections will cover the implementation of S-box SQ, the Mulα and Divα
operators, and ending with the substitution box S0 used in ZUC algorithm. S-
box S1 used in ZUC is very similar in construction to S-box SR, and thus, the
results obtained for S-box SR are applicable to ZUC S-box S1.

Finally, we will investigate the possibility of integrating SNOW 3G and ZUC. In

33

34 Architecture Exploration

particular, we will focus on the combination of both FSMs due to their inherent
similarities.

The LUTs referred to in this and the following chapters can be synthesized by
Catapult HLS to either a multiplexer with constant inputs or a Read-Only Mem-
ory (ROM) [27]. Selecting a 65 nm Application-Specific Integrated Circuit (ASIC)
synthesis, the tool implements the LUT using a ROM.

The area numbers presented in this and the following sections have been normal-
ized against the smallest design, on a per table basis. Thus, we will compare the
relative sizes of the different implementations proposed.

3.1 Rijndael S-box SR Implementation

The S-box S1, which is used to transform the data available in register R1 in
SNOW 3G ciphering, uses the permutation box as in the Rijndael algorithm. This
transformation converts a 32 bit input word w into an output word r, where each
four byte word is considered a polynomial over GF28 , defined by the irreducible
polynomial x8 + x4 + x3 + x + 1.

The S1 transformation is defined in [20] as follows:

r0 = (x + 1) SR(w3) + SR(w2) + SR(w1) + x SR(w0),
r1 = SR(w3) + SR(w2) + x SR(w1) + (x + 1) SR(w0),
r2 = SR(w3) + x SR(w2) + (x + 1) SR(w1) + SR(w0),
r3 = x SR(w3) + (x + 1) SR(w2) + SR(w1) + SR(w0).

Thus, the S-box SR is used in both AES and SNOW 3G algorithms. Two alter-
natives have been considered to calculate the result of this substitution box. The
first approach is using the substitution matrix provided in [20]. Therefore, each
input would be mapped to an output value as defined by the matrix.

The second approach requires more elaboration and consists on an on the fly
calculation of the S-box values. As we observe in the S1 transformation above,
the Rijndael S-box transformation is applied on each input byte (w0, w1, w2, w3).
This would require 4 different computations of an SR substitution every time the
FSM in SNOW 3G is clocked.

This substitution box is computed in two main steps [33] by:

1. Determining the multiplicative inverse for the input number in Rijndael’s
field. The element zero ({00}) has no inverse, and thus will be mapped to
itself.

Architecture Exploration 35

2. Applying an affine transformation over Galois Field, given by:
b
′
i = bi ⊕ b(i+4)mod8 ⊕ b(i+5)mod8 ⊕ b(i+6)mod8 ⊕ b(i+7)mod8 ⊕ ci.

The affine transformation can be expressed in matrix form as in equation (3.1),
where c = {1, 1, 0, 0, 0, 1, 1, 0}.



b
′
0

b
′
1

b
′
2

b
′
3

b
′
4

b
′
5

b
′
6

b
′
7


=



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1





b0

b1

b2

b3

b4

b5

b6

b7


+



1
1
0
0
0
1
1
0


(3.1)

One of the advantages of using an on the fly implementation is that these oper-
ations can be exchanged, performing first an affine transformation and then an
inversion in Galois Field computing this way the inverse SR, used in AES de-
cryption. With the same hardware modules and only a little overhead added by
multiplexing logic, two different substitution boxes could be implemented.

The block computing the multiplicative inverse of an element in Galois Field and
the block computing the affine transformation as described above have been de-
veloped. The inversion algorithm involves multiplication and division over a
Galois Field using the irreducible polynomial already mentioned. The imple-
mentation of the inverse function is presented in Figure 3.1.

As we observe in the flow chart, the inversion is based on two subfunctions mulgf
and divgf, which correspond to a multiplication and division over a Galois Field
respectively. These two functions are detailed in the following sections.

3.1.1 Multiplication in Galois Field 28

We wish to multiply two polynomials f (x) and g(x) in a Galois Field of order 28,
where the irreducible polynomial is m(x) = x8 + x4 + x3 + x + 1. The resulting
product f (x) · g(x) is reduced modulo m(x) ensuring that the result is always a
polynomial of degree less than 8.
Figure 3.2 details how this multiplication is performed. This algorithm is based
on the one presented in section 4.2.1 of [33] and defines a subfunction called
xtimes. This operation on bytes represents a multiplication of the input x by the
constant {02} and thus, we can use this function to recursively calculate a multi-
plication by any constant.

36 Architecture Exploration

INPUTS
in_x;

OUTPUTS
out_inv;

t, newt;
r, newr = in_x;
i, quot;

x = 0

out_inv = 0;

[quot, rest] = divgf (r, newr);
r = newr;
newr = rest;
temp_t = newt;
newt = mulgf (quot, newt);
newt = t ⊕ newt;
t = temp_t;

newr = 0

out_inv = t;

T

F

T

F

FIGURE 3.1: Flow graph Inverse(x) in Galois Field

3.1.2 Division in Galois Field 28

The division is implemented as shown in Figure 3.3 and is based on long polyno-
mial division.

The function ld_ones will return the position of the first ’1’ of the data input. The
function getRest(vect_in, start, end) will return a slice of the input vector between
start and end, and is used to get the rest in a polynomial division.

3.1.3 Implementation Results and Comparison

Once the on the fly models for Rijndael S-box have been developed and tested,
the LUT approach has been compared to the computation approach. Since the
on the fly computation is able to calculate both direct and inverse SR substitution
values, it must be compared with the results obtained implementing two 8 × 8
look-up tables.

As we described in the previous sections, the maximum number of iterations in
the main loop governing the inverse, multiplication and division functions is 8
iterations in each one of them. Catapult HLS will make it possible to explore
the different options we have when implementing the S-box calculation. Other
solutions which take into account partially unrolled hardware resources can be
obtained, however as we observe in Table 3.1, the results provided by a LUT
approach are superior.

Architecture Exploration 37

INPUTS
in_x, in_y;
y_width;
irr_poly;

OUTPUTS
mul_out;

xtime_tmp = in_x;
out_tmp = 0;
i = 0;

i < y_width

i = 0

xtime_tmp = xtime(xtime_tmp);

out_tmp = out_tmp ⊕ ((y� 1) & 1) × xtime_tmp;
i = i + 1;

mul_tmp = out_tmp;

T

F

F

T

FIGURE 3.2: Flow graph Mul(x, y) in Galois Field

TABLE 3.1: Comparison of different implementations of S-box SR

Implementation
Area

(normalized)
Throughput

(cycles)
Slack @ 50 MHz

(ns)

Solution 1 7.3 8 4.88
Solution 2 5.9 64 15.23
Solution 3 6.1 128 15.21
Solution 4 250.0 120 15.66
Solution 5 1.0 1 19.76

Solution 1 invgf kept rolled, mulgf and divgf unrolled.
Solution 2 invgf and kept divgf rolled, mulgf unrolled.
Solution 3 all loops rolled.
Solution 4 invgf unolled, mulgf and divgf rolled.
Solution 5 LUT approach.

38 Architecture Exploration

INPUTS
num, den;

OUTPUTS
q_out, r_out;

q = 0, r = 0, i = 0;
num_len = ld_ones(num);
den_len = ld_ones(den);

n_len < d_len

len_diff = n_len - d_len + 1;
r = getRest(num, len_diff, num_len);

i < 8

len_diff 6= 0

len_diff −−;
rest = rest� 1;
rest[0] = num[len_diff];
q = q� 1;
r_len = ld_ones(rest);

i = i + 1
r = getRest(r, 0, den_len);
r = r ⊕ den;
q = q ⊕ 1;

(r _len ≥ den_-
len) & rest > 0)

q = 0;
r = num;

q_out = q;
r_out = r;

T

F

T

F

T

F

T

F

FIGURE 3.3: Flow graph Div(x, y) in Galois Field

The conclusion drawn from this architectural exploration is that the complexity
of the functions involved in the S-box SR calculations makes this particular S-box
unsuitable for an on-the-fly calculation.

Architecture Exploration 39

3.2 S-box SQ Implementation

This substitution box is used only in SNOW 3G algorithm to perform the S2
transformation, and is used in a similar way than S-box SR to calculate S1. Con-
sidering a 32 bit input word w where the bytes are in this transformation inter-
preted as elements of a Galois Field 28 defined by the irreducible polynomial
x8 + x4 + x3 + x + 1, the output of S2 will be given by the following relations:

r0 = (x + 1) SQ(w3) + SQ(w2) + SQ(w1) + x SQ(w0),
r1 = SQ(w3) + SQ(w2) + x SQ(w1) + (x + 1) SQ(w0),
r2 = SQ(w3) + x SQ(w2) + (x + 1) SQ(w1) + SQ(w0),
r3 = x SQ(w3) + (x + 1) SQ(w2) + SQ(w1) + SQ(w0).

The S-box SQ is constructed using the Dickson polynomial:

g49(x) = x⊕ x9 ⊕ x13 ⊕ x15 ⊕ x33 ⊕ x41 ⊕ x45 ⊕ x47 ⊕ x49

Then, the output will then be given by: SQ(x) = g49(x)⊕ 0x25.

The architectural diagram for this algorithm is shown in Figure 3.4. Internally,
mulgf is being used to perform a multiplication in GF. Note that the irreducible
polynomial used in this calculation is different from the one used for S-box SR.

FIGURE 3.4: S-box SQ simplified hardware diagram

The results obtained from the different implementations are shown in Table 3.2.

The different solutions are constructed in a similar manner than we did for the
S-box SR and are detailed below. The on-the-fly solution with best results is solu-
tion 2, in which all the 8 iterations of the mulgf loop are unrolled and the Dickson

40 Architecture Exploration

TABLE 3.2: Comparison of different implementations of S-box SQ

Implementation
Area

(normalized)
Throughput

(cycles)
Slack @ 50 MHz

(ns)

Solution 1 19.0 1 10.96
Solution 2 2.2 49 18.32
Solution 3 43.2 384 18.91
Solution 4 2.5 392 18.18
Solution 5 1.0 1 19.76

Solution 1 Both loops unrolled.
Solution 2 Dickson polynomial loop kept rolled, mulgf unrolled.
Solution 3 Dickson polynomial loop unrolled, mulgf kept rolled.
Solution 4 Both loops rolled.
Solution 5 LUT approach.

polynomial loop, which is a simple loop that will perform conditional XOR at cer-
tain iterations, is kept rolled. The Dickson polynomial can be partially unrolled
while maintaining the mulgf loop completely unrolled to achieve better through-
put results at the expense of a bigger area.

Catapult shows that better results are provided for a LUT approach with respect
to its on-the-fly counterpart.

3.3 Mulα and Divα Implementation

The Mulα and Divlα operators are used in SNOW 3G feedback loop as was seen
in Section 2.1.1. As described in this section, these operators map an 8 bit input
to 32 bit output. The output is computed using four instances of the function
MulxPow operation as shown in Figure 3.5.

These four different instances will have the same inputs (V, c) but will differ on
the value of input i. The input i will control the number of times the inner func-
tion mulx is executed. Therefore, MulxPow is constructed by recursively calling
the operator mulx, and the number of times it is called is controlled by the control
variable i.

Figure 3.7 illustrates the different implementations of Mulα and Divα explored.
More information about the different solutions can be found in Table 3.3.

Solution 4 is depicted in Figure 3.8. We observe how a fully unrolled architecture

Architecture Exploration 41

(a) Mulα (b) Divα

FIGURE 3.5: Mulα and Divα implementation

(a) Mulx

(b) MulxPow

FIGURE 3.6: Mulx and MulxPow

with 4 pipeline stages presents an area overhead of 51.2 % with respect to the most
area efficient achieved solution, number 5 in the table. The pipelined architecture
will have a latency of 4 clock cycles, but after that one output will be produced
every clock cycle. Solution 5 combines multiple optimizations in order to achieve
the lowest area.

42 Architecture Exploration

FIGURE 3.7: Different implementations of Mulα and Divα

TABLE 3.3: Comparison of different implementations of combined
Mulα and Divα

Implementation
Area

(normalized)
Throughput

(cycles)
Slack @ 50 MHz

(ns)

Solution 1 2.1 1 2.37
Solution 2 1.0 123 19.03
Solution 3 1.0 62 18.91
Solution 4 1.6 4 10.6
Solution 5 1.0 4 15.43
Solution 6 1.2 4 10.97
Solution 7 1.7 1 19.76

Solution 1 Fully unrolled architecture, no pipelining.
Solution 2 One pipeline stage.
Solution 3 Two pipeline stages.
Solution 4 Four pipeline stages.
Solution 5 Multiple optimizations combined.
Solution 6 Fully merged solution with four pipeline stages. Assumes Mulα and Divα

have the same input.
Solution 7 LUT approach.

3.4 ZUC S-box S0 Implementation

The implementation of S-box S0 in ZUC algorithm follows the specification in [4].
The 3 transformations P1, P2, P3 in Figure 3.9, are transforms over GF(16) and are

Architecture Exploration 43

FIGURE 3.8: Alpha operators pipelining

detailed in the specification.

FIGURE 3.9: ZUC S-box S0 implementation

TABLE 3.4: Comparison of different implementations for ZUC S-box
S0

Implementation
Area

(normalized)
Throughput

(cycles)
Slack @ 50 MHz

(ns)

Solution 1 1 1 18.96
Solution 2 1.7 1 19.76

Solution 1 On-the-fly implementation.
Solution 2 LUT implementation.

The on-the-fly implementation of ZUC S-box S0 uses less hardware resources
than the LUT approach.

44 Architecture Exploration

3.5 SNOW 3G and ZUC Combination

SNOW 3G and ZUC are both stream cipher algorithms which show clear similar-
ities in structure. In this section we will focus on the results obtained when trying
to combine some of the main blocks in these algorithms.

3.5.1 Combined LFSR

The LFSR is a module that can be easily merged between both algorithms, al-
though it presents a slight difference: ZUC uses 31-bit registers while SNOW 3G
uses 32-bit registers. Also, ZUC includes a reorganization stage that takes data
from the LFSR and feeds it to the FSM.

3.5.2 Combined Feedback

The structural differences in the feedback logic between both algorithms makes
this module unsuitable for combining. Having two separate modules with a mul-
tiplexed output would be the desired solution in this case.

3.5.3 Combined FSM

From Section 2.1, we observe that SNOW 3G and ZUC could share two 32-bit
registers, two 32-bit modulo adders and two 32-bit XORs. A Combined FSM has
been implemented and compared against individual FSMs. The multiplexing
overhead in this implementation is five 32-bit multiplexers which, as we observe
in Table 3.5, leads to a greater area footprint than having individual FSMs.

TABLE 3.5: Comparison between individual and combined FSM im-
plementation

Implementation
Area

(normalized)
Throughput

(cycles)
Slack @ 50 MHz

(ns)

SNOW 3G 1.2 4 17.85
ZUC 1 4 16.22

Total 2.2 4 16.22

Combined 2.4 4 15.35

Architecture Exploration 45

As a remark, the results provided in Table 3.5 include the substitution boxes, S1-
S2 for SNOW 3G, and S0-S1 for ZUC. All the S-boxes are implemented as LUTs
expect for ZUC S-box S0. Only one S-box of each kind is implemented leading to
a FSM that produces one output word every 4 clock cycles.

46 Architecture Exploration

Chapter4
Crypto Processor

In this chapter, the complete hardware security Intellectual Property (IP) architec-
ture is presented. The module is composed of processing elements that realize the
functionality defined by the algorithms detailed in Chapter 2, and of a intercon-
nect logic used to create a data and control path between the processing elements.
The module also contains the control and interface to be used and connected to
an AMBA High-performance Bus (AHB). This allows the module to receive and
send data while being configured by a master, a Central Processing Unit (CPU)
or a micro-controller for example.

A top-down hierarchy is used to present the hardware implementation, starting
from the top overview with its Interface (IF) and data path. Furthermore the
controller and the processing cores are introduced.

4.1 Top Overview

The security IP is designed as a standalone block to implement all the hardware
to secure the data as defined by 3GPP for NB-IoT. The module includes the ci-
phering logic to process the three algorithms used for NB-IoT, SNOW 3G, AES
and ZUC; the blocks realizing confidentiality and integrity cipher mode; the mul-
tiplexing logic between the different algorithms and modes; and the interfacing
logic as a Slave on an AHB to receive and send as well data as parameters.

The top level architecture is illustrated in Figure 4.1. The processing elements
composing the security IP are represented in green with the data path connection
and blocks in black. The parameters received and stored in the AHB IF and used
to configure the blocks are represented in blue.

47

48 Crypto Processor

AHB
IF

FIFO
TX

MUX

Confidentiality

FIFO
RX

Integrity

MUX Cipher

Security IP

AHB Bus Data Channel
Parameter /
Control signals

FIGURE 4.1: Block diagram of Security IP top

4.1.1 AHB Interface

The security IP communicates only via an AHB IF. The AHB is a bus protocol
part of Advanced Microcontroller Bus Architecture (AMBA) created by ARM as
an open-standard for on-chip communication between hardware blocks. The bus
complete specification is available on ARM website [14]. The version used is
AHB-Lite from ARM AMBA 3 standard.

AHB separates the address and its associated data on two distinct cycles, called
address and data phase respectively. A cycle is composed of the address phase
and the data phase associated to the previous address phase. This overlapping
of address and data phases enables a high performance operation by ensuring a
pipelined access to the bus. This is illustrated in Figure 4.2. For example at the
time t2, the address cycle is A2 while the data cycle is D1.

t0 t1 t2 t3 t4 t5

clk

address A0 A1 A2 A3

data D0 D1 D2 D3

FIGURE 4.2: Timing diagram of AHB address/data cycles

The Slave samples the transmission request sent by the Master on the address
phase and defined by the following signals:

Crypto Processor 49

hsel Select the Slave when active high. The Slave must ignore the transaction
when the signal is low.

htrans Select the type of transaction. This 2-bit signal possesses four values spec-
ifying the type:
IDLE This type indicates that the Master performs no data transfer. The

Slave must ignore the transfer.
BUSY This type allows the Master to insert idle state during a burst. The

burst sequence is not stopped but the Master is unable to provide the
next transfer immediately.

NSEQ This type indicates a single transfer of the first transfer of a burst
sequence.

SEQ This type indicates that the following transfers are part of a burst. In
a burst, the address is related to the address of previous transfer.

haddr Value of the address of the transaction. The Slave uses the address to select
which data is addressed by the request.

hwrite Select a write transaction when the signal is high, else a read transaction
is enabled.

hburst This signal contains the 3-bit value indicating the type of burst of the
transfer.

hready Set by the Slave to indicate the Master that the transaction is acknowl-
edged when the signal is high.

hresp This signal provides the Slave’s response to the Master, indicating an error
when high.

The transaction data is present on a following phase and composed of these sig-
nals:

hrdata Data received by the Master from the Slave.

hwdata Data sent by the Master to the Slave.

The Slave samples all signals on the address phase while only the two data sig-
nals, hrdata and hwdata, are sampled during the data phase. The address and the
data signals have a size of 32 bits in this design. The Slave will only be capable of
requesting a data phase extension by setting hready to zero.

As shown in Figure 4.3 that illustrates an AHB write transaction, during the cycle
t1 the Master asserts the address to A0. The write transaction is defined with the
active high hwrite signal during the address cycle. The recipient Slave is selected
with its hsel signal enabled and it provides its acknowledge to the Master with
the signal hready, high showing that the Slave is ready during the cycle t1. The
Master provides the data D0 associated to address A0 on the next cycle t2. On the
same cycle, it also provides the address A1 for the next transfer. The data D1 set

50 Crypto Processor

during the cycle t3 is associated to a signal hready placed low by the Slave. The
Master must retain constant the data value D1 on the hwdata signal as well the
other signals, like the address A2 of the next transfer, until the Slave is capable of
accepting the current request by setting the hready signal to logic ’1’. This is done
in cycle t6.

write pending

t0 t1 t2 t3 t4 t5 t6 t7 t8

hclk

hsel

htrans IDLE NSEQ NSEQ NSEQ IDLE

haddr A0 A1 A2

hwrite

hwdata D0 D1 D2

hready

FIGURE 4.3: Timing diagram of AHB write

The read sequence is relatively equivalent to the write transaction previously de-
scribed. The signal hwrite is set to 0 to define a read transaction. The data is
present on the hrdata signal instead of hwdata. The data is asserted by the Slave
on the same cycle as it activates its ready status with an hready active high. De-
pending on the Slave, the data may be directly available or after some time. In
Figure 4.4 the two cases are illustrated. At cycle t2, the address A0 is received by
the Slave IF, the signals hsel and hready being both active high. On the next cycle,
t3, the data has been transmitted to the Master as the signals hsel and hready are
still active high. This is the fastest answer possible on AHB. At cycle t4, the Slave
deactivates its ready signal, meaning that the previous read requested data is not
ready and therefore extending the current data phase. The Master must keep con-
stant the address cycle till the Slave asserts the hready signal. This is done at time
t7 when the Slave is able to provide the read data.

The Security IP treats the burst transfer as normal transfer. As the module uses
an unique address for the data, specified in Table 4.1, transferring multiple data
is not realized with burst. This type of transfer defines an incrementing address
related to the previous cycle. In the case of this IP, the transfer is always NSEQ for
the data. Nevertheless, for the register-mapped parameters, a sequential access
may be done with a burst.

Crypto Processor 51

read pending

t0 t1 t2 t3 t4 t5 t6 t7 t8

hclk

hsel

htrans IDLE NSEQ NSEQ NSEQ IDLE

haddr A0 A1 A2

hwrite

hrdata D0 D1 D2

hready

FIGURE 4.4: Timing diagram of AHB read

4.1.2 Data Path

The data path regroups the signals where the data transits between the connected
blocks. In order to keep the data synchronized between modules accepting differ-
ent rate and timing for data, handshake signals are adopted. This method allows
the data to be passed only when the send and receiver are synchronous, both
of them ready at the same cycle. A channel names the collection of data with
handshake signals.

Figure 4.5 presents handshake signals accompanying the data. The signals are
defined from the sender point of view. data_out and valid_out are asserted by the
sender while ready_in is set by the receiver and collected by the sender. A data is
sent when it is acknowledged, i.e. both valid_out and ready_in signals are active
high. For the cycles t2, t3 and t4, the handshake is immediately done as no delay
exists between the cycle. During the cycles t5 and t6, the transfer is pending
for the receiver as it set its ready signal to logic ’0’. The sender must keep its
outputs constant, in this example with the data D3 and the signal valid_out high.
The acknowledgment is realized at the cycle t7 when ready_in is high. The next
transfer shows the case with the receiver ready and waiting for a transaction from
the sender. The data provider takes three cycles to present a new data, the signal
valid_out being low during the cycle t8 and t9.

4.1.3 Channel Multiplexing

Previously in Section 2 was defined the confidentiality and integrity mode. As
these elements are mutually exclusive, their data paths are multiplexed using
channel multiplexers. Two types of multiplexing exist: 2–to–1 channel multi-
plexer and 1–to–2, the latter also being called demultiplexer. Each block MUX

52 Crypto Processor

handshake realized

receiver /
sender ready

receiver
not ready

sender
not ready

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

clk

data_out D0 D1 D2 D3 D4

valid_out

ready_in

FIGURE 4.5: Timing diagram of data handshake

illustrated on the block diagram of the Security IP top in Figure 4.1 is composed
of one 2–to–1 channel multiplexer and one 1–to–2 channel demultiplexer. During
each security process, only one data path is defined by these MUX blocks: via
the confidentiality processing element or via the integrity one. This is selected
with a 1 bit signal i_integrity_en driven by the control module. The first MUX
block connects the TX and RX First-In, First-Out (FIFO) memories to the appropri-
ate processing element, confidentiality or integrity core. The second MUX block
multiplexes the channels signals from the confidentiality and integrity cores to
the ciphering module.

4.1.4 FIFOs

FIFOs act as a buffer on the data path. In order to not limit or be limited by the
AHB and its IF, the FIFO containing a memory allows to store a larger amount of
data in the IP. The FIFO size was implemented to 16 words of 32 bits. The input
FIFO TX takes one parameter from the controller, the data length in number of
32-bit words. This is explained by a specific signal part of the data channel path
connecting from the AHB IF to the cipher core. Each of the processing elements
uses a signal data_last to correctly conclude their processing (this is detailed in
Chapter 2. This signal is generated by FIFO TX which counts the number of data
it provides and compares this value to the data length provided by the controller.
The FIFO uses data channels as input and output. The data handshake protocol
allows to avoid overflow and underflow of the FIFO. It guarantees no loss of data
both in writing and reading.

Crypto Processor 53

4.2 Controller

The controller is present in the AHB IF module illustrated in Figure 4.1. This
component encloses the memory mapped registers storing all the security IP pa-
rameters and control capabilities. It also interfaces the AHB IF to the data path
via channel IF.

4.2.1 Memory Mapped Registers

The security IP incorporates several registers mapped on the AHB. They handle
the parameters and status of the IP. The CPU or microcontroller software can
access this information to configure the ciphering process. Table 4.1 lists the ex-
isting registers, their respective address, write and/or read access (Read-Write
(RW), Read-Only (RO) and Write-Only (WO)), as well as a description of their
content.

TABLE 4.1: List of security IP register

Register Address Access Description

VERSION 0x00 RO Contains the IP hardware version.

CONTROL 0x04 WO Write the configuration bits of the IP.

STATUS 0x04 RO Read the status bits of the IP.

DATA_LENGTH_LSB 0x08 RW Contains the LSB word of the data length.

DATA_LENGTH_MSB 0x0C RW Contains the MSB word of the data length.

KEY_WORD_0 0x10 RW Contains the word 0 of the key.

KEY_WORD_1 0x14 RW Contains the word 1 of the key.

KEY_WORD_2 0x18 RW Contains the word 2 of the key.

KEY_WORD_3 0x1C RW Contains the word 3 of the key.

CONTEXT_WORD_0 0x20 RW Contains the word 0 of the context.

CONTEXT_WORD_1 0x24 RW Contains the word 1 of the context.

CONTEXT_WORD_2 0x28 RW Contains the word 2 of the context.

CONTEXT_WORD_3 0x2C RW Contains the word 3 of the context.

TX_DATA 0x30 WO Write the data to be processed by the cipher.

RX_DATA 0x30 RO Read the data to processed by the cipher.

The Table A.1 present in Appendix A details the bit organization of the CONTROL
/STATUS register.

54 Crypto Processor

4.2.2 FIFO Channels Interface

The address of the register TX_DATA and RX_DATA maps the AHB to the FIFOs
channel interface. Contrary to a register mapped, the data is not always available
for writing or reading with FIFO. When a transfer is requested at this address,
a request signal is set, either fifo_wr_transfer or fifo_rd_request depending on the
hwrite signal. The write request is transmitted as the valid signal of the data
channel to the FIFO TX. If the FIFO is not full, its handshake signal ready is high.
This enables the hready on the AHB side while the write request signal fifo_wr_-
transfer is de-asserted. When the FIFO is full, it asserts the ready signal of the
channel to ’0’. In this case, the write request remains valid and the ready signal
on the bus hready is set to ’0’. The AHB is blocked with this pending request. The
safeguard would be to enable a counter. After reaching a defined timeout value,
it would cancel the transfer request and send an error respond to the Master via
the signal hresp. This is not implemented in the current version of the Security IP.
The interface for reading the FIFO RX uses the same principle. The differences
are the connections with the channel signals, where fifo_rd_transfer is linked to the
FIFO ready and the data valid coming from the FIFO is used for the response on
the AHB.

4.3 Cipher Block

The cipher block contains the SNOW 3G, AES, and ZUC cipher modules. The
modules are used as keystream generation cores that will feed a keystream to
the confidentiality or integrity block, depending on the i_integrity_en signal. De-
pending on the value of the i_algo_sel signal, the cipher block with route the in-
put i_start to the appropriate cipher module. Then, the cipher block will provide
a keystream from the selected algorithm depending on the value of the i_algo_-
sel signal. This section describes the hardware architecture of those algorithms’
implementation.

4.3.1 SNOW 3G Cipher Block

This section describes the implementation of SNOW 3G algorithm as described
in Section 2.1.1. Figure 4.6 sketches the FSM that controls the operation of this
hardware block.

As was mentioned in Section 2.1.1, SNOW 3G has two different modes of opera-
tion: initialization mode and work mode. These are shown on the right hand side
of Figure 4.6. The block is initialized in IDLE state, signaling a o_cipher_rdy = ’1’,
meaning that the block is ready to cipher data. When a i_start signal is received,
the block goes to INIT_MODE state. During this transition, the block initializes

Crypto Processor 55

IDLE
o_cipher_rdy⇐ 1
if i_start = ’1’

lfsr_init(key, IV);
o_cipher_rdy⇐ 0;

rst = 0

INIT_MODE
fsm_run();
fb_run();
if sbox_counter >= 3

lfsr_in = fb_out ⊕ fsm_out;
lfsr_run(lfsr_in);
init_counter +1;

sbox_counter +1;

WORK_MODE
fsm_run();
fb_run();
if sbox_counter >= 3

if (i_fifo_out_rdy
& i_data_vld | out_discard)

lfsr_run(fb_out);
out_discard⇐ 0;

sbox_counter +1;

WAIT

i_start = ’1’

init_counter >= 31

!(i_fifo_rdy = ’1’
& i_data_vld = ’1’)

i_fifo_rdy = ’1’
& i_data_vld = ’1’

& i_data_last = ’1’

i_fifo_rdy = ’1’
& i_data_vld = ’1’

FIGURE 4.6: FSM of SNOW cipher block

the LFSR with the values given by the inputs i_key and i_IV and puts the o_ci-
pher_rdy signal to zero indicating this way a busy state to the crypto processor’s
control unit. The two 128-bit signals, key and IV, are stored in internal registers of
the aforementioned control unit and are connected to the cipher block. Further-
more, the registers in the FSM are initialized to zero.

Once the cipher block is in initialization phase, it must be clocked 32 times before
going into WORK_MODE. During this state, the block will first discard the first
output, as indicated by the out_discard flag. Then, SNOW 3G cipher will produce
valid keystream outputs.

In Section 3 we analyzed different possible implementations of the S-boxes SR
and SQ, which are used internally in the FSM the update the registers R1, R2
and R3. The conclusion in this chapter was that one S-box SR and one S-box
SQ should be implemented, both as a ROM. The reason for this was that the on-
the-fly implementations did not offer any increase in performance of any kind,
and also accounted for a bigger area footprint. With this scheme, the FSM can
produce one new output every 4 clock cycles. Furthermore, the use of 4 ROMs
would account for an unnecessary increase in area.
We recall from Section 3.1 that the S-box S1 will map a 32-bit input w to a 32-bit

56 Crypto Processor

output r. This way the content of register R1 will be transformed and stored in

register R2: R1 S1−→ R2. How this is done is detailed in Section 3.1 and repeated
below for convenience:

r0 = (x + 1) SR(w3) + SR(w2) + SR(w1) + x SR(w0),
r1 = SR(w3) + SR(w2) + x SR(w1) + (x + 1) SR(w0),
r2 = SR(w3) + x SR(w2) + (x + 1) SR(w1) + SR(w0),
r3 = x SR(w3) + (x + 1) SR(w2) + SR(w1) + SR(w0).

In total, six additional registers have been created to store intermediate look-up
results. We observe that in order to calculate the output r it will be necessary to
store SR(w0), SR(w1) and SR(w2). Then, on the last clock cycle SR(w3) is com-
puted and together with the stored values the output word r is generated. The
same is done for S-box SQ which is used to transform the content of R2 and store

it in R3: R2 S2−→ R3.

The feedback path has been implemented in a time multiplexed manner which
demonstrated, as shown in Section 3, to present optimal results. The FSM has a
throughput of 1 output every 4 clock cycles, and therefore is seems natural to use
a feedback implementation that also provides an output every 4 clock cycles.

To keep the design synchronized a counter named sbox_counter is used. This mod-
ulo 4 counter will indicate when a new output word from the FSM is available.
Once this output is produced, it may be the case that a component connected to
the SNOW 3G keystream generator is not ready to send and/or receive data. In
this case, the block will go into WAIT state until the sender and receiver blocks
are ready to send and receive data, respectively. This situation is met when the
handshake signals i_data_valid and i_fifo_out_rdy are both logic ’1’.

Since the LFSR, the feedback, and the FSM all have to be clocked at the same time,
the throughput of the design will be given by the following expression:

TSNOW 3G = max(LATFSM, LATLFSR, LATFEEDBACK) = 4 clock cycles

In this scenario, SNOW 3G cipher has an initial latency of:

LSNOW 3G = 33× 4 + 4 = 136 clock cycles

to produce the first valid output keystream. Of these, 132 clock cycles are taken
by the initialization phase, 4 clock cycles are needed to discard the first output
and finally 4 additional cycles to produce the first output.

4.3.2 AES Cipher Block

This block implements the algorithm AES describes in Section 2.1.2. The module
is built around a FSM that follows the Algorithmic State Machine with Datapath

Crypto Processor 57

(ASMD) illustrated in Figure 2.3. Each of the FSM states, showed in Figure 4.7,
corresponds to a transform or function defined by the algorithm.

IDLE
rst = 0

EXPAND_KEY

RECEIVE_DATA

SUBBYTES

SHIFTROWS

MIXCOLUMNS

SEND_DATA

ADDROUNDKEY

start = 1

expand_key_done = 1

all_data_received = 1

state_done = 1

state_done = 1

state_done = 1
& final_round = 1

state_done = 1

state_done = 1
& final_round = 1

state_done = 1

all_data_sent = 1

last_data_done = 1
& all_data_sent = 1

FIGURE 4.7: FSM of AES cipher block

EXPAND_KEY

This hardware generates the expanded key. As the total size of this key is 1408
bits, it is implemented as a Read-Access Memory (RAM) with 44 words of 32 bits.
The usage of a memory means that the maximum number of words that can be
generated and store is one per clock cycle. As showed in Figure 2.8, the first 4
words are identical to the cipher key.

This hardware generates the expanded key. The total size of this key is 1408 bits
and can be calculated previous to the ciphering stage and then stored in mem-
ory. This represents an important area of storage, either as registers or a memory
implementation, requiring a total of 44 words of 32 bits. Moreover a single-port
memory would constrain the throughput of this operation due to its recursive-
ness and thus, the usage of a memory means that the maximum number of words
that can be generated and store is one per clock cycle.

58 Crypto Processor

In order to reduce the area of the implementation, this work implements the key
expansion as an on-the-fly calculation. As showed in Figure 2.8, the first 4 words
are identical to the cipher key. The sequence to generate the next expanded
key word includes the byte shift (RotWord() function application) of the previ-
ous word, w3 or later w(i−1)×4+3, and the transformation SubWord(). In order to
optimize the area, only one S-Box SR is implemented. The SubWord() hardware
takes 4 clock cycles as it applies the substitution box on each of the 4 bytes com-
posing the word. The WordRcon is selected with the iteration counter used as an
index. This sequence is done in 4 cycles. At this point, each generation of the next
4 expanded key words use the previous word and the generated word 4 places
behind. The previous word is temporary stored in a register so only the word
w(i−1)×4 needs to be read. The result of the XOR operation is written as a new
word into the RAM. These memory accesses, one read and one write for each ex-
panded key word, takes 2 cycles to be realized. The total time in cycle to process
the full expanded key is given by the next equation:

TEXPAND_KEY = Twrite key + (Nwords × Tgenerate word + TSubWord)× Niterations

= 4 + (4× 2 + 4)× 10
= 124 cycles

Data States

The two data states, RECEIVE_DATA and SEND_DATA, handle the channel hand-
shake signals for receiving and sending data, respectively. As the AES cipher
works on 128 bits, 4 words of 32 bits, it takes at least 4 cycles to receive or send
all the words, depending of the availability of the external block. The words are
stored and organized as byte in a data state as defined in Figure 2.2.

TRECEIVE_DATA = Nwords TSEND_DATA = Nwords

= 4 cycles = 4 cycles

SUBBYTES

This FSM state enables the substitution of the bytes using the S-Box SR. To limit
the resource utilization, only one S-box is implemented as a ROM. It is the same
resource as the substitution box used by the key expansion. As a data state is
composed of 16 bytes, it takes 16 cycles to realize the full substitution process.

TSUBBYTES = Nbytes × TSbox SR

= 16× 1
= 16 cycles

Crypto Processor 59

SHIFTROWS

This operation reorganizes the bytes of the state using a byte shifting of the rows.
As the shift operation has a low cost hardware, all the required shifts are done in
one cycle.

TSHIFTROWS = 1 cycle

MIXCOLUMNS

This state enables a matrix multiplication in GF(28) with a constant matrix. The
byte multiplier uses the GF operator Mul(x, y) defined in Section 3.1.1.

TMIXCOLUMNS = Nwords

= 4 cycles

ADDROUNDKEY

The ADDROUNDKEY state enables an XOR operation between each word of the
data state and an expanded key word. The latter being stored in a RAM, one
operation is done every cycle for a total of 4 cycles to process the 4 words data
state.

TADDROUNDKEY = Nwords × TRAM read

= 4× 1
= 4 cycles

The total number of cycles to realize an AES ciphering is given by the following
equation:

Tcipher = TRECEIVE_DATA + TSEND_DATA + TEXPAND_KEY + TADDROUNDKEY

+ (TSUBBYTES + TSHIFTROWS + TMIXCOLUMNS + TADDROUNDKEY)× 9
+ TSUBBYTES + TSHIFTROWS + TADDROUNDKEY

= 4 + 4 + 124 + 4 + (16 + 1 + 4 + 4)× 9 + 16 + 1 + 4
= 382 cycles

This result supposes that the channels to receive and send data are always ready
so it takes the minimum number of cycles to transfer the data state.

60 Crypto Processor

4.3.3 ZUC Cipher Block

ZUC cipher keystream generation block is described in this section. The oper-
ation of this block is really similar to the one described for SNOW 3G ciphering
and thus we will mainly focus on the dissimilarities between SNOW 3G and ZUC
ciphering.
The FSM operation described in Figure 4.6 applies to ZUC ciphering. The major
structural difference in the LFSR is a 31-bit shift register of length 16. Also, a bit
reorganization module is implemented.
The implementation of the FSM is done in conformance with the results obtained
in Section 3, i.e. S-box S0 is implemented on-the-fly since the area in this imple-
mentation is 58 % lower. As for the S-box S0, the implementation is really similar
to S-box SR, involving inversion in GF and an affine transformation. Therefore,
this S-box is implemented as a ROM. The number of substitution boxes used in
the FSM is kept as low as possible, and consequently only one S0 and one S1 S-
box is implemented. This leads to a FSM that generates 1 output every 4 clock
cycles.

ZUC Feedback Implementation

As we saw in Section 2.1.4 the feedback path performs the function:

v =
[
215s15 + 217s13 + 221s10 + 220s4 + (1 + 28)s0

]
mod (231 − 1)

This function has been implemented in different ways. The first approach was
to implement the feedback path in an adder tree configuration, while the second
took advantage of the fact that we have 4 clock cycles to compute the feedback
result. The two implementations are shown in figure Figure 4.8.

Adder Tree Implementation First, taking advantage of using an HLS tool
we described the feedback path using a modulo operation % after every addition.
This led to a high area figure in the feedback path, being this area close to 100 kilo-
Gate Equivalent (kGE). During the second approach, the modulo was described
as follows:

Proposed implementation 1:

const TWO_POW_31_M1← 0x7FFFFFFF
v = a + b
if v ≥ TWO_POW_31_M1 then

v = v− TWO_POW_31_M1;
end

This implementation shows much better results than using a direct C++ modulo

Crypto Processor 61

(a) Adder tree

(b) Time multiplexed

FIGURE 4.8: ZUC feedback implementation

operation and letting Catapult implement it. The last implementation is taken

62 Crypto Processor

from [12] section 3.2, where the following implementation is proposed:

Proposed implementation 2:

v = a + b
if carry bit is 1 then

v = v + 1;
end

The results from the three implementations described are shown in Table 4.2. We
observe how Catapult generates 5 adders for the adder tree plus one additional
adder to perform each of the v = v + 1 operations on the second proposed imple-
mentation. In the first implementation proposed, the number of adders imple-
mented by Catapult is increased to 15.

Time Multiplexed Implementation Four clock cycles are available to com-
pute the feedback and so, a time multiplexed solution has been explored using
Catapult Synthesis. This solution proves to be the most adequate one. For this
implementation, we have based implemented the modulo based on the second
proposed implementation. An architecture with two adders with multiplexed in-
puts and two registers has been implemented, leading to the results in Table 4.2.
Also in this case, we observe two additional adders due to the v = v + 1.

TABLE 4.2: ZUC feedback adder tree vs. time multiplexed results

Implementation
Area

(normalized)
Throughput

(cycles)
Slack

@ 50 MHz (ns)
N

adders

Built-in modulo (%) 29.4 1 1.04 N.A.

Proposed 1 2.6 1 15.82 15

Proposed 2 2.1 1 16.41 10

Time multiplexed 1.0 4 16.08 4

4.3.4 Stream Cipher Block

It is noticed from the previous sections how the two stream cipher algorithms
implemented are very similar in structure. From sections 3.5, 4.3.1 and 4.3.3 we
can extract the following conclusions:

• The control logic used in SNOW 3G and ZUC ciphering as well as the hand-

Crypto Processor 63

shake protocol with external modules is the same.

• The feedback loop is based on different arithmetic operations and therefore
differs from one algorithm to the other.

• Both use a shift register of length 16. If a 32-bit shift register is used, it can
be implemented by both algorithms.

• The FSM although presenting common operations, has been proven in Sec-
tion 3.5 to provide better results if kept as independent modules.

With these results presented, SNOW 3G and ZUC stream cipher algorithms have
been partially combined into a single block with common control and a common
32-bit shift register. The feedback and FSM modules have been kept independent.
Some extra logic is necessary to be able to implement both algorithms in the same
module. An algorithm select input is needed to select between SNOW 3G and
ZUC keystream generation. This signal will be the i_algo_sel already mentioned
in Section 4.3. Furthermore, the necessary multiplexing logic to connect the ap-
propriate signals to the output and shift register input has been implemented.
Table 4.3 summarizes the results obtained.

TABLE 4.3: Stream cipher algorithms combined

Implementation
Area

(normalized)
Throughput

(cycles)
Slack @ 50 MHz

(ns)

SNOW 3G 1.3 4 15.08
ZUC 1.0 4 13.80

Total 2.3 - -

Combined 1.8 4 12.95

The combination of SNOW 3G and ZUC leads to an optimized design exhibiting
22% less area footprint than using 2 independent cipher cores. Thus, the final
implementation of the cryptographic processor will use this combined stream
cipher module.

4.4 Confidentiality Block

The following section details how the confidentiality algorithms defined in Sec-
tion 2.2 have been implemented. The confidentiality block is presented in Fig-
ure 4.9.

This block can be started only when the signal i_integrity_en is ’0’, and will per-
form one of the EEA depending on the i_algo_sel input. This module contains

64 Crypto Processor

FIFOs
(MUX)

Ciphers
(MUX)MUX MUX

Counter

SNOW 3G

ZUC

AES

Confidentiality Block

Data Channel
Parameter /
Control signals

FIGURE 4.9: Confidentiality block diagram

the logic of each confidentiality algorithm, multiplexed with the algorithm select.
Four channels are present as interface for this component. One input and one
output channel are connected respectively to the TX and RX FIFO through the
channel multiplexer. Another output and input channel are part of this block and
connected to the cipher core through the second channel multiplexer. The confi-
dentiality block handles these four channels in order to realize the EEA function-
ality by using the cipher processing element.

For SNOW 3G and ZUC, both stream cipher, the block will perform an XOR
operation between the keystream coming from the cipher block and the input
data from the TX FIFO. The handshake signals between the FIFOs and the ci-
pher block is bypassed by this block as the cipher module handles these signals
for SNOW 3G and ZUC. The logic is kept minimal to process the confidentiality
operations.

On the other hand, in the case of AES, the cipher block must be loaded with a
set of counters Ti that represent the inputs of the AES cipher block in CTR mode.
Therefore, this block will generate the necessary handshake signals towards the
input/output FIFOs and towards the cipher block as defined in Section 2.2. The
AES logic of the module must create and provide the data to the AES core in
order to obtain the correct output used as a keystream. The keystream output
originated from each of the input counters to the cipher block will then be XORed
with the input message. The confidentiality AES uses the context parameters pro-

Crypto Processor 65

vided by the AHB IF controller and set a counter incremented for each block of
data sent to the cipher core. When receiving the ciphered data, it synchronizes
the keystream words with the input data received from the TX FIFO in order to
XOR the data word to produce the ciphered/plain text for encryption/decryp-
tion. This synchronization also manages the discarding of words produced by
the cipher block. As detailed in Section 2.1.2, the AES cipher core always pro-
duces a block of data, i.e. 4 words of 32 bits. The plain/ciphered text to process
may not have a length multiple of 4 words. For the last part of text when the
number of text words is less than 4, all of the 4 produced words by the cipher can
not be used. They are acknowledged by the confidentiality logic anyway in order
to empty the AES cipher core of them.

4.5 Integrity Block

The integrity block contains the hardware logic to implement the integrity algo-
rithms defined in Section 2.3. This section presents the integrity module, illus-
trated in Figure 4.10, part of the security IP.

FIFOs
(MUX)

Ciphers
(MUX)MUX

Integrity SNOW 3G

Integrity AESIntegrity AES

Integrity ZUCIntegrity ZUC

MUX

Integrity Block

Data Channel
Parameter /
Control signals

FIGURE 4.10: Integrity block diagram

As for the confidentiality block, introduced in Section 4.4, the integrity module
has four channel interfaces: two inputs from the TX FIFO and the cipher core
through channel multiplexers; and two output channels that connect to the RX

66 Crypto Processor

FIFO and the cipher core input through channel multiplexers. The module is
enabled when the signal i_integrity_en is high. It will perform one of the EIA af-
ter receiving ’1’ on its start signal i_start and depending on the i_algo_sel input.
The module multiplexes the three integrity algorithm’s hardware logic. The fol-
lowing sections detail the implementation of integrity protection for each of the
SNOW 3G, AES and ZUC algorithms. In each of the FSMs presented, every state
with a name starting with SEND or RECEIVE are communication states. They
include the handling of channel handshake signals.

4.5.1 SNOW 3G Integrity Block

This integrity block implements the SNOW 3G integrity algorithm defined in Sec-
tion 2.3.1. The SNOW 3G cipher is used to produced 5 keystream words. Dur-
ing the first round of the FSM illustrated in Figure 4.11, in the state RECEIVE_-
FROM_CIPHER, two keystream words are acquired from the cipher and stored.

IDLE
rst = 0

SEND_MAC RECEIVE_FROM_CIPHER

RECEIVE_MESSAGE

UPDATE_EVAL_M

start = 1

last_round = 1

first_round = 1

second_round = 1

two_data_received = 1
| last_data_received = 1

64_iteration_done = 1
& last_message_received = 1

64_iteration_done = 1
& last_message_received = 0

fifo_rx_rdy = 1

FIGURE 4.11: FSM of SNOW 3G integrity block

The following state is RECEIVE_MESSAGE where two message words are re-
ceived and stored into registers. The main processing is realized in UPDATE_-
EVAL_M. The previously saved values are used to compute the update of the
64 bits register EVAL, which takes 64 iterations. The detailed hardware logic

Crypto Processor 67

of this operation is illustrated in Figure 4.12. All the operations are realized on
64 bits. Two new message data words are received and used in the following
UPDATE_EVAL_M. This process is repeated until all the message words have
been consumed. At the end of the last UPDATE_EVAL_M processing the last
message data, two keystream words are taken from the cipher. During this sec-
ond round, the state UPDATE_EVAL_M realized the same operation to update
EVAL but with these new keystream words and the length of data as input words
instead of message data.

EVAL

0

1

64

64
M

2 Keystream words

C

<< 1

MSB1
0

1

1

0

64

64

First
iteration

MULxPOW

FIGURE 4.12: Diagram of EVAL_M

Finally a last keystream word is obtained and XORed with the most significant
word of the final value of EVAL. This result is the 32 bits word MAC that is sent
in the last state SEND_MAC.

4.5.2 AES Integrity Block

The AES integrity algorithm is presented in Section 2.3.2. This module imple-
ments the hardware to realize the integrity features of AES in the CMAC mode.
This module handles the handshake signals of the integrity channel interfaces,
computes the subkeys K1 and K2, provides the message data to the AES cipher
engine, and extracts the MAC word from the cipher results. These operations are
sequenced with the FSM illustrated in Figure 4.13.

After receiving a start signal, the FSM state goes to SEND_TO_CIPHER. As its
name shows, this state sets the data to be used by the cipher core and sends it. It
always last at least 4 cycles as a block of data to sent to the cipher is composed
of 4 data words. On its first call, the data is set to zero. The first ciphering is
used to produce the ciphered text to generate the subkeys K1 and K2. On the
other call, the data is either the received message data, the message data XORed

68 Crypto Processor

IDLE
rst = 0

SEND_TO_CIPHERSEND_MAC

RECEIVE_MESSAGE

COMPUTE_SUBKEY

RECEIVE_FROM_CIPHER

start = 1

all_data_sent = 1

all_data_received = 1
& first_round = 1

all_data_received = 1

all_data_received = 1
& last_round = 1

all_data_received = 1

fifo_rx_rdy = 1

FIGURE 4.13: FSM of AES integrity block

with the cipher output, and for the last call also XORed with the subkey. This
is illustrated in Figure 2.14. Once all the 4 words have been sent to the cipher
through the channel and have been acknowledged, the next state is RECEIVE_-
FROM_CIPHER. This state will handle the data received from the cipher core by
controlling the channel and its handshake signals. After the 4 words resulting
from the ciphering have been acknowledged, the FSM changes its state to either
COMPUTE_SUBKEY when it is the first call, SEND_MAC when it is the last call,
or RECEIVE_MESSAGE otherwise. COMPUTE_SUBKEY state is reached a single
time and lasts one cycle. It computes the subkey K1 and, only when necessary,
K2 as defined in the algorithm 2.2. The FSM state RECEIVE_MESSAGE allows
the module to receive the message data from the TX FIFO. Most of the time, 4
words are obtained from the FIFO but for the first block of data, only two words
are expected. As specified in Section 2.3.2, the first data block is composed of two
words from the context and two words from the message. The context data is
directly available to the module as it is passed as a parameter from the registers
present in the AHB IF controller. The last time the state RECEIVE_MESSAGE is
the current state, the number of data to receive is between 1 and 4 depending
on the data length in word modulo 4 words. The last state is SEND_MAC and
handles sending of the resulting MAC. This 32 bits word is taken from the output
of the last cipher processing.

Crypto Processor 69

4.5.3 ZUC Integrity Block

This block implements the algorithm presented in Algorithm 2.3 in Section 2.3.3.
The following FSM, Figure 4.14 is implemented in order to compute the 32 bits
word MAC. To summarize, the algorithm recursively XORs words from the gen-
erated keystream when the bit at the iteration index has a value of ’1’. To achieve
this, the first state after the module receives an active start signal is RECEIVE_-
MESSAGE. One message word is stored in a register and the FSM current state
is set to the next state, RECEIVE_FROM_CIPHER. The first time this state is
reached, two keystream words from ZUC cipher are obtained, while only one
is saved the subsequent times. The following state is UPDATE_T. The 32 bits
register T contains the result of all the recursive XOR iterations.

IDLE
rst = 0

SEND_MAC RECEIVE_MESSAGE

RECEIVE_FROM_CIPHER

UPDATE_T

start = 1

(first_update = 0 & n_received = 1)
| n_received = 2

32_iteration_done = 1
& last_message_received = 1

32_iteration_done = 1
& last_message_received = 0all_iteration_done = 1

& last_update = 1

fifo_rx_rdy = 1

FIGURE 4.14: FSM of ZUC integrity block

As showed in Figure 4.15, the two keystream words are concatenated. An index
pointer i selects 32 bits out of the keystream and a bit from the message. If the
message bit M[i] is ’1’, the register T is updated with its previous value XORed
with the pointed keystream word. This computation is repeated until i reaches 32.
It means the first 32 bits of the concatenated keystream word has been consumed,
as the full message word. The FSM state moves back to RECEIVE_MESSAGE
first, then to RECEIVE_FROM_CIPHER. With a new message word M and a new
keystream word, the process is repeated. Once the last message word has been
received and used, T is XORed two more times with keystream words, without

70 Crypto Processor

condition. The last value of T is the MAC that will be send in the next state
SEND_MAC.

T
1

0

32

32

M

Keystream wjKeystream wj+1

FIGURE 4.15: Diagram of UPDATE_T

4.6 Results

In this section, the synthesis results from Catapult are presented. Each module
has be run through the tool in order to obtain the RTL source. The sample library
for 65 nm technology is used. The area value provided by Catapult was converted
to an equivalent number of gates. A NAND gate has been synthesized and the
resulting area has been used as the conversion factor to obtain the number of
gates from the Catapult area:

AreaNAND = Catapult area (65nm) / 1.6

The area results of the IP and its internal modules are reported in Table 4.4 nor-
malized against the smallest design, corresponding to ZUC integrity block.

Crypto Processor 71

TABLE 4.4: Catapult synthesis results

Module
Area

(normalized)
Area Ratio

(%)

Cipher: Combined SNOW 3G and ZUC 6.4 32.0

Cipher: AES 3.5 17.7

Integrity: SNOW 3G 1.9 9.5

Integrity: AES 3.0 15.2

Integrity: ZUC 1.0 5.1

Controller 1.8 9.2

Others
(Confidentiality, MUXes, . . .)

2.3 11.3

Security IP 19.9 100.0

72 Crypto Processor

Chapter5
Verification and Benchmarking

Verification has been done at different hierarchy levels, ranging from individual
cipher and integrity blocks to simulations of the crypto processor as a whole. Fur-
thermore, this verification has also been done at different abstraction levels. Start-
ing from C++ simulations, the ciphering and integrity blocks have been tested at
a functional level. Then, AES, SNOW 3G and ZUC ciphering and integrity blocks
have been run through Catapult Synthesis to generate the RTL description of
these modules, which has then been verified at a behavioral level using an RTL
testbench.

The control, data path and confidentiality blocks have been described using Sys-
tem C language. These modules has been directly verified using cycle accurate
simulations. Finally, to test the crypto processor, cycle accurate simulations have
been run on a system including an ARM processor, and the crypto processor con-
nected through an AHB bus.

5.1 C++ Verification

The main hardware processing elements such as the ciphering and integrity block
have been developed using HLS C++ with Algorithmic C (AC) libraries. The
source code is interpreted by Catapult in order to generate RTL modules. Before
this step, the functionality of the block is tested using a software testbench written
in C++. The scope of this verification is to control the compliance of the described
functions to the 3GPP specifications. The focus is not placed on the hardware
particularity such as the channel interfaces or the complete flow. This will be
the scope of the other levels of control and presented in the next sections, RTL
Verification and Cycle Accurate Simulations. Each block is individually verified
with a C++ testbench containing the testcases data from the specifications.

73

74 Verification and Benchmarking

A run_test function is defined to execute a single of the block tested. The argu-
ments given to the function are the parameters (key, context, data length,. . .), the
input data (either plain text or message) and the expected ciphered data. The test
function provides the needed data to the block under test as a C structure. The
block is run as a function call, which returns an output structure containing the
output values. Using the returned value from this function, run_test selects the
future data whom are set as the input structure.

As the block is described as a cycle accurate C++ function, this is executed inside
a while loop. Algorithm 5.1 illustrates as pseudo-code the structure of the run_test
function.

Let struct_i be a structure of all the input elements.
Let struct_o be a structure of all the output elements.
Set struct_i← arguments as parameters.
// Start the block
struct_i.i_start← 1;
Call block.run(struct_i, struct_o);
struct_i.i_start← 0;
// Run each cycle until the block has finished
while struct_o.o_block_rdy 6= 1 do

// Run the block for 1 cycle
Call block.run(struct_i, struct_o)
// Set input data when block is ready
if struct_o.o_fifo_in_ack = 1 then

struct_i.i_data_vld← 1;
struct_i.i_data← input_data[cnt_in++];

else
struct_i.i_data_vld← 0;

end
// Acknowledge and check the output data
if struct_o.o_data_vld = 1 then

struct_i.i_fifo_out_ack← 1;
if struct_o.o_data = ref_data[cnt_out++] then

error_cnt++;
end

else
struct_i.i_fifo_out_ack← 0;

end
end
Display error_cnt

Algorithm 5.1: Pseudo-code of the testbench function run_test

The three sections inside the while loop, function call, input data and output data,
can be interchanged. Even though C++ is a sequential language, the usage of
handshake signals allows a parallelism of the input, output and block section
during the simulation. The run_test function is used with each test data set al-

Verification and Benchmarking 75

lowing to verify the functionality of the module independently of the previous
run.

5.2 RTL Verification

From the HLS C++ code, Catapult generated RTL sources. The modules are veri-
fied at this level of description in order to verify the functionality and particularly
the channel handshake interfaces. This is realized with RTL testbenches that have
been written for the cipher and integrity blocks. The module to test, also named
Unit Under Test (UUT), is instantiated in the testbench along with stimuli gen-
erator and result checker. The input data channel of the cipher is connected to
the stimuli generator. This source provides the module with the testcase’s data
respecting the channel signaling. It also defines various delays for the valid data
in order to fully simulate the handshake protocol. This can be observed in Fig-
ure 5.1. In this simulation, the signal tb_i_data_vld, part of "Channel in" group, is
defined in the testbench to represent a rarefaction of the input data. For the first
five data, the cipher is producing data at maximum throughput as the delay be-
tween two input data valid is less than 4, the throughput of the cipher SNOW 3G.
As the input data rate continues to slow down, the cipher equally reduce its gen-
eration of keystream words to stay synchronized. It can be noticed that the output
signals tb_o_data_vld and tb_o_fifo_in_ack always match each other.

Figure 5.2 represents a full SNOW 3G cipher process is simulated to generate
two keystream data words. The one cycle active start, tb_i_start, launches the
hardware ciphering. The signal tb_o_cipher_rdy indicating that the module is idle
is de-asserted. SNOW 3G cipher processes through the initialization mode de-
scribes in Section 2.1.1. It lasts for 32 iterations of 4 clock cycles. Directly fol-
lowing this sequence, the first keystream data produced is discarded. It can be
seen in the figure, the signal tb_o_z is set to a value after the initialization mode
without an active valid tb_o_data_vld. The first valid keystream data is generated
Tf irst keystream cycles after the start signal, defined by the following equation:

Tf irst keystream = Tinitilization + Tdiscard + Tdata

= (Ninit iteration + Ndiscard + Ndata)× Nthoughput

= (32 + 1 + 1)× 4
= 136 cycles

This is visible in the figure by counting the number of transitions in the output
data signal tb_o_z and multiplying this value by the throughput of the cipher, 4.

The testbench is self-checking, meaning that it contains the expected output data.
Each data received from the UUT is compared with the reference value. An error
message is triggered when a mismatch happens. Each simulation is concluded
with the detection of the idle state of the tested module, realized with the tb_o_-

76 Verification and Benchmarking

4 cycles 4 4 4 5 6 7

FIGURE 5.1: RTL simulation of the SNOW 3G cipher with various
data delay

handshake

initialization 32× 4 = 128 cycles
cipher 2 keystream words

FIGURE 5.2: RTL simulation of the SNOW 3G cipher generating 2
keystream words

cipher_rdy after the last test set. A summary message is defined to list the passing
and failing tests to overcome the need of visual control of the waves.

Verification and Benchmarking 77

The simulation of a ciphering using AES algorithm is illustrated in Figure 5.3.
The testbench used for this simulation is identical, except for the data that comes
from AES testcases. As described in Section 4.3.2, the input and output data are
not processed continuously with this block cipher. The first phase is the key ex-
pansion. It is followed with the request of 4 input data words. After the cipher
run, a cipher state composed of 4 data words is provided as the result.

key expansion
cipher processing

data in

data out

FIGURE 5.3: RTL simulation of the AES cipher

Figure 5.4 is an annotated waves image of AES integrity. We observe the different
phases of the integrity block communicating with the cipher module as explained
in Section 4.5. To process the AES integrity algorithm on a data state, i.e. 4 words,
the cipher element is used two times: first time to cipher data of zeros in order to
compute the subkey; and a second time to cipher the message data XORed with
the subkey (as the message length is less or equal to 128 bits).

simulated cipher
integrity processing

zeros cipher

ciphered zeros data

cipher input

ciphered data

message

MAC

FIGURE 5.4: RTL simulation of the AES integrity

The Figure 5.5 illustrates the SNOW 3G integrity block. The first two keystream
z1 and z2 are used with the message data, employed two by two, in order to

78 Verification and Benchmarking

update the EVAL value. The next two keystreams, z3 and z4, are used with the
message length available as a parameter input to the module. Finally the result is
XORed with the last keystream z5 to produce the MAC word.

integrity processing

M0,1 M1,2 M3,4

z1, z2 z3, z4 z5

MAC

FIGURE 5.5: RTL simulation of the SNOW 3G integrity

The last wave caption in Figure 5.6, represents two runs of ZUC integrity module.
This block always uses two keystream words more than the number of message
words. Two keystream words, z1 and z2, are always requested first after the first
messsage data.

integrity processing integrity processing

M0 M0 M1 M2

z1, z2 z3 z1, z2 z3 z4 z5

MAC MAC

FIGURE 5.6: RTL simulation of the ZUC integrity

It must be noticed that the timing represented in some of the waves do not re-
flect a realistic latency and time scenario. The cipher modules and the FIFOs are
modeled in the testbench with different timing. This is done in order to test the
handshake signals of the UUT’s channels.

Verification and Benchmarking 79

5.3 Cycle Accurate Simulations

SoC Designer cycle accurate simulations allow the designer to easily perform ar-
chitectural exploration, system analysis and software bring-up, permitting early
stage virtual prototyping of a System on Chip (SoC). The technology of such
tool relies on RTL compilation which will guarantee a perfect match between the
hardware subject to virtualization and the RTL. This tool will thus ensure func-
tional and cycle accuracy. Previous works [10][11] have used this same approach
to evaluate system performance.

The environment has been set up as shown in Figure 5.7. The crypto processor is
shown in green on the right hand side of the figure. The hardware components
of test environment have been classified in the following manner: in blue we can
see the processor subsystem and all the blocks related to the processor (memories,
IOs, ...). In yellow we observe the AHB bus related components such as the AHB
matrix and some interconnect modules which have no actual hardware relevance,
since they are used to perform software conversion between types.

FIGURE 5.7: Test environment on SoC Designer

Using this set up, a simple software driver and a testbench has been developed.
The core functions of the driver allow to send and receive data through the AHB
bus. Then, some other routines have been developed to:

• Get the content of the version register in the IP.

• Set/get the content of the Control/Status registers. Note that writing a RO
register will have no effect.

• Set/get the content of the key and context registers in the IP.

• Set/get the content of the data length registers in the IP.

• Send plaintext and receive ciphertext data to-from the FIFOs in confiden-
tiality mode. Send data and receive a MAC word in integrity mode.

80 Verification and Benchmarking

Refer to figure Table 4.1 for the list of software accessible registers in the IP. These
software functions have been used to perform different confidentiality and in-
tegrity test cases for each algorithm. These test cases are a subset of the available
ones for each algorithm at the time this report has been written. The test vectors
to be provided to the crypto processor can be found in [6] for AES, [9] for SNOW
3G and [13] for ZUC.

Figure 5.8 shows the output prompted in a hyperterminal showing the results of
the testcases provided.

FIGURE 5.8: Succesful test cases results on SoC Designer

The crypto processor must be wrapped to be able to import it in the SoC Designer
environment. This is a fairly easy process which will convert the System C inter-
face into the type of interface that SoC Designer uses to perform the simulations.

The debugging capabilities have been outstanding by using this methodology.
Apart from the possibility of interfacing the block from a processor subsystem,
and developing/testing a software driver during hardware implementation, two
other debug capabilities are offered:

1. Using the system C tracing library has allowed us to see the internal sig-
nals in our design. The trace file is created in the SoC Designer wrapper
module and will store all the activity which is dumped in a .vcd file. Then,
a waveform viewer can be used to open this file and debug the hardware
block as you would do on a normal RTL simulation.

2. The tool offers the possibility to trace the AHB bus transactions, which has
also been of using during debugging.

Verification and Benchmarking 81

Figure 5.9 shows the aforementioned internal waveform viewer during a SNOW
3G confidentiality test. The blue marker represents the data cycle of the AHB
transaction that writes a logic ’1’ of the start_bit of the CONTROL/STATUS regis-
ter. From this moment, cycle 16.790, a SNOW 3G confidentiality is started.

FIGURE 5.9: SNOW 3G AHB bus transactions

We observe the AHB master will be able to sample the first data coming from
the crypto processor on clock cycle 16.931, which translates into a total of ∆ =
141 clock cycles in the communication. The delay is explained in Figure 5.10,
where we observe that SNOW 3G latency is 136 clock cycles as we calculated in
Section 4.3.1 and Section 5.2.

FIGURE 5.10: SNOW 3G initialization cycles

82 Verification and Benchmarking

Chapter6
Conclusions and Further Work

In this last chapter, we conclude our Thesis’ work with a summary of the work
developed. This chapter then follows with a comparison of our crypto processor
with similar constructions. Finally, we will end the document putting forward
some ideas of further work related to this project.

6.1 Conclusion

In this Master’s Thesis we have successfully implemented a security processor
capable of implementing the confidentiality and integrity algorithms specified
by 3GPP for LTE. Using HLS has demonstrated to be very helpful for exploring
different implementations before realizing the final design. For this matter, we
have found that implementing an untimed C++ version of a module gives more
flexibility when using Catapult Synthesis. Then, when an architecture is selected
we found converting this untimed C++ implementation to a sample based im-
plementation gave us more control on the generated RTL by Catapult. However,
as we discussed in Section 1.4.2, by using this sample based approach it will be
harder to perform architectural changes in the future if, for instance, a different
technology or clock frequency in targeted.

From the first implementation to the final presented in this document, some
blocks in the design have suffered major changes. Table 6.1 shows the impact
of these changes on the design area.

SNOW 3G optimizations are due mainly to the change of a pipelined feedback
to a time multiplexed implementation, as was described in Section 4.3.1. ZUC
optimizations are also based on the feedback loop. In this case, the difference
resides in how the modulo addition is performed in the feedback loop, as was
discussed in Section 4.3.3. AES most straightforward optimization was to dispose

83

84 Conclusions and Further Work

TABLE 6.1: Impact of optimizations on final design

Module
Area

(normalized)
Area reduction

(%)

SNOW 3G

SNOW 3G optimized

1.6

1.3
19.7

ZUC

ZUC optimized

1.3

1.0
21.1

SNOW 3G + ZUC

Stream Cipher

2.3

1.8
22.1

AES

AES optimized

1.1

1.0
10.3

of all hardware related to AES decryption, since CTR mode only uses the cipher
block in encryption mode.

6.2 Comparison with State-of-the-Art

Firstly, most of the literature implementations target Field-Programmable Gate
Array (FPGA) as it is a more accessible platform. The comparison between ASIC
and FPGA area is not possible due to the differences of the area measurement:
the kilo-gates equivalence (kGE) is used for ASIC while the area is reported as
number of basic elements provided by the FPGA(registers, LUT, slices,. . .). No
equivalence exists between them as a FPGA LUT can implement both a basic gate
or a more complex combinatory logic. On ASIC, the area result would provide a
quite different number of gates. Moreover it depends on the FPGA used as the
properties of its elements may differ.

The second point is the difference in target technology and application scenario.
When the platform used in the literature is an ASIC, the target is LTE and LTE-A
high performance applications. In this Master’s Thesis’ work, we tried to achieve
the lowest area at the cost of throughput, targeting a NB-IoT platform. A com-
parison with hardware accelerators aimed for low throughput technologies such

Conclusions and Further Work 85

as LTE Cat 1, LTE Cat M1 or NB-IoT would be more adequate.

Finally as a last comment, our area figures are provided by Catapult HLS. As
previously described, this tool allowed to generated RTL from C++/SystemC. It
does not provide optimized area results as other classical synthesis tools gener-
ate from RTL source code. For a 16 32-bit shift register, we reported a difference
of 16% lower area when synthesized with Synopsys Design Compiler compared
to Catapult HLS. More comparisons showed that the area difference may be be-
tween 10 to 40%, always at the disadvantage of Catapult HLS.

In Table 6.2, we have compared our crypto processor design with state-of-the-art
designs.

TABLE 6.2: Comparison with state-of-the-art

Implementation
Area

(normalized)
Data Rate

(Mbps)
Technology

(nm)

AES [32] 1.0 400 90

This work (AES) 1.7 100 65

Stream Cipher [42] 2.3 2700 90

Stream Cipher [29] 3.7 28800 –

Stream Cipher (this work) 3.1 1100 65

Crypto Processor [41] 5.3–20 – –

Crypto Processor (this work) 9.5 – 65

Taking into account the previous comments, we found the closest matching ex-
isting work. For a complete Crypto Processor, very few existing works imple-
menting all the 3GPP’s security algorithms for LTE were found in the literature.
A similar IP from Synopsys is available [41]. When we compare their design with
our solution, we notice that our proposal is in the lower range of their Crypto
Processor. However, they do not clearly define what is included in their smaller
area result. The sources are not always clear whether the provided results include
all the memories needed for the processing. The same can be said about the com-
munication interface.
Our design results include all memories needed, both for the cipher processing
and the data path (FIFO), as well as all interconnect interfaces, both internal with
handshake channels and AHB IF to the external CPU.
In addition, we observe how the reduction in area comes at the expense of a re-
duction in the throughput of our IP in comparison with other designs.

Finally, more accurate and realistic area figures should be obtained from a RTL
synthesis tool in order to increase the confidence on the results.

86 Conclusions and Further Work

6.3 Further Work

Further work can be done on optimizing the key expansion for AES. The actual
version will uses a memory to store the 44 words produced by this key expan-
sion. An on-the-fly implementation can be implemented, which would remove
the need for a memory and would also reduce the area and could reduce the
power consumption of the design. The latter is not true if multiple blocks are
encrypted using the same key [30].

In addition, the S-boxes implementation analysis can be expanded. In [16] a dif-
ferent S-box implementation is used in different parts of the design, depending of
the usage given to each S-box. A power analysis tool would help in this further
study to be able to take power the consumption of different implementations into
account.

Besides AES, fine tuning of all the blocks implemented in HLS can be done. Cat-
apult does a good job on optimizations, however we have seen how Catapult is
not able to perform some bit level optimizations, like trimming down the width
of registers if they are not defined at the precise bit width. For instance, if a state
register for a state machine or a counter register is defined without care counting
on HLS tool optimizations to correct for this.

The throughput of the design can be decreased since it is more than enough for
the target technology: NB-IoT. For instance, the possibility of using 8 or 16-bit
arithmetic and its impact on the design area can be studied. This could make the
design more area efficient at the expense of performance.

Finally the design could be implemented and tested on FPGA and/or ASIC as a
next step.

References

[1] 3GPP. Series 33: Security aspects. URL: http://www.3gpp.org/Dy
naReport/33-series.htm.

[2] 3GPP. Series 35: Security algorithms. URL: http://www.3gpp.org
/DynaReport/35-series.htm.

[3] 3GPP. Specification Numbering. URL: www.3gpp.org/specificat
ions/79-specification-numbering.

[4] 3GPP. Technical Report TR 35.924: Document 4: Design and Evaluation
Report. URL: www.3gpp.org/DynaReport/35924.htm.

[5] 3GPP. Technical Report TS 35.919: Document 5: Design and evaluation
report. URL: www.3gpp.org/DynaReport/35919.htm.

[6] 3GPP. Technical Specification TS 33.401: Security Architecture. URL: ww
w.3gpp.org/DynaReport/33401.htm.

[7] 3GPP. Technical Specification TS 35.215: Document 1: UEA2 and UIA2
specifications. URL: www.3gpp.org/DynaReport/35215.htm.

[8] 3GPP. Technical Specification TS 35.216: Document 2: SNOW 3G speci-
fication. URL: www.3gpp.org/DynaReport/35216.htm.

[9] 3GPP. Technical Specification TS 35.217: Document 3: Implementors’ test
data. URL: www.3gpp.org/DynaReport/35217.htm.

[10] 3GPP. Technical Specification TS 35.218: Document 4: Design confor-
mance test data. URL: www.3gpp.org/DynaReport/35218.ht
m.

[11] 3GPP. Technical Specification TS 35.221: Document 1: EEA3 and EIA3
specifications. URL: www.3gpp.org/DynaReport/35221.htm.

[12] 3GPP. Technical Specification TS 35.222: Document 2: ZUC specification.
URL: www.3gpp.org/DynaReport/35222.htm.

[13] 3GPP. Technical Specification TS 35.223: Document 3: Implementors’ test
data. URL: www.3gpp.org/DynaReport/35223.htm.

87

http://www.3gpp.org/DynaReport/33-series.htm
http://www.3gpp.org/DynaReport/33-series.htm
http://www.3gpp.org/DynaReport/35-series.htm
http://www.3gpp.org/DynaReport/35-series.htm
www.3gpp.org/specifications/79-specification-numbering
www.3gpp.org/specifications/79-specification-numbering
www.3gpp.org/DynaReport/35924.htm
www.3gpp.org/DynaReport/35919.htm
www.3gpp.org/DynaReport/33401.htm
www.3gpp.org/DynaReport/33401.htm
www.3gpp.org/DynaReport/35215.htm
www.3gpp.org/DynaReport/35216.htm
www.3gpp.org/DynaReport/35217.htm
www.3gpp.org/DynaReport/35218.htm
www.3gpp.org/DynaReport/35218.htm
www.3gpp.org/DynaReport/35221.htm
www.3gpp.org/DynaReport/35222.htm
www.3gpp.org/DynaReport/35223.htm

88 REFERENCES

[14] ARM. Documentation set for AMBA protocol specifications and design
tools. URL: http://infocenter.arm.com/help/index.jsp
?topic=/com.arm.doc.ihi0011a/index.html.

[15] A. N. Bikos and N. Sklavos. “Architecture Design of an Area Effi-
cient High Speed Crypto Processor for 4G LTE”. In: IEEE Transac-
tions on Dependable and Secure Computing PP.99 (2016), pp. 1–1. ISSN:
1545-5971. DOI: 10.1109/TDSC.2016.2620437.

[16] D. H. Bui, D. Puschini, S. Bacles-Min, E. Beigné, and X. T. Tran. “Ul-
tra low-power and low-energy 32-bit datapath AES architecture for
IoT applications”. In: 2016 International Conference on IC Design and
Technology (ICICDT). June 2016, pp. 1–4. DOI: 10.1109/ICICDT.2
016.7542076.

[17] Ericsson. Ericsson Mobility Report. Nov. 2016. URL: https://www.e
ricsson.com/mobility-report.

[18] ETSI/SAGE. Document 1: 128-EEA3 and 128-EIA3 Specification. Dec.
2011. URL: www.gsma.com/aboutus/wp-content/uploads/2
014/12/EEA3_EIA3_specification_v1_7.pdf.

[19] ETSI/SAGE. Document 1: UEA2 and UIA2 Specification. Mar. 2009.
URL: www.gsma.com/aboutus/wp-content/uploads/2014
/12/uea2uia2d1v21.pdf.

[20] ETSI/SAGE. Document 2: SNOW 3G Specification. Sept. 2006. URL:
www.gsma.com/aboutus/wp-content/uploads/2014/12/s
now3gspec.pdf.

[21] ETSI/SAGE. Document 2: ZUC Specification. June 2011. URL: www.g
sma.com/aboutus/wp-content/uploads/2014/12/eea3ei
a3zucv16.pdf.

[22] ETSI/SAGE. Document 3: Implementor’s Test Data. Jan. 2011. URL: ww
w.gsma.com/aboutus/wp-content/uploads/2014/12/eea
3eia3testdatav11.pdf.

[23] ETSI/SAGE. Document 3: Implementors’ Test Data. Oct. 2012. URL: ww
w.gsma.com/aboutus/wp-content/uploads/2014/12/Doc
3-UEA2-UIA2-Spec-Implementors-Test-Data.pdf.

[24] ETSI/SAGE. Document 4: Design and Evaluation Report. Sept. 2011.
URL: www.gsma.com/aboutus/wp-content/uploads/2014
/12/EEA3_EIA3_Design_Evaluation_v2_0.pdf.

[25] ETSI/SAGE. Document 4: Design Conformance Test Data. Jan. 2006.
URL: www.gsma.com/aboutus/wp-content/uploads/2014
/12/conformance.pdf.

[26] ETSI/SAGE. Document 5: Design and Evaluation Report. Sept. 2006.
URL: www.gsma.com/aboutus/wp-content/uploads/2014
/12/uea2designevaluation.pdf.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0011a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0011a/index.html
https://doi.org/10.1109/TDSC.2016.2620437
https://doi.org/10.1109/ICICDT.2016.7542076
https://doi.org/10.1109/ICICDT.2016.7542076
https://www.ericsson.com/mobility-report
https://www.ericsson.com/mobility-report
www.gsma.com/aboutus/wp-content/uploads/2014/12/EEA3_EIA3_specification_v1_7.pdf
www.gsma.com/aboutus/wp-content/uploads/2014/12/EEA3_EIA3_specification_v1_7.pdf
www.gsma.com/aboutus/wp-content/uploads/2014/12/uea2uia2d1v21.pdf
www.gsma.com/aboutus/wp-content/uploads/2014/12/uea2uia2d1v21.pdf
www.gsma.com/aboutus/wp-content/uploads/2014/12/snow3gspec.pdf
www.gsma.com/aboutus/wp-content/uploads/2014/12/snow3gspec.pdf
www.gsma.com/aboutus/wp-content/uploads/2014/12/eea3eia3zucv16.pdf
www.gsma.com/aboutus/wp-content/uploads/2014/12/eea3eia3zucv16.pdf
www.gsma.com/aboutus/wp-content/uploads/2014/12/eea3eia3zucv16.pdf
www.gsma.com/aboutus/wp-content/uploads/2014/12/eea3eia3testdatav11.pdf
www.gsma.com/aboutus/wp-content/uploads/2014/12/eea3eia3testdatav11.pdf
www.gsma.com/aboutus/wp-content/uploads/2014/12/eea3eia3testdatav11.pdf
www.gsma.com/aboutus/wp-content/uploads/2014/12/Doc3-UEA2-UIA2-Spec-Implementors-Test-Data.pdf
www.gsma.com/aboutus/wp-content/uploads/2014/12/Doc3-UEA2-UIA2-Spec-Implementors-Test-Data.pdf
www.gsma.com/aboutus/wp-content/uploads/2014/12/Doc3-UEA2-UIA2-Spec-Implementors-Test-Data.pdf
www.gsma.com/aboutus/wp-content/uploads/2014/12/EEA3_EIA3_Design_Evaluation_v2_0.pdf
www.gsma.com/aboutus/wp-content/uploads/2014/12/EEA3_EIA3_Design_Evaluation_v2_0.pdf
www.gsma.com/aboutus/wp-content/uploads/2014/12/conformance.pdf
www.gsma.com/aboutus/wp-content/uploads/2014/12/conformance.pdf
www.gsma.com/aboutus/wp-content/uploads/2014/12/uea2designevaluation.pdf
www.gsma.com/aboutus/wp-content/uploads/2014/12/uea2designevaluation.pdf

REFERENCES 89

[27] Michael Fingeroff. High-Level Synthesis Blue Book. Ed. by Mentor Graph-
ics.

[28] A. Gielata, P. Russek, and K. Wiatr. “AES hardware implementation
in FPGA for algorithm acceleration purpose”. In: 2008 International
Conference on Signals and Electronic Systems. Sept. 2008, pp. 137–140.
DOI: 10.1109/ICSES.2008.4673377.

[29] Sourav Sen Gupta, Anupam Chattopadhyay, and Ayesha Khalid.
“Designing Integrated Accelerator for Stream Ciphers with Struc-
tural Similarities”. In: (2012).

[30] P. Hamalainen, T. Alho, M. Hannikainen, and T. D. Hamalainen.
“Design and Implementation of Low-Area and Low-Power AES En-
cryption Hardware Core”. In: 9th EUROMICRO Conference on Digital
System Design (DSD’06). 2006, pp. 577–583. DOI: 10.1109/DSD.20
06.40.

[31] S. Hessel, D. Szczesny, N. Lohmann, A. Bilgic, and J. Hausner. “Im-
plementation and Benchmarking of Hardware Accelerators for Ci-
phering in LTE Terminals”. In: GLOBECOM 2009 - 2009 IEEE Global
Telecommunications Conference. Nov. 2009, pp. 1–7. DOI: 10.1109/G
LOCOM.2009.5426313.

[32] S. Hessel, D. Szczesny, N. Lohmann, A. Bilgic, and J. Hausner. “Im-
plementation and Benchmarking of Hardware Accelerators for Ci-
phering in LTE Terminals”. In: GLOBECOM 2009 - 2009 IEEE Global
Telecommunications Conference. Nov. 2009, pp. 1–7. DOI: 10.1109/G
LOCOM.2009.5426313.

[33] NIST. Advance Encryption Standard (AES). 2001. URL: http://nvlp
ubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf.

[34] NIST. Recommendation for Block Cipher Modes of Operation. 2001. URL:
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistsp
ecialpublication800-38a.pdf.

[35] NIST. Recommendation for Block Cipher Modes of Operation: The CMAC
Mode for Authentication. 2016. URL: http://nvlpubs.nist.gov
/nistpubs/Legacy/SP/nistspecialpublication800-38b
.pdf.

[36] A. Qamar, F. B. Muslim, F. Gregoretti, L. Lavagno, and M. T. Lazarescu.
“High-Level Synthesis for Semi-Global Matching: Is the Juice Worth
the Squeeze?” In: IEEE Access 5 (2017), pp. 8419–8432. ISSN: 2169-
3536. DOI: 10.1109/ACCESS.2016.2635378.

[37] R. Ratasuk, N. Mangalvedhe, and A. Ghosh. “Overview of LTE en-
hancements for cellular IoT”. In: 2015 IEEE 26th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communications. Aug.
2015, pp. 2293–2297. DOI: 10.1109/PIMRC.2015.7343680.

https://doi.org/10.1109/ICSES.2008.4673377
https://doi.org/10.1109/DSD.2006.40
https://doi.org/10.1109/DSD.2006.40
https://doi.org/10.1109/GLOCOM.2009.5426313
https://doi.org/10.1109/GLOCOM.2009.5426313
https://doi.org/10.1109/GLOCOM.2009.5426313
https://doi.org/10.1109/GLOCOM.2009.5426313
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38b.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38b.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38b.pdf
https://doi.org/10.1109/ACCESS.2016.2635378
https://doi.org/10.1109/PIMRC.2015.7343680

90 REFERENCES

[38] R. Ratasuk, N. Mangalvedhe, Y. Zhang, M. Robert, and J. P. Kosk-
inen. “Overview of narrowband IoT in LTE Rel-13”. In: 2016 IEEE
Conference on Standards for Communications and Networking (CSCN).
Oct. 2016, pp. 1–7. DOI: 10.1109/CSCN.2016.7785170.

[39] R. Ratasuk, B. Vejlgaard, N. Mangalvedhe, and A. Ghosh. “NB-IoT
system for M2M communication”. In: 2016 IEEE Wireless Communi-
cations and Networking Conference. Apr. 2016, pp. 1–5. DOI: 10.1109
/WCNC.2016.7564708.

[40] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, N. Ferguson,
and T. Kohno; et al. HThe Twofish Team’s Final Comments on AES Se-
lection. May 2000. URL: www.schneier.com/academic/paperf
iles/paper-twofish-final.pdf.

[41] Synopsys. DesignWare LTE Security Protocol Accelerator. URL: https
://www.synopsys.com/dw/ipdir.php?ds=security-prot
ocol-accelerator-lte.

[42] S. Traboulsi, V. Frascolla, N. Pohl, J. Hausner, and A. Bilgic. “A ver-
satile low-power ciphering and integrity protection unit for LTE-
advanced mobile devices”. In: 10th IEEE International NEWCAS Con-
ference. June 2012, pp. 317–320. DOI: 10.1109/NEWCAS.2012.632
9020.

[43] S. Traboulsi, M. Sbeiti, F. Bruns, S. Hessel, and A. Bilgic. “An op-
timized parallel and energy-efficient implementation of SNOW 3G
for LTE mobile devices”. In: 2010 IEEE 12th International Conference
on Communication Technology. Nov. 2010, pp. 535–538. DOI: 10.1109
/ICCT.2010.5688900.

[44] Enrique Zabala. AES deeply explained and animated using Flash. URL:
www.formaestudio.com/rijndaelinspector/archivos/R
ijndael_Animation_v4_eng.swf.

https://doi.org/10.1109/CSCN.2016.7785170
https://doi.org/10.1109/WCNC.2016.7564708
https://doi.org/10.1109/WCNC.2016.7564708
www.schneier.com/academic/paperfiles/paper-twofish-final.pdf
www.schneier.com/academic/paperfiles/paper-twofish-final.pdf
https://www.synopsys.com/dw/ipdir.php?ds=security-protocol-accelerator-lte
https://www.synopsys.com/dw/ipdir.php?ds=security-protocol-accelerator-lte
https://www.synopsys.com/dw/ipdir.php?ds=security-protocol-accelerator-lte
https://doi.org/10.1109/NEWCAS.2012.6329020
https://doi.org/10.1109/NEWCAS.2012.6329020
https://doi.org/10.1109/ICCT.2010.5688900
https://doi.org/10.1109/ICCT.2010.5688900
www.formaestudio.com/rijndaelinspector/archivos/Rijndael_Animation_v4_eng.swf
www.formaestudio.com/rijndaelinspector/archivos/Rijndael_Animation_v4_eng.swf

AppendixA
Register Bit Mapping

TABLE A.1: CONTROL/STATUS register

Name Bit Access Description

Start enable 0 WO Write a 1 to start a process.

IP ready 1 RO Security IP is idle.

Mode select 2 RW
Select the processing mode:
0 – Cipher mode
1 – Integrity mode

Software reset 3 RW Enable the reset of the security IP.

Algorithm select 4-5 RW

Select the algorithm:
0 – N/A
1 – SNOW 3G
2 – AES
3 – ZUC

AES cipher ready 8 RO 0 – cipher not idle
1 – cipher ready

SNOW 3G cipher ready 9 RO 0 – cipher not idle
1 – cipher ready

ZUC cipher ready 10 RO 0 – cipher not idle
1 – cipher ready

AES integrity ready 12 RO 0 – integrity not idle
1 – integrity ready

SNOW 3G integrity ready 13 RO 0 – integrity not idle
1 – integrity ready

ZUC integrity ready 14 RO 0 – integrity not idle
1 – integrity ready

AES confidentiality ready 16 RO 0 – confidentiality not idle
1 – confidentiality ready

SNOW 3G confidentiality ready 17 RO 0 – confidentiality not idle
1 – confidentiality ready

ZUC confidentiality ready 18 RO 0 – confidentiality not idle
1 – confidentiality ready

91

Implementation and Benchmarking
of a Crypto Processor for a NB-IoT
SoC Platform
LUIS CAVO
SÉBASTIEN FUHRMANN
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2018

LU
IS C

A
V

O
 &

 SÉB
A

STIEN
 FU

H
R

M
A

N
N

Im
plem

entation and B
enchm

arking of a C
rypto Processor for a N

B
-IoT

 SoC
 Platform

LU
N

D
 2018

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2018-649
http://www.eit.lth.se

	Master_Thesis_Report_L_Cavo_S_Fuhrmann_public.pdf
	Abstract
	Popular Science Summary
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Background
	Goals and Challenges
	The Internet of Things
	NarrowBand IoT
	3GPP Specifications

	Security Algorithms for NB-IoT
	Cipher Algorithms
	Finite Field Arithmetic
	Substitution Boxes
	Confidentiality Algorithms
	Integrity Algorithms

	HLS Design Flow
	Catapult Synthesis
	Frame Based vs Sample Based Processing

	Thesis Contributions

	Security Algorithms
	Ciphering Algorithms
	SNOW 3G Cipher
	AES Cipher
	Inverse Cipher
	ZUC Cipher

	Confidentiality Algorithms
	128-EEA1: SNOW 3G Based Algorithm
	128-EEA2: AES Based Algorithm
	128-EEA3: ZUC Based Algorithm

	Integrity Algorithms
	128-EIA1: SNOW 3G Based Algorithm
	128-EIA2: AES Based Algorithm
	128-EIA3: ZUC Based Algorithm

	Architecture Exploration
	Rijndael S-box SR Implementation
	Multiplication in Galois Field 28
	Division in Galois Field 28
	Implementation Results and Comparison

	S-box SQ Implementation
	Mul and Div Implementation
	ZUC S-box S0 Implementation
	SNOW 3G and ZUC Combination
	Combined LFSR
	Combined Feedback
	Combined FSM

	Crypto Processor
	Top Overview
	AHB Interface
	Data Path
	Channel Multiplexing
	FIFOs

	Controller
	Memory Mapped Registers
	FIFO Channels Interface

	Cipher Block
	SNOW 3G Cipher Block
	AES Cipher Block
	ZUC Cipher Block
	Stream Cipher Block

	Confidentiality Block
	Integrity Block
	SNOW 3G Integrity Block
	AES Integrity Block
	ZUC Integrity Block

	Results

	Verification and Benchmarking
	C++ Verification
	RTL Verification
	Cycle Accurate Simulations

	Conclusions and Further Work
	Conclusion
	Comparison with State-of-the-Art
	Further Work

	References
	Register Bit Mapping

