
Design of Pacman with Debug
Logic
DINESH KOTHAMASU
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2018

D
IN

ESH
 K

O
TH

A
M

A
SU

D
esign of Pacm

an w
ith D

ebug Logic
LU

N
D

 2018

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2018-622

http://www.eit.lth.se

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lund University Publications - Student Papers

https://core.ac.uk/display/289954242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Design of Pacman with Debug
Logic

Master Thesis

By

Dinesh Kothamasu

Master of Science in System on Chip

Department of Electrical and Information Technology
Faculty of Engineering, LTH, Lund University

SE-221 00 Lund, Sweden

2017

i

Abstract

This Thesis work was performed at Ineda System Pvt Ltd, Hyderabad,

India.

Pacman is an interrupt controller and priority resolver with 16x8 input

interrupt lines. The main objective of this Master Thesis is to upgrade 16x8

interrupt controller and priority resolver to 128x8 input interrupt lines and

adding a debug feature for this customised processor which has its own

instruction set. A debugger is used to debug the target programme.

In this thesis, the upgradation of Pacman and design of debugging features

such as halt, break point, single step are implemented at the Register

Transfer Level (RTL) in the processor. The processor is integrated with

Memory, JtagtoAHB, System Register modules and the Advanced High-

performance Bus (AHB) Arbiter. The design is verified using System

Verilog test bench to test the functional correctness of the design and

validated the design in FPGA environment.

ii

iii

Acknowledgements

I initially thank Ineda Systems Pvt. Ltd. for giving me an opportunity to

work on this Thesis.

I would like to thank my Manager Dhanumjai Pasumarthy who gave me the

opportunity to do this thesis and my supervisors Bhaskar Reddy Palle,

Naveen Palla and Kalpana Jeevraj for encouraging me during the complete

duration of the project. Their ideas eased a lot to finish the project work.

My sincere gratitude to the Examiner at LTH, Johan Wernehag for his

patience, support, motivation. Without his feedback, it would not have been

achieved.

Finally, I would like to thank my family and friends for their

encouragement.

iv

v

Table of Contents

Abstract ..i

Acknowledgments .. iii

Table of Contents ... v

1. Introduction ... 1

1.1. Overview .. 1

1.2. Scope of the Thesis Project .. 2

1.2.1. Target of the Thesis Project .. 3

1.2.2. Organisation of the Thesis Project .. 3

2. Pacman Subsystem .. 5

3. Pacman Architecture ... 7

3.1. Feature list .. 7

3.2. Interfaces .. 8

3.3. Clock and Reset .. 9

3.4. Functional Overview .. 9

3.4.1. Pre Fetch Buffer .. 9

3.4.2. Interrupt Router and Priority Resolver 11

3.4.3. Execution Unit ... 12

vi

3.5. Instructions ... 14

3.6. Debug ... 14

3.6.1. Halt mode Register .. 14

3.6.2. Address Break Point Register .. 15

3.6.3. Single Step Register .. 16

4. Tools and Design Flow.. 19

4.1. Behavioural Simulation .. 20

4.2. ASIC Synthesis .. 20

4.3. FPGA Synthesis ... 21

4.3.1. Vivado Synthesis ... 22

4.3.2. Vivado Implementation ... 22

4.3.3. Bit File Generation .. 23

5. Simulation and Synthesis Results .. 25

5.1. Simulation .. 25

5.2. ASIC Synthesis .. 27

5.3. FPGA Synthesis ... 27

5.4. Genie .. 29

6. Conclusion and Future work ... 33

A. JTAG .. 35

A.1. JTAG interface signals .. 35

A.2. JTAG State Machine ... 37

vii

A.3. JTAG Instructions ... 38

B. Advanced High-Performance bus ... 41

B.1. Bus Interconnection ... 41

B.2. AHB Operation .. 43

B.2.1. Basic transfer .. 44

B.2.2. Burst Operation ... 45

B.3. AHB Arbiter ... 46

B.3.1. Arbitration Signals .. 47

B.4. AHB Decoder .. 48

C. Instruction Set Architecture .. 49

C.1. Instruction Set .. 49

Bibliography .. 51

viii

1

Chapter 1

Introduction

1.1 Overview

Interrupts are given to the processor through hardware which is known as an

Interrupt Controller. The most popular interrupt controller is 8259. This

8259 interrupt controller has 8 input lines which can take inputs from 8

devices and feed them to the processor. The processor stops its execution

and takes care of these interrupts due to the processor losing its

performance.

To overcome this problem, Advanced RISC Machine (ARM) designed

Cortex M processors which can handle and resolve the interrupts without

depending upon the primary processor. Similarly, we designed a Pacman

interrupt controller which is a low power efficient and can act as a

secondary processor. The Pacman prioritises the interrupts and resolves

them without disturbing the primary processor. Due to this, we can utilise

the processor to its maximum. I also implemented debug logic in Pacman

where we can debug Pacman using Catalyst. Pacman supports halt, break

point, and single step.

The break point can break the code and stop the execution at the required

address. Single step can step and debug each line of the code.

Before break point, the programmer has only two states. The initial state of

the application before it ran, and the final state of the application.

As software moves ahead, there is much improvement in the debugging

features also. The ability to see the original code to be able to set a

2

breakpoint is added. Better ways to dump the memory and look at the

changes in the memory are added. The next big thing in debuggers is Turbo

Pascal with Integrated Development Environment, and this was introduced

by Borland with the ability to debug, edit, and compile within the same

system.

Modern Debuggers and IDE’s widely used are VC++ (Visual), Eclipse

(Visual), GDB (Command-Line), etc

Due to these type of IDE and Debuggers, we can debug complex

programmes. However, there is still much research needed in debugging.

Since more than 50% of the time is spent by programmers in debugging[1].

1.2 Scope of the Thesis Project

This Master thesis is at Ineda Systems Pvt. Ltd., aiming for the upgradation

of 16x8 Pacman Interrupt Controller to 128x8 and design of a debugger for

the Pacman. Due to the implementation of the debugging feature into

Pacman, the customer will be able to debug the Pacman which make things

easier for the customer. There are several different types of debuggers

available in the market out of which Bus Blaster is an open source debugger

and Catalyst which is developed by Ineda Systems that helps only in reading

and writing to the Processor. Here we are using Catalyst Hardware for

debugging the Pacman using Genie Software. The other debuggers available

in the market are Segger, Lauterbach, and the like, which are not open

source and work for ARM, MIPS, etc.

This Master thesis project mainly deals with the upgradation of Pacman and

implementing a debugging feature that can be tested on FPGA through

Catalyst.

3

1.2.1 Target of the Thesis Project

The target of the thesis project is to design a debugger for the Pacman. The

design requirements are listed as follows:

 Understand the working of the Pacman at the RTL Level in Verilog

and upgrading it from 16x8 to 128x8 input interrupt lines, and adding a

debug logic.

 Understand the working of Jtag and Advanced High Performance Bus

(AHB) and integrated Pacman, JtagtoAHB, and SRAM with the help of

AHB Bus.

 Verifying the whole system using UVM Methodologies.

 Generate a bit file for the whole system on VC707 FPGA Board using

Vivado tool.

 Debugging it through Genie Software using Catalyst.

The whole thesis work consists of Designing, Verification, Bit File

Generation and Software.

1.2.2 Organisation of the Thesis Project

This report is divided into chapters as explained below:

 Chapter 2 gives a summary of the whole flow of the project.

 Chapter 3 gives sample details about the Pacman architecture.

 Chapter 4 gives sample details about the tools used and the design flow

of the project.

 Chapter 5 gives details about the simulation and synthesis results of the

project.

 Chapter 6 concludes the report and discusses the future work.

4

 Appendix A gives details about the functioning of Jtag; Appendix B

describes the AHB architecture and its working, and Appendix C

describes the instruction set architecture of Pacman.

5

Chapter 2

PACMAN Subsystem

Figure 2.1 explains the flow of the whole subsystem. In the Host PC block. I

am using a Genie command-line which helps in debugging Pacman through

the Catalyst board. The Catalyst board is connected by USB to the Host PC,

and the VC707 board is connected to Catalyst through Jtag.

Figure 2.1: Pacman Subsystem

Figure 2.2 shows the Catalyst board designed by Ineda Systems which is

used for accessing registers of different processors for reading and writing.

The generated bit file is flashed into the VC707 FPGA board. The bit file

consists of JtagtoAHB Module, SRAM, Pacman and System Registers.

JtagtoAHB acts as AHB Master. This module takes serial inputs which are

given to Jtag and is converted to AHB and given to the AHB bus. SRAM,

Pacman and System Register acts as AHB Slave. Memory is allocated to

each module, SRAM is allocated with 8K memory and can be accessed with

6

address in between 0x00000000 to 0x00001FFF. Pacman is allocated with

4K memory and can be accessed with address in between 0x00002000 to

0x00002FFF. System Register is allotted with 4K memory and can be

accessed with address in between 0x00003000 to 0x00003FFF.

Figure 2.2: Catalyst

SRAM is a memory module taken and integrated into the system. We can

load the microcode into the given address of the memory. Microcode is used

to resolve the interrupts. Pacman is a 128x8 interrupt controller which can

handle up to 128 interrupt lines and supports round-robin and fixed priority.

We get interrupts from peripherals since we do not have any peripherals in

the system to generate interrupts. We choose a System Register module

which helps in generating an interrupt to the Pacman.

7

Chapter 3

PACMAN Architecture

Pacman is an interrupt controller and priority resolver which can handle up

to 128 interrupt lines as input, which is active high-level sensitive. Out of

these 128 interrupt lines, the user can select up to 8 lines as interrupt vectors

which can be serviced with the help of the microcode. Pacman acts as a

secondary processor which helps in reducing the burden on the main CPU.

3.1 Feature List

Pacman controller supports the following features:

 Up to 128 interrupt lines.

 Up to 8 active interrupt lines from the list of input interrupt lines.

 The round-robin and fixed priority to service the selected vectors. The

selection is programmable.

 One AHB Slave to configure the controller register bits.

 One AHB Master to fetch the microcode from the system memory.

 Four input lines as Wait for the event.

 Four output lines as General Purpose Output (GPO).

8

Figure 3.1: Pacman controller

3.2 Interfaces

 One AHB Slave interface, which has write and read capabilities, to

access and programme control registers and read status/debug registers

from CPU.

 One AHB Master interface, which has write and read capabilities, to

read the microcode that is stored in the system memory and to write

data caused by store instructions.

 There are 4 General Purpose Output (GPO) lines which can be

programmed to ‘1’ or ‘0’.

 There are 4 input lines which can be used as Wait for Event(s).

 There are 128 interrupt lines, out of which maximum of 8 interrupt

lines can be selected and routed to execute the corresponding

microcode in a round-robin manner or fixed priority encoding with

priority as Vector 0 having the highest priority and Vector 7 as lowest

priority.

9

 One output line called “ERROR” which goes high when there is a

problem while fetching or executing the microcode. The CPU can read

the debug register via slave AHB interface to understand the cause of

the error.

3.3 Clock and Reset

The controller operates on a single AHB clock domain and expects

synchronous reset signal as input.

3.4 Functional Overview

Pacman design is split into two functional blocks which are:

-Prefetch Buffer

-Interrupt Router and Priority Resolver Block

-Execution Unit

3.4.1 Prefetch Buffer

The prefetch module in the design is interfaced with the AHB bus master.

This module is mainly used to handle the read and write transfers onto the

AHB master. The main aim of this module is to get the instructions

beforehand so that the waiting time for the Pacman is reduced. This module

handles the 8-beat, 4-beat and 1-beat transfers that are explained in

Appendix B.

Figure 3.2 explains the state machine of the prefetch module. The prefetch

buffer function is based on a 7-state FSM. The seven states are S_idle,

S_ready, S_8beat, S_4beat, S_1beat, S_busy, and S_wait. Upon active low

reset, the prefetch buffer enters into the S_idle state. Upon start of the

programme, the FSM enters into the S_ready state. In S_ready

10

Figure 3.2: Prefetch state of FSM

 state if the AHB bus is not ready for the transfer it will remain in the same

state. If AHB bus is ready for the transfer depending on the condition

enabled it will enter into that particular state. If the 8-beat transfer is

enabled, it will enter into the S_8beat state. If the 4-beat transfer is enabled,

it will enter into the S_4beat state. If either store or load instruction is

enabled, it will enter into the S_1beat state. After entering the particular

state, it will set that particular transfer state to ‘1’ and will move onto

S_busy state. In S_busy state read data transfer takes place and if there are

no pending reads and load data is read, it will again move back to the

S_ready state. In S_busy state if there are no pending reads available it will

jump to the S_wait state and takes care of write transfer onto AHB master.

11

3.4.2 Interrupt Router and Priority Resolver

Once the controller programming is done, whenever an interrupt line is

received at the input of Pacman, and if it is enabled, the interrupt router

directs the interrupt line to the appropriate interrupt vector that is selected

by the routing bits of the corresponding interrupt line input.

Figure 3.3: Interrupt router and priority resolver

By default, the controller does a round-robin style interrupt handling of the

vectors. The controller can be programmed to do a fixed priority vector

handling with Vector 0 having the highest priority and Vector 7 having the

lowest priority.

12

Once the vector to be serviced is selected, this block enables the execution

unit to process the microcode by providing the Base Address from which

the microcode is fetched and executed.

3.4.3 Execution Unit

On receiving the start signal from the “interrupt router and priority resolver”

block, the execution unit starts fetching the microcode from the Base

Address provided. The execution of microcode continues until the END

instruction is executed.

Upon executing the END instruction, the execution unit signals the

“interrupt router and priority resolver” block that is ready to process the

next vector in the queue.

The process of resolving the priority of vectors and executing the

corresponding microcode will be continuing as long as the controller is

enabled or till there is an error occurs in fetching and executing the

microcode.

In case of an error, the controller provides some debug information which

can access via AHB slave interface.

Once the FSM goes into the Error state because of instruction execution

error or instruction prefetch error, the FSM sits in error states which can be

recovered only by giving Soft Reset bit set to Pacman controller logic.

Figure 3.4 explains the state machine of the execution unit. The execution

unit is based on a 5-state FSM. The five states are S_idle, S_busy, S_fetch,

S_wait, and S_error. Upon active low reset, the execution unit enters into

the S_idle state. Upon the start of the programme, the FSM will move to the

S_busy state. In this state it checks if the prefetch buffer is empty it will

continue in the S_busy state, if the prefetch buffer is not empty then the

13

FSM will move to the S_fetch state. In the S_fetch state, it checks different

conditions, out of which if the jump instruction is executing it will again

move back to the S_busy state. If there is any memory transfer starting in

the S_fetch state, then the FSM will move to the S_wait state and waits in

this state until the memory transfer is done. In the S_fetch state, it also

checks the prefetch buffer if prefetch buffer is empty the FSM will move to

the S_busy state while if prefetch buffer is not empty, it will stay in the

same state. When the FSM enters S_wait state due to memory transfer it

Figure 3.4: execution state of FSM

stays in the S_wait state until the memory transfer is done. If the memory

transfer is done and if there is a data available in the prefetch buffer then the

FSM will move to S_fetch state, if there is no data available in the prefetch

buffer then the FSM moves to the S_busy state. If an error occurs during

14

fetching or executing the microcode, the FSM jumps directly into the

S_error state.

3.5 Instructions

The instructions supported by Pacman are 8 bit wide, out of which upper 5

bits (Opcode) are allocated for instruction decode and lower 3 bits are

allocated for operands. Instructions in Pacman are of variable length.

MOVI, LDI, STI take 5 bytes. JUMP and JUMPC take 2 bytes, and all other

instructions take 1 byte. Instruction set architecture is given in Appendix C.

3.6 Debug

The debug logic in the Pacman processor provides:

1) Halt mode

2) Two Hardware Address Break Points

3) Single Step mode

3.6.1 Halt Mode Register

Halt Mode Register is used to halt the processor immediately irrespective of

the instruction executed by the processor. This is a 32-bit register with

halt_bit as a bit ‘0’, halted as a bit ‘1’ and the rest of the bits are tied to ‘0’.

To halt the processor halt_bit should be programmed to ‘1’ and to release

the processor from halt state the bit should be programmed to ‘0’ so that the

Pacman starts executing from the point where it stopped. The halted bit

gives the status of the processor.

15

Figure 3.5: Halt Register

Halt_bit is a Read/Write bit while the halted bit is a Read-only bit.

The Halt mode register can be accessed through AHB bus with the address

0x000022C0.

Programming the register with “0x00000001” will halt the processor and

disable halt mode we need to programme the register with “0x00000000”.

3.6.2 Address Break Point Register

A breakpoint is a mechanism provided by debuggers to identify an address

at which programme execution is to be halted[9]. Break Points are inserted

by programmers to inspect the register content’s, memory locations in the

program execution to test the program and make sure that it is operating

correctly. Break Points are removed after the program is tested. Two

Address Break Point registers are implemented, and a Clear Break Point

Enable register is used to control these two registers.

Address Break Point Register and Clear Break Point Enable register are 32-

bit registers. Break Point Address Register is Read/Write register. Clear

Break Point Enable register, a 32-bit register with 0th bit as Clear Break

Point Enable and the rest of the bits are tied to ‘0’. Address Break Point

Register is given with the address at which we need to put a break point and

when this address equals with the PC value the processor halts at that

particular address.

16

Figure 3.6: Break Point address Register

Figure 3.7: Clear Break Point Enable Register

The Reset value for Address Break Point register is “0xFFFFFFFF”. The

Address Break Point register1 can be accessed through AHB bus with the

address 0x000022EC while the Address Break Point register2 can be

accessed at address 0x000022F4. The two registers can be programmed at

once with different addresses. To clear this break point, we need to program

Clear Break Point Enable register with 0x00000000, and the processor starts

executing from the halted point. The halted bit in the halt register gives the

status of the processor.

3.6.3 Single Step Register

Single Step Register is a 32-bit register which has 3 bits SStep_en,

SStep_go, SStep_ack and rest of the bits are tied to ‘0’. SStep_en,

SStep_go are Read/Write bits while SStep_ack bit is a Read-only bit. The

Single Step Register can be accessed through AHB bus with the address

0x000022F8.

To enable Single Stepping in Pacman, we need to program SStep_en bit to

‘1’ which helps Pacman to enter into single step mode. Pacman after

entering into the single step mode we need to program SStep_go bit to ‘1’

each time so we can single step and debug each line of Pacman. SStep_ack

gives the status of the Pacman.

17

For Pacman to disable single step mode, we need to Program SStep_en bit

to ‘0’.

Figure 3.8: Single Step Register

I enabled the ability to read the values of all Registers, Accumulator and

Carry flag in debug mode through AHB bus.

18

19

Chapter 4

Tools and Design Flow

The process involves Behavioural simulation, RTL synthesis, FPGA

synthesis and Verifying on Genie software. Different tools are used at each

stage.

Figure 4.1: Design Flow

Figure 4.1 explains the high-level design flow of FPGA. In a practical

situation, each step in the figure may be split into several smaller steps, and

the design flow is iterated to ensure the functional correctness of the design.

20

4.1 Behavioural Simulation

The RTL coding for the Pacman processor was done using Verilog. The

behaviour of the design is simulated using the HDL simulation tool Incisive

from Cadence design systems. The codes are written in a Vim editor a SOC

file list was generated which gives a path to all the modules in a single file. I

gave this file as input to the Incisive which compiles and executes the

Verilog code and displays waveform. These waveforms are used only for

the functional verification of the design. There modules are validated using

test bench which is written in Verilog, test bench provides stimulus to the

processor and generates output.

4.2 ASIC Synthesis

The RTL code synthesised using the synthesis tool RTL Compiler (RC)

from Cadence. The RTL synthesis was done at 22nm technology. The

synthesis creates a gate-level circuit based on the RTL model, which meets

design constraints such as timing, area and power consumption. The

constraints are provided to the tool by a script file, which contains command

specific to the tool. The tool synthesises the circuit using the standard cells,

providing standard functionality such as logical operations, adders, flip-

flops, buffers. The standard cells are provided in the form of a library. The

synthesis script consists of configuration variables, library variables, read

design, constraint, compile, reports, write design. The various steps

involved in the design are[6]:

 The designer describes design at a high-level using RTL which can

be in Verilog or VHDL.

 The RTL is converted by the synthesis tool to unoptimised,

unintended and internal representation.

21

 The logic is now optimised to remove the redundant logic from the

synthesis tool.

 The optimised logic is now represented in the form of gates, using

the cells provided by the technology library.

 The technology library contains library cells designed by the

foundry.

 Design constructs typically include Area, Timing, and Power.

1) Timing: The design should meet certain timing requirements.

 The timing analyser checks the timing.

2) Area: We need to optimise as much area as possible for any

 design.

3) Power: The power dissipation of the design should not exceed

the threshold.

 After mapping the technology constructs, an optimised gate-level

netlist is generated.

 The designer modifies the RTL or re-constrain the design until the

design meets the desired results.

4.3 FPGA Synthesis

FPGA Synthesis was done using Vivado tool. Vivado tool is timing driven

and optimised for performance and memory usage. Vivado design suite

solution is native TCL with support from Synopsis Design Constructs

(SDC) and Xilinx Design Constructs (XDC) formats. Vivado tool supports

Verilog, VHDL and System Verilog for synthesis enables easier FPGA

adoption.

22

The main design flow features are:

 Vivado Synthesis

 Vivado Implementation

 Bitstream generation

4.3.1 Vivado Synthesis

Synthesis is a process of transforming RTL design into a gate-level

representation. The tool manages the run data automatically, allowing

repeated run attempts with varying Register Transfer Level (RTL) source

versions, target devices, synthesis or implementation and timing or physical

constraints[7]. The netlist generated by the tool can be regarded as efficient

netlist due to logic optimisation, register load balancing and other

techniques to enhance timing performance.

4.3.2 Vivado Implementation

The Vivado design suite implementation process transforms a logical netlist

into a place and route design, followed by bitstream generation. The

implementation process consists of the following sub-process[8]:

Opt Design: Optimises the logical design to make sure that it fits into

the target device.

Power Opt Design: Optimises the logical design to reduce the power

so that it satisfies the demands of the target device. This process can be

optional.

Place Design: In this step, the design is placed onto the target device.

Route Design: In this step, the design is routed onto the target device.

Write Bit Stream: This is the last step and generates bitstream to the

target device.

23

4.3.3 Bit File Generation

FPGA has hundreds of components. To access a particular pin, we need to

create a .xdc constraints file. This constraint file will let the tool know about

the access to that particular pin. To assign a pin, we use keywords

“set_property PACKAGE_PIN” followed by the pin location.

In figure 4.2 “tdo_pad_o” and “trst_pad_i” are the two port pins that are

connected to R32 and V35 pins on the FPGA board.

Figure 4.2: Package Pin

In figure 4.3, LVCMOS is low voltage metal oxide semi-conductor and is a

low voltage class of CMOS technology. This is an IO Standard. Device

geometries are decreased for an integrated circuit to obtain better

performance and low voltage. Due to these, the input voltages are also

decreased. LVCMOS is one of the power supply voltage and interface

standard that was defined for decreased voltages.

Figure 4.3: IO Standard

The bit file was generated after setting up the xdc constraint file and adding

the required Verilog files into the design. The generated bit file is flashed

onto the VC707 board using iMPACT tool.

24

25

Chapter 5

Simulation and Synthesis Results

Verification is a process to demonstrate the functional correctness of the

design. In the design cycle, almost 70% of the time is spent on verification.

Every increasing complexity of the design makes verification harder.

Verification is always on a critical path for product design.

Test benches are written to simulate the design. Test benches are written in

OVM, UVM, Verilog and System Verilog. In this project, I wrote a test

bench in System Verilog. We need to write different test cases and test the

design to make sure that the design is bug-free. The test cases are written in

‘C’, and the register access is also done through this file. The test cases are

then converted into System Verilog by using API and DPI. Whenever there

is a change in the ‘C’ file, we need to run the perl script so that the change

in the ‘C’ file is effected during simulation. I did two types of verification

simulation verification and FPGA verification.

5.1 Simulation

In Figure 5.1, we can see the two registers, break point address 1 and break

point address 2, are given with break point addresses 0x00000006 and

0x00000019. Whenever the Programme Counter hits 0x00000006, we can

see Pacman is in a halt state until the break point enable register is disabled.

When the break point enable register is disabled, Pacman starts running

until the Programme Counter hits the address in the second break point

address register. When the Programme Counter hits the second break point

address, the Pacman halts. The Pacman execution starts again when the

26

required registers are disabled. During this break point mode, we can read

the registers.

Figure 5.1: Break Point

In Figure 5.2, we can see that the Pacman is in single step mode and

whenever the single step go signal is enabled, the Pacman is single stepping.

We can also read registers during single stepping.

Figure 5.2: Single step

27

5.2 ASIC Synthesis

The design ran at frequency 125Mhz and 22nm technology.

Gate count is the number of gates used by each module which was

determined by the synthesis tool. The results are tabulated in Table 5.1. The

gate count depends on the number used in the design and also depends on

the optimisation of the tool. Each gate is equivalent to 2-input NAND gate

which is equal to 4 transistors.

Gate count = Total Area/(Area of Nand2 gate)

Area of Nand2 gate is 0.19968

Module Area Gate Count

Pacman top 10051 50336

Interrupt router top 4709 23582

Execution Unit 1966 9845

AHB Master 1878 9405

Prefetch buffer 1377 6896

Table 5.1: Gate Count

5.3 FPGA Synthesis

FPGA Synthesis was run using the tool, Vivado 2016.3. All the required

Verilog files and xdc constraint file were added to the design. FPGA

Synthesis, Implementation, and Writing Bit Stream were done using the

Vivado tool. The utilisation report on FPGA is given in Table 5.2. We can

28

clearly see that the design is utilising 56.94% of all the LUTs available on

FPGA.

Table 5.2: Utilisation Report

The timing summary for the design is given as for a setup time the Worst

Negative Slack (WNS) is 7.110ns while the Total negative slack is 0ns. For

a Hold time, the WNS is 0.095ns while the Total negative slack is 0ns. For a

Site type Used Fixed Available Util%

Slice LUTs 172882 0 303600 56.94

LUT as Logic 172880 0 303600 56.94

LUT as Memory 2 0 130800 0.01

LUT as

Distributed RAM

0 0

LUT as Shift

Register

2 0

Slice Registers 68637 0 607200 11.30

Register as Flip

Flop

68637 0 607200 11.30

Register as Latch 0 0 607200 0.00

F7 Muxes 17607 0 151800 11.60

F8 Muxes 8736 0 75900 11.51

29

Pulse width, the Worst Pulse width negative slack is 1.100ns while the Total

pulse width negative slack is 0ns.

5.4 Genie

The genie tool is developed by Ineda Systems which works with Catalyst. In

Figure 5.3, there are different functioning options the tool supports, and I

selected the debugger option to debug Pacman.

Figure 5.3: Genie in Debug Mode

Selecting the debugger option enters genie into debug mode. In Figure 5.3,

by giving the option $jtagid to genie gives the id of the flashed programme

onto the FPGA to ensure that we are accessing the correct programme. As I

said earlier, the address between 0x00000000 to 0x00001FFF are used to

access SRAM. Here I am accessing SRAM and writing the microcode into

the SRAM.

30

Figure 5.4: Genie tool writing Micro code

In Figure 5.4, I am programming to enable the Interrupt 0 Register which

can be accessed through address 0x00002000. The address 0x000022EC

gives access to Address Break Point register1 which is programmed with

0x00000010. The address 0x000022F4 gives access to Address Break Point

register2 which is programmed with address 0x00000014.

The address 0x00003000 gives access to the system register when

programmed this register with ‘1’ generates an interrupt to the Pacman. The

address 0x00002224 gives access to the Pacman control register start bit by

enabling this bit to ‘1’ Pacman starts working.

The address 0x00002230 gives Read-only access to the programme counter.

We can check here if the Pacman is halted at the desired location. During

this process, we can read the values present in Registers R0-R7 and can also

check the status of the Carry flag.

31

Figure 5.5: Genie tool in Break Point mode

The address 0x000022F0 will give access to the clear break point register.

To disable the break point we need to programme this register with

0x00000000. Pacman halts again whenever it hits the second break point

which is at address 0x00000014.

We can see in Figure 5.5 the address 0x00002230 which is programme

counter shows that the Pacman was halted at the desired location. Again to

disable this break point we need to programme the clear break point register

with 0x00000000.

If the microcode is in a loop, and if the programme counter again hits any

one of the addresses of the break point address register, it once more halts.

To disable this feature, we need to program break point address registers

with 0x00000000.

Figure 5.6 shows the working of a single step. The address 0x000022f8

gives access to the single step register. To enter into the single step, we need

32

to program this register with 0x00000001. For single stepping, we need to

program this register with 0x00000003.

Figure 5.6: Genie tool in single step mode

33

Chapter 6

Conclusion and Future Work

An interrupt controller which can prioritise the interrupts and can also

resolve the interrupts without the help of the main processor has been

designed. It can also act as a secondary processor in the system. It is a low

power processor designed with a lesser number of gates.

One important feature to be noted in the implemented design is the debug

feature where the interrupt controller and priority resolver supports halt,

break point, and single step modes. The main purpose of this interrupt

controller is to give more leverage to the processor without disturbing its

functioning during an interrupt.

The debugger used in this project is Catalyst, helps in debugging Pacman

through Genie tool. In Future, we can add GDB and Open OCD plugins to

the Pacman. This helps in debugging Pacman through Bus Blaster using

Eclipse.

34

35

Appendix A

JTAG

The Joint Test Action Group (JTAG) was formed in 1985 to create Printed

Circuit Board (PCB) and Integrated Circuit (IC) standards. The latest

version of their proposal was approved by the Institute of Electrical and

Electronic Engineers (IEEE) as IEEE STD. 1149.1-2013, IEEE Standard

Test Access Port and Boundary-Scan Architecture. The standard was

created to test the devices functionality and component interconnects. This

chapter is intended to give the reader enough understanding and operation

of Jtag.

Jtag is hardware which helps your computer to communicate directly to the

chip on the board. Jtag is used for Debugging, Programming, and testing on

all embedded devices.

A.1 JTAG Interface Signals

Signal Description

Test Clock (TCK) Serial clock signal

Test Mode Select (TMS) Controls the Jtag state machine

Test Data Input (TDI) Serial data input to the design

Test Data Output (TDO) Serial data output from the design

Test Reset (nTRST) Optional reset signal

Table A.1: JTAG interface signals

Table A.1 shows the signals defined by Jtag standard[2].

36

TCK - Test Clock: The TCK pin is used to load test data from the TMS pin,

the test data on the TDI pin on the rising edge of TCK, the test data on the

TDO pin on the falling edge of TCK.

TMS - Test Mode Select: The TMS pin on the Jtag is the input pin which

clocks through on the rising edge of TCK determines the state of the TAP

Controller.

TDI - Test Data Input: The TDI pin on the Jtag is the connection on to

which the test data is passed. TDI is fed with the serial input data which is

then fed either into the instruction register or data register depending on the

state of the TAP Controller.

TDO - Test Data Output: The TDO pin delivers the serial data which is

either from the instruction register or data register depending on the state of

the TAP Controller. The data on the TDO pin is from the TDI pin with data

shifted by a number of clock cycles, depending on the length of an internal

register.

TRST - Test Reset: The TRST pin is the optional active low test reset pin

on Jtag. This pin permits active asynchronous TAP controller initialisation

without affecting other device or system logic.

37

A.2 JTAG State Machine

Figure A.1: Jtag State Machine

All Jtag operations are controlled by a State Machine. The state machine is

driven by Test Mode Select (TMS) signal and is clocked by the rising edge

of Test Clock (TCK). When a test session is initiated, the bus master has to

initialise all connected TAP controllers by putting them into Test Logic

Reset (TLR) state. TLR is set either by forcing the nTRST to active low or

38

by clocking the TCK five times with the TMS kept high which will set the

TLR state. Once the TLR state is set, the identification register (IDCODE)

or the bypass register is set. If the TMS is low on the rising edge of TCK,

then the TLR state is moved to the Run Test/Idle state. Depending on the

currently selected instruction either the test runs or it remains idle. From

Run Test/Idle state if TMS is ‘1’ Select Data Register (DR) Scan state is

reached which is similar to the Select Instruction Register (IR) Scan state.

Exit1 DR/IR, Exit2 DR/IR are temporary states where no operation occurs,

used to select different paths in the state machine. In Capture DR state the

currently selected test data register is parallel loaded if the data is

appropriate or else the data is not loaded from the register. In Capture IR

state a fixed value of b’01 is loaded into the least significant bits of IR,

design specific values are put into the remaining IR bits. Once the Shift DR

or Shift IR state is reached, the TAP Controller takes TMS low and starts

outputting the data on the falling edge of TCK. The device under test will

sample TDI on the rising edge of TCK and will stay in shift IR until TMS is

low. No test operations occur when the TAP Controller is in Pause DR/IR

state. On the falling edge of TCK in the Update DR state, the current value

of the register is latched output if this is required for currently selected test

data registers. Similarly, with the falling edge of TCK in the Update IR

state, the current value of the register is latched out. Latching a new value

on the IR parallel outputs makes this value the new current instruction[3].

A.3 JTAG Instructions

The Jtag standard requires several instructions on the device, but most of

these are unimportant for Pacman Debugging. The following instructions

are used in ARM debugging systems

39

IDCODE: IDCODE is used to select the device identification register

instead of the Data register. This IDCODE is given a particular binary value

which helps in identifying the chip. The binary value of IDCODE for a

particular chip is set by the designer.

BYPASS: BYPASS register is a single bit register that is placed in between

TDI and TDO which helps in passing the information from TDI to TDO.

This instruction allows checking other devices in the Jtag without any

unnecessary over the head[3].

EXTEST: The EXTEST instruction makes the boundary-scan register as the

current test data register. Signals that are driven from outside of the

component are loaded into the boundary-scan register during the falling

edge of TCK in Capture DR state, and the signals that are loaded from the

component are loaded into the boundary-scan register during the falling

edge of TCK in Update DR state. This allows signals from the system to the

component to be captured, and known values to be applied to signals driven

from the component to the system[3].

INTEST: The INTEST instruction also selects boundary-scan register but

is used to select the instructions that are driven out of the component, and

known values applied to signals driven into the component.

40

41

Appendix B

Advanced High-performance Bus

AHB is a new generation of Advanced Microcontroller Bus Architecture

(AMBA) bus by ARM which is intended to address the requirements of

high-performance synthesisable designs. AHB is for high-performance, high

clock frequency systems including:

 burst transfers

 split transactions

 single cycle bus master handover

 non-tristate implementation

 wider data bus configuration (64/128 bits)

B.1 Bus Interconnection

The AMBA AHB bus protocol is designed to be used with a central

multiplexer interconnection scheme. Using this scheme all bus masters drive

out the address and control signals indicating the transfer they wish to

perform and the arbiter determines which master has its address and control

signals routed to all of the slaves. A central decoder is also required to

control the read data and response signal multiplexer, which selects the

appropriate signals from the slave that is involved in the transfer[4].

The AHB Arbiter that I am using in the design can handle up to 16 Masters

and 16 Slaves. JtagtoAHB acts as Master 1 while SRAM acts as Slave 1,

Pacman acts as Slave 2, System Register acts as Slave 3. SRAM is assigned

with memory 8K which can be accessed through address location from

42

0x00000000 to 0x00001FFF. Pacman is assigned with memory 4K which

can be accessed through address location from 0x00002000 to

0x00002FFF. System Register is assigned with memory 4K which can be

accessed through address location from 0x00003000 to 0x00003FFF. All

the remaining Master and Slaves are disabled.

Figure B.1 illustrates the structure of an AHB design with 16 Masters and

16 Slaves.

Figure B.1: Multiplexer Interconnection

43

B.2 AHB Operation

Before the AHB transfer, the bus master needs to be granted access to the

bus. This process is started by the master by sending a request signal to the

arbiter. Then the arbiter grants access and indicates master when to use the

bus.

The granted master starts AHB transfer by driving the address and control

signal. These signals provide the required information and also indicates if

the transfer forms part of a burst. There are two types of burst transfers.

 Incrementing burst, which does not wrap at address boundaries

 Wrapping burst, which wraps at address boundaries.

A write data bus is used to write data from Master to Slave, while read data

bus is used to read data from Slave to Master.Every transfer consists of

address and control signal, one or more cycles for the data.

The address cannot be extended therefore all slaves will sample address.

The data, however, can be extended with the help of HREADY signal.

When LOW, these signal insert wait states, which allow extra time for the

slaves.

During the transfer, the slave shows the status using the signal HRESP.

HRESP is a two-bit signal. There are three types of response states:

OKAY - The OKAY response indicates that the transfer is normally going

and the HREADY signal goes high indicating that the transfer has

completed successfully.

ERROR - The ERROR response indicates that the error occurred during the

transfer and transfer has been unsuccessful.

44

RETRY AND SPLIT - Both RETRY and SPLIT indicates that the transfer

will not complete immediately, but the bus master should continue to

attempt the transfer continuously.

In normal operation, the transfer is completed in particular burst before the

arbiter grants bus access to another master.

B.2.1 Basic Transfer

AHB transfer consists of two distinct sections:

 The address phase lasts for one clock cycle.

 The data phase can last for more than one clock cycle with the help

of HREADY signal.

Figure B.2: AHB Basic Transfer

45

B.2.2 Burst operation

Four, eight, and sixteen beat bursts are defined in the AHB protocol as well

as the undefined length and single transfers. Both incrementing and

wrapping bursts are supported in this protocol.

 Incrementing burst access sequential locations with the address of

each transfer in the burst being an increment to the previous

address[5].

 An increment burst can be of any length, but the upper limit is set

by the fact that it must not cross the 1KB boundary.

 Wrapping burst, if the start address of the transfer is not aligned to

the total number of bytes in the burst, then the address of the

transfer in the burst will wrap when the boundary is reached.

For example, a 4-beat wrapping burst of word access will wrap at

16-byte boundaries.

Therefore, if the start of the transfer is 0x34, then it consists of 4

transfers to addresses 0x34,0x38,0x3C and 0x40.

Burst information is provided using HBURST[2:0] signal and the eight

possible types are defined in Table B.1.

46

HBURST TYPE DESCRIPTION

000 SINGLE Single Transfer

001 INCR Incrementing burst of
unspecified length

010 WRAP4 4-beat wrapping burst

011 INCR4 4-beat increment burst

100 WRAP8 8-beat wrapping burst

101 INCR8 8-beat increment burst

110 WRAP16 16-beat wrapping burst

111 INCR16 16-beat increment burst

Table B.1: Transfer Types

Burst must not cross 1KB address boundary. Therefore, it is important to

make sure that the masters do not start with a fixed length incrementing

burst which would cause this to cross the address boundary.

All transfers within an address boundary must be aligned to the address

boundary equal to the size of the transfer. For example, word transfers must

be aligned to word address boundaries; halfword transfers must be aligned

to halfword address boundaries.

B.3 AHB Arbiter

The arbitration mechanism is to make sure that only one master has access

to the bus at one time. The arbiter performs this function by observing

different requests that it received from different masters and deciding which

is currently the highest priority master requesting the bus.

Each master also generates HLOCK signal which is used to indicate that the

master required exclusive access to the bus.

47

Figure B.3: Bus master grant signal

B.3.1 Arbitration Signals

HBUSREQx - The bus request signal is used by a bus master to request

access to the bus.

HLOCKx - The lock signal is asserted by a master at the same time as the

bus request signal. This indicates to the arbiter that the master is performing

a number of indivisible transfers and the arbiter must not grant any other

bus master access to the bus.

HGRANTx - The grant signal is generated from the arbiter and indicates

that the appropriate master is current highest priority master requesting the

bus.

48

HMASTER[3:0] - This signal is used by the arbiter to indicate which

master is currently granted the bus and this signal is used to control the

address and control multiplexer.

HMASTLOCK - This signal is used by the arbiter to indicate that the

current transfer is a part of locked sequence

B.4 AHB Decoder

A decoder is used to provide an HSEL signal for each slave on the bus. A

slave must sample the address, control signal and HSEL signal when

HREADY signal is high, indicating the current transfer is completing.

Under certain circumstances, it is possible that HSEL will be asserted when

HREADY is low, but the selected signal will have changed by the time the

current transfer completes. A minimum address space that can be allocated

for a slave is 1KB. All bus masters are designed in a way such that they will

not perform incrementing burst over 1KB[4].

Figure B.4: Slave select signals

49

Appendix C

Instruction Set Architecture

C.1 Instruction Set

Sl. no Instruction Description

1 NOP No Operation

2 END End of Programme

3 SETB Sets GPO with ‘0’ or ‘1’

4 WAIT Wait for event port to become ‘1’

5 LD Load data to accumulator from the address
given by the register

6 ST Stores data from accumulator to the
address given by the register

7 SUBA Subtract accumulator from the register.
The result is stored in accumulator

8 MOVI Moves 32 bit data into accumulator or into
registers

9 STI Stores data from accumulator or registers
from the address specified

10 LDI Loads data to accumulator or registers
from the address specified

11 JUMP The offset is signed value. Jump to a
word-aligned address from the current

location

12 JUMPC The offset is signed value. On condition
flag set by previous instruction, jump to
word-aligned address from the current

50

location

13 ADD Add register to accumulator

14 SUB Subtract register from accumulator

15 AND Logical AND Rn with accumulator

16 OR Logical OR Rn with accumulator

17 XOR Logical XOR Rn with accumulator

18 GT If [acc] > [Rn] sets conditional flag to ‘1’

19 LT If [acc] <[Rn] sets conditional flag to ‘1’

20 EQ If [acc]=[Rn] sets conditional flag to ‘1’

21 EQZ If [acc]=32’d0 sets conditional flag to ‘1’

22 LS Left Shift accumulator along with
conditional flag bit

23 RS Right Shift accumulator along with
condition flag bit

24 MOVF Move data from register to accumulator

25 MOVT Move data to register from accumulator

26 CLR Clear accumulator contents

27 ADDI Increments accumulator contents by 2^n

28 SUBI Decrements accumulator contents by 2^n

51

Bibliography

[1] K.Yash. History of software bugs and debugger.

http://www.ksyash.com/2011/01/178/ [Online; Accessed16- Oct-

2017]

[2] http://www.interfacebus.com/Design_Connector_JTAG_Bus.html

 [Online Accessed; Jtag Interface signals]

[3] https://www.xjtag.com/about-jtag/jtag-a-technical-overview/

 [Online Accessed; Jtag Instructions and State Machine]

[4] http://soc.eecs.yuntech.edu.tw/Course/SoC/doc/amba.pdf

[Online Accessed; AMBA Specification, AHB Bus]

[5] http://mapl.nctu.edu.tw/course/ESL_2008/files/Lecture10.pdf

[Online Accessed; AHB PPT]

[6] http://eacharya.inflibnet.ac.in/data-server/eacharya-

documents/53e0c6cbe413016f23443704_INFIEP_33/13/LM/33-13-

LM-V1-S1__synthesis_design_flow.pdf [Online Accessed; Synthesis

Design Flow]

[7] https://www.xilinx.com/support/documentation/sw_manuals/xilinx

 2016_3/ug901-vivado-synthesis.pdf [Online Accessed; Vivado

Synthesis PDF]

[8] https://www.xilinx.com/support/documentation/sw_manuals/xilinx

 2014_1/ug904-vivado-implementation.pdf[Online Accessed; Vivado

Implementation PDF]

[9] http://processors.wiki.ti.com/index.php/How_Do_Breakpoints_Work

 [Online Accessed; Working of Break Points]

http://www.interfacebus.com/Design_Connector_JTAG_Bus.html
https://www.xjtag.com/about-jtag/jtag-a-technical-overview/
http://soc.eecs.yuntech.edu.tw/Course/SoC/doc/amba.pdf
http://mapl.nctu.edu.tw/course/ESL_2008/files/Lecture10.pdf
http://eacharya.inflibnet.ac.in/data-server/eacharya-documents/53e0c6cbe413016f23443704_INFIEP_33/13/LM/33-13-LM-V1-S1__synthesis_design_flow.pdf
http://eacharya.inflibnet.ac.in/data-server/eacharya-documents/53e0c6cbe413016f23443704_INFIEP_33/13/LM/33-13-LM-V1-S1__synthesis_design_flow.pdf
http://eacharya.inflibnet.ac.in/data-server/eacharya-documents/53e0c6cbe413016f23443704_INFIEP_33/13/LM/33-13-LM-V1-S1__synthesis_design_flow.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx
https://www.xilinx.com/support/documentation/sw_manuals/xilinx
http://processors.wiki.ti.com/index.php/How_Do_Breakpoints_Work

52

Design of Pacman with Debug
Logic
DINESH KOTHAMASU
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2018

D
IN

ESH
 K

O
TH

A
M

A
SU

D
esign of Pacm

an w
ith D

ebug Logic
LU

N
D

 2018

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2018-622

http://www.eit.lth.se

