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1 Abstract

This is a M.Sc. thesis investigating the compatibility and performance of a regime
switching framework as a complement to the Black-Litterman portfolio allocation model.
Conclusively, it is considered to be a compatible match of models in terms of practical
implementation and the results indicate that the model is performing well.
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2 Introduction

2.1 Background

The Black-Litterman model is an asset allocation model developed by Fischer Black and
Robert Litterman in the early 90’s. It was published in the internal Goldman Sachs
Fixed Income Research Note, Black and Litterman (1990) [Walters, J (2009)]. The pri-
mary reason for using the model is to overcome problems occurring with Mean Variance
Optimization such as unintuitive, highly-concentrated portfolios, input-sensitivity, and
estimation error maximization [Idzorek, Thomas M. (2005)].

The concept is that market data is complemented with investor opinions, i.e. views,
to avoid these problems and create a better performing model. A Bayesian approach is
used, implying that investors should be uncertain about market estimates and views and
consequently express them as distributions [Walters, J]. In general terms, the market
equilibrium data and investor opinions are expressed as distributions which are mixed
together to create a new distribution. The parameters of the new distribution are then
used to generate new portfolio weights by reversed optimization.

Since the views need to be expressed as distributions it is necessary to explain their
uncertainty. It is originally suggested that the investor expresses an opinion about the
return of an asset and also announces, measured in percentage, the confidence in that
specific prediction. This has been widely known as one of the most unwieldy parts of
the Black-Litterman model and in this thesis an alternative way is suggested in order to
confront that specific problem [Idzorek, Thomas M. (2005)].

In this thesis it is investigated whether a regime switching model based on hidden
Markov chains is appropriate to represent the investor views for the Black-Litterman
model. More specifically, the regime switching model will state the probability of the
market being in a certain regime at a certain point in time. Parameters such as mean
and variance will be contingent on the models choice of regime and will be used as
complementing views to the unprocessed market data in the Black-Litterman model.

2.2 Aim with thesis

The thesis is focusing on implementing the combined Markov switching and Black-
Litterman model. The aim is to test and determine whether a Markov switching model is
appropriate as a stock market predictive tool. More specifically it is investigated whether
it can replace the subjective investor views normally used in the Black-Litterman model.
This will be tested by building a model that uses market data from OMXS30 stocks to
allocate a portfolio and compare it with a market weighted portfolio of the same asset
universe.
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3 Theory

3.1 Markov Switching model

3.1.1 Fundamental understanding

Empirical experiments have led to a consensus regarding the behavior of financial time
series saying that it can exhibit very different characteristics at different points in time.
Instead of using a standard model with one set of variables, it is found natural to in-
clude several models to represent the different characteristics. In this thesis a Markov
switching model is used as an application to analyze the data [Chung-Ming Kuan (2002)].

To discuss the application of a Markov switching model within economics and finance
it is necessary to understand the fundamentals of a regime switching model. The con-
cept is that the model incorporates several structures and thus in an improved manner
models the statistical behavior of different states, in this context defined as regimes. A
regime has specific statistical properties, such as variance and mean, that differs from
the other regimes. One aspect of the Markov switching model is that it can switch
in between these structures in order to capture the statistical behavior of the different
regimes. The switching is regulated by a non-observable state variable with the statis-
tical properties of a first order Markov chain. The current value of the state variable is
only depending on the previous value and the time is considered as discrete. This means
that a certain regime will appear during a random time frame, more specifically until
a switching takes place within the Markov chain. The model is hence appropriate for
describing correlated data that demonstrates clear patterns related to specific periods
in time [Chung-Ming Kuan (2002)].

3.1.2 A simple model applied to the stock market

A simple Markov switching model is a bivariate discrete time process consisting of an
underlying Markov chain S and the independent stochastic output variables Y . The
statistical distribution of the output variable Y for a certain time T is dependent on
the state of the underlying variable S for the current time T . The state of the Markov
chain itself is dependent on the previous state and the transition probability. We cannot
observe anything but the output variables, which means it is impossible to do statistical
inference on the Markov chain itself.

Application to the stock market

The simplest method for analyzing stock data would state that the statistical properties
of the data can be explained by a single dependent variable Y , the independent mean
C and independent variance ε according to (1).

Y = C + ε
ε ∼ N(0, σ2)

(1)
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As explained in the previous section it is fair to assume that a model of such simplicity
will not perform well in terms of predicting statistical properties. Let us instead intro-
duce the two states S1 and S2 and describe the data with a Markov switching model
according to (2).

Y1 = C1 + ε1 if S = S1

Y2 = C2 + ε2 if S = S2

ε1 ∼ N(0, σ2
1)

ε2 ∼ N(0, σ2
2)

(2)

In our model the current state S for each time T is decided according to a Markov
chain with two states S1 and S2. The probability distribution can be described by a
2x2 matrix according to (3).

P =

[
P (ST+1 = S1|ST = S1) P (ST+1 = S2|ST = S1)
P (ST+1 = S1|ST = S2) P (ST+1 = S2|ST = S2)

]
(3)

The transition between states is a stochastic process and not deterministic, which
means that one can never be certain that a transition will take place.

Important to notice after introducing these theoretical concepts is that the only ob-
servable variable is Y . In order to create a model to depict stock market behavior the
parameters C, ε and P need to be estimated [Perlin, M. (2015)].

3.1.3 Estimating the parameters

Finding the parameters can be done with Maximum Likelihood estimation. In this
section this will be demonstrated for a general case with N states assumed. A Hamilton
filter will be used to calculate the filter probabilities in a recursive way.

The probability of being in state i at time t = 1, i.e. the start value, is expressed in
(4).

αi,1 = P (S1 = i|Y1) =

f(S1=i,Y1)
f(Y1) =

f(Y1|S1=i)P (S1=i)∑N
j=1 f(S1=i,Y1)

=

f(Y1|S1=i)P (S1=i)∑N
j=1 f(Y1|S1=j)P (S1=j)

=

f(Y1|S1=i)pi∑N
j=1 f(Y1|S1=j)pj

=

[f(Y1|S1 = i)pi]

(4)

6



[f(Y1|S1 = i)pi], which is the final row in (4), is the normalized version of f(Y1|S1 =
i)pi. The same procedure is followed in (5) for time t − 1 using the systems recursive
properties.

αi,t = P (St = i|Y1:t) =

f(St=i,Yt|Y1:t−1)
f(Yt|Y1:t−1) =

f(St=i,Yt|Y1:t−1)∑N
j=1 f(St=j,Yt|Y1:t−1)

=

[f(St = i, Yt|Y1:t−1)] =

[f(Yt|St = i, Y1:t−1)P (St = i|Y1:t−1] =

[f(Yt|St = i)P (St = i|Y1:t−1]

(5)

As can be concluded from figure 1 the sole relation between S1 and Y1:t−1 is through
St−1. Now, continuing with αi,t−1.

Figure 1: Markov property

αi,t = P (St = i|Y1:t−1) =∑N
j=1 P (St = i, St−1 = j|Y1:t−1) =

∑N
j=1 P (St = i|St−1 = j, Y1:t−1)P (St−1 = j|Y1:t−1) =

∑N
j=1 P (St = i|St−1 = j)P (St−1 = j|Y1:t−1)

(6)

In the last expression it can be seen that P (St = i|St−1 = j) is the transition prob-
ability pi,j and that P (St−1 = j|Y1:t−1) is the filter probability at time t − 1 which is
αi,t−1. In combination with (5), (7) is reached.

αi,t = [f(Yt|St = i)
N∑
j=1

pi,jαi,t−1]; (7)
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The Maximum likelihood formula

The set of parameters to estimate can be expressed as θ in (8).

θ = {pi, pi,j , µmi ,Σm
i ,Σ

m,n
i } (8)

where i, j ∈ (1, 2...N) and m,n ∈ (1, 2...M) and

• pi = initial probability to be in state i.

• pi,j = transition probability from state i to j.

• µmi = mean value for asset m in state i.

• Σm,n
i = covariance between asset m and n in state i.

The conditional probaiblity function f(yt|St = i, θ) is considered as the likelihood
function for state i conditional on the parameters above. After the αi,t estimation, the
full log likelihood function can be calculated as a function of the parameters in (9) which
is a weighted average of the likelihood in each state using the state probabilities.

lnL =
T∑
t=1

ln
N∑
i=1

f(Yt|St = i, θ)P (St = i) (9)

The final step is to maximize (9) and extract the parameters [Brandel, S. (2017)].
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3.2 Black-Litterman model

The Black-Litterman model is a portfoilio allocation model based on mean variance op-
timization. The main concept is to extract information from market data, transform it
into distribution parameters and construct a weighted average distribution in combina-
tion with parameters from investor views. There are many different ways of doing this
and this section explains the basic procedure developed by Fischer Black and Robert
Litterman in the early 90’s [Idzorek, Thomas M. (2005)].

3.2.1 Initial assumptions

The method starts with the normally distributed expected returns in (10). The mean
µ cannot be known with 100% certainty and therefore we will be using (11) where it
is stated that the mean itself is normally distributed around the estimate Π with the
variance ΣΠ. It is important to note that µ and Π are uncorrelated. This implies (12)
which is the reference model [Walters, J (2009)].

r|µ ∼ N(µ,Σ) (10)

µ ∼ N(Π,ΣΠ) (11)

r ∼ N(Π,Σr), Σr = Σ + ΣΠ (12)

Π is the equilibrium return of the portfolio. Black and Litterman made a simplify-
ing assumption stating that the covariance matrix Σr is proportional to the covariance
matrix of the returns Σ according to (13) [Walters, J (2009)].

r ∼ N(Π, τΣ) (13)

The initial step of the Black-Litterman model is to generate a neutral starting point
without views. Assuming CAPM theory the implied excess equilibrium returns will be
derived from the market data and form the neutral starting point. This is achieved by
reversed optimization finding the single global maximum of the convex quadratic utility
function U in (14). No constraints are applied here. The solution in (15) can be reversed
in order to find the portfolio weights w given a return vector µ according to (16).

U = wTµ− (λ/2)wTΣw (14)

µ = λΣw (15)

w = (λΣ)−1µ (16)

According to CAPM theory, the market capitalization weights of the risky assets con-
stitute the equilibrium portfolio weights. Theoretically, the CAPM market portfolio
contains all assets to be invested in, but investors generally simplify this to a smaller
set in order to make the model easy to practically implement [Walters, J (2009)]. This
simplification is used in this thesis and the implied excess equilibrium returns are calcu-
lated according to (17), where wmkt is the market weights for the assets involved in our
portfolio [Idzorek, Thomas M. (2005)].
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Π = λΣwmkt (17)

An interpretation of the equilibrium return Π is that if all the investors follow the
same strategy, the asset demand and supply are matching perfectly. λ is the risk aversion
coefficient representing the average risk tolerance of the defined asset universe according
to (18) where rf is the risk free rate [Swedish Riksbank (2018)], µp is the expected long
term portfolio return and σ2 is its variance [He, G. and Litterman, R. (1999)].

λ = (µp − rf )/σ2 (18)

3.2.2 Views

Views are assigned to each asset by introducing the matrix Q and V. Each view can
be expressed as (19). V is the matrix that identifies the asset involved in the different
views, Q is the estimated return vector for every different view and Ω is its variance.
We are assuming K views and N assets in this theory section.

V µ ∼ N(Q,Ω) (19)

3.2.3 τ constant

The constant τ is a scalar that is intended to regulate the influence of the uncertainty of
each view and eventually the estimated equilibrium mean returns. There are different
opinions of the best way to assign a value to this scalar. It is practically inversely
proportional to the relative weight given by the Implied Equilibrium Return Vector.

• Black-Litterman (1990): τ should be set close to zero since the uncertainty in the
mean is smaller than the uncertainty in the return it self. Also Idzorek (2004)
shares the same view.

• Lee (2000): τ is set between 0.01 and 0.05.

• Blamont and Firoozye (2003): τ = 1/N , where N is the number of observations.

• Meucci (2008): τ = 1/T where T is the length of the time series [Seimertz, D. (2015)].

3.2.4 V matrix

The V matrix connects the assets belonging to a specific view with the Q-vector. One
row is corresponding to one view and the V matrix will hence be a KxN matrix. Views
can be absolute or relative. If a view is absolute, the row sums in the V matrix equal
1. If the view is relative, the row sums equal 0. The Black-Litterman model does not
require the investor to specify views for all assets involved [Idzorek, Thomas M. (2005)].
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3.2.5 Q vector

The Q-vector contains information regarding the excess returns of the views. Each
row is corresponding to one specific view and hence the vector is of the form Kx1
[Idzorek, Thomas M. (2005)].

3.2.6 Ω matrix

The views are usually investor speculations and an element of uncertainty must hence
be incorporated into the model. The Ω matrix explains this. Every view could be
expressed as (20), where the ε vector elements are unknown, randomly, independently
and normally distributed. ε has a mean of 0 and a covariance matrix of Ω.

V µ = Q+ ε (20)

In the Black-Litterman model it is assumed that views are uncorrelated and hence
the Ω matrix will be a diagonal K*K matrix. If one of the diagonal elements equals
0, it means that the uncertainty of that specific view is zero and that the investor is
100% certain about that specific view. The variance of each error term ω is the absolute
difference from the error term epsilon’s expected value of 0.

The calculation of Ω is considered to be a complicated part of the Black-Litterman
model. After defining V, the variance of each individual view portfolio can be calculated
as follows where Σ is the covariance matrix of excess returns. vk is a row vector found
in matrix V.

Ω =

τv1ΣvT1 0 0
0 ... 0
0 0 τvkΣvTk

 (21)

In this thesis, this particular part of the model will be specialized later on
[Idzorek, Thomas M. (2005)].

3.2.7 Absolute and relative views

Views can be expressed as absolute and relative. An absolute view has information on
the absolute return of one or several assets, while a relative view has information on
the relation between two or more assets. Each absolute view will render a row in the V
matrix with sum 1, while the row sum of each relative view equals 0.

3.2.8 An example of view allocation

An example of V and Q for a two view scenario with five assets is displayed in (22)
and (23). Here it is assumed that the first view is an absolute view predicting asset 4
to increase by 5%. The second view is a relative view predicting asset 3 to outperform
asset 4 by 3%.
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V =

[
0 0 0 1 0
0 0 1 −1 0

]
(22)

Q =

[
0 0 0 5 0
0 0 3 −3 0

]
(23)

3.2.9 Combined distribution

As mentioned earlier, the model is based on combining the distributions of the equilib-
rium returns and the views. The proof for the final formulas below will not be displayed
in this thesis and can be found in [Satchell, S & Scowcroft, A (2000)]. Master formula
for the BL returns, i.e. the combined distributions is (24):

µBL = [(τΣ)−1 + V TΩ−1V ]−1[(τΣ)−1Π + V TΩ−1Q] (24)

The variance of the returns is expressed as (25):

ΣBL = (1 + τ)Σ− τ2ΣV T (τV ΣV T + Ω)−1V Σ (25)

The BL weights can be found by inserting these parameters in (16) given no constraints
on the model. With constraints such as (26) and (27) and an optimization tool must be
used such as fmincon in MATLAB. (27) means that short positions are not allowed in
the portfolio [He, G. and Litterman, R. (1999)].∑

wBL = 1 (26)

wBLk
≥ 0 (27)

In figure 2 a perspicuous view of the Black-Litterman model is laid out
[Idzorek, Thomas M. (2005)].
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Figure 2: Black-Litterman model derivation visualized [Idzorek, Thomas M. (2005)]
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3.3 Using the Markov switching results in the Black-Litterman model

The Black-Litterman model can be described as an advanced weighted average where
the mean-variance market equilibrium portfolio is influenced by a view portfolio. It is
very important to notice that the degree of influence is depending on the credibility of
the views. A higher uncertainty factor of a view, in this case variance, will shift the final
result closer to the neutral market equilibrium portfolio. In order to build a practical
and accurate Black-Litterman model the chosen method of modeling the uncertainties
must generate relevant information in a quick and comprehensible way. This thesis is
exploring a model which uses a Markov switching framework to generate both the Q
matrix and the Ω matrix. More specifically, the Q matrix will be built using conditional
mean data and the Ω matrix will be calculated from the conditional covariance data. The
probability of staying in the regime will be used as an additional measure of uncertainty
to the covariance matrix. More details on how this is implemented will follow in the
implementation section.
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4 Implementation

In this section the combined Markov switching and Black-Litterman portfolio allocation
model will be implemented on a set of historical data points in order to test the model.

4.1 Model settings

Markov Switching model settings

The MATLAB package MS Regress, created by Marcelo Perlin, is used to simulate
and estimate the regimes [Perlin, M. (2015)]. Different ways of optimizing are available
within the package, but following the theory section above, the optimization is performed
with second partial derivatives of the log likelihood function. This is also known by the
Hessian matrix. A multivariate analysis is being used and the distribution used in the
maximum likelihhod estimation is Gaussian.

Black-Litterman model settings

The BL model in this thesis is built from scratch and is adaptable to various types of
portfolios with different constraints and allocation settings. The following setup is used
for the results and analysis presented below.

• The model will use data for 10 assets during a test period of 800 days of exchange.

• The data will be divided into four different allocation periods reallocating the
portfolio every 200:th day. Each time period will be denoted tm with m = 1,2,3,4.

• The conditional mean output from the Markov switching model will be used as
absolute views.

• The conditional standard deviation output from the Markov Switching model will
be used as uncertainties for the views.

• τ is set to 0.025 in accordance with both Lee (2000) and the assumptions from
Black and Litterman saying it should be set close to zero. This way, it is set
according to a generally accepted standard.

• Only long positions are allowed.

• In order to find the sought Black-Litterman portfolio weights (24) and (25) are
used in the MATLAB optimization function ”fmincon” in order to optimize the
Sharpe ratio in (28) where wBL is the portfolio weight vector we are trying to find.

wBL ∗ µBL√
w′BL ∗ ΣBL ∗ wBL

(28)

• A market weighted portfolio is used as a reference portfolio. The same asset
universe is used as in the Black-Litterman allocation.
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Assets

From a theoretical perspective it would be interesting to plug in all assets available to
invest in and run the model. This is not realistic and since the Markov switching part
of the model is particularly demanding from a time perspective only a small number
of assets can be chosen. To be able to spot trends in the data, which is the main
objective using the Markov switching function, assets which are susceptible to shifts in
the economy need to be chosen. There are several different asset classes matching these
criteria, but in this thesis the scope is narrowed down to stocks. From the other part of
the spectrum, the assets chosen can’t exhibit to much variance since the trends will be
very difficult to distinguish with a regime switching model. Large cap stocks will hence
be the primary target for analysis here and more specifically, in order for the computer
to cope with the data, the portfolio will be restricted to OMXS30 stocks only.

Time frame

One restriction of this framework is that the Markov switching model cant handle ex-
treme shifts in the data series, even if it happens only once. This means that i.e. a 40%
fall in stock price over a night will mess with the maximum likelihood estimation. More
specifically the optimization function will suggest solutions outside the boundaries set
by the constraints and the result will be non relevant. This will also cause the model
to work extremely slowly. Consequently, the data must exhibit non-extreme behaviour
and stocks that don’t are neglected from the allocation.

Market data

Market cap data must be collected for every allocation date. This is a cumbersome
process since such historical data doesn’t exist for Swedish stocks. The market cap
for every date and company must be calculated manually by finding the amount of
outstanding shares in quarterly reports and dates for emissions, splits and buybacks. If
implementing this in real time with data including the present date, this is not a problem
since today’s number of outstanding shares is an accessible piece of information. In this
case of back testing, stocks without clear information about the number of outstanding
shares will be neglected.

The portfolio

The portfolio chosen for the allocation is shown in figure 3. As mentioned, the actual
returns of the portfolio are shown in figure 4. This data is analyzed in periods of 200 days
at a time resulting in 4 different portfolio allocations. The daily closing prices displayed
in figure 4 are transformed into log returns according to (29) for the upcoming analysis
[Nasdaq OMX Nordic]. Since the Markov switching model uses information from 200
days prior to the allocation date, 1000 data points needed to be collected for the four
allocations.
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Name of asset

ABB Ltd

Alfa Laval

Autoliv SDB

Assa Abloy B

Atlas Copco A

Atlas Copco B

AstraZeneca

Boliden

Electrolux B

Ericsson B

Figure 3: List of stocks analyzed

Figure 4: Portfolio returns [Nasdaq OMX Nordic]
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rtoday = ln
( Pricetoday
Priceyesterday

)
(29)

The covariance matrices for each period are extensively used in the model and are
shown in the Appendix.
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4.2 Results from Markov switching model

In figures 5, 6, 7 and 8 the output from the Markov switching model is shown for all
the four allocation periods. It is clear that there are different types of trends in the
periods, but all periods have in common that they are dominated by a low volatility
state, colored blue in the model.

In the third graph from the top the smoothing probability is displayed. The smoothing
probability is using all the data within the sample, which means all the 200 data points
are used regardless which point in time is analyzed. The filter probability, not used in
this case, includes the data in the sample up to the point of analysis, in this case a
maximum of 200 data points for each period.

The middle graph in each figure shows the conditional standard deviations for each
asset and the top graph shows the raw log returns.

Figure 5: Regime statistics t1 showing smoothing probabilities, conditional standard de-
viation and raw log returns
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Figure 6: Regime statistics t2 showing smoothing probabilities, conditional standard de-
viation and raw log returns

Figure 7: Regime statistics t3 showing smoothing probabilities, conditional standard de-
viation and raw log returns
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Figure 8: Regime statistics t4 showing smoothing probabilities, conditional standard de-
viation and raw log returns
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4.3 The regime characteristics

The top graphs displaying the raw log returns in figures 5, 6, 7 and 8 are useful when
analyzing the regime characteristics. The two regimes can be associated with certain
behaviours in the return series and this can clearly be seen comparing the log returns
to the state probabilities. One regime, blue color in the figure, is dominant when the
returns exhibit stable behaviour and one is dominant when there are big shifts in the
market. The shifts can be either positive or negative, it doesn’t effect which state the
model currently finds dominating. This model seems to identify high variance and low
variance regimes and comparing with the log returns it seems like the high variance
periods occur in combination with lower returns. This indicates a bear market state, in
this case represented by the red probability graph. The bull market state is represented
by the blue graph. This clear separation between different market behaviours might not
always be the case though. Especially in the case of a model with three regimes or more,
each state interpretation can be much less intuitive.

In the middle graphs it is clear that the model separates the assets within the portfolio
and assigns different conditional standard deviations for each asset.
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4.4 Data results

In order to combine the Markov switching model with the Black-Litterman model the
data in (30), table 1, table 2 and (31), was extracted from the regime switching model.
tm where m = (1, 2, 3, 4) is denoting which allocation period that is currently being
analyzed.

• (30) shows the conditional covariance matrices for period 1, state 1 and state 2. Six
more matrices are used for the other periods and states, but they are not displayed
here. These are later used to construct the Ω matrix.

• Tables 1 and 2 show the mean vectors for each state and each allocation period.
These will be used to calculate the absolute views in the Q matrix in the Black-
Litterman model.

• (31) shows the transition probability matrices for switching and these will also be
used in determining the uncertainties modeled represented by the Ω matrix.

ΣS1t1 =

1e− 3 ∗



0.08 0.04 0.03 0.05 0.05 0.05 0.01 0.07 0.02 0.03
0.04 0.11 0.03 0.05 0.07 0.08 0.01 0.07 0.05 0.03
0.03 0.03 0.07 0.03 0.03 0.03 0.02 0.03 0.00 0.03
0.05 0.05 0.03 0.10 0.05 0.06 0.02 0.07 0.03 0.03
0.05 0.07 0.03 0.05 0.11 0.12 0.00 0.08 0.05 0.04
0.05 0.08 0.03 0.06 0.12 0.14 0.00 0.09 0.06 0.05
0.01 0.01 0.02 0.02 0.00 0.00 0.12 0.01 −0.01 0.01
0.07 0.07 0.03 0.07 0.08 0.09 0.01 0.22 0.06 0.04
0.02 0.05 0.00 0.03 0.05 0.06 −0.01 0.06 0.13 0.02
0.03 0.03 0.03 0.03 0.04 0.05 0.01 0.04 0.02 0.09


ΣS2t1 =

1e− 3 ∗



0.45 0.14 0.04 −0.07 0.10 0.14 0.03 0.03 0.02 0.01
0.14 0.40 0.10 0.06 0.09 0.09 −0.01 0.13 0.07 0.06
0.04 0.10 0.16 0.06 0.06 0.05 0.01 0.04 0.00 0.01
−0.07 0.06 0.06 0.29 0.08 0.03 0.05 0.06 0.05 0.02
0.10 0.09 0.06 0.08 0.27 0.25 0.01 0.07 0.07 0.09
0.14 0.09 0.05 0.03 0.25 0.25 0.01 0.06 0.07 0.05
0.03 −0.01 0.01 0.05 0.01 0.01 0.79 0.05 0.01 0.03
0.03 0.13 0.04 0.06 0.07 0.06 0.05 0.08 0.09 0.00
0.02 0.07 0.00 0.05 0.07 0.07 0.01 0.09 1.05 0.18
0.01 0.06 0.01 0.02 0.09 0.05 0.03 0.00 0.18 0.68



(30)
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µS1t1
µS1t2

µS1t3
µS1t4

ABB Ltd 0.0005 0.0008 -0.0017 0.0010

Alfa Laval 0.0001 0.0003 -0.0013 0.0009

Autoliv SDB 0.0007 0.0034 0.0002 0.0008

ASSA ABLOY B 0.0003 0.0020 -0.0000 0.0005

Atlas Copco A 0.0003 0.0011 -0.0018 0.0018

Atlas Copco B 0.0003 0.0011 -0.0010 0.0016

AstraZeneca 0.0015 0.0005 -0.0004 0.0002

Boliden 0.0007 -0.0005 -0.0016 0.0012

Electrolux B -0.0000 0.0001 0.0001 0.0003

Ericsson B -0.0001 0.0007 -0.0005 0.0008

Table 1: Mean vector for state 1 for every allocation

µS2t1
µS2t2

µS2t3
µS2t4

ABB Ltd -0.0003 -0.0008 0.0007 0.0002

Alfa Laval -0.0000 -0.0002 0.0004 0.0011

Autoliv SDB -0.0003 -0.0008 -0.0008 -0.0007

ASSA ABLOY B 0.0017 -0.0000 -0.0000 0.0005

Atlas Copco A -0.0002 -0.0014 0.0005 -0.0019

Atlas Copco B -0.0001 -0.0017 -0.0016 -0.0016

AstraZeneca -0.0019 -0.0003 0.0023 -0.0002

Boliden -0.0016 0.0022 0.0054 0.0073

Electrolux B -0.0001 0.0009 -0.0001 -0.0027

Ericsson B -0.0000 -0.0011 -0.0011 -0.0048

Table 2: Mean vector for state 2 for every allocation
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Pt1 =

[
0.9498 0.3749
0.0502 0.6251

]
Pt2 =

[
0.8219 0.2126
0.1781 0.7874

]

Pt3 =

[
0.8543 0.6408
0.1457 0.3592

]
Pt4 =

[
0.8994 0.5657
0.1006 0.4343

] (31)
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4.4.1 Modeling the views

The Markov switching model distinguishes what state we are currently in, which could
be interpreted as a view for the assets included. The mean and uncertainty used in each
view will be picked from the Markov switching data output used in the Black-Litterman
model according to the reasoning below.

The Markov switching model estimates two return vectors, one for each state. In the
same way it estimates two covariance matrices. Using the smoothing probability, it also
estimates the transition probability matrix P for the underlying Markov chain describing
the switching between the states. The idea in this model is to calculate weighted aver-
ages depending on the state probabilities for the mean vectors and covariance matrices.
The P matrix (3) is available in the Markov switching model output and is a useful tool
in order to assign weights for the calculation of µMSaverage and ΣMSaverage .

µ = [µS1 µS2 ]

µi = E[rk|Xk = i]

Σi = V ar(rk|Xk = i)

Yn =
∑n

k=0 ln(
Sk+1

Sk
) =

∑n
k=1 rk

X̃k =

{
[1 0]T Xk = 1
[0 1]T Xk = 2

Pk = [P (Xk = 1) P (Xk = 2)]

µMSaverage = E[Yn] = µ
∑n

k=1E[X̃k] = µ
∑n

k=1 P
T
k = µ

∑n
k=1(P T )kP T

0

≈ n ∗ µ ∗ πTstat if stationary distribution πstat is known

(32)

A stationary distribution exists if the markov chain is ergodic. Looking at the proper-
ties of the P matrix for each time period tm in (31) they are clearly representing ergodic
Markov chains. The assumption is based on the properties of the environment where the
model is applied, which is the stock market. If the stock market is assumed to have two
states, bull and bear, both states will be reoccurring an indefinite amount of times. This
means that stationary distributions exist which can be used to decide the probability
of being in the different states. This is done by solving (33) or by finding one of the
column vectors in (34) which both are equal to the stationary distribution. The last
step approximation is allowed since the investments are held for a considerable amount
of time and the P matrix is converging quickly to the stationary distribution πstat.
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πstat = πstatP (33)

lim
k→∞

P k (34)

In this case (34) will be approximated by P 1000. The approximated results for the
stationary distributions are shown in (35).

πstatt1 =

[
0.8819
0.1181

]
πstatt2 =

[
0.5442
0.4558

]

πstatt3 =

[
0.8148
0.1852

]
πstatt4 =

[
0.8490
0.1510

] (35)

The predicted probability of the portfolio being in state k after period m is (36).

πstattm (k) k = 1, 2 (36)

The average weighted return vector is calculated according to (37).

µMSaverage = n(πstat(1)µS1 + πstat(2)µS2) (37)

The average weighted covariance matrix ΣMSaverage is calculated according to (38).
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ΣMSaverage = V ar(Yn)

=
∑n

k=1 Pk(1)Σ1 + Pk(2)Σ2

+µ
(∑n

k=1

∑n
l=1 cov(X̃k, X̃l

)
µT

=
∑n

k=1 Pk(1)Σ1 + Pk(2)Σ2

+µ
(∑n

k=1

∑n
l=1(P T )(k−l)+V ar(Xmin(k,l))P

(l−k)+
)
µT

=
∑n

k=1 Pk(1)Σ1 + Pk(2)Σ2

+µ
(∑n

k=1

∑n−1
i=−n+1 Pk(1)Pk(2) det(P )|i|

[
1 −1
−1 1

])
µT

=
∑n

k=1 Pk(1)Σ1 + Pk(2)Σ2

+µ
∑n

k=1

[
21−det(P )n

1−det(P ) − 1
]
Pk(1)Pk(2)

[
1 −1
−1 1

]
µT

≈ n
[
πstat(1)Σ1 + πstat(2)Σ2

]
+n
[
21−det(P )n

1−det(P ) − 1
]
πstat(1)πstat(2)(µS1 − µS2)(µS1 − µS2)T

(38)

The second row of the final formula in calculation (38) is a contribution to the vari-
ance coming from the switching. If the return vectors from the different states would
have been the same, no states would be defined and the variance contribution from the
switching would be zero. This is clearly seen in the formula.

There are several different methods of building the Ω matrix from which one is ex-
plained in (20) in the theory section above. The method used in this thesis is a variant
of (20) where the end formula in (38) is inserted instead of Σ. This basically means that
the uncertainty of each view is represented by the variance for each asset implied by the
Markov switching model.
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4.5 Checking Regime switching model validity

To check the validity of the regime switching model the log returns rk are normalized
using the variance structure according to (39). Here, the returns for period 4 are tested.
r̃k represents the normalized log returns for the period and Σt4 represents the average
weighted covariance matrix for the period.

r̃k =
√

Σt4
−1

(rk − µt4) (39)

Figure 9: Normalized returns Figure 10: Raw return data

It is clear that the returns in figure 9 exhibits a behaviour more likely to come from
a normal distribution compared to the raw data in figure 10. Returns from a normal
distribution would exhibit no trends at all and no heteroscedascity. But it is definitely
not a perfect normally distributed log return series, which indicates that the Markov
switching model is not capturing all the trends that can be found in the data.

It should be mentioned that are a few large absolute returns spotted during certain
parts of the period in figure 10, which would be extremely unlikely to happen under a
normal distribution. There is without doubt no normally distributed model that can
replicate a return series like this to perfection.
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4.6 Results from Black-Litterman model

This section contains the main result of the thesis. It is partly a comparison between
the Markov switching based Black-Litterman portfolio and a reference portfolio which
is calculated from the market weight portfolio without views.

The absolute views are taken from the mean vectors in figures 1 and 2. The Q vector
for each period is shown in figure 11.

Qt1 Qt2 Qt3 Qt4

ABB Ltd 0.0004 0.0001 -0.0013 0.0009

Alfa Laval 0.0001 0.0001 -0.0010 0.0010

Autoliv SDB 0.0005 0.0014 0.0000 0.0005

ASSA ABLOY B 0.0005 0.0011 -0.0000 0.0005

Atlas Copco A 0.0003 0.0000 -0.0013 0.0013

Atlas Copco B 0.0003 -0.0002 -0.0011 0.0011

AstraZeneca 0.0011 0.0002 0.0001 0.0001

Boliden 0.0004 0.0007 -0.0003 0.0021

Electrolux B -0.0000 0.0004 0.0001 -0.0002

Ericsson B -0.0001 -0.0001 -0.0006 -0.0001

Figure 11: Absolute views for every time period

Results for the allocation in time period 1 are shown in figure 3.

PIt1 µBLt1
wmktt1

wBLt1

ABB Ltd 0.000042 0.000072 0.201791 0.167054

Alfa Laval 0.000036 0.000062 0.037251 0.022406

Autoliv SDB 0.000026 0.000050 0.035972 0.097258

ASSA ABLOY B 0.000041 0.000076 0.067146 0.105849

Atlas Copco A 0.000048 0.000084 0.096229 0.086867

Atlas Copco B 0.000054 0.000095 0.040804 0.048357

AstraZeneca 0.000081 0.000147 0.335429 0.344750

Boliden 0.000047 0.000088 0.016871 0.060576

Electrolux B 0.000031 0.000045 0.027198 0.007091

Ericsson B 0.000039 0.000054 0.141309 0.059793

Table 3: Results from time period 1
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The Black-Litterman portfolio weights for each period are displayed in figures 12, 13,
14 and 15.

Figure 12: Weights time period 1 Figure 13: Weights time period 2

Figure 14: Weights time period 3 Figure 15: Weights time period 4

31



In figure 16 the final results are shown comparing the portfolio value for the Black-
Litterman portfolio in blue and the market portfolio in red over the 800 days long test
period. The Black-Litterman portfolio is outperforming the market weighted portfolio
by 20% over the entire period.

Figure 16: Portfolio comparison for 800 trading days reaching from 2014-08-13 to 2016-
10-16

32



4.7 Analysis of results

Sharpe ratio

The Sharpe ratio was calculated for every reallocation in order to compare the risk and
return profiles of the Black-Litterman and sthe market weighted portfolios. The formula
for calculating the ratio in this case is (40) with a scaling factor of

√
252 since the data

is collected daily and we want an annual ratio [Lo, Andrew W. (2002)]. E[r] and σr are
derived from the historical raw log returns. The results are shown in table 4.

Sharpe ratio =
E[r]− rf
σr/
√

252
(40)

Date BL Market

13/08/14 1.7772 1.4904

03/06/15 -0.7632 -0.9474

17/03/16 0.9970 0.5619

30/12/16 1.3853 0.9407

Table 4: Sharpe ratio at the four different allocation dates
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Consistency of the results

The outperforming of the market weighted portfolio in terms of absolute returns is a
positive result. However the consistency of the result needs to be analyzed. The differ-
ence between the Black-Litterman and the market weighted portfolio returns is plotted
and tested in a one-sided hypothesis test. Since the sample is large, a Z-test is used.

The hypothesis test is formulated according to (41).

H0 : µ = 0
H1 : µ > 0

(41)

The Z-score is calculated according to (42) and equals 1.902.

Z =
µ− µ0

σ/
√
n

(42)

The critical value for a one-tailed z-test with a significance level of 97% is ≈ 1.89,
which is smaller than our calculated Z-score. This means that the null hypothesis is
rejected at the significance level of 97%.

Figure 17: Distribution of difference between portfolio returns
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5 Discussion

5.1 Discussion of results

As can be seen in figure 4 the Sharpe ratio for the Black-Litterman portfolio is higher in
all four allocation cases. A higher Sharpe ratio indicates a better risk adjusted portfolio.
This means that our model seems to be performing in terms of diversifying the risk. It
is difficult to assess the credibility and performance of the model since only 4 Sharpe
ratios could be calculated.

A requirement for the hypothesis test to be relevant is that the return differences are
normally distributed, which they are probably not. The test should not be considered a
strong proof of a functional investment model, but merely an indication that the positive
results are reflecting the true model performance. The out-liars are not improving the
credibility.

Consequently, the Sharpe ratios in combination with the hypothesis test indicate that
the model is allocating a risk diversified portfolio which performs better than the market
weighted portfolio.

5.2 Discussion of model settings and data selection

The constant τ , which is a scaling factor closely related to the degree of view influence,
was chosen early on in the testing process. While experimenting with the value, it was
clear that a value too close to 0 would suppress the switching part of the model too
much. A value closer to 1 generated portfolio weights that were influenced by the views
to such a degree that extremely concentrated portfolios appeared. Setting such a value
would obviously mean to disregard the main idea of the Black-Litterman approach. Con-
sequently, the value 0, 025 was chosen according to generally accepted standards.

There are a couple of reasons for using the range of 200 trading days for every re-
allocation. Firstly, I believe that older data is less likely to contribute with relevant
information about the current market trends. Secondly, a shorter time series wouldn’t
contain enough information for the Markov switching model to clearly distinguish market
trends. Finally, the model package used in this project is unfortunately not appropriate
for handling larger data sets.

The ten OMXS30 stocks in the portfolio were selected in alphabetical order from the
OMXS30 list. This way, no intended selections of specifically high or low performing
stocks were made and the stocks chosen were all extensively traded in order to reflect
enough information about potential market trends.
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6 Conclusion

In this master thesis a Markov switching framework has been applied to model the views
in a Black-Litterman portfolio allocation model.

Firstly the Markov switching framework was extablished in order to calculate the pa-
rameters needed for the Black-Litterman allocation. The model parameters were tested
and the results for for period 4 are visualized in figures 9 and 10. The Markov switching
model does clearly not replicate the time series to perfection and this is indisputably
a source of uncertainty for the entire investment model. Only the normal distribution
assumption was tested for a couple of reasons. Firstly, I wanted to stick with the theo-
retical concept of normally distributed financial returns. Secondly, the Markov switching
algorithm was working faster with the normal distribution assumption. Finally, the re-
turn series is clearly not originating from any known distribution type, which reduces
the chances of improving the results by changing distribution. With that said, the model
should still not be discarded since it is sufficient to identify a few distinct trends in order
to increase the chances of allocating a high performing portfolio.

The Black-Litterman model was implemented with the mean and variance parameters
from the Markov switching model used as views. The replacement of subjective investor
views with information extracted from historical data was done in a very efficient way.
However, the original Black-Litterman concept is entirely dependant on subjective views,
which could raise the question whether a method of generating views from market data
will enhance the performance or not. The argument for choosing a regime switching
model is that certain market trends and situations can be quantified and applied in
portfolio allocation very easily. These trends are assumed to be correlated to current
investor opinions and market views. Conclusively, by recognizing the trends in the data,
the investor views are still taken into consideration. It is definitely done in a less direct
way, but it is technically easier to implement which makes it interesting.

The results were compared against a market weighted portfolio of the same assets.
The Black-Litterman portfolio outperformed the benchmark portfolio by 20% over a
period of 800 trading days. The result is considered positive.

Concluding the implementation phase of this thesis, the two models are compatible
as the Markov switching model is generating data that is useful to create relevant views
for the Black-Litterman model. Managing the Black-Litterman algorithms with param-
eters exctracted from the Markov switching model is manageable, but generating those
parameters takes time and computer power. That is the current bottleneck of the com-
bined model.

As a final conclusion of the model performance, the Sharpe ratios in combination with
the hypothesis test indicate that the model is allocating a risk diversified portfolio which
performs better than the market weighted portfolio. More tests are required in order to
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certify the model.

6.1 Improvement areas and further research

As clarified earlier in the implementation section, a MATLAB package created by Marcelo
Perlin was used to find the Markov switching parameters. This package was slightly mod-
ified in order to handle the format of the time series, but the computational algorithms
remained untouched. The package had trouble handling large data sets, which was the
main reason for the limited amount of tests. To program a Markov switching routine
from scratch was outside the scope of the project this time, but it would be an interesting
area to explore further. In order to improve the results of the model, other distributions
than the normal distribution should be tested and the code needs to be reprogrammed
accordingly.

Non-volatile securities such as obligations were not incorporated in the model and a
step further would be to modify the model for the purpose of handling such assets. Since
the model is adapted to optimize portfolios for risky assets, this would pose a challenge.
Another way of improving the model would be to include trading with foreign securities.
Foreign exchange costs would then be necessary to include and potentially an application
of the Markov switching framework in order to track trends.

In order to fully capture the value of this investing model the transaction costs should
be included for each reallocation. This is definitely possible to achieve, but was left
outside the scope. The challenge is to find the right transaction cost information for
each asset, potentially asset classes, and download it in an effective way. Integrating it
in the Black-Litterman model would be a relatively easy task.
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7 Popular science

Portfolio allocation using short term predictions of business cycles

The Black-Litterman model is an asset allocation model developed by Fischer Black and
Robert Litterman in the early 90’s. It was published in the internal Goldman Sachs
Fixed Income Research Note, Black and Litterman (1990). The model is an advanced
Mean Variance Optimization framework, with an objective to maximize the return of a
portfolio in relation to its risk. The primary reason for using the Black-Litterman model
instead of a traditional Mean Variance Optimization model is to overcome problems
such as unintuitive, highly concentrated portfolios, input sensitivity, and estimation er-
ror maximization. This is achieved by incorporating subjective investor opinions, called
views, in the model, which usually works fine if the views are appropriately formulated.
The problem with this concept is that it is not very easy to achieve consistency and
operational efficiency when specifying the views. This thesis examines a model using
historical data to find trends in the business cycle as a tool to extract the views. The
model used is a regime switching model and more specifically a Markov switching model.

There are two reasons for choosing a model using historical data when creating views.
Firstly, it is less time consuming to implement a model that automatically turns public
information into views. Secondly, it formulates every view from a precise framework and
is therefore more consistent in its allocation. However, the Black-Litterman model is
successful because of its ability to use additional information not found in the historical
exchange databases. This raises the question whether a method that is generating views
from market data will enhance the performance or not. Someone once said investing this
way is like “driving a car looking in the rear mirror”. The response to people distrusting
the concept is that a regime switching model can spot trends which are assumed to be
related to market consensus and indirectly to the investor opinions.

In financial modelling a portfolio return series can traditionally be assumed to have a
constant mean and a constant variance over a certain period of time. A two state Markov
switching model instead calculates the probability for the portfolio to be in certain states
during different stages of the same period. The model does this by assuming that the
states can be described by a hidden Markov chain. The parameters of the hidden Markov
chain cannot be observed and must be estimated from the market data. Each state has
different statistical parameters, such as mean and variance. A high variance combined
with a low mean could indicate that bear market conditions are dominating and vice
versa could indicate a bull market. This market insight will be used to assign views.

In this thesis a model combining the Markov switching and Black-Litterman models
is used to repeatedly reallocate a portfolio with 10 stocks listed on the OMXS30 during
the period August 2014 to October 2017. Four reallocations are made and the result is
compared to a market weighted portfolio. A positive conclusion is that the two frame-
works are practically compatible and that the new portfolio outperforms the traditional
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market portfolio in terms of absolute return and Sharpe ratio. The challenge lies in
refining the Markov Switching model in order to let it handle larger data sets. It would
be beneficial to test the entire model with different market conditions and other assets
before it can be considered a reliable investment tool.
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8 Appendix

The covariance matrices for the raw log returns during each period are displayed below.

Σt1 =

10−3 ∗



0.13 0.07 0.03 0.04 0.06 0.07 0.03 0.07 0.03 0.02
0.07 0.17 0.05 0.07 0.09 0.11 −0.00 0.09 0.07 0.05
0.03 0.05 0.09 0.04 0.04 0.05 0.02 0.04 0.00 0.04
0.04 0.07 0.04 0.13 0.07 0.08 0.04 0.08 0.05 0.04
0.06 0.09 0.04 0.07 0.16 0.17 0.02 0.10 0.07 0.06
0.07 0.11 0.05 0.08 0.17 0.20 0.03 0.11 0.08 0.06
0.03 −0.00 0.02 0.04 0.02 0.03 0.28 0.03 0.01 0.02
0.07 0.09 0.04 0.08 0.10 0.11 0.03 0.22 0.08 0.05
0.03 0.07 0.00 0.05 0.07 0.08 0.01 0.08 0.29 0.06
0.02 0.05 0.04 0.04 0.06 0.06 0.02 0.05 0.06 0.18


Σt2 =

10−3 ∗



0.13 0.11 0.07 0.10 0.11 0.12 0.08 0.15 0.08 0.09
0.11 0.22 0.07 0.12 0.15 0.16 0.08 0.16 0.08 0.12
0.07 0.07 0.16 0.07 0.09 0.10 0.06 0.10 0.08 0.08
0.10 0.12 0.07 0.18 0.15 0.15 0.10 0.18 0.11 0.11
0.11 0.15 0.09 0.15 0.25 0.26 0.11 0.21 0.12 0.13
0.12 0.16 0.10 0.15 0.26 0.28 0.12 0.22 0.13 0.14
0.08 0.08 0.06 0.10 0.11 0.12 0.20 0.12 0.07 0.11
0.15 0.16 0.10 0.18 0.21 0.22 0.12 0.53 0.18 0.12
0.08 0.08 0.08 0.11 0.12 0.13 0.07 0.18 0.40 0.09
0.09 0.12 0.08 0.11 0.13 0.14 0.11 0.12 0.09 0.24


Σt3 =

10−3 ∗



0.23 0.22 0.19 0.21 0.23 0.21 0.15 0.29 0.17 0.18
0.22 0.47 0.25 0.26 0.38 0.37 0.17 0.40 0.18 0.22
0.19 0.25 0.46 0.25 0.27 0.25 0.20 0.34 0.21 0.21
0.21 0.26 0.25 0.39 0.30 0.29 0.23 0.35 0.20 0.23
0.23 0.38 0.27 0.30 0.51 0.49 0.17 0.44 0.22 0.27
0.21 0.37 0.25 0.29 0.49 0.48 0.17 0.43 0.21 0.26
0.15 0.17 0.20 0.23 0.17 0.17 0.33 0.24 0.14 0.19
0.29 0.40 0.34 0.35 0.44 0.43 0.24 1.06 0.31 0.33
0.17 0.18 0.21 0.20 0.22 0.21 0.14 0.31 0.53 0.19
0.18 0.22 0.21 0.23 0.27 0.26 0.19 0.33 0.19 0.40
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Σt4 =

10−3 ∗



0.12 0.11 0.08 0.07 0.11 0.10 0.05 0.09 0.09 0.09
0.11 0.28 0.11 0.12 0.18 0.18 0.06 0.17 0.16 0.17
0.08 0.11 0.24 0.07 0.11 0.10 0.01 0.10 0.10 0.10
0.07 0.12 0.07 0.21 0.13 0.13 0.07 0.12 0.13 0.11
0.11 0.18 0.11 0.13 0.25 0.23 0.07 0.20 0.14 0.12
0.10 0.18 0.10 0.13 0.23 0.23 0.07 0.19 0.14 0.12
0.05 0.06 0.01 0.07 0.07 0.07 0.18 0.04 0.06 0.09
0.09 0.17 0.10 0.12 0.20 0.19 0.04 0.37 0.11 0.13
0.09 0.16 0.10 0.13 0.14 0.14 0.06 0.11 0.31 0.11
0.09 0.17 0.10 0.11 0.12 0.12 0.09 0.13 0.11 0.67
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