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Abstract

This thesis covers the optimal control of stochastic systems with coarsely quantised
measurements. A particle filter approach is used both for the estimation and control
problem. Three main families of particle filters are examined for state estimation,
standard SIR filters, SIR filters with generalised sampling and auxiliary filters. A
couple of different proposal distributions and weight functions were examined for
the generalised SIR and auxiliary filter respectively. The choice of proposal dis-
tribution had the greatest impact on performance but the unrivalled best filter was
achieved with a combination of generalised sampling and the auxiliary particle fil-
ter. For the problem of control the particle filter was used for cost-to-go evaluation
by forward simulation in time. Simplifications of the full dynamic programming
problem were done by reducing the time horizon resulting in M-measurement feed-
back policies and a new M-measurement cost feedback policy. One-measurement
feedback and M-measurement cost feedback was examined for M ≤ 4 and although
probing behaviour was observed none of the examined controllers managed to out-
perform a certainty equivalent controller.
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1
Introduction

This thesis will deal with the problem of control of stochastic system under the
added uncertainty of coarsely quantized measurements. The basic problem of con-
trol of stochastic systems is well studied and for simple systems several useful
results exist such as Kalman filters and LQG control. However, the introduction
of quantised measurement invalidates these results and introduces new effects that
need to be accounted for, the main effect being that the state uncertainty now de-
pends on the control input of the system.

To understand this effect, consider a quantised measurement. That measurement
will bound the signal to lie within a certain interval and, without any other infor-
mation about the system, all possible signals within that interval are equally likely.
Now, steer the system hard against one of the interval boundaries and take a new
measurement. Based on the knowledge of the past control, the probability of the
state to be close to that aimed for boundary is now much higher and likewise much
lower for it to be close to the other boundaries. With this information, even if the
new measurement is the same as the old, the probability distribution of the state is
no longer uniform and has shifted and morphed towards the boundary. The choice
of control input therefore clearly affects the state probability distribution and this
effect will have to be considered when designing a controller.

The reason for having coarse measurement might be purely practical, stemming
from limitations in hardware, but can also be an intentional design choice. By di-
viding the range of possible measurements in fewer intervals, less information is
needed to encode the data but also with larger distances between the boundaries
the measurement is expected to change less frequently. This reduces the number
of times a measurement has to be communicated to the controller and all this com-
bined means that less information needs to be passed over the communication chan-
nel. For system where this communication itself is expensive, for example when it’s
done over a large shared network, a coarse quantisation approach might therefore
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Chapter 1. Introduction

be a good choice. Because of this, to be able to improve the control performance in
these low informations settings is of great interest and the goal of this thesis.

In trying to achieve better performance, the approach chosen here consists of two
parts, the first being improving the state estimation. This is the problem of iden-
tifying the probability distribution of the state based on all available knowledge.
A method known as a particle filter will be used and the goal will be to design a
robust and high performing filter for systems with quantised measurements. The
second part is the problem of optimal control, based on the given estimate, in other
words, how should the control be chosen? This is done by simulating the system
forward in time and from that decide the optimal control. Only methods that fully
utilise the special information set provided by the particle filter will be considered
but due to the expense of forward simulation, a reduced horizon approach will be
used. How far into the future the system will be simulated will be reduced and the
system performance for the remaining time until the end will be replaced by some
approximation. The goal of this second part will be to design and develop a couple
of these methods and evaluate them based on how their different control behaviours
affect performance.

The layout of the thesis follows the same approach with it being sectioned into two,
largely separate, parts. The first part is dedicated towards the estimation problem
and the second is covering the optimal control. Both parts have the same layout
with the first chapter introducing the necessary background and theory, the second
dealing with the design and development of the methods used and the third dealing
with the evaluation of said methods. Before that however, this introductory chapter
will be ended by giving short general overviews of the two problem areas as well as
defining a system for benchmarking purposes.

1.1 The Estimation Problem

The problem of estimation has its basis in a model of the system that captures the
stochastic nature of the process. This model is then used to generate methods for
translating a series of measurements into a probability distribution of the state. A
general state space model has the following form

xk+1 = f (xk,uk,νk)

zk = h(xk,ek)
(1.1)

where xk is the stochastic state at time step k, uk is the control signal at time step k,
zk is the available measurement, νk and ek are independent white noise sequences
and f and h is the dynamics and measurement functions respectively. In the case
where no measurement noise is present, ek = 0, and the measurement function h is
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1.2 Optimal Stochastic Control

invertible the problem is said to be fully observed. This is because given a measure-
ment, zk, the state can be determined without uncertainty xk = h−1(zk). When this
is not the case and either measurement noise is present or h is not invertible the sys-
tem is said to be partially observed and the estimation problem is then much harder.
If all functions are linear the solution is the well known Kalman filter but for non-
linear systems there is no general solution. A popular approach for handling non-
linear systems is the extended Kalman filter which linearises the functions around a
an estimated trajectory, resulting in a local linear approximation for which a regular
Kalman filter can be applied.

The systems considered in this thesis can all be written on the state space form
above. The quantised measurements translate to a h which is a staircase function,
meaning it is constant apart from discontinuities at the interval boundaries. The
function h is clearly not invertible, making the system partially observed, and it is
also not linear, disqualifying the use of a standard Kalman Filter. However, due to
the fact that h is a stair case and thereby having derivative zero almost everywhere,
the extended Kalman filter can not be used either. The linearisation of h would
simply be constant, resulting in the linearised system not having any measurement
information in it at all. An estimation methods that doesn’t rely on a linearisation of
h is therefore required.

A popular, fully non-linear estimation method of late is the so called particle filter.
The reason for its popularity is its simplicity and ability to handle almost arbitrary
problems. It is a sampled based approach that represents the state distribution as a
collection of random samples, also known as particles. After initialisation, these par-
ticles are simply simulated forward in time according to the given system model and
the resulting distribution of particles gives an approximate probability distribution
at each time-step. The basic concept isn’t much more difficult than that although for
a proper implementation, a few more details, see Chapter 2, are needed. This sim-
plicity and lack of linearisation makes the particle filter well suited for the problem
of quantised measurement studied here.

1.2 Optimal Stochastic Control

The basis of all control is the problem of choosing a control signal to achieve one’s
goal. In optimal control that goal is formalised in the form of a cost function, a
function that gives large values for undesired process behaviour and small values
for the desired ones. The optimal control problem then becomes how to choose
control signal such to minimise the cost function. In the realm of stochastic system
the only difference is that the cost function needs to be a function of stochastic
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Chapter 1. Introduction

variables. A fairly general and popular form of cost function is

J = E

[
N

∑
k=0

Lk(xk,uk)

]
(1.2)

where E is the expectation operator and Lk some function representing the immedi-
ate cost at time-step k. There is of course even more general forms of cost functions
but this form will cover a vast amount of other problems and can be solved using
the well known concept of dynamic programming [Bellman, 1957].

It is possible to make statements about the optimal control based on the effect the
control has on the system, in this case mainly focusing on the effect on the state
uncertainty. If the uncertainty of the state, the state variance, is independent of the
control signal, the separation principle is said to hold. This means that the resulting
optimal control will not depend on the state variance at all, it will only depend on
the state estimate given by the distribution mean. The separation principle gets its
name from this fact, since the optimal control problem then can be separated into
two parts, estimation and control.

As mentioned earlier, for a system with quantised measurement the control will
affect the shape and therefore the variance of the state distribution. Such systems
are said to have dual effect. Dual effect means that the state variance depends on the
choice of control and as a result will the separation principle not apply for systems
with dual effect. An optimal controller will for such a system have to balance actions
that improve the estimate, by reducing the state variance, against actions that steer
the system toward the desired state. This is called dual control because of this need
to balance the effect the control has on both the state variance and point estimate.

The controller resulting from the dynamic programming will be a dual controller, it
will implicitly take the dual effect into consideration. However, due to the difficul-
ties of solving dynamic programming problems, a number of more or less heuristic
approaches have been introduced throughout the years with the goal of introducing
probing behaviour to the control. Probing is a control action that temporary steers
the system away from the desired state in order to improve the estimate and reduce
the variance in order to achieve a long term gain. The goal of this thesis is to design
methods of dual control that utilise the full probability distribution estimate from
the particle filter. All methods will be based on dynamic programming so probing
behaviour will be included implicitly. However, due to the aforementioned com-
putational difficulty, simplifications of the full dynamic programming problem are
needed.

12



1.3 Process Definition and Discretisation

1.3 Process Definition and Discretisation

For benchmark purposes, a case study will be conducted and the examined process
of that study will here be defined. Notation will be established and key properties of
the system will be presented for later use in the thesis. Readers unfamiliar with the
concepts here are referred to other introductory literature on the subject, for instance
[Glad and Ljung, 2000].

The examined process will be the model of a DC servo given in Figure 1.1. It in-
cludes two additive white noise terms and models load disturbances as integrated
white noise on the input.

∑

1
s

∑
k

T s+1 ∑
1
s

x2

x3

u

ν3

ν2 ν1

y
x1

Figure 1.1 DC servo model used for case study.

The model can be summarized in an ordinary linear time invariant state-space model

ẋ=Ax+Bu+Nν

y =Cx
(1.3)

with the following matrix and vector definitions. For notational convenience we set
τ = 1

T and µ = k
T .

x=

x1
x2
x3

 , ν =

ν1
ν2
ν3

 , A=

0 1 0
0 −τ µ

0 0 0

 , B =

0
µ

0

 ,

N =

1 0 0
0 µ 0
0 0 1

 , C =
[
1 0 0

]
(1.4)

The white noise input, ν, has power spectral densityR and zero mean.

The system given by (1.3) is observable but not controllable. The third state, d, is
not controllable which should be intuitively clear since it represents an uncontrolled
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Chapter 1. Introduction

disturbance. This will cause some problem in the future when designing controllers
and for that reason we split the system into two parts: one modelling the motor
response and the other modelling the load disturbance.

ẋm =Amxm+Bmu+Bmxd+Nmνm

ẋd =Ndνd

y =Cmxm
(1.5)

Here xm = [x1 x2]
T , νm = [ν1 ν2]

T , xd = [x3] and νd = [ν3]. The matrices are of
dimensions such that the multiplications are defined and they satisfy:

A=

[
Am Bm

0 0

]
, B =

[
Bm

0

]
, N =

[
Nm 0

0 Nd

]
,

C =
[
Cm 0

] (1.6)

where 0 is the zero matrix of corresponding size. The system given by
(Am,Bm,Cm) is now both controllable and observable and the disturbance
νd can simply be seen as an input to this reduced system.

The performance metric for the continuous case is on the form

V = E
[∫ t f

0
xTQxx+uTQuudt

]
(1.7)

where t f is the length of time the system should be controlled for and Qx and Qu

are chosen weighting matrices that are positive semi-definite and positive definite
respectively. Note that because of the uncontrollability of the third state, x3, no
weight can be put on it. An equivalent cost can therefore be formed by only consid-
ering the xm states.

V = E
[∫ t f

0
(xm)TQxmxm+uTQuudt

]
(1.8)

No distinction will be made between these two forms and for simplicity x and Qx

will be used instead ofxm andQxm as long as no confusion arises. Also and without
concerns for details, we will let t f be infinity and it will be for this infinite case or,
when not applicable, extremely long time horizons the focus of this report will lie.

Discretisation
Since all controllers and observers discussed in this thesis will be of discrete-time
type, the continuous model presented above will be discretised. The details of this
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1.3 Process Definition and Discretisation

will be left to the appendix and other suitable literature on the subject, for example
[Åström and Wittenmark, 2011]. Only the end results will be presented here to
establish the notation and some key properties. No weight will be put on potential
discretisation problems such as aliasing and inter-sample behaviour. The sample
time will be assumed small enough for this not to be a problem.

Let tk denote the time at sampling instance k such that tk + hk = tk+1, hk is here
the sample time at time step k. The state at time tk can then written as xk and
analogously the control signal and output can be written as uk and yk respectively.
In the future, variables subscripted with k will denote the discrete time variants.
When need arises other variable names than k might be used but it will then be
made clear from context that it’s a time index.

By integrating between tk and tk+1 with a zero-order hold on the control signal the
following discretisation of (1.3) can be achieved, see Appendix A.1 for details.

xk+1 =Φkxk +Γkuk +νk

yk =Cxk
(1.9)

νk = [ν1
k ,ν

2
k ,ν

3
k ] is here a white noise sequence with power spectrum R̂k. R̂k will be

positive definite if we restrictN andR to have full rank, see Appendix A.2. These
restrictions are natural since they ensure that the noise inputs are independent. For
details on the numerical calculation of these system matrices see Appendix A.4.

It’s clear from Appendix A.1 that the system matrices only depend on hk, meaning
that if periodic sampling is deployed the time dependent system above will be time
independent. When that’s the case the subscripts will be dropped from the system
matrices as such:

xk+1 =Φxk +Γ uk +νk

yk =Cxk
(1.10)

In this case the white noise power spectrum is also constant and will be denoted R̂.

The controllability problem remains for the discretised problem but fortunately,
similar to the continuous system, the system matrices can be divided into a model
and load disturbance part, see Appendix A.5. From that, one can also see that both
Φ and Φm are upper triangular.

Φ=

[
Φm Γm

0 1

]
, Γ =

[
Γm

0

]
(1.11)
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Chapter 1. Introduction

Resulting in:
xmk+1 =Φ

m
k x

m
k +Γmk uk +Γ

m
k xdk +ν

m
k

xdk+1 = x
d
k +ν

d
k

yk =C
mxmk

(1.12)

The cost function can be discretised according to Appendix A.3, resulting in

J = E

[
N

∑
k=0
xT

kQ
x
kxk +2xT

kQ
xu
k uk +u

T
kQ

u
kuk

]
(1.13)

Just like in the continuous case we will let N be infinity without to much concern for
details and it’s implied that the uncontrollable state is ignored in the cost function.

Discretised Measurement
The system presented here, both the continuous and discrete, are linear and therefore
of little interest in this thesis. They will therefore be complemented with a non-
linear quantiser as a measurement function. The quantiser will be on the form:

z = round
(
y

∆q

)
∆q (1.14)

In other words, the elements of y are rounded to nearest multiple of the quantizer
interval, ∆q. The resulting quantised systems then becomes

ẋ=Ax+Bu+Nν

y =Cx

z = round
(
y

∆q

)
∆q

(1.15)

in the continuous case and

xk+1 =Φkxk +Γkuk +νk

yk =Cxk

zk = round
(
yk

∆q

)
∆q

(1.16)

in the discrete.

Simulation
When doing performance comparisons the above model was simulated using
Simulink. A model was made of the continuous process above which was used
for all subsequent experiments. Different discrete estimators and controllers were
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1.3 Process Definition and Discretisation

Table 1.1 Default Process Parameters

k = 1
T = 1

hk = 0.05
∆q = 20

R=

1 0 0
0 1 0
0 0 1

 Qx =

1 0 0
0 0 0
0 0 0

,Qu = 0.1

applied in open and closed loop situations and the relevant data was gathered for
comparison. More information on the test cases and performance metrics used will
be given alongside the corresponding presentation and discussion of the results. If
nothing else is stated, the process parameters in Table 1.1 will be used.
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2
Bayesian Inference and
Particle Filters

This chapter will cover the theory behind the filters used to identify the system state.
The goal is to develop theory that allows for identification of the complete proba-
bility distribution of the system state and computational methods for approximating
it. This stands in contrast to traditional methods where the goal is to find an optimal
estimator of some sort, a filter that delivers a state estimation that is optimal accord-
ing to some criterion such as maximum a posterior probability, MAP, or minimal
mean square error, MMSE. There isn’t necessarily a clear line between these meth-
ods since the theory presented also serves as a basis for optimal estimator design.
However, such topics will not be a subject of this chapter and it will solely focus on
the complete probability distribution.

The base for this will be the theory of Bayesian inference which first will be pre-
sented in short. This is the theory that allows for the probabilities to be propagated
through the system and identified at the other end. Only in rare cases have these
equations an analytical solution, the famous Kalman filter being one. Because of
this, the rest of the chapter will be spent developing theory that allows for approxi-
mate solutions to be calculated, the theory of sequential Monte Carlo (SMC) meth-
ods, also known as particle filters (PF). A rather complete introduction of SMC
methods can be found in [Doucet et al., 2001] while most of the work presented
here are based on foundational work of [Gordon et al., 1993] and the general parti-
cle filter introduction in [Schön, 2010]. A further development of the particle filter,
the auxiliary particle filter, first introduced by [Pitt and Shephard, 1999] and inde-
pendently discovered during the development of this thesis, will also be presented.
No original contributions to the theory will be made other than presenting the above
methods in a common framework of intermediate distribution reweighting, the goal
of this reweighting is to improve numerical performance of the methods. In total
four PF:s will be presented, each an extension of the one before, and later in Chap-
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Chapter 2. Bayesian Inference and Particle Filters

ter 4, will their performance be compared when they are applied on the process
presented in Figure 1.1.

2.1 Bayesian Inference for Discrete Dynamic Systems

A brief introduction to Bayesian inference will here be given with the goal of pro-
viding a recursive update formulation for the state probability for a discrete time
system. In other words: Given the probability distribution of xk, what will the prob-
ability distribution of xk+1 be?

Bayesian Inference and Prediction
Bayesian inference is in words the method to determine the distribution of an exam-
ined variable, given some known prior distribution and observations. For a random
variable, Θ and some measurements X that depend on Θ , Bayes’ rule can be used
to formulate posterior distribution of Θ . Here Θ is also allowed to depend on a third
parameter ρ .

p(Θ |X ,ρ) =
p(X |Θ ,ρ)p(Θ |ρ)

p(X |ρ)
=

p(X |Θ)p(Θ |ρ)
p(X |ρ)

∝ p(X |Θ)p(Θ |ρ) (2.1)

Θ is here the examined variable, the one information wanted for. X are observa-
tions whose outcome depends on Θ . p(Θ |ρ) is then the prior distribution, i.e. the
distributions before any observations X were made. p(X |Θ) is the likelihood of the
variable Θ giving the observed measurement X . p(X |ρ) is the marginal likelihood,
the total likelihood of the outcome X , regardless of Θ .

These distributions can also be used to make predictions of future observations. Let
X̃ be some random variable dependent on Θ . A prior predictive distribution can
then be formed based on none of the current observation, only the prior distribution

p(X̃ |ρ) =
∫

p(X̃ |Θ)p(Θ |ρ)dΘ (2.2)

A better posterior prediction distribution can be formed by including all current
observations.

p(X̃ |X ,ρ) =
∫

p(X̃ |Θ)p(Θ |X ,ρ)dΘ (2.3)

State Probability Update
To put this into context and to derive the recursive probability update, consider the
fairly general non-linear discrete time system given on the state-space form:

xk+1 = f (xk,uk)+νk

zk = h(xk,uk)+ek
(2.4)
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2.1 Bayesian Inference for Discrete Dynamic Systems

An equivalent stochastic formulation is:

xk+1 ∼ p(xk+1|xk,uk) = pνk(xk+1− f (xk,uk))

zk ∼ p(zk|xk,uk) = pek(zk−h(xk,uk))
(2.5)

With this the parameters for time-step k can now start to be identified.

The problem is to infer the distribution of xk given all previous knowledge, mak-
ing it the examined variable. The observation should of course be zk since it de-
pends directly on xk. However, xk also depends on the history of the system so
it also needs to be included some way. In the Bayesian inference equations, Θ

were allowed to depend on one parameter, ρ . In this case let’s gather all prior
knowledge of the system, i.e. control signal and measurements, in a parameter,
Dk = {zk,uk,zk−1,uk−1 . . .}, and use Dk−1 as that parameter.

By correctly identifying all pieces of (2.1) and noting that zk also depends on the
known uk

p(xk|Dk) = p(xk|zk,uk,Dk−1) =
p(zk|xk,uk)p(xk|Dk−1)

p(zk|uk,Dk−1)
(2.6)

It can now be seen that the posterior distribution is the sought after p(xk|Dk) and the
distribution of the measurement from (2.5), has become the likelihood. It can also be
seen that the prior distribution, p(xk|Dk−1), is the posterior predictive distribution
of the state xk at time-step k−1.

p(xk|Dk−1) =
∫

p(xk|xk−1,Dk−1)p(xk−1|Dk−1)dxk−1

=
∫

p(xk|xk−1,uk−1)p(xk−1|Dk−1)dxk−1

(2.7)

Left is only the marginal likelihood, p(zk|uk,Dk−1), i.e. the likelihood that zk is
measured at time-step k given past measurement and current control signal.

By assuming p(xk−1|Dk−1) is known, it can now be summarised into the complete
recursive update formulation.

p(xk|Dk−1) =
∫

p(xk|xk−1,uk−1)p(xk−1|Dk−1)dxk−1

p(xk|Dk) =
p(zk|xk,uk)p(xk|Dk−1)

p(zk|uk,Dk−1)

p(zk|uk,Dk−1) =
∫

p(zk|xk,uk)p(xk|Dk−1)dxk

(2.8)

These are the equations that serve as the basis for all the following work in this
chapter. They, together with the stochastic formulation of the dynamic system (2.5),
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govern how the state distribution propagates through time. But, like said before,
only in special cases does these equations have an analytical solution. The case
where f and h are linear functions and νk and ek are Gaussian white-noise results
in the famous Kalman-Filter, see for example [Schön, 2010]. When this isn’t the
case, numerical approximations needs to be used, this is the focus of the following
sections.

2.2 Sampling/Importance Resampling

In order to derive suitable numerical methods to deal with (2.8) a couple of key
concepts will here be established. They will cover ways to represent and sample
from difficult distributions. The problem of how to numerically represent the distri-
butions of (2.8) will be handled by sampling/importance resampling (SIR), or as it
is also known, weighted bootstrap sampling. It is a Monte Carlo method based on
importance sampling, as the name implies. An introduction to the concepts covered
here can also be found in [Smith and Gelfand, 1992].

Perfect Monte Carlo Sampling
A naive approach for a numerical representation of some probability density func-
tion (PDF) is to simply evaluate the PDF at some predetermined grid points. A
problem with this approach is the selection of the grid points, where is higher res-
olution needed and where can the grid spacing be larger? In the case of a dynamic
system these locations are not necessary fixed in time, making this problem even
harder. Monte Carlo sampling is one way around this problem.

Assume some PDF, p, from which samples can be drawn is given. Monte Carlo
sampling is then to numerically approximate p by sampling it N times and forming
the approximation as

p̂(x) =
N

∑
i=1

1
N

δ (x− xi), xi ∼ p(x) (2.9)

Superscript i denotes the index of the sample and should not be confused with an
exponent of an exponential. The reason for a superscript being used instead of a less
ambiguous subscript will be apparent when samples are drawn from the dynamic
model’s states.

It can be shown that p̂ approximates p in the sense that expected values such as
Ep[g(x)]≈ Ep̂[g(x)] become better with bigger N [Doucet et al., 2001]. This is what
in the future will be meant by p̂ approximates p. An intuitive feeling for this can be
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obtained by expanding the expected value.

Ep[g(x)] =
∫

g(x)p(x)dx

≈
∫

g(x)p̂(x)dx =
N

∑
i=1

1
N

∫
g(x)δ (x− xi)dx =

N

∑
i=1

1
N

g(xi)
(2.10)

Approximations of this type clearly replace the integral with a equally weighted
sum. It is the location of the sample points that governs what part of the function g
that will be weighted higher, i.e. since xi are sampled from p there will be more xi

located in the region where p is large, putting more weight on those values of g.

Importance Sampling
In practice it can be hard to sample from the PDF p directly and the concept of
Monte Carlo sampling can then be expanded further. By drawing samples from
some other proposal distribution pπ whose support contains the support of p, a
weighted approximation can be formed as

p̂(x) =
N

∑
i=1

ω
i
δ (x− xi), xi ∼ pπ(x) (2.11)

The constraints on the support of the proposal distribution should come naturally
since otherwise there will be parts of p, xi never will be able to represent. For future
reference, let p̂ mean an approximation of p on this form.

The problem is now one of determining the weights ω i, this is what importance sam-
pling is for. The idea is easily demonstrated by forming the integral of the expected
value that is approximated and inserting pπ into it.

Ep[g(x)] =
∫

g(x)p(x)dx =
∫

g(x)
pπ(x)
pπ(x)

p(x)dx

=
∫

g(x)
p(x)

pπ(x)
pπ(x)dx =

∫
g(x)w(x)pπ(x)dx

(2.12)

Where w(x) = p(x)
pπ (x)

. By inserting a equally weighted Monte Carlo sampled approx-
imation of pπ

Ep[g(x)]≈
∫

g(x)w(x)
N

∑
i=1

1
N

δ (x− xi)dx =
N

∑
i=1

w(xi)

N
g(xi), xi ∼ pπ(x) (2.13)

one can then easily identify ω i = w(xi)
N , resulting in

p̂(x) =
N

∑
i=1

w(xi)

N
δ (x− xi), xi ∼ pπ(x) (2.14)
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The reason for the support constrains can now also be seen in a different way. With-
out that constraint, the insertion of w(x) would result in division by zero. Although
this is the only real constraint on pπ , it can be shown that the better pπ follows p,
the better the approximation will be [Schön, 2010].

By following very similar procedures even further relaxations can be made. First
assume that not only is it not possible to sample from p, it can not be fully evaluated
either, it is only known to some proportional constant p(x) ∝ f (x). By normalising
f and inserting an approximation of pπ the expected value becomes

Ep[g(x)] =
∫

g(x) f (x)dx∫
f (x)dx

=

∫
g(x) f (x)dx

pπ (x)
pπ(x)∫ f (x)

pπ (x)
pπ(x)dx

=

∫
g(x)w(x)pπ(x)dx∫

w(x)pπ(x)dx
≈ ∑

N
i=1

1
N
∫

g(x)w(x)δ (x− xi)dx

∑
N
i=1

1
N
∫

w(x)δ (x− xi)dx

=
∑

N
i=1

1
N g(xi)w(xi)

∑
N
i=1

1
N w(xi)

=
N

∑
i=1

w(xi)

∑
N
i=1 w(xi)

g(xi), xi ∼ pπ(x)

(2.15)

where w now instead is w(x) = f (x)
pπ (x)

. It is clear that the approximation remains the
same except p is replaced with f and the weights need to be normalised such that
∑

N
i=1 ω i = 1.

p̂(x) =
N

∑
i=1

ω
i
δ (x− xi), ω

i =
w(xi)

∑
N
i=1 w(xi)

, xi ∼ pπ(x) (2.16)

Up until now, it has been assumed that an equally weighted approximation of pπ is
used but nothing restricting the use of a weighted one with weights ω̃ i and samples
xi taken from yet another PDF pΠ .

Ep[g(x)] =
∫

g(x)w(x)pπ(x)dx∫
w(x)pπ(x)dx

≈ ∑
N
i=1 ω̃ i ∫ g(x)w(x)δ (x− xi)dx

∑
N
i=1 ω̃ i

∫
w(x)δ (x− xi)dx

=
∑

N
i=1 ω̃ ig(xi)w(xi)

∑
N
i=1 ω̃ iw(xi)

=
N

∑
i=1

ω̃ iw(xi)

∑
N
i=1 ω̃ iw(xi)

g(xi), xi ∼ pΠ (x)

=⇒

p̂(x) =
N

∑
i=1

ω
i
δ (x− xi), ω

i =
ω̃ iw(xi)

∑
N
i=1 ω̃ iw(xi)

, xi ∼ pΠ (x)

(2.17)

This is the most general form and will be used to express the future state distribu-
tions expressed in the past distributions.
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Algorithm 2.1: Sampling/Importance Resampling (SIR)
Given some approximation of the proposal distribution pπ with
samples xi and weights ω̃ i, approximate p(x) ∝ f (x)

Calculate weights: ω̂
i =

f (xi)

pπ(x)
ω̃

i

Normalize weights: ω
i =

ω̂ i

∑
N
i=1 ω̂ i

Resample:
Draw N samples, x̃i from P(x = xi) = ω

i

Form approximation: p̂(x) =
N

∑
i=1

1
N

δ (x− x̃i)

Sampling/Importance Resampling
Importance sampling is not without problem though, especially when the filter is
used recursively on itself, using the approximation p̂ as pπ to get an approxima-
tion of some other PDF and redoing this over and over. In such cases the weights
might degenerate where most of the weights goes towards zero, effectively loosing
resolution of the approximation. It is therefore very inefficient to have samples with
very small weights and for this reason SIR is used. It is a method that equalizes the
weights of the approximation.

The SIR procedure starts with a normal importance sampling step but then performs
a resampling of the generated approximation. During the resampling N new samples
are simply drawn from the approximation p̂ and assigned equal weights 1

N . This
is a simple Monte Carlo sampling to approximate p̂ and the result will then also
approximate the original p, since p̂ is a discrete PDF and sampling from it is done
by simply drawing x such that P(x = xi) = ω i. The procedure is summarised in
Algorithm 2.1. Once again it is worth noting that the closer to p the distribution
from where xi are drawn from, the better the algorithm will perform.

How to draw samples from the discrete distribution in the resampling step is some-
thing that haven’t yet been touch upon. There are a number of different strategies
for doing so but it has been shown, [Douc and Cappé, 2005], that in respect to
PF performance, the resampling strategy has little impact. Because of that, only
one method will be presented here and it is the systematic sampling presented in
Algorithm 2.2. It is stated for completeness and the interested reader is referred
elsewhere. It is chosen mainly for simplicity and speed, not necessarily for its accu-
racy in producing truly random independent samples. In the future, it will only be
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Algorithm 2.2: Systematic Sampling
Given a discrete distribution P(x = xi) = ωi, 1≤ i≤ N.

Sample uniform distribution: ũ∼U (0,1)

Form the ordered numbers: ui =
(i−1)+ ũ

N
, 1≤ i≤ N

Form accumulative sum: si =
i

∑
k=1

ωk, s0 = 0

Form sample counts: ni = number of ui ∈ (si−1,si]

The new samples can now be generated by taking ni copies of xi.

this algorithm that is used when new samples are drawn in Algorithm 2.1. For that
reason the details of the resample step will no longer be specified and only referred
to as resampling.

2.3 SIR Particle Filter

With the concepts previously introduced, the first and simplest particle filter can
be introduced, the SIR particle filter (SIR-PF). Recall the stochastic dynamic sys-
tem (2.5) and the recursive probability update (2.8), both restated here for ease of
reference.

Dynamic Model:

xk+1 ∼ p(xk+1|xk,uk) = pνk(xk+1− f (xk,uk))

zk ∼ p(zk|xk,uk) = pek(zk−h(xk,uk))
(2.18)

Recursive Probability Update:

p(xk|Dk−1) =
∫

p(xk|xk−1,uk−1)p(xk−1|Dk−1)dxk−1 Prediction

p(xk|Dk) ∝ p(zk|xk,uk)p(xk|Dk−1) Measurement Update

With the base assumptions that pek can be evaluated and that pνk and px0 =
p(x0|D0) can be both evaluated and sampled from, start by creating an approxima-
tion of p(x0|D0) ≈ p̂(x0|D0). This approximation will recursively be propagated
through the recursive update functions, utilising the SIR algorithm in the measure-
ment update, in order to form our estimate at time-step k. To derive the details of
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2.3 SIR Particle Filter

this procedure, assume p̂(xk−1|Dk−1) is known and insert it into the prediction step
of the recursive update.

p(xk|Dk−1)≈
∫

p(xk|xk−1,uk−1)p̂(xk−1|Dk−1)dxk−1

=
∫

p(xk|xk−1,uk−1)
N

∑
i=1

ω
i
k−1δ (xk−1−xi

k−1)dxk−1

=
N

∑
i=1

ω
i
k−1 p(xk|xi

k−1,uk−1)

(2.19)

The predictive distribution can clearly be approximated as a weighted sum of N
other distributions. The easiest way to take N samples from such a sum is to simply
take one sample from each term and and an approximation can then be formed as

p̂(xk|Dk−1) =
N

∑
i=1

ω
i
k−1δ (xk−xi

k), xi
k ∼ p(xk|xi

k−1,uk−1) (2.20)

These samples can easily be taken given the assumption the pνk and the dynamic
model, (2.18) as

xi
k = f (xi

k−1,uk−1)+ν
i
k−1, ν i

k−1 ∼ pνk−1 (2.21)

The name “particle filter” should here be apparent since the samples xk−1 act as
particles being propagated in the system. In the future, the terms sample and particle
will be used interchangeably to represent xk.

By using p̂(xk|Dk−1) as the basis for the SIR algorithm and identifying w(xk) as

w(xk) =
p(zk|xk,uk)p(xk|Dk−1)

p(xk|Dk−1)
= p(zk|xk,uk) (2.22)

an approximation for p̂(xk|Dk) can be obtained since by assumption, pek can be
evaluated and thereby so can p(zk|xk,uk).

These steps can now be summarized in the approximative recursive update func-
tions. Given p̂(xk−1|Dk−1) = ∑

N
i=1 ω i

k−1δ (xk−1−xi
k−1)

p̂(xk|Dk−1) =
N

∑
i=1

ω
i
k−1δ (xk−xi

k), xi
k ∼ p(xk|xi

k−1,uk−1)

p̂(xk|Dk) =
N

∑
i=1

ω
i
kδ (xk−xi

k), ω
i
k =

p(zk|xi
k,uk)ω

i
k−1

∑
N
i=1 p(zk|xi

k,uk)ω
i
k−1

p̂(xk|Dk)← Resample p̂(xk|Dk)

(2.23)

29



Chapter 2. Bayesian Inference and Particle Filters

Compared to the exact update functions, (2.8), the integral of the prediction is re-
placed by sampling from the proposal distribution while the multiplication of con-
tinuous distributions in the measurement update is replaced by re-weighting of the
sample weights. The resample step lacks analogue since it was introduced purely
to provide better numerical behaviour. It is therefore not necessarily crucial that it
is performed every time-step and there are PF variants where the degeneracy of the
weights are measured and resampling is only performed when it has reached some
predefined limit. For simplicity these strategies will not be employed in this work
but are still recommended.

Because of the nature of the resampling step, information is discarded when it is
performed. This is intentional but it means that when the approximate distribution
should be used for calculation of some expectation value or similar, it is the distri-
bution before resampling that should be used for the best results.

2.4 Auxiliary Particle Filter

The auxiliary particle filter (A-PF) [Pitt and Shephard, 1999] is a variant of the par-
ticle filter, designed to improve the resampling step so that it truly is the least im-
portant information that is discarded. It accomplishes this by moving the resampling
to the next time-step and introduces an extra re-weighting step. This re-weighting
is done based on the most recent measurements, thereby using all the information
available before discarding any samples. This re-weighting can be seen as intro-
ducing a new auxiliary random variable between the prediction and measurement
update step, hence the name. To illustrate this, the exact recursive update functions,
(2.8), are once again turned to.

Let q(xk,xk−1) be some bounded, non-negative function. Inserting this into the
prediction step of the recursive update gives

pχk(xk) ∝

∫ p(xk|xk−1,uk−1)

q(xk,xk−1)
q(xk,xk−1)p(xk−1|Dk−1)dxk−1

p(xk|Dk) ∝ p(zk|xk,uk)pχk(xk)

(2.24)

In the continuous case no real gain is made but in the sampled case q can be
utilised to shape the prediction step to yield better performance. For that reason
is it a good idea to base the choice of q on the currently available measurements,
q(xk,xk−1|Dk), as well but for convenience it will be left out for now. Two different
approaches of how to utilise this q will be presented: the first being the A-PF which
focuses on improving the resampling while the second is the general PF which
focuses on improving the predictive sampling. For the A-PF it is required that q
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is independent of xk which makes it possible to introduce the auxiliary variable
χk−1|Dk−1.

p(χk−1) ∝ q(χk−1)pxk−1|Dk−1
(χk−1)

pχk(xk) ∝

∫ p(xk|xk−1,uk−1)

q(χk−1)
p(χk−1)dχk−1

p(xk|Dk) ∝ p(zk|xk,uk)pχk(xk)

(2.25)

q can clearly be used to almost arbitrary control the distribution of χk−1|Dk−1.
When converting these equations to the sampled PF this extra variable requires a
SIR step, effectively allowing us to remove the resample step of p̂(xk|Dk) resulting
in the following update functions.

Given p̂(xk−1|Dk−1) = ∑
N
i=1 ω i

k−1δ (xk−1−xi
k−1)

p̂(χk−1) =
N

∑
i=1

ω̃
i
k−1δ (χk−1−xi

k−1), ω̃
i
k−1 =

q(xi
k−1)ω

i
k−1

∑
N
i=1 q(xi

k−1)ω
i
k−1

p̂(χk−1)← Resample p̂(χk−1)

p̂χk(xk) =
N

∑
i=1

ω̃ i
k−1

q(xi
k−1)

δ (xk−xi
k), xi

k ∼ p(xk|xi
k−1,uk−1)

p̂(xk|Dk) =
N

∑
i=1

ω
i
kδ (xk−xi

k), ω
i
k =

p(zk|xi
k,uk)ω̃

i
k−1/q(xi

k−1)

∑
N
i=1 p(zk|xi

k,uk)ω̃
i
k−1/q(xi

k−1)
(2.26)

Here the normalisation of the weights for p̂χk(xk) have been incorporated into the
normalisation of ω i

k. The same could be made for ω̃ i
k−1 if a resampling routine that

could handle non-normalised weights was used.

From these equations, first note that if not for the resample-step, the introduction of
q would have no effect, making it clear how to interpret the function q. The effect
it has is that it changes the weights before the resampling, allowing for control of
what samples to prioritise. It can in theory be chosen arbitrary but a careless choice
can ruin the filter while a good choice can discard outliers and prioritise the most
valuable particles.

The key to a good choice of q is, as earlier mentioned, to condition q on the all
available measurements q(xk−1|Dk). This is the main advantage against the SIR
filter presented before: it only uses the information up until k when resampling
p̂(xk|Dk), the A-PF uses the information in the next time step, Dk+1 as well. Note
that if q is held constant the basic SIR filter is received. The q proposed for this

31



Chapter 2. Bayesian Inference and Particle Filters

thesis will be

q(xk−1) = q(xk−1|Dk) = p(zk|xk−1,uk,uk−1)

=
∫

p(zk|xk,uk)p(xk|xk−1,uk−1)dxk
(2.27)

With this q, weight will be added to the particles likely to give the current measure-
ment while unlikely particles are more likely to be discarded during resampling.
The integral in question is always, at least in theory, able to be computed given that
the system model is known and on the form (2.18). If for some reason exact eval-
uation isn’t possible an approximative evaluation also has the potential to improve
performance since all valid choices of q are equivalent in the continuous case. An
example of how the choice of q affects performance can be found in Chapter 4.

2.5 General Particle Filter

Previously, the restriction on q(xk,xk−1) was quite relaxed but now assume q is
a PDF of xk conditioned on xk−1 from which samples can be drawn. q will have
a similar function as for the A-PF but instead of gaining control of the weights
before resampling, control over the proposal distribution from where the predictive
samples are drawn is achieved.

Assume once again that a sampled approximation p̂(xk−1|Dk−1) exists and let it
propagate through the prediction step of (2.24).

pχk(xk) ∝

∫ p(xk|xk−1,uk−1)

q(xk|xk−1)
q(xk|xk−1)p(xk−1|Dk−1)dxk−1

≈
N

∑
i=1

p(xk|xi
k−1,uk−1)ω

i
k−1

q(xk|xi
k−1)

q(xk|xi
k−1)

(2.28)

Once again the result is a sum of distributions and one new sample will be taken
from each term. This time however, importance sampling will be employed for each
term. One sample will be drawn from each q(xk|xi

k−1) and given a weight, resulting
in

pχk(xk) ∝

N

∑
i=1

p(xi
k|xi

k−1,uk−1)ω
i
k−1

q(xi
k|xi

k−1)
δ (xk−xi

k), xi
k ∼ q(xk|xi

k−1) (2.29)

With this and given p̂(xk−1|Dk−1) = ∑
N
i=1 ω i

k−1δ (xk−1−xi
k−1), the sampled form
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of (2.24) becomes

p̂χk(xk) =
N

∑
i=1

ω̃
i
kδ (xk−xi

k), xi
k ∼ q(xk|xi

k−1)

ω̃
i
k =

p(xi
k|xi

k−1,uk−1)ω
i
k−1

q(xi
k|xi

k−1)

p̂(xk|Dk) =
N

∑
i=1

ω
i
kδ (xk−xi

k), ω
i
k =

p(zk|xi
k,uk)ω̃

i
k

∑
N
i=1 p(zk|xi

k,uk)ω̃
i
k

p̂(xk|Dk)← Resample p̂(xk|Dk)

(2.30)

A filter on this form, will be called a general particle filter (G-PF) [Schön, 2010]
since it relaxes the demand of having to sample from pνk and instead allows for an
arbitrary proposal distribution q. Just like for the A-PF, the performance depends
on the choice of q and it is a good idea to condition q on Dk, q(xk|xk−1,Dk). Like
previously stated, the performance of the importance sampling depends on how
similar the proposal is to the posterior. A good choice of q would then be to sample
directly from the posterior conditioned on the previous particle

q(xk|xk−1) = q(xk|xk−1,Dk) ∝ p(zk|xk,uk)p(xk|xk−1,uk−1) (2.31)

Just as for the A-PF, an approximation can be used when exact sampling and eval-
uation isn’t possible. Due to the normalisation of the weights it is also enough to
only know q up to a proportionality constant.

2.6 General Auxiliary Particle Filter

The two approaches presented before are not mutually exclusive and can be de-
ployed at the same time creating a general auxiliary particle filter (GA-PF). Given
two different weight functions, q1(xk−1) and q2(xk|xk−1), where q2 is a PDF from
which samples can be taken, the recursive update becomes

p(χk−1) ∝ q1(χk−1)p(xk−1|Dk−1)

pχk(xk) ∝

∫ p(xk|xk−1,uk−1)

q1(χk−1)q2(xk|χk−1)
q2(xk|χk−1)p(χk−1)dχk−1

p(xk|Dk) ∝ p(zk|xk,uk)pχk(xk)

(2.32)
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Given p̂(xk−1|Dk−1) = ∑
N
i=1 ω i

k−1δ (xk−1−xi
k−1) the sampled form becomes

p̂(χk−1) =
N

∑
i=1

ω̃
i
k−1δ (χk−1−xi

k−1), ω̃
i
k−1 =

q1(x
i
k−1)ω

i
k−1

∑
N
i=1 q1(x

i
k−1)ω

i
k−1

p̂(χk−1)← Resample p̂(χk−1)

p̂χk(xk) =
N

∑
i=1

ω̃
i
kδ (xk−xi
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N

∑
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k
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k,uk)ω̃
i
k

(2.33)

The same arguments regarding the choice of q1 and q2 can be used here as when
they were used separately so the proposed function and PDF remain the same.
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3
Filter Design

The aim of this chapter is to go over the details specific for the process studied
in the thesis regarding the filters used. All necessary details will be provided for
an implementation of the filters discussed although no code or details regarding
the implementation will be provided. This is also where process specific theory is
developed in order to support the performance discussion in Chapter 4.

A standard Kalman filter will be designed in which the quantiser will be approx-
imated as additive white noise. The purpose of this is to provide a reference for
the other filters as well as examine the need for such a heavy-handed approach as
particle filters. Following that, the details regarding the four different particle filters
presented in the previous chapter will be given. The necessary weight functions will
be defined, both the exact forms, when possible, and some coarse approximations
used for comparison.

3.1 Kalman Filter - Additive Noise Approximation

Like previously mentioned, in the case of linear dynamics and Gaussian noise the
state distributions are completely characterised by the mean, x̂k|k, and covariance,
Ek|k, and the recursive update functions can be distilled down to the famous Kalman
filter. The details are left to [Schön, 2010] or any introductory text in the subject and
the end result is presented here. Given a linear Gaussian system

xk+1 =Φkxk +Γkuk +νk νk ∼N (0,R̂k)

yk =Cxk

zk = yk +ek ek ∼N (0,Σk)

(3.1)
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Chapter 3. Filter Design

The recursive update of x̂k|k and Ek|k are then given by

x̂k|k−1 =Φk−1x̂k−1|k−1 +Γk−1uk−1

Ek|k−1 =Φk−1Ek−1|k−1Φ
T
k−1 + R̂k−1

Prediction

x̂k|k = x̂k|k−1 +Kk(zk−Cx̂k|k−1)

Ek|k = Ek|k−1−KkCEk|k−1
Measurement Update

(3.2)

where
Kk = Ek|k−1C

T (CEk|k−1C
T +Σk)

−1 (3.3)

The Kalman filter is exact if νk and ek are Gaussian but it but it is also, in the MMSE
sense, the optimal linear estimator in cases where they are random variables of other
zero mean distributions with covariance R̂k andΣk respectively.

In order to use the Kalman Filter for the studied process the quantised measurement
function needs to be approximated with some form of additive white noise model.

zk = round
(
yk

∆q

)
∆q≈ yk +ek (3.4)

For this approximation to be exact, ek needs to correlated with all the previous states
and measurements since in the real, quantized measurement are highly dependent
on the history of the system. This would make it to no longer be white noise and
identifying this dependence was the entire problem in first place. A simpler approx-
imation is therefore needed and the one used in this thesis is a worst case scenario.

Given no prior information, a quantized measurement, z, of y results in a uniform
distribution of y. The only information available is what interval y lies in. A suit-
able choice of additive noise would then be a uniform distribution with variance
Σk = {∆q2

12 δi, j} centred around zk, i.e. having zero mean. This is the approximation
referred to when in the future the Kalman filter or the additive noise approximation
is mentioned.

Dynamic Measurement Approximation The previous approximation is constant
and doesn’t depend on the history of the system. A reasonable assumption would
be that better performance could be achieved if the mean and variance of ek would
dynamically change to better reflect the belief in yk. Although this will not be fur-
ther explored in the thesis, a method for achieving this will here be presented that in
preliminary testing has performed well, bridging the gap between the static additive
noise model and the particle filter and in some cases matching the performance of
the particle filter.

The idea is to first predict ek by approximating it with a uniform distribution with
the mean and variance being the same and proportional, respectively, to the pre-
dicted mean and variance of yk. The resulting uniform distribution can then simply
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3.1 Kalman Filter - Additive Noise Approximation

be truncated to lie completely in the quantisation interval of the current measure-
ment. The resulting filter can be summarized as follows.

x̂k|k−1 =Φk−1x̂k−1|k−1 +Γk−1uk−1

Ek|k−1 =Φk−1Ek−1|k−1Φ
T
k−1 + R̂k−1

yu
i =Cx̂k|k−1 + kδ

√
12
2

√
(CEk|k−1CT )i,i

yl
i =Cx̂k|k−1− kδ

√
12
2

√
(CEk|k−1CT )i,i

Prediction

qu
i = max

(
min

(
yu

i ,(z
u
k )i
)
,(zl

k)i

)
ql

i = min
(

max
(
yl

i ,(z
l
k)i
)
,(zu

k )i

)
µk =

{
qu

i +ql
i

2

}
, Σk =

{
(qu

i −ql
i)

2

12
δi, j

} Truncation of
Measurement Distribution

Kk = Ek|k−1C
T (CEk|k−1C

T +Σk)
−1

x̂k|k = x̂k|k−1 +Kk(µk−Cx̂k|k−1)

Ek|k = Ek|k−1−KkCEk|k−1

Measurement Update

zu
k and zl

k are here vectors containing the upper and lower boundaries of the quanti-
sation intervals corresponding to the measurement zk. kδ is a parameter controlling
the width of the approximative uniform distribution. The scaling with

√
12
2 is there to

relate the width of the uniform approximation of ek to a uniform approximation of
yk. Preliminary tests pointed to a good choice being kδ = 4 but further examination
is needed.

The method is easy to implement and can be converted to a “send-on-delta“ event-
based control scheme but is heuristic in nature and fails to accommodate for corre-
lation between the elements of yk. To expand the concept of uniform approximation
to include such effects, efficient methods for calculation of first and second moment
of area for a polygon are needed. With the availability of such methods a uniform
approximation can be made of xk|k−1 resulting in a polygon. The effect of the mea-
surement on the polygon will then simply be a truncation, resulting in a slightly
different polygon. The measurement update step can be then simply be replace by
the calculation of the first and second moments of this resulting polygon.
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Chapter 3. Filter Design

3.2 SIR Particle Filter

Consider the discretised system defined in (1.16) and compare to the stochastic
formulation of the general non-linear system used in the derivation of the parti-
cle filters, (2.5). Firstly, in order to use the SIR filter the measurement likeliness,
p(zk|xk,uk), needs to be able to be evaluated. Looking at (1.16) it is seen that
due to the quantizer, zk|xk,uk is a discrete variable. All derivations for the particle
filters were done for continuous variables but this is no real problem. Bayes’ rule
holds when mixing discrete and continuous variable if one exchanges the PDF to the
discrete variables’ probability mass function (PMF), see Appendix B.1, thereby al-
lowing the whole derivation to take place with mixed variables. Because of this and
with some disregard for mathematical notation no distinction will be made between
the PDF and PMF unless specific need arises.

For the measurement, this means that p(zk|xk,uk) can be defined to be a function
that is one for the quantised measurement of xk and zero otherwise. The predictive
distribution can be handled in exactly the same way as discussed in the derivation
of the PF found in (2.21). Summed up, the needed functions to implement a SIR
filter are

p(xk+1|xk,uk) = pνk(xk+1−Φkxk−Γkuk)

p(zk|xk,uk) =

{
1 if − ∆q

2 ≤Ckxk−zk <
∆q
2

0 otherwise

(3.5)

The evaluation of p(zk|xk,uk) is straight forward and in order to use the SIR filter
samples need to be drawn from pνk . Since νk is a zero mean Gaussian multivariate
random variable with covariance R̂k this is easily done given MATLAB or some
other statistics toolbox. Since R̂k is positive definite it will have a lower triangular
Cholesky decomposition.

R̂k = N̂kN̂
T
k (3.6)

Let ν be a vector containing independent unit Gaussian noise components, νk can
then be written as

νk = N̂kν (3.7)

Samples from νk can then easily be drawn simply by drawing samples from the one
dimensional unit Gaussian distribution. With this the implementation of the basic
SIR filter is straightforward.

3.3 Auxiliary Particle Filter

In addition to the functions needed for the SIR filter, the A-PF also needs to at least
approximately evaluate the q proposed in (2.27)

q(xk−1|Dk) =
∫

p(zk|xk,uk)p(xk|xk−1,uk−1)dxk (3.8)
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3.3 Auxiliary Particle Filter

To solve this the attention is turned to p(xk|xk−1,uk−1). It can be written as

p(xk|xk−1,uk−1) = pνk−1(xk−Φk−1xk−1−Γk−1uk−1)

=
1

det N̂k−1
pν
(
N̂−1

k−1(xk−Φk−1xk−1−Γk−1uk−1)
) (3.9)

The inversion of N̂k can always be made since R̂k is positive definite and therefore
have full rank and N̂k must therefore also have full rank.

In order to simplify some expressions, lets introduce the notation

nk =

n1
k

n2
k

n3
k

= N̂−1
k−1(xk−dk), dk =

d1
k

d2
k

d3
k

=Φk−1xk−1 +Γk−1uk−1 (3.10)

The components of ν are independent so p(xk|xk−1,uk−1) can be written as

p(xk|xk−1,uk−1) =
1

det N̂k−1
pν(n1

k)pν(n2
k)pν(n3

k) (3.11)

where pν is the one dimensional unit Gaussian distribution. Now, express
p(zk|xk,uk) in nk as well. For this purpose, define a window function as

W a
b (x) =

{
1 if a≤ x < b
0 otherwise

(3.12)

which leads to

p(zk|xk,uk) =Wzk+∆q/2
zk−∆q/2

(
C(N̂k−1nk +dk)

)
(3.13)

Since C = [1 0 0] andNk−1 is lower triangular this simplifies to

p(zk|xk,uk) =W
∆ u

k
∆ l

k
(n1

k) (3.14)

where

∆
u
k =

1

N̂
(1,1)
k−1

(
zk−d1

k +
∆q
2

)
, ∆

l
k =

1

N̂
(1,1)
k−1

(
zk−d1

k −
∆q
2

)
(3.15)
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Chapter 3. Filter Design

N̂
(1,1)
k−1 denotes element 1,1 of N̂k−1. Putting all this together into (3.8) results in

q(xk−1|Dk) =
∫

p(zk|xk,uk)p(xk|xk−1,uk−1)dxk

=
∫

W
∆ u

k
∆ l

k
(n1

k)
1

det N̂k−1
pν(n1

k)pν(n2
k)pν(n3

k))det N̂k−1dnk

=
∫

W
∆ u

k
∆ l

k
(n1

k)pν(n1
k)dn1

k

=
∫

∆ u
k

∆ l
k

(n1
k)pν(n1

k)dn1
k =

1
2

(
erf
(

∆ u
k√
2

)
− erf

(
∆ l

k√
2

))
(3.16)

where “erf” is the error function

erf(x) =
1√
π

∫ x

−x
e−t2

dt (3.17)

With this expression the A-PF can easily be implemented given a function for eval-
uation of the error function. However, due to the expensive evaluation of the error
function the performance when using a coarse approximation of the error function
will also be evaluated. The approximation used in these tests is

ẽrf(x) =


−1+(4x2 +1)−1 if x <−0.5
x if −0.5≤ x≤ 0.5
1− (4x2 +1)−1 if x > 0.5

(3.18)

It was chosen by simple visual inspection in order to capture the overall features of
the error function. In no way is it trying to provide an optimal estimation of either
the error function or q(xk−1|Dk). The purpose is simply to examine the effect of
imperfect evaluation of the proposed weight function. The resulting Gaussian PDF
and cumulative distribution function (CDF) can be seen in Figure 3.1.

The coarseness of the approximation is clear and the different regions of the error
function approximation can easily be seen. The region −0.5 < x/

√
2 < 0.5 is ap-

proximated with a uniform distribution and consequently loses all detail, while the
tails are overemphasised since they fail to go towards zero fast enough.

3.4 General Particle Filter

For the G-PF the proposed sample function, (2.31), is

q(xk|xk−1,Dk−1) =
p(zk|xk,uk)p(xk|xk−1,uk−1)

p(zk|xk−1,uk,uk−1)
(3.19)
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3.4 General Particle Filter
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Figure 3.1 Left: PDF of unit normal distribution (Solid) and approximation
using (3.18) (Dashed). Right: CDF of unit normal distribution (Solid) and ap-
proximation using (3.18) (Dashed).

First note that the denominator already have been calculated, it is the weight func-
tion used for the A-PF. Inserting this expression into the expressions for the weights
in G-PF (2.30) results in

ω̃
i
k =

p(xi
k|xi

k−1,uk−1)ω
i
k−1

q(xi
k|xi

k−1,Dk−1)
, ω

i
k =

p(zk|xi
k,uk)ω̃

i
k

∑
N
i=1 p(zk|xi

k,uk)ω̃
i
k

=⇒ ω
i
k =

p(zk|xk−1,uk,uk−1)ω
i
k−1

∑
N
i=1 p(zk|xk−1,uk,uk−1)ω

i
k−1

(3.20)

where

p(zk|xk−1,uk,uk−1) =
1
2

(
erf
(

∆ u
k√
2

)
− erf

(
∆ l

k√
2

))
(3.21)

To sample from q, the work done for the A-PF is reused to express q in the indepen-
dent variables ni

k. Using (3.11) and (3.14) gives

q(xk|xk−1,Dk−1) =
W

∆ u
k

∆ l
k
(n1

k)pν(n1
k)pν(n2

k)pν(n3
k)

det N̂−1
k−1 p(zk|xk−1,uk,uk−1)

(3.22)

From this it can be seen that the distributions for n2
k and n3

k are untouched and
remain unit Gaussian. n1

k is the only affected variable and it is clear that it becomes
a truncated unit Gaussian distribution with bounds ∆ u

k and ∆ l
k. In order to sample

from q, samples can be drawn from the truncated and the regular unit Gaussian and
then transformed back to the dependent variable xk via (3.10).

For accurate sampling from the truncated Gaussian, [Botev, 2015] was used. It con-
tains a function trandn which is a MATLAB implementation based on the results of

41



Chapter 3. Filter Design

-2 -1 0 1 2 3 4 5

x

0

1

2

3

4

5

6

F
re

qu
en

cy

×104

-2 -1 0 1 2 3 4 5

x

0

1

2

3

4

5

6

F
re

qu
en

cy

×104

Figure 3.2 Comparison of sampling methods for a unit Gaussian distribution
truncated at −1.5 and 5. Histogram over 1000000 samples and with 50 bins.
Left: trand function from [Botev, 2015]. Right: Inverse sampling using the
method proposed in Appendix B.2.

[Botev, 2017]. For comparison, the error function approximation (3.18) was used
as the basis for a simple inverse transform sampling method. For details on this ap-
proximative sampling, see Appendix B.2. To take the idea of approximate sampling
to the extreme q(xk|xk−1,Dk−1) is chosen to be a uniform distribution on the entire
quantisation interval given by yk. Note that the cancellation of p(xk|xk−1,uk−1) in
the calculation of the particle weights doesn’t occur when these approximations are
used and the full expressions are needed.

A comparison of [Botev, 2015] and the approximate sampling can be seen in Fig-
ure 3.2. Comparing with Figure 3.1, the approximate sampling manages to capture
the shape of the approximate PDF, thereby suffering from the same shortcomings,
while [Botev, 2015] manages much better to capture the true PDF.

3.5 General Auxiliary Particle Filter

Since the GA-PF is just a combination of the A-PF and the G-PF, nothing new is
required for the GA-PF. The results from the previous two sections can be combined
without any modification.
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4
Open-Loop Analysis

The filters presented in Chapter 3 are here evaluated on the system system presented
in Chapter 1. Keeping the control signal at zero, the system is simulated in open loop
and the filters are applied to the quantised measurement. For the use in some of
the performance metrics presented below, the true state of the system is recorded.
At first the Kalman filter is compared to the G-PF at a range of different sample
frequencies and quantisation intervals. The result of when the system deviates most
from the simple linear Gaussian system is used as a basis for the comparisons of the
different PF-types.

During all the simulations performed, the random seeds used for the process noise
terms are kept constant to keep the comparisons fair. How good the state can be
estimated is highly dependent on the trajectory of the system since the lower bound
on the state-variance is highly dependent on the relation between the state and the
quantisation intervals boundaries [Karlsson and Gustafsson, 2005]. The trajectory
of the continuous system, resulting from the chosen random seeds, can be seen in
Figure 4.1.

4.1 Performance Metrics

Mean Square Error
In general, a minimal mean square error (MMSE) estimator is given by the mean of
the probability distribution [Blom et al., 2005]. This means that the Kalman filter
is the MMSE estimator of a linear Gaussian system since it is the exact analytical
propagation of the state mean and covariance of such a system. For a more gen-
eral system, taking the mean of the distribution produced by a particle filter would
produce an MMSE estimate since a particle filter produces an approximation of
the state distribution. This means that the mean square error (MSE) estimate pro-
duced by the distribution mean is a good performance metric for how well the filter
approximates the state distribution.

43



Chapter 4. Open-Loop Analysis

0 100 200 300 400 500 600 700 800 900 1000

Time

-2000

0

2000

4000

6000
x 1

0 200 400 600 800 1000

Time

-20

-10

0

10

20

30

x 2

0 200 400 600 800 1000

Time

-20

-10

0

10

20

30

x 3

Figure 4.1 The system trajectory used during the open loop filter comparison.

The MSE is given by

MSE =
1
Nt

Nt

∑
k=1

(x̂k−x∗k)T (x̂k−x∗k) (4.1)

Where x̂k is the state estimate given by the approximative distribution’s mean, x∗k
is the true state mean and Nt is the number of time steps in the trajectory.

Effective Sample Size Neff

Another way of measuring the quality of an approximation given by a PF is to look
at the inter-sample dependency of the approximation. The Monte Carlo sampling
methods described above utilise independently drawn samples to produce the esti-
mates. However, mainly due to the necessary resampling step, this independence is
lost in the particle filter and the quality degrades. How much it degrades depends just
on how many samples are discarded when resampling and which samples happens
to be favoured in prediction. To judge this inter-sample dependency the effective
sample size measurement from [Carpenter et al., 1999] will be used.

The notion of effective sample size is based on the fact that the variance of the

44



4.2 Results

sample mean µ of Ns independently drawn samples is

Var[µ] =
σ2

Ns
(4.2)

Where σ2 is the variance of the sampled distribution. If the samples are dependent
this will no longer hold and the effective samples size is then defined as the Neff that
satisfies

Var[µ] =
σ2

Neff
(4.3)

To use this concept in a particle filter setting both Var[µ] and σ2 need to be approxi-
mated. This is achieved by running the same simulation M times and for each of the
M simulations, at each time-step calculate the sample mean and sample variance as

µk =
N

∑
i=1

ω
ixi

k, σ
2
k =

N

∑
i=1

ω
ixi

kx
iT
k −µkµ

T
k (4.4)

σ2 can now be approximated for the different components of xk by taking the mean
of σ2

k over all the M simulations while Var[µ] is approximated by taking the sample
variance of µk over all simulations. By inserting these estimates in (4.3) an effective
sample size at each time step can be calculated for the states. Note that the effective
sample size does not need to be an integer but to make the sample size analogue
clear all Neff results presented will be rounded to the nearest integer.

Sample Diversity Ndiv

A similar but more simplistic concept than Neff is the notion of sample diversity.
Since the resampling step effectively copies other samples after discarding the low
weight samples, a simple way measuring the inter-sample dependency is to count
the number of unique samples, Ndiv, after each resampling. This is how sample
diversity will be defined and has the benefit of not needing an average over multiple
simulations to be formed.

4.2 Results

Additive Noise Approximation
In order to evaluate the validity of the additive noise approximation, the Kalman
filter is compared to the G-PF using 10000 particles. The MSE of the two filters
is calculated for a range of different quantisation intervals and sampling intervals
with the results to be found in Figure 4.2. Since the G-PF approximates the optimal
solution it should be clear that the additive noise approximation is close to optimal,
except for when the quantisation becomes coarse and fast sampling is used.
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Figure 4.2 Left: MSE for Kalman filter. Right: MSE for particle filter.

The relative MSE of the KF compared to the G-PF found in Figure 4.3 together
with the quantisation interval relative σ . σ is taken to be the standard deviation of
the first component of νk, ν1

k and is chosen to represent the discrete process noise.
Due to the process parameters, Table 1.1, the other components of νk should be of
similar size.

From (A.5) and Figure 4.3 it is clear that when the sampling frequency is large,
the process noise also becomes large while measurement variance of course only
depends on the quantisation interval. How good the approximation is then really
depends on the relative size of the measurement noise compared to the process
noise. As long as the process noise dominates the additive noise approximation
the Kalman filter performs well but as soon as the measurement noise becomes
large, the inability of the approximation to capture the non-linearities of the process
becomes apparent.
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4.2 Results

The point of when the measurement noise starts to dominate is around ∆q > 1 and
hk < 1 and becomes really overshadowing at ∆q > 10, hk < 0.1. Since the purpose
of this thesis is to examine these effects the default parameters presented in Table
1.1 were chosen as ∆q = 20 and hk = 0.05. The G-PF MSE is there around 55%
that of the Kalman filter. Even more extreme choices could have been made but
were rejected in order to keep simulation times down and keeping some precision
in the control of the system.

Particle Filter Comparisons
To benchmark the particle filters, M simulations were made for each filter and for
three different number of particles used in the filters. For each simulation the MSE
was calculated as well as the minimum sample diversity Ndiv. After the M simula-
tions the effective sample size was calculated for each state and time-step. Due to
that no real difference between the states was found, Neff for each time-step was cho-
sen as the mean of the states’ effective sample size. The time mean and minimum
of Neff were then calculated as well as the overall Ndiv minimum, the mean Ndiv was
left out due to it showing no significant difference for the different filters. The mean
and standard deviation of the MSE were also calculated, the standard deviation was
estimated with the square root of the sample variance. With M = 100, the results of
these simulations for filters using exact evaluation of the weight functions, q, can
be found in Table 4.1

Looking at the MSE, the differences are marginal but some trends can be seen. The
SIR filter is overall the worst performer, both when it comes to accuracy, mean MSE,
and consistency, MSE standard deviation. The A-PF provides consistent improve-
ments over the standard SIR but the biggest improvement comes from the filters
that utilise the general sampling strategy, i.e. the G-PF and GA-PF. Due to the vari-
ance of the MSE, a distinction between the G-PF and GA-PF is hard to make. The
accuracy and consistency gained by weighting the resampling based on the current
measurement clearly is not as important when one can base the proposal distribution
on it instead. Whenever possible, that is the way to go.

Overall the filters react as expected when higher particle counts are used. The accu-
racy increases but with some diminishing returns when the MSE is getting close to
around 14.6. There is a lower limit of the MSE, dependent on the trajectory, so it is
expected that the mean MSE will reach some lower bound. The main advantage of
the higher particle counts are better consistency, with smaller variance in MSE, and
better filter reliability with higher effective sample sizes and sample diversity.

Filter reliability is the main problem for this system. Due to the fact that the round
function generates a measurement probability with compact support with a step
drop-off, a lot of samples will be lost in the resample step. All particles that in the
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Chapter 4. Open-Loop Analysis

Table 4.1 Performance results for different particle filters when using exact
evaluation and sampling of the weight functions q. M = 100.
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10
00

SIR N/A N/A N/A N/A N/A
A-PF N/A N/A N/A N/A N/A
G-PF 15.0464 0.3111 132 1 1

GA-PF 15.0708 0.3745 138 1 1

50
00

SIR 14.8095 0.2312 515 2 1
A-PF 14.7448 0.1657 504 3 3
G-PF 14.7121 0.1244 657 3 1

GA-PF 14.7243 0.1399 719 5 5

10
00

0

SIR 14.7503 0.1468 1008 5 1
A-PF 14.6630 0.1071 1013 7 16
G-PF 14.6591 0.0875 1306 8 27

GA-PF 14.6611 0.0665 1426 7 27

15
00

0

SIR 14.6923 0.1227 1536 5 2
A-PF 14.6686 0.0876 1529 9 27
G-PF 14.6422 0.0613 1956 10 52

GA-PF 14.6375 0.0725 2162 11 46

prediction step end up outside the quantisation interval will end up with a likelihood
of zero and are therefore guaranteed to be discarded. This results in information loss
and a worst case were all particles are discarded, causing the filter to fail and result-
ing in the incompleteness of Table 4.1 for the lowest particle count. This problem
becomes especially apparent at changes in measurement. When the same measure-
ment has been received a long time the particles start to be distributed uniformly in
the interval given by that measurement and when a new measurement is made, only
the ones "closest to the edge" will predict a valid measurement. This behaviour can
clearly be seen in Figure 4.4 which is representative for all filters. The filter keeps
a rather high sample diversity apart from several negative spikes corresponding to
measurement changes.

In time-intervals when the change in y is fast, such as in the beginning and end of
the trajectory Figure 4.1, the spikes are closer together but in general shorter while
in the more slow changing section they are farther apart but in general longer. This
is due to the fact that at every new measurement, new information is received which
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Figure 4.4 Sample diversity for G-PF using 10000 particles. Inlay: Magnifi-
cation of time interval t = [50, 75].

narrows the variance of the state distribution, allowing for an effectively higher
resolution given the same number of particles. More frequent measurements then
keep the variance small while infrequent measurement widens the distribution.

Although more frequent measurements give more information to work with, the
worst case scenario is one of rapid changing measurements. In some cases, when
the measurement rapidly toggles between two measurements, both lying in the tail
of the state distributions, the sampled distribution might not be given enough time to
recover after the negative spike in sample diversity. Although the number of unique
samples might be large already in the next step after a spike, see Figure 4.4, they
are generated from a very small set of samples resulting in them being highly cor-
related. This means that they no longer are an accurate representation of the state
distribution and only represent a small portion of it. If the next measurement lies in
the tail again, chances are that this impaired distribution fails to predict any valid
particles. This recovery time after a negative sample diversity spike can clearly be
seen in the effective sample size, Figure 4.5. The longer between the spikes, the
higher the effective sample size manages to recover to.

This problem with the filter not recovering fast enough was the main reason for
filter failure during testing. Certain trajectories drove the filter in such a way that
this almost always occurred which show the importance of not only looking at the
sample diversity and/or MSE. The GA-PF that was hard to separate solely on MSE
became a clear winner when comparing Neff Table 4.1. The step over to a gener-
alised sampling once again provides the biggest improvement but GA-PF manages
to keep a higher Neff than the G-PF. It is harder to differentiate the filters in terms
of minimum Neff but any statements can not really be made about this, other than
that it is really small. Neff becomes really unreliable for small samples sizes since
the measurement utilises an estimate of the distribution variance and this estimate
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becomes worse and worse when the sample diversity becomes smaller. When look-
ing at the minimum Ndiv one can also conclude that it is extremely small, a clear
indicator of the process’ problematic measurement function.

The obvious solution to these sample degeneracy problems is to use higher number
of particles in the filters and the results support this. The minimum Ndiv scales very
well with the number of particles for all filters except SIR. This is indicative of the
severe shortcomings of the blind prediction, i.e. not using the current measurement.
Increasing the particle count alone is not enough and the biggest improvement is
seen when introducing the simplest form of conditioning on the measurement in
the A-PF. This improvement is strangely not seen the same way in effective sample
size. This is contributed to the effective sample size being unreliable for very small
sample diversities and the improvement given by the A-PF is mainly to increase the
lower bound of the sample diversity.

Another demonstration of the disconnect between Ndiv and Neff can be seen in Ta-
ble 4.2 which compares the different filters when using approximative evaluation of
the weight functions q. From this it can immediately be seen that the uniform ap-
proximation is extremely inadequate, showing the importance of proper choice of
q. However, it should be noted that the introduction of the approximate weighting
greatly improves the performance of the A-PF when looking at minimum Ndiv while
Neff and the other metrics remain largely unaffected. The extra weight in the tails of
the distribution, Figure 3.1, means a wider range of samples will be let through the
resample step. These extra samples do not seem to degrade the solution compared
to using exact evaluation while providing better margins when it comes to sam-
ple diversity. This is of course a balance since with constant weighting the worse
performing SIR filter is received.

0 100 200 300 400 500 600 700 800 900 1000

Time

0

2000

4000

6000

8000

10000

E
ffe

ct
iv

e 
S

am
pl

e 
S

iz
e

50 55 60 65 70 75
0

1000

2000

3000

Figure 4.5 Mean effective sample size, Neff, taken over the states for G-PF
using 10000 particles. Inlay: Magnification of time interval t = [50, 75].
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4.3 Conclusion

Table 4.2 Performance results for different particle filters when using approx-
imative evaluation and sampling of the weight functions q. Results for filters
with exact evaluation and sampling are included for easy reference. The num-
ber of particles used is 10000 and M = 100.
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SIR None 14.7503 0.1468 1008 5 1

A-PF None 14.6630 0.1071 1013 7 16
Gaussian 14.6514 0.0999 1077 6 418

G-PF
None 14.6591 0.0875 1306 8 27

Gaussian 14.6832 0.1242 568 6 7
Uniform 25.2774 5.2317 3 0 1

GA-PF
None 14.6611 0.0665 1426 7 27

Gaussian 14.6981 0.1262 612 5 653
Uniform 21.6731 1.9627 7 0 69

The same advantage of the approximative resample weighting can be seen for the
GA-PF as well but is in that case largely overshadowed by the losses from the ap-
proximate sampling, seen in the results for the G-PF. These performance reductions
are due to the loss of similarity between the proposal and posterior distributions
when the approximation is used. The G-PF with the Gaussian approximation still
performs better than the basic SIR filter though. This leads to the conclusion that
one should try to sample from as good a proposal distribution as possible. The re-
sults for the GA-PF when using exact sampling but approximate resample weight
evaluation can be found in Table 4.3. The accuracy and consistency is retained while
large improvements in minimum sample diversity are achieved, greatly increasing
the reliability of the filter.

4.3 Conclusion

It has been shown that the additive noise approximation together with a Kalman fil-
ter, while it in some cases achieve good results, is inadequate for the purposes of this
thesis. When the quantisation intervals become large and the need for high perfor-
mance remain, high sample rate particle filters are necessary. Careful consideration
has to be made in the design and evaluation of these filters. The non-linearities of
the measurement function give rise to large problems with sample diversity reach-
ing dangerously low levels if no special action is taken. Interestingly, these diversity
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Chapter 4. Open-Loop Analysis

Table 4.3 Performance results for GA-PF when using exact sampling and
approximate resample weight evaluation. M = 100.
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1000 15.0219 0.2816 139 1 15
5000 14.6764 0.1145 705 4 163

10000 14.6530 0.0764 1438 7 701
15000 14.6382 0.0679 2132 12 1139

problems do not necessary manifest themselves in the accuracy and the effective
sample size of the system, demonstrating the need to look at both aspects when
evaluating a filter design.

Of the particle filters examined here, the clear winner was the GA-PF using exact
sampling and approximate resampling weights, indicating the importance of using
a good proposal distribution and the value of gaining control of the resample step.
Due to this clear victory, it is this filter configuration, using 10000 particles, that
will be utilised in the rest of this report. The improvements in performance when
using higher particle count, although clearly evident, are deemed small enough to
justify the loss in favour for shorter simulation times.

The importance of a good proposal distribution raises several interesting questions.
In this case the proposal distribution could be sampled from directly but when this
is not possible, how should samples be taken then? A lot of research has gone in to
this question and the subsequent consequences of different sampling strategies. A
good starting point for further reading in the subject is [Doucet et al., 2001] which
also touches upon the concept of auxiliary particle filters. The results here naturally
raise more questions regarding the A-PF. Is there an optimal choice of q? How does
it relate to the proposed q used in this thesis? Other researchers have tried to answer
these questions and the interested reader is advised to seek these out.
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Part II

Control





5
Optimal Feedback

This chapter will cover the theory used in the solving of the optimal control prob-
lem, first presented in Chapter 1:

min E

[
N

∑
k=0

Lk(xk,uk)

]
s.t. xk+1= f (xk,uk,νk)

zk= h(xk,ek)
x0∼ p(x0)

(5.1)

The concepts of Dynamic Programming [Bellman, 1957], Dual Control [Feldbaum,
1960], and the Separation Principle will form the foundation, and from it, the dif-
ferent feedback policies will be derived. In order to provide greater understanding
of the proposed policies, the classification of different control policies into feedback
and closed loop types will be touched upon briefly.

The M-measurement Feedback policy, first introduced by [Curry, 1970], will be
presented together with the certainty equivalent and open-loop optimal [Dreyfus,
1965] feedback policies. All new control approaches presented in this thesis stem
from these methods, with focus being on the special case of one-measurement feed-
back. This chapter will therefore serve as background for that work but also serve
to briefly catalogue the prior research done before settling on the presented meth-
ods. The main innovation of the thesis is the introduction of the particle filter in the
next chapter, but here a new type of feedback policy, called M-measurement Cost
Feedback, will also be presented. It takes inspiration from the full M-measurement
feedback policy and bridges the gap between the policies.

For simplicity and in order to isolate the effects of the quantized measurements, two
restrictions will be made on the problem. Only cost functions where the immedi-
ate cost, Lk, is quadratic and processes where the dynamics, f , are linear will be
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considered when deriving the control policies:

min E

[
xT

NQ
x
NxN +

N−1

∑
k=0
xT

kQ
x
kxk +2xT

kQ
xu
k uk +u

T
kQ

u
kuk

]
s.t. xk+1=Φkxk +Γkuk +νk

zk= h(xk,ek)
x0∼ p(x0)

(5.2)

The process noise is also further restricted to be zero-mean white noise. Note that
the control cost at time-step N is ignored, since regardless of weights Qxu

N and Qu
N

the optimal choice is uN = 0, since uN can not affect the state inside the control
horizon.

5.1 Dynamic Programming

The solutions of both optimisation problems (5.1) and (5.2) are far from trivial and
can only in special cases be found analytically. The general approach is a recursive
one, where one starts at the last time step and solves the optimal control problem
for that last step. Based on that one can solve for the second to last step, and so
forth. In this section these recursive equations will be formulated, and concepts
like control and estimation separation and dual control will also be discussed. In
order to properly formulate them and understand their consequences it’s important
to consider over what variables the expected value in the cost function J is taken.

The state variables xk are stochastic so the expected value is of course taken over
them, but they also depend heavily on the measurements and the control signal
which can’t be known beforehand. It is therefore important to consider the stochas-
tic nature of future measurements and controls when taking the expected value. In
order to clearly demonstrate this, gather all known information about the system at
time-step k in Dk and lets decide on a control policy, π . π gives a control signal
based on the available information uk = π(k,Dk). The exact representation of Dk
and π(k,Dk) can vary. An intuitive and easy representation of Dk would simply be
to store the initial distribution of x0 and the subsequent sequence of measurements
and controls, {zk,uk−1,zk−1,uk−2 . . .}. Another alternative would be to store the
current distribution of xk, it does not matter. What matters is that the probability
of all future events can be evaluated from Dk and that Dk can be updated to Dk+1
based on Dk, the process model, the measurement zk+1 and the control policy π .
With these notations the cost function J can for a given control policy π be rewritten
to make all these hidden expectations explicit by repeated reverse use of the law of
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total expectation,

Jπ = E
[ N

∑
k=0

Lk(xk,uk)

]
= Ez1

[
Ez2

[
...EzN

[
E
[ N

∑
k=0

Lk(xk,π(k,Dk))

∣∣∣∣DN

]∣∣∣∣DN−1

]
...

∣∣∣∣D1

]∣∣∣∣D0

] (5.3)

where the innermost expectation is taken over only the state variables. By noting
that uk does not depend on the future information and separating out the terms of
the sum it can be written as

Jπ =Ez0

[
E
[
L0(x0,π(0,D0))

∣∣D0
]
+Ez1

[
E
[
L1(x1,π(1,D1))

∣∣D1
]

+Ez2

[
... EzN

[
E
[
LN(xN ,π(N,DN))

∣∣DN
]∣∣DN−1

]
...
∣∣∣D2

]∣∣∣D1

]∣∣∣D0

] (5.4)

This can be summarised in the following recursive relation:

Jπ
k (Dk) = E

[
Lk(xk,π(k,Dk))

∣∣Dk
]
+Ezk+1

[
Jπ

k+1(Dk+1)
∣∣Dk
]

Jπ
N(DN) = E

[
LN(xN ,π(N,DN))

∣∣DN
] (5.5)

with Jπ = Jπ
0 (D0). An optimal policy π∗ is then simply a policy that minimizes

Jπ
0 (D0). The minimal cost is then obtained by minimizing each term in the recursion

relation:

J∗k (Dk) = min
π

E
[
Lk(xk,π(k,Dk))

∣∣Dk
]
+Ezk+1

[
J∗k+1(Dk+1)

∣∣Dk
]

J∗N(DN) = min
π

E
[
LN(xN ,π(N,DN))

∣∣DN
] (5.6)

From this, the principle of optimality can be seen. It states that an optimal policy
generating a control at time-step k needs to still be an optimal policy at the time-
step k + 1 for the information state resulting from that control. This optimal pol-
icy π∗ is known as a closed-loop policy since it takes into consideration all future
measurements through the expectation over zk+1 in J∗k (Dk). Finding an analytical
expression for this functional π∗ is however in most cases not feasible. For that
reason a number of different numerical and/or approximative approaches have been
used. The methods presented in this thesis belong to a group called M-measurement
feedback policies. They work by, at each time-step k, minimizing an approximation
of the cost-to-go, Jπ

k (Dk), formed by replacing J∗k+M with some approximation that
doesn’t depend on future measurements. This way the control at time-step k only
considers the effect it has on the M next measurements.

5.2 Dual Effect, Certainty Equivalence and Separation

To demonstrate the important concept of dual effect the general recursion relation
given by (5.1) and (5.6) will be left behind in favour for the linear quadratic (LQ)

57



Chapter 5. Optimal Feedback

problem (5.2) and the resulting recursion relation:

Jπ
k (Dk) = E

[
xT

kQ
x
kxk +2xT

kQ
xu
k uk +u

T
kQ

u
kuk
∣∣Dk
]
+Ezk+1

[
Jπ

k+1(Dk+1)
∣∣Dk
]

Jπ
N(DN) = E

[
xT

NQ
x
NxN

∣∣DN
]

(5.7)
where uk = π(k,Dk). The dual effect, certainty equivalence and the separation prin-
ciple can all be presented in more general terms [Bar-Shalom and Tse, 1974], [Tse
and Bar-Shalom, 1975] but the linear quadratic case is sufficient to provide the nec-
essary understanding. The dual effect becomes apparent when solving (5.7). This
is done, as previously mentioned, by solving for the optimal control at the end-step
and recursively working backwards. Since Jπ

N is clearly independent of uN , we start
at time-step N−1. For notational convenience let s = N−1 and s+1 = N. We then
have

Jπ
s (Ds) = E

[
xT

s Q
x
sxs +2xT

s Q
xu
s us +u

T
s Q

u
sus
∣∣Ds
]

+Ezs+1

[
E
[
xT

s+1Q
x
s+1xs+1

∣∣Ds+1
]∣∣Ds

]
= E

[
xT

s Q
x
sxs +2xT

s Q
xu
s us +u

T
s Q

u
sus +x

T
s+1Q

x
s+1xs+1

∣∣Ds
] (5.8)

This can be re-written to only include the state and control at time-step s by inserting
xs+1 = Φsxs +Γsus +νs and rearranging. Before that, note that the process noise,
νs, is zero mean and independent of the state and control. This means that all cross-
terms between the noise and state/control are zero, and the term only containing the
noise can’t be affected by the control and can therefore be dropped without affecting
the optimal control policy. This leads to

Jπ
s (Ds) = E

[
xT

s (Q
x
s +Φ

T
s Q

x
s+1Φs)xs +2xT

s (Q
xu
s +ΦT

s Q
x
s+1Γs)us

+uT
s (Q

u
s +Γ

T
s Q

x
s+1Γs)us

∣∣Ds
] (5.9)

This can be minimized with respect to us by completing the squares, resulting in
us =−(Qu

s +Γ
T
s Q

x
s+1Γs)

−1(Qxu
s +ΦT

s Q
x
s+1Γs)

T x̂s|s and

J∗s (Ds) =E
[
xT

s (Q
x
s +Φ

T
s Q

x
s+1Φs)xs

∣∣Ds
]
− x̂T

s|sCsx̂s|s (5.10)

where x̂s|s = E[xs|Ds] and

Cs = (Qxu
s +ΦT

s Q
x
s+1Γs)(Q

u
s +Γ

T
s Q

x
s+1Γs)

−1(Qxu
s +ΦT

s Q
x
s+1Γs)

T (5.11)

the last term can be rewritten as

x̂T
s|sCsx̂s|s =−E

[
eT

s|sCses|s
∣∣Ds
]
+E

[
xT

s Csxs
∣∣Ds
]

=− tr(CsEs|s)+E
[
xT

s Csxs
∣∣Ds
] (5.12)

where eT
s|s = x

T
s − x̂T

s|s is the mean-estimate error and Es|s = E
[
es|se

T
s|s
∣∣Ds
]

is the
state covariance. This allows the optimal cost for step s to be written as

Jπ
s (Ds) = E

[
xT

s Ssxs
∣∣Ds
]
+ tr(CsEs|s) (5.13)
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and for step s−1 as

Jπ
s−1(Ds−1) = E

[
xT

s−1Q
x
s−1xs−1 +2xT

s−1Q
xu
s−1us−1 +u

T
s−1Q

u
s−1us−1

∣∣Ds−1
]

+Ezs

[
E
[
xT

s Ssxs
∣∣Ds
]
+ tr(CsEs|s)

∣∣Ds−1
]

= E
[
xT

s−1Q
x
s−1xs−1 +2xT

s−1Q
xu
s−1us−1

+uT
s−1Q

u
s−1us−1 +x

T
s Ssxs

∣∣Ds−1
]
+Ezs

[
tr(CsEs|s)

∣∣Ds−1
]

(5.14)
where

Ss =Q
x
s +Φ

T
s Q

x
s+1Φs

− (Qxu
s +ΦT

s Q
x
s+1Γs)(Q

u
s +Γ

T
s Q

x
s+1Γs)

−1(Qxu
s +ΦT

s Q
x
s+1Γs)

T (5.15)

From this a number of things can be seen, mainly that the control of the last step
only depends on the state through x̂s|s and that the cost for step s−1 is in the same
quadratic form as for step s if it wasn’t for the future state covariance’s contribution
to the total cost. This is of importance since if the control, us−1, has no effect on
the state covariance, Es|s, that term can be discarded and the cost can be minimized
based only on the estimate x̂s−1|s−1, just as for step s. If the future state covariance
is affected by control, the optimal control now also needs to balance the uncertainty
of the state estimate against the cost associated with the estimate. When the control
affects the state covariance, the optimisation problem is said to have a dual effect,
because of the need to balance the uncertainty of the estimate and the estimated
cost.

As previously mentioned, when no dual effect is present, the optimal control at step
s−1 can be calculated in the same way as for s. This continues for step s−2, s−3
and so forth, resulting in the following equivalent optimal cost and control for time
step k:

JCE
k (Dk) = E

[
xT

k Skxk
∣∣Dk
]

uCE
k =−(Qu

k +Γ
T
k Sk+1Γk)

−1(Qxu
k +ΦT

k Sk+1Γk)
T x̂k|k

(5.16)

where Sk is given by the following recurrence relation

Sk =Q
x
k +Φ

T
k Sk+1Φk

− (Qxu
k +ΦT

k Sk+1Γk)(Q
u
k +Γ

T
k Sk+1Γk)

−1(Qxu
k +ΦT

k Sk+1Γk)
T

SN =Qx
N

(5.17)

This is the discrete-time algebraic Riccati equation which should be recognised
from the deterministic linear quadratic control problem. In fact, the only difference
is that the state xk is replaced by the mean state, x̂k|k. This property is called cer-
tainty equivalence since the control law is the same as if certainty about the state
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applied. A slightly less strict concept is that of the separation principle that applies
if the optimal control policy only depends on the state through x̂k|k, i.e. the un-
certainty of the estimate does not affect how the system is controlled. The optimal
stochastic control problem can then be separated into two parts, first being to ac-
curately estimate x̂k|k and the other being finding the optimal control based on that
estimate.

When no dual effect is present, certainty equivalence, and thereby also the separa-
tion principle, obviously applies in this case. Similar statements can even be made
for systems with non-linear dynamics [Tse and Bar-Shalom, 1975] but even so, the
linear system with quantized measurements studied in this report does have dual
effect. However, depending on the dynamics and the size of the quantisation inter-
val, the impact of the dual effect on the control cost might be negligible. In that
case the certainty equivalent (CE) control policy presented above might be a good
approximation for the optimal control.

Since the cost-to-go for step k+1 is approximated by J∗k+1(Dk+1)≈E
[
xT

k+1Sk+1xk+1
∣∣Dk+1

]
when putting the CE policy into the context of m-measurement feedback, one might
be inclined to call it a 1-measurement feedback policy. However, since the chosen
approximation results in a cost that is independent of the likelihood of future mea-
surement a more accurate classification would be a zero-measurement feedback
policy, or simply just a feedback policy, since it’s then only using information about
the current state, without consideration for the future.

5.3 Open Loop Optimal Feedback

Another (0-measurement) feedback policy is the open-loop optimal feedback
(OLOF) [Dreyfus, 1965]. It assumes no further measurements will be made after
the current time step and approximates the cost at step k with the open loop cost.
It will be shown that in this LQ setting the resulting control policy is equivalent to
the CE policy but unlike the CE policy, it doesn’t completely disregard the error dy-
namic and will for that reason later be used in the derivation of the one-measurement
and M-measurement policies.

By the assumption of no further measurements, the cost at step k for the LQ problem
can be written as

JOL
k (Dk) = E

[
N

∑
t=k
xT

t Q
x
txt +2xT

t Q
xu
t ut +u

T
t Q

u
t ut

∣∣∣∣∣Dk

]
(5.18)
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Separating the state into estimate and estimation error, xt = x̂t|k +et|k, gives

JOL
k (Dk) =

N

∑
t=k
x̂T

t|kQ
x
t x̂t|k +2x̂T

t|kQ
xu
t ut +u

T
t Q

u
t ut +E

[
eT

t|kQ
x
t et|k

∣∣Dk
]

(5.19)

where x̂t|k = E[xt |Dk,Uk:t−1] and Uk:t−1 = {uk,uk+1, ...ut−1}. The cross terms
with et|k vanish since E[et|k|Dk,Uk:t−1] = 0. Note that, without the presence of
measurement, the mean and error dynamics are given by

x̂t+1|k =Φt x̂t|k +Γtut

et+1|k =Φtet|k +νt
(5.20)

By noting that the error is independent of the control, the cost can be divided into
two sums with only the first being affected by the control.
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] (5.21)

The first sum can be seen as the cost for a deterministic process with the state re-
placed by x̂t|k. Since the dynamics of x̂t|k are linear and deterministic this term can
easily be minimized using standard LQR techniques, resulting in the same control
as the CE policy found in (5.16) with the same Riccati equations as in (5.17). The
optimal open-loop feedback cost can then be written as

JOL∗
k (Dk) = x̂

T
k|kSkx̂k|k +E

[ N

∑
t=k
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t|kQ
x
t et|k
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]
(5.22)

For future use the second term will be simplified further with the goal of expressing
it in only the error at time-step k. First express the future errors in ek|k,

et+1|k =Φtet|k +νt

=Φt+1:kek|k +
t

∑
i=k
Φt+1:i+1νi

(5.23)

whereΦt:k =Φt−1Φt−2...Φk withΦi:i = I . Insert this into the second term and note
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that all cross terms between νi and ek|k are zero since they are independent,
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(5.24)

The sum containing the noise terms is constant regardless of state and only depends
on the process itself. It can therefore be ignored in all cases of minimisation. The
matrix Fk can be calculated with the following relation

Fk =Φ
T
k Fk+1Φk +Q

x
k

FN =Qx
N

(5.25)

Ignoring the constant terms, the equivalent optimal cost is then
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5.4 Myopic/Greedy Control

Moving along to the first controller taking future measurements into consideration,
these are M-measurement controllers that are greedy or short sighted (myopic). This
means that instead of trying to consider the cost all the way to the end of the time
horizon they only consider the cost over a much shorter horizon. In effect, this
means at time-step k the cost-to-go at time-step k + m is approximated as zero,
where m is the horizon length considered. The assumption behind this is that the
acquired cost beyond that is negligible compared to the cost acquired before that.

For large m the problem is still hard to solve so a myopic controller with horizon 3
will here be derived. It will further be restricted to the LQ problem studied in this
thesis. Start by setting Jµ

k+3(Dk+3) = 0 and examine the cost-to-go for time-step
k+2,
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(5.27)
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This cost-to-go is minimised by uk+2 = 0 since the state xk+2 is independent of
uk+2. The optimal cost-to-go is then Jµ∗

k+2(Dk+2) = E
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cost for time-step k+1 becomes
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(5.28)

This expression should be recognised from (5.8) in the discussion about dual effect
and the derivation for optimal control of the last step of the time horizon. It should
be no surprise since nothing has really changed other than the horizon length. The
optimal cost and control for time-step k+1 can be obtained in the same way, leading
to the following cost at time-step k
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The uk that minimises Jµ

k (Dk) is then the 3-step myopic control policy. Like the
CE-policy this might at a first glance look like it is considering more future mea-
surements than it actually does. Even though it solves the minimisation problem
exactly for a 3-step horizon it is only a one-measurement feedback policy. The opti-
mal control for the last two steps is completely independent of the future measure-
ment probabilities, thereby making the control only effectively consider the very
next measurement.

5.5 M-Measurement Feedback

What follows is the control policy that will serve as basis for the all methods pro-
posed in the next chapter. That policy is the original M-measurement feedback pol-
icy described in [Curry, 1970]. It will also be shown that the 3-step myopic control
of the previous section is a special case after the introduction of an extra parame-
ter. The basic formulation is simple; given some M, at time-step k approximate the
cost at stage NM = k+M, with the OLOF cost (5.26) for the remainder of the time
horizon, JMMF

NM
(DNM ) = JOL∗

NM
(DNM ). For the LQ-problem this becomes
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(5.31)
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This modified problem is then minimised and the sequence uk,uk+1, ...uNM is
found. uk is used for control of the system and the process is then repeated in the
next time-step and so forth. The main problem with this approach is the minimi-
sation over uk,uk+1, ...uNM . Even though NM < N this is a hard, high dimensional
problem to solve in real-time, even for moderate value of M. The focus of this thesis
has therefore been on the special case M = 1 and other simple approaches to make
this optimisation problem manageable.

5.6 One-Measurement Feedback

With the measurement horizon being M = 1 the cost becomes
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This expression should be recognised from the cost for the myopic control (5.29)
with Fk+1−Sk+1 in place of Cµ

k+1 and Sk+1 instead of Sµ

k+1. If one studies the
expressions for Sµ

k+1 and Cµ

k+1 they should also be recognised, but this time from
the CE and OLOF costs. Sµ

k+1 is clearly given by the Riccati equation for an open-
loop LQ problem with a time-horizon that ends at k+ 2. This should come as no
surprise considering the discussion about the last two steps of the myopic control.
It was there established that the costs for those steps are independent of future mea-
surements and should therefore be equivalent to the two step open-loop problem.
By introducing the following notation
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together with the parameter NLQ and
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(5.34)
the one-measurement feedback cost can obtained by setting NLQ = N − k, i.e.
JOMF

k = JOMF
k:N−k, since Cµ

k+1 = Fk:1−Sk:1.

This slightly broader, compared to Curry’s original policy, class of one-
measurement feedback policies with limited open-loop horizon NLQ clearly contains
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5.6 One-Measurement Feedback

the 3-step myopic controller with the cost given by

Jµ

k (Dk) = JOMF
k:2 (Dk) (5.35)

The introduction of the NLQ horizon gives more control to the designer, allowing for
a heuristic adaptation of the policy to problems where the open-loop approximation
for the entirety of the remaining time is too pessimistic. By reducing the open-loop
horizon more weight can be put on time-steps inside the measurement horizon.

This concept of variable open-loop horizons can be extended even further by having
different horizons for calculation of Sk: j and Fk: j. In the derivation of the open-loop
cost, the state was split into two parts, mean and error, both having linear dynamics.
It was shown that Sk: j is the weight put on the mean-dynamics while Fk: j corre-
sponds to the error dynamics. The problem in the closed-loop case is that both the
mean and error dynamics no longer are linear, if they were, the CE/OLOF policies
would be optimal, and how well these dynamics are approximated by the resulting
linear open-loop dynamics determines how good the OLOF approximation is. Im-
portant to note is that even though the mean dynamics might be well approximated
by the linear system, the error dynamics might not or vice versa. Being able to con-
trol the relative weight between Sk: j and Fk: j then gives the designer the possibility
to put more weight on the dynamics that are well approximated while putting less
weight on the bad one. This is achieved by the introduction of a second horizon NE
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(5.36)
The concept can be expanded further, making it possible to completely discard one
or both of the mean/error dynamics by setting NLQ and/or NE to zero and defining

Sk:−1 = 0
Fk:−1 = 0

(5.37)

Even with the introduction of these extra parameters it should be noted that all
that’s changed is the weighting constants, all of which can be calculated offline,
making it the same as Curry’s original one-measurement feedback from a problem
point of view. The same solver can therefore be used for the minimisation problem
regardless of k, NLQ and NE . The choice of NLQ and NE will however affect the
behaviour of the controller. Due to this fact that NLQ and NE doesn’t affect the
problem formulation in any way the explicit dependency on them will no longer
be written for convenience sake. From now on, including in the not yet introduced
M-measurement cost feedback, everywhere Fk+1 and Sk+1 appears, they can be
replaced by Fk+1:NE−1 and Sk+1:NLQ−1 respectively to give parametric control over
the open-loop horizons.
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With NLQ = NE it can be shown that the resulting (Fk+1:NE−1 −Sk+1:NLQ−1) is
positive semi-definite [Curry, 1970]. This has the effect that the last term of
JOMF

k:NLQ:NE
(Dk) has a minimum and it’s achieved when the error ek+1|k+1 is min-

imised. This means that the controller might make actions that drives the mean of
xk+1 further from the origin in order to reduce the error; this kind of behaviour is
called probing. However, this is not true for all NE and at least for one NE < NLQ
the matrix will become negative semi-definite, making the last term of JOMF

k:NLQ:NE
(Dk)

larger when the error is reduced. This means that the controller might drive the mean
further from the origin to make the error worse and thereby reducing the cost. This
is undesirable behaviour in the vast majority of cases and the open-loop horizons
should therefore be selected with care. Nonetheless, in some cases it might still be
necessary to choose a NE < NLQ.

It’s well known that Sk has a stationary solution if the process is controllable, but
the same can not be said for Fk, which might grow forever. Intuitively this makes
sense since in an open-loop scenario the error grows with time and so should the
associated cost. This causes problem with the open-loop approximation when the
original problem has a long, or even infinite, horizon. In such cases Fk would grow
to such an extent that all the cost associated with the mean is completely insignif-
icant. The policy would then only focus on minimising the error, something that’s
also undesirable in most cases. The designer will in these cases be needed to choose
a smaller NE and it might perhaps even make sense to choose a smaller NLQ as well.
It will usually be easier to motivate a smaller NE since in most cases the act of mea-
suring will place some bound on the error, making it reasonable to put the restriction
on the error dynamics. An example of this will be given in the next chapter.

5.7 M-Measurement Cost Feedback

The one-measurement feedback was introduced since the full M-measurement feed-
back problem is too expensive to solve, and the following M-measurement cost
feedback is introduced for the same reason. Instead of simplifying the problem by
reducing the number of measurement considered, it reduces the complexity of the
space over admissible controls. By restricting the future control actions, up to the
time-step k +M to only depend on the current state xk, they are independent of
the future measurements and the M-measurement feedback cost in (5.31) can be
simplified to
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(5.38)
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Where the second expected value is taken over all measurements between k + 1
and k+M. The reason for the name “M-measurement cost feedback´´ can be seen
here. Although it’s not a true M-measurement feedback since the control policies
considered are fixed and can not adapt to the future measurement, the measurements
are still considered when calculating the cost-to-go.

This method has similarities with the general one-measurement feedback presented
in [Curry, 1970] were the measurement considered could be placed at any time after
time-step k, not only at k+ 1 which is the case presented earlier. However, in that
method the system was assumed to run in open loop up until that measurement
while in this method the full cost of the system dynamics are considered. The main
advantage of this is the possibility of capturing non-linear effects of the system with
dynamics too slow to affect the cost over a one-step horizon.

It’s clearly seen that the first term of JMMC
k (Dk) is the same as the OLOF cost for

a problem with horizon M so by using the same method of splitting the state into
estimate and estimate error, xt = x̂t|k + et|k, the following rearrangement can be
made.
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(5.39)
From before it’s known that the terms containing the errors are independent of the
control and can therefore be discarded, resulting in the final equivalent form:
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(5.40)

5.8 Alternative Approaches and Prior Research

The control methods presented and examined in this thesis are all fairly direct in
the way that they tackle the dynamic programming problem directly, making the
consideration of dual effect and probing action implicitly included in the control
problem. A more traditional approach is to more explicitly include this dual effect
into the control problem with the help of self-tuning regulators and other adaptive
control schemes. Other than getting a broad overview of the adaptive control sub-
ject, [Åström, 1983; Wittenmark, 2002; Åström and Wittenmark, 2008], little time
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was spent researching these methods for the integration of the particle filter. The rea-
son for this was that other approaches were judged to make more interesting use of
the particle filter’s information state. With that said, the adaptive controllers would
all still benefit from the improved state and variance estimates that the particle filter
would provide.

Another approach not related to the solving of the dynamic programming problem
that received a little more time was different ways to make simple approximations
of the future error dynamics. These approximations can be gotten in a variety of
ways, from simple heuristic ad-hoc methods to more complex system identifications
and machine learning approaches, resulting in more or less complex models. The
reason for these techniques not ending up in this thesis is that either the resulting
models were to complex to allow for simple solutions of the dynamic programming
problem or not complex enough to capture the interesting non-linearities. However,
in a way ended one of these approximative methods up getting included by way
of the OLOF control. In OLOF control the future error dynamics can be said to be
approximated by the open-loop dynamics. Also, promise still remains for machine
learning approaches with the learning being directed directly on the actual cost-to-
go function instead of the system dynamics.

Like previously stated, the methods presented in this thesis are direct in the way
that they try to solve the dynamic programming problem at each time-step but due
to the cost to solve the full equation, the problem solved is modified. How well
they perform is therefore directly dependent on how well the modified problem
approximates the original problem. The vast majority of time was therefore spent
on researching alternative approaches for solving the full problem cheaply, focusing
on two different concepts.

The first concept is the one of iterative rollout solvers [Bertsekas, 2005]. They all
work from an initial guess of the optimal control sequence and after calculation of
the resulting cost, in some way modifying the control sequence to achieve better
cost. By repeating this process over and over again, better and better solutions are
achieved and eventually it converges to a (locally) optimal solution. The approach
for modification of the control sequence usually involves to around the resulting
trajectory make a local approximation of the problem and solving it for the new
sequence. The approximation can be a quadratic approximation of the entire cost
function [Rajamäki et al., 2016] or making a linear approximation of the dynamics
and quadratic approximation of the immediate cost to form a locally valid LQR-
problem [Li and Todorov, 2004].

This is still expensive due to the need to simulate to end time in order to calculate
the cost but has the advantage of being able to be aborted early, before convergence
is achieved, and still provide a control better than the initial guess. Another prob-
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lem is that these methods are usually formulated for deterministic problems. The
LQR-variant has been expanded to include stochastic dynamics [Todorov and Li,
2005; Berg, 2016] but when only partial information about the system is available
through stochastic measurements the challenge is how and around what trajectory
the quadratic approximation should be made. In [Van Den Berg et al., 2012; Sun et
al., 2016] the problem was addressed by making a linear approximation of the error
dynamics with the help of an extended Kalman filter but in the problem of quantised
measurement, due to the measurement function being a step function with deriva-
tive zero, this would result in an open loop approximation with poor performance.
In the particle filter context, even with early termination of the iterations, the cost
would be a real concern but with that being said, some preliminary work done has
shown some promise for an iterative particle filter approach with local quadratic
approximation.

The second concept revolves around a general duality between estimation and con-
trol [Todorov, 2008]. The main reason for it’s appeal is the fact that the particle filter
is an iterative optimal estimator so with a reformulation of the control problem to an
estimation problem the particle filter itself might be used. This general duality has
also given rise to a new family of linearly solvable control problems [Dvijotham
and Todorov, 2012] and resulting solution strategies [Todorov, 2009b; Toussaint,
2009; Todorov, 2009a] but once again, although they include stochastic dynamics,
they couldn’t easily be converted to include systems with partially observed states.

The concept of formulating the control problem as an estimation problem together
with a particle filter was utilised in [Stahl and Hauth, 2011] but it doesn’t utilise the
duality. Instead it directly specifies it’s cost function in terms of Gaussian proba-
bility densities for the state, centred around the desired state, these densities could
after that be used to filter “most likely” control signal. The connection to the origi-
nal cost function is therefore lost so this together with the late discovery resulted in
that the methods were not further explored. The use of particle filter in the dynamic
programming/optimal control setting does not seem to be that common so beside
this, the other real use has been in [Bayard and Schumitzky, 2010] where it’s only
use was for cost evaluation. The optimisation method used was just an direct recur-
sive strategy, numerically finding the optimal control at each time step, making the
proposed control strategy unsuited for all but the simplest discrete control problems.
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6
Feedback Design

The attention will here be turned completely to the linear dynamics with quadratic
cost problem studied in this thesis. The goal is to introduce the particle filter into
the methods presented in Chapter 5 and develop algorithms for the minimisation
problems. The necessary details for an implementation of the algorithms will be
provided as well as any process specific details and concerns that need to be dealt
with.

First the OLOF/CE control will be handled, the particle filter integration is in
that case simple but instead system specific issues regarding controllability will
have to be handled. After that, a particle filter based algorithm for use in the one-
measurement feedback control will be derived. Two different methods for evalua-
tion of the cost-to-go function will be presented for use in that algorithm. One of
these algorithms will be expanded to cover cost-to-go of the M-measurement cost
feedback and two different variants of the policy will be presented.

6.1 Certainty Equivalent Control

From (5.16) and (5.17), the CE/OLOF control at time step k is
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(6.1)

This is trivially integrated with the particle filter since it gives an approximation of
p(xk|Dk). With the notation of Chapter 2, where Dk =Dk, the expression for the
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conditional expected value is given by
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(6.2)

where p̂(xk|Dk) is provided by the particle filter. All that’s needed to apply CE-
control on the process is to calculate Sk and Lk, but here is where the problem lies.
The main focus of this thesis will be on the case where the time horizon, N, is in-
finity but Sk can not be guaranteed to converge when N→∞, due to the system not
being controllable. However, it can be shown, sketch of proof in Appendix C.1, that
although Sk doesn’t converge, Lk does. This means that although the future cost
might grow forever the optimal control action remains the same when considering
longer and longer time horizons. In practice this means that when the infinite hori-
zon case is considered, Sk is simply iterated over until Lk has converged to some
L. L is then used in the CE control law, uCE

k =Lx̂k|k, at each time-step.

6.2 One-Measurement Feedback

When applying one-measurement feedback to the process, the fact that Sk doesn’t
converge remains a problem, but, as already stated, Fk doesn’t converge either and
the open loop horizons, NLQ and NE , need to be restricted regardless. This isn’t a
real problem since the open loop cost is an approximation in the first place and
changing the horizons simply allows for it to more closely match the real cost. The
open loop horizon lengths should therefore be seen as control parameters that need
tuning to perform optimally.

As an indication for what reasonable choices would be, it is useful to look at the
behaviour of Sk as NLQ → ∞. With Sk partitioned into blocks corresponding to
the controllable states, the uncontrollable states and cross-terms between them, it’s
known from Appendix C.1 that the blocks corresponding to the controllable states
and the cross-terms converge. How fast that happens serves as an indication for a
suitable time horizon since after that time the ratio between the costs associated
with uncontrollable and controllable state will continue to grow to infinity. This
phenomenon should not be present in the real system since quantised measurements
provide an upper boundary on the state variance.

Using the block notation of Appendix C.1, with Sm
k corresponding to the control-

lable states, Sd
k to the uncontrollable and Smd

k containing the cross-terms, the de-
velopment of Sk for the studied system as NLQ grows can be seen in Figure 6.1.
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Figure 6.1 2-norm of the partitions of S0 as a function NLQ

From the figure it’s seen that with a NLQ horizon of around 80 the converging parti-
tions have done so, with the majority of the development happening for NLQ < 30.
For NLQ > 80 more and more weight will be put on the uncontrollable states so a
suitable horizon length should be within this rough range of 50 < NLQ < 150.

It’s also useful to look at the open-loop error dynamics since there is a separate
parameter controlling the open-loop error horizon. Given the system in (1.16) an
uncertainty bound can be put on yk. With the same reasoning as for the additive
noise model, given a single measurement, yk will with no other information be
uniformly distributed in the quantisation interval. This worst case can be used to
form an upper bound on the variance, Var[yk] ≤ ∆q2

12 , which in turn can be used to
give an approximate bound on the open loop error horizon.

Given a state variance at time-step k, Ek|k, the open loop variance of yt|k for some
time t > k will be:

Var[yt|k] = Var[Cxt|k] =CEt|kC
T ≤ ∆q2

12
(6.3)

For t larger than some d this inequality will no longer hold, and that d then gives
the open-loop horizon NE = d−k. NE is found by simply using the open loop error
dynamics in (5.23) and iterating until the bound is exceeded.

et|k =Φt:kek|k +
t−1

∑
i=k
Φt:i+1νi (6.4)

gives

Var[yt |Dk] =CΦt:kEk|kΦ
T
t:kC

T +
t−1

∑
i=k
Φt:i+1R̂kΦ

T
t:i+1 ≤

∆q2

12
(6.5)
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6.2 One-Measurement Feedback

It’s clear that the resulting horizon, NE , depends on the state variance Ek|k. Although
it’s possible to expand the one-measurement feedback to recalculate NE based on
the current Ek|k, for simplicity this will not be done. Instead, a system with perfect
knowledge, Ek|k = 0, will be used to calculate NE to serve as an indication of a suit-
able horizon length. For the system studied this gives NE = 103, which is roughly
the same as the indications given for NLQ and to keep the number of variables down
they will not be varied separately and instead always be set to the same open loop
horizon NOL.

NLQ = NE = NOL (6.6)

With these rough indications of suitable open-loop horizons established the atten-
tion can be turned to minimisation algorithms. The cost function that should be
minimized at each time step has the form

JOMF
k (Dk) = E

[
xT

kQ
x
kxk +2xT

kQ
xu
k uk +u

T
kQ

u
kuk +x

T
k+1Sk+1xk+1

∣∣Dk
]

+Ezk+1

[
E
[
eT

k+1|k+1Ck+1ek+1|k+1
∣∣Dk+1

]∣∣Dk
] (6.7)

For the sake of computational convenience some restructuring of the last term
will be made. First note that x̂k+1|k+1 = Φkx̂k|k+1 +Γkuk which allows the error
ek+1|k+1 to be written as

ek+1|k+1 =Φkxk +Γkuk +νk−Φkx̂k|k+1−Γkuk

=Φkxk +νk−Φkx̂k|k+1
(6.8)

which with the assumption of zero mean process noise νk gives

Ezk+1

[
E
[
eT

k+1|k+1Ck+1ek+1|k+1
∣∣Dk+1

]∣∣Dk
]

= E
[
xT

kΦ
T
kCk+1Φkxk

∣∣Dk
]
−Ezk+1

[
x̂T

k|k+1Φ
T
kCk+1Φkx̂k|k+1

∣∣Dk
] (6.9)

Since xk+1 =Φkxk +Γkuk +νk, and since the distribution of xk|Dk is independent
of uk an equivalent cost can be formed as

JOMF
k (Dk) = 2x̂T

k|k(Q
xu
k +ΦT

k Sk+1Γk)uk +u
T
k (Q

u
k +Γ

T
k Sk+1Γk)uk

−Ezk+1

[
x̂T

k|k+1Φ
T
kCk+1Φkx̂k|k+1

∣∣Dk
] (6.10)

Finding the u∗k that minimises this expression then gives the one-measurement feed-
back control. For the system studied, this is a one dimensional problem and direct
search can and will then be utilised even though both first and second order deriva-
tives of JOMF

k (Dk) could be extracted from the particle filter. Due to the sampled
nature of the particle filter the derivatives calculated are not of high enough quality
to be used directly without some form of line-search or relaxation. The increase of
convergence speed was not deemed large enough to compensate for the significant
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Chapter 6. Feedback Design

increase in evaluation costs. Using direct methods allowed for the search strategy
used here to be directly applied to the M-measurement cost feedback presented in
the next section.

To efficiently find u∗k , the focus lied on cheap evaluation of JOMF
k (Dk), or more pre-

cisely the last term since the first two terms are easily evaluated given the estimate
of x̂T

k|k given by the particle filter. Two probability distributions are needed for eval-
uation, p(zk+1|Dk) and p(xk|Dk+1), both of which can be approximated with the
particle filter. For clarity, when talking about a particle filter that should be run into
the future, a standard SIR particle filter is meant, regardless of what filter type that
was used to generate the state estimate.

Starting with the smoothing density, p(xk|Dk+1), it can be obtained by running the
particle filter forward in time, storing the particles xi

k at time-step k, and comput-
ing the particle weights at time-step k + 1, ωi

k+1. The smoothing density is then
approximated by

p(xk|Dk+1)≈ p̂(xk|Dk+1) =
N

∑
i=1

ω
i
k+1δ (xk−xi

k)

x̂k|k+1 ≈
N

∑
i=1

ω
i
k+1x

i
k

(6.11)

A few things should be noted here. Because of the resampling, the particles xi
k need

not have a corresponding weightωi
k+1 if they were discarded during the resampling-

step. This is a well known problem when trying to use particle filters in smoothing
problems so for that reason, and a few more that will be apparent soon, the resam-
pling step will be omitted when running the filter into the future. This effectively
sets a maximum length into the future the filter can be run until the particle density
isn’t high enough to give good estimate. However, since it for now only needs to be
run one step ahead this will not be a problem.

In regards to the calculation of the probability of future measurements, p(zk+1|Dk),
remember that the particle weights of the particle filter are normalised. The nor-
malisation factor is the total probability of that measurement happening, resulting
in

p(zk+1|Dk)≈ p̂(zk+1|Dk) =
N

∑
i=1

p(zk+1|xi
k+1)ω

i
k (6.12)

Since zk is discrete, Ezk+1

[
x̂T

k|k+1Φ
T
kCk+1Φkx̂k|k+1

∣∣Dk
]

can be calculated for a
given uk by, for each zk, running the particle filter one step ahead, calculating
x̂T

k|k+1Φ
T
kCk+1Φkx̂k|k+1 p̂(zk+1|Dk) for that zk and adding all results together. This

approach has a couple of problems, the first being that there are infinitely many
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6.2 One-Measurement Feedback

possible zk. Due to the quantisation intervals being assumed to be large, the effect
of the measurement intervals far away from the current state have little effect on fu-
ture states. For that reason, only the three intervals around the zero-reference were
ever considered. One further simplification was made, the upper and lower most
intervals of these three were assumed to not have any upper and lower boundary
respectively. This simplifies some of the calculations and had no effect on the result
since the particle cloud never interacted with the removed boundaries in the forward
simulation.

The second problem is that it is computationally expensive. Even when only con-
sidering the three closest intervals it means that the entire particle system needs to
be simulated forward in time three times for every control input uk that needs to be
evaluated when minimizing the cost. This can be avoided so only one state predic-
tion can be made for all cost evaluations by seeing that the control is additive to the
state and that

p(zk+1|xk+1 +Γkuk) = p(zk+1−CΓkuk|xk+1) (6.13)

Instead of adding the control to the state, the state can be predicted with zero con-
trol and the quantisation intervals can be adjusted, to give the same effect on the
particle weights. This way all the predicted particles can be stored and not needed
to be re-predicted for each uk. The particle weights still need to be recalculated
for each uk and zk but since all quantisation intervals are mutually exclusive, each
particle only needs to be checked once for which interval it’s in. With this batch
processing of zk, the resulting algorithm can be found in Algorithm 6.1. Note that
it was used that Φkx̂k|k+1 = x̂0

k+1|k+1, using the notation in Algorithm 6.1. With
this the total cost can easily be calculated and any standard direct solver be used,
in this thesis MATLAB’s fminbnd was used that utilises golden section search and
parabolic interpolation.

However, the discontinuous nature of the particle filter approximation causes some
problems since the resulting cost-to-go approximation also will be discontinu-
ous. The discontinuities are small enough not to cause any major issues but
certain allowances still need to be made. For example, the minimum value of
Ezk+1

[
x̂T

k|k+1Φ
T
kCk+1Φkx̂k|k+1

∣∣Dk
]

should vary smoothly between time-steps. Due
to particle resampling and the random nature of the particle filter, the minimum
values of the resulting approximation will jitter around the true minima. This
causes problem with the optimal control jumping from being close to the min-
imum of Ezk+1

[
x̂T

k|k+1Φ
T
kCk+1Φkx̂k|k+1

∣∣Dk
]

at k and close to the minimum of
2x̂T

k|k(Q
xu
k +ΦT

k Sk+1Γk)uk +u
T
k (Q

u
k +Γ

T
k Sk+1Γk)uk at k+ 1 or vice versa. The

problem gets worse since the expected value isn’t convex in uk and has several lo-
cal minima, providing even more different places the control can settle in. This all
results in a control signal that jitters and a couple approaches were used to combat
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Chapter 6. Feedback Design

Algorithm 6.1: One-measurement Feedback - Cost Evaluation
Data: System matrices,{Φk,Γk,C,Ck+1,∆q}, N particles and
weights from a particle filter estimate of the state at time-step k,
{ω i

k,x
i
k}, open loop, zero control prediction of these particles

x0,i
k+1 ∼ pνk(xk+1−Φkx

i
k), the linear measurement of the predicted

particles, yi
k+1 =Cx0,i

k+1, and the control for which to evaluate the cost,
uk

Result: Juc ≈ Ezk+1

[
x̂T

k|k+1Φ
T
kCk+1Φkx̂k|k+1

∣∣Dk
]

begin
/* Initialize accumulating variables for each

interval */

xu
s ← 0, xm

s ← 0, xl
s← 0

pu
z ← 0, pm

z ← 0, pl
z← 0

/* Displace the interval boundaries according to

control */

zu← ∆q
2 −CΓkuk, zl ←−∆q

2 −CΓkuk

foreach yi
k+1 do

/* Find which interval each particle lies in

and add to accumulative sums */

if yi
k+1 > zu then
xu

s ← xu
s +ω i

kx
0,i
k+1, pu

z ← pu
z +ω i

k
else if yi

k+1 < zl then
xl

s← xl
s +ω i

kx
0,i
k+1, pl

z← pl
z +ω i

k
else

xm
s ← xm

s +ω i
kx

0,i
k+1, pm

z ← pm
z +ω i

k
end

end
/* Calculate state mean for each quantisation

interval */

x̂u← xu
s

pu
z
, x̂l ← xl

s
pl

z
, x̂m← xm

s
pm

z

/* Add together total cost */

Juc← (x̂u)TCk+1x̂
u pu

z +(x̂l)TCk+1x̂
l pl

z +(x̂m)TCk+1x̂
m pm

z
end

this.

The first approach involves controlling the search intervals. If the optimal control
has been found in the vicinity of a local minimum of Ezk+1

[
x̂T

k|k+1Φ
T
kCk+1Φkx̂k|k+1

∣∣Dk
]
,
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6.3 M-Measurement Cost Feedback

for the next few time-steps the search is restricted to that area, this way the most
extreme of jumps are avoided. In relation to this, in order to better localise the
search in the first place, the expected value is minimized on its own. It will later
be seen that it is small in comparison with the quadratic term, so doing a separate
search on it means that smaller search intervals can be made for when the total
cost should be minimized. The effects of the expectation term is then less likely to
be lost in the parabolic interpolation of the solver. All this does not eliminate the
high frequency jitter, so as a final step to give a smoother control signal, a simple
second order low-pass filter is applied, with the exception of when the measurement
interval just has changed since a large change in control behaviour is expected then.

The algorithm presented in Algorithm 6.1 has a computational cost that is linear
in the number of particles, but with some further assumptions, the computational
cost can be improved to be logarithmic instead. This logarithmic algorithm can be
found in Algorithm 6.2 and it requires that the input particles {xi

k,x
0,i
k+1} are sorted

according to yi
k+1. Sorting is well known to have cost O(N logN) making the total

cost of the new algorithm more expensive if the particles weren’t already sorted
which unfortunately can’t be guaranteed. However, it’s still beneficial to make the
effort to sort them since in the course of the minimisation, the cost has to be eval-
uated several times while the particles only have to be sorted once. As long as the
number of cost evaluations needed to find the minimum are smaller than O(logN)
a net gain can be obtained, especially when considering that the per-iteration cost
of sorting a vector of scalars is much cheaper than for the cost minimisation. One
important note about both Algorithm 6.1 and Algorithm 6.2 is that in a real imple-
mentation some edge cases need to be handled to avoid divide by zero. These cases
were left out since they give no further understanding of the core idea behind the
algorithms.

6.3 M-Measurement Cost Feedback

When M-measurement cost feedback should be used, first note that the same sim-
plifications can be made to the MMC cost-to-go (5.40) as the ones made to the one-
measurement feedback with regards to the state covariance Ek+M|k+M . This gives
an equivalent cost of:

JMMC
k (Dk) = x̂

T
k+M|kSk+Mx̂k+M|k +

k+M−1

∑
t=k

x̂T
t|kQ

x
t x̂t|k +2x̂T

t|kQ
xu
t ut +u

T
t Q

u
t ut

−EZk+1:k+M

[
x̂T

k|k+NΦ
T
k:k+M(Fk+M−Sk+M)Φk:k+Mx̂k|k+N

∣∣Dk
]

(6.14)
Before minimising the cost one further restriction will be made to the control pol-
icy used in the cost-to-go evaluation for the measurement horizon. M-measurement
cost was derived by restricting this policy to not depend on any of the states
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Algorithm 6.2: One-measurement Feedback - Logarithmic Cost Eval-
uation
Data: System matrices,{Φk,Γk,C,Ck+1,∆q}, the control for which
to evaluate the cost, uk, N sets of weights, particles and linear
measurements, {ω i

k,x
i
k,x

0,i
k+1,y

i
k+1}, sorted such that yi

k+1 ≤ yi+1
k+1, and

the vector of the accumulative sum of x0,i
k+1 and ω i

k, si
x = ∑

i
j=1 ω

j
kx

0, j
k+1

and si
ω = ∑

i
j=1 ω

j
k respectively

Result: Juc ≈ Ezk+1

[
x̂T

k|k+1Φ
T
kCk+1Φkx̂k|k+1

∣∣Dk
]

begin
/* Displace the interval boundaries according to

control */

zu← ∆q
2 −CΓkuk, zl ←−∆q

2 −CΓkuk
/* Find particles in intervals */

iu← find largest index i that satisfies yi
k+1 < zu

il ← find smallest index i that satisfies yi
k+1 > zl

/* Calculate state means and measurement

probabilities */

pu
z = 1− siu

ω , pm
z = siu

ω − sil
ω , pl

z = sil
ω

x̂u← sN
x −siu

x
pu

z
, x̂m← siu

x −sil
x

pm
z

, x̂l ← sil
x

pl
z

/* Add together total cost */

Juc← (x̂u)TCk+1x̂
u pu

z +(x̂l)TCk+1x̂
l pl

z +(x̂m)TCk+1x̂
m pm

z
end

xk+1,xk+2, ...xk+M but it is now restricted to be a functional f on the form

ut = f (xk, t, pu) (6.15)

where pu is a one dimensional parameter. The minimisation of the cost then be-
comes a one dimensional minimisation problem over pu instead of the M dimen-
sional problem that was had before when all of uk,uk+1, ...xk+M−1 needed to be
determined. This allows for the exact same low-pass filtered direct approach that
was used for the one-measurement feedback case but it’s also a necessary restric-
tion. Multi-dimensional direct search methods are to slow, and derivative informa-
tion for more than one step ahead problems is exceedingly hard to obtain, making
other solution methods unobtainable.

The quality of the control will depend on the choice of functional f and it should
be chosen with care. Two different choices of f will therefore be examined, both
inspired by deterministic LQR control. The first will simply be called LQR M-
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6.3 M-Measurement Cost Feedback

measurement cost feedback and the second will be called a Reference-LQR M-
measurement feedback. For the LQR-MMC feedback the parameter will be cho-
sen such that pu = uk and the following control actions will simply follow from
CE/LQR-based control of the open loop predictions of the state mean.

ut = f (xk, t, pu) =

{
pu, if t ≥ k
Lt x̂t|k, otherwise

(6.16)

where Lt is given by (6.1) and x̂t|k from (5.20) with the recursion started at x̂k|k.
Reference-LQR is very similar but the parameter is chosen to pu = r and the control
follows from a CE-control of the first state against that reference value r, resulting
in

ut = f (xk, t, pu) =Lt

x̂t|k−

r
0
0

 (6.17)

The direct search over pu will result in JMMC
k (Dk) being evaluated over and over

again for different known sequences of ut . The quadratic terms are easily evaluated
with the known control sequence and deterministic open-loop dynamics of x̂t|k,
and the expected value can be tackled much in the same way as it was in the one-
measurement feedback case, by running the filter forward in time and forming the
filtered estimate as

x̂k|k+M =
N

∑
i=1

ω
i
k+Mx

i
k (6.18)

The probability for a certain measurement sequence Zk+1:k+M is formed by adding
together all the un-normalised particle weights.

p(Zk+1:k+M|Dk)≈ p̂(zk+1|Dk) =
N

∑
i=1

ω
i
k

k+M

∏
j=k+1

p(z j|xi
j) (6.19)

However, unlike the one-measurement feedback, the calculation can not be sped up
by sorting and forming the accumulative sums, the problem being that the particles
can not be guaranteed to be sorted according to all linear measurements yi

k at the
same time. The naive/simple way of cost evaluation is then to simply loop through
all possible sequences of zk,zk+1, ...zk+M and because of time restriction, this is
what was done in this thesis. Even when only considering the three closest quan-
tisation intervals, this scales very badly. For each of the 3M possible sequences all
particles have to be iterated over for each time step, making the computational cost
O(NM3M). As previously mentioned, the particle filter resolution will be limited
forward since no resampling is used but it is the exponential computational cost that
is the real forward restriction.

The worst case exponential cost can not be completely removed but, like before,
the computational cost can be drastically reduced by utilising the fact that the par-
ticles can only be in one quantisation interval at the time. The algorithm presented
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in Algorithm 6.3 has a worst case cost of O(3M) and an average cost significantly
cheaper than that. As mentioned before, the algorithm will however not be fur-
ther examined because of time restrictions. Another approach for reducing compu-
tational cost worth mentioning and which was experimented with was evaluating
the expected value over the sequences Zk+1:k+M with Monte Carlo sampling. The
problem with that approach was that the number of sampled sequences, Zk+1:k+M ,
needed to achieve good enough precision was not small enough to result in cheaper
computation.
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Algorithm 6.3: MMC Feedback - Cost Evaluation
Data: System matrices,{Φt ,Γt ,C,Ck+M,∆q}, the control sequence
for which to evaluate the cost, {uk}, N sets of weights,
zero-control-predicted particles, and linear measurements,
{ω i

k,x
i
k,x

0,i
k+1, ...x

0,i
k+M,yi

k+i, ...y
i
k+M}

Result: Juc ≈ Ezk+1

[
x̂T

k|k+MΦ
T
k:k+MCk+MΦk:k+Mx̂k|k+M

∣∣Dk
]

begin
LZ ← empty list of measurement sequence
Lx← empty list of state vector x
Lp← empty list of probabilities P
foreach ω i

k do
U ← 0
Z← empty measurement sequence
foreach t ∈ Z;k < t ≤ k+M do

U ←Φt−1U +Γt−1ut−1

zu← ∆q
2 −CU , zl ←−∆q

2 −CU
if yi

k+t > zu then
Add identifier for upper interval to end of Z

else if yi
k+t < zl then

Add identifier for lower interval to end of Z
else

Add identifier for mid interval to end of Z
end

end
if Z is in LZ then

idx← index of Z in LZ

Lx[idx]← Lx[idx]+ω i
kx

0,i
k+M, Lp[idx]← Lp[idx]+ω i

k
else

Add Z, ω i
kx

0,i
k+M and ω i

k to end of LZ , Lx and Lp

respectively
end

end
Juc← 0
foreach Element Z of LZ do

idx← index of Z in LZ

pz← Lp[idx], x̂← Lx[idx]
pz

Juc← Juc + x̂
TCk+Mx̂ pz

end
end
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7
Closed-Loop Analysis

This chapter covers the evaluation of the feedback policies presented before via
simulation of the studied system. Like the open-loop analysis, the random seeds
will be kept the same for all simulations, keeping it fair and equal for all controllers.
The same seeds that resulted in the open-loop trajectories seen in Figure 4.1 will be
used since it has a well balanced variety in the load disturbance.

After an introduction of the results of the CE/OLOF, which will be used for refer-
ence, a quick look will be had at the performance and shortcomings of the myopic
controller. Following that, a variety of different open-loop horizons will be tested
for the one-measurement feedback and the effect on the control action and resulting
cost will be examined. After a suitable open-loop horizon has been determined the
effect of the measurement horizon on MMC-feedback will be studied. The chapter
will finish with a short summary and comparison of the different methods’ com-
putational cost. If nothing else is stated, the default process parameters found in
Table 1.1 are used together with the best performing GA-PF with 10000 particles
from the open-loop analysis chapter.

7.1 Performance Metrics

The main performance metric used will be the actual cost according to (1.7). Since
the cost is in the form of an expected value, a proper empirical evaluation would
require testing the policies on several different open-loop trajectories, but in order
to simplify the testing and reduce the time needed this is not done, the long simu-
lation time of 1000 seconds is deemed long enough to compensate. If nothing else
is stated, in order to allow for the stochastic nature of the particle filter are the sim-
ulations repeated 10 times and sample mean and standard deviation are calculated.
For proper estimation of the mean and standard deviation a lot more repetitions
are needed but this will be enough to make simple statements on the relative per-
formance of the methods. Besides the objective metric of cost, a more subjective
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Table 7.1 Mean and sample standard deviation for the cost for certainty
equivalent control

Mean Cost STD Cost Normalized Normalized
Mean Cost STD Cost

CE/OLOF 43.46 0.895 1 0.020

approach will also be taken. The resulting closed-loop trajectories, as well as the
state estimate and control signal, will be visually compared in order to evaluate the
existence and effectiveness of probing effect in the different policies.

The certainty equivalent/open-loop optimal feedback will be used as a reference and
the resulting cost of its use can be found in Table 7.1. For ease of comparison, when
the cost of the other policies are presented they will all be normalized by the cost of
the CE-control, making everything below 1 an improvement in cost.

A typical example of the control behaviour of the CE control can be found in Fig-
ure 7.1. As expected, it shows no sign of probing and no control action is taken
before a new measurement, and therefore an updated estimate, is received. Also
note that due to the control having no direct effect on the third state which models
the load disturbance, the estimate of that is particularity bad. The only time new
information about the state of the load disturbance is received is at, and right after,
a new measurement is gotten.
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Figure 7.1 The resulting trajectories (solid) and estimates (dashed) from cer-
tainty equivalent control
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Figure 7.2 The resulting trajectory and estimate from myopic control

7.2 Results

Myopic Control
To test the myopic control the one-measurement feedback algorithm was used with
an open-loop horizon of two, NOL = 2. The resulting control and trajectory of the
first state can be found in Figure 7.2 and it’s clear that the controller does not manage
to control the system. In this case, myopic control is not computationally cheaper
than OMF but for a general system, myopic control is computationally attractive.
However, it’s clear that by not looking long enough into the future, the potential gain
of an aggressive control action at the moment will not be seen. A myopic controller
will therefore be cautious and will prioritise the cost associated with the control,
causing too weak control input. Myopic control is therefore only really suitable for
processes where the control has a strong direct effect on the output.

One-Measurement Feedback
Due to failure of the myopic controller, it’s clear that a longer open-loop horizon
is needed. The resulting cost of different horizons between NOL = 10 and NOL =
250 can be seen in Table 7.2. It’s clear that the best results are obtained for open-
loop horizons between 50-150 which is in line with the discussion in the previous
chapter. Note however that the OMF doesn’t perform any better than CE-control
and the results for NOL between 50-150 can’t really be separated since they’re all

Table 7.2 Control cost for One-measurement feedback, depending on the
open-loop horizon, NOL

One-Measurement Feedback

NOL 10 50 100 150 200 250

Mean Cost 2.108 1.028 1.024 1.024 1.174 1.572
STD Cost 0.135 0.055 0.013 0.034 0.010 0.012
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Figure 7.3 The one-measurement feedback cost-to-go as a function of con-
trol signal for NOL = 50 (dotted), NOL = 100 (solid), and NOL = 150 (dashed).
Cost calculated at 2 seconds after the start. Left: The non-quadratic cost re-
lated to state uncertainty. Right: The quadratic cost directly related to control
and mean state.

within the error margins of each other. A better understanding for why this is can be
achieved if one plots the cost function JOMF

k (Dk) for different NOL at some example
state distribution. This is done in Figure 7.3 and the cost is further split up into the
quadratic and non-quadratic part of JOMF

k (Dk) given in (6.10). The quadratic part is
given by

2x̂T
k|k(Q

xu
k +ΦT

k Sk+1Γk)uk +u
T
k (Q

u
k +Γ

T
k Sk+1Γk)uk (7.1)

which is equal to the cost minimised in the CE-control. The non-quadratic part is
related to the state-uncertainty and is given by the last term of (6.10).

−Ezk+1

[
x̂T

k|k+1Φ
T
kCk+1Φkx̂k|k+1

∣∣Dk
]

(7.2)

From the plot it’s clearly seen that the quadratic part doesn’t change much for NOL >
50 which once again is in agreement with the previous discussion that showed Sk
has in large converged by then. The behaviour of the non-quadratic part also follows
the previous discussion with it’s valleys not showing any signs of converging. What
are of importance here are the scale of the axes, the non-quadratic part is 4 to 5
order of magnitudes smaller than the quadratic part. The range of uk over which
the graphs are drawn are also a couple orders of magnitude larger than the control
signals resulted from the CE-control. Therefore is the impact of the non-quadratic
part pretty much negligible, the minima of the non-quadratic part are too small and
too far away from the minima of the quadratic term.

The valleys of the non-quadratic term are of course dependent on the distribution
of xk, when the distribution becomes wider, so does the valleys. Eventually they
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Figure 7.4 Actual (solid) and estimated (dashed) position and resulting con-
trol signal when using one-measurement feedback for different open-loop hori-
zons. Top: NOL = 150, Middle: NOL = 200, Bottom: NOL = 250

will meet in the middle, completely removing the flat part in between them. At this
point the effects of the non-quadratic part will be felt and result in a slight shift in
the control-signal compared to CE-control. However, the effect is small and will be
sensitive to changes in the state-distribution. The limited resolution of the particle
filter will then introduce jitter in the control signal which can be seen in Figure 7.4
and was discussed in the previous chapter. The impact of the non-quadratic part
can of course be increased with longer open-loop horizons but that will affect the
accuracy of approximation. This can be seen in the worse performance of the longer
horizons. The impact will also be larger for processes where the control has larger
direct impact on the output, this is the reason for why the minimum of the non-
quadratic minimum are located at so large uk. It requires huge control inputs in
order to have an effective impact on the state-distribution, the effectiveness of OMF
control is therefore largely dependent on the process itself.

The effect on the control signal of when the non-quadratic part is given more and
more weight by increasing the open-loop horizon can seen in Figure 7.4. It’s clear
that for NOL = 150 very little probing effect is present and the control is largely re-
active in the same way as CE-control, no real change of control action is made until
a new measurement is received. The same behaviour was also present for NOL < 150
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with the only real difference being that the jitter, as expected, became smaller for
shorter horizons. Given this and the fact that the quadratic terms of the cost-to-go
completely dominate, it is no surprise that these controllers perform very similar to
the CE control. It is believed that if it wasn’t for the jitter introduced by the PF they
would be equivalent. Probing effect is only really seen when NOL > 150, with the
probing being stronger for larger NOL.

The probing actions seen for when NOL = 200 and NOL = 250 clearly do not trans-
late into lower final cost, meaning that the open-loop approximation the probing is
based upon, clearly isn’t good enough. However, worth noting is that over the 20
second interval displayed in Figure 7.4, the careful probing of NOL = 200 results in
a significantly lower cost, with an improvement of around 25-30% by avoiding the
large control effort of steering back the system after a measurement change. These
gains are sadly random in nature and do not manage to result in an improvement
over the entire 1000 second benchmark and the reason for it managing to reduce the
cost is a result of a couple of lucky outcomes.

The first lucky outcome is the probe direction. In this case the state distribution is
symmetric up until the first new measurement or control action, meaning that the
first probe direction is a function of the random distribution of particles in the PF.
If it would have probed in the other direction it would have simply steered faster
towards the upper measurement boundary resulting in a control very similar to the
one in NOL = 150. The other reason for it’s success is that the probing rate manages
to match the load disturbance well during the interval, once again a random event.
An example of what happens when the probing doesn’t match the load disturbance
can be seen for NOL = 250. In that case the controller will probe in the right di-
rection but too aggressively, the system is then simply driven quickly to the other
measurement boundary and is never left without control input. With it always be-
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Figure 7.5 Actual (solid) and estimated load disturbance when using one-
measurement feedback for different open-loop horizons, NOL = 150 (dashed),
NOL = 200 (dashed-dotted), and NOL = 250 (dotted)
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Table 7.3 Control cost for M-measurement cost feedback, depending on the
measurement and open-loop horizon, M and NOL respectively.

M

1 2 3 4
N

O
L
=

10
0 LQR-MMC

Mean Cost 1.024 1.044 1.122 N/A
STD Cost 0.013 0.046 0.011 N/A

Reference-
LQR-MMC

Mean Cost 1.024 1.027 1,025 N/A
STD Cost 0.013 0.034 0.021 N/A

N
O

L
=

15
0 LQR-MMC

Mean Cost 1.024 1.399 1.826 2.237
STD Cost 0.034 0.011 0.013 0.018

Reference-
LQR-MMC

Mean Cost 1.024 1.152 1.349 1.540
STD Cost 0.034 0.036 0.013 0.010

ing driven towards either zero or some boundary the controller does not allow for
any kind of natural probing, i.e. a new measurement being received without actively
probing for it. This over-probing is what would happen for NOL = 200 if the load
disturbance changed character, and this is exactly what happens later during the full
1000 second benchmark.

One other benefit of the probing which can be seen in Figure 7.5 is that it gives
information about the load disturbance without a change in the measurement even
though the effect is small. It’s clear that the rate of which the load disturbance
estimate is improved depends on how aggressive the probing is. However, from the
figure alone it’s hard to determine if this measurement-less information gain results
in a better estimate seen over time. Also, since identifying the load disturbance is
more of an indirect goal, this ability is more of a curiosity.

M-Measurement Cost (MMC) Feedback
Based on the results from the one-measurement feedback, suitable choices of open-
loop horizon were deemed to be NOL = 100 and NOL = 150 so they where used when
examining the MMC feedback. The results for both LQR-MMC and Reference-
LQR-MMC for a couple of different measurement horizons, M, can be found in
Table 7.3. From the table it’s immediately clear that increasing M does not au-
tomatically give a better approximation. This should of course be expected since
during the first M steps the policy is fixed and can not adapt to the measurement.
In fact, with M = ∞ both LQR-MMC and Reference-LQR-MMC revert back to the
CE-control since the measurement at which the policy is allowed to adapt never
arrives. The real advantage is that the MMC-approach allows for processes with
slower dynamics since the closing of the loop is done M measurements ahead. Con-
trol actions that take a couple of iterations to really take effect can not be accounted
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Figure 7.6 MMC feedback cost-to-go with NOL = 150 as a function of con-
trol signal for M = 1 (solid), M = 2 (dashed-dotted), M = 3 (dotted), and M = 4
(dashed). Cost calculated at 2 seconds after the start. Left: LQR-MMC, Right:
Reference-LQR-MMC, Top: Non-quadratic uncertainty term of cost, Bottom:
Quadratic certainty terms of cost.

for. The importance of the choice of f is also seen from the results. To illustrate
both of these properties, the non-quadratic and quadratic terms of the cost function
is plotted in Figure 7.6.

From Figure 7.6 the effect of larger M is clear, increasing M creates local minima
closer to zero. This is because it is mainly the position of the state distribution in
relation to the measurement intervals that determines the non-quadratic term. The
same amount of movement in the system can be achieved with a smaller control
input over a longer period of time, as a large control input over a short period of
time. This is the reason for these local minima since there now are multiple ways of
reaching the same position over different lengths of time.

A difference between LQR-MMC and Reference-LQR-MMC can also be seen with
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Figure 7.7 Actual (solid) and estimated (dashed) position when using MMC
feedback with NOL = 100 for different measurement horizons. Left: LQR-
MMC, Right: Reference-LQR-MMC, Top: M = 2, Bottom: M = 3
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Figure 7.8 Control signal when using MMC feedback with NOL = 150 for
different measurement horizons. Left: LQR-MMC, Right: Reference-LQR-
MMC, Top: M = 2, Bottom: M = 3

Reference-LQR-MMC having the minima of the non-quadratic part even closer to
zero. This can be reasoned about in the same way in terms of different ways of
achieving the same amount of movement in the system. For Reference-LQR policy,
a control action uk is in this case followed by uk+1,uk+2... that are larger than uk
and the opposite is true for the LQR-policy. This means that Reference-LQR-MMC
expects a greater amount of movement for the same uk compared to LQR-MMC,
meaning that the same minima are reached for smaller uk, moving the minima close
to zero.
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Figure 7.9 Actual (solid) and estimated (dashed) position when using MMC
feedback with NOL = 150 for different measurement horizons. Left: LQR-
MMC, Right: Reference-LQR-MMC, Top: M = 2, Bottom: M = 3
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Figure 7.10 Control signal when using MMC feedback with NOL = 150 for
different measurement horizons. Left: LQR-MMC, Right: Reference-LQR-
MMC, Top: M = 2, Bottom: M = 3

These minima close to zero have the effect of increasing the impact of the non-
quadratic uncertainty term, making probing actions to occur at shorter open-loop
horizons. The fact that they are closer to zero and the valleys are much narrower
and well defined also makes them slightly less sensitive to the particle filter jitter.
This is helped further by the fact that for Reference-LQR-MMC the quadratic term
becomes more narrow with larger M. This doesn’t happen for the LQR-policy since
it’s the policy that minimises CE cost-to-go which is the same as the quadratic
terms of the MMC cost-to-go. All this results in the Reference-LQR-MMC being
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more cautious than the LQR-MMC and it’s demonstrated in the example trajectories
presented in Figure 7.7 to 7.10.

Other than what’s previously been discussed the behaviour of the MMC-feedback
is very similar to the one-measurement feedback. The best performance is achieved
when the probing effect is minimal as seen in the resulting position Figure 7.7 and
control Figure 7.8 for NOL = 100. The Reference-LQR-MMC has no real prob-
ing regardless of M and performs the best while the performance of LQR-MMC
deteriorates as M increases and introduces very light probing. For NOL = 150 all
controllers suffer from over-probing as can be seen in Figure 7.9 and Figure 7.10
but once again with Reference-LQR-MMC being more cautious and thereby per-
forming better. However, note the similarities in both trajectories and cost between
Reference-LQR-MMC with M = 2 and NOL = 150 and OMF with NOL = 200.

Computational Cost and Feasibility
Up until now little mention has been made of the feasibility of using these methods
in a real-time application. In Table 7.4 are the average simulation times for the
1000 second benchmark for the different controllers. The simulations were made
on a 4-core i5 based desktop with 8 GiB of ram, and for comparison, a stand alone
simulation without any filter or control took around 15 seconds. The results are
here quite telling in that these methods are really expensive. Running a particle
filter alone is not something that usually is possible on a simple embedded system
and even the OMF-controllers is here around 2.5 times more expensive, forcing the
intended system to have hardware equivalent to modern pc/desktop computational
power. None of the MMC-controllers are really feasible, especially considering that
they didn’t provide any real advantage in performance.

Note however that the algorithm for the MMC controller here is the naive approach
that iterates over all possible future measurement sequences, causing an unneces-
sary expensive evaluation. The algorithm presented in Algorithm 6.3 is expected to
perform much better. Although it has a computational cost of O(3M), a more ac-
curate cost would be O(NM + 3M) where N is the number of particles in the PF.
For small M the NM term is expected to dominate, meaning the cost should scale

Table 7.4 Simulation time for different feedback policies

CE
/O

LO
F

O
M

F

M
M

C:
M
=

1
M

M
C:

M
=

2
M

M
C:

M
=

3
M

M
C:

M
=

4

Simulation time [s] 82 189 615 1317 3426 10702
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linearly with M. Furthermore, the OMF algorithm used here is a special case of
Algorithm 6.3 with M = 1 so with this discussion, it would be reasonable to expect
that a sub-real-time simulation would be achievable on the hardware used here for
M = 3 or perhaps even M = 4.

7.3 Conclusion

The general approach used for all the tested controllers is certainly no catch-all,
plug-and-play solution, and all controllers required tuning of horizon lengths to
achieve results even on par with CE control. The computational cost is a real con-
cern, and since overall no real performance gain was had over CE control, it makes
it hard to motivate the use of it in any real-world scenario. However, the methods
described here can not be completely ruled out since it’s clear that the behaviour
clearly depends on both the system and the weights of the cost function and only
one set of process and weights was tested here. The probing effects might turn out
more useful for perhaps even more extreme quantisation interval sizes.

The methods tested did serve as a good indication of the difficulties of inducing
the right amount of probing action into the control since all results point to that no
probing at all achieves to best result. This perceived property of the system is some-
thing that should be further examined, especially something can be said about the
balance between the natural and the induced probing of the process in an optimal
controller. The meaning of natural probing being the occurrence of normal random
events that reduce the state variance, in this case a new measurement being received
without actively probing for it. What’s suspected to happen here is that when the
state distribution gets wide enough for the controller to see a cost improvement
from a measurement change, the probability of that measurement change happen-
ing spontaneous is already high enough for the control effort not being worth it.
However, there are processes where the need for active probing is higher, making
the methods proposed in this thesis potentially better suited for them.
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8
Summary and Future
Prospects

The reason for the success of the particle filter over the last 20 years is obvious: the
simple framework it’s based on provides intuitive solution methods and accurate
estimates. However, the results of this work have shown it is still important not to
forget its shortcomings when applying a PF to a system. Care should be taken to
design a PF that takes into account as much of the system dynamics as possible in
the prediction step. The cost of running a PF is also great, especially when compar-
ing to the simplicity of the Kalman filter. Low computational cost approximations
of the optimal filter, like the ones presented in Chapter 3.1, that can provide close to
optimal estimates are therefore still of great interest. Especially when considering
the kind of future predictions used here when solving the dynamic programming
problem. A computationally cheaper filter would allow for methods looking further
in the future compared to a full-scale particle filter.

The problem of dual control and the balancing of probing and control actions needs
further examination. The cost-to-go approximations used here have at the very least
been shown to be inadequate for producing a suitable probing effect in the con-
troller. In order to gain further understanding for how the optimal control action
would look, and from that create better approximations, it would be useful to, in an
offline setting, numerically calculate an optimal control sequence. However, at the
moment there’s a lack of suitable solvers for this task.

Most of the development of solvers has been focused on fully observed stochas-
tic systems and the methods present for partially observed systems are unsuitable
since they rely on a Gaussian approximation together with a linearisation of the
measurement function. A fact that was mentioned very briefly, that derivative in-
formation had been extracted cheaply for a one-measurement problem, is therefore
very promising. This opens up for locally optimal roll-out solvers that iterate over
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linear quadratic approximations around a state and measurement trajectory. Such a
method could potentially solve any partially observed stochastic dynamic program-
ming problem. The same iterative solver could most likely be used in real-time for
the OMF problem if that policy turns out to be useful in some other situation. The
iterative solver wouldn’t suffer as much from the jitter introduced by the PF and
with minor modifications could also handle the delayed one-measurement feedback
that was shortly discussed in relation to the MMC-feedback. Since no real changes
in behaviour were seen between the MMC-feedback and OMF, the delayed OMF
might be a suitable replacement for the MMC-feedback when it is needed to handle
systems with slow dynamics.

Although the goal of improving the control over a certainty equivalent approach
wasn’t achieved, some important initial steps have been taken in a few areas. A
very low cost method for an approximative filter, utilising a dynamic model of the
measurement error and a Kalman filter, was presented and showed early promises
in preliminary testing. The particle filter was introduced to a dynamic programming
setting and even though this has been done before, methods designed specifically
around the PF have not. By utilising the structure of the particle filter, the com-
putational cost could greatly be reduced by not re-predicting the particles multiple
times. Both of these concepts can serve as important stepping stones, leading to a
future with cheaper and better dual controllers.
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A
Discretization

A.1 Discretized State-Space Model

Given a LTI system on state-space form

ẋ=Ax+Bu+Nν

y =Cx
(A.1)

where ν is continuous zero mean white noise with power spectral densityR, i.e. the
integral of ν between a and b is a random variable with zero mean and covariance
R(b−a). The concept of continuous white noise is in reality more nuanced but this
will suffice for this simple purpose.

By integrating from tk to tk+1, an interval with length hk, and defining x(tk) = xk,
u(tk) = uk and y(tk) = yk we get.

xk+1 = eAhkxk +
∫ tk+1

tk
eA(tk+1−s)Bu(s)ds+

∫ tk+1

tk
eA(tk+1−s)Nν(s)ds

yk =Cxk

(A.2)

Consider the third term. It’s a discrete random sequence we can call νk. The se-
quence mean is

E[νk] = E
[∫ tk+1

tk
eA(k+1−s)Nν(s)ds

]
=
∫ tk+1

tk
eA(tk+1−s)N E[ν(s)]︸ ︷︷ ︸

0

ds = 0 (A.3)
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While the autocovariance is given by

Cov[νk,νl ] = E

 tk+1∫
tk

tl+1∫
tl

eA(tk+1−s)Nν(s)νT (t)NT eA
T (tl+1−t)dtds


=

tk+1∫
tk

tl+1∫
tl

eA(tk+1−s)N E
[
ν(s)νT (t)

]︸ ︷︷ ︸
0

NT eA
T (tl+1−t)dtds = 0

(A.4)

when k 6= l since the interval [tk, tk+1] and [tl , tl+1] are disjoint and per definition ν is
uncorrelated on disjoint intervals. By being somewhat casual about the formalism
for continuous white noise we get

Cov[νk,νk] =
∫∫ tk+1

tk
eA(tk+1−s)N E

[
ν(s)νT (t)

]
NT eA

T (tk+1−t)dtds

=
∫∫ tk+1

tk
eA(tk+1−s)NRδ (t− s)NT eA

T (tk+1−t)dtds

=
∫ tk+1

tk
eA(tk+1−s)NRNT eA

T (tk+1−s)ds = R̂k

(A.5)

for the case when k = l. From this it’s clear that νk is a zero mean white noise
sequence where R̂k denotes the power spectrum of the process.

Now consider the second term of (A.2). By using a zero-order hold on the control
signal u(t) will be constant on the interval [tk, tk+1) which gives.∫ tk+1

tk
eA(tk+1−s)Bu(s)ds =

∫ tk+1

tk
eA(tk+1−s)Bdsu(tk) = Γkuk (A.6)

Finally by identifying eAhk as Φk, Figure A.2 can be written as the discrete linear
system.

xk+1 =Φkxk +Γkuk +νk

yk =Cxk
(A.7)

where νk is a zero mean white noise sequence with power spectrum R̂k.

A.2 Positive Definiteness of Discrete White Noise Power
Spectrum

The power spectrum given by (A.5) is positive definite givenN is non-singular and
R is a full rank covariance matrix.
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Proof Since R is a covariance matrix it’s positive definite and therefore has non-
negative eigenvalues. The added restriction of it having full rank then gives that all
eigenvalues are positive and diagonalisation then gives positive definiteness.

zTRz > 0, ∀z 6= 0 (A.8)

By setting z =NT eA
T (tk+1−s)x and noting that N and eA

T (tk+1−s) have full rank,
exponential matrices always have an inverse (eM )−1 = e−M , we can conclude that
x= 0 ⇐⇒ z = 0

zTRz = xT eA(tk+1−s)NRNT eA
T (tk+1−s)x> 0, ∀x 6= 0 (A.9)

This gives ∫ tk+1

tk
xT eA(tk+1−s)NRNT eA

T (tk+1−s)xds

= xT
∫ tk+1

tk
eA(tk+1−s)NRNT eA

T (tk+1−s)dsx

= xT R̂kx> 0, ∀x 6= 0

(A.10)
2

A.3 Discretisation of Continuous Cost Function

Cost functions defined in continuous time also need to be discretised when the prob-
lem is transferred to discrete time. Given a cost function on the form

V = E
[
‖x−x∗r‖

2
Qx +‖u−u∗r‖

2
Qu

]
= E

[
‖x̃‖2

Qx +‖ũ‖2
Qu

]
= E

[∫ t f

0
x̃TQxx̃dt +

∫ t f

0
ũTQuũdt

] (A.11)

where x∗r and u∗r are a stationary solution that gives y = r when no noise is present.
By considering the integration on the discretisation intervals using a zero-order hold
on the input, making it constant on each interval, one gets:

V = E
[∫ t f

0
x̃TQxx̃dt +

∫ t f

0
ũTQuũdt

]
= E

[
N

∑
k=0

(∫ tk+1

tk
x̃TQxx̃dt +

∫ tk+1

tk
ũTQuũdt

)] (A.12)

By using a zero-order hold on u the second integral can be simplified to

E
[∫ tk+1

tk
ũTQuũdt

]
= E

[
ũT

kQ
uũkhk

]
(A.13)
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where like before hk is the interval length.

The first term can be simplified by, similar to Appendix A.1, integrate the system
between [tk, t], tk < t < tk+1 to give an expression for x and x̃ on the interval.

x(t) =Φk(t)xk +Γk(t)uk +νk(t)

=⇒
x̃(t) =Φk(t)x̃k +Γk(t)uk +νk(t)

(A.14)

whereΦk(t) = eA(t−tk), Γk(t) =
∫ t

tk
eA(t−tk)Bds and νk(t) is zero mean white noise.

This can be inserted into the first integral of (A.12).

E
[∫ tk+1

tk
x̃TQxx̃dt

]
=

E
[∫ tk+1

tk

(
x̃T

kΦ
T
k (t)+ ũ

T
k Γ

T
k (t)+νk(t)T )Qx(Φk(t)x̃k +Γk(t)ũk +νk(t)

)
dt
]

From definition νk(t) is uncorrelated with the past, i.e. x̃k and ũk. All cross-terms
will then be zero, resulting in:

E
[∫ tk+1

tk
x̃TQxx̃dt

]
=

E
[∫ tk+1

tk

(
x̃T

kΦ
T
k (t)+ ũ

T
k Γ

T
k (t)

)
Qx(Φk(t)x̃k +Γk(t)ũk

)
dt

+
∫ tk+1

tk
νk(t)TQxνk(t)dt

] (A.15)

The second term can’t be controlled and an equivalent control cost function can
therefore be constructed by discarding it. Combining (A.13) and (A.15) to break
out all constant term then gives the discretised cost function J[xk], acting on the
sequence {xk}.

J = E

[
N

∑
k=0
x̃T

kQ
x
kx̃k +2x̃T

kQ
xu
k ũk + ũ

T
kQ

u
kũk

]

= E

[
N

∑
k=0

(xk−x∗k)TQx
k(xk−x∗k)+2(xk−x∗k)TQxu

k (uk−u∗k)

+(uk−u∗k)TQu
k(uk−u∗k)

] (A.16)
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where

Qx
k =

∫ tk+1

tk
ΦT

k (t)Q
xΦk(t)dt, Qxu

k =
∫ tk+1

tk
ΦT

k (t)Q
xΓk(t)dt

Qu
k =

∫ tk+1

tk
Γ T

k (t)QxΓk(t)dt +Quhk

(A.17)

A.4 Numerical Matrix Calculations

Expressions for numerical computation of the discrete system matrices from Ap-
pendix A.1 together with the discretised cost function weights from Appendix A.3
will here be derived. Note that even though expressions for Φk and Γk will be given
no original code was used when computing them in this work, instead MATLAB’s
built in functions were used. For the other matrices original code was developed
and we will therefore briefly touch on some computational aspects although no ac-
tual code will be provided. With that being said, the main purpose of this section
was to alleviate some curiosity and I’m aware of better ways of performing these
calculations.

Extensive use of the Taylor expansion of the matrix exponential will be made in
order to express the matrices as infinite sums. When doing numerical calculations
tail of the sum can be truncated when desired precisions has been achieved. This
will be the procedure for all these calculations so therefore this truncation will not
be explicitly noted and all sum will be left as infinite.

Φk is gotten directly from the Taylor expansion

Φk = eAhk =
∞

∑
i=0

Aihi
k

i!
(A.18)

For Γk, the Taylor expansion is integrated after a variable change in the integral to
give a cleaner notation.

Γk =
∫ tk+1

tk
eA(tk+1−s)Bds =

∫ hk

0
eAsdsB

=
∫ hk

0

∞

∑
i=0

Aisi

i!
dsB =

∞

∑
i=0

Ai

i!

∫ hk

0
sidsB

=
∞

∑
i=0

Aihi+1
k

(i+1)i!
B =

∞

∑
i=0

Aihi+1
k

(i+1)!
B

(A.19)
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The procedure is largely the same for R̂k

R̂k =
∫ hk

0
eA(s)NRNT eA

T (s)ds =
∫ hk

0

∞

∑
i=0

Aisi

i!
NRNT

∞

∑
j=0

AT js j

j!
ds

=
∞

∑
i=0

∞

∑
j=0

AiNRNTAT j

i! j!

∫ hk

0
si+ jds

=
∞

∑
i=0

∞

∑
j=0

AiNRNTAT j

i! j!(i+ j+1)
hi+ j+1

k

(A.20)

Since the structure ofQx
k is almost identical to R̂k we directly get

Qx
k =

∞

∑
i=0

∞

∑
j=0

AT iQxA j

i! j!(i+ j+1)
hi+ j+1

k (A.21)

The expressions Qxu
k and Qu

x are more cumbersome because of the nested integrals
but the derivations follow the same pattern. For brevity they will therefore be stated
directly.

Qxu
k =

∞

∑
i=0

∞

∑
j=0

AT iQxA jB

i!( j+1)!(i+ j+2)
hi+ j+2

k

Qu
x =

∞

∑
i=0

∞

∑
j=0

BTAT iQxA jB

(i+1)!( j+1)!(i+ j+3)
hi+ j+3

k +Quhk

(A.22)

By identifying

Θi
j =

AT iQxA j

i! j!
hi+ j+1

k (A.23)

we can write the discretised weights as

Qx
k =

∞

∑
i=0

∞

∑
j=0

Θi
j

(i+ j+1)
, Qxu

k =
∞

∑
i=0

∞

∑
j=0

Θi
jhk

( j+1)(i+ j+2)
B

Qu
x =B

T
∞

∑
i=0

∞

∑
j=0

Θi
jh

2
k

(i+1)( j+1)(i+ j+3)
B+Quhk

(A.24)

This is useful for computational purposes since it’s enough to computeΘi
j once for

each i, j and updating each Qk individually, reducing the number of matrix multi-
plications needed. Even further computational reductions can be made by noting the
symmetry Θi

j = (Θ j
i )

T . Both of these properties were utilised in the work for this
thesis and the infinite series was truncated at i, j = l, where l is the smallest integer
fulfilling

∥∥Θl
l

∥∥
2 < ε for some parameter ε . No statement is made about the qual-

ity of this termination criterion other than it was chosen for it being a good fit for
the access pattern of i, j used in the algorithm and it was deemed to have adequate
accuracy when ε was small.
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A.5 Model Partitioning

Given a LTI system on state-space form

ẋ=Ax+Bu+Nν

y =Cx
(A.25)

satisfying

A=

[
Am Bm

0 0

]
, B =

[
Bm

0

]
(A.26)

for some column vector Bm and some upper triangular square matrix Am, the
discretised system

xk+1 =Φkxk +Γkuk +νk

yk =Cxk
(A.27)

will satisfy

Φk =

[
Φmk Γmk

0 1

]
, Γk =

[
Γmk

0

]
(A.28)

where Φmk is square and Γmk is a column vector.

Proof We first note from (A.18) and (A.19) that

Φk = I+AΨk

Γk = ΨkB
(A.29)

where

Ψk =
∞

∑
i=0
ψi

k, ψi
k =

Aihi+1
k

(i+1)!
(A.30)

From this we can see that the bottom row of Φk is
[
0 1

]
.

The constraints onA now gives:

A

[
0
1

]
=B =⇒ AiA

[
0
1

]
=AiB =⇒ AAi

[
0
1

]
=AiB

=⇒ Aψi
k

[
0
1

]
=ψi

kB =⇒ AΨk

[
0
1

]
= ΨkB =⇒ (Φk−I)

[
0
1

]
= Γk

(A.31)
2
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B
Sampling and Random
Variables

B.1 Bayes’ Rule - Mixed Random Variables

Bayes’ rule holds when mixing discrete and continuous random variables. The prob-
ability density function (PDF) can be exchanged for the discrete variables probabil-
ity mass function (PMF).

Proof Given a discrete random variable X with PMF P(x) and PMF conditioned on
some continuous random variable A, P(x|a). Generalise the PMFs by introducing
the Dirac delta function.

p(x) =
∞

∑
i=0

P(x)δ (x− xi), p(x|a) =
∞

∑
i=0

P(x|a)δ (x− xa
i ) (B.1)

where xi and xa
i are all the point P(x) and P(x|a) are non-zero.

Bayes’ rule for continuous random variables gives

p(a|x)p(x) = p(x|a)p(a)

=⇒∫
Ω

p(a|x)p(x)dx =
∫

Ω

p(x|a)p(a)dx, ∀Ω
(B.2)

Choose Ω such that it only contains one of xi.∫
Ω

p(a|x)
∞

∑
i=0

P(x)δ (x− xi)dx =
∫

Ω

p(a)
∞

∑
i=0

P(x|a)δ (x− xa
i )dx

=⇒

p(a|xi)P(xi) = P(xi|a)p(a) ⇐⇒ p(a|xi) =
P(xi|a)p(a)

P(xi)

(B.3)
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Same result is given if Ω is chosen to contain xa
i or none of xi or xa

i .

=⇒ p(a|x) = P(x|a)p(a)
P(x)

(B.4)
2

B.2 Approximate Sampling From the Truncated
Gaussian Distribution

A coarse approximative method will here be derived for sampling from a truncated
Gaussian distribution. It’s based on the rudimentary method of inverse transform
sampling [Blom et al., 2005]. Let F be a univariate cumulative distribution function
(CDF) for some random variable X . Random samples, xi, can then be generated
from F by

xi = F−1(ui), ui ∼U (0,1) (B.5)

where U is the uniform distribution.

Truncating a distribution between a and b with a < b is the same as rescaling and
translating the CDF as

Fb
a (x) =

F(x)−F(a)
F(b)−F(a)

(B.6)

The inverse of this expression is

(Fb
a )
−1(x) = F−1

((
F(b)−F(a)

)
x+F(a)

)
(B.7)

This expression can be used with the inverse sampling to generate samples from
any truncated distribution of an invertible CFD.

The unit Gaussian distribution has the following CFD

F(x) =
1
2

(
1+ erf

(
x√
2

))
(B.8)

with inverse
F−1(x) =

√
2erf−1(2x−1) (B.9)

By replacing the error function with the inverse of the approximation (3.18)

ẽrf
−1
(x) =


√

x
4(1−x) if x <−0.5

x if −0.5≤ x≤ 0.5

−
√

−x
4(1−x) if x > 0.5

(B.10)

an approximate sampling can be obtained. A comparison between this method and
the method from [Botev, 2015] can be found in Chapter 4.
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C
LQ Optimal Control

C.1 Partitioning of the Riccati Equation

Given the dynamic Riccati equation and optimal feedback gain for the standard
deterministic discrete time LQR problem

Sk =Q
x
k +Φ

T
k Sk+1Φk

− (Qxu
k +ΦT

k Sk+1Γk)(Q
u
k +Γ

T
k Sk+1Γk)

−1(Qxu
k +ΦT

k Sk+1Γk)
T

SN =Qx
N

Lk =− (Qu
k +Γ

T
k Sk+1Γk)

−1(Qxu
k +ΦT

k Sk+1Γk)
T

(C.1)

the following partitioning of the system matrices

Sk =

[
Sm

k Smd
k

Smd
k

T
Sd

k

]
, Φk =

[
Φmk Γmk

0 I

]
, Γk =

[
Γmk

0

]
Qx

k =

[
Q̂x

k Qxd
k

Qxd
k

T
Qd

k

]
, Qxu

k =

[
Q̂xu

k
Qdu

k

] (C.2)

and assumption that the linear system given by Φm
k and Γm

k is controllable, Lk will
still converge even though the system given by Φk and Γk isn’t controllable and Sk
diverges as N→ ∞. By direct insertion of the partitioned matrices and carrying out
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of the block multiplication

ΦT
k Sk+1Φk =

[
ΦmT

k 0
ΓmT

k I

][
Sm

k+1 Smd
k+1

Smd
k+1

T
Sd

k+1

][
Φmk Γmk

0 I

]

=


ΦmT

k S
m
k+1Φ

m
k ΦmT

k S
m
k+1Γ

m
k +Φ

mT
k S

md
k+1

ΓmT
k S

m
k+1Φ

m
k +S

md
k+1

T
Φmk

ΓmT
k S

m
k+1Γ

m
k +Γ

mT
k S

md
k+1

+Smd
k+1

T
Γmk +S

d
k+1


ΦT

k Sk+1Γk =

[
ΦmT

k 0
ΓmT

k I

][
Sm

k+1 Smd
k+1

Smd
k+1

T
Sd

k+1

][
Γmk

0

]

=

[
ΦmT

k S
m
k+1Γ

m
k

ΓmT
k S

m
k+1Γ

m
k +S

md
k+1

T
Γmk

]

Γ T
k Sk+1Γk =

[
ΓmT

k
0

][
Sm

k+1 Smd
k+1

Smd
k+1

T
Sd

k+1

][
Γmk

0

]
= ΓmT

k S
m
k+1Γ

m
k

(C.3)

the following expressions can be gotten for the partitions of Sk.

Sm
N =Q̂x

N

Sm
k =Q̂x

k +Φ
mT

k S
m
k+1Φ

m
k− (Q̂xu

k +ΦmT
k S

m
k+1Γ

m
k)

· (Qu
k +Γ

mT
k S

m
k+1Γ

m
k)
−1(Q̂xu

k +ΦmT
k S

m
k+1Γ

m
k)

T

Smd
N =Qxd

N

Smd
k =Qxd

k +ΦmT
k S

m
k+1Γ

m
k +Φ

mT
k S

md
k+1− (Q̂xu

k +ΦmT
k S

m
k+1Γ

m
k)

· (Qu
k +Γ

mT
k S

m
k+1Γ

m
k)
−1(Qdu

k +ΓmT
k S

m
k+1Γ

m
k +S

md
k+1

T
Γmk)

T

=Qxd
k +ΦmT

k S
m
k+1Γ

m
k +Φ

mT
k S

md
k+1

+Lm
k

T (Qdu
k +ΓmT

k S
m
k+1Γ

m
k +S

md
k+1

T
Γmk)

T

=C(Sm
k+1)+(Φmk +Γ

m
kL

m
k )

TSmd
k+1

(C.4)

Where C(Sm
k+1) gathered all other terms that do not depend on Smd

k+1 and

Lk =[Lm
k L

d
k ]

Lm
k =− (Qu

k +Γ
mT

k S
m
k+1Γ

m
k)
−1(Q̂xu

k +ΦmT
k S

m
k+1Γ

m
k)

T

Ld
k =− (Qu

k +Γ
mT

k S
m
k+1Γ

m
k)
−1

· (Qdu
k Γ

mT
k S

m
k+1Γ

m
k +S

md
k+1

T
Γmk)

T

(C.5)

The expression for Lm
k only depends on Sm

k and is the exact same as for a LQR
problem for just the reduced system given by Φm

k and Γm
k . Since that system is
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assumed controllable, Sm
k will converge as N→ ∞ and since Sm

k is independent of
Smd

k , it will converge regardless of Smd
k . After convergence of Sm

k , all matrices in
the expression for Smd

k will turn into constant, turning the expression to a affine
fixed point iteration over Smd

k .

The Jacobian of the affine function is Φmk +Γ
m

kL
m
k which is the system matrix

for the closed loop system given by Φm
k , Γm

k and Lm
k which is known to be stable

from the standard theory of LQR-control given some further light restrictions on
the weighs Qk . The eigenvalues of Φmk +Γ

m
kL

m
k is then inside the unit circle.

Banach fixed-point theorem then gives the convergence of the fixed point iteration
since the affine function then is a contraction. The full expression for Sd

k is left out
for brevity but it’s easily seen that the same can not be said for Sd

k even after the
convergence of Sm

k and Smd
k . The expression will be on the form

Sd
k =C ′(Sm

k+1,S
md
k+1)+S

d
k+1 (C.6)

The Jacobian of this expression clearly has eigenvalues 1 so convergence can not be
guaranteed. However, since it’s clear thatLk doesn’t depend on Sd

k , it will converge
as long as Sm

k and Smd
k converges.
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