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Abstract

Everyone who has worked with research knows how rewarding experiment-
ing and developing new algorithms can be. However in some cases, the hard
part is not the invention of these algorithms, but their evaluation. To try
and make that evaluation easier, this thesis focuses on the collection of data
that can be used as positional ground truths using an autonomous measure-
ment platform. This should assist Combain Mobile AB in the evaluation and
improvement of their Wi-Fi based indoor positioning service.

How and which parts of the open-source community’s work in the Robot
Operating System (ROS) project to utilise is not obvious. This thesis there-
fore sets out to build a Minimum Viable Product (MVP) which is capable of
supporting two di�erent use cases: measure and explore inside an unknown
environment, and measure inside a known environment given a map. This
e�ectively leaves Combain with a viable product, and indirectly helps the
community by aiding it in comparing and recommending the best tools and
software libraries for the task.

The result of this thesis ends up recommending the following for meas-
uring inside an unknown environment: the Simultaneous Localisation And
Mapping (SLAM) algorithm Google Cartographer for navigation, and the
exploration algorithm Hector Exploration for planning the exploration. To
measure inside a known environment the following is recommended: the
Adaptive Monte Carlo Localisation (AMCL) positioning algorithm and the
Spanning Tree Covering algorithm.

Keywords: Area Coverage, Autonomous Vehicles, Exploration, Robotic Operating
System (ROS), SLAM, Wi-Fi
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Glossary

Access point An access point is a piece of hardware that allow devices (e.g. smartphones)
to wirelessly connect to a network. 13, 16, 57–59, 67

API In computer programming, an Application Programming Interface (API) is a set
of subroutine de�nitions, protocols, and tools for building application software.
In general terms, it is a set of clearly de�ned methods of communication between
various software components [1]. 9, 11, 59

Ceres solver Ceres Solver [2] is an open source C++ library for modeling and solving
large, complicated optimization problems. It can be used to solve Non-linear Least
Squares problems with bounds constraints and general unconstrained optimization
problems. 30

IMU An Inertial Measurement Unit (IMU) is an electronic device that can measure
and report a body’s speci�c force, angular rate, and sometimes the magnetic �eld
surrounding the body, using any combination of accelerometers, gyroscopes and
magnetometers [3]. 9, 11, 18

Loop closure Loop closure is the problem of recognizing a previously-visited location
and updates the beliefs accordingly. 20, 26–28, 30, 31, 34, 36, 69

Odometry Odometry is an estimation of the robots movements over time using sensors
and motor encoders. However since motor encoders are not completely accurate
due to slippage, the odometry tends to be quite unpredictable in the long run.
Kobuki improves the angular accuracy of the odometry by fusing it with an Inertial
Measurement Unit.. 27, 30, 36

Plug-in A plug-in is an interchangeable component that can be used to extend the
existing functionality of software. 14, 15, 20, 21, 45, 61
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Glossary

SLAM Simultaneous Localisation And Mapping (SLAM) is the computational problem of
constructing or updating a map of an unknown environment while simultaneously
keeping track of an agent’s location within it [4]. 1, 10, 11, 13, 21, 27

Trajectory A trajectory is the path which the robot has travelled, expressed as a function
of time. 21, 27, 35, 36, 59

VPN A Virtual Private Network (VPN) extends a private network across a public network,
and enables users to send and receive data across shared or public networks as if
their computing devices were directly connected to the private network [5]. 10, 11,
19, 25

WGS84 World Geodetic System 1984 is a reference coordinate system for the Earth. One
of more well known systems which uses WGS84 is the Global Positioning System
(GPS). 10, 11, 21
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SLAM Simultaneous Localisation And Mapping. 1, 10, 13–16, 18, 20, 21, 27, 30, 31, 34,
36, 43, 45, 59, 69, Glossary: SLAM

USAR Urban Search And Rescue. 20

VPN Virtual Private Network. 10, 19, Glossary: VPN

WGS84 World Geodetic System 1984. 21, 39, 40, 58, 62, 64, Glossary: WGS84
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Chapter 1

Introduction

This chapter introduces the problem statement for this Master’s Thesis, and provides
a comprehensive background. Furthermore it also contains a quick introduction to the
Robot Operating System (ROS).

1.1 Background
Combain Mobile AB is a world-leading provider of mobile positioning solutions that
work without the requirement of a Global Navigation Satellite System (GNSS). With one
of the largest crowdsourced database of Wi-Fi and cellular tower locations, they o�er
accurate positioning globally and have recently focused a lot on improving their indoor
positioning.

Until recently, Combain has been utilising their database to perform a coarse trilateration-
like localisation by measuring Received Signal Strength (RSS). Internal benchmarks show
that the produced results can have an average error of 25 metres in urban areas. To
further improve these results, Combain has a produced a research paper on incorporating
the temporal factor into a Simultaneous Localisation And Mapping (SLAM) algorithm [6].
This algorithm is based on an optimisation problem, where both temporal and spatial
data is taken into account and weighted using a combination of likelihood factors. This
has made it possible for Combain to o�er a localisation service with an average error of
less than 10 metres, slicing the error in half.

The indoor positioning service can be accessed today using a smartphone application
which performs SLAM to track both the device and access points in indoor environ-
ments [7]. This di�ers from the older trilateration method which used one-o�, standalone
measurements. The consequence is a negative battery impact and ultimately that the
crowdsourcing of data can no longer be performed automatically in the background.
Additionally, because the database currently only has an accuracy of 25 metres, initial
SLAM sessions are needed to train and improve the database. The result is that an oper-
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1. Introduction

ator has to manually traverse whole buildings, and preferably at regular intervals, mark
their current position on the map. Manual positioning unfortunately introduces another
layer of error, making the result of the SLAM dependent on the accuracy and number of
reference points, which are typically inaccurate up to several metres.

Comparison of tracks

Track without ref points
Ref points
Track with ref points

Credit: Combain Mobile AB

Figure 1.1: Existing algorithm with and without the use of refer-
ence points. Notice the user-placed reference points which are
positioned outside the stores. Notice also how the track without
reference points has been incorrectly placed inside the stores.

1.1.1 Purpose and Goal
The importance of collecting accurate reference points can be seen in Figure 1.1. Namely,
without the use of reference points, the path is incorrectly placed inside the stores.
Combain would therefore like to evaluate whether it is possible to automate the data
collection using an autonomous vehicle. Combain would also like to use this data as
ground truth for improving and verifying their own algorithms. They would also like to
evaluate if there exist any e�cient methods to ensure complete coverage while collecting
measurements. Lastly they would prefer a user friendly interface for controlling the
collection.

The goal of this master’s thesis is to evaluate the usage of di�erent ROS plug-ins in
the realisation of the above stated system. This will be done by implementing a subset
of the system, mainly a singular robot which will attempt to cover an entire �oor using

14



1.2 Robot Operating System

di�erent algorithms and given di�erent starter conditions. If necessary, custom ROS
plug-ins will be implemented if there are no existing implementations with su�cient
features.

One of the main challenges in this project is the requirement to o�oad as much of
the main processing as possible to a remote server. The reason is that the autonomous
vehicle would require less processing power and less manual con�guration, since they
would follow instructions from the server. This will take the form of a �eet management
platform.

1.1.2 Use Cases
The report studies two primary use-cases for evaluating all of the (appropriate) methods.
They will be referenced throughout the report as below.

UC-Map Gathering data in a known environment.

UC-NoMap Gathering data in an unknown environment.

1.2 Robot Operating System
The Robot Operating System [8] can best be described as a collection of open-source
software frameworks for building robots. It consists of multiple interchangeable plug-ins
which can be used as building blocks for many robotic projects.

ROS was originally developed at Stanford university during 2007 as a collection
of prototypes. Willow Garage, a nearby robotics research lab and incubator, took an
interest in the project and together with researchers at other institutions created the
Robot Operating System. Most of the development continued at Willow Garage as an
open-source project until the beginning of 2013, at which point the stewardship was
transitioned to the Open Source Robotics Foundation; it was later announced that Willow
Garage was being absorbed by another company. Development has since continued
under the Open Source Robotics Foundation, and amongst the contributors are research
institutions and companies, as well as individual developers.

This thesis uses the ROS platform as its primary foundation, since it contains many
of the required features, like robotic control and SLAM algorithms. ROS readily allows
usage of software written in either C++, Python or Lisp. And even though both au-
thors have prior experience using C++, it was decided to use Python wherever possible
since it typically allows for faster prototyping than C++. The authors also feel that the
performance gain given by C++ would not be required.

1.2.1 Navigation Stack
ROS, being extremely modular, uses the concept of global and local planners. Together
they make up the navigation stack called move_base and provide a standardised interface
for other plug-ins to interact with. This interface is based on an A-to-B navigational
model, meaning that the input consists of a start and a goal pose.

15



1. Introduction

The two planners di�er mainly in their abstraction level, where the global planner is
responsible for planning a long term path which the local planner is then supposed to
execute. The common practice seems to be that only the global planner uses the SLAM
map, while the local planner uses raw sensor data. This allows the local planner to react
much faster to changes in its environment and is therefore also tasked with avoiding
nearby moving obstacles. In many cases this obstacle avoidance results in a deviation
from the path made by the global planner, and a return to it further down the line.

Worth noting is that the global planner is continuously, at regular intervals, asked
to recalculate its path as the robot moves. This allows the global planner to re-evaluate
the optimal path based on eventual changes in the map. The local planner, on the other
hand, is running and controlling the robot continuously, and therefore needs to be able
to take these discrete updates into account as they become available.

1.3 Simulations
ROS provides multiple tools for running simulations, the primary tool used in this thesis is
the Gazebo simulator [9], which is a 3D environment simulator. The Stage simulator [10]
was also used, but to a lesser extent, during the later stages of the project. It was mostly
used because of its ability to simulate environments using existing maps created during
SLAM sessions.

ROS does not have built-in support for the simulation of Wi-Fi access points, meaning
that it would not be possible to simulate data collection. After careful consideration it
was decided to leave it like that and not implement any support. Partly because it would
take valuable time, but also because it would ultimately not add any value, since the RSS
are merely collected and stored.

1.4 Robot Hardware
For the robot hardware, it was decided to use the popular Turtlebot 2 platform [11], which
in turn is built upon the Kobuki base [12]. Kobuki, while sharing many similarities with
commercially available robot vacuum cleaners, o�ers serial communication capability
through USB for control. See Figure 1.2 for an image of the robot.

The main contributing factors for using the Turtlebot are good documentation and
availability. LTH had recently, for the Wallenberg Autonomous Systems and Software
Program (WASP), bought a couple of Turtlebots, which the authors had the opportunity
to access, and use for the duration of the project.

1.4.1 Controller Unit
The controller unit is the part which runs ROS and its main responsibility is to interact
with the hardware, such as the Kobuki base and the sensors. Since one of this thesis’
goal was to attempt to o�oad as much computation as possible to a remote computer,
an attempt was made to use a Raspberry Pi as the controller unit. A Raspberry Pi [13]

16



1.4 Robot Hardware

Figure 1.2: The Turtlebot used for the project. Note the base’s
similarities to commercial robot vacuum cleaners.

is a single-board computer, about the size of a credit card and is about as powerful as a
smartphone.

After several evaluations it was decided to use a more powerful notebook as the
control unit instead, since the latency between the remote computer and the Raspberry
Pi proved to be too high. After switching to running processes locally on a notebook, the
system became more responsive and managed to evade moving obstacles much better.
The notebook was equipped with an Intel Core i7-6560U 3.2 GHz with 2 physical and 4
logical cores.

1.4.2 Sensors
The Turtlebot available at LTH was equipped with a 3D depth camera and a laser Light
Detection and Ranging (LIDAR) device. Both sensors are usually used primarily for
indoor mapping and positioning. Trials at the beginning of this thesis, showed that the
LIDAR performed signi�cantly better than the depth camera and was therefore used as
the primary sensor, while the 3D depth camera was left reserved for future work.

RPlidar
The RPlidar A1 [14] is a low-cost 360 degree laser LIDAR device, manufacturer by Slamtec.
It has, according to the manufacturer, a maximum range of 6 metres, with a distance
resolution of 0.2 cm and angular resolution of 1°. The sample rate is 2000 samples/s, and
has a full scan frequency of 5.5 Hz.
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1. Introduction

The LIDAR’s primary purpose is to scan and collect data about the environment. The
data is then used to perform SLAM which generates an indoor map. However, since the
LIDAR is only able to see obstacles at a speci�c height, it has a lot of problems detecting
non-uniform obstacles such as chairs or tables, and even obstacles which are only visible
at low heights, e.g. doorsills.

Orbbec Astra Pro

Astra Pro [15] is a 3D 720p RGB camera, manufactured by Orbbec. While it has a narrower
�eld-of-view than the RPLidar, because it can see in 3D, it is able to see obstacles at
di�erent heights which the RPLidar cannot. It is also possible to detect a drop in �oor
level, like stairs.

Bumper sensor

The Kobuki base has a built-in bumper at the front which can sense when the robot has
hit an obstacle and roughly where that obstacle is. The default behaviour, which reverses
the robot away from the obstacle, was not modi�ed.

Cli� sensor

The Kobuki base has 3 built-in IR LEDs which react when they detect a drop, e.g. stairs.
The default behaviour, which puts the robot into full reverse away from the drop, was
not modi�ed.

Wheel drop sensor

The Kobuki base has a built-in drop sensor for each wheel which react when the wheel
fall. Because the wheels are forced downwards by springs, they instantly fall into holes
or other openings. The default behaviour, which completely disables the robot, was not
modi�ed.

Inertial Measurement Unit

The Kobuki base has a built-in Inertial Measurement Unit (IMU) in the shape of a three-
axis gyroscope. The IMU is used internally to improve the angular accuracy of the
Odometry, speci�cally to detect yaw (rotational) movement.

Odometry

The Kobuki base has a built-in odometry sensor which can measure the speed and distance
travelled by the wheels. It uses the built-in IMU to improve the angular accuracy.
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1.5 Network

1.5 Network
One of the major potential problems with distributed systems in general is to ensure
bi-directional communication between all devices. To solve this problem, a Virtual Private
Network (VPN) was setup to simulate a local network over the Internet. This ensured
that all devices always had bi-directional communication, even though the devices were
actually on di�erent networks, potentially behind �rewalls. The only requirement for this
solution was for the VPN host to be publicly accessible on the Internet. This was solved
by renting a virtual private server. A more detailed overview of the network topology
can be seen in Figure 1.3.

Virtual ConnectionVirtual Connection

Workstation / Laptop

VPN

Internet

Potential Firewall Potential Firewall

Kobuki base

WiFi AP or Cellular TowerWiFi AP or Cellular Tower

Controller Unit

Figure 1.3: Illustration of the network topology. Note that the
workstation and turtlebot are both on the same virtual network,
which allows them to bypass potential �rewalls.

1.6 Related Work
Autonomous exploration and area coverage are two already well-established �elds in
robotics. Similar solutions for the goals in this thesis already exist, but none provide all of
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1. Introduction

the requirements in a single platform. Below are some of the projects that can be found
online.

Yamauchi et al. [16] developed ARIEL, a system for autonomous exploration and
map building using continuous localisation. The article describes how all the parts
of the system were built up and integrated from scratch. However, the article was
published during the late 90’s and the hardware and software used is long since obsolete.
Riaz et al. [17] describe a similar system inspired by [16], but built on a more modern
platform. Unfortunately, the system is based on proprietary software, and uses algorithms
implemented from scratch, making it hard for the community to replicate the work.

The work by Kohlbrecher et al. [18] took a di�erent approach and produced publicly
available open-source plug-ins based on algorithms like the Hector SLAM algorithm
by Kohlbrecher et al. [19] and the exploration algorithm by Wirth and Pellenz [20].
However, [18] focuses on Urban Search And Rescue (USAR) missions where modern
high-performance LIDAR systems are available, and mentions that their performance
is high enough not to require features like explicit loop closure. This might have been
true in their case, but will be shown in this thesis, that it is unfortunately not a universal
truth.

Some work on Wi-Fi RSS scanning in ROS has been done by Scholl et al. [21], but is
in the form of a handheld unit running the algorithm mentioned above by [19]. Because
of the algorithm used, the project could also su�er from errors that might have been
corrected by loop closures. The article seems like a start towards the same goals as in
this thesis, but no further information can be found.

This thesis acknowledges that the open-source community has implemented many
high-quality algorithms and does not try to re-invent the wheel. Instead it evaluates and
compares the most popular plug-ins available, to create a publicly accessible recipe for
anyone to use. All of the considered plug-ins have been used as-is to the largest extent
possible, and any extensions that have been made, are publicly available on the popular
site GitHub under the organisation Robotslam1

1.7 Contribution
As seen in the previous section, there is a lot of existing material which cover the
individual components used in this thesis. This thesis instead aims to build upon the
existing knowledge to create a complete solution which can be used to solve the two
use-cases UC-Map and UC-NoMap, described in Section 1.1.2. In order to achieve this,
a comprehensive evaluation of the existing material and algorithms had to be completed
in order to ensure the best possible result. Furthermore, a comprehensive platform was
developed to ensure that the result of the project could be used by people who posses
less technical knowledge. Both authors have contributed equally to the thesis, which in
summary has:

• Evaluated the performance of the most popular ROS plug-ins to make it easier for
future projects to make a proper choice based on their requirements.

1https://github.com/robotslam
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• Extended the popular plug-ins Gmapping and Google Cartographer with the ability
to output their trajectory over the standard ROS interface.

• Added waypoint-following capabilities to ROS by creating an entirely new global
planner.

• Created a Wi-Fi RSS scanning plug-in which supports grouping of measurements
by time.

• Created a �eet management system to easily operate and organise data-collection
sessions by adding an abstraction layer on top of ROS.

• Extended the �eet management system with the ability to transform local co-
ordinates to the latitude and longitude format used by World Geodetic System
1984.

• Extended the �eet management system with the ability to correct Wi-Fi RSS meas-
urement positions using trajectory data.

1.8 Disposition
The thesis is structured as mostly isolated chapters which each describe a speci�c com-
ponent of the thesis project. A short summary of the chapters are provided below.

Chapter 2 Presents the methodology used in this thesis and describes the di�erent
phases of the project.

Chapter 3 Provides a background to Simultaneous Localisation And Mapping, evaluates
the di�erent SLAM algorithms, and measures the accuracy of the algorithms in a
known environment.

Chapter 4 Describes how the internal coordinates used in ROS can be converted into
the World Geodetic System 1984 (WGS84) standard.

Chapter 5 Evaluates a few existing area coverage algorithms and describes how they
were implemented.

Chapter 6 Describes frontier based exploration and evaluates the existing ROS imple-
mentations.

Chapter 7 Describes how the Wi-Fi measurements were collected and how they connect
to the existing infrastructure at Combain.

Chapter 8 Describes the new platform and web interface for �eet management.

Chapter 9 Ties everything together and discusses the �nal result. It also introduces a
couple of topics for future work.
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Chapter 2

Methodology

This chapter will provide a brief overview of the methodology and the schedule of this
thesis. It also describes the di�erences between simulation and real world trials.

2.1 Approach

2 WEEKS
ITERATIONRESEARCH

TEST

EVALUATE

M
EE

TI
NG

IMPLEMENT

SI
M

U
LA

TE

WRAP-UP

Figure 2.1: Illustration of the iterative process used during this
thesis.

Due to Combain’s initial uncertainty of what was possible to achieve during a thesis
project, it was, at �rst, not possible to de�ne any formal goals. Because of this situation
and the agile nature of Combain’s regular projects, it was decided to follow a more
iterative process during this thesis (see Figure 2.1).
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2. Methodology

2.1.1 Initial Research
To get a better picture of what would be possible to accomplish during the length of this
thesis project (20 weeks), an initial research stage was planned for the �rst 3 weeks. The
purpose was to gather scienti�c material and look into how much ROS was capable of
out-of-the-box. This e�ectively meant experimenting with ROS tutorials and demos, and
evaluating how the existing functionality could be used in combination with published
articles to provide the desirable results.

In reality, this stage started to melt into the iteration process almost immediately, and
then continued as pure research in parallel to the iterations up until week 5.

2.1.2 Iterations
Figure 2.1 describes the iterative process, which served as the schedule’s primary found-
ation. Each iteration lasted around two weeks, and consisted of mainly �ve di�erent
stages:

Meeting Each iteration started and ended with a meeting, in which the previous it-
eration’s result was presented and evaluated. Afterwards the new iteration was
planned with a new goal. This meeting was often complemented by a second
meeting in the middle of each iteration which gave the opportunity to have more
in-depth discussions.

Implement The problem statement de�ned in the meeting is researched and imple-
mented. This can be anything from writing a new algorithm to tweaking existing
implementations to better �t the requirements.

Simulate The implementation is tested and veri�ed in a simulated environment. (see
Section 2.2)

Test The implementation is tested and veri�ed in a real-world environment. (see Sec-
tion 2.2)

Evaluate The �nal step in each iteration is to evaluate the solution: Does it solve the
problem de�ned during the meeting and is there anything that can be improved?

2.1.3 Wrap-up
The last couple of weeks were spent wrapping everything up. This mostly consisted
of writing the last parts of the report and collecting more measurements, as well as
collecting ground truth data about the environments. This data was then used to evaluate
the accuracy of the �nal solution.

2.2 Simulated and Real World Trials
As previously described, ROS provides several tools to simulate robots and environments.
In this thesis, a majority of the time was spent in a simulated environment, since it
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provided several bene�ts, eg. that it was much faster to prototype, since there was no
need to have physical access to the Turtlebot. Testing using a physical robot was mostly
done at the end of each iteration to con�rm real world performance.

A disadvantage with using the simulator was its di�erence to the real world. An
example is that there does not seems to be any friction between the wheels and the
ground, resulting in the wheels spinning freely even when the robot is driving in to a
wall.

2.3 Schedule
The schedule in Figure 2.2 shows an overview of the time spent for each iteration in the
project. Each iteration took around 2 weeks to complete.

Week
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Research

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Iteration 6

Iteration 7

Wrap-up

Figure 2.2: Schedule for the project. Notice how each iteration
took 2 weeks to complete.

Research See Section 2.1.1.

Iteration 1 Set up computer environments to support ROS, experiment in simulated
environments and de�ned preliminary use-cases. Implement Wi-Fi scanner for
ROS.

Iteration 2 Experiment with real robots, discovering the di�erences between simulated
and real robots, and �x con�guration issues. Set up Raspberry Pi and network
structure over VPN. Begin initial evaluation of di�erent SLAM algorithms. Improve
simulation, add support for localisation in a known map (UC-Map), measure drift
and research conversion between coordinate systems.

Iteration 3 Begin work on the �eet management platform (see Chapter 8), implement
coordinate transformation algorithm (see Chapter 4) and create an easy-to-use
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2. Methodology

interface for it. Save Wi-Fi measurements to �le and convert to GPS coordinates.
Implement global planner for following waypoints and switch over to using a
notebook instead of a Raspberry Pi.

Iteration 4 Research exploration, and path coverage. Implement and evaluate path cov-
erage based on the path transform algorithm (see Chapter 5). Path coverage works
autonomously for the �rst time. Initial evaluation of most popular exploration
algorithm.

Iteration 5 Experiment with 3D depth camera and major improvements to the �eet
management platform’s functionality and usability. Exploration works autonom-
ously for the �rst time and the collected measurements are successfully exported
to Combain’s system.

Iteration 6 Automation of export to Combain’s system and other general improvements
to �eet management platform. Test cli� sensors. Further test exploration and
improve positioning of measurement after loop closure using trajectories.

Iteration 7 Further investigation in area coverage, implemented spanning tree coverage
and evaluated it against distance path transform.

Wrap-up Collect reference (ground truth) data, perform more measurements and evalu-
ate the results. Finish report. See Section 2.1.3.
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Chapter 3

Simultaneous Localization And
Mapping

Simultaneous Localisation And Mapping is a well-researched topic in many areas, in-
cluding mobile robotics. ROS provides several ready to use implementations of di�erent
SLAM algorithms. In this chapter the most popular algorithms, Gmapping, Cartographer,
and Hector SLAM are presented and evaluated to see which one provides the best result
for UC-NoMap. The focus will not be on researching or implementing new algorithms
related to SLAM.

3.1 Motivation
Having an accurate SLAM algorithm can be motivated in many ways. While the goal of
this thesis is not to create high-resolution indoor maps, they play a vital role as they are
used to place the measurements in the real world. In order to achieve this, there is a need
for an accurate description of how the robot has travelled, i.e. the trajectory.

3.2 OpenSlam’s Gmapping
Gmapping is the default provided SLAM algorithm in ROS. It uses LIDAR and odometry
measurements to locate and map its surroundings. It is based on Rao-Blackwellized
Particle Filters and supports loop closure. The articles [22, 23] describe the actual al-
gorithm in detail. The standard con�guration of Gmapping also relies heavily on an
externally provided odometry. This means that inaccurate sensor readings will be detri-
mental to the mapping result.
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3. Simultaneous Localization And Mapping

3.2.1 Impression
The �rst hands-on experience in the simulated world was promising, resulting in maps
that mostly managed to correct themselves when the robot arrived back at known territory.
A small issue was how the algorithm reacted when driving into a wall, where the whole
map would drift at the same speed as the robot’s simulated wheels, as if the map was
moving away from the robot. The problem seemed to originate from the simulator
reporting positive wheel speed even though the robot was not actually moving. The
behaviour could not be replicated in the real world since the bump sensor would trigger
and reverse the robot away from the wall.

When Gmapping was �rst used in the real world, the algorithm su�ered from an
issue that made the map “hairy” as seen in Figure 3.1a. After closer inspection, it was
concluded that the hairs were missing LIDAR points which the algorithm interpreted
as free space with the same radius as the LIDAR’s speci�ed maximum range. The hairs
were successfully removed by con�guring Gmapping to ignore LIDAR values past its
maximum rated range. The algorithm then performed as good as it did in the simulated
world.

3.2.2 Loop Closure
Gmapping does not have a dedicated method for identifying loop closures, instead it is
a consequence of how the algorithm itself works. In short, Gmapping always keeps a
prede�ned number of randomly generated particles, i.e. hypotheses of how the robot has
travelled. Combined with what the robot has seen at every scan a map can be drawn for
every particle. Because these particles also have a continuously re-evaluated likelihood
attached, the most likely particle is the one used to draw the map which is displayed to
the user. The likelihood is calculated by comparing the last LIDAR scan with what the
di�erent particles predict. In long featureless corridors, it is therefore hard to determine if
the particle which has travelled e.g. a few centimetres further than another is the correct
one or not, because both predict equal scans. However, when the robot �nally arrives
back to a known feature-full territory, the algorithm quickly identi�es the most likely
particle and the map changes.

3.3 Hector SLAM
Hector SLAM is based on the paper by Kohlbrecher et al. [19] which does not require
any other data than LIDAR measurements. It has support for IMU sensors to compensate
for tilt but no loop closure.

The Hector SLAM algorithm is described in [19] as consuming “low computational
resources” and mention that other algorithms do not “leverage the high update rate
provided by modern LIDAR systems”. The mentioned LIDAR system is most likely a
reference to the Hokuyo UTM-30LX LIDAR device used in [19], which has a scan frequency
of 40 Hz (compared to the 5 Hz of the LIDAR device used in this project).
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3.3 Hector SLAM

(a) Gmapping result.

(b) Hector result.

(c) Google cartographer result.

Figure 3.1: Mapping exjobbsrummet (room reserved for students
doing their master’s thesis) in the M-building on the LTH campus.
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3.3.1 Impression
Hands-on experience in the simulated world showed great promise with little to no drift,
i.e. the robot was always where the algorithm said it was. The results strengthened the
claim made by Kohlbrecher et al. [19] that in many scenarios, optimisations such as loop
closure are not needed. Furthermore, since the algorithm does not utilise the odometry,
it did not su�er from the same problems as Gmapping in which the simulator reported
movement on the wheels while the robot stayed still.

However, the real world testing was a disappointing exercise. While straight move-
ments were tracked accurately, rotation was a complete disaster. The cause might have
been the low scan rate of the LIDAR device. Because of this, the idea of using Hector
SLAM was abandoned early in the project. An example of a map created by Hector can
be seen in Figure 3.1b.

3.4 Google Cartographer
Cartographer is a real-time SLAM library developed by Google and was recently open-
sourced in October 2016. It supports loop closure and IMU sensors to compensate for tilt
and also enable 3D tracking. It is based on the paper by Hess et al. [24]. More information
on how it di�ers from the other algorithms can be seen below.

3.4.1 Impression
Cartographer was unique in o�ering the same impression in both the simulated environ-
ment and the real world. Cartographer was also unique in being able to produce maps
which contained information on the likelihood of an area being occupied or free. This
was done by allowing the map to hold the entire range of values between black and white,
representing the likelihood that a certain space contains an obstacle. In comparison,
the other two algorithms only use the three discrete values: white, grey and black to
represent: free, unknown and occupied space.

3.4.2 Loop Closure
Cartographer contains a more explicit loop closing method which is separate from its
main algorithm, this makes it di�erent to Gmapping. In short, Cartographer continuously
creates small localised maps from very few LIDAR scans, called submaps. These submaps
are stored as nodes in a graph structure, where geographical constraints are added
between the nodes as edges. This graph is then treated as a large optimisation problem
and solved using the Ceres solver, and the solution is then used to draw the map. Loop
closure is accomplished, in a separate process, by identifying relationships between
nearby, but previously unrelated nodes in the graph using scan matching. By adding an
edge between these nodes, the next time the map is drawn the nodes will be linked and
the loop closed.
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3.5 Evaluation
A critical requirement in this thesis is to ensure the accuracy of the produced trajectory.
This can be done by ensuring an accurate map, since the map serves as the foundation
for the trajectory, which in turn is used to map the measurements to real world positions.

The tests were conducted by manually controlling the robot using the provided ROS
package teleop, which allows for remote operation using a keyboard. All the sensor
data was recorded using the ROS package rosbag, which allows the recorded data to be
re-played at a later time. This way it was possible to run the exact same scenario multiple
times using di�erent SLAM algorithms.

3.5.1 Loop Closure
Loop closure is a critical part of mapping which continuously tries to match the current
location with previously visited ones. It mitigates erroneous overlapping by matching
new scans with old ones and adjusting the map, and current position, accordingly. As
mentioned above, both Gmapping and Cartographer support some form of loop closure.
An example of Cartographer performing loop closure can be seen in Figure 3.2. However,
since loop closure does not refer to a single method, the evaluated algorithms each have
their own techniques.

In practice, these techniques produced very di�erent results. For example, in Figure 3.3
it can easily be seen how the randomisation part of Gmapping produces unique results
every time the algorithm is executed on the same data set. This unfortunately means that
Gmapping has the same negative intrinsic property that all particle �lters have — the
inability to deterministically guarantee a good solution.

Cartographer, on the other hand, has succeeded in closing the loops every single time,
as can be seen in Figure 3.3. Combined with the fact that Cartographer is based on a
deterministic algorithm, it clearly stands out from the rest.

In summary, by failing to close loops 77% of the time, Gmapping performs signi�cantly
worse than Cartographer, something which can happen in even the best of circumstances
due to the uncertain nature of the algorithm. When the loops are closed however, they
seem to get a lot less distorted by Gmapping than Cartographer, as can be seen in
Figure 3.4.

3.5.2 Accuracy
To determine the accuracy of the maps, the physical location was measured using a
laser range�nder. The range�nder had a maximum range of 50 m with an accuracy of
±2.0 mm. However, because the range�nder was operated by hand, the �nal result could
realistically only have had decimetre accuracy.

Since Gmapping uses a non-deterministic algorithm, it was decided to replay the data
10 times and calculate the mean distances in order to get a more accurate comparison.
The test results which can be seen in Table 3.1 shows that the mean error for Gmapping
was 1.9%, Cartographer on the other hand had a higher mean error of 2.3%, but since it
had a deterministic behaviour it tended to provide more reliable results.
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(a) Robot moving towards known territory.

(b) Robot has arrived in known territory but has not
yet recognized it.

(c) Robot has recognized the territory and performed
appropriate adjustments to the map.

Figure 3.2: Cartographer performing loop closure in M-building,
LTH. The dot representing the robot has been enlarged to improve
visibility.
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(c) Gmapping 2017-04-06-01
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(d) Cartographer 2017-04-06-01
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(e) Gmapping 2017-04-06-02
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(f) Cartographer 2017-04-06-02

Figure 3.3: Visualisation of the di�erent outputs from mul-
tiple runs of the same algorithm on the same data sets. Notice
how Gmapping produces di�erent maps every time while Carto-
grapher does not. Notice also how Gmapping fails to close the
loop and how Cartographer succeeds, but distorts the map in the
process.
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(a) Gmapping. (b) Cartographer.

Figure 3.4: A comparison between Gmapping and Cartographer
when both have successfully closed a loop. Notice how Carto-
grapher distorts the map compared to Gmapping.

Another critical criteria which Gmapping had large issues with was loop closure, as
mentioned in Section 3.5.1. The length of the corridors were still accurate, but because of
the failed loop closures, the last corridor failed to line up correctly.

Both algorithms had problems handling the left corridor where the error ranged
between 0.3 m − 1.8 m. In comparison, the bottom corridor only had a maximum error
of 0.3 m, lending to the conclusion that some corridors are easier to map than others.

Table 3.1: Measurements in M-huset at LTH. Note that for Gmap-
ping, the error of each corridor was calculated as an average over
10 algorithm executions for each data set.

Left Top Right Bottom Error
Reference 32.1 41.3 32.2 44.7
Gmapping #1 31.7 40.7 32.0 43.3 2.6 (1.7%)
Gmapping #2 31.1 40.7 31.5 44.3 2.7 (1.8%)
Gmapping #3 31.8 40.2 31.5 43.4 3.4 (2.3%)
Cartographer #1 31.5 39.8 31.6 44.4 3.0 (2.0%)
Cartographer #2 30.3 40.9 32.0 44.3 2.8 (1.9%)
Cartographer #3 30.4 39.2 31.9 44.4 4.4 (2.9%)

3.5.3 Performance
One of the original criteria for the project was the ability to use a Raspberry Pi as the
control unit for the robot. This put a lot of requirements on the algorithms since it limited
the available data transfer bandwidth. For the SLAM algorithms to be able to run and
produce usable results, the settings, primarily the resolution of the algorithms, had to
be tweaked. This in turn resulted in a less than satisfying result, and ultimately lead
to replacing the Raspberry Pi with a more powerful notebook. All of the results in this
report have been produced on the notebook.

Figure 3.5 shows a performance benchmark of the evaluated SLAM algorithms. It
shows how Cartographer uses much less resources on smaller maps, but eventually moves
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Figure 3.5: Performance comparison of the di�erent algorithms
running data set 2017-04-06-02, executed on the notebook. Note
that Linux measurements treat each logical core as a separate
Central Processing Unit (CPU), meaning that on a quad-core CPU,
the maximum percentage is actually 400%. The above algorithms
therefore either heavily utilise a single core, or lightly utilise
many cores.

up as the map gets bigger. An interesting part is how, at the same time, Gmapping seems
to have a downward trend, using up less resources as time goes on. The reason for this
behaviour has not been uncovered, but a hypothesis is that Gmapping might begin to
miss or throw away incoming data. This might happen because Gmapping does not
bu�er the input, which e.g. leads to unusable maps when speeding up the replay of the
recorded data-sets. Either that or the measurement method was, in some way, inaccurate.

Either way, Gmapping had an average of 82% and 75% CPU usage for 0.05 m and
0.1 m resolutions, while Cartographer had an average of 44%. This means Cartographer
is the clear winner over Gmapping in utilising the CPU e�ciently.

3.5.4 Trajectory
The trajectory describes the path which the robot has travelled. In order to ensure that
the collected measurements can accurately be mapped to speci�c locations, it is important
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to ensure that the trajectory is accurate.
Simply storing the current position of the robot when a measurement is taken is not

su�cient, since the trajectory can and will change during a loop closure. Therefore, an
important criteria when selecting an algorithm, is to ensure the accuracy of the �nal
trajectory. Figure 3.6 shows the di�erence between collecting the current position during
each measurement and using the trajectory.

Sadly, neither Gmapping or Cartographer exposed the trajectory using the standard
ROS interface. However, after some investigation it was discovered that both algorithms
kept an internal representation of the trajectory. Both algorithms were therefore modi�ed
to enable access to the trajectory over the ROS interface.

Since Hector SLAM does not support loop closure, previous locations in the trajectory
are never modi�ed. In this case, it is therefore su�cient to simply save the current
location when a measurement is taken.

3.5.5 Conclusion
The purpose of this chapter has been to present and evaluate which of the most popular
ROS plugins for SLAM provide the best results for UC-NoMap. After gathering a wide
range of statistics, the algorithm that has stood out the most has been Cartographer.
However, while Hector SLAM has been a clear loser, the distinction between Gmapping
and Cartographer has not been clear. Gmapping provides less warped maps and can
use odometry data in a way that Cartographer can not. On the other hand, the warping
only increases the mean error by 0.4 p.p. and judging by how good Hector performs
in the original article [19], odometry is not a problem when a high-performing LIDAR
is used. Therefore, after the risk of Gmapping failing at loop closure was factored in,
Cartographer was chosen as the recommended algorithm.
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Continuous sampling Trajectory

Figure 3.6: Comparison between continuously sampling and
storing the position, and the �nal trajectory. Notice how the
continuous sampling in the top corridor contains sudden jumps
where Gmapping has switched between particles. The trajectory
looks like a smoother and more accurate representation of how
the robot might have moved. Notice also that Gmapping has
failed to close the loop, and that the left-most parallel corridors
are in reality the same corridor.
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Chapter 4

Local CartesianCoordinates toWGS84

ROS uses a local cartesian coordinate system to represent the position of the robot. In
order for these coordinates to be usable by external systems, such as Combain Positioning
Service (CPS), they need to be converted into a global reference coordinate system. Since
CPS already supports the WGS84 standard for use when submitting reference points, it
was the natural choice. This chapter presents how an a�ne transformation can be used
to make this conversion with su�cient accuracy.

4.1 Transformation
A method of transforming points from one coordinate system to another is to use an a�ne
transformation matrix. This method uses three reference points to create a transformation
matrix between the two systems. The method is well known and well documented, but a
quick summary can be read below.

If uwgs ∈ R2×3 are the coordinates of three points in WGS84 and ulocal ∈ R2×3 are the
same points in the local coordinates the relationship between the two can be de�ned as

uwgs = A · ulocal + t, (4.1)

where A is the transformation matrix and t is an o�set vector. Using an augmented
matrix and an augmented vector, it is possible to represent both the translation and the
o�set using a single matrix multiplication,[

uwgs
1

]
=

[
A t
0 1

] [
ulocal

1

]
⇔ vwgs = T · vlocal. (4.2)

In detail this is the same asxwgs1 xwgs2 xwgs3

ywgs1 ywgs2 ywgs3

1 1 1

 =
a c tx
b d ty
0 0 1


xlocal1 xlocal2 xlocal3
ylocal1 ylocal2 ylocal3

1 1 1

 . (4.3)
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4. Local Cartesian Coordinates to WGS84

Assuming that the reference points have been properly chosen i.e. not linearly dependent,
the transformation is easily retrieved by multiplying with the inverse of vlocal from the
right on both sides:

T = vwgs · v−1
local. (4.4)

The transformation matrix is now able to transform any points in any direction between
the two coordinate systems.

4.2 Error Estimation
Because WGS84 coordinates are not linearly distributed, using a (linear) transformation
matrix results in an approximation error. A quick estimation of this error was done by
calculating the di�erence in length between a sphere (earth approximation) and a tangent
plane (transformation plane built up by the transformation matrix).

l

r
θ

d

Figure 4.1: Cross section of an earth approximated as a sphere
and a tangential transformation plane.

To calculate the error in any given direction, the distances d and l from the point of
tangency between the sphere and its tangent plane (see Figure 4.1) need to be identi�ed.
By setting up the distance equations

tan(θ) =
l
r
⇔ l = r · tan(θ) (4.5)

and
d = r · θ, (4.6)

the error can be de�ned as the di�erence between the two distances

ε = l − d = r tan(θ) − rθ = r(tan(θ) − θ). (4.7)

After setting r = 63710088 to the mean radius R1 of earth [25] the error is plotted as a
function of the distance d (see Figure 4.2). The plot shows that even a kilometre away
from the point of tangency, the error is still below 0.1 µm. This leads to the conclusion
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Figure 4.2: A�ne transformation error plotted up to 1 km.

that using an a�ne transformation matrix yields far to small an error for it to have any
meaningful a�ect on the transformation of measurements made inside a single building.

It is worth noting that two major assumptions have been made in this estimation.
The �rst is that the transformation plane is a tangent plane while in reality it is actually
a plane that cuts the sphere. This is because the three reference points do not coincide.
However, compared to the radius of the earth, the distance between the reference points
is so small that the points are assumed to converge. The second assumption is that the
earth is a perfect sphere with the radius 63 710 088 m. This radius is actually the mean
radius of the earth which means that the error estimation above is actually an estimation
of the average case. However, this fact is assumed to have a negligible impact on short
distances.
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Chapter 5

Area Coverage

Area Coverage is another well-researched topic in mobile robotics, which fairly recently
has made its way into households in the shape of robot vacuum cleaners and lawnmowers.
In this chapter two existing algorithms: spanning tree covering, and distance transform
path, are evaluated to see which can best be applied to this thesis.

5.1 Motivation
Area Coverage can be seen as a generalisation of the well known Travelling Salesman
Problem (TSP) and is therefore NP-Hard, i.e. solving the optimisation cannot (currently)
be done in polynomial time [26]. Therefore, an algorithm which �nds an approximate
solution is necessary. The criteria for selecting an algorithm are: it should �nish in a �nite
time, cover as much of the area as possible, and return a path which can be completed as
fast as possible.

The robots characteristics have to be taken into consideration since less distance
travelled does not necessarily mean that the time required to complete the path is less.
The Turtlebot 2 tends to handle tight curves badly by slowing down drastically. Therefore,
a solution which requires as few tight curves as possible would be preferable. The area
coverage part of this thesis is used to solve the UC-Map.

5.2 Adaptive Monte Carlo Localisation
Chapter 3 covered how it is possible to create a map using SLAM algorithms in unknown
environments. But in the event that the environment has already been mapped, and
the map exists (UC-Map), it is preferable to use the existing map rather than creating
a new one. The advantages are: better planning possibilities and better completion-
time estimates. This is where Adaptive Monte Carlo Localisation (AMCL), a localisation
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algorithm, comes in. AMCL shares some similarities with Gmapping in that they are
both based on particle �lters. However, instead of collecting sensor data and building a
map, AMCL uses an existing map and identi�es the robots position relative to it.

5.3 Global Planner

The coverage algorithms below, all produce a path as an output, but because the navigation
stack in ROS is built to only accept a single goal as input (see Section 1.2.1), a custom
solution was needed in order to combine the two.

A global planner called remote_global_planner was implemented. The planner accepts
a pre-generated path, and ignores the goal input usually sent to the navigation stack.
The path consists of a series of way-points, which get forwarded to the local planner for
execution. This approach, as opposed to implementing the coverage algorithms straight
into the planner, was chosen because of Combain’s requirement to o�oad as much of
the processing as possible (see Section 1.1.1). Having the planner accept remote plans
opens up the possibility of calculating these paths on a remote server or even in advance.

One problem that was discovered was the fact that the local planner is fairly bad at
following way-points, and prefers to ignore them if it can reach the goal faster by doing
so. To avoid this issue, the remote_global_planner only sends a few way-points at a time,
leaving the local planner without a path to skip to. The disadvantage with this method is
that the robot might slow down or even stop moving for short moments while the local
planner calculates a new path to the next way-points.

To allow the robot to adapt to dynamic changes in the world, the remote global
planner uses one of the existing single-goal algorithms provided by ROS , to plan the
path to the next way-point. Obstacles such as people walking by or other things not
present when the map was generated is therefore avoided by the robot.

5.4 Execution Time Estimation

To be able to compare the algorithms below, a formula for modelling the execution time
of a path was needed. By measuring how much time a path takes to execute if it contains
turns, and then measure the same path without turns, the average impact that each turn
has can be calculated. While performing these measurements it was found that < 180°
turns actually improve the execution time, i.e. it takes less time to complete a path with
these turns. This is a consequence of how the local planner tends to take shortcuts, as
previously mentioned in Section 5.3. The resulting formula, valid for cell sizes around
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0.5 m, is:

Time = L
0.5
− 0.36T45 − 0.14T90 − 2.8T180 + 5.3Tmax,

where Time = predicted execution time in seconds,
T45 = amount of turns where angle ≤ 45°,
T90 = amount of turns where 45° < angle ≤ 90°,

T180 = amount of turns where 90° < angle < 180°,
Tmax = amount of turns where angle = 180°.

5.5 Occupancy Grid
An occupancy grid is a way to represent a map as a discrete grid. Internally, ROS uses
a probability occupancy grid, i.e. each cell has a value between 0–100 to represent the
probability of the cell being occupied. However, not all ROS plug-ins take advantage of
the entire range, and instead divide it into three parts: free, unknown and occupied. The
map_server plug-in, which is used to save a map to disk, exhibits this exact behaviour.
Some �gures in this thesis will therefore have three colours, while some will have the
entire range from black to white.

Since an occupancy grid stores the world in a grid map of a speci�c resolution, it
su�ers from the traditional issues of approximate representations. Namely lack of details
below the speci�ed resolution, which makes it impossible to deduct if whole cells are
occupied or just some parts of them.

5.5.1 Downscaling
The occupancy grid is an approximate representation of reality using cells with sizes
equal to the resolution. Because both algorithms presented below use occupancy grids
as input, it would be possible to use the maps produced during the SLAM sessions (see
Chapter 3) directly. However, these maps have a resolution of around 0.05 m – 0.1 m
which, without any pre-processing, would result in a coverage of the same magnitude as
the resolution, i.e. the robot would drive over every 0.05 m.

To be able to choose how detailed the area coverage should be, the occupancy grid is
�rst down-scaled before used as input for the coverage algorithms. This is accomplished
by using a method called box sampling. Simply put, if a coverage of d metres is desired,
the process looks as follows:

1. Overlay the original occupancy grid O with another grid G of size d.

2. For each cell in G, calculate the average values of the corresponding cells in O.

3. Assign the average value to each cell in G and treat G as a new occupancy grid.

To further simplify the process, each cell in G is treated as occupied if its value is larger
than vthresh, and unoccupied otherwise. To guarantee a viable solution, vthresh is set to
v f ree+1, meaning that even a single occupied cell in O results in the entire cell in G being
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Figure 5.1: To the left is a visualisation of a graph representation
of a 10 m×10 m map. On the right is a visualisation of a spanning
tree of the same graph.

marked as occupied. By using G as an input to the algorithms below, complete coverage
of every, completely empty, d metre is guaranteed.

5.6 Spanning Tree Covering

The paper by Gabriely and Rimon [26] describes a novel method of using a spanning
tree for area coverage. This can be accomplished by interpreting all of the free cells in
the occupancy grid as vertices in a graph. By adding edges between all vertices that
represent adjacent cells in the occupancy grid, a graph like the one in Figure 5.1 can be
obtained. A spanning tree, which is de�ned as a sub-graph that is a tree and contains all
the vertices with the minimum number of edges, can then be constructed by using e.g.
Prim’s algorithm [27]. An example of a spanning tree can also be seen in Figure 5.1.

After a spanning tree has been constructed, coverage can be obtained by: dividing all
cells into four sub-cells, selecting any cell as the initial starting position and then walking
along the tree until the initial cell is encountered again. In other words, imagine placing
your left hand anywhere on the tree and simply walking straight, making sure to never
stop touching the tree. Eventually you will have circumnavigated the entire tree in a
counterclockwise direction and end up where you started. This also means that you will
have covered the entire map. An example can be seen in Figure 5.2, which is the path
generated by the spanning tree in Figure 5.1.

The paper [26] actually presents three di�erent algorithms. However in this thesis,
only the o�ine variant called O�ine STC was considered, as it is the only one which
uses known maps.
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5.7 Distance Transform Path Planning

Figure 5.2: Generated path from the spanning tree in Figure 5.1,
notice how the path circumnavigates the spanning tree.

5.7 Distance Transform Path Planning
The paper by Zelinsky et al. [28] presents “a solution to the problem of complete coverage
based upon an extension to the distance transform path planning methodology”. The
algorithm is explained in further detail below.

5.7.1 Distance Transform
The distance transform Tdist is a matrix where every element describes the distance to a
speci�c element vgoal. In this thesis, Tdist is calculated using the Breath First Search (BFS)
algorithm. An illustration of a distance transform calculated using BFS can be seen in
Figure 5.3. The coverage path is then created by moving along the path of steepest ascent.
This means that the path moves away from the goal while keeping track of the cells it
has already visited.

[28] mentions that “the robot only moves into a grid cell which is closer to the goal if
it has visited all the neighbouring cells which lie further away from the goal”. This thesis
uses an alternative approach by introducing a backtracking method. The backtracking is
activated when the robot ends up at a dead-end, formed either by obstacles or cells which
have already been visited. To perform the backtracking, the algorithm simply walks
backwards along the path until it reaches a neighbour which has not been visited. This
neighbour is then added immediately after the dead-end cell, ignoring the backwards
walk. This technically means that the path usually ends up across obstacles, but this is
not a problem since the global planner will automatically adapt using the single-goal
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algorithm.

5.7.2 Path Transform
The paper [28] also describes a transform for planning called path transform Tpath. It
builds upon the distance transform Tdist by combining it with a transform called obstacle
transform Tobst . The obstacle transform can be described as a matrix where every element
describes the minimum distance to the closest obstacle. Every element c in Tpath is then
calculated using the function:

PT (c) = min
p∈P

length(p) +
∑
ci∈p

αobstacle(ci)

 . (5.1)

According to the results in [28] Tpath results in paths which tend to follow walls, resulting
in overall straighter paths.

In this thesis, the path transform was implemented by modifying the distance trans-
form algorithm to use Dijkstra’s algorithm with PT (c) as input. However, while the
modi�cation did add complexity to the algorithm, the results did not improve nearly as
much. In fact, while in small maps like in Figure 5.3 the path had a tendency to follow
walls, there was no improvement at all in bigger ones like in Figure 5.5. The reason why
is not clear, maybe the map was simply too uneven, or maybe the implementation was
erroneous in some way. Because of this, the path transform was not used in the �nal
evaluation of this chapter.

5.8 Evaluation
The results from both algorithms are presented in Table 5.1, from which it is possible to
see that spanning tree covering resulted in a drastically shorter distance travelled, with
a more than 15% improvement for the small 20x20 example and a 60% improvement
for M-huset. However since the distance transform path actually covered a larger area
in M-huset this is not a completely fair comparison. One of the reasons the distance
transform path algorithm performed badly was due to the need to backtrace whenever it
got stuck, which might have been improved with a more e�cient method such as �nding
the closest uncovered area and continuing.

Looking at the output of the spanning tree covering algorithm it is clearly visible that
it resulted in a sub-optimal path due to a high number of necessary turns in the top and
bottom corridors which was caused by the map being at a slight rotation. After rotating
the map by 13° the amount of turns was decreased for both algorithms. The result was
particularly noticeable on STC since it resulted in a 34 % decrease of the number of turns.

To verify the accuracy of the execution time model, a smaller area of M-huset was
tested. The di�erence between the planned and the actual travelled path, together with
the corner cutting, can be seen in Figure 5.6. The model predicted an execution time of
9 min 53 s for the distance transform path and 6 min 25 s for the spanning tree covering
path. The actual execution times were 8 min and 5 min 25 s respectively, meaning that
the prediction was o� by a bit more than 20 % for both paths.
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S 19 13 13 13 13 13 13 13 13 13 13 13 13

18 18 12 12 12 12 12 12 12 12 12 12 12 12

17 17 11 11 11 11 11 11 11 11 11 11 11 11

16 16 11 10 10 10 10 10 10 10 10 10 10 10

15 15 11 10 9 9 9 9 9 9 9 9 9 9

15 14 11 10 9 8 8 8 8 8 8 8 8 8

15 14 13 12 11 10 9 8 7 7 7 7 7 7 7 7

15 14 13 12 11 10 9 8 7 6 6 6 6 6 6 6

15 14 13 12 11 10 9 8 7 6 5 5 5 5 5 5

15 14 13 12 11 10 9 8 7 6 5 4 4 4 4 4

15 14 13 12 11 10 9 8 7 6 3 3 3 3

15 14 13 12 11 10 9 8 7 7 3 2 2 2

15 14 13 12 11 10 9 8 8 8 3 2 1 1

15 14 13 12 11 10 9 9 9 9 3 2 1 G

15 14 13 12 11 10 10 10 10 10 3 2 1 1

15 14 13 12 11 11 11 11 11 11 3 2 2 2

Figure 5.3: Illustration of a distance transform matrix, black
squares represent obstacles, and the numbers are the distances to
the goal. Notice, that diagonal neighbours are allowed.
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Figure 5.4: Illustration of the Planned Path from DT in Figure 5.3.
The start position is in the top left corner. The path always pick
the neighbouring node with highest cost.

Even though the prediction was o� by 20 %, the model still seemed to provide an
accurate di�erence between the two algorithms. However, using the formula to predict
the execution times for the paths in Table 5.1 was an entirely di�erent story. While the
paths generated by the spanning tree algorithm for M-huset were believably predicted at
55 min, the prediction for the distance transform path turned out to be negative (−90 min).
Because of this, the prediction model could unfortunately not be used for any type of
comparison between these algorithms. The paths generated by the distance transform
algorithm were simply to complex.

5.9 Conclusion
In this chapter the purpose has been to present and evaluate some popular algorithms
for area coverage to see which provide the best results for UC-Map. As was mentioned
in the beginning of this chapter, two criteria had been chosen for the evaluation of these
algorithms. The primary was complete map coverage and the secondary was execution
time.

As can be seen in Figure 5.6, both algorithms covered the majority of the area. How-
ever, it is quite clear that the distance transform algorithm provided a better coverage than
the spanning tree algorithm. Regarding the second criteria, the spanning tree algorithm
provided both better execution times during testing, and shorter paths. The conclusion
in this chapter is therefore that the recommendation depends heavily on the speci�c
use-case. Even so, the authors would like to recommend the spanning tree algorithm,
as it is felt that the di�erence in path length is worth sacri�cing some coverage over.
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(a) Distance transform path

(b) Spanning tree covering

Figure 5.5: Visualisation of the full path in M-huset
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Table 5.1: Statistics for the two area covering algorithms for
di�erent maps, using a 0.35 m cell size.

Map Alg. Coverage Dist. Number of turns
[m] Total < 45° 90° 180°

20 × 20 STC 232 / 232 231 48 0 0 0 48 0 0
DTP 232 / 232 272 144 0 57 0 29 61 1

M-huset STC 10376 / 10384 1816 2317 0 0 0 2317 0 0
DTP 12457 / 12457 2738 8556 48 3691 16 1233 3487 81

Rotated
M-huset

STC 10560 / 10568 1848 1525 0 0 0 1525 0 0
DTP 12487 / 12487 2703 7491 40 3168 17 1022 3208 36

Planned path Travelled path

(a) Distance transform path

Planned path Travelled path

(b) Spanning tree covering

Figure 5.6: Comparision betweeen the planned and actually trav-
elled paths of the bottom left cooridor in M-huset.

However, it should be noted that the spanning tree algorithm, in the worst case scenario,
would only provide a 50 % coverage.
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Chapter 6

Exploration

This chapter covers autonomous exploration of an unknown map. A few of the existing
algorithms are presented and evaluated to recommend the one which provides the best
result for UC-NoMap.

6.1 Motivation
The exploration algorithm’s main purpose is to provide the autonomy part ofUC-NoMap.
The algorithm takes a time consuming process and automates it by letting the robot
explore the layout of a building by itself.

6.2 Frontier-based Exploration
The paper by Yamauchi [29] describes a novel method of using a frontier-based approach
for exploration. According to the paper, “To gain the most new information about the
world, move to the boundary between open space and uncharted territory”. A frontier
is hence de�ned as the edge between open space and the unknown. The paper does
mention that “A Zeno-like Paradox where the new information contributed by each new
frontier decreases geometrically is theoretically possible (though highly unlikely)”, but
also says that even in such cases “the map will become arbitrary accurate in a �nite
amount of time.”

6.3 Selection of Frontier
One of the ways to improve the performance of the exploration is to ensure the selec-
tion of good frontiers. The paper by Holz et al. [30] evaluates di�erent strategies for
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selecting frontiers. It shows that selecting the closest frontier, results in a fairly optimal
solution, though a slight improvement is possible by using repetitive re-checking1 and
map segmentation2.

6.4 Existing Implementations
There currently exist multiple implementations of the frontier exploration for ROS. For
this thesis it was decided to evaluate three di�erent implementations to see if there exists
a di�erence in the performance.

6.4.1 Frontier Exploration
The paper by Yamauchi [29] has an implementation in ROS appropriately named frontier
exploration [31]. It requires a working navigation stack (see Section 1.2.1) and operates by
sending goals to the global planner. A new goal to a new frontier is sent every time the
navigation stack reports that the previous goal has been reached, or at regular intervals,
meaning that the algorithm supports repetitive re-checking. The algorithm always chooses
the closest frontier as found by BFS.

6.4.2 Hector Exploration
Hector exploration is based on the paper by Wirth and Pellenz [20] which builds on and
extends the frontier exploration algorithm introduced in Yamauchi [29]. A di�erence
between frontier exploration and hector exploration is how they navigate to frontiers.
While frontier exploration takes advantage of an existing navigation stack, hector ex-
ploration replaces the global planner, allowing it to not only set goals, but also decide
how to get there. Another consequence of hector exploration acting as a global planner,
is that the navigation stack continuously asks it to re-evaluate its path. And because it
might change its goal during any of these re-evaluations, the behaviour can be identi�ed
as repetitive re-checking.

Another di�erence is that, unlike frontier exploration which uses BFS to �nd the
closest frontier, hector exploration employs an exploration transform. This transform,
much like the path transform in Section 5.7, uses a weighted sum of the distance transform
which describes the distance, and the obstacle transform which describes the discomfort
of moving close to walls. The exploration transform is used for both path planning and
picking the next frontier.

6.4.3 Nav2d Exploration
Nav2d exploration is another frontier-based exploration plug-in and is unique in its
o�ering of multi-robot exploration capabilities. Its packages, however, target an old
version of ROS and the authors were unfortunately not able to get it working.

1Repetitively check if there exists a closer frontier, since new frontiers can be discovered while moving.
2Dividing the map into segments and �nish the segment before moving to the next segment.
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6.5 Evaluation and Conclusion
The purpose of this chapter has been to present and evaluate which of the most pop-
ular ROS plugins for exploration that provide the best results for UC-NoMap. Unlike
Chapter 3 and Chapter 5 which had widely di�ering algorithms, the ones compared
in this chapter have all been based on the same frontier exploration method. Even so,
in Figure 6.1 it can be seen how the behaviours of the algorithms have been distinctly
di�erent. Hector tended to follow walls and discover the room or corridor that it was
currently in, before going to a new one. Frontier on the other hand, simply went for the
nearest frontier, and resulted in a behaviour that never �nished an entire room before
going to the next one. Another downside with frontier was that it tended to drive very
close to walls, which sometimes lead to the robot getting stuck. This behaviour was not
present in hector.

After all of the information above was taken into consideration, hector, which was
basically an extended version of frontier, was chosen as the recommended algorithm.

Hector exploration: 103.8 m2 cover

(a) Hector exploration.

Frontier exploration: 97.9 m2 cover

(b) Frontier exploration.

Figure 6.1: A side by side comparison of how Hector exploration
and Frontier exploration explore. Notice how Hector exploration
tends to follow walls and discover entire rooms before continuing.
Notice also how Hector has driven over the same place multiple
times.
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Chapter 7

Wi-Fi Scanning

This chapter goes over how the Wi-Fi measurements were collected, and describes the
pre-processing which had to be applied prior to submitting the data to Combain CPS.

7.1 Introduction
Wi-Fi access points makes themselves visible by periodically sending out beacon frames.
This in turns allows other devices, such as smartphones, to connect and gain internet
access. Since these beacon frames are constantly broadcasted by all access points, without
requiring any modi�cations to either hardware or software, they are perfect for regular
data collection.

According to [32] the following equation can be used to describe the relationship
between the RSS and the distance d:

RSS = C − 10n log10 d, (7.1)

where n is the path loss factor and C is the RSS at 1 m. The path loss factor depends
heavily upon the environment and normally varies between 2 and 6 [33].

Figure 7.1 shows a heatmap of a Wi-FI access point.

7.2 Measuring
Most of the access points encountered during the duration of this thesis seemed to have
a beacon-rate of 10 Hz. According to Combain, recording all those beacons would have
been too much data. Instead, it was decided to temporarily record all frames, and then
throw away all but the latest for each access points each second. This allowed better
support for access points with lower beacon-rates, and also better handling of packet loss.
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Figure 7.1: Visualization of the RSS for one of the access point for
the network eduroam. A high RSS means better signal strength.
The access point position is in a room next to the left corridor.
Note that the network is most likely visible in the corridor to the
right due to the free line of sight through windows.

The groups of beacon frames were also timestamped to enable the matching of groups to
positions. An example of a beacon frame group can be see in Table 7.1.

7.3 Processing
As previously described in Chapter 4, the local coordinates in ROS were represented
using a local cartesian coordinate system. Before they could be used further, they had
to be converted to the WGS84 system. Furthermore, to allow Combain to apply further
processing, an age �eld was also used to describe when the beacon frames were received
relative to the timestamp.

The end result had the following format:

measurements: [
{

time: unixTimestamp,
wifi: [

{ bssid, rss, ssid, age },
...
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Table 7.1: List of Wi-Fi access points from which beacon frames
were received during a single measurement. The RSS is measured
in dBm.

BSSID RSS ESSID
C8:D7:19:9A:43:92 -89 Airsonett_LAB
52:9F:27:19:6B:B2 -43 Worxmate 4G
52:9F:27:19:6B:B1 -41 Combain Guest
50:9F:27:19:6B:B0 -42 Combain 4G
52:9F:27:19:6B:B3 -42 Worxmate Guest
C8:BE:19:62:B0:42 -79 Timeline
F0:99:BF:09:63:98 -78 KP Wi-Fi Network
A8:D0:E5:37:45:C0 -90 eduroam
A8:D0:E5:37:45:C2 -89 LND_INTRA
88:75:56:6E:1D:70 -90 Client
88:75:56:6E:1D:71 -88 eduroam
88:75:56:6E:1D:72 -90 Region Skane Publikt
D0:17:C2:B3:49:73 -27 Worxmate_GUEST
D0:17:C2:B3:49:71 -27 Worxmate
D0:17:C2:B3:49:70 -29 Combain
D0:17:C2:B3:49:72 -36 Combain_GUEST

]
}

]

At the end of each measurement, a trajectory is collected and saved. As previously
stated, this was then used to map the measurements to their corresponding location on
the trajectory using the timestamp.

7.4 Exporting
Finally the processed measurements were exported to CPS using Combains existing
internal Application Programming Interface (API). Combain then performed a SLAM
optimisation, in which the positions of access points were calculated. The result of the
optimisation was then saved and used to improve their existing models, which in turn
would improve future queries.

The data could also be exported as Comma-Separated Values (CSV) �les, in an internal
format speci�ed by Combain, which allowed for easier debugging.
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Chapter 8

Fleet Management Platform

One of the important requirements of this project was to o�oad as much of the main
processing as possible to a remote server. Combain also expressed a wish for a user
friendly interface. In this chapter the platform which was built during this thesis is
presented, and the current functionality is described.

8.1 Architecture
In order to assure the maintainability of the platform and allow for easier integration
into Combain’s existing projects, it was decided that the platform should be built with a
similar architecture as their existing projects. The platform was therefore implemented
as a multi-page web application, using Node.js and PostgreSQL. ROS has an existing
plug-in called rosbridge, which allows for easy integration using WebSockets and in turn
enables communication between Node.js and ROS.

All data was stored in a relational database, since both authors had prior experience
using it for similar projects.

In order to allow for other projects to easily connect to ROS in a similar manner, it
was decided to separate all ROS-related code into stand-alone isolated modules. In the
future, these could easily be extracted and integrated into other projects.

8.2 Workflow
A lot of e�ort went into making an intuitive user interface, to make it easy-to-use even for
people with limited technical experience or domain knowledge. The primary focus was
on simplifying and streamlining the interface for executing the two use cases UC-Map
and UC-NoMap. To achieve this, an entity-relationship model inspired by the real world
was used. The following entities appear:
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Figure 8.1: Screenshot of the buildings view.

Figure 8.2: Screenshot of the building details view.

Building In the highest layer, the system is organised in buildings. Each building
represents a speci�c location in the real world. To facilitate connection with CPS
each building is assigned a CPS ID which refers to a corresponding reference in
Combains system. In the future the interface for entering the CPS ID could be
simpli�ed by allowing bi-directional communication between this platform and
CPS, however for the scope of this thesis, it was decided to minimise the impact on
existing systems. The interface for selecting buildings can be seen in Figure 8.1.

Maps Each building can be explored multiple times, each time resulting in a di�erent
map. The maps are assigned to speci�c �oors, of which they can cover either
the complete �oor or a part of it. The maps also contain meta-data such as the
resolution and the origin of the robot i.e. where the robot started its exploration.

Measurements Each map further contains at least one measurement. A measurement is
a set of collected RSS, mapped to positions in the map. The positions are converted
to WGS84 when they are exported, this process can be read about in Section 8.3.
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Figure 8.3: Screenshot of the map details view.

8.2.1 Exploring Building
For UC-NoMap a typical user-�ow looks like the following:

1. Create or select an existing building which should be mapped. Figure 8.1 shows a
screenshot of the building list.

2. Begin a new exploration, by selecting the �oor, which is to be explored.

3. Wait for the exploration to be completed, and stop the exploration when su�cient
area is explored.

4. Edit reference points, by dragging the overlaid map to its real position.

5. Export or visualise data.

8.2.2 Collecting Measurement in an Explored Build-
ing

For UC-Map a typical user-�ow looks like the following:

1. Select the building which should be mapped. (See Figure 8.1)

2. Select a measurement (See Figure 8.2)

3. Start measurement.
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4. Stop measurement.

5. Edit reference points.

6. Export or visualise data.

8.3 Placing the Map in the Real-World
As mention in Chapter 4, the collected measurements were stored in a cartesian coordinate
system. In order to export the data to CPS they �rst had to be converted to the WGS84
system, which was done by using an a�ne transformation matrix. This matrix was
created by placing three pairs of reference points in both systems.

Specifying pairs of reference points can be a di�cult and time consuming operation
to perform manually. Therefore, a graphical tool was added to the web platform. The
tool uses Lea�et, an open-source JavaScript library for interactive maps, to overlay an
image on top of an OpenStreetMaps layer. For further visual aid, an indoor map layer
from Micello is also added on top of the OpenStreetMaps layer. The resulting map of an
exploration session is then placed on top everything else, and translated by the help of
three graphical reference points in real-time using CSS. An example of the process can
be seen in Figure 8.4.

To ensure that the correct data-set is exported to CPS, another tool was built to
visualise the trajectory of the scan session. By using the reference points along with the
a�ne transformation matrix de�ned in the previous step, the trajectory can be converted
into WGS84. The resulting path is then overlaid on top of the interactive Lea�et map.
Figure 8.5 shows the complete path travelled during a scan session.

8.4 Conclusion
In this chapter a platform for controlling ROS based robots have been presented. The
platform removes much of the manual work usually required and provides handy tools
for manipulating data. By using the web interface with a carefully crafted work�ow the
system can be used without requiring good technical experience or extensive domain
knowledge.
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8.4 Conclusion

(a) Gmapping SLAM result. (b) Before �tting.

(c) After �tting. Notice how the bottom corridor is a bit too long.

Figure 8.4: Mapping with Gmapping in M-building, LTH. The
background is added for clarity and is not present in the actual
results.
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Figure 8.5: Visualisation of the SLAM Trajectory.
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Chapter 9

Discussion

This chapter combines individual conclusions from previous chapters to form a complete
picture. It then discusses the advantages and disadvantages of the results, and how they
may be improved in future projects.

9.1 Future Work
This thesis has introduced a solid foundation built upon state-of-the-art research in
autonomous vehicles and robotics. However, because of the broad scope of this thesis,
there are several areas which future projects could dive deeper into.

9.1.1 Alternative Data Sources
In this thesis, the main focus was on collecting measurements of Wi-Fi RSS. However,
the resulting system is not limited to this. Bluetooth beacons e.g. have some advantages
compared to Wi-Fi access points: they consume less power, can be calibrated to increase
the accuracy 1 and they support iOS devices. Collecting Bluetooth beacons could therefore
be a natural next step.

Another interesting direction, could be to use the platform built in this thesis, to
collect completely di�erent types of data, e.g. camera images, audio or air quality. This
data could then be used for research or even for commercial applications.

9.1.2 Controller Unit
Due to performance issues, half-way through the project it was decided to abandon the
idea of using a Raspberry Pi as a controller unit. Unfortunately, the solution su�ered

1By providing TX-power information.
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from several issues originating from high network-latency and low performance. The
network latency meant that any action performed by the robot was based on information
which was at least 120 ms old. This resulted in choppy movement and the inability to
dodge obstacles in time. In an attempt to get rid of the latency, most of the processing
was moved to the Raspberry Pi. This unfortunately overloaded the Raspberry Pi resulting
in the processing lagging behind, and ultimately led to the same choppy movements as
before. In the end, the Raspberry Pi was replaced with a more powerful notebook.

Future projects could focus on balancing the processing more intelligently between
the cloud and the local controller unit. A hybrid solution might for example enable
smooth navigation without sacri�cing map �delity.

9.1.3 Exploration
This thesis evaluated existing implementations of frontier-based algorithms, and presen-
ted a recommendation for an algorithm that has the ability to map entire buildings.
However sometimes, like in Figure 6.1, the paths travelled by the robot were less than
optimal. Looking into this issue might improve the time required to explore, possibly
using better selection criteria.

9.1.4 Total Area Coverage
Area coverage is a well researched topic. During the initial research more algorithms
than the ones discussed in this thesis were found, but due to time constraints, it was not
possible to evaluate them. A new project which puts focus on evaluating more of the
existing algorithms, or improving the current ones, is needed to get a complete picture of
what is currently feasible. For example, it might be possible to improve the area coverage
in spanning tree covering by using a dynamic grid size.

9.1.5 Obstacle Avoidance
In this thesis, the obstacle avoidance only uses the information gained from the LIDAR.
However, ROS provides support for obstacle avoidance using other sensors, such as a 3D
camera or sonar. A 3D camera could provide multiple advantages over the LIDAR, e.g. it
would be able to see things at di�erent heights which in turn would allow it to detect
non-uniform obstacles and changes in elevation e.g. stairs.

9.1.6 Fleet Management Platform
The �eet management platform created in this thesis supports the most basic functionality.
However, for it to be able to serve as a generic platform, there are many areas which
could be improved. For example, it currently only supports a single active robot, and it is
not possible to track its progress. The authors wanted to create a real-time map which
shows the current exploration progress and the location of the robot, however, due to
time constraints this was not possible.
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9.1.7 SLAM
Additional work on the SLAM algorithms is necessary in order to better handle areas
with see-trough obstacles, more speci�cally glass obstacles such as windows or mirrors.
There are several existing papers with di�erent solutions that could be implemented
in the future. Wang and Wang [34] describes a modi�cation to the existing Gmapping
algorithm, which can e�ectively detect and avoid glass using only a LIDAR, while Zhang
et al. [35] describes how LIDAR and sonar data can be fused to provide more accurate
measurements.

9.2 Conclusions
In this thesis the most popular SLAM implementations for ROS have been presented
and evaluated. Cartographer presented itself as the only algorithm which, with 100%
accuracy, managed to perform a correct loop closure. Although the map was slightly
more distorted than Gmapping, the improved loop closure made up for it. Cartographer
was therefore the authors recommended SLAM algorithm. It should be noted however,
that Gmapping was not too bad either, and it was the authors belief that much of the
problems with loop closure was due to the LIDAR. A LIDAR with higher accuracy would
probably improve the result of both Gmapping and Cartographer. Nonetheless, with
the hardware that was available in this thesis, Cartographer is more than capable of
supporting the use-case UC-NoMap.

Although there was no clear winner for area coverage, with spanning tree covering
and distance transform path both having their advantages and disadvantages. Both
authors believe that for this use case, the spanning tree covering performs better since
the improvement in speed is more important. However, both algorithms are available
and can be used to support the use-case UC-Map.

Two exploration algorithms, both based on the frontier strategy, were evaluated.
Both algorithms performed similarly, however Hector exploration had more features and
discovered a larger area faster. Together with Cartographer, Hector should be able to
discover most buildings and is therefore a solution to the use-case UC-NoMap.

This thesis has presented a working prototype for autonomous measurement collec-
tion in both explored and unexplored buildings. By using the �eet management platform
the system can be used without the requirement of high technical expertise or domain
knowledge. The prototype supports exploring and mapping a completely unknown
environment, and methodically and in detail cover the same environment after it has
been mapped. The prototype therefore supports all of the use-cases which were presented
in Chapter 1.
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