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Abstract

The �rst part of this thesis deals with the dynamical estimation of the Oort constants using
proper motions and parallaxes provided from the Gaia-DR1 TGAS catalogue. The photomet-
ric information was provided by the 2MASS catalogue. The Oort constants calculated from
the TGAS catalogue are compared to those obtained from the original Hipparcos catalogue
in order to attempt to estimate how well Gaia-DR1 performs. A least squares approach was
implemented to calculate the Oort constants. This routine contained seven parameters where
the stellar LSR velocity components were included as well. The overall trend seems to be such
that the TGAS catalogue can provide meaningful and potentially better results compared
to that of the Hipparcos catalogue if the study is not sensitive to a catalogue that is colour
incomplete. TGAS worked fairly well in the determination of the Oort constants mainly due
to its large sample size, giving it a statistical edge over the Hipparcos catalogue.

In the second part of the thesis the local mass density, ρ0, was determined using tracer star
populations for two catalogues. The �rst one was the original Hipparcos catalogue where the
data was propagated to the year 2015. The second catalogue was a combination of Hipparcos
stars obtained from both the TGAS and the propagated HIP catalogues. This was done in
order to avoid the incompleteness issue that resulted after the creation of the TGAS catalogue.

The estimated local mass density from the propagated Hipparcos catalogue was ρ0 =
0.112± 0.009 M� pc−3 while the combined TGAS sample got ρ0 = 0.113± 0.006 M� pc−3.
This result implies that the TGAS catalogue is slightly better compared to the HIP catalogue
in performance since it provides with lower formal errors.

Based on the results of the two dynamical estimations performed, the TGAS catalogue can
be seen as marginally better when compared to the HIP catalogue. In addition, the formal
errors resulting from the calculations using the TGAS catalogue are better compared to those
obtained using the HIP catalogue. The formal errors are especially good when dynamically
estimating the Oort constants since so many stars are included in the calculations. It is,
however, di�cult to estimate the performance of the complete Gaia catalogue by simply
considering the �rst data release. The release of Gaia-DR2 will hopefully resolve the questions
surrounding the performance of the Gaia catalogue.





Populärvetenskaplig beskrivning

Genom att observera och intervjua invånarna i Lund, kan man erhålla mycket information
om historien och infrastrukturen för staden. Detta tyder på en särskilt självklar princip; om
man studerar de mindre beståndsdelarna av ett system, så kan man erhålla egenskaper som
är gällande för systemet i helhet. Detta är precis vad dagens astronomer utnyttjar för att lära
sig mera om vårt universum. De minsta beståndsdelarna i en galax är stjärnorna, och genom
att samla information för alla dessa så kan man erhålla detaljer kring galaxens utveckling
och struktur. Gaia uppdraget har precis detta i åtanke. I detta väldigt ambitiösa projekt
så hoppas man kunna kartlägga Vintergatan genom att ta mätningar för ungefär en miljard
stjärnor. Med denna moderna kartläggningen av galaxen så hoppas man kunna upptäcka mer
om vad Vintergatan består av, dess historia och dess evolution.

Gaia lanserades 2014 och förmodas vara helt avslutad omkring 2022 och kommer då kunna
erbjuda den största astrometriska stjärnkatalogen någonsin. Eftersom man inte förväntas
få en komplett stjärnkatalog från Gaia förräns om ungefär 5 år, så kommer det lanseras
mellanliggande, mindre kataloger som innehåller den information man lyckats samla in under
tiden. Den första av dessa mindre katalogerna kallas för Gaia-DR1 (Gaia Data Release 1)
och innehåller information för de första 14 månaderna som projektet varit aktivt. Det är
denna mindre katalog som vi har använt i detta examensarbete i ett försök att uppskatta den
totala prestandan som den kompletta Gaia katalogen kommer att erbjuda. Genom att redan
nu undersöka möjligheterna och begränsningarna med Gaia, kan vi planera i förtid på hur
de kommande projekten som använder sig av Gaia kommer kunna ge oss en större inblick
i hur vårt universum fungerar. Astronomerna hoppas kunna erhålla den mest kompletta
beskrivningen av vår galax någonsin genom implementationen av den information som Gaia
kommer att erbjuda.
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1 INTRODUCTION

For over nine decades astronomers have studied the distribution and kinematics of stellar
objects in an attempt to uncover the history and structure of the Milky Way. Kapteyn &
van Rhijn (1920) could nearly 100 years ago give estimates of the size and thickness of the
galaxy using stellar data that was provided at the time. Two years later Kapteyn (1922)
could provide the �rst reasonable estimate of the mass density for the Milky Way using radial
velocity and proper motion measurements of stars in the solar neighbourhood. In Oort's
pioneering paper from 1927 he pointed out that the mass of the galaxy as inferred by Kapteyn
was not su�ciently large to keep the globular clusters and RR Lyrae stars bound to the galaxy,
thus giving an indication of the existence of dark matter.

The great success in technological advancement during the last 30 years has allowed in-
strumentation to be improved leading to the possibility of more accurate measurements of
positions and velocities for stellar objects. Consequently, considerable amounts of resources
have previously been, and still are devoted to astrometric space missions such as the Hipparcos
mission and the still very modern Gaia space mission. The Hipparcos satellite was launched in
1989 by the European Space Agency, being the �rst space mission with the purpose to collect
astrometric data of stars in the Milky Way. It managed to pinpoint more than 100 000 stars
with an accuracy that was 200 times better than any mission conducted previously. The data
containing measurements of positions, distances and proper motions of stars could then be
used to re�ne the distance scale of the galaxy. Even though the mission was limited in both
size and observed volume, it still provided signi�cant knowledge regarding the structure and
dynamics of the Milky Way (Perryman 2008).

The Gaia mission was launched in 2013 with the aim to measure the spatial and velocity
distributions, for an expected sample size of one billion stars, in six dimensions (positions,
proper motions and radial velocities). The main goal of the Gaia mission is to explore the
subjects of the formation, structure and evolution of the galaxy by the creation of a six
dimensional mapping of the Milky Way. There will be a number of intermediate Gaia data
releases, where the �rst is referred to as Gaia Data Release 1 (Gaia-DR1) and was released to
the scienti�c community after 14 months of measurements. (Gaia Collaboration et al.: Gaia
Mission 2016). However, the data provided from Gaia-DR1 is not viable for usage on its own.
Instead other catalogues named Tycho-2 and Hipparcos were needed to de�ne positions at
an earlier epoch, thus giving accurate proper motions for the so called TGAS solution. This
catalogue provides a �ve parameter astrometric solution for stars in both the Hipparcos and
Tycho-2 catalogues (Michalik et al. 2014). Gaia-DR1 on its own only provides photometry
in the Gaia G-band, thus the inclusion of an additional survey is necessary in order to obtain
photometric information. The survey used here is called 2MASS and provides photometry for
stars in the near infrared bandpasses J , H and Ks.

The purpose of this thesis is to investigate the potential improvements that the Gaia-DR1
brings to dynamical astronomy. The data used consists of both the Hipparcos catalogue and
a cross-match between the TGAS & 2MASS catalogues. Initially, the values of the Oort
constants A, B, C and K that describe properties of the local velocity �eld are dynamically
estimated using proper motions and a least squares routine. The mean motion of material
in the solar neightbourhood, also called the local standard of rest (LSR), was estimated by
expanding the least squares routine such that it contains the LSR velocity components of the
Sun, (u0, v0, w0). In addition to all this, the mass density in the solar neighbourhood, ρ0, is
estimated using tracer star densities in the galactic plane.
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2 DATA

2.1 The Hipparcos Catalogue

The Hipparcos catalogue was published in 1997 where it contained, in total, 118 218 stars. Out
of the total sample size, approximately 99.78 percent had astrometric data for the positions,
parallaxes and proper motions in the J1991.25 epoch. The data was of very high quality where
the standard errors were of the order 1-1.2 mas in addition to a systematic error of ≤ 0.1 mas.
For the large majority of the stars in the Hipparcos sample, photometric data in the V-band
as well as values for the colour index B− V were provided. These colours will be of use when
the Oort constants and the local mass density are to be calculated from the stars provided
in the Hipparcos catalogue. It is also worth mentioning that the catalogue is complete to
V ' 8.0, which will be of particular importance when calculating ρ0. For more information
regarding the Hipparcos catalogue see Perryman et al. (1997).

2.2 Gaia-DR1 TGAS

The Gaia mission was originally proposed in 1993 by Lennart Lindegren and Michael Perryman
(Gaia Collaboration, et al.: The Gaia Mission 2016). The essential goal of the mission is to
clarify how the galaxy has evolved through time in a quantitative manner by the study of
stellar populations con�ned within the Milky Way. It will provide the precision needed in
order to allow evaluation of the processes surrounding the early formation of the galaxy to be
explored in greater detail (Perryman et al. 2001). The mission was launched in 2013 where
the nominal �ve year science operations phase started in the �rst half of 2014. The survey
will be limited to a magnitude of 20.7 in the photometric G band and is expected to provide
an accuracy of 24 µas on parallax measurements down to a magnitude limit of G = 15. At
this moment, the �nal data products are expected to be delivered by DPAC (Data Processing
and Analysis Consortium) between 2022 and 2023. Due to this long wait, it was agreed upon
that the Gaia data should be released at earlier stages as intermediate data releases. The
�rst data release is called Gaia Data Release 1 (Gaia-DR1) and contains all the data collected
during the �rst 14 months of the operation. However, it is important to stress that the Gaia
DR1 represents a preliminary release with many shortcomings and for this reason Gaia DR1
cannot be used on its own (Gaia Collaboration et al.: Gaia Data Release 1 2016). The largest
issue for this study is the incompleteness of Gaia-DR1 and section 2.3 describes this in more
detail.

Michalik et al. (2014) demonstrated that combining the data provided in the Hipparcos
catalogue with the data from the �rst year of Gaia observations, a �ve parameter astrometric
solution for all the Hipparcos stars could be obtained in what is known as the one hundered
thousand proper motions project (HTPM). However, a strong limitation of the HTPM project
was that the Hipparcos stars were not numerous enough in order to get a good calibration
for the Gaia data. Therefore, the introduction of supplementary stars were employed, thus
increasing the potential risk of biasing the HTPM data sample. However, Michalik et al.
(2015) presented how this potential risk of biasing the data sample could be minimized if the
auxiliary stars are replaced with those stars provided from the Tycho-2 Catalogue (Høg et
al. 2000), where the positions of the Tycho-2 stars have been propagated to the Gaia epoch.
The resulting catalogue of stars is called the Tycho-Gaia astrometric solution (TGAS) and
gives a full sky, �ve parameter, unbiased astrometric solution for both Hipparcos and Tycho-2
stars. The typical standard errors for the positions and parallaxes are normally around 0.3
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mas. For the Tycho-2 catalogue, the standard error in the proper motions is around 1 mas
yr−1 while the Hipparcos catalogue provides stars that has even more precise proper motion
data. Additionally to these errors, there is also a systematic parallax error of 0.3 mas. For
more information regarding the accuracy of the TGAS catalogue see Gaia Collaboration et al.
(2017).

2.3 Completeness of the TGAS catalogue

The Tycho-2 catalogue contains positions and proper motions for 2.5 million stars in the sky
complete to 99 percent for a magnitude of V ' 11.0 (Høg et al. 2000). Hipparcos, on the other
hand, provides the positions, parallaxes and proper motions for approximately 120 000 stars
complete to a magnitude of around V ' 8.0 (Perryman et al. 1989). The TGAS catalogue
only consists of around 2 million stars, where neither Hipparcos nor Tycho-2 are completely
included in the catalogue. This in turn causes there to be a issue regarding the completeness
at V ' 8.0 for the TGAS catalogue, since not all of the Hipparcos stars are included. This can
be problematic when calculating the local mass density since the incompleteness may cause a
drastic cut-o� for the tracer stars after a certain magnitude limit. This cut-o� may, in turn,
cause the value of ρ0 to become too low since the tracer population numbers might be either
excluded or reduced after a certain magnitude. If possible, a correction should be implemented
where the TGAS incompleteness is accounted for. It is worth mentioning that the catalogue
cannot be complete to V = 11 (to 99 percent) unless the remaining stars from the Tycho-2
stars are added to the TGAS catalogue. However, this will still not be of great use since
Tycho-2 does not provide parallax measurements (nor does it have the same quality of the
data as Hipparcos), which prove to be very important when calculating stellar kinematics.

A simple correction for the incompleteness can be to exclude the Tycho-2 stars from the
TGAS catalogue, and thus only use HIP stars. Combining these stars with the original
Hipparcos catalogue would give a �ve parameter solution that is complete to V ' 8.0. By
doing this, the majority of the Hipparcos stars (the ones from the TGAS catalogue) will
get improved proper motion measurements while still retaining its high quality data for the
remaining parameters. This should in turn give more reliable results for the local galactic
density.

2.4 2MASS

Bahcall et al. (1991) pointed out at the time that the infrared part of the spectrum had not
been explored in great detail even though this region is of great importance for a large number
of branches within astronomy. The solution to this came in the form of the Two Micron All
Sky Survey (2MASS). This project was active between 1997 to 2001 and combined the e�orts
of two 1.3 meter large telescopes in order to collected photometric data in the near-infrared
region. The 2MASS project ended up covering 99.998 percent of the celestial sphere in the
near-infrared bands J (1.25 µm), H (1.65 µm) and Ks (2.16 µm) and produced a point source
catalogue consisting of almost half a billion sources. However, since this survey is ground-
based, practical issues due to atmospheric e�ects quickly arose causing sensitivity variations
as data was collected. The solution to this problem came with the introduction of magnitude
limits at approximately J = 16.0, H = 15.0 and Ks = 14.5. At these magnitudes the detection
of sources remains complete even under conditions where the sensitivity is at its poorest for
the survey. More information regarding the 2MASS data products can be found in Cutri et
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al. (2003). For details surrounding the 2MASS hardware see Skrutskie et al. (2006).

2.5 Data Cross-Match

In addition to the Hipparcos catalogue, a cross-match between the TGAS and 2MASS cata-
logues was also used in order to study the kinematics and distribution of stars in the galaxy.
To successfully cross-match the large data sets with each other, the X-Match service provided
by Centre de Données astronomiques de Strasbourg (CDS) was used (see Boch et al. 2016).
The positional criteria on the cross-match was such that for each source in the TGAS cata-
logue, a source from the 2MASS catalogue is returned only if the two compared sources lie at
an angular distance that is less than 0.5 arcsec from each other. The cross-match area was
set such that the entire sky is considered meaning that all sources from the TGAS catalogue
are cross-matched with the 2MASS catalogue. Figure 1 shows a density sky plot of the data
obtained for the matched catalogue. The �nal cross-match product gave 2,050,000 stars with
a �ve parameter astrometric solution for each star as well as photometric data in the G, J, H
and Ks bands. Figure 2 shows all of these stars in terms of the absolute G magnitude and the
J −Ks colour index in a Hertsprung-Russel diagram.

Figure 1: Density sky plot of the cross-match.
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Figure 2: Hertsprung-Russel diagram of the cross-match between TGAS and

2MASS.
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3 THE OORT CONSTANTS

In 1927 Oort managed to show that the motions of stars systematically vary with galactic
longitude. He concluded that the reason for this is most likely due to the galaxy following
di�erential rotation. At the time, Oort assumed the Milky Way to be axisymmetric. A
consequence of this assumption is that the orbits of the stars in the galaxy are both closed
and supported by the galactic gravitational potential. Thus by studying the characteristics
of the galactic velocity �eld for an axisymmetric galaxy, properties regarding the galactic
potential can be obtained. This is where the importance of the Oort constants come in.
These four constants describe the velocity �eld of galaxies, and by determining their values, it
is possible to directly infer properties of the galactic potential. However, Ogrodniko� (1932)
pointed out that the galaxy, in general, cannot be seen as axisymmetric, it is more complex
than that. He shows that in addition to the streaming velocity that stars have around the
galaxy, there also exists random (peculiar) velocity components. This in turn results in a
more complicated relation between the velocity �eld and the galactic potential. The orbits of
the stars for a non-axisymmetric potential cannot be seen as closed due to the existence of
these random motions. Nevertheless, the calculation of the Oort constants can still provide
a great deal of information regarding the galactic potential, even if there does not exist an
exact relation between them.

Previously, Bobylev & Bajkova (2017) presented the values A = −16.53±0.52 km s−1 pc−1

and B = 10.82 ± 0.93 km s−1 pc−1 using astrometry from Gaia-DR1 while Bovy (2016) ob-
tained A = 15.3±0.4 km s−1 pc−1, B = −11.9±0.4 km s−1 pc−1, C = −3.2±0.4 km s−1 pc−1

and K = −3.3±0.6 km s−1 pc−1 using a cross-match between the TGAS and the APASSDR9
catalogues.

3.1 De�nitions

3.1.1 The Oort Constants

The Milky Way's main motion is rotation and it can approximately be viewed as circular.
Since the thickness of the galaxy is small when compared to the length, the rotation can
also be seen as being con�ned within a thin sheet (Lindegren 2014). This rotation of the
Milky Way is sometimes referred to as the streaming motion of the galaxy. In addition to the
streaming velocity, stars also have a random (or peculiar) motion that can cause the streaming
trajectory of the stars in the galaxy to change (Cf. Ogrodniko� 1932). Systems where the
streaming velocity dominates relative the peculiar velocity, are said to be dynamically cold.
In the limit of vanishing peculiar motions (the cold limit), the streaming of the stars occur
in closed orbits that are supported by the galactic gravitational potential (Olling & Dehnen
2003). Oort (1927) was the �rst to introduce these concepts where he considered the galaxy
to follow the cold limit thus also implying that the galaxy obeys axisymmetry. Initially, We
will start of by looking at the same axisymmetric galaxy that Oort did. This is, as previously
mentioned, not a correct assumption but it can nevertheless give insight in the meaning of the
Oort constants.

There should for every point x in the galaxy exists one average velocity, v. This velocity
(with unit vectors êx and êy pointing in l = 0◦ and l = 90◦ respectively) with respect to an
observer at the Sun is given as

v = −v0 +H · x+O(x2) (1)
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Where v0 is the solar velocity relative the local streaming motion and the matrixH is de�ned
as

H =

[
∂vx/∂x ∂vx/∂y
∂vy/∂x ∂vy/∂y

]
x=0

≡
[
K + C A−B
A+B K − C

]

Where A, B, C and K are denoted as the Oort constants and describe properties of the resulting
velocity �eld for an axisymmetric galaxy. The shear of the velocity �eld due to closed orbits in
the azimuthal and radial direction is given by A and C respectively, the vorticity is described
by B and �nally the local divergence is given by the constant K (Olling & Dehnen 2003).

In two dimensional cylindrical coordinates, (R,ϕ), the Oort constants can be evaluated at
the solar position as

2A =
vϕ
R
− ∂vϕ
∂R
− 1

R

∂vR
∂ϕ

2B = −vϕ
R
− ∂vϕ
∂R

+
1

R

∂vR
∂ϕ

2C = −vR
R

+
∂vR
∂R
− 1

R

∂vϕ
∂ϕ

2K =
vR
R

+
∂vR
∂R

+
1

R

∂vϕ
∂ϕ

It should be noted that the values of A, B, C and K described above are constant for a group
of stars, but can di�er when compared between stellar groups.
In the case of axisymmetry C = K = 0 we have

1

2

(
−vR
R

+
∂vR
∂R
− 1

R

∂vϕ
∂ϕ

)
=

1

2

(
vR
R

+
∂vR
∂R

+
1

R

∂vϕ
∂ϕ

)

⇒ −2

R

(
vR +

∂vϕ
∂ϕ

)
= 0

⇒ vR +
∂vϕ
∂ϕ

= 0 (2)

From the expression of 2C we obtain

2C = − 1

R

(
vR +

∂vϕ
∂ϕ

)
+
∂vR
∂R

= 0

⇒ ∂vR
∂R

= 0 (3)

Where we utilized eq. (2) in the last step. The simplest case of di�erential rotation is thus
given by
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vR ≡ 0 vϕ ≡ vϕ(R) (4)

This indicates that, for the simplest case of di�erential rotation, the Oort constants A and B
become

A =
1

2

(
vϕ
R
− ∂vϕ
∂R

)
(5)

B =
1

2

(
−vϕ
R
− ∂vϕ
∂R

)
(6)

From these equations we obtain

(A−B) =
vϕ
R

; (A+B) = −∂vϕ
∂R

; (7)

By measuring values of the Oort constants A and B, we can thus determine local properties of
the rotation curve of the galaxy. From eq. (7) it is evident that (A−B) gives the rotational
velocity of the LSR around the galactic centre while −(A+B) gives the slope of the rotation
at the Sun's position. For additional details regarding the derivation of the expressions for the
Oort constants as well as a more detailed discussion of the case C = K = 0 see Chandrasekhar
(1960) and Lindegren (2014).

3.2 Oort Constants from Proper Motions

In the previous section we only considered the cold limit to be true for the stars in the solar
neighbourhood. However, in reality the velocity �eld for a population of stars does vary in its
divergence, vorticity and shear when compared to that of the velocity �eld obtained in section
(3.1). Since in the cold limit the peculiar motions are vanishing, the mean streaming velocity,
v̄, for the galaxy is equal to the closed orbit velocity, v, given in eq. (1). For real galaxies
however, there is normally a systematic di�erence between v̄ and v called the asymmetric
drift velocity, vad, given as

v̄ = v − vad (8)

Eq. (8) describes the "delay" of the mean velocity in comparison to the velocity for the local
closed orbits. Due to the asymmetric drift velocity being present in most star populations,
we cannot determine the Oort constants A, B, C or K since these are given only when the
cold limit is valid. However, the values of Ā, B̄, C̄ and K̄ represent the Oort constants when
the asymmetric drift velocity is considered. They describe properties of the real streaming
velocity �eld for a group of stars. It is thus these constants that are to be determined in the
case of the cold limit not being an optimal approximation. By correcting A,B,C and K for
vad we have

Ā = A−Aad (9a)

B̄ = B −Bad (9b)

C̄ = C − Cad (9c)

K̄ = K −Kad (9d)
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In practice we wish to obtain values for Ā, B̄, C̄ and K̄ but might in reality not do so since the
relation between the Oort constants and the average streaming velocity �eld can be complex.
Instead we rely on proper motion data to give us values for Ã, B̃, C̃ and K̃. These are Fourier
coe�cients of the average proper motions for stars that are located at the same distance

µ̄l∗ = µu sin l − µv cos l + cos b[Ã cos 2l − C̃ sin 2l + B̃] (9)

µ̄b = sin b[µu cos l + µv sin l]− µw cos b− sin b cos b[Ã sin 2l + C̃ cos 2l + K̃] (10)

Where l denotes galactic longitude, b is the galactic latitude and the proper motion of the sun
with respect to the local streaming, µ�, is given by

µ� ≡ (µu, µv, µw) ≡ pv� = p(u0, v0, w0). (11)

where p denotes parallax. From eq. (11) we have that µu = pv0, µv = pv0 and µw = pw0.
Inserting this into eq. (9) and (10) we get

µl∗ = [Ã cos 2l − C̃ sin 2l + B̃] cos b+ p[u0 sin l − v0 cos l] (12)

µb = −[Ã sin 2l + C̃ cos 2l + K̃] sin b cos b+ p [(u0 cos l + v0 sin l) sin b− w0 cos b] (13)

It should be noted that in eqs. (12) and (13), Ã, B̃, C̃, and K̃ are, strictly speaking, not the
same as Ā, B̄, C̄ and K̄. We can only measure the constants presented in eqs. (12) and (13)
and hopefully the Oort constants with a bar are not too di�erent from those with the tilde.
Table 1 summarizes the di�erent versions of the Oort constants.

Table 1:

The Oort constants.

Oort constants Description

A,B,C,K The true Oort constants obtained for the hypothetical velocity �eld
v that is a result of the cold limit being applied (leading to closed
orbits).

Ā, B̄, C̄, K̄ Oort constants for the resulting velocity �eld v when the asymmet-
ric drift is considered for a group of stars. These are the desired
constants to obtain.

Ã, B̃, C̃, K̃ Fourier coe�cients of proper motions for a group of stars obtained
from eqs. (12) and (13). This is what we can measure in practice.

For more details on how the Oort constants can be approximated using proper motions, see
Olling & Dehnen (2003).
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3.3 Least Squares Routine

In order to obtain values for both the Oort constants as well as the Sun's LSR velocity
components, a seven variable least squares (LS) routine was employed onto the proper motion
data. The details of this routine is presented below. Note that the same principles presented
can be used in order to instead perform a four variable LS-routine where only the Oort
constants are determined. The values of the stellar LSR velocity should then instead be
held at a constant value of (u0, v0, w0) = (11.1, 12.24, 7.25) km/s (Schönrich et al. 2009).
Only the seven variable LS routine will be presented here, but the four variable solution was
implemented and results of both the routines are presented in section 3.4.

The proper motions given in eqs. (12) and (13) are the ones used to infer values of
A,B,C,K, u0, v0 and w0. We introduce the 7× n matrices α̃l and α̃b that describe the seven
partial derivatives of µl∗ and µb with respect to A, B, C, K, u0, v0 and w0 for a sample of n
stars, respectively

α̃l =



(
∂µl∗
∂A

)
s1

(
∂µl∗
∂B

)
s1

(
∂µl∗
∂C

)
s1

(
∂µl∗
∂K

)
s1

(
∂µl∗
∂u0

)
s1

(
∂µl∗
∂v0

)
s1

(
∂µl∗
∂w0

)
s1

...
...

...
...

...
...

...(
∂µl∗
∂A

)
sn

(
∂µl∗
∂B

)
sn

(
∂µl∗
∂C

)
sn

(
∂µl∗
∂K

)
sn

(
∂µl∗
∂u0

)
sn

(
∂µl∗
∂v0

)
sn

(
∂µl∗
∂w0

)
sn



α̃b =



(
∂µb
∂A

)
s1

(
∂µb
∂B

)
s1

(
∂µb
∂C

)
s1

(
∂µb
∂K

)
s1

(
∂µb
∂u0

)
s1

(
∂µb
∂v0

)
s1

(
∂µb
∂w0

)
s1

...
...

...
...

...
...

...(
∂µb
∂A

)
sn

(
∂µb
∂B

)
sn

(
∂µb
∂C

)
sn

(
∂µb
∂K

)
sn

(
∂µb
∂u0

)
sn

(
∂µb
∂v0

)
sn

(
∂µb
∂w0

)
sn


Where s1 denotes the �rst star and sn the n:th star in the sample. Furthermore, we introduce
the 1× n matrix that holds the proper motions in latitude and longitude respectively as

β̃l =

 (µl∗)s1
...

(µl∗)sn

 β̃b =

 (µb)s1
...

(µb)sn


Where s1 once again denotes the �rst star and sn the last in the sample. An equation of the
form αTαx = αTβ can generally be solved for x as

x = [αTα]−1αTβ (14)

Where we in this case have

α =

[
α̃l

α̃b

]
β =

[
β̃l
β̃b

]
x =



A
B
C
K
u0
v0
w0


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By solving for x we obtain the values of the Oort constants as well as values for the solar
LSR velocity with respect to the stellar population. As previously mentioned, the principles
of the LS solution presented above can be used in order to instead solve a four parameter
LS routine. For this routine to work, the stellar LSR velocity must be held constant and the
matrices α̃l, α̃b and x must naturally also be adjusted to consider the four parameters A, B,
C and K only.

For the seven variable LS-routine described above, it is assumed that each measurement
of the proper motion for a data set provides information in an equally precise manner. In
other words, each observation is treated equally. Clearly, this is not an ideal situation since
there are many processes that can contribute to the worsening of a measurement. In order to
compensate for this, one must reduce the e�ect that a measurement of lower quality has on
the overall solution. It is, however, important to not simply discard the measurement since
it can still contribute statistically to the study. The best way to go about this problem is to
introduce weighting to the solution. Generally, a non-weighted LS-solution yields

αTαx = αTβ (15)

where a solution for the matrix x can be obtained as shown previously. However, for a weighted
LS-solution we instead have

αTWαx = αTWβ (16)

This equation can still be solved in the same manner as described above, but with the in-
troduction of the diagonal weight matrix W , it is possible to reduce the negative e�ect that
lower quality data can have on the solution. The weight matrix contains the statistical weight
factors, Wl, that are given as

Wl =
wl

σ2l
(17)

where σl represents the uncertainty of the measurement and wl is the downweighting factor
given by

wl = w

(
Rl

σl

)
(18)

w is a function that ranges between zero and one, where a good measurement will have w = 1
while lesser quality data will have values closer to zero. Rl describes the residuals. For an
expression of w which is designed to remove outliers for a data sample, see eq. (66) in Lindegren
et al. (2012). By the implementation of the weighting matrix W into the LS-solution as seen
in eq. (16), it is possible to minimize the negative e�ects that low quality data can potentially
have on the least squares solution. However, weighting of the data was not implemented here.

For a more detailed method on how weighting can be implemented for an LS-routine, see
Lindegren et al. (2012).
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3.4 Data

The selection criteria that were applied onto the Hipparcos and cross-matched catalogues are
motivated in the following section and are summarized in tables 2 and 3 respectively.

3.4.1 Sample Criteria

As mentioned previously, the Oort constants can vary for di�erent star populations. In order
to get accurate results that are representative of a statistical population, it is important that
the stars in the sample used for the calculations are similar in their characteristics (Lindegren
2014). For this reason, only the main sequence stars from both the catalogues (Hipparcos &
matched data) were employed since they are generally more well-behaved when compared to
stars in the giant branch. There are, in particular, two reasons as to why the main sequence
stars are preferred over giant branch stars. Firstly, the bluer main sequence stars usually have
lower velocity dispersions due to their young ages. Secondly, it is easier to identify the main
sequence stars in an Hertsprung-Russel Diagram, making the data selection process less prone
to contamination of stars from di�erent populations. Figure 3 marks the main sequence in
the Hertsprung-Russel diagram of the stars obtained from the complete cross-match between
TGAS and 2MASS. From the main sequence stars, only those with parallaxes > 1 mas were
considered in order to ensure a local sample. In addition, the fractional parallax error, σp/p,
was not allowed to be larger than 20 percent of p. For stars that have σp/p > 0.2, it becomes
more problematic to estimate the distance from the parallax measurement since 1/p can no
longer be considered a good distance estimator (Bailer-Jones 2015). The maximum allowed
parallax error, σp, was also set to be 1 mas in order to not include stars with too large errors
in the study. To maximize the number of stars considered in the calculation, there were no
restraints on the allowed value for the galactic latitude. For the stars following these criteria,
the proper motions were converted from the equatorial coordinate system into the galactic
system using the mathematical formulae derived in Poleski (2013). The proper motions were
converted from [mas yr−1] to [km s−1 kpc−1] using the conversion factor K = 4.7405.

In order to limit the spread in age for the main sequence stars, the data was divided into
three smaller bins for both the catalogues. For Hipparcos the total range in the colour index
was −0.15 < B − V ≤ 0.4 while it for the matched data was −0.15 < J − Ks ≤ 0.4. The
maximum value of the colour indices was set to 0.4 mainly due to two reasons. Firstly, for
larger values of the colour index, the main sequence becomes less distinguishable from the
giant branch. Including this region thus risks to contaminate the data sample with non-main
sequence stars. Secondly, the age of stars increases with larger values of J −Ks and B − V .
Older stars have larger velocity dispersions and thus their streaming motions become less clear,
making them more unsuitable to use in the determination of the Oort constants (Casagrande
et al. 2011).
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Figure 3: main sequence for the cross-match between TGAS and 2MASS.

Table 2:

Summary of selection criteria for cross-matched sample.

Region p [mas] σp/p σp [mas] Sample Size
[stars]

−0.15 < J−Ks ≤ 0.0 > 1.0 ≤ 0.2 ≤ 1.0 6281

0.0 < J −Ks ≤ 0.2 > 1.0 ≤ 0.2 ≤ 1.0 99894

0.2 < J −Ks ≤ 0.4 > 1.0 ≤ 0.2 ≤ 1.0 579792

Table 3:

Selection criteria for the HIP data samples.

Region p [mas] σp/p σp [mas] Sample Size
[stars]

−0.15 < B−V ≤ 0.0 > 1.0 ≤ 0.2 ≤ 1.0 1867

0.0 < B − V ≤ 0.2 > 1.0 ≤ 0.2 ≤ 1.0 3869

0.2 < B − V ≤ 0.4 > 1.0 ≤ 0.2 ≤ 1.0 4410
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3.5 Results

Here the results of the calculations performed for the samples in tables 2 and 3 are presented.
The unit of the Oort constants (described by Value in the tables) is km s−1 pc−1 while σ
denotes the standard errors of the calculations and were estimated as the square root of the
values of the diagonal for the respective covariance matrix.

3.5.1 Hipparcos catalogue

Tables 4 and 5 shows the results of the four and seven parameter LS-routines that were
performed for the Hipparcos data samples respectively. The assumed stellar LSR velocity was
(u0, v0, w0) = (11.1, 12.24, 7.25) km s−1.

Table 4:

results of the 4 parameter ls-routine for HIP catalogue.

−0.15 < B − V ≤ 0.0 0.0 < B − V ≤ 0.2 0.2 < B − V ≤ 0.4

V alue σ V alue σ V alue σ

A 14.50 4.06 14.25 3.59 30.77 5.40

B -19.06 3.12 -11.36 2.74 1.48 4.22

C -19.25 4.04 -14.53 3.49 -5.39 5.20

K -32.33 8.92 -3.34 6.92 18.36 9.19

Table 5:

results of the 7 parameter ls-routine for the HIP catalogue.

−0.15 < B − V ≤ 0.0 0.0 < B − V ≤ 0.2 0.2 < B − V ≤ 0.4

V alue σ V alue σ V alue σ

A 8.65 2.68 12.53 2.96 27.59 4.58

B -10.90 2.07 -14.31 2.27 -3.19 3.58

C -4.89 2.68 -16.10 2.89 -6.07 4.41

K -12.16 5.94 -10.12 5.73 12.54 7.79

u0 12.50 0.26 8.67 0.23 12.44 0.28

v0 13.69 0.30 9.20 0.24 8.72 0.30

w0 7.58 0.25 6.56 0.24 6.51 0.27

If for the Hipparcos catalogue the fractional parallax errors were increased, the results of
the calculations did not provide with more meaningful results other than a reduction of the
standard errors. This is due to the size of the samples presented in table 3 becoming larger.
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However, the data considered when σp/p > 0.2 is applied is not of high quality and in return
causes a reduction in reliability of the results, regardless of the decreased standard errors.
Figures 4-6 show plots of the residuals, ∆µl∗ = (µl∗ − p(u0 sin l + v0 cos l)) versus galactic
longitude for the three sub-samples respectively. The blue line corresponds to the mean given
as (A cos 2l − C cos 2l + B) cos(b). The scatter of the stars in the �gures is farily large, thus
increasing the di�culty in verifying if the �t of the mean equation onto the data is good.
Additional �gures can be found in Appendix A.

Figure 4: ∆µl∗ vs. l for the hip sample that ranges between

−0.15 < B − V ≤ 0.0.

Figure 5: ∆µl∗ vs l for the hip sample in the region 0.0 < B − V ≤ 0.2.
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Figure 6: ∆µl∗ vs. l for the third hip sample ranging between 0.2 < B− V ≤ 0.4.

3.5.2 TGAS & 2MASS cross-match

Table 6 shows the calculated Oort constants for the four parameter LS-routine where the
stellar LSR velocity was once again held constant at (u0, v0, w0) = (11.1, 12.24, 7.25) km/s.
Table 7 contains the results of the seven parameter least square routine. The unit for the Oort
constants is km s−1 pc−1.

Table 6:

results of the 4 parameter ls-routine for the cross-match.

−0.15 < J −Ks ≤ 0.0 0.0 < J −Ks ≤ 0.2 0.2 < J −Ks ≤ 0.4

V alue σ V alue σ V alue σ

A 18.91 1.22 16.61 0.32 17.30 0.25

B -7.03 0.93 -10.43 0.24 -9.81 0.19

C -0.25 1.25 -5.21 0.32 -4.11 0.24

K -16.56 3.51 -2.28 0.83 -5.36 0.48
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Table 7:

results of the 7 parameter ls-routine for the cross-match.

−0.15 < J −Ks ≤ 0.0 0.0 < J −Ks ≤ 0.2 0.2 < J −Ks ≤ 0.4

V alue σ V alue σ V alue σ

A 9.45 1.07 13.91 0.30 16.53 0.22

B -15.36 0.81 -13.10 0.22 -12.09 0.17

C -1.17 1.07 -5.17 0.30 -3.04 0.22

K -7.17 3.02 -2.81 0.77 -4.30 0.43

u0 6.51 0.21 6.86 0.07 8.80 0.04

v0 13.95 0.24 9.22 0.08 18.02 0.04

w0 5.93 0.19 6.11 0.06 7.05 0.04

The values of the Oort constants presented in table 6 di�er quite signi�cantly from those in
table 7. In addition, the stellar LSR velocities (u0, v0, w0) from table 7 do not agree very well
with those provided by Schönrich et al. (2009). The discrepancies for the calculated values
might be due to correlation between the parameters. To investigate this further, a correlation
analysis was performed for the Oort constants as well as the LSR velocity components. The
average Pearson correlation coe�cients between the three data bins are presented in table 8.
The variable pairs that have a Pearson correlation coe�cient larger than 0.04 (corresponding to
a 4 percent correlation) are marked in red. It is evident from table 8 that there is indeed a linear
correlation between some of the velocities (u0, v0, w0) and the Oort constants (A,B,C,K).
In particular, the Oort constants A and B show a fairly strong correlation towards the LSR
velocity component v0. There is also correlation between the Oort constants themselves. This
is, however, to be expected since they all describe properties of the local velocity �eld.

Figures 7-9 shows the residuals of the proper motion in galactic longitude, ∆µl∗ = (µl∗ −
p(u0 sin l+ v0 cos l)), for the three sub-samples from the cross-matched TGAS catalogue. The
blue line once again represents the mean given by (A cos 2l − C cos 2l + B) cos(b). It is con-
siderably easier to verify that the mean equation is a fairly good �t for the data from �gures
7-9 compared to those provided for the Hipparcos catalogue, meaning that the di�erential
rotation of the galaxy can be inferred from the values of the Oort constants. See Appendix A
for more �gures.
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Table 8:

Pearson correlation coefficients between variable pairs.

A B C K u v w

A 1.000 0.239 -0.019 -0.008 0.037 -0.102 -0.011 A

B 0.239 1.000 0.025 -0.007 0.002 -0.104 -0.010 B

C -0.019 0.025 1.000 -0.026 -0.028 0.038 0.000 C

K -0.008 -0.007 -0.026 1.000 -0.022 -0.023 0.021 K

u 0.037 0.002 -0.028 -0.022 1.000 0.014 -0.003 u

v -0.102 -0.104 0.038 0.023 0.014 1.000 0.064 v

w -0.012 -0.010 0.000 0.021 -0.003 0.064 1.000 w

A B C K u v w

Figure 7: ∆µl∗ vs. longitude for the matched sample within

−0.15 < J −Ks ≤ 0.0.
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Figure 8: ∆µl∗ for the second matched sub-sample ranging between

0.0 < J −Ks ≤ 0.2.

Figure 9: ∆µl∗ for the largest cross-match sample ranging between

0.2 < J −Ks ≤ 0.4.
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3.6 Conclusion

The results presented in tables 4 and 5 show values of the Oort constants that are signi�cantly
di�erent between the three samples de�ned by the range in colour index. This spread is
most likely due to the number of stars per sample being low. However, the third sample of
the Hipparcos catalogue that ranged between 0.2 < B − V ≤ 0.4 contained the most stars
compared to the other sub-samples. Despite this, the values of A, B, C and K from both the
four and seven parameter LS routines, were not in very good agreement with literature values.
This is an indication that sample size is an important factor when calculating values of the
Oort constants.

The results from the matched data between the TGAS and 2MASS catalogues show signif-
icant improvement when looking at the spread of the calculated Oort constants for the three
regions in the colour index. The formal errors are also considerably smaller when compared
to those provided by the Hipparcos catalogue. This should most likely be due to the sample
size of the matched data being signi�cantly larger compared to the original HIP catalogue,
thus a drastic improvement in the statistical aspect of the study could be expected.

The sample that ranged between 0.2 < J − Ks ≤ 0.4 contained a very large amount of
stars that were located towards the end of the main sequence, thus increasing the risk of
contamination from the giant branch. Excluding the possibility of correlation, this might be
the reason as to why there is a slight di�erence between the results for the four and seven
parameter LS routines. In the second sample that ranged between 0.0 < J −Ks ≤ 0.2, the
stars were concentrated more towards the main sequence and away from the giant branch.
The stars in this sample are thus most likely not su�ering from a contamination that is as
severe when comparing to that of the previously discussed sample. The good results from
both the LS routines for this sample could then be a direct result of the balance between
low contamination of giant branch stars as well as sample size being su�ciently large. The
�rst sample does not provide very good results mainly due to its very small size. Overall,
the TGAS catalogue could provide with values of the Oort constants that were in fairly
good agreement with those presented by Bovy (2016), and judging by the results presented,
the TGAS catalogue does work slightly better than the Hipparcos catalogue. However, it is
important to note that the methods used in this thesis to calculate the Oort constants did not
include weighting of the data. This might potentially be a large improvement of the study
and could eventually provide results that are di�erent from those provided here. Since the
TGAS catalogue contains many stars, it can still provide with results from a statistical point
of view, while the Hipparcos catalogue is considerably weaker in this regard due to its sample
size. This is evident from tables 4-7 where the results provided by the Hipparcos catalogue
are more inconsistent between the samples compared to that of the matched data. It should,
however, be noted that the Hipparcos stars contained within the TGAS catalogue are those
that have the largest impact due to their high quality data. For this reason, the inclusion
of weighting to the study could potentially improve the results obtained from the Hipparcos
catalogue.

In conclusion, the TGAS catalogue can provide meaningful results and statistical improve-
ments to studies that are not compromised by the colour incompleteness of the catalogue, such
as the determination of the Oort constants. The results are more statistically complete when
compared to those obtained from the HIP catalogue, but since weighting is not included here,
it is di�cult to convey if the performance of the TGAS catalogue is decisively better than
that of the Hipparcos catalogue. Based on the results without the inclusion of weighting, the

20



TGAS catalogue seems to perform slightly better than the Hipparcos catalogue. However, the
questions regarding what catalogue is more optimal for a study like this, will most likely be
resolved when Gaia-DR2 is presented, and the data from the Gaia mission can be used more
directly to determine galactic properties.
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4 LOCAL MASS DENSITY ESTIMATION

In this section the local mass density is dynamically estimated using the motions and number
density pro�les of tracer star populations. The data consists of only Hipparcos stars from
both the original HIP catalogue propagated to the year 2015 as well as those provided in the
Gaia DR1 TGAS catalogue. Previous studies regarding the local mass density took advantage
of the high quality astrometric data provided by Hipparcos. Créze et al. (1998) obtained a
value of ρ0 = 0.076 ± 0.015 M� pc−3 while Holmberg & Flynn (2000) instead procured a
value ρ0 = 0.102± 0.010 M� pc−3, where both studies used Hipparcos data. Historically, the
determination of the local mass density has been an interesting topic for astronomers. Oort
(1932) was the �rst to determine a value of ρ0, with many astronomers quickly following his
direction. Kerr & Lunden-Bell (1986) provides a short summary of all the calculated values
of ρ0 between 1932 and 1984. Comparing the values for the local mass density provided
by Créze et al. and Holmberg & Flynn with those provided in Kerr & Lunden-Bell, there
is a slight di�erence. The overall trend indicates that the more modern calculations of the
mass density in the solar neighbourhood yield slightly lower values than what was previously
expected. When the Gaia data is fully released the questions regarding the value of the local
mass density will hopefully be given a de�nitive answer. By implementing the Hipparcos stars
from the TGAS catalogue in the determination of ρ0, a �rst indication on how the complete
Gaia catalogue will perform, might be obtained.

4.1 De�nitions

4.1.1 Galactic Plane Density

In what follows, an expression for the local mass density, ρ0, will be derived using the principles
described in Lindegren (2014).

By studying the motions of a collection of stars in a gravitational �eld, it is possible
to estimate the density of the star population. These motions are described by the Jeans
equations. However, motions of disk stars in the solar neighbourhood can be seen as varying
in only the z-direction normal to the galactic plane. This is an approximation that works
rather well for stars in the solar neighbourhood since the thickness of the galactic disk is
considerably smaller in comparison to the scale length. So, in short, by looking at how the
motions in a population of stars vary in the z-direction due to gravity, one can to a good
approximation, say something about the density for that population.

By using the third Jeans equation and only considering star motions in the z-direction we
obtain

− ∂ψ

∂z
= 〈w〉∂〈w〉

∂z
+

1

n

∂(nDww)

∂z
(19)

The left hand side of eq. (19) is the force in the z-direction. The right hand side contains
the average velocity in the z-direction, 〈w〉, the tracer star density, n(z) and the velocity
dispersion in the z-direction, Dww = σ2w. Due to symmetry, there should be no net motion of
stars in either z-direction through the galactic plane and thus 〈w〉 = 0. We can then simplify
eq. (19) even further by simply removing the term that contains 〈w〉, replacing Dww with σ2w
and noting that the partial derivative can be written as

1

n(z)

∂n(z)

∂z
=
∂ lnn(z)

∂z
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The resulting version of eq. (19) then becomes

∂ψ

∂z
= −σ2w

∂ lnn(z)

∂z
(20)

Where ∂ψ/∂z is commonly referred to as Kz and describes the vertical force applied on all
the stars in the population. Note that eq. (20) is only valid for all stars in a population if σw
is independent of z i.e. it needs to be constant for a population of stars.
If we take the partial derivative of Kz with respect to z it can be put equal to the Poisson
equation, thus giving

∂Kz

∂z
= −σ2w

∂2 lnn(z)

∂z2
= 4πGρ(z) (21)

From this it is possible to obtain the galactic plane density as

ρ0 = ρ(0) = − σ2w
4πG

[
∂2 lnn(z)

∂z2

]
z=0

(22)

Note that in order to obtain a value for σ2w, the dispersion matrix is needed. The details
surrounding its estimation can be found in Appendix B.

4.2 Data

As mentioned in section 2.3, in order to calculate the local mass density, a catalogue that is
complete to a certain magnitude is necessary. However, in the creation of the TGAS catalogue,
only a fraction of the Hipparcos catalogue as well as a fraction of the Tycho-2 catalogue were
included. This in turn caused there to be an incompleteness issue of the TGAS catalogue,
and it cannot be used directly to determine the local mass density. Instead a correction must
be implemented. The Hipparcos stars in the TGAS sample were manually extracted so that
they could replace the corresponding stars in a propagated version of the Hipparcos catalogue.
It was necessary to propagate the HIP catalogue to the year 2015 since the TGAS catalogue
provides the astrometry in the reference epoch J2015. In this way, we obtain a catalogue
that is complete and has improved proper motions for the majority of the Hipparcos stars.
Here we will assume both the catalogues to be complete for a magnitude of V = 8.0, thus
allowing for the calculation of the local mass density. By the inclusion of Hipparcos stars
with improved proper motions from the TGAS catalogue, a comparison between how well the
TGAS catalogue works in relation to the HIP catalogue can hopefully be obtained.

4.2.1 Hipparcos 2015

This section will describe the Hipparcos sample where the positions of the stars were propa-
gated to the year 2015 (the original HIP catalogue provides astrometry for the epoch J1991.25).
For this HIP catalogue the positions of the stars were given in terms of right ascension and
declination. In order to convert the positions from the equatorial coordinate system to the
galactic one, the following equations were used

sin(b) = sin(δ) cos(ig)− cos(δ) sin(α− αN ) sin(ig)

cos(b) cos(l − l0) = cos(δ) cos(α− αN )
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cos(b) sin(l − l0) = sin(δ) sin(ig) + cos(δ) sin(α− αN ) cos(ig)

where ig = 62.6◦, αN = 282.25◦ and l0 = 33◦. The proper motions were also propagated
from the equatorial coordinate system into the galactic coordinate system using the principles
described in Poleski (2013). The values of the colour index B − V for each star in the
propagated HIP catalogue were originally not included. To resolve this, the colour index
data from the original Hipparcos catalogue was manually cross-matched into the propagated
catalogue.

4.2.2 Combined Sample

The combined sample contained Hipparcos stars from both the TGAS the propagated Hip-
parcos catalogues. The combined sample had 91 919 Hipparcos stars provided by the TGAS
catalogue and an additional 26 036 from the original, propagated Hipparcos catalogue. The
stars provided by the TGAS catalogue had improved proper motions, and could thus poten-
tially give a more accurate estimation of the local mass density. The positions and proper
motions for this catalogue were given in galactic coordinates. The colours used here were once
again provided by the original Hipparcos catalogue and consisted of the V-magnitude and the
B-V colour index.

4.3 Local Mass Density Estimate

In order to estimate the local mass density from eq. (22), values of the velocity dispersion in
the z-direction, σw, and the tracer star density, n(z), needs to be estimated. In section 4.1
it was mentioned that σ2w needs to be constant for the entire stellar population if the local
mass density is to be estimated by means of eq. (22). This is highly unlikely to be true
for the two Hipparcos data catalogues used. To circumvent this issue, the complete samples
will be divided into smaller sub-samples. For every sub-sample, a velocity dispersion σw can
be estimated and held constant. As long as the sub-samples cover a small enough range in
the colour index, the approximation regarding the constant value of σw should still provide
a reasonable representation of the dispersion distribution, since the characteristics of main
sequence stars are expected to be similar. Each of the sub-samples represent a number of
stars that are spherically distributed in space around the Sun. The maximum radius of the
sphere, rmax (in pc), will vary for each sub-sample as

rmax =
1000

(pmin + 1.5)
(23)

Where the additional 1.5 mas is there to correct for the typical parallax uncertainties of the
TGAS and Hipparcos catalogues. In order to obtain values of rmax, we must have values
of pmin. However, we have neither rmax nor pmin, and we must instead resort to using the
distance modulus in order to get values for the maximum radius for each sample

V −MV = 5 log10(rmax) + 5 = 5 log10

(
1000

pmin + 1.5

)
+ 5 (24)

Where V is the Johnson V-magnitude and MV is the absolute V magnitude. Since both the
propagated Hipparcos catalogue as well as the combined sample only consist of Hipparcos
stars, they can both be seen as complete to V = 8.0 magnitudes. We can thus hold V = 8.0
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constant for each sample that we have de�ned, rmax will then correspond to the maximum dis-
tance that the samples are complete for, which is precisely what we wish to obtain. However,
in order to solve eq. (24), values of (MV )max are necessary for each sub-sample. By using
the database YZVAR (see Bertelli et al. 2008 & Bertelli et al. 2009), theoretical Hertsprung-
Russel diagrams showing isochrones for stars of solar composition could be produced. Figure
10 demonstrates the isochrones used and table 9 shows the properties of the H-R diagram in
terms of the composition (Z & Y), the maximum age considered, log tmax, and the di�erence
in age between subsequent isochrones, log ∆t. Since each sample span across a certain colour
region, a maximum value of the absolute V magnitude could be estimated using �gure 10.
This allows us to calculate values of both rmax and pmin for each individual sub-sample by
using eq. (24).

Figure 10: Theoretical isochrones of Solar composition were used to

determine MV .

Each sample is additionally divided into horizontal layers of thickness ∆z = 25 pc, where
all the stars per layer are calculated and divided by the layer volume. Figure 11 shows an
illustration of how the sphere containing stars is divided into horizontal layers. In this way
we obtain a value for the tracer star population density, n(z), per layer. It is then possible to

Table 9:

Properties of the theoretical Hertsprung-Russel diagram.

Z Y log tmax log ∆t

0.0134 0.2485 10.3 0.1
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plot the calculated values of n(z) as a function of z. By �tting a parabola to this graph the
curvature can be calculated. This parabola is given by

lnn(z) = c1z
2 + c2z + c3 (25)

and from eq. (22) the curvature, Q, is given as the second partial derivative of lnn(z)

Q =
∂2 lnn(z)

∂z2
= 2c1 (26)

In this way, the local mass density can be estimated for each data sample and the average
value of all the densities for the sub-samples correspond to the local mass density, ρ0.

rmax

∆z

Figure 11: The data sub-samples represents a spherical distribution of stars

where horizontal layers of thickness ∆z are introduced.
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4.3.1 Data Selection Criteria

In order to have the stars con�ned within a sphere with a radius corresponding to the maximum
distance where catalogue completeness is still valid, we must have p ≥ pmin. Both of the
catalogues were divided into sub-samples in steps of 0.05 magnitudes of the colour index B−V
and the complete range was −0.15 < B−V ≤ 0.20. Redder stars were not chosen due to them
being older and thus having larger velocity dispersions. The stars in the respective samples
should preferably all be members of the main sequence due to their similar characteristics
making them more predictable. In addition, to assure that each sub-sample is representative
of the population, the minimum number of stars per sample was set to be Nmin = 200. If a
sample did not contain that number of stars, the colour range for that particular sample was
increased.

In section 4.2 the distance estimator used to obtain rmax from a parallax measurement
was given by eq. (23). However, according to Bailer-Jones (2015, 2016a, 2016b), in order
to use such an inverse-parallax distance estimator, the fractional parallax error (FPE) must
not be larger than 0.2. If the FPE is larger than this set value, the relationship between dis-
tances and parallaxes becomes increasingly more complex. In addition, in order to assure that
high quality data is used in the calculation of the local mass density, a low FPE is necessary.
However, if a value of the FPE that is much lower than 0.2 is selected, many stars from the
catalogues will be discarded. There must exist a balance between the statistical aspect and
the quality aspect of the study. By setting the maximum FPE to be 0.2, we can be certain
that the distance estimator used is working as intended while simultaneously using the largest
possible fraction of the respective catalogue. Table 10 shows a summary of the selection rules
for the sub-samples that were applied to both the catalogues containing Hipparcos stars.

Table 10:

Selection criteria for both catalogues.

Vmax [mag] parallax, p [mas] FPE, σp/p Nmin C1 < B − V ≤ C2

C1 − C2 = 0.05

≤ 8.0 ≥ pmin ≤ 0.2 200 (C1)min = −0.15

(C2)max = 0.2
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4.4 Results

4.4.1 Dispersion

Table 11 and 12 shows the velocity dispersions for the di�erent sub-samples of the propagated
Hipparcos catalogue and the combined sample respectively.

Table 11:

Dispersions for propagated HIP catalogue sub-samples.

Sub-Sample σw, [km/s]

−0.15 < B − V ≤ −0.1 5.68

−0.10 < B − V ≤ −0.05 4.95

−0.05 < B − V ≤ 0.0 6.14

0.0 < B − V ≤ 0.05 6.09

0.05 < B − V ≤ 0.10 6.25

0.10 < B − V ≤ 0.15 6.81

0.15 < B − V ≤ 0.20 8.47

Figure 12 and 13 shows σ2u (red line), σ2v (blue line), σ2w (black line) as a function of B − V
for the propagated Hipparcos catalogue and the combined sample respectively. It is evident
from these �gures that σ2w does increase for older, redder stars. However, the ranges in the
colour index B − V that we chose to use do not seem to have been a�ected by the increased
dispersions for older stars dramatically since the increase in σ2w for higher B−V values is fairly
smooth. This is a good indication that the stars used here should be able to give consistent
results of the local mass density.
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Table 12:

Sub-sample dispersions for the combined sample.

Sub-Sample σw, [km/s]

−0.15 < B − V ≤ −0.1 5.79

−0.10 < B − V ≤ −0.05 5.12

−0.05 < B − V ≤ 0.0 5.21

0.0 < B − V ≤ 0.05 6.23

0.05 < B − V ≤ 0.10 6.10

0.10 < B − V ≤ 0.15 6.80

0.15 < B − V ≤ 0.20 8.18

Figure 12: Dispersion as a function of colour index for HIP2015.
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Figure 13: Dispersion as a function of colour index for the combined sample.

4.4.2 Local Mass Density

Table 12 summarizes the calculated values of ρ0 for both the propagated Hipparcos 2015
catalogue and the combined Sample.

Table 13:

Local mass density in M� pc−3 calculated from the catalogues.

HIP2015 Combined Sample

ρ0 0.112± 0.009 0.113± 0.006

Figure 14 and 15 shows the estimated values of ρ0 for each of the smaller sub-samples for the
propagated and combined Hipparcos catalogues respectively. It is apparent that the combined
sample that includes stars from the TGAS catalogue does not provide a signi�cant di�erence
compared to the propagated Hipparcos catalogue other than it being slightly more smooth
and consistent. This reduction of outliers for the mass density graph of the combined sample
is most likely due to the improved proper motions from the TGAS catalogue. The values of
ρ0 presented in table 12 as well as the characteristics of the graphs in �gures 14 and 15 are
very similar to each other, implying that the combined sample is equal in performance to the
Hipparcos catalogue when it comes to the dynamical estimate of the mass density.
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Figure 14: Sub-sample estimation of local mass ensity for HIP2015.

Figure 15: Sub-sample estimates of ρ0 for the combined sample.
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4.5 Conclusion

From the results presented in table 13 and �gures 14-15, it can be concluded that the TGAS
catalogue performs almost identically when compared to the propagated Hipparcos catalogue.
The results presented here are in fairly good agreement with those presented by Crézé et al.
(1998) and Holmberg & Flynn (2000). However, it should be mentioned that the creation
of the combined sample was not so simple and included multiple cross-matches. Mixing and
matching of catalogues in this way is prone to introducing an increase in the formal errors
for the end catalogue as a whole. Even though the combined sample did provide with results
that were nearly identical with the results from the propagated Hipparcos catalogue, it is
still recommended that the TGAS catalogue is avoided when dynamically estimating the local
mass density. The recommendation is to instead use the Hipparcos stars from the original
catalogue. Hopefully when Gaia-DR2 is released it will be possible to dynamically estimate the
local mass density without needing to �rst create a catalogue such as TGAS to compensate for
the shortcomings of the release. In this way, it would be possible to give an estimate regarding
the performance of the complete Gaia catalogue.
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Appendices

A Oort constant estimation, Supplementary �gures

In this appendix, additional �gures describing data from section 3 are presented.

A.1 Hipparcos Figures

Figures 16-18 shows the proper motion in galactic longitude as a function of l for the three
samples that were obtained from the propagated Hipparcos catalogue.

Figure 16: µl vs. l for first Hipparcos sample. B−V Range: −0.15 < B−V ≤ 0.0.
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Figure 17: µl vs. l for second Hipparcos sample. B− V Range: 0.0 < B− V ≤ 0.2.

Figure 18: µl vs. l for last Hipparcos sample. B − V Range: 0.2 < B − V ≤ 0.4.

Figures 19-21 instead show the proper motion in galactic latitude as a function of b for the
three samples obtained from the Hipparcos catalogue. Note that the range in latitude is
−20 ≤ b ≤ 20.
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Figure 19: µb vs. b for first Hipparcos sample. B − V Range:

−0.15 < B − V ≤ 0.0.

Figure 20: µb vs. b for second Hipparcos sample. B−V Range: 0.0 < B−V ≤ 0.2.
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Figure 21: µb vs. b for third Hipparcos sample. B − V Range: 0.2 < B − V ≤ 0.4.
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A.2 TGAS Figures

Figures 22-24 show the proper motions of the stars in the cross-match as a function of the
galactic latitude for all three samples respectively.

Figure 22: µl vs l for the first matched sample. Range in colour index:

−0.15 < J −Ks ≤ 0.0.

Figure 23: µl vs l for the second matched sample. Range in colour index:

0.0 < J −Ks ≤ 0.2.
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Figure 24: µl vs l for the third matched sample. Range in colour index:

0.2 < J −Ks ≤ 0.4.

Figures 25-27 shows the relation between the proper motion in b and the galactic latitude.

Figure 25: µb vs b for the first matched sample. Range in colour index:

−0.15 < J −Ks ≤ 0.0.
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Figure 26: µb vs b for the second matched sample. Range in colour index:

0.0 < J −Ks ≤ 0.2.

Figure 27: µb vs b for the third matched sample. Range in colour index:

0.2 < J −Ks ≤ 0.4.
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B The Dispersion Matrix

In this appendix the details surrounding the estimation of the dispersion matrixD are shown.
This derivation was originally documented by Lennart Lindegren in the instruction manual
for the project P2: The motions of nearby stars and the LSR that worked as a part of the
course ASTM13 - Dynamical Astronomy held at Lund University. In this derivation, a
subscript i refers to properties of a star i in an arbitrary data sample.

Values for the velocity dispersion in the x, y and z-directions can be obtained from the
dispersion matrix

D =


D11 D12 D13

D21 D22 D23

D31 D32 D33

 (A.1)

where

D11 = σ2u, D22 = σ2v , D33 = σ2w (A.2)

In principle, the dispersion matrix can be estimated using the sample average

D =
1

N

N∑
i=1

∆vi∆v
T
i (A.3)

Where ∆vi is

∆vi = vi − 〈v〉 (A.4)

and is here called the peculiar velocity, describing how much the velocity, vi, of a star in a
data sample deviates from the average velocity of the same sample, 〈v〉.

In order to calculate the space velocity of any star, the position (l, b), parallax (p), proper
motions (µl, µb) and the radial velocity vr are needed

vi = li
K(µl)i
pi

+ bi
K(µb)i
pi

+ ui(vr)i (A.5)

where K = 4.7405 and (li, bi,ui) correspond to the normal triad vectors

ui =


cos bi cos li

cos bi sin li

sin bi

 li =


− sin li

cos li

0

 bi =


− sin bi cos li

− sin bi sin li

cos bi

 (A.6)

However, the TGAS nor Hipparcos provide radial velocities for stars and instead we are
inevitably restricted to working with the tangential velocity vector τ i. This vector is related
to the space velocity as

τ i = T ivi (A.7)
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Where T i is the tangential projection matrix

T i = I − uiu
T
i (A.8)

I is the 3× 3 identity matrix. The tangential projection matrix projects the space velocity vi
on the tangent plane and thus gives an expression for τ i. Note that T i is a singular matrix
and thus eq. (A.7) cannot be used directly to obtain vi. However, by using the principles
described in Dehnen & Binney (1998) we can obtain the mean velocity using eq. (A.7) as

〈v〉 = 〈T 〉−1 〈τ 〉 (A.9)

It is evident from eq. (A.9) that by only considering 〈T 〉 and 〈τ 〉 we can estimate 〈v〉.
Furthermore, we introduce the tangential peculiar velocity

∆τ i = T i∆vi = τ i − T i 〈v〉 (A.10)

Where we used eq. (A.4) to evaluate ∆vi. We also introduce the 3× 3 matrix B

B =
〈
∆τ∆τT

〉
=

1

N

N∑
i=1

∆τ i∆τ
T
i (A.11)

In a similar way that we could estimate 〈v〉 from 〈τ 〉, we can estimate D from B.
In what is to follow, we will omit the subscript i from each mathematical expression for clarity.
We start of by rewriting the expression for the tangential peculiar velocity from eq. (A.10) in
component form

∆τk =

3∑
m=1

Tkm∆vm (A.12)

where k = m = 1, ..., 3. We will implement the Einstein summation convention for brevity
meaning ∆τk = Tkm∆vm is equivalent to eq. (A.12). Combining eqs. (A.11) and (A.12) we
can write the components of B as

Bkl = 〈∆τk∆τl〉 = 〈Tkm∆vmTln∆vn〉 (A.13)

Where l = n = 1, ..., 3. By assuming statistical independence between the tangential projec-
tion matrix and the peculiar motion we obtain

Bkl = 〈TkmTln〉 〈∆vm∆vn〉 = 〈TkmTln〉Dmn (A.14)
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In order to solve eq. (A.14) we introduce the following vectors

b =



B11

B12

B13

B22

B23

B33



, d =



D11

D12

D13

D22

D23

D33



(A.15)

A =



11.11 (11.12 + 12.11) (11.13 + 13.11) 12.12 (12.13 + 13.12) 13.13

11.21 (11.22 + 12.21) (11.23 + 13.21) 12.22 (12.23 + 13.22) 13.23

11.31 (11.32 + 12.31) (11.33 + 13.31) 12.32 (12.33 + 13.32) 13.33

21.21 (21.22 + 22.21) (21.23 + 23.21) 22.22 (22.23 + 23.22) 23.23

21.31 (21.32 + 22.31) (21.33 + 23.31) 22.32 (22.33 + 23.32) 23.33

31.31 (31.32 + 32.31) (31.33 + 33.31) 32.32 (32.33 + 33.32) 33.33



(A.16)

Each element in A corresponds to the numbers km.ln that TkmTln will have. By looking at
the equation

b = Ad (A.17)

The components from the dispersion matrix that are of interest can be obtained as d = A−1b.
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