
Time Series Prediction for

Algorithmic Rescaling in the

Cloud

Björn Elmers

Master’s thesis
2016:E3

Faculty of Engineering
Centre for Mathematical Sciences
Mathematics

C
E
N
T
R
U
M

S
C
IE

N
T
IA

R
U
M

M
A
T
H
E
M
A
T
IC

A
R
U
M

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lund University Publications - Student Papers

https://core.ac.uk/display/289953657?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Time series prediction for
algorithmic rescaling in the cloud.

Author: Björn Elmers

Supervisor: Kalle Åström

Assistant supervisor: Michael Nordström

Examiner: Magnus Oskarsson

Acknowledgements:
Alex Krasnukhin,
Anders Haglund,
Sofia Henryson

February 4, 2016

A B S T R A C T

The main goal of this thesis is to predict the number of players in
some instance of DICE’s gaming platforms, e.g. Battlefield 3 for PC,
15 minutes in the future. This prediction may be used by the company
when buying on-demand cloud servers to tell them how much they
need to buy. Several different prediction models are examined and
evaluated on historical data from 2011 to 2015. Another focus point
is how to detect and handle outliers. The thesis also tries to create
a general understanding of player behaviour by using different data
separations and statistical methods. From the company’s perspective
an auto regressive model of order 100 produces the best result. It is
shown that with this model it would be beneficial for the company to
use cloud servers instead of physical servers if their mean abundance
in server capacity with physical servers is greater than 4134 players.

The work was conducted primarily at DICE (EA Digital Illusions
CE AB) in Stockholm from 2015-09-07 to 2016-01-29.

2

S A M M A N FAT T N I N G

Huvudsyftet med denna rapport är att förutsäga antalet spelare i nå-
gon instans av DICE: s spelplattformar, t.ex. Battlefield 3 för PC, 15

minuter i framtiden. Denna förutsägelse kan användas av företaget
vid köp av molnservrar on-demand för att visa dem hur mycket de
behöver köpa. Flera olika prognosmodeller undersöks och utvärderas
på historisk data från 2011 till 2015. En annan fokuspunkt är hur man
upptäcker och hanterar extremvärden. Rapporten försöker också ska-
pa en allmän förståelse av spelarbeteende genom att separera datan
på olika sätt och genom olika statistiska metoder. Från företagets per-
spektiv ger en autoregressiv modell av ordning 100 det bästa resulta-
tet. Det visar sig att med denna modell skulle det vara fördelaktigt
för företaget att använda molnservrar istället för fysiska servrar om
deras genomsnittliga överflöd i serverkapacitet med fysiska servrar
är större än 4134 spelare.

Examensarbetet genomfördes primärt hos DICE (EA Digital Illu-
sions CE AB) i Stockholm från 2015-09-07 till 2016-01-29.

3

C O N T E N T S

1 introduction 5

1.1 Related work 6

1.2 Challenges in cloud computing 6

2 data and evaluation 8

2.1 The dataset 8

2.2 Evaluation 9

2.2.1 A mathematician’s perspective 10

2.2.2 The company’s perspective 10

3 preprocessing 12

3.1 Trimming the dataset 12

3.2 Platform and game separation 13

3.3 Training- and test set separation 13

3.4 Missing values and outliers 14

3.5 Dependencies on outliers or missing values 15

3.6 Finding outliers 15

4 analyzing the data 20

4.1 Seasonality 20

4.2 Daily pattern 21

4.3 Auto correlation functions 22

4.4 Baseline with physical servers 25

5 models 27

5.1 Static model 27

5.2 Last value model 27

5.3 Linear extrapolation model 27

5.4 Last week model 28

5.5 Last week model with linear extrapolation 29

5.6 AR model 30

5.7 AutoRegressive Integrated Moving Average model 31

5.8 Decomposition model 33

6 results 35

6.1 Main results 35

6.2 Separating the data per console 40

6.3 Impact of outliers 40

6.4 Further look-ahead predictions 41

7 discussion and future work 44

8 conclusion 46

4

1
I N T R O D U C T I O N

DICE is a Swedish software company that develops computer games.
They are responsible for the Battlefield series, which counts as one
of the biggest Swedish successes in computer games of all time. The
latest release, Battlefield 4, has sold over 10 million copies according
to [16]. To make their games run smoothly at all times they have to
make sure that their servers always have enough computing power.
If the company buys their own servers it means that they must buy
enough server capacity to handle the times when there are the most
players online. This means that during large parts of the day and
the year there is an abundance of computer power. In Table 1, one
can see as an example, that only between 07:00 and 13:00 it differs
about 80.000 players. Today, more and more services are moving their
computing power from physical servers owned by themselves to the
cloud. By predicting how much server capacity that is needed at a
given time (not too far into the future), DICE will be able to buy and
sell as much space in the cloud as they need to ensure a nice game
experience for their users and still optimizing their costs. Optimizing
this kind of short predictions for renting on-demand cloud servers is the main
focus of this paper.

Table 1: Peak Simultaneous User’s (PSU) at different times during
September 1, 2015, calculated over all consoles for Battle-
field 3. It uses the maximum value per hour. Notice the
big variations.

Hour Players
06:00 102,404

07:00 93,744

08:00 99,681

09:00 110,194

10:00 122,109

11:00 138,337

12:00 155,360

13:00 171,434

Since it is approximately six times cheaper for the company to use
their own physical server than to rent one from a cloud service, a
big part of the server capacity could remain on company servers. Be-

5

1.1 related work

cause of this the company also needs to know how many servers they
should buy for themselves. This motivates player predictions on a
larger timescale further into the future since buying physical servers
naturally takes much longer time than buying cloud space. One in-
teresting area is prediction on how many players the game will get
shortly after the launch. Another interesting area is predictions of the
trend a few days or even a month ahead to see if the capacity from
the company’s own servers is enough. This kind of longer prediction
is not the main focus of this thesis but an analysis is made of how big
part of the entire server capacity that should come from the cloud and how
much that should come from their physical servers.

A third area that this paper tries to contribute to, is to create a gen-
eral understanding about player behaviour. The paper presents a few
different analyses and tools that hopefully helps with this task.

1.1 related work

The subject of cloud computing is discussed in several papers. The
number of papers that focuses on the prediction of the workload is
limited though. E.g. [1] and [2] are excellent papers that address the
full problem of cloud computing in a wide perspective with good so-
lutions on load balancing, architecture and cost-efficiency, but their
parts about prediction is more like a sidetrack or discussed as future
work. In [3] the subject of prediction is examined with a pattern
matching algorithm and is possibly a good solution but its missing a
real comparison with other prediction techniques. In [4] an AutoRe-
gressive Moving Average (ARMA) filter is used for the prediction and
it gives an acceptable result for their purpose but there is no com-
parison between different algorithms in this paper either. The most
related paper found is probably [5] that actually does a comparison
between eight different algorithms and spends some time discussing
prediction techniques. It divides players into different groups de-
pending on their play style and does not focus on how many players
there are (as in this thesis) but how much they interact with the game.

This paper focuses specifically on DICE games, which prediction
techniques that performs best on them and how well they predict.
Another thing that is covered by this paper but not by the others,
is the parts surrounding the prediction, such as data cleaning and
handling outliers.

1.2 challenges in cloud computing

There are several challenges in the area of cloud computing. Of the
following areas workload prediction is the only one treated by this
thesis.

6

1.2 challenges in cloud computing

When the company purchases server capacity it is done in the form
of so called boxes. These are bought in different sizes depending on
what the box will be used for. Some boxes perform better for game
servers with a small number of players while some boxes perform bet-
ter on game servers with many players. The different kind of boxes
has room for different number of players and has different costs. How
many different boxes that should be bought is an optimization prob-
lem of its own and will not be discussed in this paper. To simplify the
evaluation part of this work this paper does not take boxes into ac-
count at all and instead assumes that the number of players translates
directly to server capacity.

Each box may house several game instances and each game in-
stance houses several players. This leads to saturation problems on
both the boxes and the game instances. To prevent half empty boxes
and game instances some kind of consolidation mechanics is neces-
sary.

Another issue is that cloud servers are rented on an hourly basis.
This means that when you decide to start scaling down a system it
could take up to an hour before you get to the optimal server capacity.
It may or may not be a big deal but at least it brings more complexity
to the subject of cost optimization.

The main focus of this paper is workload prediction. What it is
does not cover is the translation from PSU (Peak Simultaneous Users)
to workload, instead it assumes that the PSU translates directly to
workload. In reality the translation ratio differs. For example some
game modes may be more intense which could mean that each player
need more server capacity. It could be beneficial to analyse the PSU of
different game modes separately but that is not covered in this paper.

7

2
D ATA A N D E VA L U AT I O N

2.1 the dataset

The dataset that has been analysed consists of the PSU for 15 minute
intervals for Battlefield 3 (BF3), Battlefield 4 and Battlefield Hardline
since their respective launches in 2011, 2013 and 2015. Each sample
contains the PSU, a timestamp and information about which console
and game the sample comes from. All plots, data and results shown
in this paper origins from BF3 which is the oldest game of the three.
Furthermore, with exception to section 6.2 ”Separating the data per
console”, all plots, data and results is also restricted to PC (Personal
Computer) usage. A plot of the first half of the analysed dataset can
be seen in Figure 1. The quality of the data is quite good but as
can be seen in the plot there exists some irregularities, e.g. where the
curve spikes down to zero or when it drops a longer period (between
Q4-12 and Q4-12), that is either missing values or outliers which is
an issue that this paper addresses quite extensively. Another thing to
notice is the decreasing trend and the fluctuations which also will be
addressed later in this paper.

8

2.2 evaluation

Figure 1: A plot of the analysed dataset for PC and BF3. Notice the
general decreasing trend and the fluctuations. Also notice
the drops, i.e. when the curve goes to zero. These drops
indicates an irregularity, i.e. that either the value is missing
or that there has been a technical issue.

Interval of 15 minutes is a suiting interval to work with since a
rescaling to the cloud often takes less than 15 minutes [10] and for
DICE it will probably land somewhere around 5 minutes. The use of
a longer than needed interval at least will not cause a too optimistic
result.

2.2 evaluation

An important question in this work has been how the predictions
from each model should be evaluated. Several values would be inter-
esting to compare and it is not certain that one model will be the best
one in all aspects or even on all datasets. What evaluation techniques
that are most important also differs from which person that look at
it. A mathematician would say one thing while someone from DICE
could say something different.

9

2.2 evaluation

2.2.1 A mathematician’s perspective

From a science- and mathematical perspective the proper way to eval-
uate a prediction would be to look at standard statistical evaluation
values such as the Root Mean Square Error (RMSE),

RMSE =

√
∑n

i=1 (ŷi − yi)2

n
,

the Mean Absolute Percentage Error (MAPE),

MAPE =
1
n

n

∑
i=1

|yi − ŷi|
yi

,

or the Median Absolute Percentage Error (MdAPE),

MdAPE = median
i=1,n

(|yi − ŷi

yi
| · 100),

where yi is the actual value at sample i, ŷi is the predicted value at
sample i and n is the number of samples. Another interesting thing
to look at could be the confidence interval of the prediction.

Using MAPE as an evaluation technique was suggested by [11] and
it has some nice properties for example if you want to study the rel-
ative error and not the absolute difference between forecasted and
actual values. An attempt to clean the data from outliers will be done
later in the paper but unfortunately it can not be confirmed that all
outliers is removed. Therefore the MdAPE was included as an eval-
uation technique due to the fact that it is more resistant to outliers
than MAPE [13]. Another drawback of the MAPE is that it can not
handle zero as the true value which will sometimes be the case when
evaluating outliers. This can be seen later in the Result section where
the MAPE will produce so called inf values which is short for in-
finity. The MdAPE also has a risk of producing infinity values but
that would only occur if at least half of the dataset consisted of zeros
which is not the case here.

2.2.2 The company’s perspective

From the company’s- and an economic perspective the goal is to get
a prediction that minimizes the necessary server capacity but ensures
that it does not get to low. If the company has too low server capacity
it costs them a lot in terms of player dissatisfaction and in the long
term lower sell numbers. Instead of trying to calculate how big this
cost is (which is really difficult), a requirement was put on the pre-
diction to not produce too low result more than 10 samples a year. In
percentage that equals

10
4 ∗ 24 ∗ 365

≈ 0.9997 = 99.97%.

10

2.2 evaluation

This means that by using a lower bound confidence interval with a
confidence level at 0.9997 only 10 samples per year is expected to fall
below the interval.

The number in the confidence interval will then correspond to the
minimum amount of extra capacity above the predicted value the
company will have to buy to fulfill the requirement. If the mean of
the residuals from each model was zero, the above mentioned confi-
dence interval would also correspond to how much mean abundance
the company would need to fulfill the requirement. Although the
residuals from the models will not always be centered around zero
and therefore the confidence interval is not enough. The cost function
is created by also using the mean of the residuals and is described be-
low.

The cost function By adding the mean residual to the lower bound
confidence interval it leads to a resulting value of how much mean abundance
the company would need while still meeting the requirement specified above.

11

3

P R E P R O C E S S I N G

Preprocessing the data is an important part of forecasting. How the
data is cleaned, transformed and handled in general before using it
in a model could make a great impact on the result.

One goal of the preprocessing is to separate different behaviours
from each other and allow them to be treated differently. By doing
this the datasets decreases in complexity and becomes easier to anal-
yse. Another goal is to remove the effects of outliers.

In this work the data has been separated in a few different ways
explained in the sections below. An additional separation (dividing
per day in week) is discussed in the section about analysis, although
this separation was not implemented in the main preprocessing step
but as a sidetrack.

3.1 trimming the dataset

Since the dataset used included data from the very start of each game,
the beginning of each game’s dataset looked very different from the
rest of the dataset. To remove the effects of the special player be-
haviour when the game is all new the first 1000 samples was removed.
This is illustrated in Figure 2. In the same plot it can also be noticed
some smaller irregularities, e.g. between 11/02 and 11/03, that could
not be seen earlier in Figure 1. Yet another thing to notice is the
difference between regular weekdays, like Wednesday and Thursday
(11/04 and 11/05) and a weekend, like Friday and Saturday (11/06

and 11/07). These differences will be examined closer later in this
paper.

12

3.2 platform and game separation

Figure 2: The first 1000 samples of the original dataset for BF3 and PC
together with the first 1000 samples for the trimmed version.
Note that the curve looks different during the first four or
five days.

3.2 platform and game separation

Next preprocessing step was to divide all data into different sets for
each game and for each console. It could be argued that it would
be interesting to perform an analysis over different consoles since the
company could want to buy common cloud space over multiple plat-
forms but the chosen way to do this was to first analyse each console
by itself and then combine the results. An evaluation of whether this
was a good choice or not is presented in the result section.

That the data should be separated into different sets based on the
game is clear though, at least from the company’s view. This is be-
cause each game has its own budget and buying common cloud space
for several games is therefore not an option.

3.3 training- and test set separation

When using a model for prediction of new data, it is inappropriate to
evaluate the model on the data that has been used in estimation of the
model’s parameters [17]. Because of this the data was separated in a
training set and a test set. The training set was used when analysing
the dataset and estimating parameters in the model while the test set
only was used for evaluation. The first half of the dataset was used

13

3.4 missing values and outliers

as the training set and the second half of the dataset was used as the
test set.

3.4 missing values and outliers

In the used data there exists three categories of values. Good values,
outliers and missing values.

The majority of the data consists of the so called good values. The
good values are the values that are not influenced by server issues
or other technical problems.These values should mostly depend on
player behaviour.

The second category is the outliers. The outliers are the values
that are influenced by server issues or other technical problems. In
sections with such values, the player behaviour is shadowed by a
decreased server capacity. Although in the very end of sections like
this, when the server issues have disappeared but the PSU still has not
reached its normal level, the player behaviour comes into play again
but it looks different than with good values. Therefore it should still
be analysed separately.

The third category is the missing values. This category is simply
the places in the timeseries where values are missing. Since nothing
is known about these values there is no point in trying to analyse
them.

The phenomenon with outliers and missing values is a common
problem when working with data from real life and it has to be han-
dled properly to prevent that they disturb the forecasting procedures
[6]. Several approaches like mean substitution, pairwise deletion and
casewise deletion have been proposed or examined by e.g. [6] and [7].
Another way is to try to interpolate the sections holding outliers and
with a good interpolation technique this could maybe be a preferable
solution, at least if the sections with outliers or missing values are
short. In this work though, all missing values were ignored in the
evaluation part and the evaluation of outliers and good values was
done separately. The reason for not trying to interpolate the missing
values or handling them with any other smart technique, was that the
available dataset was big enough and the loss of these values would
probably not be noticeable. For the analysed dataset only 1915 values
was marked as missing which corresponds to 1.4%. The reason for
still evaluating the outliers was that the end of these sections could
still be interesting as explained above.

The first approach to handle the outliers and missing values was
by in some sense ignoring them in the prediction part. The predic-
tion at the samples with outliers or missing values was set to the true
value instead of the predicted. This naturally made the resulting pre-
dictions more accurate. Since all models increased in accuracy in the
same way this did not matter due to the fact that what is interest-

14

3.5 dependencies on outliers or missing values

ing in this case is to compare models, not how well a specific model
predicts.

The second approach (which was used with all models) was to
move the responsibility of handling outliers and missing values from
the models to the evaluation part. This approach was chosen to be the
final one since it allowed evaluation of both the outliers and the good
values. Some models were good at predicting sections with outliers
and bad at predicting sections with good values and this kind of
evaluation was not possible with the first approach.

3.5 dependencies on outliers or missing values

One detail that made the problem with missing and outliers a little
bit more complex was that before you flag a value as a good value,
first you have to make sure that it does not depend on an outlier or a
missing value in any of the models. For instance the Last Week model
uses values from one week back and if any of those values is not a
good value then the prediction from that model would be influenced
by an outlier or a missing value. To come around this issue a window
was created described as

window = [t− k · week− 1, t− k · week, t− k · week + 1, t− i],

where week = 24 · 4 · 7 (the number of samples in a week), t is the
current sample, 1 ≤ k ≤ 5 (to cover the model in section 5.5) and
1 ≤ i ≤ 25 (to cover the AutoRegressive model of order 25). This
window covered almost all models dependencies with the exception
of the AutoRegressive model of order 100 (AR100). The AR100 model
uses values 100 samples back which would have made the window
too big and the remaining dataset too small. Note that the possible
impact of not covering the AR100 model completely will be that some
outliers could remain in the evaluation step. That would mean a
worse result for the model. The same window was used for all models
to be able to compare their results in a fair way.

3.6 finding outliers

To be able to handle missing values or outliers they have to be iden-
tified. To identify missing values is trivial but to find outliers is a
little bit harder. If the servers are completely down then of course
it is easy, then outliers will be zero. The issue is to find when there
are server problems that just prevent some players to play. The first
step in solving this problem was to manually set out flags on all val-
ues that looked like outliers. This was needed to be able to evaluate
the algorithmic solution for finding the outliers. The manual flagging
was done by scrolling through parts of the dataset while looking for

15

3.6 finding outliers

f o r i in range (weekly_period , len (psumax)) :
i f math . isnan (psumax [i]) or psumax [i] == " nan " :

f l a g s [i] = f l o a t ("NaN")
e l i f psumax [i] == 0 . 0 :

f l a g s [i] = " True "
e l i f abs ((psumax [i] − psumax [i − weekly_period]) / psumax [i]) >

threshold :
f l a g s [i] = " True "

e l s e :
f l a g s [i] = " Fa l se "

Figure 3: First algorithm for finding outliers in the dataset written in
Python. After the optimization described below, the thresh-
old was set to 1.0. Although, since this algorithm was not
the final one that threshold value was only used in early
testing.

irregularities. Most of the large player drops was found but some of
the smaller ones were probably missed.

The first approach with an algorithmic solution was to look at the
percentage difference between the value at hand and the value one
week back in the timeseries. If the difference got bigger than a certain
value then it got flagged as a outlier.

The motivation for this solution was that the datasets had such
strong weekly period. The question remained what value to use as
a threshold. To analyse this, different values was used and then the
resulting flagged values was compared to the manual flags. The com-
parison was categorized into four different classes; true Positives (TP),
true negatives (TN), false positives (FP) and false negatives (FN) [14].
True positives are the ones that are flagged correctly as a outlier, true
negatives are the ones that are flagged correctly as a good value, false
positives are the ones that are flagged incorrectly as an outlier and
false negatives are the ones flagged incorrectly as a good value.

With these four classes the true positive rate (TPR or sensitivity)
and the false positive rate (FPR or fall-out) could be calculated as

TPR =
TP

TP + FN

and
FPR =

FP
FP + TN

.

The result was presented in a Receiver Operating Characteristic
(ROC) plot seen in Figure 4. A ROC plot shows the false positive rate
on the x-axis and the true positive rate on the y-axis and hopefully
gives a hint of how to set your threshold value, [15]. In many ROC-
plots the curve starts in orig inwhich neither the red or the blue curve
does in Figure 4. The reason for this is that many of the bad values
are zero and with the used algorithms all zero values will be found
regardless of the threshold value.

16

3.6 finding outliers

Figure 4: Plot with receiver operating characteristic. Algorithm in Fig-
ure 3 was used for the red line and algorithm in Figure 5

was used for the blue line. The green line is just a line from
(0,0) to (1,1). Notice that the blue and red line starts a bit
over 0.6. This is because of zeros in the dataset.

With an optimal algorithm the blue curve would have intersected
the point (0.0, 1.0) which would have meant that all outliers were
found and that all found values were outliers. Now when that is not
the case one has to decide how important FPR is compared to TPR.
Since the dataset at hand is as big as it is and the main goal is to
analyse the good values, the TPR is much more important than the
FPR.

The second approach with an algorithmic solution was to look at
the percentage difference between the value at hand and the previous
value instead of the value one week back as in the first approach. As
seen in the implementation in Figure 5 another difference from the
first algorithm was introduced. The algorithm remembers the PSU
value of the last sample that was flagged as good. If the previous
sample was marked as an outlier then the PSU from the memory is
used instead.

17

3.6 finding outliers

f o r i in range (weekly_period , len (psumax)) :
i f math . isnan (psumax [i]) or psumax [i] == " nan " :

f l a g s [i] = f l o a t (’NaN’)
e l i f psumax [i] == 0 . 0 :

f l a g s [i] = " True "
e l i f f l a g s [i − 1] == " True " :

i f (psumax [i] − last_good_value) / psumax [i] < threshold :
f l a g s [i] = " True "

e l s e :
f l a g s [i] = " Fa l se "
last_good_value = psumax [i]

e l s e :
i f (psumax [i] − psumax [i − 1]) / psumax [i] < threshold :

f l a g s [i] = " True "
e l s e :

f l a g s [i] = " Fa l se "
last_good_value = psumax [i]

Figure 5: Second algorithm for finding outliers in the dataset written
in Python. If the last value was an outlier then the difference
is calculated from the last good value instead.

As can be seen by comparing the red and the blue lines in Figure
4, the second algorithm did not improve much. But it opened up
an opportunity to introduce a second threshold value for when the
last value was flagged as an outlier. A third algorithm was therefore
implemented as seen in Figure 6. A few curves with different thresh-
old values was plotted in Figure 7. Since a high TPR value is most
important, the red curve with second_threshold = 0.2 was chosen as
the best one and was used as the final algorithm in the preprocess-
ing step. When comparing the actual numbers on TPR and FPR, for
TPR > 0.99 the first algorithm got FPR ≈ 0.69 with threshold = 0.05,
while the final algorithm got FPR ≈ 0.06 with threshold = −0.2.

f o r i in range (1 , len (psumax)) :
i f math . isnan (psumax [i]) or psumax [i] == " nan " :

f l a g s [i] = f l o a t (’NaN’)
e l i f psumax [i] == 0 . 0 :

f l a g s [i] = " True "
e l i f f l a g s [i − 1] == " True " :

i f (psumax [i] − last_good_value) / psumax [i] < (threshold +
second_threshold) :
f l a g s [i] = " True "

e l s e :
f l a g s [i] = " Fa l se "
last_good_value = psumax [i]

e l s e :
i f (psumax [i] − psumax [i − 1]) / psumax [i] < threshold :

f l a g s [i] = " True "
e l s e :

f l a g s [i] = " Fa l se "
last_good_value = psumax [i]

Figure 6: Third and final algorithm for finding outliers in the dataset
written in Python. Almost identical to 5 but has a second
threshold value.

18

3.6 finding outliers

Figure 7: Plot with receiver operating characteristics with different
values on the second threshold. Algorithm in Figure 6 is
used. The straight yellow line is just a line from (0,0) to
(1,1). The red line gets a very high TPR early which makes
it the best option.

19

4

A N A LY Z I N G T H E D ATA

The goal of this chapter is to create a general understanding of the
player behaviour. With a solid understanding about the player be-
haviour it later becomes easier to come up with ideas for models and
to understand why certain models behave the way they do. To make
the patterns in the dataset clearer the first thing done was to center
the data.

4.1 seasonality

By thinking of how people play computer games it is easy to guess
that there will be some kind of both daily and weekly seasonality. A
guess is that people generally play more during evenings than during
the middle of the day and that people play more during weekends
than during the rest of the week. By just looking at the data it became
clear that the first guess was correct, the daily oscillations are very
easy to spot. To confirm the suspicions about a weekly seasonality a
MA (Moving Average) filter was put on the data described as

season =
y ∗ ones

N
,

where N is the length of the window and ones is a list with length N
consisting only of ones. A window with length 4 ∗ 24 = 96 samples
was used to remove the daily oscillations. To see if there existed
any other clear seasonality a second ma-filter was put on the data
with length 4 ∗ 24 ∗ 7 = 672 to remove the weekly oscillations. The
resulting plot with the centered data and the two filtered versions can
be seen in Figure 8. The blue line clearly shows a weekly seasonality
which suggests that our assumption was correct. The red line does
not show any clear season though. The red line could be viewed as
some kind of trend. Most of the ups and downs in the red line could
be explained by different marketing campaigns, offers and expansion
packs.

20

4.2 daily pattern

Figure 8: The plot shows the centered original dataset and two sets
that has been filtered with a moving average filter with win-
dow lengths 96 and 672. Notice the remaining seasonality
in the blue line which corresponds to the weekly behaviour
and the red line’s lack of seasonality.

4.2 daily pattern

To get a better understanding of how the player behaviour differs
over a day, each day was plotted separately in the top plot in Figure
9. There is a clear daily pattern with a dip at around sample number
25 and a peak around sample number 80. The next thing that was
examined was if this daily pattern could become clearer by looking
at each day in the week separately which can be seen in the bottom
plot in Figure 9. It may be hard to separate the colors of each day, but
by looking closely it can be seen that Fridays and Saturdays has a later
decrease than the rest, Saturdays and Sundays has an earlier increase
than the rest and Mondays to Thursdays has very similar patterns.
As expected people stop playing later on Fridays and Saturdays and
they start playing earlier on Saturdays and Sundays and a little bit
earlier on Fridays. The different pattern between each weekday could
motivate a different analysis for each weekday.

21

4.3 auto correlation functions

Figure 9: In the top plot each day is plotted by itself. In the bottom
plot a mean of each weekday is plotted by itself. Notice the
difference between regular weekdays and weekends.

4.3 auto correlation functions

To further study the seasonalities in the dataset, the data was visu-
alized with plots of the Auto Correlation Function (ACF) and of the
Partial Auto Correlation Function (PACF) to see if the data was sta-
tionary or included any seasonalities. By looking at the ACF and
PACF it is possible to comment on what kind of model to use. When
talking about classical statistical models like an AutoRegressive Inte-
grated Moving Average (ARIMA) it is also possible to comment on
what order to use on the different terms in the model which will be
done later in the paper. In Figure 10 the unmodified data has been
used to see if any differentiation is necessary.

The pattern in the ACF plot is typical for a data that is both strongly
seasonal and nonstationary. It does not have a fast decrease and it
shows a clear seasonal period. This means that some kind of differ-
encing will be necessary. It could be a nonseasonal difference (Figure
11), a seasonal difference (Figure 12) or both (Figure 13). Which alter-
native that is best will be determined by looking at the ACF’s and the
PACF’s of all three possibilities. All of these plots together strongly

22

4.3 auto correlation functions

indicates that both a nonseasonal and a seasonal difference should be
included [19].

Figure 10: An ACF and PACF plot of the unmodified data. That
means that no differentiation has been done. The season
in the ACF indicates that some differentiation is necessary
to induce stationarity.

Figure 14: This plot is the same as Figure 13 with the difference that
it is zoomed in. Notice the positive spike at lag 1 in the
PACF and the cutoff after the spike.

23

4.3 auto correlation functions

Figure 11: In these plots the data has been modified with a first differ-
ence. That means that yt = Yt−Yt−1 where yt us the differ-
entiated data at time t and Yt is the original data at time t.
It seems that much of the seasonality and the stationarity
is still there. It has decreased by half though which is a
sign that a first differencing should be included. That the
seasonality still is there indicates that a seasonal difference
also should be included.

Figure 12: In these plots the data has been modified with a seasonal
difference with season 672 which corresponds to a week.
That means that yt = Yt − Yt−672 where yt is the differenti-
ated data at time t and Yt is the original data at time t. The
ACF show a strong positive auto correlation which could
signal for another differentiation.

24

4.4 baseline with physical servers

Figure 13: In these plots the data has been modified with both a first
difference and a seasonal difference with season 672. The
stationarity seems to be gone and most of the seasonality
as well except for a very small oscillation. It also shows a
clear negative spike at lag 672.

4.4 baseline with physical servers

As briefly mentioned in the introduction, it is about six times cheaper
for the company to use their own physical servers than to rent cloud
servers. The benefit with cloud servers is that it is a lot faster to
set up a new cloud server than to buy a new physical server which
means that it has a great potential of decreasing the abundance. This
means that to optimize the server cost, some of the capacity should
probably be bought as physical servers and some should be bought
as cloud servers. How long time it takes to buy and setup a new
physical servers differs a lot and depend on several factors but in the
following analysis it is assumed that it takes 30 days.

In Figure 15 it is examined where to put the baseline for a cost
optimized system. To find each curve in the top plot, i.e. the curve
for each window, a cost function was created described with pseudo
code in algorithm 1.

25

4.4 baseline with physical servers

Algorithm 1 Baseline cost function
1: for Baseline levels between 0.01-1.0 do
2: baseline = level · max(values)
3: cloud values = values > baseline
4: physical values = values ≤ baseline
5: cloud cost = 6 ·∑ cloud values
6: physical cost = baseline · length(physical values)
7: total cost = cloud cost + physical cost
8: end for

After the cost of each window had been found, the mean of all
these curves was calculated which can be seen in the bottom plot in
Figure 15. The minimum of this curve is marked with a red circle at
67% which is the result of the analysis and the recommended level for
the baseline assuming that it takes 30 days to rescale with physical
servers and that cloud servers are 6 times as expensive.

Figure 15: Examination of different percentages on the baseline. In
the top plot the cost of different percentages are plotted
separately for 2000 different windows. In the bottom plot
the mean of all possible windows of with length of 30 days
from the dataset is plotted. Notice the red circle which is
the minimum of the curve.

26

5

M O D E L S

This chapter consists of a short explanation of each model and their
forecasting equations. For the models that have parameters with un-
known values an explanation of the estimation step is also included.

5.1 static model

The equation for the static model is

ŷ(t) = max(ytraining_set).

The purpose of this model was to give a result against which other
models may be compared [9]. What the model does is simply to find
the highest peak in the training set and then set the prediction to that
value at all future points. This can be looked at as a model of the
system without prediction. By comparing other models to this one, a
discussion can be made about how beneficial it is to put a prediction
model into use.

5.2 last value model

The equation for the last value model is

ŷ(t) = y(t− 1).

What is does is to look at the last value in the time series and put
the next value to the same. It is a very naive and simple model but
in this case, where it only is necessary to predict the next value, its
prediction is not that bad. In statistical terms this is basically an AR(1)
model with its parameter a1 = 1

5.3 linear extrapolation model

The equation for the linear extrapolation model is

ŷ(t) = y(t− 1) + (y(t− 1)− y(t− 2)) = 2 ∗ y(t− 1)− y(t− 2).

What it does is assuming that the difference between the last two
sample will not differ too much from the difference between the last

27

5.4 last week model

and the next sample. The model simply adds the difference between
the last two sample to the last sample.

5.4 last week model

The equation for the last week model is

ŷ(t) = ∑n
k=1 y(t− k · week)

n
.

The model is based on the observation that the weekly period is
strong. What it does is to just look at the value exactly one week
back and uses that value for the prediction. To dampen the effect of
not found outliers instead of only using values from one week back,
the idea of using the mean of values n weeks back was tested. In
plot 16 the RMSE, mean shortage and mean abundance is shown for
predictions from the model using values 1− 10 weeks back. The low-
est RMSE occurs with either one or six weeks in memory. Since they
are almost the same and since using only one week memory creates
a simpler model, one week memory, n = 1, was chosen. The strange
drop at six weeks is not examined any further for the simple reason
that the Last week model will prove to be a pretty useless model.

28

5.5 last week model with linear extrapolation

Figure 16: The mean shortage, mean abundance and RMSE of the pre-
dictions vs the number of weeks used for last week model.
Note that these values will not be the same as in the re-
sults due to the fact that in this plot only values from the
training set are used. Note the drop at six weeks that is
one approximately the same level as one week.

5.5 last week model with linear extrapolation

The equation for the last week model with linear extrapolation is

ŷ(t) = y(t− 1) + ∑n
k=1 y(t− k · week)− y(t− k · week− 1)

n
,

where n is the number of weeks to take the mean from. What the
model does is to add the difference from the samples one week ago
to the last sample. To dampen the effect of undetected outliers, in-
stead of only using values from one week back, the model takes the
mean difference from n weeks back. To determine what n to use,
the model was executed for a few different n:s and then the mean
shortage, mean abundance and RMSE was plotted against the num-
ber of weeks used in Figure 17. It can be seen that an improvement
occurs when looking up to three weeks back but not further which
motivated to use n = 3.

29

5.6 ar model

Figure 17: The mean shortage, mean abundance and RMSE of the pre-
dictions vs the number of weeks used for last week model
with linear extrapolation. The best value seems to be with
two or three weeks. Note that these values will not be the
same as in the results due to the fact that in this plot only
values from the training set are used.

5.6 ar model

The equation for the AR (Auto Regressive) model is

y(t) = µ− a1 · y(t− 1)− a2 · y(t− 2)− · · · − ap · y(t− p) + ε(t),

where a1 to ap has to be estimated, µ is a constant and ε(t) is the resid-
ual at sample t. This is a standard model in literature when working
with periodic time series [17]. To decide what order the model should
have, i.e. how long its memory should be, the RMSE, the mean short-
age and the mean abundance from the prediction was plotted against
the order of the model in Figure 18. It seems that the RMSE keeps
decreasing until around order 100 so a model of order 100 could be
interesting to evaluate further. In the bottom plot the mean absolute
error is plotted separate for residuals < 0 and residuals > 0 or in
other words the shortage and the abundance. Since it seems to be a
dip in the shortage at order 25 a model of that order could be interest-
ing as well. Since the plots comes from data of the training set only,
the values in the evaluation part will not be the same as these.

30

5.7 autoregressive integrated moving average model

Figure 18: The mean RMSE, the shortage and the abundance of the
predictions vs the order of the AR-model. The RMSE
decreases until around order 100 and the shortage is the
smallest at around order 25.

The parameters for the AR models was estimated with the fit func-
tion found in the Statsmodels package in Python. The first parameter
in the AR100 model was estimated to a1 = 1.10 while the next 99 pa-
rameters was in the range of 0.01− 0.00001. Note that the parameters
only was estimated once and not before each prediction step.

5.7 autoregressive integrated moving average model

The equation for the AutoRegressive Integrated Moving Average (ARIMA)
model is

y(t) = µ + φ1y(t− 1) + φ2y(t− 2)+ · · ·+ φpy(t− p)

−θ1ε(t− 1)− θ2ε(t− 2)− · · · − θqε(t− q),

where φ1 to φp and θ1 to θq has to be estimated, ε(t) is the residual
at sample t and µ is a constant. The ARIMA model is also a stan-
dard model when it comes to periodic time series. It works in the
same way as the AR model but adds a smoothing factor, the moving
average (MA) part, and a differencing factor, the integration (I) part.
A regular ARIMA(p, d, q) process consists of three parts, p, d and q
where p is the order of the AR term, d is the number of times to dif-
ferentiate and q is the order of the MA term. A version of this process
is the seasonal ARIMA process (SARIMA) explained in [12] which is
suitable in this case since we know that the data has seasonality. It
is denoted SARIMA(p, d, q)x(P, D, Q)s where P is the seasonal AR
term, D is the seasonal integrated term, Q is the seasonal MA term

31

5.7 autoregressive integrated moving average model

and s is the season of the time series. To determine the order of all
six terms the ACF and PACF plots in section 4.3 will be used. A very
easy to follow guide of how this identification works can be read in
[19]. The general equation for the seasonal autoregressive integrated
moving average model is

ΦP(Bs)φ(B)∆D
s ∆dyt = ΘQ(Bs)θ(B)εt

where B is the backshift operator and ∆d and ∆D
s are ordinary and

seasonal difference components. The ordinary and seasonal autore-
gressive components are represented as φ(B) and ΦP(Bs) and the
ordinary and seasonal moving average components are represented
as θ(B) and ΘQ(Bs).

In section 4.3, about ACF and PACF, it is established that both a
nonseasonal differentiation and a seasonal differentiation with season
672 is necessary to make the process stationary. This corresponds to
a SARIMA(0, 1, 0)x(0, 1, 0)672 where the first parenthesis is the non-
seasonal part and the second parenthesis is the seasonal part. As
mentioned before there is one negative spike in Figure 13 at lag 672.
This indicates that a seasonal MA term should be added. There is
also a very small positive spike at around lag 672 which could indi-
cate a seasonal AR term but this is ignored since it is so small and
that it would most likely lead to overfitting. In the PACF plot in fig-
ure 13 there is a spike at lag 1. According to [19] this indicates a
small underdifferencing and that one or several AR terms should be
added. The lag beyond which the PACF cuts off, i.e. lag two, is the
indicated number of AR terms. This gives our model its final form
SARIMA(2, 1, 0)x(0, 1, 1)672. Its equation is

φ(B)∆672∆yt = Θ1(B672)εt

which also can be written as

(1− φ1B− φ2B2)(1− B672)(1− B)yt = (1 + ΘB672)εt

or when in its forecasting form like

ŷt =yt−1(1 + φ1)− yt−2(φ1 − φ2)− yt−3φ2 + yt−672−
yt−673(1 + φ1)− yt−674(−φ1 + φ2) + yt−675φ2+

εt + Θεt−672.

The coefficients φ1, φ2 and Θ was estimated, by using Matlab’s esti-
mate function on the model and the training set, to

φ1 = 0.0766545,

φ2 = 0.0856706,

Θ = −0.867538.

32

5.8 decomposition model

5.8 decomposition model

The decomposition model thinks of the data as three different compo-
nents. A seasonal component which is the daily and weekly change
in the data, a trend component which is a long-term increase of de-
crease of the data and an error component which is everything that
is not explained by the other components [18]. Sometimes a fourth
component is also considered, the cyclic component which is when
the data increases and decreases but not over a fixed period. In our
model though, the cyclic pattern is included in the trend component.
The decomposition of the dataset is shown in Figure 19.

Figure 19: Decomposition of the dataset done with the Python pack-
age Pandas.

Two different decomposition models can often be found in litera-
ture, the additive model

yt = St + Tt + Et,

and the multiplicative model

yt = St · Tt · Et,

where Yt is the signal, St is the seasonal component, Tt is the trend
component and Et is the error component. The additive model is
suitable if the magnitude of the seasonal fluctuations does not vary
with the level of the data [18].

33

5.8 decomposition model

In Figure 20 it can be seen that when the mean of the data increases
the magnitude of the fluctuation does the same. That means that an
additive model is not suitable and a multiplicative model was chosen
instead.

Figure 20: The dataset is divided in daily periods and then the mean
of each day is plotted against the magnitude of that day’s
fluctuation.

34

6
R E S U LT S

This chapter will start with the main results which is an evaluation
on which model that performs best and how well it performs. After
that follows three shorter parts. The first one evaluates whether or
not it was a good choice to separate the data per console. The second
one evaluates how big impact the outliers and missing values would
have on the result if they were not handled. The last part consists of
a short examination of how well some of the models would perform
on further look-ahead prediction.

6.1 main results

The models will first be evaluated from a mathematician’s perspec-
tive. According to section 2.2.1 RMSE, MAPE and MdAPE will be
used as performance metrics. The results with these metrics from
all the models is shown in Table 2. The model ”Last week extrapol
opt”, which is short for the last week model with linear extrapolation
with memory length n = 3, produces the best values in MAPE and
MdAPE while ”Last value extrapol” is best when it comes to RMSE.

From the company’s perspective the cost function in section 2.2.2
is the most interesting value and therefore the mean residual and
the lower bound confidence interval with confidence level 99.97% is
presented in Table 3. The model AR25 has the best confidence interval
but its residuals are not centered around zero which instead gives the
AR100 model the best cost function value at 689 players. The ”Last
value extrapol” model has the second best cost function value at 735
which is not far behind. As can be seen in Figure 21 the prediction
from the AR100 model is very close to the true values.

35

6.1 main results

Figure 21: Predictions from the AR100 model together with the true
values. Note that it is almost impossible to distinguish the
two lines.

The lower bound confidence interval (−624) of the AR100 model
tells us that there is a 99.97% probability that the next predicted value
will not be further below the true value than 624 players. From the
company’s perspective this means that if they make sure to have
server capacity for 624 players more than the predicted value then
its expected that 99.97% of the time, the server capacity will be suffi-
cient. This corresponds to that it is expected there will be 10 samples
each year where the server capacity is too low. The word expected
means that it is 50% probability that the server capacity will be suffi-
cient more often than 99.97% of the time and 50% probability that the
server capacity will be sufficient less than 99.97% of the time.

So by having a mean abundance in the server capacity of 689 play-
ers the company could expect shortages only 10 samples per year.
Since cloud capacity is approximately 6x more expensive than phys-
ical capacity this means that only if the company could scale their
physical servers with such precision that their mean abundance would
get less than 6 · 689 = 4134 players, it would be beneficial to stay at
physical servers. If their mean abundance with physical servers is greater
than 4134 they should switch to a system with cloud servers.

One way to visualize the results and the spread of the residuals bet-
ter is by using a boxplot which can be seen in Figure 22. The whiskers
corresponds to percentiles [1, 99]. The red line in the middle is the
mean and the box in the middle contains 50% of the residuals. To see

36

6.1 main results

things clearer all values outside the percentiles [1, 99] is ignored in
Figure 23. It can be seen that most errors are somewhere in the range
of −500 to 600.

Figure 22: Boxplot of the residuals from model Ar100 with good val-
ues. Whiskers are at percentiles [1, 99]. Each red cross
marks a value.

Table 2: Evaluation of models on good values with data from BF3 and
PC.
Model RMSE MAPE MdAPE
Static 151000 2110 1630

Last value 498 3.11 2.69

Last value extrapol 214 1.42 1.06

Last week 7280 10.0 5.4
Last week extrapol 7280 10.0 5.49

Last week extrapol opt 269 1.26 0.934
AR1 497 3.12 2.70

AR25 463 5.81 4.55

AR100 217 1.58 1.10

SARIMA 269 1.37 1.02

Decomposition 11124 109 83.4

37

6.1 main results

Figure 23: Boxplot of the residuals from model Ar100 with good val-
ues. Whiskers are at percentiles [1, 99].

Table 3: Evaluation of models on good values with data from BF3 and
PC.

Model Lower bound Mean Cost
conf interval residual function

Static (-112000) 150000 370000

Last value (-1690) 14.9 1710

Last value extrapol (-733) 2.59 735

Last week (-25000) -24.6 25000

Last week extrapol (-1000) -24.6 1000

Last week extrapol opt (-922) 2.72 924

AR1 (-1700) 9.95 1707

AR25 (−458) 391 849

AR100 (-624) 74 689
SARIMA (-924) 0.177 924

Decomposition (-34300) 2735 37000

In the evaluation of the outliers in Table 4, the model ”Last value
extrapol” again has the lowest RMSE (958) while the AR100 model
has the lowest MdAPE (0.860). Since the outliers sometimes has zero
as the true value, the MAPE gets infinity on all models.

In Table 5 it can be seen that the model ”Last value extrapol” is best
from the company’s perspective with a cost function value of 3290.

38

6.1 main results

A visualization of how well the model ”Last value extrapol” per-
forms on outliers can be seen in Figure 24. The outliers are the extra
jagged parts with the biggest one between the 8th and 9th of July.

Figure 24: Prediction and signal from model Last Value with Linear
Extrapolation showing a section with many outliers.

Table 4: Evaluation of models on outliers with data from BF3 and PC.
Model RMSE MAPE MdAPE
Static 146000 inf 995

Last value 1100 inf 2.40

Last value extrapol 958 inf 0.939

Last week 4410 inf 6.48

Last week extrapol 1170 inf 0.971

Last week extrapol opt 1100 inf 1.04

AR1 1100 inf 2.41

AR25 1080 inf 2.14

AR100 990 inf 0.860
SARIMA 963 inf 0.903

Decomposition 11300 inf 31.8

39

6.2 separating the data per console

Table 5: Evaluation of models on outliers with data from BF3 and PC.
Model Lower bound Mean Cost

conf interval residual function
Static (115097) 146000 31000

Last value (-3750) 13.5 3760

Last value extrapol (-3290) -3.24 3290
Last week (-12000) 1800 13800

Last week extrapol (-4000) 10.4 4010

Last week extrapol opt (-3770) 10.5 3780

AR1 (-3760) 6.91 3760

AR25 (−3230) 310 3540

AR100 (-3310) 73.5 3390

SARIMA (-3280) 24.4 3310

Decomposition (-31000) 4570 35600

6.2 separating the data per console

The idea of separating the data per console and then combine the
predictions instead of using the data from all consoles at once was
tested. A comparison was made for the model with the best cost
function, the AR100 model. The model was first used directly on the
combined players for BF3 from all consoles which produced a cost
function value of 1170. Then the model was used on the different
consoles separately and then added together. This produced a cost
function value of 1280 which is worse than the previous one. If a
prediction would be made on a game over all consoles it seems that
it should not first be separated per console.

6.3 impact of outliers

In Table 6 all values have been used and it can be seen that it is the
same models as for the good values that have the best results. The
cost function value for the AR100 model for the good values was 689
while in this evaluation it is 1620 which is more than double. On most
of the models, with exception of the worst ones, the cost function
value from this evaluation was approximately 500− 1000 higher than
from the evaluation without outliers.

40

6.4 further look-ahead predictions

Table 6: Evaluation of models on all values with data from BF3 and
PC.

Model Lower bound Mean Cost
conf interval residual function

Static (114000) 150000 35800

Last value (-2240) 0.145 2240

Last value extrapol (-1670) 3.84 1680

Last week (-22600) 187 22800

Last week extrapol (-2290) -0.106 2290

Last week extrapol opt (-1700) 0.0373 1700

AR1 (-2240) - 4.84 2240

AR25 (−1360) 377 1740

AR100 (-1540) 74 1620
SARIMA (-1720) -0.0908 1720

Decomposition (-28800) 3230 32000

6.4 further look-ahead predictions

It would have been interesting to compare all models with further
look-ahead prediction but there was not enough time to do a full out
comparison. A one day look-ahead prediction was made with three
of the models; The AR100 model, the Last Value with linear extrap-
olation model and the SARIMA model. The reason for choosing the
first two were that they produced the best result with a next sample
prediction. The SARIMA was chosen because it had the most statis-
tical theory behind it. The predictions together with the true values
can be seen in Figure 25, 26 and 27. The results from all models are of
course a lot worse than with the 15 minutes look-ahead predictions
but at least the models have captured the general shape of the data.
The SARIMA is clearly the winner in this category which can be seen
only by looking at the figures. Even its cost function value, in Table 7,
at 7170 players, which is approximately 8 times worse than what the
same model produced when only predicting the next sample, is a lot
better than the other two.

Table 7: Evaluation of models on all values with data from BF3 and
PC with one day ahead prediction.

Model Lower bound Mean Cost
conf interval residual function

Last value extrapol (-10500) -63.7 10400

AR100 (-18700) 15400 34000

SARIMA (-7010) 165 7170

41

6.4 further look-ahead predictions

Figure 25: Prediction and signal from model SARIMA with one day
look-ahead predictions. Note that the prediction is much
worse than with 15 minutes look-ahead prediction.

Figure 27: Prediction and signal from model AR100 with one day
look-ahead predictions. Note that the prediction is much
worse than with 15 minutes look-ahead prediction.

42

6.4 further look-ahead predictions

Figure 26: Prediction and signal from model AR100 with one day
look-ahead predictions. Note that the prediction is much
worse than with 15 minutes look-ahead prediction and also
much worse than the prediction from the SARIMA in fig-
ure 25.

43

7

D I S C U S S I O N A N D F U T U R E W O R K

Now that the best model for good values and the best model for
outliers has been found, these models could be combined. One model
could be used as long as it only depends on good values and as soon
as it starts depending on values with server issues then the second
model could take over. The problem is that it is not known how good
it actually would perform since the current evaluation techniques is
done on all outliers and not only on values that comes right after a
server issue. It does not yet exists any method for separating outliers
into values with server issues and values that follow on server issues.
If data about when it has been server issues would become available,
then such a method would be easy to implement and a combination
of a model for good values and one for outliers would make sense.

Even though the algorithm for detecting outliers almost found all
manually flagged values, it probably missed several since the man-
ually flagging was not perfect. By looking at the worst predictions
from the models several probable outliers was found and if these
were removed from the evaluation the results would probably be even
better. By using the models in a real system all flags that comes from
server issues would be accessible and the algorithm for detecting out-
liers could probably be improved a lot. With a new algorithm the
evaluation of the predictions should be done anew since it could pro-
duce another winner among the models.

Another thing that might improve the results for some of the mod-
els with an estimation step, is to perform the estimation step at each
sample. In this case where samples from more than a year should be
predicted at once, an estimation step before each prediction would
have been too time consuming.

As mentioned earlier samples with 15 minute intervals has been
used in this work while for DICE it would probably only take around
5 minutes to rescale their systems. By shorten the interval to 5 min-
utes all results would most likely improve a lot.

Another subject for future work is to implement a system that is
able to use the models on a continuous data flow and that updates
the evaluation values for the model after each prediction. Then the
confidence interval will always be up-to-date and able to tell how
much extra cloud servers that has to be bought.

44

discussion and future work

Instead of using methods from time series analysis it could be in-
teresting to try machine learning tools instead. This is particularly
relevant because both Google and Microsoft released their machine
learning tools as open source during the autumn.

45

8
C O N C L U S I O N

An auto regressive model of order 100 was the model that performed
the best and could be a suitable choice. It should be confirmed on
the dataset at hand if the order 100 still is the best choice. The model
”Last value extrapol” almost performed as good as the winner and in
regards to outliers it got the best results. It could also be a suitable
choice if the company values to have a really easy to understand
model. The results from other datasets (not presented in this thesis)
were similar with either an AR model or the ”Last value extrapol”
model as the winner.

When the prediction horizon is as short as 15 minutes it seems
that it is sufficient with really simple statistical models. If one were
to predict further ahead than the next sample, it appears like more
advanced models becomes necessary.

To be as cost optimized as possible the company should try to use
physical servers for 67% of the max capacity assuming that it takes
them 30 days to rescale the physical servers and that cloud servers are
6 times as expensive as physical servers. Then of course the task of
predicting what the max capacity will be remains, but that is outside
the scope of this thesis.

It was also stated that if the company has a mean abundance higher
than 4134 players using a system with only physical servers, it will be
beneficial to switch to a pure cloud server based system. By instead of
using only cloud servers, they put up a baseline with physical servers
at 67% of the predicted maximum players, the costs will drop even
more.

46

B I B L I O G R A P H Y

[1] Nae, Vlad, Radu Prodan, and Thomas Fahringer. ”Cost-efficient
hosting and load balancing of massively multiplayer online games.”
Grid Computing (GRID), 2010 11th IEEE/ACM International
Conference on. IEEE, 2010.

[2] Buyya, Rajkumar, Rajiv Ranjan, and Rodrigo N. Calheiros. ”In-
tercloud: Utility-oriented federation of cloud computing environments
for scaling of application services.” Algorithms and architectures for
parallel processing. Springer Berlin Heidelberg, 2010. 13-31.

[3] Caron, Eddy, Frederic Desprez, and Adrian Muresan. ”Forecast-
ing for grid and cloud computing on-demand resources based on pat-
tern matching.” Cloud Computing Technology and Science (Cloud-
Com), 2010 IEEE Second International Conference on. IEEE, 2010.

[4] Nilabja Roy, Abhishek Dubey and Aniruddha Gokhale. ”Efficient
Autoscaling in the Cloud using Predictive Models for Workload Fore-
casting.” 2011 IEEE 4th International Conference on Cloud Com-
puting.

[5] Vlad Nae, Alexandru Iosup, Radu Prodan. ”Dynamic Resource Pro-
visioning in Massively Multiplayer Online Games.” Transactions on
Parallel and Distributed Systems, 2008.

[6] Acock, A. C. (2005), ”Working with missing values.” Journal
of Marriage and Family, 67: 1012–1028. doi: 10.1111/j.1741-
3737.2005.00191.x

[7] Burke, Shaun. ”Missing values, outliers, robust statistics & non-
parametric methods.” LC-GC Europe Online Supplement, Statistics
& Data Analysis 2.0 (2001): 19-24.

[8] Jerome T. Connor, R. Douglas Martin, Member, IEEE, and L. E.
Atlas, Member IEEE. ”Recurrent Neural Networks and Robust Time
Series Prediction.” IEEE Transactions on neural networks, vol. 5, no.
2, march 1994.

[9] J Kupferman, J Silverman, P Jara, J Browne. ”Scaling
Into The Cloud.” Technical report, University of Califor-
nia, Santa Barbara; CS270 - Advanced Operating Sys-
tems, 2009. URL http://cs.ucsb.edu/ jkupferman/docs/Scaling-
IntoTheClouds.pdf.

47

Bibliography

[10] Akindele A. Bankole and Samuel A. Ajila. Cloud Client Predic-
tion Models for Cloud Resource Provisioning in a Multitier Web Ap-
plication Environment. The 7th IEEE International Symposium on
Service-Oriented System Engineering (IEEESOSE 2013), San Fran-
cisco Bay, USA March 25 – 28, 2013.

[11] Ajila SA, Bankole AA. Cloud client prediction models using machine
learning techniques. 37th IEEE Annual Computer Software and Ap-
plications Conference (COMPSAC), IEEE Computer Society, 2013;
134–142.

[12] Xinghua Chang, Meng Gao, Yan Wang and Xiyong Hou. Seasonal
autoregressive integrated moving average model for precipitation time
series. Journal of Mathematics and Statistics 8 (4): 500-505, 2012.

[13] M.V. Shcherbakov, A. Brebels, N.L. Shcherbakova, A.P. Tyukov,
T.A. Janovsky, V.A. Kamaev (2013) A Survey of Forecast Error Mea-
sures. World Appl. Sci. J. 24 (Information Technologies in Modern
Industry, Education & Society), 171–176.

[14] Precision and Recall. (2016, January 12). In Wikipedia, The Free
Encyclopedia. Retrieved 10:53, january 12, 2016, from
https://en.wikipedia.org/w/index.php?title=
Precision_and_recall&oldid=698378999.

[15] Receiver operating characteristic. (2016, January 12). In Wikipedia,
The Free Encyclopedia. Retrieved 09:56, January 12, 2016, from
https://en.wikipedia.org/w/index.php?title=
Receiver_operating_characteristic&oldid=698253308.

[16] Battlefield 4. (2016, January 12). In VGChartz. Retrieved 10:15,
january 12, 2016 from
http://www.vgchartz.com/gamedb/?name=battlefield+4.

[17] Lennart Olbjer, Ulla Holst, Jan Holst. Tidsserieanalys. Lunds Uni-
versitet och Lunds Tekniska Högskola 1994.

[18] Time series decomposition. (2016, January). In Texts
online, open-access textbooks. Retrieved january 2016.
https://www.otexts.org/fpp/6

[19] ARIMA models for time series forecasting. (2016, january). In
Robert Nau, Fuqua School of Business Duke University. Retrieved
january 2016. http://people.duke.edu/ rnau/411home.htm

48

Master’s Theses in Mathematical Sciences 2016:E3

ISSN 1404-6342

LUTFMA-3287-2016

Mathematics

Centre for Mathematical Sciences

Lund University

Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

	2016_BjornElmers_medomslag
	Projektrapport___exjobb_feb4
	Abstract
	Contents
	Introduction
	Related work
	Challenges in cloud computing

	Data and evaluation
	The dataset
	Evaluation
	A mathematician's perspective
	The company's perspective

	Preprocessing
	Trimming the dataset
	Platform and game separation
	Training- and test set separation
	Missing values and outliers
	Dependencies on outliers or missing values
	Finding outliers

	Analyzing the data
	Seasonality
	Daily pattern
	Auto correlation functions
	Baseline with physical servers

	Models
	Static model
	Last value model
	Linear extrapolation model
	Last week model
	Last week model with linear extrapolation
	AR model
	AutoRegressive Integrated Moving Average model
	Decomposition model

	Results
	Main results
	Separating the data per console
	Impact of outliers
	Further look-ahead predictions

	Discussion and future work
	Conclusion

	2016_BjornElmers_medomslag
	Tom sida

