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Abstract
This thesis empirically quantifies the impact of promotions on store

visits in the Swedish grocery retailing sector with nationally represen-
tative panel data on household purchases of ground coffee. Using the
potential outcomes framework, the impact is calculated as the difference
between outcomes with promotion and their counterfactuals estimated
with two regression models. The first model is an OLS fixed effects model
used by market research firm GfK and the second is a Poisson fixed ef-
fects model. The Poisson model’s identification of the promotion effect
is shown to be superior by accounting for that the dependent variable is
discrete, the heterogenous time effects in the cross-section, and possible
brand-switching behaviour. Standard errors robust to heteroscedastic-
ity and cross-sectional and serial correlation are estimated for inference
of the promotion effect under spatio-temporal dependence. A procedure
for obtaining counterfactuals with regression models under multiple con-
current and continuous treatments is presented and an estimator of the
cumulative treatment effect with adjustment for spatio-temporal depen-
dence is derived and used to estimate the promotion impact on store
visits. The findings are valuable for companies in market research, re-
tailing and consumer packaged goods. The contributions of the thesis
are methods for estimating promotion impact and an improvement of
GfK’s methodology.

Keywords: Promotion, potential outcomes, counterfactual analysis, treat-
ment effects, panel data econometrics, spatio-temporal
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1 Introduction

One of the most fundamental problems in marketing is to determine the returns
of marketing activities for optimising the budget allocation across the Marketing
Mix variables. The Marketing Mix consists of the 4 P’s Product, Price, Place, and
Promotion, a set of variables used for deciding which activities the firms should
use to meet its’ marketing objectives (Kotler & Keller, 2012). Product refers to
aspects of the good that is sold, price is what the consumer pays for the product,
place relates to the ways of providing the product to the consumer, and promotion
are actions used to increase demand, differentiate, and present information for a
product by means such as advertising and campaigns.

Firms carry out activities related to the 4 P’s to obtain a market response. An
example is the use of sales promotions, such as temporary price-discounts, to in-
crease sales or store visits (Teunter, 2002). Despite its popularity, the effects of
sales promotion are not well understood (Persson, 1995). A central reason is that
its effects are unobservable, since for any given outcome from promotions, the coun-
terfactual outcome without promotion is unknown. Historically, it has been difficult
to estimate the effects of marketing activities due to a lack of methods for collecting
and analysing data, but this has changed in the last decades with the development
of measurement methods such as product scanners and web tracking together with
the application of econometric and statistical analyses. This progress has resulted
in a greater responsibility for marketing to accurately show its impact on business
results, and this is heard across both industry and academia. Marketing Science
Institute, a leading research-based organisation for marketing academics and global
businesses, list understanding and modelling the effect, value and causal impact
of marketing actions one of five research priorities from 2016 to 2018 (Marketing
Science Institute, 2016).

Existing research on promotions have focused on the mechanisms that explain
why and how consumers’ purchasing behaviour respond to promotions. There is
less research on the outcome of promotion on business metrics such as store visits.
From a business standpoint, knowing the outcome is arguably of higher importance.
Market research firm GfK have conducted such studies in Sweden and Germany.
They applied an econometric model to household scanner data on grocery purchases
from retailers to estimate the effect of promotions on store visits. GfK is interested
in improving the model and better understand its limitations.

As such, the aim of this thesis is to quantify the unobservable impact of sales
promotions on the number of store visits. GfK’s current model is examined and an
alternative approach is presented that address its limitations. The research questions
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of this thesis are:

1. How can the unobservable impact of promotions on store visits be quantified?

2. What is the impact of promotions on store visits?

3. How does the promotion effect differ across retailers and brands?

This study differ from previous research on promotion effects by using the po-
tential outcomes framework, in which the number of store visits in a given time
period is viewed as a potential number determined by whether there was promo-
tion or not. A count data regression model is proposed for identifying the intrinsic
brand effects of promotion on store visits. The model accounts for heterogenous time
trends in the cross-section, is robust to heteroscedasticity and spatio-temporal de-
pendence among observations, and consumer brand-switching behaviour that arise
during promotions, none of which are not taken into account in GfK’s original model.
An algorithm for obtaining the counterfactual number of store visits had there not
been promotion is shown and the incremental number of store visits are derived
using the counterfactuals. The results indicate that GfK’s original model provide
too optimistic, biased, and inconsistent estimates of the promotion effect.

The thesis have three major contributions. First, it provides valuable estimates
for managers in grocery retailing and consumer packaged goods firms of how many
store visits promotions can generate. This is crucial for firms’ decisions of which
products to promote for optimal returns. Secondly, an easy to implement procedure
for estimating effects from multiple concurrent and continuous treatments in the
absence of matching covariates is presented. Third, GfK’s current methodology for
estimating promotion impact is improved, thereby increasing the value GfK can
offer their clients by providing more accurate estimates.

The remainder of thesis is structured as follows. Section 2 provides the economic
theory that explain why and how consumers respond to promotions. The section
contains a review of previous research on promotion effects. Section 3 explains the
statistical theory for the empirical analysis. Section 4 introduces the data and the
empirical context. The regression models, the algorithm for obtaining the counter-
factual outcomes, and the estimator of the promotion impact are shown in section 5.
The empirical results are provided in section 6. In section 7, the results are discussed
and related to the thesis’ aim and research questions. Section 8 concludes the thesis
with some remarks on the practical and theoretical contributions, the limitations,
and possibilities for future research. Supplementary information, statistical tests,
and a proof that validates the methods and findings are provided in the appendix.

3



2 Theoretical Background

This section serves as an introduction to promotion effects. It begins with the
economic intuition for why and how promotions affect consumer behaviour. This is
followed by the role of market structure on the use and effects of promotions. The
third section discusses the causes and mechanisms of promotional behaviour and
their link to store visits.

2.1 Consumer Choice Theory

Three principles from consumer choice, the microeconomic field devoted to the
choices consumers make regarding their consumption, are of use for understand-
ing promotion response. First, consumers have preference profiles that determine
which goods they chose to purchase. Secondly, consumers’ consumption is limited
by their budget constraint. Third, consumers seek to maximise their utility obtained
from consumption given their budget constraint (Perloff, 2014). The principles are
described in the following paragraphs.

The utility a consumer obtains from a good is a function of two inputs, the
pleasure it provides them and its cost. Thereby, consumers can rank goods according
to their perceived utility. Consider a rational consumer with a certain preference
for a good. Utility maximisation implies that the consumer will prefer to purchase
the good at the lowest available price. Similarly, given two goods from which the
consumer derives equal pleasure, the consumer will prefer the cheaper good. If
the difference in price between two similar goods is large enough, the utility of
the cheaper good may be higher even though it provides less pleasure. Consumers
can thus maximise their utility by choosing the good they prefer most given an
expenditure, or by choosing a sufficiently satisfying good while minimising their
expenditure. This has implications for consumers response to sales promotion.

Since prices explain purchasing choices, sales promotions shift demand. How
much depends on the good’s price elasticity of demand, defined as the percentage
change in quantity demanded given a percentage change in price. Cross-price elastic-
ity of demand, in turn, is a measure of the percentage change in quantity demanded
of good given a percentage change in price of another good (Perloff, 2014). If the
price change of one good is sufficiently large for the consumer to purchase another
good, there exists a substitution effect. Price elasticities of demand is a useful tool
to understand promotion effects. With a sufficient price reduction, consumers may
change their planned behaviour and purchase the good with the reduced price.

4



Another factor that determines the demand for a good is budget share, defined as
the share of consumer expenditures attributed to a good. Naturally, consumers are
more price-sensitive towards goods that constitute a large share of their expendi-
tures. This does not imply that the good is necessarily expensive, since a good that
is bought with sufficient frequency or in sufficient quantities will have a substantial
financial impact over a longer time period.

2.2 Oligopolistic Markets

Why do retailers use promotions? What determines how large the promotion re-
sponse might be? A potential answer may lie in the market structure. Asplund and
Friberg (2002) studied the Swedish grocery retail market and found that the market
structure had significant effect on the price level. Specifically, higher local concen-
tration of stores, higher regional wholesaler concentration and a lower market share
of large stores were correlated with higher prices. The Swedish grocery retail market
is an example of an oligopoly with only six retailers whose sales in 2016 accounted
for 87 percent of the market (HUI Research, 2017). Technically, an oligopoly is a
market characterised by few firms with dominant positions. This has implications
for the price level and how the market functions (Perloff, 2014).

The low number of firms enable them to directly or indirectly agree on a high
price level. Thus the long-run profit tend to be positive. The low number of firms
allows each firm to observe competitors’ behaviours and act strategically, and it
makes it easier for consumers to compare prices across firms. This creates interde-
pendent behaviour where actions of one firm have immediate impact on the others
(Pepall, Richards, & Norman, 2014). Because of the low number of firms, each firm
captures a large market share and is more vulnerable to competitors’ actions.

According to economic theory, an oligopoly firm with lower regular prices than
its competitors for the same products will get more customers. Thus undercutting
competitors’ prices may start a price war benefitting none of the firms. As a conse-
quence, regular prices for undifferentiated products tend to be similar in oligopolies.
Nonetheless, the positive long-run profit and high market shares in oligopolies en-
able firms to reduce prices temporally to increase short-term sales. When a firm
launches a sales promotion, customers will migrate to this firm and its short-term
store visits and market share increase (Hirshleifer, Glazer, & Hirshleifer, 2005).
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2.3 Promotion Effects on Purchasing Behaviour

A common belief among marketing managers is that sales promotions increase sales
volume and market share in the short-term. This has empirical support with a large
body of marketing literature showing that consumers change their behaviour in
response to promotions. Some identified mechanism are increased consumption, un-
planned purchasing, repeat purchasing, brand-switching, store-switching, and pur-
chase acceleration (Neslin, Henderson, & Quelch, 1985; Gupta, 1988; Teunter, 2002;
Sun, Neslin, & Srinivasan, 2003; Sun, 2005). An influential paper is Gupta (1988)
that decomposes the sales increase from sales promotions into those caused by brand-
switching, purchase-time acceleration, and stockpiling. He finds that 84 percent of
the sales increase during sales promotion is attributable to brand-switching, less
than 14 percent due to purchase-time acceleration, and that stockpiling accounts
only for the remaining less than 2 percent. It is thereby important to consider
which mechanism explain the promotion effect, whether the mechanism implies in-
cremental purchases or planned purchases shifted in time, and whether the effect
occur at the consumer, store, or firm level.

Brand-switching arises as a consequence of substitution effects and is by defi-
nition incremental to the brand but not for the individual or the store, since the
consumer had planned to purchase the type of product. Brand-switching may in-
duce the repeat purchasing effect, which refer to that a consumer that has tried a
new brand because of the low price may continue to purchase the brand thereafter.
The repeat purchasing effect is also incremental at the brand level.

The store-switching effect can also be understood as a substitution effect but
at the retailer level. It occurs when a consumer choses to shop at another store
that has promotion to profit from the price difference. The store-switching effect
is believed to be higher for homogenous products with high demand to which con-
sumers are price-sensitive (Teunter, 2002). Retailers infer these shopping trips to be
incremental since the consumer had planned their purchase at another store. Store-
switching purchases are however not incremental at the consumer level and will only
be incremental for brands if combined with brand-switching, for instance because
the stores carry different brands. Store-switching can generate complementary pur-
chases, meaning that consumers will purchase other goods during their shopping
trip and thereby generate additional sales apart from the product that gave rise to
the store-switch (Sun, 2005).

Purchase acceleration means that consumers shift planned purchases earlier in
time during promotions or buy an increased quantity, thereby stockpiling. It arises
as a consequence of the relaxed budget constraint when prices are lowered, and
implies no incremental purchases at any level. Blattberg, Eppen, and Lieberman
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(1981) argue that stockpiling and purchase acceleration may be a desired outcome of
promotions for retailers. The reason is that retailers and households have differen-
tial inventory costs. Holding large inventory is costly for the retailer, but rarely for
the household. Retailers may thereby use promotions to off-load unsold inventory
so the inventory cost is transferred to the household. From this perspective, retail-
ers may deliberately use promotions to cause purchase acceleration and stockpiling
behaviour.

There is also a substantial amount of research on statistical modelling of purchas-
ing behaviour from the early decades of quantitative empirical marketing research.
Since the outcome variable has often been in counts, previous studies on the effects
of promotion and their explanatory behavioural mechanisms have typically used a
model based on the Poisson or a closely related discrete distribution (Chatfield,
Ehrenberg, & Goodhardt, 1966; Chatfield & Goodhardt, 1973; Paul, 1978; Frisbie,
1980; Dunn, Seader, & Wrigley, 1983). The next section explains the statistical
theory for the analysis in this thesis.

3 Statistical Theory

This section explains the theory of the methods used in the empirical analysis.
First, the framework for estimating treatment effects from observational data is
presented. This is followed by a review of the standard model used for identification
of treatment effects and its variant for count data. The section ends with methods for
robust inference under heteroscedasticity and cross-sectional and serial dependence.

3.1 Causal Inference and Counterfactual Analysis

The effect of promotions on store visits can be determined by decomposing the
number of store visits into two outcomes; the baseline, which is the amount without
promotion, and the observed amount with promotion. The difference between the
outcomes will then be the number of store visits attributed to promotions in excess
of the baseline during the time period. To determine the effects of promotion on
store visits is thereby a problem of causal inference, since the goal is to directly
attribute the outcome to promotion.

The potential outcomes framework (Rubin, 1974; Holland, 1986) is the dom-
inant framework for estimating causal effects from observational data (Imbens &
Wooldridge, 2017). In this framework, the causal effect of a treatment is inter-

7



preted as the difference between a pair of potential outcomes for the same unit at a
given point in time. Here, treatment (or intervention, manipulation) refers to any
action applied to the unit, which may for instance be a consumer, household, or
geographical region (Imbens & Rubin, 2015).

Let Yit be the outcome for unit i , i = 1, . . . , n, at time t, t = 1, . . . , T . Each
observation is associated with the binary treatment variableXit = x, x = 0, 1, where
1 indicates that the unit received the treatment, and 0 that it did not. The realised
outcome for a given unit i at time t is then given by Y obs

it = Yit(Xit) = Yit(x), where
Yit(0) denotes the outcome under no promotion, i.e. the baseline, and Yit(1) denotes
the outcome given promotion, i.e. the baseline plus the increment due to promotion.
The potential outcomes for each unit are thereby

Yit(Xit) =

Yit(1) if Xit = 1,
Yit(0) if Xit = 0.

(3.1)

Define the treatment effect for unit i in time period t as τit = Yit(1) − Yit(0).
The Rubin Causal Model (Holland, 1986) states that the population level average
treatment effect for the treated (ATT) is calculated as

τATT = E[τit | Xit = 1] = E[Yit(1)− Yit(0) | Xit = 1]
= E[Yit(1) | Xit = 1]− E[Yit(0) | Xit = 1] (3.2)

with the sample analogue

τ̂ATT = 1
n1

n∑
i=1

[τ̂it | Xit = 1]

= 1
n1

n∑
i=1

(
yit(1)− yit(0) | Xit = 1

)
(3.3)

where

n1 =
n∑
i=1

Xit.

The ATT measures the effect of promotion over the time periods and units that
had promotion in comparison to if they would not have promotion. The problem
with the estimator is that the first term in the right hand side in (3.2) can be ob-
served but never the second term, and τ is always unobservable since both potential
outcomes cannot occur simultaneously for the same unit. What is observable for
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each unit at any given point in time is

Y obs
it = Yit(1)Xit + Yit(0)(1−Xit). (3.4)

Since it is only possible to observe half of the outcomes of interest, causal inference is
a missing data problem; for any observed outcome yobsit , the counterfactual potential
outcome ycit required to determine the treatment effect τ is missing. This is referred
to as the fundamental problem of causal inference (Imbens & Rubin, 2015).

To compare the observed treated and observed non-treated outcomes, the treat-
ment assignment mechanism must be considered, that is, which units and time
periods receive the treatment. If the assignment mechanism is random, meaning

(
Yi(1),Yi(0)

)
⊥ Xi, (3.5)

the setting is identical to an experiment and equation (3.2) will yield unbiased
estimates of the effect. But the treatment assignment cannot be assumed to be
random in observational data. It is reasonable to assume that certain weeks are
selected to have promotion due to a confounding variable Z, that is, a variable that
affects both the promotion assignment Xi and the number of store visits Yi. As
an example, brands are promoted certain times of the year due to seasonality in
demand. Then, estimating the effect by taking the difference between the observed
outcomes with promotion and those without promotion gives a biased estimate that
partially reflects the effect of seasonality. This leads to a set of assumptions needed
for the ATT to yield unbiased estimates of the treatment effect.

The Stable Unit Treatment Value Assumption (SUTVA) consists of two com-
ponents: no interference, and no hidden variations in treatment. No interference
means that the treatment assignment to a unit do not affect the potential outcome
for other units. This is equivalent to the assumption that observations are indepen-
dent and identically distributed samples from the population. No hidden variations
in treatment states that for each treatment, each unit can only receive a single
form of the treatment. It does not require that all units are exposed to the same
treatments, but only that the treatment does not change within units over the time
period (Imbens & Rubin, 2015). If either SUTVA component is not satisfied the
potential outcomes are not uniquely defined (Imbens & Rubin, 2015).

The third assumption is unconfoundedness, also known as conditional indepen-
dence (Cameron & Trivedi, 2005). It means that conditional on relevant con-
founders, the treatment assignment is random. Unconfoundedness for the ATT
requires that

Yi(0) ⊥ Xi | Zi. (3.6)
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If the confounder is seasonality, unconfoundedness implies that promotions are ran-
domly assigned to units and time periods after conditioning on that seasonality
affects the assignment.

The partial overlap, also know as matching or common support, assumption
states that for all z in the support Z of Z,

P(z) < 1 for all z ∈ Z. (3.7)

This means that each unit that did not receive the treatment had some probability
of receiving it. It implies that for each treated unit there is a non-treated unit with
similar value on the confounding variable. Thus the distributions of covariates for
treated and non-treated observations overlap.

Under unconfoundedness and overlap, the treatment assignment mechanism is
strongly ignorable, meaning that the assignment mechanism can be ignored since it
is independent of the unobserved potential outcomes (Rosenbaum & Rubin, 1983).
With observational data, this is unlikely to hold due to the non-random assign-
ment mechanism. As a solution, matching methods have been developed that seek
to equate the distribution of covariates among treated and non-treated observa-
tions so their only difference is the treatment by matching them on the values of
pre-treatment confounding covariates (Stuart, 2010). Matching methods take an
observation that is similar to another observation on relevant confounders but has
the alternative treatment status and impute it as the counterfactual potential out-
come. This results in complete time series for each treatment status, which solves
the missing data problem. Identification of the ATT only requires that the coun-
terfactual (Yit(0) | Xit = 1) = Y c

it(0) is identified and imputed for each Yit(1) since
Yit(1) | Xit = 1 is already observed.

If strong ignorability on the other is valid, there is no omitted variable bias
after conditioning on the confounder and no confounding of the treatment effect τ
(Cameron & Trivedi, 2005). Then, the treatment variable Xit can be considered
exogenous and a regression function can be used to adjust for confounders and
estimate the treatment effect. Imbens and Wooldridge (2017) show this by defining
the ATT conditional on z and note that it is identified for x in Z:

E[τit(z)] ≡ E[Yit(1)− Yit(0) | Zit = z]
= E[Yit(1) | Zit = z]− E[Yit(0) | Zit = z]
= E[Yit(1) | Xit = 1, Zit = z]− E[Yit(0) | Xit = 0, Zit = z]
= E[Yit | Xit = 1, Zit = z]− E[Yit | Xit = 0, Zit = z]
= µ1(z)− µ0(z) (3.8)
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Here, µx(z) ≡ E[Yit(x) | Zit = z], x = 0, 1 are the regression functions for the
potential outcomes. The third equality follows by unconfoundedness, since E[Yit(x) |
Xit = 0, Zit] is independent of x, and the terms in the second to last equation can
be estimated with the regression functions by the overlap assumption. By the law
of total expectation,

τATT = E[τit | Xit = 1] = E[Yit(1)− Yit(0) | Xit = 1]
= E[µ1(Zit)− µ0(Zit) | Xit = 1] (3.9)

will hold without any assumptions, and the ATT can be estimated if µ1(·) and µ0(·)
are identified. Under unconfoundedness, µ1(·) and µ0(·) are in fact identified, since

E[Yit | Zit = z,Xit = 1] = µ1(z),
E[Yit | Zit = z,Xit = 0] = µ0(z).

Regression adjustment (RA) estimators use this result. By fitting separate regres-
sions for each treatment status x with the confounder as an explanatory variable, the
potential outcomes for each treatment status are obtained while adjusting for the in-
fluence of the confounder on the treatment effect. Specifically, obtain µ̂1(z) by fitting
the regression E[Yit | Zit, Xit = 1] and obtain µ̂0(z) by fitting E[Yit | Zit, Xit = 0].
Given that µ1(·) and µ0(·) are consistent estimators, the treatment effect is consis-
tently estimated as

τ̂ATT, RA = [τ̂it | Xit = 1] = 1
n1

n∑
i=1

Xit
(
µ̂1(Zit)− µ̂0(Zit)

)
. (3.10)

Since Xit is a binary treatment variable that only take values 0, 1, the regression
coefficient β̂ is the estimated treatment effect τ̂it. The identification of the treatment
effect requires that the regression is correctly specified and controls for omitted
variable bias and confounding. Further, the potential outcomes framework requires
panel data, also known as longitudinal data, meaning data observed for the same
units over time. The following two sections presents the panel data regression model
most commonly used for estimating treatment effects from observational data.
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3.2 Fixed Effects Model

A simple panel data model is the static linear unit-specific and unobserved effects
model

yit = x′itβ + z′iγ + εit, εit
iid∼ N (0, σ2

ε ) (3.11)

where yit is the observed outcome y for unit i, i = 1, . . . , n at time t, t = 1, . . . , T ,
zi is a (c × 1) row-vector of c unobserved variables, xit is a time-variant (k × 1)
row-vector of k regressors, and the error term εit is assumed to follow a zero mean
process with constant variance V[εit|xit] = σ2

ε without serial correlation for all t.
The parameters of interest are β while γ are nuisance parameters for potential
confounding variables zi. Assuming that zi are time-invariant, the model can be
rewritten as

yit = αi + x′itβ + εit (3.12)

where αi = z′iγ, so α reflects the joint impact of unit-specific unobserved effects z
on yit.

Essentially, equation (3.12) is a linear model with different intercepts αi for each
unit i, which can be written as a regression model with dummy variables,

yit =
n∑
i=1

αidi + x′itβ + εit (3.13)

in which di = 1 if an observation corresponds to unit i, and 0 otherwise. Specifica-
tion (3.13) is called the least squares dummy variable (LSDV) estimator (Verbeek,
2008), and estimates n dummy variables in addition to the remaining parameters.
This model is feasible to estimate in panels where the cross-sectional dimension is
small, since it quickly becomes computationally demanding as n→∞.

As a solution to estimating n dummy variables, it is possible to obtain the same
model as the LSDV estimator if each variable in equation (3.12) is subtracted with
their within-unit time-series average, that is

yit − ȳi = (xit − x̄i)′β + (εit − ε̄i) (3.14)

where ȳi = T−1∑T
t=1 yit, x̄i = T−1∑T

t=1 xit and ε̄i = T−1∑T
t=1 εit. This transfor-

mation is known as the within transformation, and yields the within, or fixed effects
(FE), estimator. The FE estimates of β are obtained with ordinary least squares
(OLS) as

β̂FE =
( n∑
i=1

T∑
t=1

(xit − x̄i)(xit − x̄i)′
)−1 n∑

i=1

T∑
t=1

(xit − x̄i)(yit − ȳi). (3.15)
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The β parameter in the static FE model is interpreted as the average effect of a one
unit increase in xit on yit within the same time period t. If xit is a binary treatment
variable, then β = τ , the treatment effect.

Mundlak (1978) showed that the LSDV and FE model yield identical estimates
of β1. While the LSDV specification controls for the unit-specific unobserved effects
αi with dummy variables, the FE specification controls for αi by cancelling them
by subtraction, since the mean of a constant is the constant itself. Thus, the FE
estimator do not estimate αi, but only the within-unit differences from the mean.

The necessary condition for unbiased estimates with FE is that the regressors
are strictly exogenous, meaning E[xit | εit, αi] = 0, for all t and lags s. This holds
if the panel is stationary2. For consistent estimates of β with FE it is further
assumed that E[(xit− x̄it)εit] = 0, for which it is sufficient that Cov[xit, εit] = 0, and
Cov[x̄i, εit] = 0, and those conditions follow if xit is strictly exogenous (Cameron &
Trivedi, 2013).

Time effects can be estimated by including time-specific fixed effects as dummy
variables for each time period t. This will capture shocks to the outcome attributable
to each time period and is computationally feasible in short panels since the number
of time dummies increase with T . Another method is to include a trend variable.
This is suitable when the outcome exhibits a deterministic trend over time.

The FE model is unique among panel data models in that it allows αi to be
correlated with xit (Winkelmann, 2008). This is practical since the assumption that
they are uncorrelated often does not hold empirically. In this case, it means that the
promotion treatment or the confounders can be correlated with the units. To see
the implication of this property, consider again the general individual-effects model
in equation (3.12). Since αi are unobserved, the OLS estimator will not be able to
distinguish them from the error term. Thereby, (3.12) is equivalent to

yit = x′itβ + (αi + εit) = x′itβ + uit (3.16)

where uit = (αi + εit) is a composite error term. If αi are correlated with xit,
β̂ are biased estimators of β, and the model is subject to omitted variables bias.
The within transformation in which αi are eliminated solves this problem. Omitted
time-invariant effects captured by αi are controlled for, as are time-invariant effects
contained in εit since they are constant and perfectly collinear with α. Thus, FE
allows the researcher to control for unit-specific time-invariant bias caused by omit-
ted variables which may confound the estimate of the treatment effect even if the
variables are unobserved.

1A proof of this is given in section A.1 in the appendix.
2See section A.7 in the appendix for discussion and tests of stationarity.
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3.3 Poisson Fixed Effects Model

Store visits are discrete events measured as non-negative integers. In such data
effects are typically multiplicative. A common way to model it is to log-transform
the dependent variable so the model becomes linear in parameters and OLS can be
applied. The problems is that OLS can predict non-integers and negative values. If
the data contain zeros, the log-transformation will not work since the logarithm of
zero is undefined. A common ad-hoc solution is to add a constant prior to taking
the log, but this makes it difficult to obtain the fitted values on the original scale.
Another issue is that models with multiplicative effects have multiplicative errors,

y = exp(x′β)η (3.17)

so that
log y = x′β + log η (3.18)

where η is the multiplicative error term. Consider the mean function E[y | x] =
exp(x′β). It implies that E[η | x] = 1. The problem is that for the linearised model,
E[log η | x] is only constant if η is independent of x. If the variance of η depends
on x, the expectation of log η will depend on the regressors. Thus, the log-linear
OLS model will suffer from endogeneity and have inconsistent estimates of β if the
errors are heteroscedastic (Winkelmann, 2008). Count models based on discrete
distributions that model the multiplicative effects directly are thereby appropriate.
Count data regressions are represented with the generalised linear models (GLM)
framework. The following section provides an introduction to GLMs.

GLMs model the dependence of a scalar variable yi on a vector of regressors xi.
The conditional distribution of yi | xi belongs to the linear exponential family of
distributions with probability density function

f(y;λ, θ) = exp
(
y · λ− b(λ)

θ
+ c(y, θ)

)
(3.19)

where λ is a parameter that depend on the regressors through a linear predictor,
and θ is a dispersion parameter for the variance. Functions b(·) and c(·) determine
which distribution in the family to use for y. The conditional mean of yi is given by
E[yi | xi] = µi = b′(λi) and the conditional variance is V[yi | xi] = θ ·b′′(λi). Thereby
the distribution of yi is determined by its mean up to a dispersion parameter θ. Also,
V[yi | xi] ∝ V[µ] = b′′

(
λ(µ)

)
, the variance function. The regression function of the

14



dependence of E[yi | xi] = µi on xi is specified as

g(µi) = x′iβ (3.20)

in which g(·) is a link function.
The most simple distribution for modelling count data is the Poisson distribution

with density function

f(y;µ) = exp(−µ) · µy

y! , y = 0, 1, 2, . . . , (3.21)

and the canonical link function g(µ) = log(µ). Thus, Poisson regression models a log-
linear relationship between the mean and the predictors. The Poisson distribution
assumes equidispersion; that E[Y ] = µ and V[Y ] = µ. Thus, θ is fixed at 1 and the
variance function is V[µ] = µ.

In Poisson regression the unit-specific fixed effect αi enter multiplicatively, so
the Poisson fixed effects (PFE) model is given by

E[yit | xit, αi] = µit

= αiλit (3.22)

where λit = exp(x′itβ), and has conditional probability function

f(yit | xit, αi) = exp(−αiλit)(αiλit)yit

yit!
. (3.23)

Since V[yit | xit, αi] = αiexp(x′itβ) by equidispersion and equation (3.22), the
standard errors in the PFE model are by default heteroscedastic (Cameron &
Trivedi, 2013). Although αi enter multiplicatively, they may still be interpreted
as a shift in intercept for unit i if the exponential conditional mean is modelled,
since

µit = αiexp(x′itβ) = exp(log(αi)x′itβ).

Estimating β will jointly estimate αi since they have a multiplicative effect. Like
the OLS FE model, the PFE model can be estimated with dummy variables for αi.
However, since there are n fixed effects αi to estimate from T observations in unit i,
there are in total n+k parameters to estimate from nT observations, so the number
of dummy variables grows as n → ∞. This is known as the incidental parameters
problem and causes β̂ to be inconsistent unless n is small and T is large. The OLS
FE model shown in section 3.2 does not suffer from this problem since it cancels αi
by subtraction, and inspecting the concentrated log likelihood function of the PFE
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model reveals that it neither suffers from it (Winkelmann, 2008). To do this, first
assume that xit are strictly exogenous, so that conditional on αi the T observations
for unit i are independent. Then,

f(yi1, . . . , yiT | xi1, . . . ,xiT , αi) = f(yi1 | xi1, αi) . . . f(yiT | xiT , αi).

Define yi = (yi1, . . . , yiT )′ and xi = (xi1, . . . ,xiT )′. Using (3.23), the likelihood of
unit i is obtained as

f(yi | xi, αi) =
T∏
t=1

exp(−αiλit)(αiλit)yit/yit!

= exp
(
− αi

T∑
t=1

λit
) T∏
t=1

αyit
i

T∏
t=1

λyit
it /

T∏
t=1

yit! (3.24)

The log likelihood contribution of unit i is thereby

Li(αi,β) = −αi
T∑
t=1

λit + log(αi)
T∑
t=1

yit +
T∑
t=1

yitlog(λit)−
T∑
t=1

log(yit)! (3.25)

which has first derivate

∂Li(αi,β)
∂αi

= −
T∑
t=1

λit + α−1
i

T∑
t=1

yit.

Setting this to zero, the maximum likelihood (ML) estimator of αi is given by

α̂i =
∑T
t=1 yit∑T
t=1 λit

= ȳi

λ̄i
. (3.26)

Just as the linear OLS FE estimator uses subtraction in the within transformation to
estimate its additive fixed effects αi, the PFE model uses the ratio ȳi/λ̄i to estimate
its corresponding multiplicative fixed effects.

Substituting this estimator of αi into (3.25) yields the concentrated log likelihood
function, that is, the log likelihood function that does not depend on αi. Taking the
sum over all n units, it is given by

Lc(β) =
n∑
i=1

[
−

T∑
t=1

yit +
(
log
∑T
t=1 yit∑T
t=1 λit

)
T∑
t=1

yit +
T∑
t=1

yitlog(λit)−
T∑
t=1

log(yit)!
]

= C +
n∑
i=1

[
T∑
t=1

yitlog(λit)−
T∑
t=1

yitlog
T∑
t=1

λit

]
(3.27)

16



where C is a constant containing all terms not depending on β. The first-order
condition for β is then

∂Lc(β)
∂β

=
n∑
i=1

[
T∑
t=1

yitxit −
∑T
t=1 yit∑T
t=1 λit

T∑
it

λitxit

]

=
n∑
i=1

T∑
t=1

xit

(
yit −

∑T
t=1 yit∑T
t=1 λit

λit

)

=
n∑
i=1

T∑
t=1

xit
(
yit −

ȳi

λ̄i
λit

)
= 0. (3.28)

The ML estimator for βPFE is the value β that solves (3.28). Since this estimator
of βPFE is independent of αi, the PFE model does not suffer from the incidental
parameters problem. An important feature is that consistency of β̂PFE does not
require that the dependent variable is truly Poisson distributed, but only that the
moment condition

E[yit | xi1, . . . ,xiT , αi] = αiλit

holds (Winkelmann, 2008).
Since Poisson regression models the exponential conditional mean, β is not in-

terpreted as the marginal effect of the regressors x on the conditional mean of y.
Instead, differentiation with respect to regressor xj yields

∂E[yit | xit, αi]
∂xijt

= αiexp(x′itβ)βj = βjE[yit | xit, αi]. (3.29)

Unlike with linear models, the marginal effect of xj depends on αi in PFE models.
Consequently, consistent estimation of β is not sufficient for identifying the marginal
effect. Still, the last equality in equation (3.36) implies that βj measures the relative
change in E[yit | xit, αi] given a one-unit change in xj . So if x is measured in
percentages or is log-transformed, then β measures the semi-elasticity of E[yit |
xit, αi], analogous to its interpretation in log-linear OLS.

If V[Y ] > E[Y ], the Poisson distribution’s equidispersion property does not hold
and the data is said to be overdispersed. If the conditional mean is specified correctly,
the Poisson MLE is still consistent, but the standard errors for β will be wrong. This
will have similar consequences as heteroscedasticity in OLS. There are two solution
for this. The first is to use another model such as quasi-Poisson or negative binomial,
or simply use the Poisson regression with robust standard errors. A quasi-Poisson or
negative binomial model will guard against over-dispersion by estimating an extra
parameter for the variance, whereas robust standard errors will guard against more
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departures from the Poisson model’s assumption by allowing for different variances
for each observation. In practice, a Poisson model with robust standard errors
will most often yield very similar standard errors to a quasi Poisson or negative
binomial with robust standard errors (Kleiber & Zeileis, 2008). Additionally, Greene
and Hensher (2010) note that the Poisson model will be consistent even when the
negative binomial is appropriate. The robust standard error approach is used in
this thesis and is explained in the next section.

3.4 Robust Covariance Matrix Estimation

The parameter of greatest interest for inference is β, since it is the coefficient for
the promotion effect. The OLS estimator of β̂FE is obtained with

β̂FE = (X̃′X̃)−1X̃′ỹ = β + (X̃′X̃)−1X̃′ẽ

with the corresponding residuals

ẽ = (In −P)ỹ = (In − X̃(X̃′X̃)−1X̃′)ỹ.

Here, Y and e are (nT×1), X is (k+1)×nT , β is (k+1)×1, In is the (n×n) identity
matrix, and P is the (n× n) projection matrix, also known as the hat matrix. The
tilde symbol denote the within transformation, ỹit = (yit− ȳi), x̃it = (xit− x̄i), and
ẽit = (eit − ēi).

For inference of β̂FE , the covariance matrix V[β̂FE ] is needed. It is derived as

V[β̂FE ] = E[(β̂ − β)(β̂ − β)′]
= E[(X̃′X̃)−1X̃′ẽ′ẽX̃(X̃′X̃)−1]
= (X̃′X̃)−1(X̃′E[ẽ′ẽ]X̃)(X̃′X̃)−1

= (X̃′X̃)−1(X̃ΩX̃′)(X̃′X̃)−1 (3.30)

with Ω being the diagonal error covariance matrix. Under the assumption of ho-
moscedasticity, εit

iid∼ N (0, σ2
e), the error covariance matrix is

Ω = E[ẽ′ẽ | X̃] =


σ2
e 0 0 . . . 0

0 σ2
e 0 . . . 0

...
...

... . . . ...
0 0 0 . . . σ2

e
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that is Ω = σ2
eIn = σ2

e , constant variance for all observations. Then,

V[β̂FE ] = (X̃′X̃)−1(X̃′σ2
eInX̃)(X̃′X̃)−1

= σ2
e(X̃′X̃)−1(X̃′X̃)(X̃′X̃)−1

= σ2
e(X̃′X̃)−1

= σ2
ε

( n∑
i=1

T∑
t=1

(xit − x̄i)(xit − x̄i)′
)−1

(3.31)

is the OLS FE covariance matrix, and both Ω and V can be estimated by using the
standard OLS estimator σ̂2

ei
= (1/(n− k))

∑n
i=1 e

2
i of the estimated error variance.

The procedure is different for the PFE model since it is estimated with ML. Let
L(β) =

∑n
i=1 logfi(yi | β) denote the log likelihood function over all units. First

obtain the gradient by taking its first derivative with respect to β,

L′(β) =
n∑
i=1

gi(yi | β) (3.32)

where
gi(yi | β) =

[
∂logfi(yi | β)

∂β

]
. (3.33)

Then take the second derivative to get the Hessian,

L′′(β) =
n∑
i=1

hi(yi | β) (3.34)

where
hi(yi | β) =

[
∂2logfi(yi | β

∂β2

]
. (3.35)

For the PFE model specifically, (3.34) is obtained by taking the first derivative of
the first-order conditions of (3.28),

L′′(βPFE) =
n∑
i=1

( T∑
t=1

xitx′it
ȳi

λ̄i
λit −

1
T

T∑
t=1

T∑
s=1

xitx′is
ȳi

λ̄i
λitλis

)
(3.36)

for s 6= t. The outer products of this on taking expectations and eliminating cross-
products between units i and j for i 6= j due to assumed independence across units
yields the PFE model’s corresponding estimator for (3.32) as

L′(βPFE) =
n∑
i=1

T∑
t=1

T∑
s=1

xitx′is
(
yit −

ȳi

λ̄i
λit

)(
yis −

ȳi

λ̄i
λis

)′
. (3.37)
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Assuming correct model specification, i.e. that the true value β0 for β is obtained,
Taylor approximation can be used to estimate the log likelihood around β0:

L(β) = L(β0) + L′(β0)(β − β0) + 1
2(β − β0)′L′′(β0)(β − β0) + . . .

Setting L′(β) = 0, the maximum of the log likelihood function is found,

L′(β0) + (β − β0)′L′′(β0) = 0,

which yields the score

U(β) = β̂ − β0 = [−L′′(β0)]−1L′(β0)′. (3.38)

The asymptotic covariance matrix estimator of β̂PFE is then given by

V[β̂PFE ] = U(β)U(β)′ = [−L′′(β0)]−1Cov[L′(β0)][−L′′(β0)]−1

=
[
−

n∑
i=1

hi(yi | β̂)
]−1[ n∑

i=1
gi(yi | β̂)′gi(yi | β̂)

][
−

n∑
i=1

hi(yi | β̂)
]−1

= Â−1B̂Â−1. (3.39)

If the model is correctly specified, the expectation of the outer product of the
score (3.38) is the Fisher information matrix I(β) (Zeileis, 2006), and (3.39) sim-
plifies to its inverse,

I−1(β) = −E
[
hi(yi | β)

]−1
. (3.40)

However, this simplification of V[β̂PFE ] will not hold under heteroscedastic or corre-
lated errors within or across units3, and although (3.39) is robust to overdispersion,
it is not consistent for correlated errors. Similarly, if the errors in a model estimated
with OLS are heteroscedastic or correlated, the simplification of V[β̂FE ] to (3.31)
will neither hold. Thus, conditional on X, inference of β requires a consistent es-
timator of V[β̂], which depends on the assumptions of the error covariance matrix
Ω. To refer to both the OLS FE and PFE models, the general covariance matrix
estimator of β is henceforth denoted

V[β̂] = Â−1B̂Â−1. (3.41)

As Zeileis (2004) point out, most often the error covariance structure is unknown.
This makes it impossible to parameterise and model it directly. As a solution,

3Tests of this for the empirical models are shown in Table 8-10 in Appendix
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estimators for Ω have been developed to plug into B in (3.41), which provide efficient
standard errors given that the estimating functions are consistent for β. These
estimators are called sandwich estimators, referring to that B can be viewed as the
meat between the two buns A−1 in (3.41), and the sandwich standard errors are in
turn called robust standard errors, meaning that they are robust to various inference-
invalidating error covariance structures. In the following paragraphs, the methods
used in this thesis to obtain robust standard errors are described. The focus is on
estimating the meat since all that is required is consistent pointwise estimation of
the errors, and this is satisfied if the estimator of β is consistent (Greene, 2012).

Typical of the cross-sectional dimension is that the errors are independent but
heteroscedastic, i.e V[εt | xit] 6= σ2

ε . This will be the case if εit are correlated with
xit. Then, OLS and ML estimates of β are still unbiased and consistent but not
efficient. The non-constant variance of the error term leads to an incorrect covariance
matrix and Ω is a biased estimator. Then, σ̂2 is also biased and standard errors are
inconsistent and incorrect and the no interference assumption in SUTVA required
for valid causal inference might not hold.

Under heteroscedasticity, Ω has zero off-diagonal elements but non-constant vari-
ance terms on the diagonal, that is

Ω =


σ2

1 0 0 . . . 0
0 σ2

2 0 . . . 0
...

...
... . . . ...

0 0 0 . . . σ2
n


Now, along the diagonal, ωi 6= σ2 as in the ideal case of homoscedasticity. It can be
shown that to consistently estimate V, it is not necessary to estimate all n×(n+1)/2
unknown elements in Ω, but only the k × (k + 1)/2 elements in

1
n

n∑
i=1

n∑
j=1

σijx̃ix̃′j , (3.42)

that is, the OLS meat (Millo, 2014). Under heteroscedasticity and the assumption
of no correlation between units i and j, the meat for OLS reduces to

Ω̂0 = 1
n

n∑
i=1

σ2
i x̃ix̃′i. (3.43)

White (1980) suggested the HC0 estimator, which substitutes the unknown terms
σ2
i along the diagonal in (3.43) with e2

i , the squared residuals, and showed that the
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resulting OLS FE sandwich estimator

V[β̂]HC0 = (X̃′X̃)−1(X̃diag[e2
i ]X̃′)(X̃′X̃)−1 (3.44)

is consistent for V[β] under heteroscedasticity. For models estimated with ML such
as the PFE model, the HC0 standard errors are obtained by taking the square root
of the diagonal elements in (3.39). The HC0 estimator is asymptotically justified
and does not assume any specific heteroscedasticity structure, as required when it
is parameterised. Long and Ervin (2000) showed that the HC0 estimator needs at
least 250 observations to be consistent under strong heteroscedasticity.

The HC0 estimator does however not adjust standard errors for temporal or
cross-section correlation, which is often present in panel data. For this purpose there
exists clustering sandwich estimators that adjust for the dependence by clustering
the computation of the standard errors on the dimensions. Baltagi (2005) argue
that the assumption of cross-sectional independence between units i and j at a given
time point t and lag s can be unrealistic and lead to misleading results even under
random sampling if the cross-section is a spatial variable, such as region. Hoechle
(2007) mention that this spatial dependence may arise as a consequence of shared
social norms, psychological traits, and herd behaviour, for instance with regards
to purchasing. Since such latent factors are typically not possible to measure and
include as covariates, the dependence enter the error terms. According to Baltagi
(2005), spatial dependence is a common problem in aggregated panels with large T .
Failure to account for spatial dependence will bias the standard errors and violate
the no interference assumption in the SUTVA for causal inference. Mathematically,
there exists spatial dependence if E[eit | ejs] 6= 0 for all i 6= j.

If the observations on the other hand are correlated over time within the cross-
section, i.e Cov[εt, εs] 6= 0 for t 6= s over each i, there is serial correlation. Serial
correlation is usually assumed in panels since the same individuals are measured over
time and individual behaviour tends to be stable. If the model does not capture
this temporal dependence, it also ends up in the errors. As the case with spatial
dependence, serially correlated errors becomes increasingly problematic as T →∞.

When the error terms are serially correlated, they are not independent, and thus
Ω is not diagonal. Parameterising the correlation requires knowledge of its form or
imposing further assumptions, and it is typically difficult to estimate Ω directly as
when correcting for heteroscedasticy (Zeileis, 2004). The solution is to estimate the
meat B empirically by computing weighted sums of the serial correlations of eixi
(Kleiber & Zeileis, 2008). This is what the HAC estimators do, explained next.

Driscoll and Kraay (1998) proposed a heteroscedasticity, autocorrelation and
spatial correlation consistent (HACSC) covariance matrix estimator by extend-
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ing the Newey-West non-parametric HAC estimator (Newey & West, 1987). The
Driscoll and Kraay estimator is suitable for FE panel data models in balanced and
unbalanced panels with error structure assumed to be heteroscedastic, with poten-
tial contemporaneous and lagged dependence between and within cross-sections,
and with weak serial correlation up to an arbitrary lag. The following section first
presents the Newey-West estimator and then the extension by Driscoll and Kraay.

The Newey-West covariance matrix estimator for the FE model, which assumes
cross-sectional independence, E[eit | ejs] = 0 for j 6= i, is given by

V[β̂]HAC = Â−1ŜT Â−1 (3.45)

where Â−1 is the bread and ŜT is the empirically computed Newey-West non-
parametric estimator of the meat calculated as

ŜT = Ω̂(i)
0 +

m∑
l=1

w(l,m)[Ω̂(i)
l + Ω̂′(i)l ] where Ω̂(i)

l = 1
T

T∑
t=l+1

v̂itv̂
′
it−l (3.46)

with v̂it = x̃iteit. This expression shows that the Newey-West estimator takes the
White estimator Ω̂0 given in (3.43) and adds a sum of covariances between the
different residuals and a Bartlett weight function

w(l,m) = 1− l

m+ 1 (3.47)

with linearly decaying weights, where the argument m is the length of lag l = |i− j|
of the serial correlation among the residuals. This weight function guarantees that
ŜT is positive semi-definite in every sample and that the sample serial correlation
function is smoothed. That way the higher order lags are given less weight in
the correction for serial correlation, since it is assumed that the temporal depen-
dence decreases with increasing lags. If the computation of the standard errors are
clustered on the cross-section, the HAC standard errors are robust vs. temporal
heteroscedasticity and cross-sectional correlation. Clustering on the time dimension
provides robustness against spatial heteroscedasticity and serial correlation.

Driscoll and Kraay adjusted the Newey-West meat estimator ŜT by taking the
HAC’s standard errors of the cross-section averages instead of the cross-section
averages of the HAC’s standard errors (Vogelsang, 2012). It thereby averages the
product x̃tet over the dependent clusters and may viewed as a time-clustered version
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of Newey-West standard errors. The Driscoll and Kraay meat estimator is given by

ˆ̄ST = ˆ̄Ω0 +
m∑
l=1

w(it, js)[ ˆ̄Ωl + ˆ̄Ω′l],where
ˆ̄Ωl = 1

T

T∑
t=l+1

ˆ̄vt ˆ̄v′t−l. (3.48)

Here, ˆ̄vt =
∑n
i=1 v̂it is obtained by stacking the (k × 1) vectors [v̂1t, . . . , v̂nt] into a

(nk×1) vector v̂t with transpose v̂′t = [v̂′1t, . . . , v̂′1n] and then defining ˆ̄vt =
∑n
i=1 v̂it.

That is, ˆ̄vt is the cross-section average of v̂it times n.
Note that in equation (3.48) of the Driscoll and Kraay meat estimator, the weight

function is
w(it, js) = 1− d(it, js)

m+ 1 , (3.49)

so the summation is over i, j, s and t where i and j refer to cross-sectional units, t and
s are time points, and d(it, js) = |t− s| if [t− s] ≤ m and 0 otherwise (Cameron &
Miller, 2015). This extension make the meat estimator spatial correlation consistent.
Thus, the full HACSC covariance matrix estimator is given by

V[β̂]HACSC = Â−1 ˆ̄ST Â−1 (3.50)

Taking the square root of the diagonal elements in ˆ̄ST yields the Driscoll and Kraay
standard errors for β̂.

As a consequence of using the HAC estimator of the cross-section averages,
HACSC standard errors are consistent regardless of the cross-sectional dimension
of the panel. Vogelsang (2012) show that for FE models in panels with large T
and fixed n, the estimator only requires weak exogeneity, E[xit | εit] = 0 for s = t,
t − 1, in the cross-section and time dimension. It does not assume any particular
distribution of the errors and is consistent for weak serial correlation and unknown
spatial correlation at the same point in time and at different lags without a measure
of the spatial distance itself, given that the time series is stationary. The spatial
correlation is however not adjusted according to physical distance. Since the HACSC
standard errors are computed on the empirical xit, eit, the PFE model’s standard
errors are also adjusted to the empirical dispersion. Thereby the PFE model’s
equidispersion property is not a limitation. Regarding OLS, Hoechle (2007) finds
that the HACSC standard errors are better calibrated than the usual non-robust
and Newey-West HAC standard errors under cross-sectional dependence in a FE
model.
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4 Data

The dataset consists of grocery purchases in Sweden from week 36 in 2015 to week
35 in 2017 obtained from GfK4 Consumer Scan; a nationally representative panel of
3000 households that continously record their grocery purchases using an app or in-
home scanner in exchange for rewards (GfK, 2018). The following section describes
the processing of the data and the variables of interest. The sampling methodology
for Consumer Scan can be found in section A.2 in the appendix.

Prior to analysis, GfK have anonymised the household level data per the General
Data Protection Regulation and aggregated it at the weekly, regional and retailer
level and multiplied it by a factor to be numerically representative for the regional
populations. Thus, each observation is a weekly estimate for the respective region’s
population level purchases at a retailer. A benefit of the aggregation is that the
panel is balanced with T = 105 weeks for each region-retailer combination, but
the number of households included in a given observation vary and is unknown.
According to Cooper and Nakanishi (1988), promotions are usually managed on a
weekly basis and thus the weekly aggregation may not be a significant limitation.

The two variables that define the cross-section are retailer and geographic re-
gion. The seven regions are contiguous and cover the whole of Sweden. The regions
are listed in Table 6 in Appendix. The retailers are Coop Extra, ICA Maxi, ICA
Supermarket and Willys, which belong to the Coop, ICA and Axfood group respec-
tively. In 2016, Coop’s market share accounted for 19 percent of the Swedish grocery
market. Coop Extra are Coop’s profile stores in small cities offering simple and fast
shopping at low prices (Coop, 2018). ICA is Sweden’s largest retailer group with a
market share of 50.8 percent in 2016 (HUI Research, 2017). ICA Supermarket are
ICA’s mid-size stores meant for quick daily grocery purchases (ICA, 2018b). ICA
Maxi are their largest supermarkets covering the full product range at lower prices
(ICA, 2018a). Willys is part of the Axfood group and is positioned as their low-
price chain (Axfood, 2018). In 2016, Axfood’s sales were 16.4 percent of the market
while Willys alone had 10.6 percent (HUI Research, 2017). Together ICA, Coop
and Axfood have 90 percent of the market share combined (Gullstrand, Olofsdotter,
& Karantininis, 2011). This strongly indicates an oligopoly market structure with
price competition and strategic interaction as consequences. It is thereby expected
that sales promotion increase store visits.

The data is also aggregated at the national level for the region and retailer
4GfK (short for "Society for Consumer Research" in German) is Germany’s largest market re-

search institute and the fourth largest market research organisation globally, specialising in provid-
ing data-driven insights and decision support within marketing.

25



variables5. The national level for the region variable is the sum of the regional data
for each retailer, whereas the retailer national level is the sum of the data for all
grocery retailers in Sweden, not only those included in this dataset.

The variables of interest are:

Shopping trips: the number of store visits with a purchase in week t.

Coffee shopping trips: the number of store visits with a purchase of ground
coffee in week t.

Promotion trips share: the share of shopping trips in week t in which a brand
was purchased on promotion.

These variables are chosen because they have been used in GfK’s previous analysis of
promotion effects. In the dataset, promotion trips share is included for the 11 most
frequently promoted product categories. For each product category, it is available
for the four most popular brands plus the aggregate of the remaining brands, from
here on called Other brands. Data on the number of shopping trips and the number
of promotional shopping trips for each brand are also available.

The ground coffee category is analysed in this thesis. It consists of the four
most popular domestic brands Gevalia, Löfbergs, Zoegas, Classic, and the aggregate
of the remaining brands. These four brands’ market share is around 85 percent
in Sweden (Durevall, 2017), indicating an oligopoly within the product category.
The oligopoly structure at the retailer level implies that the retailers will compete
for customers with sales promotion, potentially causing store-switching, and the
oligopoly structure within the product category facilitates price competition between
the brands’ products within stores, potentially causing brand-switching.

Coffee is well suited for analysing promotion effects. Coffee consumption in
Sweden is high and widespread in the population, which means that there are less
weeks with no purchases in the dataset than for some other categories. Because of
the widespread use, the data may be representative of the population even though
coffee consumption is not a stratification variable in the sampling of households. Ad-
ditionally, the Swedish coffee market is highly competitive with frequent promotions
(Durevall, 2017). This means that the dataset contain a large number of treated
outcomes so the effect of promotions can be identified with high precision relative
less promoted categories. Finally, coffee is believed to be a so called loss leader
(Persson, 1995), that is, a product that attracts consumers to the store, causing
store-switching. However, the coffee price elasticity of demand is low. A commonly
used figure is 0.25, meaning that a 10 percent decrease in price corresponds to a 2.5

5Summary statistics on the region-retailer aggregate level is provided in A.9 in Appendix.
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percent increase in quantity demanded. The response in shopping trips from coffee
promotion may thereby not be as strong as for more price elastic groceries.

The shopping trips variables are in thousands and are thus non-negative con-
tinuous variables although they are discrete on their original scale. The promotion
trips share variables are in percentages and thereby continuous on the interval 0
to 100. The promotion trips share may be viewed as continuous treatment vari-
able that reflect the share of households that received the treatment of being able
to purchase on promotion. Promotion trips share is calculated for each brand by
dividing the number of promotional coffee shopping by the total number of coffee
shopping trips. In 37 percent of the weeks, Gevalia was not purchased. For Löf-
bergs, the corresponding share is 53 percent, for Zoegas, 38 percent, for Classic it is
61 percent, and for the remaining ground coffee brands it is 38 percent of the weeks.
As a consequence, the promotion trips share is undefined for these weeks since it
is not possible to divide by zero. The promotion trips share for these observations
were recoded with a zero to not omit them from the analysis. The reasoning of the
imputation is that the share of purchases made on promotion is zero if there are no
purchases. On the regional level, 45 percent of the weeks across the brands have no
promotional purchases, and thereby a promotion trips share of zero. The promotion
trips share and shopping trip variables have no missing values.

Regionally aggregated descriptive statistics for the retailers are provided in Ta-
ble 1. The table show that the national average in weekly shopping trips differ
between retailers and the mean promotion trips share of the brands is similar. The
median promotion trips share is zero or a small in a couple of entries. This indicates
that the retailer have few weeks with promotion, which increases the uncertainty of
the estimates of the promotion effect. The retailers’ mean and variance in shopping
trips and coffee shopping trips are not equal, so the equidispersion property of the
Poisson distribution is violated and robust standard errors are needed.

Figure 1 show the number of shopping trips to retailer for each region over
the time period. Apart from Coop’s decreasing shopping trips in Stockholm, most
region’s have no apparent trend. Figure 2 show the corresponding information for
coffee shopping trips. Likewise, most coffee shopping trips time series do not have
any trend, apart from Coop in Stockholm. The peaks in the time series appear to
follow the same pattern across regions for some retailers, most notably for Willys
in Figure 2. This indicates cross-sectional dependence. Figure 3 displays how the
distribution of shopping trips and coffee shopping trips vary across regions. The
figure shows that zeros are abundant in some regions for coffee shopping trips.
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Table 1: Regionally aggregated descriptive statistics

Variable Mean St. Dev. Min Median Max

Coop
Shopping trips 1,258.81 123.88 958.63 1,269.92 1,500.76
Coffee shopping trips 60.95 26.01 20.96 56.48 167.63
Promotion trips share
Gevalia 27.23 31.02 0.00 14.54 100.00
Löfbergs 33.04 36.12 0.00 22.43 100.00
Classic 35.33 33.07 0.00 32.05 100.00
Löfbergs 46.84 46.48 0.00 38.96 100.00
Other brands 30.44 26.36 0.00 26.78 100.00

ICA Maxi
Shopping trips 1,478.41 100.01 1,218.55 1,492.48 1,686.29
Coffee shopping trips 151.73 61.77 38.10 149.28 336.90
Promotion trips share
Gevalia 32.75 29.80 0.00 24.46 96.40
Löfbergs 32.83 38.89 0.00 9.58 100.00
Zoegas 25.29 31.28 0.00 14.64 97.94
Classic 30.68 39.90 0.00 0.00 100.00
Other brands 43.28 26.13 0.00 45.28 96.55

ICA Supermarket
Shopping trips 1,613.46 111.56 1,289.84 1,634.62 1,878.93
Coffee shopping trips 102.43 63.02 29.55 82.51 343.80
Promotion trips share
Gevalia 36.71 29.22 0.00 31.42 100.00
Löfbergs 24.27 34.00 0.00 0.00 100.00
Zoegas 43.23 31.40 0.00 44.14 100.00
Classic 29.83 39.20 0.00 0.00 100.00
Other brands 39.07 28.89 0.00 38.69 100.00

Willys
Shopping trips 1,517.51 107.01 1,249.91 1,521.12 1,992.17
Coffee shopping trips 122.18 121.85 25.11 69.72 553.88
Promotion trips share
Gevalia 25.30 31.60 0.00 11.58 100.00
Löfbergs 17.79 31.29 0.00 0.00 100.00
Zoegas 28.05 34.50 0.00 12.50 100.00
Classic 22.61 36.66 0.00 0.00 100.00
Other brands 24.54 30.41 0.00 12.48 100.00

Panel dimensions: balanced with n=7, T=105. Number of observation per retailer: nT =
735. The table show regionally aggregated descriptive statistics for the retailers. Shopping
trips and coffee shopping trips are in 1000’s. Promotion trips shares are in percentages.
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Figure 1: Shopping trips (in 1000) per retailer and region. Week t is relative to
week 36 in 2015 and ranges to week 35 in 2017. The regions are contiguous and
cover Sweden. Each observation is an estimate for the regional population.
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Figure 2: Coffee shopping trips (in 1000) per retailer and region. Week t is relative
to week 36 in 2015 and ranges to week 35 in 2017. The regions are contiguous and
cover Sweden. Each observation is an estimate for the regional population.
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Figure 3: Kernel density estimates of shopping trips and coffee shopping trips per
retailer and region. The x-axis is the dependent variable (in 1000) and the y-axis is
the density.



5 Method

This section explains the method used to quantify the promotion impact. First, the
regression models are presented. This is followed with the procedure for estimating
the counterfactual potential outcomes of no promotion for weeks that had promo-
tion. Finally, the estimator used to calculate the number of shopping trips due to
promotion is shown.

5.1 Model Specification

Two fixed effects (FE) regression models are estimated for each retailer. The first is
a log-linear FE model estimated with OLS currently used by GfK. Since n is small,
the region fixed effects are estimated with dummy variables. The model is given by

log(yit) =
7∑
i=1

αidi +
4∑
j=1

βjxijt + δlog(zt) + εit (5.1)

in which i = 1, . . . , 7, t = 1, . . . , 105, yit are the number of shopping trips in region
i at week t, the dummy di takes the value 1 if an observation is for region i, and 0
otherwise, αi captures time-invariant unobserved effects for region i, and εit is the
error term following some distribution. The overall intercept is suppressed so all
region fixed effects are estimated. Regressors xj , j = 1, . . . , 4, are the time-variant
promotions trips shares that reflect the share of purchases made on promotion for
the ground coffee brands Gevalia, Löfbergs, Zoegas, Classic. GfK do not include the
remaining coffee brands captured by the Other brands variable in this model. The
variable zt is a normalised time index calculated as yt/ȳt for each t on the national
industry level of yt. It thereby captures the overall nation-wide industry trend,
seasonality and shocks in shopping trips among all retailers that the households
purchased at over the time period, including other retailers than the four included
in this dataset. Estimating the time index only consumes one degree of freedom
instead of T + 1 degrees of freedom as time dummies plus a time trend would. The
time index is log-transformed to bring it on the same scale as the dependent variable.

In the OLS FE model, the dependent variable is log-transformed to estimate the
multiplicative effects with OLS. A problem with the log-transformation is that the
coffee shopping trips variable contain zeros, and the log of zero is undefined. GfK
have previously removed these observations to fit the model, but then information
is lost since zero is the mode value of the dependent variable in some regions. Ad-
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ditionally, the time effects may not be correctly estimated since observations are
left out from a possible trend. To fit the model to all observations, coffee shopping
trips observations with a value of zero are imputed with half of the smallest positive
value before taking the logarithm. Although this imputation is preferable to omit-
ting the observations, it suffers from that it not apparent how E[y | x, α, δ] should
be recovered on the non-log scale given the transformation. For this the exponent
is taken of the fitted values. To adjust for the bias induced by the imputation, the
dependent variable with the imputed values are differenced to the fitted values from
the OLS FE regression when estimating the treatment effect.

The second model is a count data PFE variant estimated as a GLM with log-link
and dummy variables for the region fixed effects, specified as

log(µit) = log(E[yit]) =
7∑
i=1

αidi +
5∑
j=1

βjxijt +
7∑
i=1

δiαidilog(zt). (5.2)

Since the dependent variable yit is in thousand with decimals and thereby continu-
ous, yit are multiplied with 1000 to obtain yit as integers prior to fitting the model.
The fitted values are divided with 1000 after taking the exponent to obtain them
on their original scale.

In the PFE model, the promotion effects of Other brands are estimated, resulting
in k = 5. This makes the estimated promotion effects of the main brands Gevalia,
Löfbergs, Zoegas, and Classic robust against brand-switching behaviour. To see
how, consider a premium coffee brand that belongs to Other brands. The premium
brand is more expensive than the main brands at their respective regular prices. If
the promotion price of the premium brand is less or close to that of the main brands,
customers might brand-switch to the premium brand. The purchases of the premium
brand will appear in the dependent variable regardless of whether the promotion
effect of Other brands is estimated, but if the Other brands promotion effect is
not estimated, the purchase and subsequent increase in the dependent variable will
be incorrectly attributed to promotion on the main brands if any of them were
promoted that week. Thus, the OLS FE model’s estimated promotion effects of the
main brands are likely biased upwards by not including Other brands.

Another feature of the PFE model is that its time index zt is retailer-specific,
meaning that for each retailer’s model, it is calculated on the retailer’s national
level data instead of on the industry national level. The justification is that while
seasonality can be common among all retailers in the industry, their trend in shop-
ping trips and the shocks they are subject to cannot be be assumed to be equal.
The trend may vary among retailers due to unobserved factors such as changes in
customer bases, competition, or advertising during the time period. Shocks that
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affect one retailer may not affect the others, for instance product launches and firm
entry and exit into a market rarely affect all firms equally. The retailer-specific time
index is interacted with the region fixed effects αi to estimate a different coefficient
δi for the time index for each region. In other words, the interaction allows the
time effects in each region to relate differently to the retailer’s national level time
effects, since the trend and shocks may also vary across regions. If a retailer opens
a supermarket it only affects the number of shopping trips of the retailers in that
region. As an example, Figure 1 shows that Coop had a decreasing time trend in
Stockholm but the other regions did not, and that the frequency and intensity of
peaks in shopping trips can vary across regions. The alternative method to model
regionally heterogenous time effects would be to interact region dummies with week
dummies, but that is not possible to estimate since it would consume nT degrees of
freedom, i.e. as many as the number of observations, apart from those required for
the estimation of the other parameters.

It should be noted that the modelling approaches of the log-linear OLS FE and
the PFE model differ. In a log-linear model estimated via OLS, the left hand side
of the model equation is E[log(y) | x]. In the PFE model, it is log(E[y | x]). Now,
E[log(y) | x] 6= log(E[y | x]), unless y is fully determined by x, which is not the
case.

The models are fitted separately for each retailer using both shopping trips and
coffee shopping trips as dependent variable to obtain their respective promotion ef-
fects. The estimated models are identical for each retailer apart from the time index
which changes with the retailer and dependent variable. Driscoll and Kraay HACSC
robust standard errors are estimated for all parameters for valid inference under the
empirical cross-sectional and temporal correlation. This adjusts the PFE model’s
restricted variance according to the empirical dispersion. The lag length up to which
the residuals may be autocorrelated is set to the heuristic m = floor[4(T/100)2/9]
taken from Newey-West’s plug-in procedure (Newey & West, 1994) for finding the
optimum lag length. Constraining the lag length imposes that the residuals follow
a MA(q) process, but this is not necessarily a problem since MA(q) processes can
approximate AR(p) processes. The robust standard errors are clustered on the re-
gion variable to adjust for the regional dependence between observations captured
by the errors and the White HC0 weighting scheme is applied to adjust for time-
wise heteroscedasticity. HC0 requires at least 250 observations and HACSC requires
large T for consistency. Since nT = 735 and T = 105, the robust standard errors
are assumed to be consistent. GfK have previously not considered any correction
for dependence among the errors in the OLS FE model, and thus inference would
be incorrect with these data.
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5.2 Estimation of Counterfactuals

This thesis’ impact evaluation problem differ from the typical in the literature.
With these data, standard matching methods cannot be used since there is no
pre-treatment period with pre-treatment covariates that can be used to match ob-
servations to obtain the counterfactual outcomes. The literature mostly considers a
single binary treatment that start at the same time for all treated units. Here, there
are multiple treatments starting and ending at different time points that are active
for a varying number of time periods across units. Since the treatment variable x
is continuous, the treatment effect τit is not the same for all treated units and time
periods as it is when the treatment variable is binary. Further, there likely exist
non-observed confounders not captured by the time index variable that invalidates
taking the difference between outcomes for different units and weeks.

As a solution, each observation is used as its own match for its counterfactual
outcome. This solves the problem of unobserved time-varying confounders since
they are per definition equal for the same observation in each week and region. Re-
maining potential time-invariant confounders are eliminated by the fixed effects in
the models. Consequently, the unconfoundedness assumption is more likely to hold
and the overlap assumption holds per construction, since the distribution of covari-
ates is identical across treated and control units if the same observations are used
for both. Thereby, the treatment assignment mechanism is ignorable and the regres-
sion models can be used to obtain the counterfactuals. Separate counterfactuals are
estimated in each instance when one of brands was not promoted while the other
brands were, and another counterfactual is estimated for the alternative situation
if none of the brands would have been promoted. The counterfactual estimation
procedure is as follows:

Step 1. Fit the regression to obtain the predicted outcomes ŷobsit , the es-
timated coefficients β̂j for brand j, and the coefficients for the remaining
covariates, given the observed promotion data xijt.

Step 2. If β̂j 6= 0, meaning that brand j’s promotion had an effect,
replace all promotion trips share data xijt with zeros while keeping the
remaining brands’ promotion trips share data as observed. Estimate
the predicted outcomes given these data using the coefficients obtained
in Step 1. This drops βj from the regression and estimates ŷc,jit (0), the
weekly regional counterfactual number of shopping trips if the share of
purchases of brand j made on promotion had been zero, which would
be the case it was not promoted over the time period. Redo this step
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for each β̂j 6= 0, j = 1, . . . , k. The results are counterfactual outcomes
ŷc,jit (0) for each brand j.

Step 3. Replace all promotion trips share data xijt with zeros for all
brands whose β̂j 6= 0. Then estimate the predicted outcomes given
these data using the estimated coefficients from Step 1. This drops all
βj 6= 0 from the regression and yields ŷcit(0), the estimated counterfac-
tual number of shopping trips if no brand had been promoted.

The procedure is expressed algorithmically in Algorithm 1 with an arbitrary re-
gression model. In contrast to standard methods, it can estimate counterfactuals
of several continuous treatments with multiple treatment periods that vary in the
cross-section and does not require pre-treatment matching covariates. The proce-
dure is run for all retailers with both the OLS FE and PFE models with shopping
trips and coffee shopping trips as dependent variables to obtain each model’s coun-
terfactuals for each retailer.

Algorithm 1: Counterfactual estimation procedure

Input : Regression function and panel data on observed outcomes, observed
treatments, and confounding covariates.

Output: Estimated outcomes given the observed treatments and
counterfactual outcomes of no treatment for each treatment and
counterfactual outcomes of no treatment on any treatment.

1 Obtain (ŷobsit , α̂i, β̂, δ̂) by fitting yobsit = αi + x′itβ + δlog(zt) + εit
2 foreach xijt ∈ xit, j = 1, . . . , k do
3 Set xcijt = xijt
4 if β̂j ∈ β̂ 6= 0 then
5 Set xcijt ← 0, ∀i, t, i = 1, . . . , n, t = 1, . . . , T
6 end
7 ŷc,jit (0) = α̂i + x′citβ̂ + δ̂log(zt)
8 end
9 foreach xijt ∈ xit, j = 1, . . . , k do

10 Set xcijt = xijt
11 if β̂j ∈ β̂ 6= 0 then
12 xcijt ← 0, ∀i, t, i = 1, . . . , n, t = 1, . . . , T
13 end
14 end
15 ŷcit(0) = α̂i + x′citβ̂ + δ̂log(zt)
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5.3 Estimation of Promotion Impact

Having obtained the counterfactuals, it is possible to estimate the unobservable pro-
motion impact. Retailers and producers of consumer packaged goods are interested
in the cumulative impact over the promotion period, not the average regional impact
given by the ATT. Thereby, the ATT estimator is adapted and the sample cumula-
tive treatment effect for the treated (CTT) for each retailer is calculated as the sum
across weeks and regions of the difference between the estimated outcomes given
the observed data and the estimated counterfactual outcomes under no promotion.
This is a measure of the total impact of promotion over all regions and weeks that
had promotion in comparison to if there would have been no promotion.

The estimated joint impact of promotion on all brands is calculated as

τ̂CTT =
n∑
i=1

T∑
t=1

(
ŷobsit − ŷcit(0)

)
×
( n∑
i=1

T∑
t=1

yobsit

/ n∑
i=1

T∑
t=1

ŷobsit

)
(5.3)

while the estimated impact of promotion of brand j is calculated analogously with

τ̂ jCTT =
n∑
i=1

T∑
t=1

(
ŷobsit − ŷ

c,j
it (0)

)
×
( n∑
i=1

T∑
t=1

yobsit

/ n∑
i=1

T∑
t=1

ŷobsit

)
(5.4)

for n = 7, T = 105, j = 1, . . . , 4 for OLS FE, and j = 1, . . . , 5 for the PFE model.
Note that ŷobsit , ŷcit(0) and ŷc,jit (0) are simply the left hand sides of the regression

functions. The replacement of xijt with zeros drops β̂j from the right hand side of
the regression function of ŷc,jit (0) and drops all β̂j , j = 1, . . . , k from ŷcit(0), since a
parameter cannot be estimated from only zeros. As the specification of the regres-
sions used to obtain the counterfactuals is otherwise identical to that of ŷobsit , the
only difference between the terms in the parenthesis in (5.4) is that the right hand
side of the regression function of ŷobsit includes β̂j and xijt for brand j. For equa-
tion (5.3), the right hand side of the regression function of ŷobsit includes β̂j and xijt
for all k brands. As such, the estimator takes the difference between the estimated
outcomes with promotion and the estimated outcomes without promotion.

In comparison to the RA estimator of the ATT given by equation (3.10) on page
11, the estimator takes the sums instead of the average to obtain the cumulative
effect. The spatio-temporal dependence in the errors causes

∑n∑T ŷobsit to not
equal

∑n∑T yobsit . The adjustment factor
∑n∑T yobsit /

∑n∑T ŷobsit corrects for this
so the impact is estimated for actual observed outcomes yobsit rather than ŷobsit . The
difference |

∑n∑T (yobsit − ŷobsit )| is larger for the OLS FE model than the PFE model,
indicating worse fit and consequently greater need for the adjustment.
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6 Empirical Results

Table 2 and Table 3 show the regression results. In both models, the β parameters
measure the within-region average percentage change in shopping trips in a given
week associated with a one percent increase in the number of households that pur-
chased the brand on promotion. Although the β̂ values are small, the impact over
the time period is substantial since the dependent variable is in thousands, the pro-
motion trips share ranges from 0 to 100, and the effects adds up over the 7 regions
each with 105 weeks of data.

A central finding is that few β parameters are significant in the models with
general shopping trips as the dependent variable, see Table 2. Notably, the OLS
FE model estimates no statistically significant effect of promotion for Coop, while
in the PFE model, promotion on Classic and Other brands has significant effects.
For ICA Maxi, Gevalia has significant effects in the OLS FE model while Classic
is the brand with significant effects in the PFE model. The OLS FE model also
estimates that Classic has a significant effect for ICA Supermarket and that Zoegas
is the single brand with significant effect for Willys. The PFE model estimates no
significant effects for any coffee brand for ICA Supermarket and Willys.

The interpretation of the δ parameters for the time index is not important.
What is interesting is that the retailer-region specific time indices captured by the
interaction terms in the PFE model are significant and that the δi coefficients are not
equal, since it indicates that the time effects differ between regions. The industry
time index used in the OLS FE model does not account for this and may thereby
not sufficiently capture the time effects on the dependent variable for each region,
leading to spurious results with too high estimates of the β parameters.

Table 3 show the regression results with coffee shopping trips as the dependent
variable. In comparison to the models with shopping trips as dependent variable,
a higher number of the brands have statistically significant and stronger effects,
indicated by the higher β̂ values. For Coop and ICAMaxi, all brands have significant
effects in the OLS FE and PFE model. For Willys, the OLS FE model estimates
significant effects for all brands, but only Zoegas have significant effects in the PFE
model. A common pattern across retailers is that the OLS FE model estimates larger
effects. A reason may be its brand-switching bias and that its industry time index
does not sufficiently account for time effects, which are then incorrectly attributed
to promotions.

Two measures of model fit are provided. The root mean square error (RMSE)
measures the sample standard deviation of the difference between the observed val-
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ues on the outcome variable and the predicted values, and is calculated as√√√√ 1
T

T∑
t=1

(yobst − ŷt)2 (6.1)

where yt are each retailer’s stacked region time series. The RMSE is computed on
the estimation data and thereby reflects the size of the residuals, where a smaller
value indicate better fit. Since the residuals are squared prior to averaging, RMSE
penalises large deviations. To illustrate why this is useful, consider a retailer that
launches a campaign with coordinated sales promotions across its stores for a given
time period to increase purchases. The retailer advertises this campaign so con-
sumers are aware of the reduced prices. The promotion campaign causes a peak in
store visits and a higher than usual share of promotional purchases. Other times of
the year, the retailer offers non-planned and non-advertised sales promotion to get
rid of excess inventory, as argued by Blattberg et al. (1981). This will reasonably
not have as large effect on store visits. Since the retailer is primarily interested in
the promotion impact during the campaign whose promotions caused the strongest
effect, the predictive error for the observations that span the planned promotions
with large effect should be given higher weight when evaluating model fit. The PFE
model has smallest RMSE with both dependent variables for all retailers, see Table 2
and 3.

The bias statistic is also provided, computed as the average amount (in 1000’s)
by which the observed number of shopping trips is greater than the predicted,

1
T

T∑
t=1

(yobst − ŷt). (6.2)

Table 2 and 3 show that the PFE model yield less biased estimates for all retailers
and both dependent variables. The pseudo R2 is obtained by fitting the models
using the R packages plm for the OLS FE model pglm for the PFE model. The
pseudo R2 statistic can only be used for within model assessments of fit.

Additional model diagnostics are performed but not shown to save space. There
are no signs of multicollinearity among covariates and QQ-plots of the residuals
indicate superior fit of the PFE model. The Vuong test for non-nested models is
used to test for misspecification and which model has superior fit. The test’s results
provided in Table 7 in section A.3 indicate that the PFE model has superior fit.
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Table 2: Estimated shopping trips models

Coop ICA Maxi ICA Supermarket Willys

(OLS FE) (PFE) (OLS FE) (PFE) (OLS FE) (PFE) (OLS FE) (PFE)

αi Region Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
δ̂ Industry index 1.1053∗∗∗ 1.2521∗∗∗ 0.8402∗∗∗ 0.9821∗∗∗

(0.2255) (0.1277) (0.2361) (0.1279)
β̂1 Gevalia 0.0002 0.0002∗ 0.0002∗∗ 0.0001 0.0001 −0.00002 0.0002 0.00001

(0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
β̂2 Löfbergs 0.0002 −0.00003 0.00002 0.0001 0.00001 0.00001 0.0001 −0.00001

(0.0002) (0.0001) (0.0002) (0.00007) (0.0001) (0.0001) (0.0001) (0.0001)
β̂3 Zoegas 0.00004 0.00003 −0.0001 −0.00001 0.0001 0.0001 0.0002∗ 0.0001

(0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
β̂4 Classic −0.0002 0.0002∗∗ 0.0001 0.0002∗∗∗ 0.0002∗∗ 0.0001 0.0003 0.00004

(0.00017) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0002) (0.0001)
β̂5 Other brands −0.0002∗∗ 0.0001 0.0001 0.0001

(0.0001) (0.0001) (0.0001) (0.0001)
δ̂1 Retailer × North index 0.6830∗∗∗ 0.7922∗∗∗ 0.5595∗∗∗ 0.9319∗∗∗

(0.0765) (0.0923) (0.0672) (0.1310)
δ̂2 Retailer × East index −0.1039 0.6664∗∗∗ 1.1698∗∗∗ 0.8988∗∗∗

(0.1649) (0.1875) (0.1247) (0.1589)
δ̂3 Retailer × Stockholm index 1.8368∗∗∗ 1.4480∗∗∗ 1.2263∗∗∗ 1.1841∗∗∗

(0.0719) (0.0961) (0.1550) (0.1665)
δ̂4 Retailer × West index 0.7168∗∗∗ 1.1779∗∗∗ 1.0985∗∗∗ 0.6933∗∗∗

(0.1045) (0.2125) (0.1488) (0.2572)
δ̂5 Retailer × Gothenburg index 0.3717∗ 0.9466∗∗∗ 0.7517∗∗∗ 1.0554∗∗∗

(0.2005) (0.1755) (0.1922) (0.1510)
δ̂6 Retailer × South index 1.1106∗∗∗ 1.0295∗∗∗ 1.1474∗∗∗ 0.9744∗∗∗

(0.1312) (0.0807) (0.1051) (0.0787)
δ̂7 Retailer × Öresund index 1.3154∗∗∗ 0.8575∗∗∗ 0.6430∗∗ 0.9889∗∗∗

(0.2568) (0.2129) (0.3123) (0.1158)

Observations 735 735 735 735 735 735 735 735
RMSE 32.012 19.763 22.301 19.702 25.801 20.680 24.150 21.294
Bias -2.276 <0.001 -1.216 <0.001 -1.452 <0.001 -1.384 <0.001
Adj. pseudo R2 0.052 0.642 0.156 0.383 0.069 0.411 0.123 0.352

Significance levels: ∗∗∗, p < 0.01, ∗∗, p < 0.05, ∗ p < 0.1
Notes: This table show the results from the estimated log-linear fixed effects (OLS FE) and the Poisson fixed effects (PFE) models with shopping trips
as dependent variable. Heteroscedasticity, autocorrelation and spatial correlation consistent (HACSC) robust standard errors in parentheses. Region fixed
effects are included to capture region-specific unobserved effects. The OLS FE model’s industry index captures regionally aggregated (industry level)
seasonality, time trend and shocks in shopping trips for all grocery retailing firms that the sample of households purchased from. The index used in the
PFE model is retailer-specific and interacted the region fixed effects to capture each retailer’s region-specific seasonality, time trend and shocks.



Table 3: Estimated coffee shopping trips models

Coop ICA Maxi ICA Supermarket Willys

(OLS FE) (PFE) (OLS FE) (PFE) (OLS FE) (PFE) (OLS FE) (PFE)

αi Region Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
δ̂ Industry index 0.494∗∗∗ 0.417∗∗∗ 0.626∗∗∗ 1.477∗∗∗

(0.098) (0.096) (0.107) (0.184)
β̂1 Gevalia 0.0060∗∗∗ 0.0022∗∗∗ 0.0066∗∗∗ 0.0019∗∗∗ 0.0066∗∗∗ 0.0011∗∗∗ 0.0032∗∗∗ 0.0003

(0.0008) (0.0004) (0.0008) (0.0005) (0.0009) (0.0004) (0.0011) (0.0003)
β̂2 Löfbergs 0.0058∗∗∗ 0.0021∗∗∗ 0.0042∗∗∗ 0.0012∗∗∗ 0.0058∗∗∗ 0.0007∗∗ 0.0038∗∗ 0.0004

(0.0008) (0.0003) (0.0007) (0.0003) (0.0013) (0.0003) (0.0015) (0.0003)
β̂3 Zoegas 0.0063∗∗∗ 0.0026∗∗∗ 0.0068∗∗∗ 0.0020∗∗∗ 0.0045∗∗∗ 0.0010∗∗ 0.0064∗∗∗ 0.0007∗∗

(0.0008) (0.0005) (0.0007) (0.0005) (0.0009) (0.0004) (0.0011) (0.0003)
β̂4 Classic 0.0053∗∗∗ 0.0022∗∗∗ 0.0054∗∗∗ 0.0015∗∗∗ 0.0079∗∗∗ 0.0007∗ 0.0032∗∗∗ 0.0002

(0.0008) (0.0005) (0.0007) (0.0003) (0.0009) (0.0004) (0.0011) (0.0004)
β̂5 Other brands 0.0026∗∗∗ 0.0010∗∗∗ 0.0005 0.0005

(0.0006) (0.0003) (0.0004) (0.0003)
δ̂1 Retailer × North index 0.9102∗∗∗ 0.8801∗∗∗ 0.9331∗∗∗ 0.9681∗∗∗

(0.0896) (0.1034) (0.0448) (0.0442)
δ̂2 Retailer × East index 0.7217∗∗∗ 0.8574∗∗∗ 1.1022∗∗∗ 0.8743∗∗∗

(0.1599) (0.1382) (0.0855) (0.0431)
δ̂3 Retailer × Stockholm index 0.8492∗∗∗ 1.0809∗∗∗ 1.2671∗∗∗ 0.8080∗∗∗

(0.1219) (0.1359) (0.0727) (0.0419)
δ̂4 Retailer × West index 0.5233∗∗∗ 0.9588∗∗∗ 1.0711∗∗∗ 0.9516∗∗∗

(0.0996) (0.1185) (0.0902) (0.0389)
δ̂5 Retailer × Gothenburg index 0.8025∗∗∗ 0.7383∗∗∗ 1.0294∗∗∗ 1.0708∗∗∗

(0.2024) (0.0890) (0.1255) (0.0494)
δ̂6 Retailer × South index 0.6070∗∗∗ 0.9121∗∗∗ 0.7054∗∗∗ 0.9019∗∗∗

(0.1068) (0.08007) (0.04617) (0.02925)
δ̂7 Retailer × Öresund index 0.9619∗∗∗ 0.5632∗∗∗ 0.4334∗∗∗ 1.2653∗∗∗

(0.23767) (0.1678) (0.1234) (0.0750)

Observations 735 735 735 735 735 735 735 735
RMSE 6.363 4.692 16.842 10.229 12.417 6.339 12.417 8.977
Bias -1.262 <0.001 -2.336 <0.001 -1.857 <0.001 -1.552 <0.001
Adj. pseudo R2 0.227 0.483 0.263 0.493 0.298 0.662 0.466 0.826

Significance levels: ∗∗∗, p < 0.01, ∗∗, p < 0.05, ∗ p < 0.1
Notes: This table show the results from the estimated log-linear fixed effects (OLS FE) and the Poisson fixed effects (PFE) models with the coffee shopping
trips as dependent variable. Heteroscedasticity, autocorrelation and spatial correlation consistent (HACSC). Region fixed effects are included to capture
region-specific unobserved effects. The OLS FE model’s industry index captures regionally aggregated (industry level) seasonality, time trend and shocks
in shopping trips for all grocery retailing firms that the sample of households purchased from. The index used in the PFE model is retailer specific and
interacted the region fixed effects to capture each retailer’s region-specific seasonality, time trend and shocks.



Table 4 shows τ̂CTT , the estimated unobservable number of shopping trips due to
promotion on all ground coffee brands, estimated as in equation (5.3). The column
Percent of trips shows the estimate of the share of observed shopping trips that
were due to promotion, calculated as τ̂CTT /yobs, where yobs is the sum of yobsit over i
and t. For general shopping trips, Coop has the smallest effect among the retailers
according to both models. The PFE model estimates about half the effect of the
OLS FE model, 0.16 versus 0.32 percent of all shopping trips. According to the
OLS FE model, Willys have received the largest effects among all retailers with 1.22
percent of the observed shopping trips being due to coffee promotion, but The PFE
model estimates Willys’ share to be only 0.28 percent. Percent of trips are similar
for ICA Maxi and ICA Supermarkets in the OLS FE model, but with the PFE
model ICA Maxi has received almost twice the relative effect.

The Percent of trips are higher for coffee shopping trips since their promotion
effects were larger. For coffee shopping trips, the PFE model estimates smaller
effects of promotion than the OLS FE model. Another difference between the models
is that the OLS FE model estimates about equal Percent of trips for the retailers
while the PFE estimates differ substantially across the retailers, with Coop having
the largest relative effect and Willys the smallest. A reason may be that the PFE
model estimates the promotion effects of all remaining brands in coffee category by
including Other brands, and this changes the estimates of the main brand’s effects
more when the estimates are larger.

Table 5 shows τ̂ jCTT , the estimated unobservable number of shopping trips due
to promotion per ground coffee brand, estimated as in equation (5.4). The table also
shows for which brands promotion had a significant impact, where the significance
asterisks are taken from the β̂ coefficients in Table 2 and 3. A couple of findings
are worth mentioning. The increase in shopping trips associated with promotion
on Other brands is large, particularly for coffee shopping trips. This shows that
the promotion effect of the remaining brands in the category should be estimated.
However, their effect is not significant for all retailers. For some of the brands, the
estimated promotion effect on general shopping trips is negative. In particular, the
OLS FE model estimates that Coop’s sales promotion on Classic have led to half
a million less shopping trips, while the PFE model estimates about half a million
increase. It should be noted that the OLS FE models estimate is insignificant while
the PFE model’s is significant. The cause for these differences in the estimates
may that the OLS FE model’s estimates of the promotion effects are biased due
to brand-switching, inconsistent due to its heteroscedastic errors, and potentially
spurious by not considering retailer-region specific time effects, and the fact that
E[log(Y) | X] 6= log(E[Y | X]), as previously discussed.
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Table 4: Estimated number of shopping trips due to promotion

Outcome Model Retailer Incremental, τ̂CTT Baseline, ŷc Observed, yobs Percent of trips

Shopping trips

OLS FE

Coop Extra 428 046 131 746 671 132 174 717 0.32
ICA Maxi 1 116 678 154 116 625 155 233 303 0.72
ICA Supermarket 1 269 612 168 143 898 169 413 510 0.75
Willys 1 943 890 157 394 977 159 338 866 1.22

PFE

Coop Extra 211 069 131 963 648 132 174 717 0.16
ICA Maxi 1 440 408 153 792 895 155 233 303 0.93
ICA Supermarket 945 406 168 468 104 169 413 510 0.56
Willys 447 026 158 891 840 159 338 866 0.28

Coffee shopping trips

OLS FE

Coop Extra 2 762 602 3 637 177 6 399 779 43.17
ICA Maxi 7 136 908 8 795 204 15 932 113 44.80
ICA Supermarket 5 645 379 5 126 266 10 754 960 52.41
Willys 5 602 262 7 226 795 12 829 060 43.67

PFE

Coop Extra 1 508 738 4 891 041 6 399 779 23.57
ICA Maxi 2 875 773 13 056 340 15 932 113 18.05
ICA Supermarket 1 176 487 9 578 475 10 754 960 10.94
Willys 885 006 11 944 051 12 829 060 6.90

Notes: This table shows the estimates of the impact of promotion on ground coffee on shopping trips. Incremental is the estimated joint impact
of all ground coffee brand’s promotion effects on shopping trips for the weeks that had promotion, calculated as equation (5.3). Baseline are the
estimated counterfactual number of shopping trips if none of the brands had been promoted. Observed are the observed number of shopping
trips, equal to the sum of Baseline and Incremental. Percent of trips is the share of the observed shopping trips due to promotion, calculated as
Incremental divided by Observed. The OLS FE model only estimates the promotion effect of the brands Gevalia, Löfbergs, Zoegas, and Classic.
The PFE model estimates the promotion effect of all ground coffee brands that were purchased by the sample of households.



Table 5: Estimated number of shopping trips due to promotion per brand

Brand

Outcome Model Retailer Gevalia Löfbergs Zoegas Classic Other

Shopping trips

OLS FE

Coop Extra 334 794 541 685 87 453 -542 898
ICA Maxi 884 604∗∗ 66 903 -203 513 362 773
ICA Supermarket 3 561 32 713 300 255 927 388∗∗

Willys 459 937 121 290 781 938∗ 587 387

PFE

Coop Extra 297 738∗ -71 940 62 144 483 132∗∗ -563 271∗∗

ICA Maxi 396 372 257 638 -22 253 576 357∗∗∗ 236 462
ICA Supermarket -103 126 28 219 449 316 196 051 376 901
Willys 55 821 -18 160 177 632 92 260 140 236

Coffee shopping trips

OLS FE

Coop Extra 645 898∗∗∗ 785 252∗∗∗ 727 845∗∗∗ 713 392∗∗∗

ICA Maxi 2 600 490∗∗∗ 1 259 502∗∗∗ 1 989 515∗∗∗ 1 807 006∗∗∗

ICA Supermarket 1 989 693∗∗∗ 1 200 417∗∗∗ 1 256 424∗∗∗ 2 068 558∗∗∗

Willys 1 423 231∗∗∗ 1 436 021∗∗ 2 988 150∗∗∗ 1 229 099∗∗∗

PFE

Coop Extra 276 142∗∗∗ 331 553∗∗∗ 317 347∗∗∗ 352 882∗∗∗ 396 671∗

ICA Maxi 916 736∗∗∗ 366 144∗∗∗ 673 440∗∗∗ 576 581∗∗∗ 536 923∗∗∗

ICA Supermarket 397 434∗∗∗ 182 635∗∗ 280 777∗∗ 255 109∗ 117 506
Willys 134 681 158 162 379 225∗∗ 74 382 175 022

Significance levels: ∗∗∗, p < 0.01, ∗∗, p < 0.05, ∗ p < 0.1

Notes: This table shows τ̂ j
CT T , the estimates of each brand’s impact of promotion on shopping trips. The estimates are calculated as equa-

tion (5.4), that is, by taking the sum across regions and weeks of the difference between the predicted number of shopping trips given the
observed promotion and an estimated counterfactual of no promotion on the brand for the weeks that had promotion. The Other column show
the impact of promotion on the remaining ground coffee brands that were purchased by households in the sample.



Figure 4 and 5 show the time series of the observed shopping trips and coffee
shopping trips against their counterfactuals under no promotion on any brand. The
regional time series are aggregated to show the total impact on the national level
over time. The time series of the counterfactuals are multiplied with the adjustment
factor so the counterfactuals can be compared against the actual observed outcomes
rather than the predicted outcomes given the observed promotion.

The difference between the time series of the observed and counterfactual out-
comes corresponds to the impact of promotion on all brands, and the sum of the
differences over all weeks corresponds to τ̂CTT derived in equation (5.3) and the esti-
mates shown in column Incremental in Table 4. The weeks where the observed and
the counterfactual time series intersect are the weeks with no promotion since for
those weeks the observed outcome equals the estimated counterfactual multiplied
with the adjustment factor. To save space the estimated counterfactual time series
per brand are not shown. The time series of the joint impact of all brands per region
are shown in Figure 8a to 11b in section A.10 in the appendix.

In Figure 4, the counterfactual time series follow the seasonal variation and trend
over time of the observed time series, meaning that the index variable captures time
effects. The differences between the estimated counterfactuals from the models are
more apparent in Figure 5. The OLS counterfactual is visibly lower than the PFE
counterfactual for each retailer.

Figure 6 and 7 show τ̂CTT,t, the regionally aggregated estimated joint brand
effects of promotion for each retailer and model over time in relation to the baseline,
calculated as

τ̂CTT,t =
n∑
i=1

(
ŷobsit − ŷcit(0)

)
×
( n∑
i=1

yobsit

/ n∑
i=1

ŷobsit

)
. (6.3)

Figure 6 shows for which weeks the OLS FE model’s estimates negative joint brand
effects for Coop and ICA Maxi. The PFE model also estimates negative joint effects
for Coop and ICA Supermarket for some weeks. Further, Figure 6 shows that the
models’ weekly estimates are about equal for ICA Maxi, confirming the numerical
estimates in Table 4. The differences between the models’ estimates of the impact
are more apparent in Figure 7, especially for Willys and ICA Supermarket. Since
the models’ time series of the effect are not less than zero in any given week, there
were no negative joint brand effects of coffee promotion on coffee shopping trips.
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Figure 4: Shopping trips: Regionally aggregated observed and estimated coun-
terfactual number of shopping trips (in 1000) under no promotion on any ground
coffee brand per retailer. The difference between the observed and the counterfac-
tual time series is the corresponding model’s estimated joint impact of promotions
on the brands.



47

Co
op

Ex
tr
a

0 20 40 60 80 100

0
50

10
0

15
0 Observed

OLS FE counterfactual
PFE counterfactual

IC
A
M
ax
i

0 20 40 60 80 100

50
15

0
25

0

IC
A
Su

pe
rm

ar
ke
t

0 20 40 60 80 100

50
15

0
25

0
35

0

Week t

W
ill
ys

0 20 40 60 80 100

0
20

0
40

0

Figure 5: Coffee shopping trips: Regionally aggregated observed and estimated
counterfactual number of coffee shopping trips (in 1000) under no promotion on
any ground coffee brand per retailer. The difference between the observed and the
counterfactual time series is the corresponding model’s estimated joint impact of
promotions on the brands.
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Figure 6: Shopping trips: Regionally aggregated estimated joint impact τ̂CTT,t of
ground coffee promotion on the number of shopping trips (in 1000), calculated as in
equation (6.3). The time series are the estimated incremental number of shopping
trips due to promotion in relation to the baseline of no promotion in any week.
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Figure 7: Coffee shopping trips: Regionally aggregated estimated joint impact
τ̂CTT,t of ground coffee promotion on the number of coffee shopping trips (in 1000),
calculated as in equation (6.3). The time series are the estimated incremental num-
ber of coffee shopping trips due to promotion in relation to the baseline of no pro-
motion in any week.



7 Discussion

The first research question of this thesis is how to quantify the unobservable impact
of promotions on store visits. Using the potential outcomes framework, the impact
is quantified as the difference between the number of store visits for observations
with promotion and their counterfactual outcomes without promotion. A procedure
that estimates the counterfactual outcomes with a regression model is shown and ex-
pressed algorithmically for ease of implementation. In contrast to existing matching
methods, the procedure does not require pre-treatment covariates and works with
multiple continuous and concurrent treatments with varying starts, lengths and fre-
quencies in the cross-section. In comparison to the standard regression adjustment
estimator, the counterfactuals are estimated using coefficients obtained from a single
regression on all observed data, not with one regression per treatment status. Thus
the time effects on each observation are accounted for. An estimator of the cumu-
lative treatment effect is derived from the regression adjustment estimator of the
average treatment effect. Due to spatio-temporal dependence among the residuals,
the sum of the fitted values are not equal to the sum of the observed outcomes. The
proposed estimator correct for this dependence with an adjustment factor.

The second research question is to determine the impact of promotions on store
visits empirically. Using the proposed method, the results show that the estimates
depend on the regression model used, see Table 4 and 5. Both GfK’s log-linear OLS
fixed effects (OLS FE) model and the Poisson fixed effects (PFE) model estimates
small and mostly insignificant effects of ground coffee promotions on general gro-
cery shopping trips, see Table 4. It seems that promotions on ground coffee have
minor ability to generate incremental general grocery shopping trips. The impact
of coffee promotion on coffee shopping trips is larger and significant, as shown in
Table 5. There is thus support for that coffee promotions increase the number of cof-
fee purchases, which indicates that sales promotions are most effective at increasing
purchases of the product that is promoted.

Research questions three is to determine how the effect of promotion on store
visits differ between retailers and brands. This is achieved by fitting separate re-
gressions per retailer and decomposing the promotion effect per brand. The PFE
model generally estimates smaller effects, see Table 4 and 5. For instance, the OLS
FE model estimates that 1.22 percent of Willys’ shopping trips during the time
period were due to promotion according, whereas the PFE model’s estimate is 0.28
percent. In numbers, this corresponds to about 1.9 million versus 450 thousand
shopping trips. For coffee shopping trips, Coop has had the largest relative effect
according to the PFE model. This is intuitive from an economic perspective, since
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Coop have the highest regular prices. Some of the retailers had a significant increase
in shopping trips from promoting other coffee brands, see Table 5. This shows that
their effect should be considered.

GfK’s OLS FE model have several weaknesses that explain why it yields differ-
ent estimates of the promotion impact. The model has log-transformed dependent
variable to model the multiplicative effects. This is problematic since coffee shop-
ping trips contains zeros, which cannot be log-transformed. A constant is added to
these observations to fit the model, but this introduces bias. Further, the OLS FE
model’s brand level promotion effects suffer from bias by not accounting for that
during promotions consumer brand-switch, which Gupta (1988) show is the domi-
nant behavioural change of consumers during promotions. Another weakness is that
it uses the industry level time trend and seasonality to model time effects although
these are not common among retailers and regions. The regression results confirm
that the predicted outcomes from the OLS FE model has higher bias than those of
the PFE model, see the bias statistic in Table 2 and 3. Also, estimates of β in log-
linear OLS models are inconsistent if the standard errors are heteroscedastic, which
Breusch-Pagan tests in Table 8 in the appendix indicate is the case. The proposed
PFE model addresses these weaknesses by being able to handle outcomes with a
value of zero, by estimating the promotion effects of all ground coffee brands that
were purchased, and by accounting for region-retailer specific seasonality and time
trends. HACSC robust standard errors are estimated to adjust for heteroscedastic-
ity, spatio-temporal dependence and the equidispersion property of the PFE model
for correct inference of the promotion effect.

The validity of causal claims depend on whether the necessary assumptions for
causal inference in the potential outcomes framework are satisfied. It is questionable
whether the no-interference assumption of the stable unit treatment value assump-
tion (SUTVA) is satisfied. Likely, the assignment of promotions to regions are not
independent of each other. The no-hidden variations in treatment may be satisfied
since the type of treatment is held constant within regions and different counterfac-
tuals are estimated for each brand. Promotions are likely planned in a pre-specified
pattern over the calendar year according to seasonality in demand. By using a time
index variable in the regressions that capture these effects it is more probable that
unconfoundedness is fulfilled, and the PFE model control for these effects on the
retailer-region level instead of on just the industry level. The overlap assumption
is satisfied since the difference is taken between each observation’s own counterfac-
tual for the same unit and time period, thereby cancelling possible confounders of
the estimated impact. Since a nationally represented sample is used the external
validity towards the Swedish population can be considered satisfactory.
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8 Concluding Remarks

The practical contribution of this thesis is an improvement of GfK’s evaluation of
promotion effects. This has been accomplished by proposing a new model that
address several limitations of their original model. The findings suggest that the
original model overestimated the impact of promotion on store visits. Being able to
provide accurate information is crucial for GfK and their clients. For retailers, accu-
rate information on marketing performance is critical for planning and forecasting
business performance. For the promoted brand, being able to show the brand’s abil-
ity to draw consumers to the store offers an advantage in negotiations with retailers,
for instance with regards to shelf placement of the brand’s products.

The thesis contributes to the existing literature on promotion effects. It shows
how to estimate the unobservable promotion impact using the potential outcomes
framework. This approach has only recently been adopted in marketing (see Rossi
(2017) and Varian (2016)). Secondly, the thesis suggests which models may be
appropriate for modelling such data. Third, an algorithm for estimating counter-
factual outcomes under multiple continuous and concurrent treatments that vary in
the cross-section without using matching covariates is presented and an estimator
of the cumulative treatment effect with adjustment for spatio-temporal dependence
is derived.

The study has a few limitations. One concern is whether the effect truly is in-
cremental. It is possible that consumers found out about the promotion at the store
and would purchase anyway. The results may suffer from measurement bias since
the data are self-reported, not transaction level data. The analysis has not consid-
ered the magnitude of the price reduction. It is likely that the effect of promotion
on store visits is stronger the deeper the price reduction. However, according to
economic theory on revealed preferences it is reasonable to assume that the price
discount is indirectly reflected in the purchasing frequency. It is further possible
that there is simultaneity bias, i.e. that the number of shopping trips affect the
promotion assignment and vice versa. Throughout the thesis it is argued that the
time index variable captures some of this bidirectional dependence, but the promo-
tion effect may be interpreted as associative rather than causal to not overstate the
findings.

For future research, it would be interesting to use data on the individual house-
hold level. Another possibility would be to study the impact on revenue or profits.
A bayesian approach could be beneficial by being able to use results from previous
studies and managerial experience to set priors.
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A Appendices

A.1 Proof of LSDV and Fixed Effects Estimators

Throughout this thesis the LSDV and fixed effects specifications are used inter-
changeably. A necessary condition for this to be valid is that the specifications give
the same estimates of the main parameter of interest β. This section provides a
proof following Greene (2012) that the specifications coincide. Only the OLS case
is proven here but the result also holds for the Poisson fixed effects model (see
Cameron and Trivedi (2013)).

Matrix algebra is used for more compact notation. The LSDV estimator is first
derived from the pooled estimator, then the FE estimator is derived, and lastly it
is proven that they coincide.

The pooled panel data model is given by

Y = Xβ + ε, (A.1)

where Y and ε are (nT × 1), X is (k+ 1)× nT and β is (k+ 1)× 1. For the LSDV
specification, break up X in two components:

1. W, which is X less its column of ones for each intercept, [X01, . . . ,X0N ]′ where
X0i is a (T × 1) column vector of ones, and

2.

X0 =


X01 0 . . . 0

0 X02 . . . 0
...

... . . . ...
0 0 . . . X0N ,


where W is (nT × k) and X0 is (nT × n). Then the LSDV estimator is

Y = X0α+ Wγ + ε, (A.2)

in which α is the (n × 1) column vector of the n intercepts, and γ is (k × 1)
and has the k slope coefficients.

If n is large it can be computationally demanding and difficult to interpret the n
intercepts. The FE estimator express observations as deviations from the variables’
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time average for unit i. Note that X′0X0 is the (n× n) diagonal matrix, i.e

X′0X0 =


T 0 . . . 0
0 T . . . 0
...

... . . . ...
0 0 . . . T,


whose inverse is the (n× n) matrix

(X′0X0)−1 =


T−1 0 . . . 0

0 T−1 . . . 0
...

... . . . ...
0 0 . . . T−1,


and that

X0(X′0X0)−1X′0 =


T−11T 0 . . . 0

0 T−11T . . . 0
...

... . . . ...
0 0 . . . T−11T ,


in which 1T is a (T × T ) matrix with all elements being 1, and X0(X′0X0)−1X′0 is
a symmetric (nT × nT ) matrix. For all Yi

T−11TYi =


T−1∑T

t=1 Yit
T−1∑T

t=1 Yit
...

T−1∑T
t=1 Yit

 (A.3)

is a (T × 1) matrix denoted Ȳi, and

X0(X′0X0)−1X′0Y =


Ȳ1
Ȳ2
...
Ȳn

 (A.4)
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is the (nT × 1) matrix Ȳ which contain the mean values on Y for each unit i. Also,

X0(X′0X0)−1X′0W =


W̄1
W̄2
...
W̄n

 (A.5)

is the (nT × k) matrix called W̄ , where W̄i is a (T × k) matrix where the columns
are the means of the corresponding regressor for the ith unit. We can then define
the (nT × nT ) matrix

D = InT −X0(X′0X0)−1X′0 (A.6)

and DW becomes the (nT×k) matrix, which contains the deviation of each regressor
from the regressor’s mean for the observation’s unit. DY is in turn the (nT × 1)
matrix of each observations deviation in Y from the observation’s unit’s mean Y .
Pre-multiplying the LSDV model (A.2) with D,

DY = DX0α+ DWγ + Dε = 0 + DWγ + Dε. (A.7)

Dε contain the deviation of each observations error from the observation’s unit’s
mean error. Estimating (A.8) with OLS yields

γ̂FE = (W′D′DW)−1W′D′DY
= (W′DW)−1W′DY. (A.8)

Now, to show that FE and LSDV coincide, first recall that OLS has the property

X′e = 0,

where e is the column vector of the residuals, since the regressors are orthogonal to
the residuals. If X is (X0W), then X′e is a (n×k) column vector with elements equal
to zero. Thus, the slope estimates of the FE estimator will be equal to those from
those estimated with OLS if X is orthogonal to the residuals in the FE estimator.
To prove that LSDV and FE coincides it thereby suffices to show that for the FE
estimator, X is orthogonal to the residuals.

Theorem 1 The fixed effects estimator and least square dummy variable estimator
yield identical estimates of β.

Proof. Recall that the FE estimator is obtained by fitting (A.8) with OLS. Therefore
DX is orthogonal to the residuals from the OLS regression. Define the residuals
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from (A.8) as
d = DY−DWγ̂FE , (A.9)

which correspond to the residuals from the LSDV estimator (A.2). This holds
since (A.4) and (A.5) together with (A.6) lets us rewrite (A.9) as

d = Y− Ȳ− (W− W̄γ̂,

= Y− (Ȳ− W̄γ̂)−Wγ̂.

Also, Ȳ− W̄γ̂ can be rewritten as
Ȳ1 − W̄1γ̂

Ȳ2 − W̄2γ̂
...

Ȳn − W̄nγ̂

 = X0


T−1∑T

t=1(Y1t −W1tγ̂)
T−1∑T

t=1(Y2t −W2tγ̂)
...

T−1∑T
t=1(Ynt −Wntγ̂)

 = X0α̂FE

where Yit is the ith unit’s value in the tth time period, Wit is a row vector of the k
values on the regressors in the tth time period for unit i, and

α̂FE =


T−1∑T

t=1(Y1t −W1tγ̂)
T−1∑T

t=1(Y2t −W2tγ̂)
...

T−1∑T
t=1(Ynt −Wntγ̂)

 .

Thus, equation (A.9) can be expressed as

d = Y−X0α̂FEWγ̂FE .

This shows that the vector d is the result from estimating α and γ in(A.2) with
α̂FE and γ̂FE . Now, the FE estimator for the slope coefficients will equal the OLS
estimator of γ if X = (X0W), which occur when X′d = 0.

To show that X′d = 0, first rewrite d as

d = DY−DWγ̂FE = DY−DW
(
(W′DW)−1W′DY

)
= (InT −DW(W′DW)−1W′)DY.

Therefore,

X′d = (X0W)′d = (X0W)′(InT −DW(W′DW)−1W′)DY, (A.10)
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in which the first n rows of X′d are

X′0(InT −DW(W′DW)−1W′)DY = (X′0InT −X′0DW(W′DW)−1W′)DY.

Since D = D′ by symmetry,

(X′0InT −X′0DW(W′DW)−1W′)DY = (X′0InT −X′0D′W(W′DW)−1W′)D′Y.

Because X′0D′ = (DX)′ = 0′, it follows that

X′d = (X′0InT −X′0D′W(W′DW)−1W′)D′Y = (X′0InT − 0′)D′Y
≡ (X′0InT )D′Y
= X′0D′Y = 0

which is an (n× 1) column of zeros.
Thus, the following k rows in X′d, equation (A.10), are

W′(InT −DW(W′DW)−1W′)DY
= (W′InT −W′DW(W′DW)−1W′)DY

= (W′ − IkW′)DY = (W′ −W′)DY = 0,

and thereby X is orthogonal to d and it follows that the FE and LSDV estimators
yield identical estimates of β. �

A.2 Sampling Methodology

GfK Sweden’s Consumer Scan is based on a sample of 3000 households. The sample
of households and weighting structures are selected to achieve representativity and
market coverage with respect to consumption and purchasing behaviour for selected
product categories.

The variables used for stratification are region and household size. The region
variable ensure geographical spread and coverage. GfK have found household size
to be the most important predictor of consumption and purchasing behaviour on
the household level. The groups of the stratification variables are shown in Table 6.

Larger Stockholm, Larger Gothenburg and Öresund (Helsingborg and Malmö)
are metropolitan areas while the remaining four are traditionally defined market
regions. With 7 regions and five household classes, a total of 35 strata are created
from which households are randomly sampled.

63



Table 6: Stratification variables for sampling
of panelists

Stratification Variable
Region Household size
North 1 person household
East 2 person household
Larger Stockholm 3 person household
West 4 person household
Larger Gothenburg 5+ person household
South
Öresund

Notes: The regions are mutually exclusive in spa-
tial coverage and cover the whole of Sweden.

GfK have observed that the variance of the estimators of purchasing behaviour
increase for larger households. The reason may be that individual differences in
purchasing are accumulated for larger households. Since the standard errors are
directly proportionate to the stratum variances, a consequence is that larger house-
hold contribute more to the overall standard error of the mean for a given estimator
across all household groups. If the panel size of 3000 households would be pro-
portionally allocated to the 35 strata according to Sweden’s actual distributions of
household size, single person households would make up a large share of the sample.
The low share of large households would increase their and the overall estimator
variances further. Thus, GfK use optimum allocation, which is an allocation rule
that minimises the standard error of the mean for a given estimator. The optimum
allocation regarding the sample size n for stratum h, h = 1, . . . , L, is given by

nh = (Nh/N)× Sh∑L
h=1(Nh/N)× Sh

× n (A.11)
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where

L = count of strata
N = sum of all stratum sample sizes
n = total sample size h

Nh = number of households in stratum h

sh = standard deviation in stratum h

where n = n1 + . . .+nH . Note that nh is different from the real proportion of group
h, given by Ph = Nh/N , so equation (A.11) equals

nh = Ph × Sh∑5
h=1 Ph × Sh

× n. (A.12)

The effect is that the number of single person households in the sample are reduced
while additional households are selected from the household groups with large vari-
ance. Thereby the variances for the estimators are decreased.

The distributions of auxiliary variables not used for stratification for the obtained
sample are checked to ensure representativity towards the population. Weighting
variables are applied to adjust the panel composition with reference to the actual
population distributions, obtained from SCB. The weighting variables used for the
sample of households are region, household size, age of reference person, having
children 0-6 years and having children 0-12 years.

A.3 Tests for Model Selection and Misspecification

Since the OLS FE model and the PFE model are not nested, standard methods to
compare models such as the classical likelihood ratio (LR) test cannot be used for
comparison. Vuong (1989) developed a two-step testing procedure for comparison
of non-nested models. The first step is a variance test of indistinguishability of
the models fits to the focal population. The second step is a LR test of model
comparison. The LR test’s test statistic is

LRNN = 1√
nω

(
Lf (α̂)− Lg(β̂)

)
(A.13)
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where

ω2 = 1
n

n∑
i=1

(
Lf (yi | xi, α̂)− Lg(yi | xi, β̂)

)2 − ( 1
n

n∑
i=1
Lf (yi | xi, α̂)− Lg(yi | xi, β̂)

)2
.

(A.14)

The test statistic is computed by dividing the average difference of the log likelihood
functions at their ML estimates with the estimated standard error of the average
difference. The latter is simply the standard deviation of the unit differences in
log likelihood divided by the square root of n. Under H0, the test statistic is
asymptotically standard normal distributed (Winkelmann, 2008).

The variance test aims to select the model that is closest to the true conditional
distribution by using the null hypothesis that the models are indistinguishably close,

H0 = E0
[
Lf (yi | xi, α̂)− Lg(yi | xi, β̂)

]
= 0. (A.15)

The LR test then shows if one of the model fits the data better. The test cannot
determine if the closest model is the true model.

Since the computation of the test statistic requires that the models are estimated
with ML, the OLS FE model is refitted as a GLM with an identity link function.
This approach is valid since OLS and ML estimates are equivalent for Gaussian
models. A finite sample correction is made to the test statistic based on models’
AIC. Two tests are made: 1) a variance test that the models are indistinguishable,
and 2) a non-nested likelihood ratio test with H0 that the model fits are equal for
the focal population, and H1A that the OLS FE model fits the data better than the
PFE model and H1B that the PFE model fits the data better than the OLS FE
model. The results in Table 7 show that variance test’s hypothesis that the models
are indistinguishable are not rejected for any of the retailers’ models but the LR
test results indicate that the PFE model has a superior fit to the data. The p-values
of the LR test are for HA1 since in all cases where HA1 was rejected, H1B was not,
and their test statistics z are the same.

A.4 Tests for Heteroscedasticity

The Breusch-Pagan test (Breusch & Pagan, 1979) is a Lagrange Multiplier (LM)
test for evaluating if the errors in a linear regression model are heteroscedastic. The
test considers the errors heteroscedastic if the variance of the errors are dependent
on independent variables’ values. The procedure of the test for panel data is as
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Table 7: Vuong test for model selection and misspecification

Variance test Non-nested LR test

Variable Retailer p-value ω2 p-value z

Shopping trips

Coop Extra 0.5 2,844,378 <0.0001∗∗∗ 26.212
ICA Maxi 0.5 2,032,063 <0.0001∗∗∗ 25.975
ICA Supermarket 0.5 1,949,271 <0.0001∗∗∗ 26.562
Willys 0.5 2,566,125 <0.0001∗∗∗ 25.280

Coffee shopping trips

Coop Extra 0.5 2,665,746 <0.0001∗∗∗ 27.392
ICA Maxi 0.5 13,009,981 <0.0001∗∗∗ 23.610
ICA Supermarket 0.5 4,294,820 <0.0001∗∗∗ 26.150
Willys 0.5 11,064,615 <0.0001∗∗∗ 25.092

Significance levels: ∗∗∗, p < 0.01, ∗∗, p < 0.05, ∗ p < 0.1

Notes: This table show the results from the Vuong test of misspecification for OLS fixed effects
(OLS FE) models and the Poisson fixed effects (PFE) models. Two tests are made: 1) a variance
test that the models are indistinguishable, and 2) a non-nested likelihood ratio test with H0 that the
model fits are equal for the focal population, and HA that the OLS FE model fits the data better
than the PFE model. The variable column refer to the dependent variable used in the model since
separate models are fitted for shopping trips and coffee shopping trips.



follows: Fit a pooled linear regression model and obtain the residuals

eit = yit − α̂i − β̂1x1it + . . .+ β̂kxkit, j = 1, . . . , k (A.16)

which will have a zero mean. If the residuals’ variance does not depend on xit, their
variance can be estimated as the average squared values of the residuals. If their
variance does depend on xit, their variance can be modelled as a linear function of
xit by using the auxiliary regression

e2
it = γ0 + γ1x1it + . . .+ γkxkit + vit. (A.17)

The LM test statistic is given by the sample size n times the coefficient of determi-
nation for the auxiliary regression,

LM = nR2
e2 . (A.18)

The test statistic is asymptotically χ2
k-distributed under the null hypothesis of ho-

moscedasticity,

H0 : γ1 = . . . = γk = 0
HA : γj 6= 0, for any j, j = 1, . . . , k.

The results in Table 8 show that heteroscedasticity robust standard errors are
needed.

A.5 Tests for Serial Correlation

Wooldridge (2002) provide general tests for serial correlation in FE models. If the
pooled model’s errors are uncorrelated, the FE model will have negatively serially
correlated errors with Corr[eit, eis] = −1/(T − 1) for each t, s. The correlation
decrease for T → ∞ (Croissant & Millo, 2008) and is therefore appropriate for
panels with large T . Durbin-Watson and Breusch-Godfrey LM tests can thereby be
made on the time demeaned data to test for serial correlation in FE models.

The Durbin-Wu statistic dp for panel data for H0 : ρ = 0 is given by

dp =
∑n
i=1

∑T
t=2(ẽit − ẽi,t−1)2∑n
i=1

∑T
t=1 ẽ

2
it

(A.19)

where ẽit denote the within transformed idiosyncratic error component. Under the
assumption of eit

iid∼ N (0, σ2
e), the test statistic follows a linear combination of chi-
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Table 8: Test of heteroscedastic errors

Variable Model Retailer p-value df LM

Shopping trips

OLS FE

Coop Extra < 0.0001∗∗∗ 11 74.168
ICA Maxi < 0.0001∗∗∗ 11 69.417
ICA Supermarket < 0.0001∗∗∗ 11 86.628
Willys < 0.0001∗∗∗ 11 67.058

PFE

Coop Extra < 0.0001∗∗∗ 18 110.77
ICA Maxi < 0.0001∗∗∗ 18 55.585
ICA Supermarket < 0.0001∗∗∗ 18 57.695
Willys < 0.0001∗∗∗ 18 54.735

Coffee shopping trips

OLS FE

Coop Extra < 0.0001∗∗∗ 11 63.944
ICA Maxi < 0.0001∗∗∗ 11 50.533
ICA Supermarket < 0.0001∗∗∗ 11 41.917
Willys < 0.0001∗∗∗ 11 64.032

PFE

Coop Extra < 0.0001∗∗∗ 18 164.28
ICA Maxi < 0.0001∗∗∗ 18 108.04
ICA Supermarket < 0.0001∗∗∗ 18 130.48
Willys < 0.0001∗∗∗ 18 127.55

Significance levels: ∗∗∗, p < 0.01, ∗∗, p < 0.05, ∗ p < 0.1

Notes: This table show the results from the Breusch-Pagan test of heteroscedasticity in the
error terms in the OLS fixed effects (OLS FE) and Poisson fixed effects (PFE) models. The
variable column refer to the dependent variable used in the model since separate models
are fitted for shopping trips and coffee shopping trips.



squared variables. The Durbin-Wu test assumes that eit follows an AR(1) process
and requires the regressors to be non-stochastic.

The Breusch-Godfrey LM test is more general as it does not make the AR(1)
or non-stochastic regressors assumptions. It uses the obtained within transformed
residuals from a fitted model to test whether the auxiliary model

ẽit = γ0 + γ1x̃1it + ρ1ẽi,t−1 + γ2x̃2it + ρ2ẽi,t−2 + . . .+ γkx̃kit + ρpẽp,t−2 + vit (A.20)

holds. The test has the standard LM test statistic as shown in equation (A.18)
and the same null hypothesis as the Durbin-Wu test. The number of observations
available for the auxiliary regression (A.20) is n = T−p so n depends on the number
of lags tested p.

Table 9 presents the results from the Breusch-Godfrey (BG) LM test and the
Durbin-Wu (DW) test. The BG test has a max order of 4, corresponding to a
test of serial correlation up to a month since it is assumed that some households
purchase behaviour follow a monthly pattern. The DW test is two-sided with normal
approximated p-values.

The results in Table 9 indicate there is no serial correlation in the errors in
the models for coffee shopping trips. The test results are inconclusive for shopping
trips models. The Breusch-Godfrey test rejects the null of no serial correlation
in all models, but the panel Durbin-Watson only rejects the null for the OLS FE
model for Coop’s and the PFE mode for Willys. The Durbin-Watson test assumes
AR(1) errors, and an inspection show that the models’ errors follow different ARIMA
structures. Thus, the Breusch-Godfrey test results may be more accurate.

An inspection of the residual autocorrelation functions reveal that the OLS FE
model’s residuals for Coop’s shopping trips are serially correlated in regions East,
Stockholm, South and Öresund. The OLS FE residuals are correlated for Willys
shopping trips in Stockholm while the PFE residuals are correlated in West. ICA
Maxi have correlated residuals in East in both models. No regions have significantly
serially correlated residuals in both shopping trips models for ICA Supermarket.
There is no significant serial correlation in the residuals for any coffee shopping
trips model.

Overall, there are indications that autocorrelation consistent robust standard
errors are need for the shopping trips models, but necessarily for the coffee shopping
trips models.
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Table 9: P-values from tests of serial correlation in the errors

Variable Model Retailer BG DW

Shopping trips

OLS FE

Coop Extra <0.0001∗∗∗ <0.0001∗∗∗

ICA Maxi <0.0001∗∗∗ 0.1826
ICA Supermarket <0.0001∗∗∗ 0.5560
Willys <0.0001∗∗∗ 0.2696

PFE

Coop Extra 0.0017∗∗∗ 0.3464
ICA Maxi <0.0001∗∗∗ 0.2200
ICA Supermarket <0.0001∗∗∗ 0.3004
Willys <0.0001∗∗∗ 0.0535∗

Coffee shopping trips

OLS FE

Coop Extra 0.8703 0.5297
ICA Maxi 0.3784 0.7040
ICA Supermarket 0.7938 0.4578
Willys 0.2448 0.0715∗

PFE

Coop Extra 0.0985∗ 0.6146
ICA Maxi 0.0481∗∗ 0.0415∗∗

ICA Supermarket 0.0291∗∗ 0.0299∗∗

Willys 0.0499∗∗ 0.2802

Significance levels: ∗∗∗, p < 0.01, ∗∗, p < 0.05, ∗ p < 0.1

Notes: This table show p-values from Breusch-Godfrey (BG) and Durbin-Watson
(DW) tests for serial correlation in the error terms of the OLS fixed effects (OLS
FE) and Poisson fixed effects (PFE) models. The variable column refer to the
dependent variable used in the model since separate models are fitted for shopping
trips and coffee shopping trips.



A.6 Tests for Cross-Sectional Dependence

In spatial statistics literature, cross-sectional dependence is typically measured with
a spatial matrix that defines the correlation structure. This method is not useful in
economic applications where a measure of space is not given and the correlation is
unknown. Econometricians have developed tests of cross-sectional dependence that
do not require an a priori specification of the correlation structure (Pesaran, 2004).

Breusch and Pagan (1980) proposed a LM test with the null hypothesis of zero
cross equation error term correlations, based on the average pairwise correlation of
OLS residuals. Specifically, define the LM statistic

CDlm = T
n−1∑
i=1

n∑
j=i+1

ρ̂2
ij , (A.21)

where ρ̂ij is the sample estimate of the pairwise correlation of the residuals (Pesaran,
2004), i.e

ρ̂ij = ρ̂ji =
∑T
t=1 ẽitẽjt√(∑T

t=1 ẽ
2
it

)(∑T
t=1 ẽitẽ

2
jt

) . (A.22)

Breusch-Pagan showed that under the null hypothesis

H0 : Cov(εit, εjt = 0, for all i 6= j,

where i, j refer to cross-sectional units, the CDLM statistic is asymptotically chi-
square distributed with n(n − 1)/2 degrees of freedom. The Breusch-Pagan test is
valid for panels with small n and large T and is thus suitable for the dataset.

The results in Table 10 show that the null hypothesis of no spatial correlation
in the errors are rejected for all models except for Coop’s coffee shopping trips OLS
FE model. The OLS FE models errors are positively correlated across regions while
the correlation is negative in the PFE model, except for one case. The results show
that spatial correlation consistent robust standard errors are needed for inference.

A.7 Tests for Panel Unit Root

A necessary condition for valid time series regressions is stationarity. A process
Yt is strongly stationary if the cumulative distribution function FY(t1 + s, . . . , tn +
s) = FY(t1, . . . , tn) for any time indices (t1, . . . , tn) and all time lags s. Thus, it
is strongly stationary if the joint distribution of the vector (yt1+s, . . . , ytn+s) equals
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Table 10: Tests of cross-sectional dependence in the errors

Variable Model Retailer p-value CD df ρ

Shopping trips

OLS FE

Coop Extra < 0.0001∗∗∗ 158.29 21 0.0826
ICA Maxi < 0.0001∗∗∗ 54.002 21 0.0249
ICA Supermarket < 0.0001∗∗∗ 76.03 21 0.1389
Willys < 0.0001∗∗∗ 58.582 21 0.0789

PFE

Coop Extra < 0.0001∗∗∗ 117.82 21 -0.1446
ICA Maxi < 0.0001∗∗∗ 97.25 21 -0.1549
ICA Supermarket < 0.0001∗∗∗ 79.87 21 -0.1556
Willys < 0.0001∗∗∗ 108.87 21 -0.1581

Coffee shopping trips

OLS FE

Coop Extra 0.5416 19.68 21 0.0375
ICA Maxi < 0.0001∗∗∗ 124.37 21 0.1414
ICA Supermarket < 0.0001∗∗∗ 108.63 21 0.1564
Willys < 0.0001∗∗∗ 114.95 21 0.1958

PFE

Coop Extra 0.0187∗∗ 36.61 21 -0.0971
ICA Maxi < 0.0001∗∗∗ 121.50 21 -0.0625
ICA Supermarket < 0.0001∗∗∗ 66.18 21 -0.0139
Willys < 0.0001∗∗∗ 147.39 21 0.2330

Significance levels: ∗∗∗, p < 0.01, ∗∗, p < 0.05, ∗ p < 0.1

Notes: This table show the results from the Breusch-Pagan test of cross-sectional (spatial)
dependence in the error terms of the OLS fixed effects (OLS FE) and Poisson fixed effects
(PFE) models. The variable column refer to the dependent variable used in the model since
separate models are fitted for shopping trips and coffee shopping trips.



the joint distribution of (yt1 , . . . , ytn) for all (t1, . . . , tn) and s. This means that
the distribution of the sequence of random variables (yt1 , . . . , ytn) is independent of
time. A process yt is weakly stationary if its mean and variance remain unchanged
over time, that is E[yt] = µy(t) and V[yt] = σ2, and its covariance Cov[yt, yt−s]
depends only on lag s, not t. A process is trend stationary if there exists a β such
that yt − βt is stationary. A trend stationary process has a deterministic trend,
which upon removal makes the process stationary.

If the process’ characteristic function has a root of 1 or larger, the process has a
unit root. Such non-stationary processes are denoted I(1), while processes without
a unit root are I(0). While both unit root processes and trend stationary processes
are non-stationary, trend stationary processes need not have a unit root. In presence
of a shock, a trend stationary process will converge to its mean not affected by the
shock, while the mean of a unit root process will be permanently changed as they
do not converge over time.

This section explain common panel unit roots test that apart from the time
dimension also consider the panel’s cross-section, since the way in which n and T

converge to infinity is important for the asymptotic behaviour of the estimators and
tests for non-stationarity (Baltagi, 2005).

Either one can test if each unit’s time series are non-stationary or if all units
are non-stationary. The Im, Pesaran, and Shin (2005) (IPS) test’s null hypothesis
is that all units have a unit root but allow heterogenous coefficients. The IPS test
alternative hypothesis is that some of the units have unit roots:

H0 : ρi = 1 for all i

H1 :

ρi < 1 for i = 1, . . . , N1

ρi = 1 for i = N1 + 1, . . . , N

The test computes ADF test statistics for each unit and combine them by averaging
the unit root test, i.e. t̄ = (1/n)

∑n
i=1 tρi for each unit i, where tρi is the unit-specific

t-statistic for the null hypothesis. The IPS test requires that n/T → 0 for n→∞.
Hadri (2000) proposes a residual-based LM test that is a generalisation of the

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test for time series. The Hadri test has
the null hypothesis that the time series is stationarity around a deterministic trend.
It uses residuals obtained from a regression of yit on a constant, or a constant plus
a trend,

yit = rit + εit (A.23)
rit = ri,t−1 + uit. (A.24)
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where rit is a random walk and εit
iid∼ N (0, σ2

ε ) and uit
iid∼ N (0, σ2

u) are mutually
independent and identically distributed across i and over t. The null hypothesis
is that there is no unit root in the time series for any unit i, and the alternative
hypothesis is that the panel has a unit root for some i,

H0 : σ2
u = 0. (A.25)

If the variance uit = 0, then rit = ri,t−1 is a constant and yit is stationary. The
Hadri test allows for heteroscedasticity adjustments. The test is well suited for large
n and T .

The IPS and Hadri tests are computed for both dependent variables. The tests
are for trend-stationarity since the number of shopping trips follow seasonal patterns
and a deterministic trend, as seen for Coop in Stockholm in Figure 1. The time series
are thereby assumed to be mean reverting. The IPS test uses the limit of 8 lags,
corresponding to 8 weeks, and the number of lags for the Hadri test are computed
automatically using AIC. The heteroscedasticity consistent version of the Hadri test
is used since the Breusch-Pagan test in section A.4 showed signs of heteroscedasticity.
The tests’ results are provided in Table 11.

The LM test results indicate that one region’s shopping trips time series has a
unit root and that the coffee shopping trips time series are stationary in each region
for all retailers. The IPS test indicate that at least one unit is not trend stationary.

A.8 Software

The statistical computing language R is used throughout. The plm package (Croissant
& Millo, 2008; Millo, Tappe, & Croissant, 2017) is used for estimating the log-linear
OLS FE model and pglm package (Millo, 2017) is used for the PFE model. The
same two packages are used for the panel model tests of heteroscedasticity and
cross-sectional and serial correlation in the errors. The robust covariance matri-
ces are estimated with plm, pglm, and the sandwich package (Zeileis, 2004, 2006).
The Vuong tests are carried out using the nonnest2 package (Merkle & You, 2018a,
2018b) and the RMSE and bias metrics are computed using the Metrics package
(Frasco, 2017). LATEXformatted tables are generated in R with the stargazer pack-
age (Hlavac, 2015, 2018) and the tikzDevice package (Sharpsteen & Bracken, 2018)
is used for high resolution figures.
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Table 11: P-values from panel unit root tests

Variable Retailer IPS LM

Shopping trips

Coop Extra <0.0001∗∗∗ <0.0001∗∗∗

ICA Maxi <0.0001∗∗∗ <0.0001∗∗∗

ICA Supermarket <0.0001∗∗∗ <0.0001∗∗∗

Willys <0.0001∗∗∗ 0.0001∗∗∗

Coffee Shopping trips

Coop Extra <0.0001∗∗∗ 0.4630
ICA Maxi <0.0001∗∗∗ 0.9398
ICA Supermarket <0.0001∗∗∗ 0.9835
Willys <0.0001∗∗∗ 0.1162

Significance levels: ∗∗∗, p < 0.01, ∗∗, p < 0.05, ∗ p < 0.1

Notes: This table show the panel unit root test results for trend stationarity with
region-specific intercepts and trend as exogenous variables for the dependent vari-
ables. The Im-Pesaran-Shin (IPS) test have the null hypothesis that each region’s
time series is trend stationary with the alternative hypothesis that some regions
have unit roots, possibly with heterogenous coefficients. The Lagrange Multiplier
(LM) test have the null hypothesis that each region’s time series is trend station-
ary around a deterministic trend with no unit root and the alternative hypothesis
that the panel has a unit root. The LM test is heteroscedasticity consistent.



A.9 National Industry Level Summary Statistics

Table 12 show descriptive statistics for the grocery retailers that the households
in the panel have purchased from during the time period, including retailers not
included in this dataset. The industry time index variable used in the OLS FE
model is calculated on these data.

Table 12: Descriptive statistics for retailer and regional aggregates

Variable Mean St. Dev. Min Max

Shopping trips 12,879.070 522.014 11,587.800 14,427.700
Coffee shopping trips 805.211 275.432 368.740 1,652.723
Promotion trips share

Gevalia 47.899 23.454 9.263 91.289
Löfbergs 50.597 25.229 0.000 93.888
Zoegas 52.225 20.281 8.783 87.868
Classic 57.544 27.674 0.000 97.724
Other brands 42.751 15.210 8.915 73.980

Notes: The table show the national aggregate across regions and retailers, correspond-
ing to the national industry level data. Shopping trips and coffee shopping trips are
in thousands. Promotion trips shares are in percentages.

A.10 Regional Cumulative Effects Plots

Time series of the observed and counterfactual outcomes per region are shown in
Figure 8-11. The estimated counterfactual time series follow the seasonality and
trend in the observed outcomes well with some variation across regions. For instance,
for ICA Maxi in Figure 9a, the difference between the time series seems to be larger
in North and South. The differences are even more visible for the coffee shopping
trips time series in Figure 10 to 11.
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Figure 8: Shopping trips: regional observed and estimated counterfactual number of shopping trips (in 1000) under
no promotion on any ground coffee brand per retailer. The difference between the observed and the counterfactual time
series is the corresponding model’s estimated joint impact of promotions on the brands per region. The x-axis is week t
relative to week 36 in 2015 ranging to week 35 in 2017.
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Figure 9: Shopping trips: regional observed and estimated counterfactual number of shopping trips (in 1000) under
no promotion on any ground coffee brand per retailer. The difference between the observed and the counterfactual time
series is the corresponding model’s estimated joint impact of promotions on the brands per region. The x-axis is week t
relative to week 36 in 2015 ranging to week 35 in 2017.
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Figure 10: Coffee shopping trips: regional observed and estimated counterfactual number of coffee shopping trips
(in 1000) under no promotion on any ground coffee brand per retailer. The difference between the observed and the
counterfactual time series is the corresponding model’s estimated joint impact of promotions on the brands per region.
The x-axis is week t relative to week 36 in 2015 ranging to week 35 in 2017.
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Figure 11: Coffee shopping trips: regional observed and estimated counterfactual number of coffee shopping trips
(in 1000) under no promotion on any ground coffee brand per retailer. The difference between the observed and the
counterfactual time series is the corresponding model’s estimated joint impact of promotions on the brands per region.
The x-axis is week t relative to week 36 in 2015 ranging to week 35 in 2017.


