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Abstract

In this essay, I investigate whether Solomonoff’s prior can be used to
solve the problem of the priors for Bayesianism. In outline, the idea
is to give higher prior probability to hypotheses that are "simpler",
where simplicity is given a precise formal definition. I begin with a
review of Bayesianism, including a survey of past proposed solutions
of the problem of the priors. I then introduce the formal framework
of Solomonoff induction, and go through some of its properties, be-
fore finally turning to some applications. After this, I discuss sev-
eral potential problems for the framework. Among these are the fact
that Solomonoff’s prior is incomputable, that the prior is highly de-
pendent on the choice of a universal Turing machine to use in the
definition, and the fact that it assumes that the hypotheses under
consideration are computable. I also discuss whether a bias toward
simplicity can be justified. I argue that there are two main consider-
ations favoring Solomonoff’s prior: (i) it allows us to assign strictly
positive probability to every hypothesis in a countably infinite set in
a non-arbitrary way, and (ii) it minimizes the number of "retractions"
and "errors" in the worst case.
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Outline

The topic of this essay is the problem of the priors for Bayesianism, and in
particular whether Ray Solomonoff’s prior can be used to solve it.

In this first introductory section, I describe the basics of Bayesian episte-
mology. Bayesianism comes in many versions, and my taxonomy is based
on how these respond to the problem of the priors. According to sub-
jectivism without convergence, any choice of prior is fine. Furthermore,
Bayesians are not guaranteed to converge on the same posterior proba-
bilities, even as shared evidence accumulates. Subjectivists who believe
in convergence agree that any choice of prior is fine, but they also think
that there will be convergence among Bayesian agents. According to ob-
jective Bayesians, there is a unique prior distribution (or perhaps a unique
set of such distributions) which is best. I discuss two branches of objec-
tive Bayesianism. The first holds that when assigning prior probabilities,
we should equivocate between all hypotheses under consideration. The
second holds (roughly) that we should assign prior probabilities in pro-
portion to the simplicity of a hypothesis. This is known as Solomonoff
induction. I end the introduction with a discussion of what a solution to
the problem of the priors should achieve. By what criteria do we judge
proposed solutions? I argue that solutions to the problem of the priors
should be evaluated on purely epistemic grounds: how do they aid an
agent in the search for truth? I provide a list of different ways in which
priors could provide such help. This list provides the basis of my evalua-
tion of Solomonoff’s prior.

Section 2 introduces the formal apparatus necessary to understand Solom-
onoff induction. In 2.1 and 2.2 I review universal Turing machines and
Kolmogorov complexity, which then lets us define Solomonoff’s prior. In
2.3 and 2.4 I discuss some important theoretical features of Solomonoff’s
prior. Provided that the correct answer is computable, Solomonoff induc-
tion is guaranteed to converge on it under a finite bound, both in de-
terministic and stochastic settings. In section 2.4 I discuss the fact that
Solomonoff’s prior meets two desirable conditions: it is (almost) invariant
under both reparametrization and regrouping.

The third section looks at some applications of Solomonoff induction. As
we will see, the framework offers a good way of determining which hy-
potheses to consider. In this section I also summarize an application of
Solomonoff induction to the raven paradox, as done by Rathmanner and
Hutter (2011). The section closes with a discussion of how to bridge the
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gap between Solomonoff induction (where probabilities are assigned to bi-
nary strings) and standard Bayesian epistemology, where we assign prob-
ability to propositions.

In section 4, I tackle numerous potential problems for Solomonoff induc-
tion. First there is the fact that in defining Kolmogorov complexity, we
must choose a universal Turing machine, which introduces a kind of lan-
guage dependence. This might threaten Solomonoff induction’s status as
objective Bayesianism. Second, Solomonoff’s prior is neither computable,
nor a proper probability measure. This is obviously problematic when it
comes to applications. Another potential difficulty is that Solomonoff in-
duction only considers computable hypotheses. But the biggest obstacle is
perhaps this: why prefer simplicity? Solomonoff induction is in a sense a
formalization of Ockham’s razor. But no justification for this principle has
been given. Is there one? I argue that we can adopt Kevin Kelly’s work on
Ockham’s razor in the framework of formal learning theory to justify the
principle in terms of retraction efficiency.

In the closing section, I review Solomonoff induction in terms of how well
it meets the epistemic criteria listed in the introductory section, and also
point toward some questions that can be addressed by further research.

1 Introduction

1.1 Basics of Bayesian epistemology

I will be concerned here with Bayesianism as a normative epistemology – as
a theory of how we should respond to evidence. Others propose Bayesian-
ism as a descriptive epistemology, but I will not touch on those approaches
here. Thus it will not be a problem if the recommendations offered here
fail to capture how people actually respond to evidence.1

Normative Bayesianism comes in many varieties. What unites all of the
approaches are the following three principles (Easwaran, 2011, p. 321):

• There is such a thing as credence or degree of belief.

• A rational agent must obey the axioms of probability theory.

1For a detailed exposition of Bayesian epistemology, see Joyce (2011). Joyce does an
excellent job at explaining the basis of the theory, how philosophers have attempted to
justify it, and the various problems it runs into. See also Earman (1992) and Kaplan (1998).
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• Beliefs should be updated by way of conditionalization.2

To say that there is such a thing as degree of belief is simply to say that be-
liefs aren’t necessarily all-or-nothing: we may believe some things stronger
than others. Probability theory is one way of making such talk more pre-
cise. Here is one common formulation of probability theory. The objects
of belief are sometimes taken to be propositions, and sometimes taken
to be events. If we formulate probability theory in terms of a Boolean
algebra, both of these interpretations are valid. We have a Boolean al-
gebra Ω which is closed under countable disjunction and negation. The
propositions or events are elements of Ω. A probability function on Ω is a
mapping P : Ω 7→ R that satisfies the following:

Normality. For any A ∈ Ω, P(A∨¬A) = 1 and P(A∧¬A) = 0.

Finite Additivity. P(A ∨ B) + P(A ∧ B) = P(A) + P(B).

Continuity. If A1 ⊆ A2 ⊆ A3, . . . is a countable sequence of
elements such that A = ∨n An, then P(An) converges to P(A).

With these axioms in place, it follows that P(A) = 1 if A is a logical truth,
P(A) = 0 if A is a contradiction, and P(A) ≤ P(B) if A entails B.

Of course, these axioms only define an abstract mathematical structure.
The distinctively Bayesian claim is that our degrees of belief should meet
these requirements, and that they should respond to evidence by way of
conditionalization. Most Bayesians believe that conditionalization should be
done by way of Bayes’ theorem, which states that

P(A | B) =
P(B | A)P(A)

P(B)

As applied to probabilities and conditional probabilities at one time, the
theorem follows directly from the definition of conditional probability. The
Bayesian claim is that this should also govern how agents update their be-
liefs over time, as new evidence accumulates. Put another way, Bayes’
theorem applies diachronically as well as synchronically.3

Why be a Bayesian in the first place? Typically, Bayesianism is justified via
pragmatic "Dutch book" arguments, which show that unless you follow

2Actually, the "objective Bayesianism" defended by Williamson (2010) eschews condi-
tionalization in favor of maximum entropy. More on this below.

3Many Bayesians think that Jeffrey conditionalization is more appropriate, but the differ-
ence will not concern us here.
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the recommendations of Bayesianism, you will be vulnerable to a combi-
nation of bets that entail a guaranteed loss – a Dutch book (Hajek, 2008).
But some commentators are not convinced by such a pragmatic justifica-
tion. We are concerned with Bayesianism as a normative epistemological
theory, and hence we should like an epistemic justification. A justifica-
tion of Bayesianism as a whole is outside the scope of this essay, but see
e.g. Joyce (1998), Leitgeb and Pettigrew (2010a) and Leitgeb and Pettigrew
(2010b) for attempts to justify it by considerations of accuracy.4

Bayesian approaches have been deployed widely in philosophy and else-
where. What concerns us here is Bayesian epistemology. We need to make
sure we distinguish this from other Bayesian approaches. There is the
Bayesian interpretation of probability, which holds that probabilities are
rational degrees of belief. There is Bayesian confirmation theory, which
uses Bayes’ theorem to measure the degree of confirmation a piece of ev-
idence gives to a hypothesis. And there is also Bayesian statistics, an ap-
proach to statistics that relies heavily on Bayes’ theorem.

Of course, Bayesian epistemology has not avoided criticism. One major
objection is the so called "problem of the priors". For the Bayesian ma-
chinery to get going, a prior probability distribution must first be in place.
That is, before we can begin updating on any evidence, we need to have
degrees of belief in propositions we know absolutely nothing about. How
should these prior degrees of belief be selected? Are there any restric-
tions, or are all priors equally admissible? In this essay, I will focus on a
particular solution that has been proposed. The idea is roughly that prior
probability should be assigned in proportion to the simplicity of a propo-
sition, where simplicity can be given a precise formal measure.

It should be noted that the term "prior probability" is sometimes used
in different ways. Often, the prior probability of A refers to the agent’s
probability P(A) prior to updating on a particular piece of evidence B. Say
that a physicist performs an experiment to estimate the value of some
constant. Based on what he’s read, and on previous experiments he has
performed, the physicist already has a prior probability P(A). Since he
is already aware of some evidence {Bi}k

i=1, we really have that P(A) =

P(A | B1 ∧ B2 ∧ · · · ∧ Bk). This leads us to the other use of the term "prior

4Another common proposal is to use Cox’s theorem. The theorem shows that, under
certain conditions, every way of representing a rational belief function is isomorphic to a
probability. Of course, those who aren’t already Bayesians are free to – and often do – reject
the needed conditions. See section 2.2.2 of Joyce (2011) for a more detailed discussion of
Cox’s theorem.
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probability": the probability of A prior to any updating whatsoever. This
thesis is mostly concerned with the latter problem, but the two are not
completely separate. We can use this difference to distinguish between
strict subjectivism and empirically informed subjectivism. The strict subjec-
tivist holds that, so long as the agent’s beliefs conform with the axioms of
probability theory, there are no restrictions on P(A | B1 ∧ B2 ∧ · · · ∧ Bk).
The empirically informed subjectivist, on the other hand, believes that the
pieces of evidence {Bi}k

i=1 provide at least some further restrictions on
P(A | B1 ∧ B2 ∧ · · · ∧ Bk), but agrees with the strict subjectivist that any
value that respects the axioms of probability theory is allowed for P(A).

There are many forms of Bayesian epistemology. The typology below is
based on how they respond to the problem of the priors.

1.2 Subjectivism Without Convergence

For the most extreme subjectivists, prior probabilities must only meet
the minimal requirement of obeying the axioms of probability theory.
(Chalmers, 1999, p. 133) expresses a worry about this form of subjective
Bayesianism:

Once we take probabilities as subjective degrees of belief [...] a
range of unfortunate consequences follow. The Bayesian calcu-
lus is portrayed as an objective mode of inference that serves
to transform prior probabilities into posterior probabilities in
light of given evidence. Once we see things this way, it fol-
lows that any disagreement in science must have their source
in the prior probabilities held by the scientists. But these prior
probabilities themselves are totally subjective and not subject
to critical analysis. Consequently, those of us who raise ques-
tions about the relative merits of competing theories [...] will
not have our questions answered by the subjective Bayesian,
unless we are satisfied with an answer that refers to the beliefs
that individual scientists just happen to have started out with.

But it does not follow that any disagreement in science must have its
source in the prior probabilities held by the scientists. What follows is that
any disagreement between ideal Bayesians must have their source in the pri-
ors. Of course, this might be enough to incriminate subjective Bayesianism.
If subjective Bayesianism is the normative model for epistemic reasoning,
and this model explains disagreement by referring to priors that may be
chosen at random, the problem remains. A natural question then arises:
just how much of a difference do the prior probabilities make? In the next
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section we consider an argument that in the long run, differences in prior
probabilities will tend to wash out as more and more evidence accumu-
lates.

Some subjectivists agree with Chalmers’ conclusion, but without consid-
ering it a reductio. Instead, they will simply contend that this is the best
we can do, and that there’s no need to hope for something more.

1.3 Subjectivism With Convergence

Other subjectivists think that we can do better. Sure, any prior goes, but
in the end the choice of prior will not matter much. As enough evidence
accumulates, Bayesians will converge on the same answer regardless of
their priors. Such convergence results exist in various forms. The follow-
ing exposition builds on Joyce (2011).

Assume that two agents have priors b and c, such that b(A) > 0 and
c(A) > 0 for some hypothesis A.5 Both agents go through a potentially in-
finite sequence of learning experiences, involving random variables X1, X2,
X3, . . . , which take on a finite number of values. We further assume that
both agents agree that the data statements are independent and identically
distributed (i.i.d.), conditional on both A and ¬A. To say that such data
statements are independent conditional on the hypothesis means that if
we already know the hypothesis to be true, adding knowledge of previ-
ous data statements will not change the probability of any given future
data statements. Let dj denote a data sequence. We are considering the
data statement Xk = xk, with k > j. Independence conditional on A
and ¬A then means that b(Xk = xk | A) = b(Xk = xk | A ∧ dj) and
b(Xk = xk | ¬A) = b(Xk = xk | ¬A ∧ dj), respectively. By our requirement
above, the same also holds if we replace b with c. To say that the data state-
ments are identically distributed conditional on A (or ¬A) means that if
we know A (or ¬A), all of the random variables X1, X2, X3, . . . will have
the same probability distributions. We must also have that b and c are
identically distributed, i.e. that b(Xk = xk | A) = c(Xk = xk | A) for
each random variable Xk. The same should also hold if we replace A with
¬A.This means that both agents must agree about how likely various ob-
servations are, conditional on A being true, and conditional on A being
false. Given these assumptions, it can be shown that bj(h) and cj(h) will
converge to the same value with probability one according to both b and c.

5In the interest of keeping the exposition simple, I only discuss the case with two agents.
But everything in this paragraph also applies when we have more agents.
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While applicable in some cases, the i.i.d. assumption is very strong, and
there are several cases where it fails to hold. Apart from the i.i.d. require-
ment, we must also have that all agents agree about the possible hypothe-
ses (i.e. which hypotheses they assign prior probability greater than zero).
Furthermore, the agents must agree on the possible data sequences. In
any case where at least one of these conditions is not met, convergence is
not guaranteed, and we are back to strict subjectivism.

Given all of these strong assumptions that are required, I think it is fair to
say that in most real-life cases, the convergence results will not be appli-
cable. Hence if we are to avoid strict subjectivism, something more needs
to be said.

1.4 Objective Bayesianism: Equivocation

Williamson (2010) defends a form of objective Bayesianism that is charac-
terized by three norms:

Probability: The strength of an agent’s beliefs should be rep-
resentable by a probability function.

Calibration: The agent’s degrees of belief should satisfy con-
straints imposed by her evidence.

Equivocation: The agent’s degrees of belief should otherwise
be sufficiently equivocal.6,7

The Probability norm is clearly shared by all forms of Bayesianism. Many
Bayesians – and not only objectivists – also accept the Calibration norm.
For instance, this is what distinguishes strict subjectivists from empirically
informed subjectivists. The Equivocation norm, however, is distinctive
of objective Bayesianism. Bot not all objective Bayesians need accept the
Equivocation norm. The norm specifies one rule for fixing prior probabili-
ties, but there are many other possibilities.

6Note that Williamson often uses the term "objective Bayesianism" to refer to the po-
sition that accepts all of these three norms. By contrast, the way I use the term it means
that there is a uniquely best prior probability distribution (or set thereof) – the correct pri-
ors are objectively determined. This is compatible with Equivocation, but also with other
methods of assigning prior probabilities.

7Equivocation has of course been in use long before Williamson (2010)’s book. Laplace
made use of the "principle of insufficient reason", and Keynes called it the principle of
indifference. I focus on Williamson’s approach here because his detailed exposition makes
the position easier to engage with.
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Williamson thinks we should make the equivocation rule more precise by
using the maximum entropy principle. The entropy of a probability function
P is given by

H(P) = − ∑
ω∈Ω

P(ω) log P(ω). (1)

Here, Ω is a finite domain of mutually exclusive elementary outcomes.
By elementary, Williamson means that we assign truth value to all atomic
propositions, and then form a conjunction. Thus if we have n atomic
propositions we have 2n atomic states. These atomic states are basic in
the sense that all other probabilities can be defined in terms of them. Say
that we have some background knowledge E , consisting of a set of propo-
sitions that the agent takes for granted. This gives us a set E ⊆ P of
probability functions that are compatible with E . The principle of max-
imum entropy then tells us to pick a probability function PE such that
PE ∈ {P ∈ E : P maximizes H}. Ideally, PE will be uniquely determined,
but this is not always so. In such cases, Williamson thinks we are free to
choose. 8

How does the maximum entropy principle work in practice? Say that we
have a very simple language, consisting only of the elementary proposi-
tion A. We then have two atomic states, A and ¬A. Every point on the
dotted line in figure 1 represents a possible way of distributing probabil-
ity between P and ¬P.9 The solid curve represents the entropy H of these
possible probability distributions. With only two options, entropy is given
by H(P) = −P(A) log P(A)− (1− P(A)) log(1− P(A)). As you can see,
the closer to the middle of the dotted line we get, the higher the entropy.

Williamson’s objective Bayesianism attempts to solve the problem of the
priors via equivocation: when nothing else is known, you should equiv-
ocate between the hypotheses under consideration; that is, give them all
equal probability. The idea is that this is the best way to represent your
uncertainty: if you gave one hypothesis more weight than another one,
that would indicate that you had some evidence favoring the former. But
you do not, and therefore you should give all of them the same probability.

At any step in time, an agent that follows Williamson’s branch of objective
Bayesianism will use the propositions she takes for granted to calibrate
her probabilities as much as these propositions allow, and then equivocate
using the maximum entropy principle. This way, there is no clear distinc-

8For the purpose of applying the maximum entropy principle, 0 log 0 is defined to be 0.
9I have here recreated a figure used by (Williamson, 2010, p. 49).
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Figure 1: Probability distributions over two propositions (dotted line) and
their entropy (solid line).

tion between prior and posterior probabilities. It turns out that this way of
updating is actually inconsistent with standard Bayesian conditionaliza-
tion, and that there are cases where Williamson’s updating can be applied
and Bayesian conditionalization cannot. There are four cases in which the
maximum entropy principle and Bayesian conditionalization yield differ-
ent results: (i) when you update on a sentence that is not in the original
language, (ii) when you update on a sentence that is not "simple" with
respect to the sentences the agent takes for granted,10 (iii) when the set of
sentences the agent takes for granted after updating are inconsistent, and
(iv) when a conditional probability doesn’t satisfy the constraints imposed
by sentences the agent takes for granted. In many of these cases it is not
clear how conditionalization should be applied. By contrast, maximum
entropy updating can be used in all of them.11

This essay is not an investigation of Williamson’s objective Bayesianism,
but I will note three potential problems for his approach. The first is that,
since maximum entropy updating will sometimes disagree with Bayesian
conditionalization, the updating procedure cannot be justified by a prag-

10A sentence A is simple with respect to the sentences the agent takes for granted if the
only constraint it imposes with respect to these sentences is that P(A) = 1.

11See Williamson (2010), p. 78 for a more detailed discussion of the difference between
maximum entropy and Bayesian conditionalization.
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matic Dutch book argument. An agent using maximum entropy updating
will sometimes be vulnerable to a Dutch book.

The second problem has to do with the justification of the equivocation
norm. The principle is sometimes justified by symmetry considerations.
If we do not have any evidence relevant for whether or not A is true, the
norm tells us to set P(A) = P(¬A) = 0.5 which will in fact add further
information by describing a state of incomplete evidence with a single
function. Starting from a state of complete ignorance, equivocation gives
us the precise form of the distribution, rather than considering a set of
possible distributions.

The third problematic feature of Williamson’s objective Bayesianism is that
it is language-relative. Here is an example from Halpern and Koller (2004).
Assume first that an agent’s language only has one propositional variable,
C, which asserts that a particular book is colorful. The agent has no fur-
ther information, so by equivocation she sets P(C) = P(¬C) = 0.5. Now
assume instead that we have a richer language with three propositional
variables. R denotes that the book is red, G that it is green, and B that it is
blue. With no further evidence, equivocation yields P(G) = P(¬G) = 0.5,
and similarly for R and B. ¬C is equivalent to ¬R ∧ ¬G ∧ ¬B. But
from the way we have just assigned prior probabilities, it follows that
P(¬R ∧ ¬G ∧ ¬B) = 1

23 = 1
8 . Thus the prior probability of a hypothesis

will depend on the language we use to represent it. So much for objec-
tivity, one might think. Yet Williamson argues that the terms that exist in
natural language give us some guide to how the space of outcomes could
usefully be partitioned.

A peculiar feature of Williamson’s use of the equivocation norm is how
it interacts with the calibration norm. First, Williamson thinks we should
calibrate our credence with the available evidence. After this, any remain-
ing freedom in the choice of credence is taken care of by equivocating as
much as the evidence allows. Say that we are considering hypothesis H
and its negation ¬H. We then learn evidence which imposes the constraint
P(H) ∈ [0.6, 0.9]. At this stage, we use equivocation to set P(H) = 0.6, be-
cause this is the probability function compatible with our evidence that is
closest to the equivocator PEquiv(H) = PEquiv(¬H) = 0.5. Another natural
reading of equivocation would be to, in light of the evidence considered
above, set P(H) = (0.6 + 0.9)/2 = 0.75, but Williamson prefers the previ-
ous option.
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The topic of this essay, Solomonoff induction, is another form of objective
Bayesianism. Whereas Williamson uses equivocation, in Solomonoff in-
duction we should assign prior probability proportional to the simplicity
of a hypothesis. To the best of my knowledge, philosophers have barely
dealt with Solomonoff induction at all, or at least not in print. There are
a few brief mentions here and there, but no systematic treatment has been
given of the philosophical aspects.12 In section 2 I introduce the formal
basics of Solomonoff induction.

1.5 What Should a Solution Achieve?

Given all of this disagreement, one could take a step back and ask what a
solution to the problem of the priors should achieve. Typically it will be
claimed that some set of priors are more justified than others – in the case
of objective Bayesianism – or that all priors are equally justified – in the
case of subjective Bayesianism. Thus, a solution to the problem will tell us
which set of priors, if any, is the most justified. Of course, not everyone’s
standards of justification are the same, and so people might want different
things from a solution. In what follows, I will speak of truth instead of
justification. I am interested in finding out whether Solomonoff induction
offers a connection between prior probabilities and truth that is lacking in
other frameworks. I won’t argue that prior probabilities should be evalu-
ated in this light, but simply start my investigations with this assumption.
Thus if some set of priors offer a better connection to truth than others,
objective Bayesianism is correct. If there is no such set of priors, instead
subjective Bayesianism is correct.

How could a prior be connected to truth? There are several possibilities.
It is important to get clear on these, so that we are all evaluating priors
by the same lights. We can distinguish between three main categories of
potential connections between prior probability and truth. First, it may
be that the prior is more truth-like to begin with: by using this prior, the
agent will already from the start be closer to the truth than if she’d used a
different prior. Second, it may be that the prior allows an agent converge
on the truth quicker than other priors. Third, the agent should be able to
use the prior in practice. Here are some candidates for evaluating priors,
grouped under these three categories:

1. Truth-likeness

(a) Every true hypothesis (or a majority of them) are assigned higher
prior probability than their respective negations.

12See for instance Ortner and Leitgeb (2011) or Kelly (2004).
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(b) The average distance to truth is smaller than 0.5.

2. Convergence on Truth

(a) It lets us consider more hypotheses. The more hypotheses we
consider (i.e. assign probability strictly greater than zero), the
smaller risk we run of ruling out the true hypothesis.

(b) The prior guarantees convergence on the true hypotheses in the
limit of observation.

(c) The prior guarantees that agents get ”sufficiently close” to the
true hypothesis after a certain number of updates.

3. Applicability

(a) The prior is computable.

(b) It can be used by computable but idealized agents.

(c) It can be used by actual humans.

These criteria can be in conflict. For instance, increasing the number of
hypotheses under consideration may make a problem less tractable for an
actual human reasoner. Similarly, by increasing the number of hypotheses
under consideration, we will assign lower prior probability to some other
hypotheses, and these may turn out to be true.

I have only included criteria for evaluating priors from the viewpoint of
an individual epistemic agent. But viewed collectively, it may very well
be the case that some other choice is better. Even if it turns out that some
prior distribution is objectively best for an individual, it may be that hav-
ing a certain amount of disagreement better advances science, and hence
leads to better posteriors for the individual as well, provided she adheres
to the opinion of mainstream science.

If there is no prior distribution (or set of such distributions) which is
clearly superior in all of these respects, but, say, some prior that does
better along one dimension, and some that does better along another, we
will have to decide which one to give more weight. But which one to give
more weight may be obvious if we have particular applications in mind.
For instance, if we are looking for something to use in practice, a prior that
is uncomputable clearly won’t do, even if it scores high on other items.

If it is impossible to find a prior that does better than at least one other
in at least one of these respects, and worse in none of them, I will take
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that to show that subjective Bayesianism is correct. But note that we can
have varying degrees of objectivity. In the most extreme form of objective
Bayesianism, the correct prior is uniquely determined: there is one single
prior probability distribution which is strictly superior to all the others. At
the other end of the spectrum, extreme subjectivism holds that all priors
are equally good, provided that they conform with the axioms of probabil-
ity theory. Between these two extremes, there are several possibilities. For
instance, one could take extreme subjectivism and add the requirement
that all hypotheses are assigned strictly positive probability. This restric-
tion is typically seen as too weak to qualify the resulting view as a form of
objective Bayesianism. But we needn’t worry too much about terminology
at this point. The interesting question is how strong constraints there are
on prior probabilities, regardless of whether these constraints are strong
enough to justify the label "objective."

Let’s look at the desiderata in more detail. The two items listed under
truth-likeness are clearly unrealistic. If we had a method that let us assign
probability > 0.5 to all and only the true hypotheses, we might as well
go all the way and give them probability 1. But these are prior probabil-
ities, and such knowledge cannot be acquired a priori. If it were, there
wouldn’t be any need for inductive reasoning in the first place. The rec-
ommendation to assign probability 1 to all and only true hypotheses is not
particularly helpful. Thus any satisfactory solution to the problem of the
priors must provide us with a method that can be used to assign proba-
bilities a priori. Call this the helpfulness condition. Even if we relax the first
item in truth-likeness and hold only that a majority of the true hypotheses
must be assigned higher prior probability than their respective negations,
the helpfulness condition cannot be met. The same is true of the second
item.

If we rule out all forms of truth-likeness, any potential connection between
prior probability and truth must have to do with how the prior probability
helps the agent in getting closer to truth. Put another way, the question of
how to assign prior probability is methodological, not metaphysical. Such
items are listed under the heading convergence on truth.

Item 2a has to do the scope of belief. Since we cannot get from probabil-
ity 0 to any positive probability by Bayesian conditionalization, assigning
probability 0 to a hypothesis means that we are ruling it out a priori.

Item 2b has to do with ideal learnability. We want to, at least in the limit,
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be able to believe fully, i.e. assign probability 1, to those hypotheses that
are true. Note that 2b is logically stronger than 2a. If we are guaranteed to
converge on the true hypothesis in the limit, whatever the true hypothe-
sis happens to be, this means that we must assign non-zero probability to
every logically consistent hypothesis. But the reverse doesn’t necessarily
hold: even if we consider all logically consistent hypotheses, we needn’t
converge on the truth in the limit. Item 2c deals with the same issue as 2b,
but from a less idealized perspective. What counts as ”sufficiently close”
is of course vague, but can be made more precise if we hook it up with a
particular decision procedure.13

The last three items, listed under applicability, have to do with increasing
degrees of practical usefulness. If a proposed solution is uncomputable
and so fails to meet 3a, it is a solution only in a very abstract sense. How-
ever, even uncomputable priors – such as the one considered in this essay,
Solomonoff’s prior – may be illuminating if they for instance place an up-
per bound on how well a Bayesian agent can perform. In some cases,
uncomputable priors can be approximated, and such approximations may
provide practical guidance. Item 3b gets us one step closer to applicabil-
ity. If this criterion is met, the prior could be used to construct an artificial
reasoner, for instance.

Some priors, while computable, require such computational resources that
they cannot be used by humans. Thus item 3c requires that they are easy
to use. If two priors score alike in all other aspects, but differ in how com-
putationally tractable they are, then the one that is easier to use is to be
preferred, if we are interested in practical applications by humans.

It should be noted that all three items listed under applicability can also
be used by a subjective Bayesian to argue for the choice of a certain prior.
After all, if prior probabilities can be picked as we like, why not go with
ones that are easy to compute with? Thus the fact that there clearly are
priors that are more easy to use for humans to use than other priors, will
not in itself count in favor of objective Bayesianism. Instead, it should be
used to choose a prior from the set of priors that perform well on other
criteria, provided that there is such a set.

There is an important interaction between the alleged convergence results

13For instance, say that an agent only takes some risky action when her degrees of belief
in the relevant propositions are sufficiently high. We would then want her to be able to
reach this degree of belief in reasonable time.
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and objective Bayesianism. The stronger the convergence results, the less
important it becomes to determine the objectively best prior, if such there
be. If the convergence results are very strong – and do in fact apply in
everyday cases – the choice of prior won’t matter much. But as we saw in
the discussion of these convergence results in section 1.3, there is reason
to think that they do not apply very often.14 There is also the possibility
of a form of objective Bayesianism which says that our priors should be
such that the convergence results apply. But unless there are independent
reasons for favoring such priors, this reasoning would be circular. More-
over, due to the nature of the convergence results, such priors would also
require a priori coordination among agents – we saw in the discussion in
section 1.3 above that agents must have the same likelihoods. But it ap-
pears impossible for agents to actually achieve such coordination without
communication, and so the proposal doesn’t meet the helpfulness condi-
tion.

With the above criteria in mind, let’s look at how Williamson (2010) tries to
justify his use of the maximum entropy principle. First, he goes through
several previous proposals, and concedes that these are unlikely to con-
vince anyone who is not already on board with maximum entropy. One
such argument assumes that our degrees of belief should be constrained
by evidence, but otherwise maximally non-committal. Such degrees of be-
lief are given by the maximum entropy principle. But even if one agrees
that this principle does give the maximally non-committal degrees of be-
lief, why should one think that such degrees of belief are desirable in the
first place?

In the end, his main argument is an argument from caution: having more
extreme degrees of belief than those advocated by the maximum entropy
principle will trigger action more often. As Williamson is aware, this is a
pragmatic justification. But he argues for a strong link between belief and
action.

However, the maximum entropy probability function is not the most cau-
tious in every situation, nor is it the uniquely most cautious on average, as
Williamson shows. Instead, Williamson argues that the maximum entropy
probability function is the most cautious where it matters most: when it
comes to risky decisions. In such decisions, we typically have a high trig-

14While it doesn’t appear to be a very common position, at least in theory one could
hold both that the convergence results apply widely, and that there is a uniquely correct
set of priors.
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ger level: since so much is at stake, we want to be very certain that we are
correct before taking action. When the trigger level is high, the maximum
entropy probability function may still be the most cautious one.

One might agree that caution is good in many cases. But why should cau-
tion enter into your credence? The fact that an outcome would be bad is
not a reason to give it high probability. Instead, this looks like the very
definition of pessimism. The problem with making the link between ra-
tional degrees of belief and action too tight, is that considerations that are
clearly non-epistemic will enter the picture. Thus we may reject the Cali-
bration norm, on the ground that in many cases, being overconfident will
help you better achieve your goals. That is: even though beliefs are con-
nected to actions, the aims of epistemic and instrumental rationality may
nevertheless differ.

Because he doesn’t use conditionalization, the number of hypotheses that
are assigned non-zero prior doesn’t matter in Williamson’s framework.
Even if a true hypothesis is initially given probability zero, Williamson’s
objective Bayesian can still converge on it. Thus Williamson’s framework
performs well on item 2a.

2 Solomonoff induction

Hutter (2007) describes Solomonoff induction as the combination of Epicu-
rus, Ockham, Bayes, Turing and Kolmogorov. That is, Solomonoff induc-
tion respects Epicurus’ idea of keeping all potential explanations that are
consistent with the data, while also following Ockham’s razor in the sense
of giving greater weight to simpler hypotheses. The probabilities assigned
to hypotheses are updated by Bayes’ theorem, and the whole thing is com-
puted by Turing machines, which also allows us to quantify simplicity by
way of Kolmogorov complexity.15

2.1 Universal Turing machines

To define Kolmogorov complexity we first need to make sure we know
what a universal Turing machine is, so here is a brief recap.16 A Turing
machine (TM) consists of the following: a finite set Q of states, with an

15See Hutter (2007) for a rather technical introduction to the topic, and Rathmanner and
Hutter (2011) for a more accessible one. Solomonoff (1964a) and Solomonoff (1964b) are
the first published sources of the theory.

16For a broader discussion in a philosophical context, see Barker-Plummer (2011)

19



identified starting state, and a finite set Σ of symbols – the alphabet. At
any particular step s of the execution

• Qs ∈ Q is the state the Turing machine is in,

• σs : Z 7→ Σ is a function that describes the contents of each of the
cells of the tape. The function maps the index (an integer) of a cell
to a particular symbol of the alphabet.

• hs is the index of the cell being scanned.

We also have a table of transition functions δ : Q 7→ Q such that if δ(S) = T
then

• σT is the same as σS everywhere apart from hS (and possibly there
too).

• If σS(hS) 6= σT(hS), then hT = hS, otherwhise |hT − hS| ≤ 1.

The first of these constrains the transition function so that it may only
change the state of the current cell. The second constrains the transition
function so that, if it does change the state of the current cell, the index
must remain the same. If it does not change that state, it may move at
most one step in either direction.

A transition function is defined by the quadruple 〈Qs, σs(hs), Qt, A〉. If
the machine is in state Qs and the current cell contains the symbol σs(hs),
move into state Qt, taking action A. If there arises a situation with no
unique transition rule, the Turing machine halts. Otherwise, it finds the
transition rule that fits the current situation and carries on.

A universal Turing machine (UTM) is a Turing machine that can simulate
the behavior of any Turing machine. If a UTM receives input starting with
a specification of a particular Turing Machine T, followed by instructions
for T, it will produce the same result as T would when given the same
instructions. This is the notion we need to define Kolmogorov complexity.

2.2 Kolmogorov complexity and Solomonoff’s prior

Consider the following binary strings.

1111111111

1100100111
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Both are ten digits long, and are equally likely to represent the outcome
of ten flips of a fair coin. But there is a visible difference in the complexity
of describing the two. In English we can describe the first string as "1 ten
times." No similarly short description is available for the second one. This
idea of description complexity is the basis of Kolmogorov complexity. But
natural language is imprecise, so we turn instead to universal Turing ma-
chines to quantify complexity.

Suppose that we have a fixed UTM. For any given string, there will be sev-
eral programs we could run on the UTM that would generate that string.
The key idea is that the complexity of a string is given by the length of the
shortest program that will generate the string. The length of a program is
measured by the number of bits it contains. Thus if x = x1x2 . . . xn, where
each xi is either 0 or 1, then we have that l(x) = n.

With this in place, the Kolmogorov complexity of an infinite string x is
given by

K(x) := min
p
{length(p) : U(p) = x}, (2)

where U is a given UTM, and p a variable that ranges over the set of
programs such that when U is applied to them, produce x as the beginning
of their output.17 If no such program p exists, we set K(x) := ∞. For finite
strings x, we define K(x) to be the length of the shortest program that
outputs x and then halts. We may also define the conditional Kolmogorov
complexity:

K(x | y) := min
p
{length(p) : U(y, p) = x}

Here we get the length of the shortest program that outputs x given that
it receives y as an extra input.

Suppose that we want to generate a prior probability distribution over
binary strings. One way of doing so would be to respect Ockham’s razor
and give higher prior probability to simpler strings. There’s a way of
doing this which is closely related to Kolmogorov complexity, Solomonoff’s
prior:

M(x) := ∑
p:U(p)=x∗

2−l(p). (3)

The sum is over all programs whose outputs start with x – denoted x∗
– when they are applied to U, and l(p) denotes the length of program p.
As you can see from the definition, we do not just take the Kolmogorov

17To be precise, we need to assume that U is a prefix UTM, which means that no valid
program for U is a prefix of any other.
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complexity of x as our prior. Instead, we sum over all programs whose
output start with x. This way, how much a program p contributes to the
value of M(x) depends on its length l(p). If l(p) is large, 2−l(p) will be
small. Thus shorter programs will contribute more to the value of M(x)
than long ones do.18

Why consider programs whose outputs start with x, and not only pro-
grams that output x and then halt? We are interested in making predic-
tions about how the string that starts with x continues. One possibility
is of course that it doesn’t, which is taken care of by the programs that
halt at this step. But if the string does continue, we look at programs that
generate further output.

All of this may look fine and interesting, but it turns out that M is not a
proper probability measure. To see why, we first need some notation. We
let ε denote the empty string. By definition, every string begins with ε.
Thus any probability measure must meet the requirement that P(ε) = 1.
This is not the case with M, where we instead have that M(ε) ≤ 1. Fur-
thermore, we have that M(x) ≥ M(x0) + M(x1), where x is some initial
segment of an infinite binary string, and x0 and x1 denote the string x
with a 0 or 1 appended at the end, respectively. Since 0 and 1 are the only
letters of the alphabet, this means that the value given to x by M may be
larger than the sum of all possible continuations of x. Functions that meet
these requirements are called semi-measures. All probability measures are
semi-measures, but not all semi-measures are probability measures. This
is because probability measures have the additional requirement that the
inequalities above are equalities. One can think of a semi-measure that is
not a probability measure as a kind of deficient probability measure where
the probabilities do not add up as they should. If a semi-measure is com-
putable, one can easily turn it into a probability measure by normalization
(i.e. multiplying all terms by a constant so that they will sum to 1). Alas,
M is not computable.19 This can clearly be problematic. In fact, it violates
one of the desiderata I listed in section 1.5 on what a solution to the prob-
lem of the priors should achieve. I will discuss this in the criticism section.

18There are other priors, such as the Solomonoff-Levin prior (see e.g. (Legg, 2008, p.
32)) that are mathematically very closely related to M. But for purposes of clarity, I’ll leave
those out of this discussion.

19Despite the fact that M is not a probability measure, authors typically speak of M as
assigning probabilities to strings. For convenience I will use this language as well, hoping
that it doesn’t serve to cover up what may be a serious problem with Solomonoff’s prior.
In section 4.2 we return to the fact that M isn’t a probability measure, to see just how
serious a problem it is.

22



Solomonoff’s prior is not computable, but it is lower semi-computable, mean-
ing that it can be approximated from below by a computable function. The
reason for why Solomonoff’s prior is not computable is that when trying
to decide whether a given program p outputs the string x, we will run into
the halting problem.

The length of the shortest program will critically depend on which UTM is
chosen. It can be shown that for any arbitrarily complex string x, as mea-
sured against the UTM U, there is another UTM U′, for which the string
has Kolmogorov complexity 1. We therefore need a method for choosing
the particular UTM that is to be used.

So far we have only spoken of the Kolmogorov complexity of strings.
But we shall soon make use of the Kolmogorov complexity of a semi-
measure. This can be defined in the following way. We take all lower
semi-computable semi-measures, and give them an index. The index i of
a lower semi-computable semi-measure µi is in effect a description: given
x and i there exists a Turing machine T such that µi(x) = limk→∞ T(x, i, k).
That is, T can approximate the value of µi(x) for any x. To define Kol-
mogorov complexity of a semi-measure µi we take the Kolmogorov com-
plexity of its index:

K(µi) := min
p
{length(p) : U(p) = i}.20

When Solomonoff’s prior is applied to an inductive problem, the frame-
work is known as Solomonoff induction.21

2.3 Some properties of Solomonoff’s prior

Perhaps the main reason why several computer scientists are excited by
Solomonoff’s prior is that it has many nice theoretical properties. In par-
ticular, the three theorems discussed in this section are often given as rea-
sons for why Solomonoff induction is a good framework.

We can measure the error of a semi-measure ρ by the negative logarithm of
the probability it assigns to the sequence x that actually occurs: − log ρ(x).
Since the outcome that actually occurs is unknown, it makes sense to com-
pare the worst-case outcomes of two semi-measures. If the error of a semi-
measure µ is at most a constant times larger than the error of another

20See (Legg, 2008, p. 33) for a more detailed discussion of how to assign Kolmogorov
complexity to semi-measures.

21The standard textbook on Kolmogorov complexity is Li and Vitanyi (1997).
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semi-measure ρ, we say that µ dominates ρ. How does Solomonoff’s prior
M(x) fare in this regard? It dominates all lower semi-computable semi-
measures.

Theorem 1. Solomonoff’s prior M(x) dominates all lower semi-computable semimea-
sures in the sense that

c · 2K(µ) ·M(x) ≥ µ(x)

if µ is a lower semi-computable semimeasure. (Hutter, 2004, p. 46)

The term c · 2K(µ) measures the largest amount by which the dominated
semi-measure µ(x) may outperform M(x). As is clear, the term c · 2K(µ)

depends only on the Kolmogorov complexity of the semi-measure µ, and
not on the string x. The higher the Kolmogorov complexity of µ, the more
it may outperform M(x). Given the definition of M(x), this is natural:
M(x) is biased toward low Kolmogorov complexity.

The next two theorems establish bounds on the prediction error of M.
Assume first that the true distribution µ is deterministic. This means that
at each step in the sequence, all of the distribution is concentrated on a
single character of the alphabet (i.e. 0 or 1 in the binary case). Given such
a distribution, the following theorem holds (Hutter, 2004, p. 47):

Theorem 2.
∞

∑
t=1
|1−M(xt | x<t)| ≤

1
2

ln 2 · K(x1:∞)

Here M(xt | x<t) is the probability that the complete string is xt given that
it starts with x<t = x1 . . . xt−1, a particular string of length t− 1. K(x1:∞)

is the Kolmogorov complexity of the infinite string x1:∞. If x1:∞ is com-
putable, K(x1:∞) will be finite. If this is the case, the infinite sum on the
left hand side is finite, and hence the terms |1− M(xt | x<t)| must con-
verge to zero as t → ∞. This means that as more and more digits of the
string xt are revealed, the prediction of how it will continue converges on
the correct answer. Moreover, the speed of this convergence depends only
on the Kolmogorov complexity of the infinite string x1:∞.

This result can be generalized to the case of arbitrary computable semi-
measures, in addition to the deterministic case we just considered. As-
sume that the true (computable) objective probability distribution is µ. We
then have the following theorem (Hutter, 2004, p. 48):

Theorem 3.
∞

∑
t=1

∑
x<t∈Bt−1

µ(x<t)
(

M(0 | x<t)− µ(0 | x<t)
)2
≤ 1

2
ln 2 · K(µ) + c < ∞.
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The notation is quite dense, so let’s try and unpack it. The term µ(x<t)

denotes the objective probability (the µ-probability) that the binary string
starts with x<t. M(0 | x<t) is the M-probability that the next digit is
0, given that the string begins with x<t. Similarly, µ(0 | x<t) is the µ-
probability that the next digit is 0, given that the initial string is x<t. The
term K(µ) denotes the Kolmogorov complexity of the objective probability
distribution µ, and c is a constant. Since we have assumed that µ is com-
putable, it follows that K(µ) is finite, and consequently that 1

2 ln 2K(µ) + c
is also finite.

For each binary string x<t, there is an objective probability µ(x<t) that
true infinite string begins with this string. The fact that the squared differ-
ence is multiplied with this term µ(x<t) means that proportionally greater
weight is given to those binary strings x<t that have higher objective prob-
ability. The inner sum adds the term µ(x<t)(M(0 | x<t − µ(0 | x<t))2 for
all 2t−1 binary strings of length t− 1. The outer (infinite) sum repeats this
process for all natural numbers.

Again, the only way for an infinite sum to be finite is if its terms tend to
zero. In our case, this means that the difference M(0 | x<t)− µ(0 | x<t)

must tend to zero as t → ∞ with µ-probability 1. So Solomonoff’s prior
M will converge to the true objective probability distribution.

That is: the total number of prediction errors over an infinite sequence is
bounded by a finite constant that depends only on the nature of the true
objective probability distribution. Thus, for probability distributions with
higher Kolmogorov complexity, the error bound will be larger, reflecting
the bias toward simpler hypotheses.

Now, what is meant by an "objective" probability distribution here? Ac-
cording to Hutter, a distribution µ is objective if this is the distribution
from which the true sequence is drawn. We can think of this in terms of
limiting frequency, or as the probability distribution used by some other
agent to generate a binary string.

2.4 Reparametrization and regrouping invariance

Typically, there will be many ways to describe the possible events that
are to be assigned probabilities. In some cases, using different descrip-
tions and then equivocating will lead us to assign different probabilities to
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what are in fact the same events. Consider the following example, adapted
from van Fraassen (1990).22 A factory produces cubes with side-lengths
between 1 and 3 cm. What is the probability that a randomly selected
cube has a side-length between 1 and 2 cm? One might be tempted to
think that equivocation gives the answer 0.5: if all side-lengths are equally
probable, we simply take 2−1

3−1 = 0.5. But the factory can also be described
as producing cubes with volumes between 1 and 33 = 27 cm3. A side-
length between 1 and 2 cm corresponds to a volume between 1 and 8 cm3.
So, according to this description, equivocating should lead us to assign
probability 8−1

27−1 = 7
26 to the same event. What gives?

One option is to become a subjective Bayesian. If the result of equivoca-
tion depends so critically on how we describe the outcomes, then perhaps
no prior is better than any other. As we have seen, however, Williamson
(2010) accepts this language dependence and maintains that the language
an agent uses gives her some useful information about the world, which
is then used to justify the use of this particular language. His branch of
objective Bayesianism is objective in the sense that once we have decided
on the particular language to use, the probability distribution will be ob-
jectively determined. A third option is to look for a prior distribution that
is not vulnerable to the problem.

It turns out that Solomonoff’s prior isn’t vulnerable, as shown by Hutter
(2007). The technical term for this is reparametrization invariance. Strictly
speaking, Solomonoff’s prior does not satisfy reparametrization invari-
ance: rather, it is invariant up to a multiplicative constant. This means that
if we replace x with f (x), there is a constant c (which depends on f but
not on x) such that M(x) = c ·M( f (x)) Furthermore, the result established
by Hutter only holds for "simple" transformations, i.e. transformations f
such that their complexity K( f ) is constant (i.e. doesn’t depend on x).23

Whereas reparametrization involves a bijective function so that all in-
stances of the transformed parameter correspond to one and only one
instance of the original parameter, this need not be the case in regrouping.
An example might help here. Suppose that we are to determine whether
a coin is fair or biased. We might represent this by two hypotheses: {fair,

22Similar phenomena are known as the Bertrand paradox. In the original formulation,
we are asked to consider an equilateral triangle inscribed in a circle. A chord of the circle
is chosen at random. What is the probability that the chord is longer than a side of the
triangle?

23We can define the Kolmogorov complexity of such transformations f in much the same
way as we did for lower semi-computable semi-measures above.
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biased}. But equally, we could represent it with three hypotheses: {fair,
heads biased, tails biased}. In the first case, equivocating between the
hypotheses gives a probability of 1

2 to the coin being fair. In the second
case, the same method assigns a probability of 1

3 to the same thing. In
this case of regrouping, the same result holds: for simple group transfor-
mations (i.e. when we transform one way of grouping the hypothesis to
another grouping using a transformation with constant complexity K( f )),
M is invariant up to a multiplicative constant. Both reparametrization in-
variance and regrouping invariance are about avoiding a form language
dependence: we do not want the probability that we assign to a given hy-
pothesis to depend on the language that is used to represent it.

It should be noted that a proponent of equivocation does in fact have a
response to the cube scenario considered at the beginning of this section.
We should equivocate neither over side-length nor over volume, because
these are arbitrary units of measurement. Instead, we should equivocate
in a way that makes our probability assignment invariant. In this case,
the solution is ln 2−ln 1

ln 3−ln 1 = ln 2
ln 3 . If we consider the volume instead, we get

ln 8
ln 27 = ln 23

ln 33 = ln 2
ln 3 . So we apply equivocation not to the side-length or

volume, but to their logarithm. The same method has been used to deal
with similar problems. The main idea behind this solution is that before
assigning prior probabilities, we should identify the relevant symmetries.
This is supposed to be justified a priori, but Joyce (2011) discusses cases
where the units of measurement could in fact matter.

3 Applications

In this section we’ll look at three things. First, we shall see that Solomonoff’s
prior solves some problems to do with which hypotheses to consider from
the beginning, which is difficult for many other priors. Second, I’ll give
a more concrete illustration of how Solomonoff induction might work in
practice. Rathmanner and Hutter (2011) apply the framework to the raven
paradox, and I will borrow their example. Third and finally, I’ll look at
how one might get from the binary strings that Solomonoff induction con-
siders, to the propositions that are typically taken to be the objects of
credence in Bayesian epistemology.

3.1 Determining the model space

By telling us how to assign prior probabilities, Solomonoff induction solves
another problem as well: it determines which hypotheses to consider. The
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prior M gives non-zero probability to every possible computable binary
string. Moreover, as we saw in theorem 3, M can get arbitrarily close to
any computable semi-measure on binary strings.

The fact that M gives non-zero probability to every possible binary string
solves another, related problem: how to assign probability to the sentences
of a countably infinite language. For a finite set of discrete outcomes, we
use a probability mass function to assign a non-zero probability to ev-
ery possible outcome. For a variable that takes on continuous values, we
use a probability density function. But for an infinite set of discrete out-
comes, many standard ways of assigning probability have problems. For
instance, equivocating between each outcome in an infinite set leads us
to assign zero probability to every outcome. This even violates the prob-
ability axioms: the condition of continuity isn’t met. Assume we have
elementary outcomes A1, A2, . . . , An. We define the sequence {Bn}∞

n=1 by
setting B1 = A1 and Bn = Bn−1 ∨ An. Then we have that {Bn}∞

n=1 is a
countable sequence such that ∨n An = Ω. By definition, P(Ω) = 1. Con-
vergence requires that for every real number ε > 0, there exists a natural
number n0 such that for all n > n0, |1− Bn| < ε. But this is not the case,
so continuity is not met.

This is not the case with M: each of the countably infinite number of
binary strings will have a non-zero probability. Thus, someone who favors
equivocation in the finite case will have to switch a method for assigning
prior probability in the countably infinite case. Not so for Solomonoff’s
prior, which works in both cases.

3.2 The Raven paradox

Hempel’s "raven paradox" is one of the most famous problems in con-
firmation theory, so it might be instructive to consider how Solomonoff
induction deals with it. The statement "All ravens are black" is logically
equivalent to "Every non-black thing is a non-raven". Observing a black
raven is evidence for the first statement. Observing a red apple is evi-
dence for the second statement. But since they are logically equivalent,
anything that is evidence for one of them must also be evidence for the
other. Hence any observation of a non-black non-raven will support the
hypothesis that all ravens are black. This is the paradox: how could such
an observation support that conclusion? Rathmanner and Hutter (2011)
apply Solomonoff induction to the problem. They proceed as follows.

We are considering two predicates: B for black, and R for raven. This
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gives us the following observation language: {BR, BR, BR, BR}. For each
of these, there is a parameter which represents their proportion of the total
population: ~θ = (θBR, θBR, θBR, θBR). These parameters must all sum to 1.
A complete hypothesis is an assignment of values to the parameters that
meets this requirement. The hypothesis space can be represented by a 3-
simplex, as in figure 2. In this figure, BR denotes an observation sequence
consisting only of black ravens, BR denotes an observation sequence con-
sisting only of non-black non-ravens, and so forth. We are interested in the
partial hypothesis given by "All ravens are black". This is the shaded area
in figure 2. Can we confirm this hypothesis with Solomonoff induction?

BR BR

BR

BR

H

Figure 2: The hypothesis space for the black ravens problem.

The prior assigned depends on the Kolmogorov complexity of the param-
eters. Hutter and Rathmanner argue that 0 and 1 are the simplest numbers
in the interval [0, 1]. Therefore, Solomonoff’s prior will favor hypotheses
that have parameter values of 0 and 1. These are the hypotheses corre-
sponding to each vertex in figure 2 above. Since they are the simplest
hypotheses, they will have the highest priors. Hypotheses that lie on one
face of the simplex will also be favored, because in these cases, one of the
parameters must be zero. This is the case in H. Now H is consistent with
any observation stream that doesn’t contain any non-black ravens. That is,
H = {x1:∞ : ∀t xt 6= BR}. Hutter and Rathmanner claim that Solomonoff’s
prior converges on the correct answer, that is

lim
n→∞

M(H | x1:n) = 1 if x1:∞ is sampled from any ~θ ∈ H.

However, this result is a direct consequence of theorem 2, which states that
M is guaranteed to converge on the right answer in the limit. Rathmanner

29



and Hutter do not show whether M also gets the absolute and relative de-
grees of confirmation correct. How much does the observation of a black
raven confirm the hypothesis, and how much does the observation of a
non-black non-raven confirm it? One common Bayesian solution (Good,
1960) is to admit that while observations of non-black non-ravens do in fact
provide some degree of confirmation, that degree is much smaller than the
degree provided by observations of black ravens. Whether such a solution
also follows from Solomonoff induction is not clear from their example.
Thus the treatment given by Rathmanner and Hutter (2011) doesn’t deal
so much with the paradox of the ravens. Instead, they use the example to
provide a more concrete illustration of how Solomonoff induction might
deal with a particular inductive problem.

One could also imagine a different application of Solomonoff induction
to the paradox. If we choose a UTM so that "All non-black things are
non-ravens" gets a higher Kolmogorov complexity than "All ravens are
black," the latter hypothesis would get higher prior probability than the
former. Since the two hypotheses are logically equivalent this could clearly
be problematic, but it may nevertheless explain some of our reasoning
about the paradox. More generally, the fact that we in this fashion can
use Solomonoff induction directly to propositions, rather than to sets of
propositions closed under logical equivalence, might be an advantage of
the framework. It means that the scope of the framework is wider, even
though it would likely be problematic from a normative viewpoint to rec-
ommend that we assign different probability to logically equivalent propo-
sitions.

3.3 From strings to propositions

In cases like the raven paradox above, it is fairly straightforward to move
between the formal framework of strings on the one hand, and hypothesis
on the other. At every step in time, there were four possible observations:
{BR, BR, BR, BR}. The hypothesis "All ravens are black" was identified
with all observation sequences that lack any instance of BR.

Solomonoff himself clearly intended, or at least foresaw, this kind of epis-
temological application. In one of the original papers, he writes (Solomonoff,
1964a, p. 14):

Suppose that all of the sensory observations of a human being
since his birth were coded in some sort of uniform digital no-
tation and written down as a long sequence of symbols. Then
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a model that accounts in an optimum manner for the creation
of this string, including the interaction of the man with his
environment, can be formed by supposing that the string was
created as the output of a universal machine of random input.24

But what about more involved cases? What, for instance, is the Kol-
mogorov complexity of the hypothesis that the Christian God exists? Of
course, the Kolmogorov complexity of anything will depend on which
UTM we use to measure it. But assuming we have a fixed UTM, how
does one assign Kolmogorov complexity to a hypothesis like the one just
mentioned? Stated just like that, the hypothesis is of course hopelessly
vague. But once we get more specific, there are several things that are
relevant. All else equal, sensory observations indicating the existence of
miracles, or that you have reached the afterlife should increase the proba-
bility that God exists. If we assume that in the limit of observation we can
tell whether or not God exists, then we could identify the hypothesis with
the set of sequences that entail His existence. Once this is done, defining
Solomonoff’s prior for the hypothesis is straightforward.

Assume that propositions, or sensory observations, can be identified with
binary strings in this fashion. If these propositions or sensory observa-
tions are finite or countably infinite, this is unproblematic. If the number
of sensory observations possible at a given time is some finite number n,
we could have a UTM with an alphabet consisting of n symbols.25 Thus
any possible sequence of sensory observations could be represented by a
string of such symbols. Extending the alphabet in this way is only done for
convenience: it does not increase the computational power of the Turing
machine. Therefore another way to go would be to identify each possible
sensory observation with a (finite) binary string, and represent a sequence
of sensory observations with a concatenation of such strings. But how
should it be done, exactly? How do we decide which binary string to as-
sociate with which sequence of sensory observations?

We have seen that the probability assigned to a binary string by Solomonoff
induction depends on the choice of UTM. And in turn, the probability as-
signed to a sequence of sensory observations depends on how we choose
to represent these observations with symbols. Thus we have two separate
cases of language dependence.

24The idea brings Carnap’s Aufbau to mind, and Solomonoff was in fact a student of his.
25We need only require that the number of sensory observations the subject can discrim-

inate between is finite.
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4 Criticism

4.1 Language dependence

In section 2.4 we saw that Solomonoff’s prior is invariant under both
reparametrization and regrouping, up to a multiplicative constant. But
there is another form of language dependence, namely the choice of a uni-
versal Turing machine.

There are three principal responses to the threat of language dependence.
First, one could accept it flat out, and admit that no language is better than
any other. Second, one could admit that there is language dependence but
argue that some languages are better than others. Third, one could deny
language dependence, and try to show that there isn’t any.

For a defender of Solomonoff’s prior, I believe the second option is the
most promising. If you accept language dependence flat out, why intro-
duce universal Turing machines, incomputable functions, and other need-
lessly complicated things? And the third option is not available: there isn’t
any way of getting around the fact that Solomonoff’s prior depends on the
choice of universal Turing machine. Thus, we shall somehow try to limit
the blow of the language dependence that is inherent to the framework.
Williamson (2010) defends the use of a particular language by saying that
an agent’s language gives her some information about the world she lives
in. In the present framework, a similar response could go as follows. First,
we identify binary strings with propositions or sensory observations in
the way outlined in the previous section. Second, we pick a UTM so that
the terms that exist in a particular agent’s language gets low Kolmogorov
complexity.

If the above proposal is unconvincing, the damage may be limited some-
what by the following result. Let KU(x) be the Kolmogorov complexity of
x relative to universal Turing machine U, and let KT(x) be the Kolmogorov
complexity of x relative to Turing machine T (which needn’t be universal).
We have that

KU(x) ≤ KT(x) + cTU

That is: the difference in Kolmogorov complexity relative to U and rela-
tive to T is bounded by a constant cTU that depends only on these Turing
machines, and not on x.26 This is somewhat reassuring. It means that no

26See Li and Vitanyi (1997, p. 104) for a proof.
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other Turing machine can outperform U infinitely often by more than a
fixed constant. But we want to achieve more than that. If one picks a UTM
that is biased enough to start with, strings that intuitively seem complex
will get a very low Kolmogorov complexity. As we have seen, for any
string x it is always possible to find a UTM T such that KT(x) = 1. If
KT(x) = 1, the corresponding Solomonoff prior MT(x) will be at least 0.5.
So for any binary string, it is always possible to find a UTM such that we
assign that string prior probability greater than or equal to 0.5. Thus some
way of discriminating between universal Turing machines is called for.

Hutter (2004) argues for the "short compiler" assumption. We should pick
our Turing machine from a class which is such that, for any two Turing
machines T1 and T2 in it, there will always be a short program on T1 that
can interpret all T2 programs. Of course, "short" is ambiguous and needs
to be quantified. But regardless of how we quantify it, for any Turing
machine T there will be a set of Turing machines that satisfy the short
compiler assumption with respect to T. So which members this set has
depends not only on how we quantify "short", but also on the choice of the
"reference machine" T. How do we decide which Turing machine to use?
The recommendation Hutter (2004) offers is that we simply agree upon a
fixed reference universal Turing machine and stick with it. Is it possible to
do better than that, or are we stuck with this element of arbitrary choice?
Rathmanner and Hutter (2011) write that

the practical and theoretical benefit of having some final fixed
reference point outweighs the importance of making this fixed
reference point “optimal” in some sense, since it has little prac-
tical impact and appears to be philosophically unsolvable.

What’s more, the dependence on the choice of UTM is critical only for
short strings. As the length of the string grows, predictions of how it will
continue become more and more independent of the particular UTM that
is used. By taking prior information in to account, we needn’t consider
short strings.

As I discussed in the previous section, when applying Solomonoff induc-
tion to real world problems, we need to devise some encoding for translat-
ing sentences of natural language into binary strings. This encoding also
gives rise to language dependence.

33



4.2 Incomputability

When I introduced Solomonoff induction in section 2, I explained that the
prior M is incomputable. This is obviously problematic when it comes to
applications.

In normative ethics, it is often assumed that ought implies can. On this
view, if a theory of normative ethics implies that an agent ought to take
a certain action, it must also be possible for her to do so. The same is
sometimes claimed for epistemology as well: if an epistemological theory
implies that an agent should be in a particular credal state, then it must be
possible for her to be in that state. If Solomonoff induction is the correct
normative epistemology, then we should be able to do what it tells us to
do. The problem here is twofold: actual humans cannot accurately follow
Solomonoff induction, but neither can even idealized humans, since M is
incomputable. The first of these is not unique to Solomonoff induction:
all standard forms of Bayesianism require logical omniscience, which is
obviously a requirement humans cannot meet. So insofar as one takes this
worry seriously, several normative theories other than Solomonoff induc-
tion are also ruled out.

Solomonoff’s prior can be approximated with smaller and smaller errors,
but at no point in the approximation can we estimate the size of the error.
However, if is often possible to know how much closer to Solomonoff in-
duction one computable measure is than another.

But I think that even if one takes the epistemic ”ought implies can” very
seriously, Solomonoff induction may still be valuable. If the framework
lives up to its other promises, one can view it as an upper bound on how
well inductive agents can perform in the absence of luck or other factors
that could give prior probabilities substantial truth-likeness. In the words
of Solomonoff (1997, p. 83) himself, it is a kind of ”gold standard” for in-
ductive systems.

It is important here that we keep the desiderata listed in section 1.5 in
mind. Since Solomonoff induction was known to be incomputable from
the start, it was clearly never intended to give this kind of direct action-
guidance. Thus the framework was developed for other purposes, and
shouldn’t be judged based on how well it does something it was never
intended to do.

One might think that the problematic incomputability would go away if
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hypercomputation is physically possible. Alas, hypercomputation cuts
both ways. Hypercomputers are devices – so far only theoretical – that
can compute functions which are not Turing computable.27 For instance,
Turing himself established that the halting problem is undecidable. A hy-
percomputer, however, would be able to decide the halting problem for
a Turing machine. But every hypercomputer has its own halting problem
which it cannot decide. So if it turns out that some form of hypercomputa-
tion is physically possible, this shows that we do not have good reason to
restrict ourselves only to Turing computable functions. Instead, we should
consider all functions that are computable by the most powerful form of
hypercomputation that is physically possible. But as we have seen, this
form of hypercomputation would also have its own halting problem, and
so the resulting Solomonoff prior would be uncomputable even by this
hypercomputer.

We saw earlier that Solomonoff’s prior is not a proper probability mea-
sure, since it sums to less than 1. What effect does this have? For starters,
it means that it becomes harder to obtain a pragmatic justification in the
form of a Dutch book argument. Such arguments attempt to show that
unless an agent’s credences conform to a set of rules – in this case, the
probability axioms – she will be vulnerable to a Dutch book, i.e. a set of
bets that result in a guaranteed loss regardless of the outcome.

Another problem with the fact that Solomonoff’s prior is not a proper
probability measure is that it becomes harder to use decision-theoretically.
By assigning probabilities to hypotheses, we can calculate utilities. This is
the case in the von Neumann-Morgenstern utility theorem, where it is as-
sumed that individuals face options called lotteries. Each lottery consists
of a set of mutually exclusive outcomes which are all assigned probability
that sums to 1. By noting an agent’s preferences among such lotteries,
we can describe the utilities she ascribes to the individual outcomes. But
since semi-measures do not necessarily sum to 1, the framework cannot
be applied in this case.

However, the fact that Solomonoff’s prior is not a proper probability mea-
sure is more of a side effect of its not being computable. If it were com-
putable, we could normalize it to a computable probability measure with-
out any trouble. And as I briefly noted earlier, we can in fact normalize it,
but if we do so it will no longer be possible to approximate it from below.
What’s more, any computable approximation of Solomonoff induction can

27See e.g. Ord (2006) or Copeland (2002) for an overview of hypercomputation.
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also be normalized, so neither of these two problems will arise in practice.

4.3 Are the hypotheses computable?

Solomonoff’s prior is itself not computable. But by explicitly anchoring
the framework of Solomonoff induction in universal Turing machines, we
are in effect assuming that the hypotheses under consideration are Tur-
ing computable. That is, every hypothesis we may take into account must
be representable by a binary sequence that is computable by a Turing ma-
chine. Does this mean that we assume that every process in the universe is
computable? No. Even though there are several "computational universe"
hypotheses floating around, one need not make such an extravagant as-
sumption. With regards to uncomputable processes, we can just ask: are
there methods other than Solomonoff induction that give better results? If
the answer is no, this would be sufficient to justify the assumption. This
amounts to an assumption that, for all practical purposes, the things we
are concerned with are in fact computable.

4.4 Why simplicity?

Solomonoff’s prior gives higher probability to simpler strings, according
to the formula given in equation 3. In effect, this amounts to a kind of Ock-
ham’s razor – indeed, this principle is often mentioned in connection with
Solomonoff induction. In its most well known formulation, Ockham’s ra-
zor states that ”entities are not to be multiplied beyond necessity.” There
are a few different ways of spelling this out, however (Baker, 2011). First,
philosophers typically distinguish between two kinds of simplicity: ele-
gance and parsimony. Elegance has to do with the formulation of the
hypothesis, whereas parsimony has to do with the entities postulated by
the hypothesis. There is often a tension between these two: by postulating
more things, we may be able to formulate a theory in a simpler way. And
conversely, by restricting the entities we postulate, the formulation of a
theory might become more complex. In Solomonoff induction, simplicity
is identified with a weighed sum of program lengths. But the lengths of
these programs depend on the choice of UTM. Thus in a sense we can
identify the choice of UTM with parsimony, and the length of programs
with elegance. By choosing a UTM with a strong enough bias, we can
make any hypothesis appear elegant, as measured by program length.

Furthermore, Ockham’s razor can be stated either as an epistemic or as a
methodological principle. In its epistemic version, Ockham’s razor states
that other things being equal, it is rational to place higher credence in the
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simpler of two hypotheses. In the methodological version, the principle
states that for scientific purposes, it is preferable to adopt the simpler one
as a working hypothesis. If nothing else, the methodological principle can
be justified by the fact that we are cognitively limited agents, and simpler
theories are easier to deal with. In the context of Solomonoff induction,
we are concerned with Ockham’s razor as an epistemic principle. Given
how idealized the framework is, it would be difficult to try and justify it
by appealing to the cognitive limitations of humans.

So the question then becomes: how can we give an epistemic justification
of Ockham’s razor, in terms of the desiderata listed in section 1.5 on what
a solution to the problem of the priors should achieve. According to theo-
rem 2 in section 2.3, the total number of prediction errors over the length
of an infinite sequence is bounded by a constant, provided that the infinite
sequence is computable. Similarly, theorem 3 in section 2.3 establishes a
bound on the total prediction errors in the stochastic case. Perhaps this
could be used as a starting point for a justification of Ockham’s razor: if
the constant is smaller than any such other constant achievable by other
methods, this would count in favor of Ockham’s razor. However, the size
of the constant depends on the Kolmogorov complexity of the true se-
quence in the deterministic case, and on the Kolmogorov complexity of
the true semi-measure in the stochastic case. Thus if the true environment
(whether deterministic or stochastic) has a high Kolmogorov complexity,
the constant will be large. Thus it is easy to find methods that will outper-
form Solomonoff induction when the true environment has a very high
Kolmogorov complexity. So using these two theorems to justify Ockham’s
razor is a circular endeavor. It amounts to claiming that we should as-
sume that the world is simple because if it turns out that the world is in
fact simple, this assumption leads to good results. This point is noted by
Kelly (2004), who claims that if we adopt Solomonoff’s prior, we are in
effect just assuming that Ockham’s razor is correct. The authors of the
leading textbook on Kolmogorov complexity also admit this:

a priori we consider objects with short descriptions more likely
than objects with only long descriptions. That is, objects with
low complexity have high probability, while objects with high
complexity have low probability. (Li and Vitanyi, 1997, p. 260)

Is it possible to find a non-circular justification of the epistemic Ockham’s
razor? On one view, defended by Kevin Kelly, it is not that simpler hy-
potheses are a priori more likely to be true. However, starting out by as-
suming the simpler theory means that your worst-case performance in
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terms of how many times you change your mind is better than if you
don’t. In Kelly’s words, Ockham’s razor is justified by its truth-finding ef-
ficiency. Kelly actually proves this, but he’s working not in the framework
of Bayesianism, but in that of formal learning theory.

In formal learning theory, we are considering finite or infinite evidence se-
quences, much like the binary strings in Solomonoff induction. An empir-
ical hypothesis is a proposition whose truth-value relative to an evidence
stream is completely determined by that evidence stream. Thus even the
truth-value of universal statements like ”All ravens are black” could at
least in theory be determined by an infinite evidence stream. An induc-
tive method is a function that maps finite data streams to hypotheses, or
to suspension of judgment. This is perhaps the main difference between
formal learning theory and Bayesianism: in formal learning theory there
is only full belief and suspension of judgment, whereas Bayesianism con-
siders degrees of belief. An inductive method converges on a hypothesis
H on a data stream e by time n just in case for all times m ≥ n, the function
outputs the same hypothesis H. A discovery problem is a pair 〈H, K〉, where
K is a set of data streams representing background knowledge, and H is a
mutually exclusive set of hypotheses that covers K. An inductive method
succeeds on a particular data stream in K if it converges to the correct hy-
pothesis when applied to this data stream. It solves the discovery problem
if it succeeds for all data streams in K.

When comparing methods, we are interested in their respective costs.
Kelly assumes that we restrict ourselves to methods that converge on the
correct answer in the limit. This is essentially the same as item 2b in my
list of desiderata. Given this restriction, there are essentially two kinds of
costs: errors and retractions. The number of errors is the number of times
the method outputs some hypothesis H′ other than the true hypothesis H.
The number of retractions is the number of times the method takes back an
earlier answer H′ and outputs another one. How well a method performs
in terms of the number of errors and retractions will of course depend on
what the correct hypothesis is. So instead of looking at the number of er-
rors and retractions in the general case, Kelly compares methods by their
worst-case performance. In Kelly (2007), he proves that following Ock-
ham’s razor gives you the best possible worst case, both in terms of errors
and retractions. When it comes to retractions, the idea is in rough outline
as follows. Say that we are considering whether all ravens are black. If we
begin by assuming the simpler hypothesis – that all ravens are in fact black
– we will change our mind only when we have seen a counterexample: a
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nonblack raven. However, if we instead assume that there is exactly one
non-black raven and are presented with a long sequence of black ravens,
we will eventually have to change our minds or otherwise risk converg-
ing on the wrong answer. But after we have changed our minds, we might
very well observe a nonblack raven, thus being forced to change our minds
again.

Can this result be used to justify the bias toward simplicity inherent in
Solomonoff induction? Kelly (2004) writes:

Let α be a fixed quantity strictly between zero and one half
such that values lower than α are ‘small’ and values higher
than 1− α are ‘large’. A Bayesian agent can be said to retract
when her posterior probability drops from a high to a low level
on some answer to the question at hand. With this slight mod-
ification, the U-turn argument also applies to Bayesian agents
whose posterior probabilities really converge to the truth [...]
Moreover, Bayesians with a prior bias toward simple theories
will tend to be retraction-efficient, since the high prior proba-
bility will remain if the simplest theory is true, will ‘wash out’
in favor of the next-to-simplest theory if that is true, and so
forth, for a total of k retractions in the kth simplest answer.

We can define Bayesian error in a way analogous to Kelly’s definition of
Bayesian retraction in the above quote. Again, let α be some real number
strictly between 0.5 and 1. If the distance between the correct value of a
hypothesis H (i.e. 0 or 1) and the credence placed in H is greater than
α, we say that the agent is in error with regards to H. Thus every step of
time at which the distance to truth is greater than α will count as one error.

Why should we care about such Bayesian retractions and errors? More
specifically, where does minimizing retractions and errors fit into the list
of desiderata? The closest candidate is item 2c, which states that the agent
should get "sufficiently close" to the true hypothesis after a certain number
of updates. Given that all methods under consideration are guaranteed to
converge on the correct answer in the limit, a larger number of errors indi-
cates that you have spent more time further away from the truth. Similarly,
a large number of retractions indicate that your credence has fluctuated a
lot.

One potential problem with applying Kelly’s reasoning to the present case
is that we are dealing with a semi-measure rather than a probability mea-
sure. Since the value of a semi-measure need not range the full spectrum
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between 0 and 1, a lack of belief cannot always be represented by 0.5. We
could get around this by considering a normalized version of Solomonoff’s
prior (which would then no longer be lower semi-computable).

5 Summary and Discussion

We have seen that Solomonoff induction yields a form of objective Bayesian-
ism where simpler hypotheses are assigned greater prior probability. I
went through some of its important properties: it is guaranteed to con-
verge on the correct answer in the limit under a bound that depends only
on the Kolmogorov complexity of the true environment, provided that
the environment is computable. Furthermore, Solomonoff induction satis-
fies both reparametrization and regrouping invariance, up to a multiplica-
tive constant. I discussed how the framework allows us to deal with a
countably infinite set of hypotheses, and applied it to a toy confirmation
problem. But there were many potential problems: Solomonoff induction
depends critically on the choice of UTM, it is not computable but can only
deal with computable hypotheses, and it requires that we justify the bias
toward simplicity. In light of all this, how does Solomonoff induction fare
with regards to the desiderata I listed in section 1.5?

I dismissed the two items listed under truth-likeness, as these require the
impossible: that we are somehow able to assign higher prior probability
to true hypotheses. That brings us to convergence on truth. On item 2a,
about considering more hypotheses, Solomonoff’s prior performs impres-
sively well. It allows us to assign non-zero probability to every hypothesis
in a countably infinite set. However, in such a case, staying sufficiently
close to Solomonoff’s prior is a mathematical necessity if we want to as-
sign non-zero probability to all of a countably infinite set of hypotheses.
Assume for instance that we map binary strings to natural numbers in the
following way: (ε, 1), (0, 2), (1, 3), (00, 4), etc. To the kth string we assign
probability

P(xk) =
6

π2
1
k2 .

This sum converges and is normalized, so that

∞

∑
k=1

P(xk) = 1.

For many individual strings xk, P(xk) and M(xk) will be very different.
For instance, the string consisting of one hundred zeroes will have a very
high k, and a correspondingly low P(xk). But for many choices of UTM,

40



the resulting value of M(xk) will be quite high. However, since both priors
converge to the same value,28 we have that

lim
k→∞
|P(xk)−M(xk)| = 0.

This shows that regardless of which complexity measure we use, when
a string becomes complex enough according to one measure, it will also
be complex according to another. However, the differences that do exist
between various priors may of course be very important when it comes to
making predictions.29

Item 2b concerned convergence on the truth in the limit. Solomonoff in-
duction does satisfy this, but so do many other possible priors. With
regards to item 2c we saw that Solomonoff induction does get sufficently
close to the true sequence or the true probability distribution in finite time,
provided these are computable. However, the bound depends on the Kol-
mogorov complexity of the environment, and so Solomonoff induction
will perform poorly when the environment is complex.

As we have seen, Solomonoff’s prior is not computable, so the three items
listed under applicability are out. If we are looking for a prior that can
be used by agents, whether idealized or actual, Solomonoff’s solution is
not on the table. But the same is also true even when we consider most
computable approximations of Solomonoff induction. The so-called AIXI
model is a theoretical AI agent that uses Solomonoff’s prior. In one com-
putable approximation of AIXI, we only consider programs of a certain
length l. The larger we choose l, the closer the result will be to M. How-
ever, the computation time grows exponentially with l, and thus even com-
putable approximations quickly becomes unfeasible to use.30

How does the dependence on the choice of UTM interact with these desider-
ata? To some extent, this dependence makes the accomplishment less im-
pressive. However, even if we consider all priors generated by all different
UTMs, we still have a proper subset of all possible priors. Moreover, any
prior in this subset assigns non-zero probability to every computable envi-
ronment. As we saw in section 4.1 on language dependence, the difference
in the Kolmogorov complexity assigned to a particular string x by two dif-
ferent universal Turing machines is bounded by a constant that depends
only on these two Turing machines, and not on x.

28I’m assuming here that we are working with a normalized version of M, Mnorm.
29I’m grateful to Shane Legg for pointing this out.
30See Hutter (2004) for a detailed exposition of AIXI and its computable approximations.
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In summary: when it comes to a countably infinite number of hypothe-
ses, Solomonoff’s prior is justified by the fact that it allows one to assign
positive probability to all hypotheses. However, this criterion does not
single out Solomonoff’s prior, but rather a set of priors that do not deviate
too much from it. But other ways of achieving this often have something
arbitrary about them. In the case where we base the prior on Ockham’s
razor, we can at least try to give some independent justification of the
choice. This brings us to the other proposed justification, which is based
on Kevin Kelly’s work on Ockham’s razor in formal learning theory. This
application of results in formal learning theory, presented in the previ-
ous section, is still rather schematic, and much remains to be done to see
whether this argument is strong enough to justify Solomonoff’s prior. At
the very least, I think we should be weakly objectivist, in the sense that
we should assign strictly positive probability to every hypothesis. Not
doing so means that we are in effect ruling out some hypotheses a priori,
because conditionalization can never make us move from probability 0 to
any other probability. Since Solomonoff’s prior does meet this, it is at least
a member of the set of allowable priors.

Solomonoff induction has barely been treated by philosophers at all, but
chances are it can be applied to many other problems in epistemology and
philosophy of science. Take Nelson Goodman’s new riddle of induction,
for instance (Goodman, 1983). In the standard formulation, we have seen
a sequence of green emeralds, and no emeralds of any other color. We
want to use this observation to support the hypothesis that all emeralds
are green. But Goodman points out that we can define a new predicate
grue to mean green before some future time t, and blue after that time t.
So far, the observed emeralds are consistent with both hypotheses. Why
is it that the hypothesis that all emeralds are green is confirmed, while
the hypothesis that all emeralds are grue isn’t? One common intuitive
response is that grue is an artificial predicate, since it is defined in terms
of a disjunction. But Goodman notes that this will not work: if we begin
with grue and the similarly constructed bleen, we can define green and
blue in terms of these. However, this response neglects the fact that green
and grue may have different Kolmogorov complexity. If we assume a
computational theory of mind and assign each person a UTM, chances are
that the Kolmogorov complexity of green will be much lower than that
of grue, and the resulting Solomonoff prior for "All emeralds are green"
will be higher than that of "All emeralds are grue." Thus observations of
green emeralds will better confirm the former hypothesis, because it has a
higher prior probability.
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