
Master’s Dissertation
Structural

Mechanics

FILIP JOHANSSON and FREDRIK HANSSON

IMPLEMENTING A COMPONENT
BASED PARALLEL DISTRIBUTED
FINITE ELEMENT SOLVER

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lund University Publications - Student Papers

https://core.ac.uk/display/289953462?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Denna sida skall vara tom!

Copyright © 2008 by Structural Mechanics, LTH, Sweden.
Printed by KFS I Lund AB, Lund, Sweden, March, 2008.

For information, address:

Division of Structural Mechanics, LTH, Lund University, Box 118, SE-221 00 Lund, Sweden.
Homepage: http://www.byggmek.lth.se

Structural Mechanics
Department of Construction Sciences

Master’s Dissertation by

FILIP JOHANSSON and FREDRIK HANSSON

Supervisors:

Jonas Lindemann, PhD,
LUNARC, Lund

IMPLEMENTING A COMPONENT

BASED PARALLEL DISTRIBUTED

FINITE ELEMENT SOLVER

ISRN LUTVDG/TVSM--08/5155--SE (1-89)
ISSN 0281-6679

Examiner:

Ola Dahlblom, Professor,
Div. of Structural Mechanics

Denna sida skall vara tom!

Abstract

Parallel computing is becoming more and more important in modern Finite Element Soft-
ware. As problems grow larger, computation on a single processor may not be fast enough.
To overcome this problem, one can utilize parallel programming using e.g SMP-machines
or clusters. Furthermore, when local compute resources are scarce, it can be quite conve-
nient to take advantage of non-local resources for performing the calculations.

This thesis is a collaboration between the Division of Structural Mechanics, LTH and
StruSoft AB in Malmö/Budapest. The aim is to address the issues above, specifically
looking at the structural analysis program FEM-Design developed by StruSoft. There
are several ways to parallelize code, focus will be on OpenMP, PETSc and Intel MKL.
These methods have been studied in order to conclude which one is the most suitable for
existing Finite Element applications. In the end Intel MKL was chosen and implemented.
Regarding the distributed computations, a realistic client/server application was developed
using the Internet Communications Engine (Ice).

The parallel properties of the implementation was studied and also, during a visit to the
StruSoft Budapest branch, the implementation was integrated into FEM-Design. The
results were astonishing, reaching speedups of a factor up to 360 compared to the original
solver. Also, the scaling was almost linear for the implemented solver.

i

ii

Acknowledgements

First of all we would like to thank our supervisor Jonas Lindemann for his support during
the thesis process and many interesting discussions. We would also like to thank all the
people at StruSoft in Malmö and Budapest. Specially Arpad Tornyos for his technical
support during our visit to Budapest. Tamas Racz for his help with communicating with
the people in Budapest and his overall involvement in the work. Also we owe H̊akan
Hansson a great deal of thanks for making this thesis possible. Futhermore we would like
to thank Kent Persson at the Divison of Structural Mechanics for inspiring us to use Intel
MKL. Also we would like to thank the opponents Mikael Månsson and Magnus Tingne for
their many useful comments on this report.

Contents

1 Introduction 1

2 Parallel programming 3
2.1 OpenMP . 3

2.1.1 Programming model . 4
2.1.2 Usage . 4
2.1.3 Code examples . 5

2.2 PETSc . 6
2.2.1 Programming model . 8
2.2.2 Usage . 8
2.2.3 Code examples . 9

2.3 Intel MKL . 9
2.3.1 The PARDISO solver . 9
2.3.2 Storage format . 11
2.3.3 PARDISO usage . 11
2.3.4 Code example . 12

3 Parallel Solver for Plane Stress 17
3.1 Original Application . 17
3.2 OpenMP Implementation . 18

3.2.1 Original Serial Solver . 18
3.2.2 Parallelizing the Solver using OpenMP 19
3.2.3 Results with OpenMP . 20

3.3 PARDISO Implementation . 20
3.3.1 Banded Solution . 20
3.3.2 Results with Banded Solution . 22
3.3.3 Renumbered Banded Solution . 23
3.3.4 Results with Renumbered Banded Solution 23
3.3.5 Coordinate Format Solution . 24
3.3.6 Results with Coordinate Format Solution 26

4 Integrating the Parallel Solver into FEM-Design 29
4.1 The Implementation . 29
4.2 Results . 30

5 Distributed Programming Tools 33

iii

iv CONTENTS

5.1 Ice Overview . 34
5.2 The Slice Definition Language . 35
5.3 Principles of Ice Communication . 37

6 Distributed Interface for the Parallel Solver 39
6.1 The Slice Definition . 39
6.2 Client Implementation . 41

6.2.1 Client Code . 42
6.3 Server Implementation . 45

6.3.1 Server Code . 46

7 Conclusions and Future Work 49
7.1 Conclusions . 49
7.2 Future Work . 49

A Client/Server code 51
A.1 Slice definition . 51
A.2 Client code . 52
A.3 Server Code . 55

B Parallel application code 65
B.1 Main program . 65
B.2 File reading/writing . 66
B.3 FEM calculations . 69
B.4 Execution . 81
B.5 System solving . 83

Chapter 1

Introduction

Parallel computing is becoming more and more important in modern Finite Element Soft-
ware. As problems grow larger, computation on a single processor may not be fast enough.
To overcome this problem, one can utilize parallel programming using e.g smp-machines
or clusters. Furthermore, when local compute resources are scarce, it can be efficient to
take advantage of non-local resources for performing the calculations. The latter part is
often referred to as distributed computations.

The focus is on parallelizing existing Finite Element Codes. For this purpose some dif-
ferent techniques have been studied, these are OpenMP, PETSc and Intel MKL. Also,
the possibility of distributing the calculations to non-local resources using e.g. the Inter-
net Communications Engine (Ice) is investigated. This thesis is a collaboration between
the Division of Structural Mechanics, LTH and StruSoft AB in Malmö/Budapest. The
aim is to address the issues above, specifically looking at the structural analysis program
FEM-Design developed by StruSoft.

The structure of the report is as follows: Chapter 2 gives a brief description of the tools
for parallelization mentioned above. Chapter 3 describes the process of implementing
the parallel solver. In chapter 4, the integration of the parallel solver into FEM-Design
is discussed. Chapter 5 gives an overview of distributed programming tools, specifically
focusing on Ice. Chapter 6 treats the implementation of the distributed interface for the
parallel solver. In chapter 7, some conclusions from the present work are discussed, also,
some suggestions for future work are given. Most of the code written in this project is
available in appendix A and B.

1

Denna sida skall vara tom!

Chapter 2

Parallel programming

In this section some approaches to parallel programming will be reviewed. The purpose
of parallel programming is to divide tasks between different CPUs in order to reduce the
computational time. When doing this it is important how the problem is divided and
how the different processes (threads) communicate and synchronize with each other. One
of the most used tools for handling this communication is the Message Passing Interface,
MPI for short. The advantages of parallel programming are twofold, more CPU power can
be utilized, also, the total amount of memory is increased with more CPU:s. The latter
being very significant for larger problems. Symmetric multi processing (SMP) systems like
dual/quad core are becoming more and more popular, but far from all programs actually
use the parallel capacity of these systems. As the CPU clock speed curve is starting to
level out, parallel programming is becoming more and more important.

In this thesis, three common approaches to parallel programming are studied, in the
context of a finite element solver:

OpenMP [5] A set of compiler directives that can be directly inserted in to existing code.

PETSc [15] A library for solving Partial Differential Equations using MPI.

Intel MKL [4] A library of threaded math routines based on OpenMP. It is highly opti-
mized for Intel processors.

It should be noted that the techniques studied are applied to medium sized finite element
problems. Larger finite element problems often require some kind of domain decomposition
scheme in addition to the techniques described in this report.

2.1 OpenMP

OpenMP stands for Open specifications for Multi Processing. It is a collaborative work
between interested parties from the hardware and software industry, government and
academia. Essentially, OpenMP is an API for parallelizing existing code, giving the
programmer full control over the parallelization. It is comprised of three primary API
components, these are

3

4 CHAPTER 2. PARALLEL PROGRAMMING

• Compiler directives

• Runtime library routines

• Environment variables.

OpenMP is mainly designed for symmetric multiprocessing (SMP) architectures i.e. sys-
tems with multiple CPUs on a shared memory. OpenMP is available for Fortran(77, 90
and 95) and C/C++. It has been implemented on many platforms including most Unix
platforms and Windows NT. A full description of the OpenMP specification can be found
in [5].

2.1.1 Programming model

OpenMP uses a shared memory process consisting of multiple threads. The fork-join
model of parallel execution is utilized, see figure 2.1. The OpenMP program is initially

Master Thread

Fork Join

Parallel region

Master Thread

Figure 2.1: The master thread creates a team of parallel threads

executed as a single process by the master thread. When entering a parallel region, the
master thread creates a team of parallel threads, this is called fork. The statements in
the program that are enclosed by the parallel region are then executed in parallel among
the threads in the team. When all threads have finished their work in the parallel region,
they synchronize and terminate, leaving only the master thread, this is called join. In the
parallel region, OpenMPs memory model dictates that all variables except loop variables
by default are shared by the different threads. One can alter this by specifying variables
as private or shared before entering the parallel region. The model also supports nested
parallelism i.e. it is possible to have parallel regions within other parallel regions.

2.1.2 Usage

OpenMP is used by inserting special compiler directives or runtime library routine calls
into the existing code. The compiler directives are inserted as special comments (beginning
with !$OMP in Fortran 90). Examples of directives are

!$OMP PARALLEL/ !$OMP END PARALLEL begin and end parallel region

2.1. OPENMP 5

!$OMP DO/!$OMP END DO this is a work sharing construct. It divides the enclosed
loop between the different threads

Other constructs in OpenMP include:

• Static/dynamic sheduling of work-divison constructs.

• The possibility to divide code in different parallel running sections

• Synchronization tools like barriers and the possibilty to specify sections of code
within parallel regions to be executed serially.

• Tools to lock/unlock certain parts of data structures such as matrices/vectors.

and much more, but obviously, a full description of OpenMP cannot be made here. A nice
guide to using OpenMP can be found in [6].

2.1.3 Code examples

In 2.1, the basic usage of OpenMP is illustrated. This program is a simple example that al-
locates two large arrays and performs some simple calculations on them. First, x is initial-
ized, which is done serially. The value of the environment variable OMP NUM THREADS,
which should be set to the number of processors for best performance, is printed using the
OpenMP method omp get num threads(). The program then enters the parallel region
where a is calculated. Here, the work is divided equally between the threads, but it is
also possible to divide the work in different proportions using the !$OMP SCHEDULE
directive.

Listing 2.1: test.f90

program main
use omp l ib
i n t eger : : i , j
i n t eger (8) : : s i z e = 5e7
r ea l (8) : : s t a r t t im e , f i n i s h t i m e
r ea l (8) , dimension (:) , a l l o c a t ab l e : : a , x

a l l o c a t e (a (s i z e))
a l l o c a t e (x (s i z e))

do i =1, s i z e

x (i) = (i +2)/1000
end do

s t a r t t im e = omp get wtime ()

write (∗ , ’ (A, I) ’) ’Maximum number o f t h r e a d s : ’ ,
&omp get max threads ()

!$OMP PARALLEL do
do i =1, s i z e

a (i) = s i n (x (i) / 2)
end do

6 CHAPTER 2. PARALLEL PROGRAMMING

!$OMP END PARALLEL do

dea l loca te (a)
dea l loca te (x)

f i n i s h t i m e = omp get wtime ()

write (∗ , ’ (A, F) ’) ’ Time : ’ , f i n i s h t im e −s t a r t t im e

end program main

In this example, the result in one calculation did not depend on the result from another
iteration, in the following example this is not the case.

!$OMP PARALLEL do sha red (a)
! P a r a l l e l s e c t i o n execu t ed by a l l t h r e a d s
do i =1, s ize −1

a (i) = a (i +1)
end do

! A l l t h r e a d s j o i n master th r ead and d i s band
!$OMP END PARALLEL do

This is because a(i + 1) is needed in its unmodified form for the correct result to be
obtained, however since the loop is now divided between the CPUs we cannot be certain
of this. The above situation is an example of a so called race condition, meaning that the
result of the code depends on the thread scheduling and the speed of each processor. In
some cases, there are workarounds to these problems. For example, one could use some
OpenMP directives to enforce synchronization between threads, or one could modify the
loop itself. Of course, it is necessary to evaluate the cost in terms of time and memory in
order to see, if it is worth it or not.

2.2 PETSc

The Portable, Extensible Toolkit for Scientific Computations [15] is a suite of data struc-
tures and routines for the scalable (parallel) solution of scientific applications modeled by
partial differential equations. It employs the MPI standard for all message-passing com-
munication. The original purpose of PETSc was to enable its users to easily experiment
between many different models, solving methods and discretizations and to eliminate the
MPI from MPI programming. It is a freely available research code usable from C/C++,
Fortran 77/90 and Python. PETSc has run problems with over 500 million unknowns, also
it has run efficiently on 6,000 processors. It has also been used in applications running at
over 2 Teraflops. An overview of some of the components of PETSc can be seen in figure
2.2. This figure illustrates the hierarchical structure of PETSc, an important feature of
the package is the possibility to start at a high level and work your way down in level of
abstraction. The essential components of PETSc are:

Vec Provides the vector operations required for setting up and solving large-scale linear

2.2. PETSC 7

and nonlinear problems. Includes easy-to-use parallel scatter and gather operations,
as well as special-purpose code for handling ghost points for regular data structures.

Mat A large suite of data structures and code for the manipulation of parallel sparse
matrices. Includes four different parallel matrix data structures, each appropriate
for a different class of problems.

PC A collection of sequential and parallel preconditioners, including (sequential) ILU(k),
LU, and (both sequential and parallel) block Jacobi, overlapping additive Schwarz
methods and (through BlockSolve95) ILU(0) and ICC(0).

KSP Parallel implementations of many popular Krylov subspace iterative methods, in-
cluding GMRES, CG, CGS, Bi-CG-Stab, two variants of TFQMR, CR, and LSQR.
All are coded so that they are immediately usable with any preconditioners and any
matrix data structures, including matrix-free methods.

SNES Data-structure-neutral implementations of Newton-like methods for nonlinear sys-
tems. Includes both line search and trust region techniques with a single interface.
Employs by default the above data structures and linear solvers. Users can set
custom monitoring routines, convergence criteria, etc.

TS Code for the time evolution of solutions of PDEs. In addition, provides pseudo-
transient continuation techniques for computing steady-state solutions.

Figure 2.2: The hierarchical structure of the PETSc library, as described in the PETSc
manual[3].

In figure 2.3 a closer look is taken at the parallel numerical parts of PETSc. As you can
see PETSc offers a wide range of iterative Krylov Subspace solvers and preconditioners.
Also the package offers the possibility to store system matrices in many different formats.

8 CHAPTER 2. PARALLEL PROGRAMMING

Figure 2.3: An overview of the numerical libraries of PETSc, as described in the PETSc
manual[15].

2.2.1 Programming model

PETSc employs the distributed memory model. Each process has its own address space
in memory and when needed, information is passed to other processes via MPI. To be
more specific in e.g. a finite element problem, each process will own a contiguous subset
of rows of the system matrix and will primarily work on this subset, sending/receiving
information from/to other processes only when needed. How to perform this subdivision
is of course a different subject, and for that reason PETSc has integrated support for
reordering packages like ParMetis. If the already included packages does not include the
needed features, external packages can easily be integrated. This programming model
makes PETSc especially suitable for clusters.

2.2.2 Usage

Unlike OpenMP, PETSc is not easily integrated in existing codes. PETSc is a set of library
interfaces, with its own matrix and vector structures, assembly and solving methods which
are organized in an object oriented way. The user declares the system matrices and vectors,
and then uses PETSc to assemble, precondition and solve the problem by envoking calls
to PETSc methods. Through the whole process, there is ample possibility for the user to
customize and control the solution process. It is also possible to supply most options at
the command line, which makes experimenting between different methods very easy. An
example of how PETSc can be used is shown in the next section.

2.3. INTEL MKL 9

2.2.3 Code examples

In section 1.4 of the PETSc manual [15] there are examples that illustrate the basic usage
of PETSc. These examples are written in the C programming language, but using PETSc
in Fortran code is not very different The linear system is solved using KSP, the interface
to the preconditioners, Krylov subspace methods and direct linear solvers of PETSc.

2.3 Intel MKL

The Intel Math Kernel Library, MKL, provides Fortran routines and functions that per-
form operations on vectors and matrices including sparse matrices. It has support for both
C and Fortran interfaces. It is highly optimized for Intel processors but also works well
on other archtectures. Features include:

• Linear Algebra in the form of BLAS/LAPACK, scaLAPACK routines and sparse
solvers.

• Fast Fourier Transforms.

• Vector math library.

• Vector random number generators.

• LINPACK benchmark packages.

These features covers most functions needed in a modern finite element solver. BLAS,
FFT and vector math are threaded using OpenMP. Intel MKL also includes an efficient
parallel solver, PARDISO, which is described in the next section.

2.3.1 The PARDISO solver

The PARDISO solver was originally developed by Olaf Schenk (et al) at the university of
Basel. The solver has been licensed to Intel, whom in their turn have optimized it for Intel
CPUs (though it still runs efficiently on e.g. AMD architectures). It is a high-performance,
robust, memory efficient and easy to use software for solving large sparse symmetric and
unsymmetric linear systems of equations on shared memory multiprocessors. Paralleliza-
tion is achieved using OpenMP. The PARDISO solver uses a direct LU algorithm (of course
handling multiple right hand sides), but it also implements an iterative conjugate gradient
method. The behaviour of the latter is not studied in this project. As seen in figure 2.4
the solver supports a wide range of sparse matrices. It has both an out of- and in-core
version. The out of core version writes the factorized matrices to temporary files on the
hdd. The solver has four distinct phases:

1. Reordering and symbolic factorization.

2. Numeric factorization.

3. Back substitution.

4. Memory release.

10 CHAPTER 2. PARALLEL PROGRAMMING

Matrix

Symmetric

Real

Indefinite Pos. def

Hermitian Complex

Unsymmetric

Real Complex

Indefinite Pos. def

Figure 2.4: Sparse matrices supported by PARDISO, as described in the Intel MKL manual
[4].

The reordering consists of a permutation vector being calculated, also, during the first
phase, an elimination tree is calculated for the next phase. PARDISO uses supernodes
with a two-level dynamic sheduling method to divide work between threads during the
factorization phase. This method is quite advanced and is described by figure 2.5. The

First Level: Local Tasks

Second level:
Global Tasks

Figure 2.5: A mapping of a hypothetical elimination tree with the two-level scheduling over
four processors as image described in the article [1] by Olaf Schenk and Klaus Gärtner.

idea is to have all processors working as much as possible, all the time. The first level
consists of nodes which are independent, the second level is comprised of nodes which
are not independent and therefore must be global to each process. The tasks in the first
level is managed by a queue Qs and in the second by a queue Qr. Suppose now that
one process is executing a task in the second level, and suppose furthermore that this
process now has to wait for some other process to finish another task before finishing
the work: In this situation, the CPU should not wait in an idle state, because it will
inhibit the performance of the solver. In PARDISO, the process would in this situation
put this node back in Qr and pick another node from the queue and try factorizing this

2.3. INTEL MKL 11

instead. The pseudo-code for the factorization in PARDISO can be seen in [1]. This is
an example of locks in OpenMP being used. The next phase of the PARDISO solution
is back substitution, in this step PARDISO uses perturbed pivoting when encountering
numerical troubles. Refining the solution during the back substitution to compensate for
the “errors” in the factorized matrices. Information on the number of perturbations and
iterative refinements can be queried using special functions. In the final phase of the
solution structures allocated by PARDISO are freed, e.g. the factorized matrices.

2.3.2 Storage format

For sparse matrices, it is more efficient to store only the non-zero elements. This assumes
that the sparsity is large i.e. the number of non-zeros is a small percentage of the total
number of elements. There are a number of storage schemes for sparse matrices. The basic
technique is to compress the non-zero elements into a linear array and provide arrays to
describe the location of the non-zeros in the original matrix K.

The PARDISO solver uses the Compressed Sparse Row (CSR) format for sparse matrices.
This is a row major format i.e. the the compression of K into a linear is done by walking
across each row and store each non-zero element in the order they appear in the walk. For
symmetric matrices, only non zero elements of the upper triangular half of the matrix are
stored.

The CSR storage format consists of three arrays

values This array contains the non-zero elements of K. The elements are stored in the
order they appear when walking across the rows in K.

ia element i of this array gives the index of the values array that contains the first non-
zero element of row i in K. The number of non-zeros of the i-th row is equal to
ia(i + 1)− ia(i), since the non-zeros are stored consecutively. An additional entry is
added to the end of ia in order to have this relationship to hold for the last row in
K. This makes the length of ia equal to the number of rows in K + 1.

ja element i of this array gives the number of the column corresponding to the element
values(i).

2.3.3 PARDISO usage

PARDISO is used by calling subroutines in Fortran or C. The Fortran interface of PAR-
DISO is

SUBROUTINE p a r d i s o (pt , maxfct , mnum, mtype , phase , n , a , i a , ja
,

perm , nrhs , iparm , msg lv l , b , x , e r r o r)

INTEGER∗8 pt (64)

i n t eger maxfct , mnum, mtype , phase , n , nrhs , e r r o r , i a (∗) , j a
(∗) ,

12 CHAPTER 2. PARALLEL PROGRAMMING

perm (∗) , iparm (∗)

r ea l (8) a (∗) , b (n , n rh s) , x (n , n rh s)

mtype This parameter defines the matrix type. The values of mtype supported by PAR-
DISO are
1: real and structurally symmetric matrix 2: real and symmetric positive definite ma-
trix -2: real and symmetric indefinite matrix 3: complex and structurally symmetric
matrix 4: complex and Hermitian positive definite matrix -4: complex and Hermi-
tian indefinite matrix 6: complex and symmetric matrix 11: real and unsymmetric
matrix 13: complex and unsymmetric matrix

iparm Array of dimension 64 used to pass various parameters to PARDISO and to return
some useful information after the execution of the solver. If iparm(1) = 0, then
PARDISO fills iparm with default values. There is no default value for iparm(3),
the number of processors to use, and this value has to be supplied by the user.

phase The execution phase of the solver.

n The number of equations.

a Array containing the non-zeros.

ia Array containing starting indices of each row.

ja Array containing the column indices for the corresponding value in a.

perm This array, of dimension n, holds the permutation vector. If A is the original matrix
and B = PAP T the permuted matrix, then row i of A is the perm(i) row of B. The
permutation vector is only accessed if iparm(5) = 1.

nrhs The number of right-hand sides that need to be solved for.

msglvl If msglvl = 0 then PARDISO generates no output, if msglvl = 1 the solver prints
statistical information.

b This array of dimension (n, nrhs) contains the right hand side vector/matrix B. On
output, it contains the solution if iparm(6) = 1.

x On output, it contains the solution if iparm(6) = 0.

This interface is given for 64-bit architectures. For 32-bit architectures, the argument
pt(64) must be defined as INTEGER*4.

2.3.4 Code example

The code example in Listing 2.2 is taken from the MKL manual and shows an example
of how to use the PARDISO solver. The program computes the solution of a sparse

2.3. INTEL MKL 13

symmetric linear system Ax = b where

A =

7.0 0.0 1.0 0.0 0.0 2.0 7.0 0.0
0.0 −4.0 8.0 0.0 2.0 0.0 0.0 0.0
1.0 8.0 1.0 0.0 0.0 0.0 0.0 5.0
0.0 0.0 0.0 7.0 0.0 0.0 9.0 0.0
0.0 2.0 0.0 0.0 5.0 1.0 5.0 0.0
2.0 0.0 0.0 0.0 1.0 −1.0 0.0 5.0
7.0 0.0 0.0 9.0 5.0 0.0 11.0 0.0
0.0 0.0 5.0 0.0 0.0 5.0 0.0 5.0

and

b =

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

First, the system of equations is defined. In the next step the iparm array is initialized.
The number of processors to be used is set to the number of processors on the machine
for best performance. The solver has three execution steps. In the first step the solver
performs a fill-reduction analysis and symbolic factorization. The phase parameter is set
to 11 and symbolic factorization is performed. In the second step the solver performs the
numerical factorization, with the phase parameter set to 22, the solver then performs only
numerical factorization and no solve. In the last step the the system is solved. Finally the
used memory is released.

Listing 2.2: mkl exempel.f90

!
−−

! Example program to show the use o f the ”PARDISO” r o u t i n e
! f o r symmetr ic l i n e a r sys tems
!

−−−

! Th i s program can be downloaded from the f o l l o w i n g s i t e :
! h t tp : //www. computa t i ona l . un i ba s . ch/ cs / sc icomp
!
! (C) O la f Schenk , Department o f Computer Sc i ence ,
! U n i v e r s i t y o f Base l , Sw i t z e r l a nd .
! Emai l : o l a f . s chenk@un ibas . ch
!
!

−−−

14 CHAPTER 2. PARALLEL PROGRAMMING

PROGRAM mkl exempel

use omp l ib

IMPLICIT NONE

! . . I n t e r n a l s o l v e r memory p o i n t e r f o r 64− b i t a r c h i t e c t u r e s
! . . INTEGER∗8 pt (64)
! . . I n t e r n a l s o l v e r memory p o i n t e r f o r 32− b i t a r c h i t e c t u r e s
! . . INTEGER∗4 pt (64)
! . . Th i s i s OK i n both c a s e s
INTEGER∗8 pt (64)
! . . A l l o t h e r v a r i a b l e s
INTEGER maxfct , mnum, mtype , phase , n , nrhs , e r r o r , m s g l v l
INTEGER iparm (64)
INTEGER i a (9)
INTEGER j a (18)
REAL∗8 a (18)
REAL∗8 b (8)
REAL∗8 x (8)

INTEGER i , idum
REAL∗8 walt ime1 , wal t ime2 , ddum
! i n t e g e r omp get max threads
! e x t e r n a l omp get max threads
! . . F i l l a l l a r r a y s c o n t a i n i n g mat r i x data .
DATA n /8/ , n rh s /1/ , maxfct /1/ , mnum /1/
DATA i a /1 ,5 ,8 ,10 ,12 ,15 ,17 ,18 ,19/
j a = (/1 , 3 , 6 , 7 , 2 , 3 , 5 ,3 , 8 ,4 , 7 , 5 , 6 , 7 , 6 , 8 ,7 ,8/)
a = (/ 7 . d0 , 1 . d0 , 2 . d0 , 7 . d0 ,−4.d0 , 8 . d0 , 2 . d0 , 1 . d0 ,

& 5 . d0 , 7 . d0 , 9 . d0 , 5 . d0 , 1 . d0 , 5 . d0 ,−1.d0 , 5 . d0 , 1 1 . d0 , 5 . d0 /)

! . .
! . . Set up PARDISO c o n t r o l pa ramete r
! . .
do i = 1 , 64
iparm (i) = 0
end do

iparm (1) = 1 ! no s o l v e r d e f a u l t
iparm (2) = 2 ! f i l l −i n r e o r d e r i n g from METIS

iparm (3) = omp get max threads () ! numbers o f p r o c e s s o r s ,
! v a l u e o f OMP NUM THREADS

iparm (4) = 0 ! no i t e r a t i v e −d i r e c t a l g o r i t hm
iparm (5) = 0 ! no u s e r f i l l −i n r e du c i n g pe rmuta t i on
iparm (6) = 0 ! =0 s o l u t i o n on the f i r s t n compoments o f x
iparm (7) = 16 ! d e f a u l t l o g i c a l f o r t r a n u n i t number f o r output
iparm (8) = 9 ! numbers o f i t e r a t i v e r e f i n emen t s t e p s
iparm (9) = 0 ! not i n use
iparm (10) = 13 ! p e r t u r b e the p i v o t e l emen t s w i th 1E−13
iparm (11) = 1 ! use nonsymmetr ic pe rmuta t i on and s c a l i n g MPS
iparm (12) = 0 ! not i n use

2.3. INTEL MKL 15

iparm (13) = 0 ! not i n use
iparm (14) = 0 ! Output : number o f p e r t u r b e d p i v o t s
iparm (15) = 0 ! not i n use
iparm (16) = 0 ! not i n use
iparm (17) = 0 ! not i n use
iparm (18) = −1 ! Output : number o f nonze ro s i n the f a c t o r LU
iparm (19) = −1 ! Output : Mflops f o r LU f a c t o r i z a t i o n
iparm (20) = 0 ! Output : Numbers o f CG I t e r a t i o n s
e r r o r = 0 ! i n i t i a l i z e e r r o r f l a g
msg l v l = 0 ! don ’ t p r i n t s t a t i s t i c a l i n f o rma t i o n
mtype = −2 ! unsymmetr ic mat r i x symmetr ic , i n d e f i n i t e , no

p i v o t i n g

! . . I n i t i l i a z e the i n t e r n a l s o l v e r memory p o i n t e r . Th i s i s on l y
! n e c e s s a r y f o r the FIRST c a l l o f the PARDISO s o l v e r .

do i = 1 , 64
pt (i) = 0
end do

! . . R eo rde r i ng and Symbo l i c F a c t o r i z a t i o n , Th i s s t e p a l s o
a l l o c a t e s

! a l l memory tha t i s n e c e s s a r y f o r the f a c t o r i z a t i o n

phase = 11 ! on l y r e o r d e r i n g and symbo l i c f a c t o r i z a t i o n
CALL p a r d i s o (pt , maxfct , mnum, mtype , phase , n , a , i a , ja ,

&idum , nrhs , iparm , msg lv l , ddum , ddum , e r r o r)
WRITE(∗ ,∗) ’ Reo rde r i ng completed . . . ’
IF (e r r o r .NE. 0) THEN

WRITE(∗ ,∗) ’The f o l l o w i n g ERROR was d e t e c t e d : ’ , e r r o r
STOP

END IF

WRITE(∗ ,∗) ’Number o f nonze ro s i n f a c t o r s = ’ , iparm (18)
WRITE(∗ ,∗) ’Number o f f a c t o r i z a t i o n MFLOPS = ’ , iparm (19)

! . . F a c t o r i z a t i o n .
phase = 22 ! on l y f a c t o r i z a t i o n

CALL p a r d i s o (pt , maxfct , mnum, mtype , phase , n , a , i a , ja ,
&idum , nrhs , iparm , msg lv l , ddum , ddum , e r r o r)

WRITE(∗ ,∗) ’ F a c t o r i z a t i o n completed . . . ’
IF (e r r o r .NE. 0) THEN

WRITE(∗ ,∗) ’The f o l l o w i n g ERROR was d e t e c t e d : ’ , e r r o r
STOP

ENDIF

! . . Back s u b s t i t u t i o n and i t e r a t i v e r e f i n emen t
iparm (8) = 2 ! max numbers o f i t e r a t i v e r e f i n emen t s t e p s
phase = 33 ! on l y f a c t o r i z a t i o n
do i = 1 , n
b (i) = 1 . d0
end do

16 CHAPTER 2. PARALLEL PROGRAMMING

CALL p a r d i s o (pt , maxfct , mnum, mtype , phase , n , a , i a , ja ,
&idum , nrhs , iparm , msg lv l , b , x , e r r o r)

WRITE(∗ ,∗) ’ So l v e completed . . . ’
WRITE(∗ ,∗) ’The s o l u t i o n o f the system i s ’
DO i = 1 , n
WRITE(∗ ,∗) ’ x (’ , i , ’) = ’ , x (i)
END DO

! . . Te rminat ion and r e l e a s e o f memory
phase = −1 ! r e l e a s e i n t e r n a l memory
CALL p a r d i s o (pt , maxfct , mnum, mtype , phase , n , ddum , idum ,

&idum , idum , nrhs , iparm , msg lv l , ddum , ddum ,
e r r o r)

END

Chapter 3

Parallel Solver for Plane Stress

This section describes the implementation of a parallel solver using the techniques de-
scribed earlier. The three different approaches described earlier are evaluated with em-
phasis on the needs of a medium sized finite element software company. The simple 2D
plane stress application used as the base for implemetation is also described, finally, the
scaling, speed, and accuracy of the chosen method is evaluated in test examples.

3.1 Original Application

The implementation started with an existing application for 2D plane stress calculations
using linear triangular elements. This application was comprised of a user interface written
in Python, linked to a calculation engine written in Fortran. The calculation engine used
a symmetric banded matrix format with a gaussian solver. The Triangle mesh generator
[7] written by Jonathan Shewchuck was used to generate the finite element mesh in the
text examples.

A dependency diagram of the different modules can be seen in figure 3.1 The different

Figure 3.1: Dependency diagram for the original solver.

modules are:

17

18 CHAPTER 3. PARALLEL SOLVER FOR PLANE STRESS

inout read problem definition from input files.

fem element matrices, assembly functions, format conversion.

solve solve the problem, uses the Pardiso solver.

stress allocates system matrices, controls assembly process, calls the format conversion
and calls the solve routine, finally it deallocates the system matrices.

main Allocate topology/coordinate matrices. Read problem definition via inout, perform
calculations via stress.

The source code for this application can be found in appendix. In the following sections
this code will be implemented as a parallel version using the techniques described in the
initial chapters.

3.2 OpenMP Implementation

The first technique studied was OpenMP. For larger Finite Element problems, the most
time consuming part is the solving process. It is therefore the part that this work focuses
on. This section covers an OpenMP implementation of the existing serial Finite Element
application.

3.2.1 Original Serial Solver

The solver that is used in the original application is a gaussian solver. It handles an
arbitrary number of load cases and it is banded i.e. it expects the system matrix to be
stored in a banded format. This format is used to conserve storage space in large Finite
Element systems. Figure 3.2 illustrates the banded matrix format. The first column of

Figure 3.2: Illustration of the banded matrix format taken from [14].

3.2. OPENMP IMPLEMENTATION 19

the banded matrix contains the diagonal elements. Each row contains bandwidth elements
starting from, and including, the diagonal element. The solver also expects the matrix to
be symmetric as only the upper triangular part of the matrix is stored.

The subroutine starts with saving the right hand side vectors r, that was given on input,
into x. The second loop takes care of the forward reduction of the matrix and finally the
system is solved by back substitution.

3.2.2 Parallelizing the Solver using OpenMP

To parallize the existing code OpenMP directives will be added at suitable locations.

The first loop, saving the right hand side vectors, is very straightforward to parallelize
with OpenMP.

! $omp p a r a l l e l do
do n=1, n s i z e

i f (i f i x (n) . eq . 0) then

do l l =1, n l c s
x (n , l l)=r (n , l l)

end do

end i f

end do

! $omp end p a r a l l e l do

The compiler directive !$omp parallel do is added at the beginning and !$omp end parallel

do at the end of the loop to split it up in several threads. To parallelize the forward
reduction of the matrix, however, is more complicated. Beginning with the first inner loop
one can see that the value of kk is depending on the other iterations.

! $omp p a r a l l e l do p r i v a t e (kk , j j)
do i i=n , nx

kk=i i −n+1 ! mod i f i e d i n c r emen t a t i o n
do j j =1, n l c s

r (i i , j j)=r (i i , j j)−s (n , kk) ∗x (n , j j)
end do

end do

! $omp end p a r a l l e l do

To overcome this kk has to be labeled private which means that it is visible to one thread
only. But now, when changes are seen by one thread only, the expression kk = kk + 1
will not be correct, so we change it to kk = ii − n + 1. This will work because ii and n

are visible to all threads in the parallel region. Also jj is a local variable in the parallel
region and also has to be labeled private. The second loop of the reduction part is not as
complicated as the first one.

! $omp p a r a l l e l do p r i v a t e (i l c)
do j e q =1, n s i z e

20 CHAPTER 3. PARALLEL SOLVER FOR PLANE STRESS

i f (i f i x (j e q) . eq . 0) then

do i l c =1, n l c s
r (j eq , i l c)=x (jeq , i l c)
x (j eq , i l c) =0.0d0

end do

end i f

end do

! $omp end p a r a l l e l do

ilc is a variable in the parallel region and is therefore labeled private.

3.2.3 Results with OpenMP

The OpenMP implementation was tested on a very simple model, consisting of a two
dimensional rectangular plate divided into triangular elements by the Triangle mesh gen-
erator. The architecture was a 4 Intel Xeon 5160 @ 3.0 Ghz with 4 GB RAM. The original
application was quite limited, only managing to calculate problems with up to approxi-
mately 5000 degrees of freedom before it began swapping on the hard drive. This is due to
the very big bandwidth. When splitting up a region into several threads, the threads has
to be forked and this causes an overhead in the program. This overhead is in fact so large
that it in these relatively small problems are calculated even faster by the original solver.
To overcome this problem, one could either develop an OpenMP parallelized solver from
scratch instead of parallelizing extisting routines.

3.3 PARDISO Implementation

The next approach taken was to implement the finite element application using the Intel
MKL solver PARDISO. First, the subroutine bandsolve omp was replaced with the sub-
routine pardiso solve, shown in appendix B in the solve module. This subroutine basically
contains the code code in section 2.3.4, but with some modifications. The matrices in
this case are real, symmetric and positive definite, thus the variable mtype is set to 2. In-
stead of initialize the number of equations, the CSR-representation of the system matrix,
the solution matrix and the right-hand-side matrix in the solver code, these are given as
parameters to pardiso solve from the execute subroutine in the stress module.

Next, the code was adapted to the new solve routine.The banded matrices must be replaced
with matrices stored in the CSR format, which is the default format used by the PARDISO
solver. There are several ways to overcome this. Assemble directly into the CSR format
or assemble into a different format and then do a conversion to CSR. Different techniques
for this are described in the following sections.

3.3.1 Banded Solution

In this approach the system matrix was, as before, assembled into the banded format then
converted to the CSR format in order to use the PARDISO solver. For this purpose a

3.3. PARDISO IMPLEMENTATION 21

conversion subroutine, BANDtoCSR, shown in appendix B, was written. It stores the
banded system matrix K into the arrays Kvec, ia and ja. The subroutine simply iterates
over each row and every non zero element encountered is stored in Kvec. The variable nnz
is increased for every non zero element encountered. To take advantage of the symmetry,
only the upper triangle part of the matrix is stored, and for this purpose the col idx
variable is used. It starts counting the column index from the diagonal on each row, and
when a non zero element is encountered the value of col idx is inserted at index nnz in
ja. When the first non zero element of a row i is encountered, i.e. when the element at
index i of ja is empty, this element is set to the value of nnz i.e. the index in K of the
first non zero element of row i. Finally the dummy entry of ia is set to nnz + 1. The code
listing 3.1 shows the iteration.

Listing 3.1: Format conversion from banded to CSR

i a = 0
do i =1, nnd∗2

c o l i d x = i
do j =1, bw

i f (K(i , j) . ne . 0) then

nnz = nnz+1 ! i n c r emen t non−ze ro
coun t e r

Kvec (nnz) = K(i , j) ! i n s e r t the
non−ze ro

! e l ement
j a (nnz) = c o l i d x ! the i n s e r t e d

non−z e r o s
! column index

i f (i a (i) . eq . 0) then

i a (i) = nnz
end i f

end i f

c o l i d x = c o l i d x+1
end do

end do

i a (nnd∗2+1) = nnz+1 ! Add s p e c i a l l a s t e n t r y

The only part of the matrix relevant for the PARDISO solver is the submatrix with the
elements corresponding to the degrees of freedom that are not prescribed. The subroutine
submatrixCSR performs an in-place extraction of this submatrix. It also calculates an
vector, updof , containing the unprescribed degrees of freedom. The purpose of updof is to
extract the elements of the displacement vector and force vector that corresponds to the un-
prescribed degrees of freedom. submatrixCSR is shown it’s entirety in appendix B in the
fem module. First the vector nbr del col vec is calculated. Element i in nbr del col vec
tells how many columns from column 0 to i − 1 that corresponds to a prescribed degree
of freedom i.e. how many columns that will not be extracted to the submatrix. The
column index of the submatrix can then be calculated as column index of the original
matrix−nbr del col vec(i). When nbr del col vec is calculated the subroutine loops over
all rows of K and performs the in-place extraction of the submatrix. The extraction code
is shown in listing 3.2.

Listing 3.2: Submatrix extraction

nnz sub = 0 ! i n i t i a l i z e number o f non−z e r o s i n submat r i x

22 CHAPTER 3. PARALLEL SOLVER FOR PLANE STRESS

a l l o c a t e (n b r d e l c o l v e c (neq))
n b r d e l c o l v e c = 0
n b r d e l c o l = 0
do i =1, neq

i f (Pre (i) . ne . 0) then

n b r d e l c o l = n b r d e l c o l + 1
end i f

n b r d e l c o l v e c (i) = n b r d e l c o l
end do

do i =1, neq ! l o op ove r a l l rows o f K
i f (Pre (i) . eq . 0) then ! t h i s do f i s u n p r e s c r i b e d

row = row+1 ! the submat r i x has a new row
updof (row) = i ! do f i i s u n p r e s c r i b e d
tmp rows ta r t = nnz sub+1 ! i ndex where row i n

! submat r i x s t a r t s
do j =1, i a (i +1)− i a (i) ! l o op ove r columns i n t h i s

row
c o l = j a (i a (i) + j − 1)
i f (Pre (c o l) . eq . 0) then

nnz sub = nnz sub +1
K(nnz sub) = K(i a (i) + j−1)
j a (nnz sub)=co l−n b r d e l c o l v e c

(c o l)
end i f

end do

i a (row) = tmp rows ta r t
end i f

end do

i a (row+1) = nnz sub+1 ! Add s p e c i a l l a s t e n t r y
dea l loca te (n b r d e l c o l v e c)

At this point, when the system matrix was stored in the CSR format, one simply had to
call the subroutine pardiso solve to solve the system. The results are shown in the next
section.

3.3.2 Results with Banded Solution

The code was tested on the same model as in the OpenMP section and used the same
architecture. Even though this solution performed better than the OpenMP implemen-
tation, it was actually very limited. The program managed to solve problems with up to
about 6000 degrees of freedom, but for problems with some ten thousands of degrees of
freedom, it had to run for hours before returning a solution. The time consuming parts
of the application was not the solver part, instead it was the assembling of the matrix,
the format conversion and the extraction of the submatrix and force vector. Even though
we used the memory efficient banded matrix format, the system matrix consumed a lot of
memory. The main reason for this is that the bandwidth for the topology generated by
Triangle is not very efficient. This resulted in a very memory consuming system matrix
even for relatively small problems. In figure 3.3 the bandwidth for different problem sizes
are shown. As the reader can see, the bandwidth for a system matrix with 6382 equations

3.3. PARDISO IMPLEMENTATION 23

was 6200 i.e. almost full bandwidth. This resulted in extremely inefficient calculations.

0 1000 2000 3000 4000 5000 6000 7000
0

1000

2000

3000

4000

5000

6000

7000

Number of degrees of freedom

B
an

dw
id

th

Bandwidth for different number of degrees of freedom

Figure 3.3: Bandwidths for different number of degrees of freedom.

The relatively bad bandwidth is due to the numbering scheme used by Triangle. When
generating a mesh with Triangle, the geometry is defined in an input file. In this file, the
edge nodes are listed. When the mesh is generated for the geometry, the numbering of the
edge nodes are the same for all meshes generated i.e. they are forced into one position and
this results in the relatively bad bandwidth. To overcome this, some kind of renumbering
of the topology has to be done.

3.3.3 Renumbered Banded Solution

To reduce the bandwidth the TRIANGULATION RCM [16] was used. It is an executable
FORTRAN 90 program, using double precision arithmetic, which computes the reverse
Cuthill-McKee(RCM, an algorithm for reordering nodes in a graph) reordering for nodes
in a triangulation composed of 3-node or 6-node triangles. The user supplies a node file
and a element file, containing the coordinates of the nodes, and the indices of the nodes
that make up each triangle. Either 3-node or 6-node triangles may be used. The program
reads the data, carries out the reordering algorithm and produces new node- and element
files corresponding to the reordered nodes.

To utilize TRIANGULATION RCM, a program that reads the node- and element files
produced by Triangle and then produces new node- and element files to be read by TRI-
ANGULATION RCM, was written. Some changes was also made in the inout module of
the application to make it read files in the new format. The bandwidth is now significantly
reduced and more memory efficient. The results are shown in the next section.

3.3.4 Results with Renumbered Banded Solution

Using the renumbering algorithm, the bandwidth became approximately five times smaller.
Of course, this resulted in more effective calculations because a more memory conserving
system matrix was produced. The size of the system matrix is proportinal to numberofelements∗

24 CHAPTER 3. PARALLEL SOLVER FOR PLANE STRESS

bandwidth, thus the application managed to solve problems approximately five times larger
than with the previous one (i.e. approximately 60 000 degrees of freedom). Still, this was
to limited because the size of the problems in real applications are up a million degrees of
freedom. A better approach is needed.

3.3.5 Coordinate Format Solution

To store the system matrix in the banded format was not the optimal solution. Even
when the nodes where renumbered to minimize the bandwidth, there where extremely
many zeros kept in memory. The optimal solution would be to assemble directly into
the CSR format or in a similar, memory conserving, matrix format and then convert to
CSR. Because it complicated to efficiently assemble directly into the CSR format, latter
alternative was chosen. The format that was chosen to assemble in, is the coordinate
(COO) format, a matrix format similar to the CSR format and very easy to assemble into.
Like the CSR format, it consists of three vectors:

K This array contains the non-zero elements of the system matrix A. The elements are
stored in the order they appear when walking across the rows in A.

ik element i of this array gives the number of the row corresponding to the element K(i).

jk element i of this array gives the number of the column corresponding to the element
K(i).

The assembly process is rewritten so that the element matrices are assembled directly
into the COO format. To optimize the time complexity, the submatrix relevant for the
PARDISO solver is directly calculated, instead of first calculating the full system matrix
and then extracting the submatrix. As in section the nbr del col vec vector is calculated
to get the number of columns that will not be extracted. This vector is calculated by the
subroutine get nbr del col vec, in the fem module, by looping through the Pre vector.
This subroutine also calculates the updof vector, containing the unprescribed degrees of
freedom, to extract the force- and displacement vectors relevant for the PARDISO solver.
Furthermore the elements, corresponding to the prescribed degrees of freedom, of the force
vector are also calculated by assemCOO. The code in listing 3.3 shows the calculation.

Listing 3.3: Calculation of get nbr del col vec

n b r d e l c o l v e c = 0

do i =1, s i z e (Pre)
i f (Pre (i) . ne . 0) then

n b r d e l c o l = n b r d e l c o l+1
e l s e

updo f i d x = updo f i d x+1
updof (updo f i d x) = i

end i f

n b r d e l c o l v e c (i) = n b r d e l c o l
end do

The assemblation of the system matrix in the COO format is done by the assemCOO
subroutine shown in appendix B. The subroutine loops through the element matrix. For

3.3. PARDISO IMPLEMENTATION 25

every non zero element encountered, the nnz variable is increased. The global coordinates
for element nnz are calculated with edof(i), edof(j) where i, j are the coordinates in the
local element matrix. If the matrix element corresponds to a prescribed variable, the vector
element of the force vector is calculated. If not, nnz is increased and Ke(i, j) is stored in
K(nnz). Finally, the global coordinates are stored in ik(nnz) and jk(nnz) respectively.
The code, is very simple, shown in listing 3.4.

Listing 3.4: Assembly into the coordinate format

n = s i z e (Ke , 1)
row = 0

do i =1, n
i g l o b = edo f (i)
i f (Pre (i g l o b) . eq . 0) then

row=row+1
do j =1, n

j g l o b = edo f (j)
i f (Ke(i , j) . ne . 0) then

i f (Pre (j g l o b) . ne . 0)
then

F(j g l o b) = F(
j g l o b) −

& Ke(i , j) ∗u (j g l o b)
e l s e i f (j g l o b . ge .

i g l o b) then

nnz=nnz+1
K spa r s e (nnz) =

Ke(i , j)
i k (nnz) =

i g l o b−
& n b r d e l c o l v e c (i g l o b)

j k (nnz) =
j g l o b−

& n b r d e l c o l v e c (j g l o b)
end i f

end i f

end do

end i f

end do

Now, when the system matrix is in the COO format, has to be converted to CSR in
order to use PARDISO. For this we use subroutines from SPARSKIT - a tool package for
working with sparse matrices written by Yousef Saad. The subroutine coicsr, performs
an in place conversion from COO to CSR i.e. the vectors K, ia and ja are overwritten
and contains the system matrix on the CSR format on output. In the assembly process,
entries with the same coordinates in the global matrix were put after each. To remove
these duplicate entries we use the subroutine clncsr, also from SPARSKIT.

26 CHAPTER 3. PARALLEL SOLVER FOR PLANE STRESS

3.3.6 Results with Coordinate Format Solution

To test the performance of this application the same simple rectangular model as in the
previous sections was used. As before, Triangle was used to generate the triangular mesh
and now, when the banded matrix format was not longer used, there was no need to
utilize the renumbering algorithm for node renumbering anymore, so the Triangle mesh
was directly used. The architecture used for testing was a four processor (AMD Opteron
2.4 GHz) Linux machine with 16 GB RAM. With this architecture the application managed
problems with up to eleven million degrees of freedom before swapping on the hard drive.
Different steps in the program was time measured and with this approach considerable
performance improvement could be seen. In figure 3.4 the performance of the assembly
routine assemCOO is shown and here one can see that this assembling is much faster than
with the previous solutions. For eleven millions degrees of freedom the system matrix is
assembled in less than a minute. Also, assemCOO takes care of the force vector and
sub matrix extraction which results in a large improvement as the very time consuming
subroutines loadBANDmul and submatrixCOO can be eliminated.

1 2 3 4 5 6 7 8 9 10 11

x 10
6

0

10

20

30

40

50

60

Number of elements

A
ss

em
bl

y
tim

e
/ s

Assembly time for different number of elements

Figure 3.4: Assembly times for different number of degrees of freedom.

After the assembly process the matrix format has to be converted from COO to CSR.
The conversion times with the current solution are shown in figure 3.5. For eleven million
degrees of freedom the conversion was performed in less than three minutes so the overhead
produced when not assembling directly in to the CSR format is relatively small.
The factorization time for different problem sizes are illustrated in figure 3.6. The largest
problem was factorized in less than four minutes. The wallclock time of the pardiso solve
subroutine was measured and the results are shown in figure 3.7. The largest problem
was solved in about seven minutes. To illustrate how well the solver scales on more than
one processor, the performance in GFLOPS during the factorization phase for different
number of processors are plotted. The result is shown in 3.8. One can see that the solver
scales very well, it is almost linear for up to four processors.

3.3. PARDISO IMPLEMENTATION 27

1 2 3 4 5 6 7 8 9 10 11

x 10
6

0

20

40

60

80

100

120

140

160

180

Number of elements

C
O

O
 to

 C
S

R
 c

on
ve

rs
io

n
tim

e
/ s

COO to CSR conversion time for different number of elements

Figure 3.5: Conversion times for different number of degrees of freedom.

1 2 3 4 5 6 7 8 9 10 11

x 10
6

0

0.5

1

1.5

2

2.5

3

3.5

Number of degrees of freedom

T
im

e
fa

ct
or

iz
e

/ m
in

Factorization times running 4 CPUs

Figure 3.6: Factorization times for different number of degrees of freedom.

1 2 3 4 5 6 7 8 9 10 11

x 10
6

0

50

100

150

200

250

300

350

400

450

Number of elements

T
ot

al
 c

al
cu

la
tio

n
tim

e
of

 th
e

so
lv

er
 /

s

Total solve time for different number of elements

Figure 3.7: Total solve times for different number of degrees of freedom.

28 CHAPTER 3. PARALLEL SOLVER FOR PLANE STRESS

1 1.5 2 2.5 3 3.5 4
2

3

4

5

6

7

8

Number of processors

gf
lo

ps
/s

gflops/s during factorization running different number of CPUs, problem has 10710714 dof

Figure 3.8: Performance in GFLOPS for different number of processors.

Chapter 4

Integrating the Parallel Solver into
FEM-Design

To test the implemented solver it was integrated in the commercial finite element code
FEM-Design. This chapter describes the implementation process and performance studies
comparing the solver with the existing solver.

4.1 The Implementation

The FEM-Design solver is implemented in Fortran. The first approach tried was to inte-
grate the solver directly into the FEM-Design code. The problem was that the FEM-Design
solver is written in Fortran77 and the new solver is written in Fortran90. To make the
FEM-Design code compile with the Intel Fortran90 compiler would take to much time not
available in this project. For the temporary solution, the system matrix, assembled in the
coordinate format, and the force vector was written from FEM-Design to file. A special
application was written to handle the following steps:

FEM-data import The system matrix, the displacement vector and the force vector is
read from the file produced by FEM-Design, and saved into arrays.

Matrix conversion The system matrix is converted from the COO format to the CSR
format in order to use the solver.

Solve The new solver is called.

Result export The displacement vector is written to file.

The application was compiled as an executable and called from FEM-Design directly after
the FEM-data was exported to file. The result was thereafter read from the file and was
illustrated graphically by FEM-Design.

29

30 CHAPTER 4. INTEGRATING THE PARALLEL SOLVER INTO FEM-DESIGN

4.2 Results

The first step was to verify that the solver generated correct results. For this, some
calculations was done on a small model with both the solver and with FEM-Design. The
mesh of this model is shown in figure 4.1. The results were identical to the eighth decimal.
The next step was to measure and compare the calculation times for larger problems.

Figure 4.1: An illustration of the model used for result verification.

For this purpose a more complex model, shown in figure 4.2 was used. The structure
was divided into three different meshes in order to test on different problem sizes. The
testing architecture was Intel 2.4 GHz Dual Core machines with 2 GB RAM. In figure

Figure 4.2: To the left the mesh is shown and to the right a three-dimensional illustration
with and without mesh.

4.3 the solve times for FEM-Design are shown and in figure 4.4 the solve times for the
parallel solver. The differences are noticeable, the largest example with 630000 equations
was solved in about six hours with FEM-Design while it was solved in about one minute
with the parallel solver i.e. a difference of almost a factor 360. One reason for this huge
difference is that FEM-Design does a lot of reading and writing on the hard drive between

4.2. RESULTS 31

different execution steps. The new solver, on the other hand, keeps all information in
memory throughout the entire calculation, which is much more time efficient. Also, the
skyline matrix format used in FEM-Design is very memory consuming. A more efficient
solution would be to assembly directly into a less memory consuming format e.g. the COO
format.

0 1 2 3 4 5 6 7

x 10
5

0

50

100

150

200

250

300

350

400
Calculation times for the FEM−Design solver

Number of equations

S
ol

ve
 ti

m
e

/ m
in

Figure 4.3: Calculation times for the FEM-Design solver.

0 1 2 3 4 5 6 7

x 10
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Calculation times for the parallel solver

Number of equations

S
ol

ve
 ti

m
e

/ m
in

Figure 4.4: Calculation times for the parallel solver.

These problems where also calculated on a four processor (AMD Opteron 2.4 GHz) Linux
machine with 16 GB RAM, to evaluate how well the parallel solver scaled on these kinds
of problems. Figure 4.5 shows that it scales very well also for these problems, almost linear
for up to four processors.

32 CHAPTER 4. INTEGRATING THE PARALLEL SOLVER INTO FEM-DESIGN

1 1.5 2 2.5 3 3.5 4
1

2

3

4

5

6

7
Gflops for different number of processors

Number of processors

G
flo

ps

Figure 4.5: Scaling for the parallel solver, the performance is measured in GFLOPS.

Chapter 5

Distributed Programming Tools

When problems are too large for local computing resources, it is benificial to distribute
calculation to non-local resources. A company could have an in-house dedicated server
or small cluster for handling these computations. This frees the user of the program to
perform other tasks whilst waiting for the computations to finish. Of course, this could
be done for example by transferring the input files to a remote computer and invoking the
solver via a terminal. This alternative is not so user friendly, especially when considering
commercial software. It should be more convenient for the user to utilize distributed
computations.

Figure 5.1 illustrates the concept of Remote Procedure Calls in distributed computing.
Instead of one object invoking a method in another object locally, the same method could
be invoked remotely on another machine. For example if FE modeling is being done
on some low-performance machine, the time consuming solution of the system could be
distributed to a better suited architecture via a Remote Procedure Call.

Figure 5.1: Remote Procedure Calls in distributed computing.

There exists many different programming tools, e.g. SOAP[9], Web Services[10], CORBA[8],
Microsoft .NET[11], and Ice[12]. The preceeding tools can briefly be described as:

SOAP A protocol for exchanging XML-based messages over networks, normally using
HTTP/HTTPS.

33

34 CHAPTER 5. DISTRIBUTED PROGRAMMING TOOLS

Web Services Basically, the term Web Service refers to clients and servers that commu-
nicate using XML messages that follow the SOAP standard, also there usually is a
machine readable description of the operations supported by the server in the Web
Services Description Language (WSDL).

CORBA Stands for Common Object Request Broker Architecture it is a vendor-independent
architecture and infrastructure that computer applications use to work together over
networks. Developed by the Object Management Group, OMG. Some of the people
that developed CORBA are the ones that are now maintaining ICE. You can pretty
much say that CORBA is the predecessor of Ice, although still maintained by OMG.

.NET Tools and librarys developed by Microsoft for connecting different applications
developed for Microsoft platforms.

A disadvantage with .NET is that it only runs on Microsoft platform. This makes it unsuit-
able for use with Linux based resources. SOAP has very serious performance penalities in
this type of applications, both in terms of network bandwidth and CPU overhead. Since
our application will send large amounts of data, text based XML-based data exchange
isn’t efficient. The same applies to Web Services as it is based on the same technology.
Another issue with Web Services is lack of standardization. A more in-depth review of
these considerations can be found in [12].

Ice on the other hand, can be used in heterogenous enviroments, is efficient in network
bandwith (sending data in binary form), memory use and CPU overhead. It is also easy to
learn, has built in security and provides all features required for applications needing high-
performance network transfers. Since this project focuses on transferring large amount of
data over heterogenous systems, Ice was chosen for the distributed implementation. The
next section will describe the Ice architecture in more detail.

5.1 Ice Overview

Ice is an object-oriented, middleware 1 providing tools, APIs and library support for
building object oriented client-server applications. In contrast to e.g. Microsoft .NET,
Ice can be used in heterogenous systems. This means that the client and server can
run on different machine architectures or operating systems, be implemented in different
programming languages, and also support a wide variety of networking technologies. Other
advantages with using Ice include:

Synchronous/Asynchronous messaging For example, when running long calculations,
the client doesn’t have to wait for the results to be sent back from the server. Ice
is inherently an asynchronous architecture but forces synchronous behaviour by de-
fault, it is a relatively easy task to change this.

Support for multiple interfaces There exists facilities to provide multiple implemen-
tations of client/server interfaces while retaining a single object identity across these
interfaces. This makes it easy to write different kind of clients without making many
changes, also, version handling is simplified.

1Middleware is computer software that connects software components or applications

5.2. THE SLICE DEFINITION LANGUAGE 35

Implementation independence Clients are not aware of how servers implement their
objects.

Threading support Ice is fully threaded and APIs are thread-safe2.

Transport independence Ice has support for both the TCP/IP and the UDP transport
protocols. Also, there is support for SSL which means that information that has to
be sent over ”unsafe” networks can be encrypted. The Ice tool Glacier2 is used to
handle firewalls.

Location and server transparency The user doesn’t have to worry about locating ob-
jects and managing the underlying transport mechanisms. To the programmer, the
client and server appear ”connection-less”.

Source code availibility The source code for Ice is fully available. However, use in
commercial proprietary codes require a licensing agreement with ZeroC.

In this section, a brief overview of the Ice architecture is given. This is basically a sort of
selection of the contents of sections 2 and 32 in [12]. Of course, far from everything can
be covered in this report. However it is hoped that the description is clear enough that
the reader can understand the later description of the actual implementation.

5.2 The Slice Definition Language

Ice provides a Remote Procedure Call, or RPC, protocol for invoking methods from client
to server (or the other way around). This means that the client can cause a method-
/procedure to be executed in a different address space (e.g. on a different computer on
a local network) without the programmer explicitly handling all the complex details of
this remote interaction. Of course, since Ice is supposed to be object oriented and lan-
guage/platform independ, all these remote procedures has to be described in some object
oriented, language independent way. This is where Slice comes in.

The Slice definition provides a contract by which the client and server must abide. Ice
also provides special compilers that translate Slice definitions into language specific type
definitions and APIs for a particular implementation language. These different translation
algorithms are called language mappings. The defined types and APIs are then used by
the devoloper to program specific functionality in either client or server. At the moment,
Slice provides language mappings for C++, Java, C#, Visual Basic .NET, Python, Ruby,
and PHP. Slice is a purely declarative language, because to be language independent, only
interfaces and types can be described (not implementations). List 5.1 is an example of a
small Slice definition file

Listing 5.1: Slice definition example

module Demo {
i n t e r f a c e P r i n t e r {

vo i d p r i n t S t r i n g (s t r i n g s) ;
} ;

2A piece of code is thread-safe if it functions correctly during simultaneous execution by multiple threads

36 CHAPTER 5. DISTRIBUTED PROGRAMMING TOOLS

} ;

In this C++ example, the language mapping for a module is not surprisingly a C++ names-
pace and the interface within the module will be mapped to a C++ interface within the
corresponding namespace. To generate these mappings, one has to invoke the slice2cpp
compiler in the following way:

$ slice2cpp Printer.ice

This will generate two C++ source files:

Printer.h Header file with type definitions corresponding the Slice definitions for the
Printer interface. In our case, this file will also include a definition of a pure virtual
function corresponding to the printString method. This means that all implementa-
tions of the Printer interface must implement this method. Of course, if both client
and server is written in C++, this header must be included in them both.

Printer.cpp Contains the source code for our Printer interface. This file also provides
some basic tools for clients and servers e.g. code that marshals3 on the client side
and correspondingly unmarshals the data on the server side. For example, the string
s passed from client to server has to be converted to a binary format on the client
side, sent to the server side, and converted back in to the right format.

Figure 5.2 illustrates the situation when both client and server is written in C++. The
client devoloper writes her client and the server developer writes her server, the only infor-
mation these developers need for writing their end of the application is the Slice definition
file. The final executables both use the C++ Ice run-time library and communicate via
Remote Procedure Calls. In the final step the actual implementation of the client/server

Printer.h Printer.cpp

Client.cpp

Server.cpp

Application Code

Server developer

Client Developer

Slice developerPrinter.iceSlice2c++

C++ Ice Run−Time Library

Server Executable

RPC

Client Executable

Figure 5.2: Development process if client and server share the same development environ-
ment. This process is also described in [12].

must be implemented. As Ice automatically handles all network communication, this is
a relatively easy task. However, one needs a basic understanding of the principles of
client/server communication in Ice, which is described in the next section

3the process of transforming the memory representation of an object to a data format suitable for

storage or transmission. In Ice, the data is transmitted in a binary format

5.3. PRINCIPLES OF ICE COMMUNICATION 37

5.3 Principles of Ice Communication

Figure 5.3 illustrates the basic idea behind client/server communication in Ice. In this
particular case, the are three servants instantiated on the server side- These are given the
arbitrary names ”A”, ”B”and ”C”. The client holds a reference, or proxy, to the servant ”A”
on the server side. Basically this means that ”A” is an incarnation of an implementation
of a specific Slice defined interface and that the client can invoke remote procedure calls
using this proxy that also contains information on how to access the server. In this case
there also exists other servants but these are distinguished by their identities which have
to be specified by the programmer (one can also us UUID to simplify the process if many
servants are needed). Now, when the client invokes an operation using its ”A” proxy
the following will happen on the server side; The object adapter which is listening to
its specified network endpoints will receive the call from the client, look up the correct
servant in its associated Active Servant Map (ASM) using the passed object identity and
then dispatching the request to this servant. All data unmarshaling/marshaling is handled
”under the hood” so the user need not worry about this.

Figure 5.3 is missing one key element in Ice, namely the entity called communicator. This is
the main entry point to the Ice run-time and is used both on the client and server side. The
communicator handles the client/server side thread pools, configuration properties, object
factories, Loggers, statistics, default router (e.g. used by Glacier2 for firewall handling),
default locator (resolving object identity to proxy), plug-in manager and last but not least
object adapters. For a full description of distributed programming with ICE, see [12].

212.8.7.33 A

Client

Proxy
A

Endpoint

212.8.7.33

A

B

C

ASM

Object Adapter

Server

Servants

Figure 5.3: Binding a request to the correct servant in Ice using direct binding. A more
detailed description can be found in [12].

Denna sida skall vara tom!

Chapter 6

Distributed Interface for the
Parallel Solver

This chapter describes the implementation of the distributed interface for the previously
developed parallel solver.. The implementation is based on Ice [12] which is described
earlier. The implemented system has been tested both locally on a Microsoft Windows
system, remotely with the server running on a LUNARC 1 GNU/Linux node and the
client running on a Windows computer. In the current implementation both client and
server are implemented in C++. The server code however, links to a finite element solver
implemented in Fortran. The approach for doing this is also described in this chapter

6.1 The Slice Definition

The Slice definition for the client/server application is given in list A.1 in appendix A. It
is named remoteComputation.ice. As discussed earlier, when running the Slice compiler
on this file, a header file remoteComputation.h and cpp file remoteComputation.cpp will
be generated. The latter containing for example some code for marshalling/unmarshalling
of data that the programmer need not be concerned about.

The first interface defined in the slice definition is a module called remoteComputation.
This module will be mapped in to an equivalent namespace in C++. Everything else
defined in this module will correspondingly be mapped to functions, classes and datas-
tructures in the generated C++ namespace. Thereafter some Slice sequences are defined,
these will be correspondingly mapped to C++ type definitions of std::vector. For example,
sequence<int> will be mapped to std::vector< ::Ice::Int> in C++. Obviously, these type
definitions describe our input/output vectors and matrices. These definitions look like the
following:

sequence<i n t > i n tVec ;
sequence<i n tVec> intMat ;
sequence<double> doubleVec ;

1Center for Scientific and Technical Computing in Lund

39

40 CHAPTER 6. DISTRIBUTED INTERFACE FOR THE PARALLEL SOLVER

sequence<doubleVec> doubleMat ;

Some exceptions are also defined in the Slice definition. RangeError is an exception thrown
when there is some error in the solution. It is not implied that all solution errors are caused
by range issues, a better name would have been SolutionError. RequestCanceledException
is used in situations where client requests are canceled on the server side, for example if
the server is forced to shut down. For example the RangeError exception is defined in the
following way:

e x c e p t i o n RangeErro r
{
} ;

Next, the interface for remote procedure calls is defined, this is done in the following way:

i n t e r f a c e r emo teExecu t ion
{

[”ami ” , ”amd”] vo i d exe cu t e (doubleMat Coords ,
intMat Edof ,
doubleVec ElProp ,
i n t nnd ,
i n t ne l ,
i n t nn l ,
i n t npv ,
i n tVec pvind ,
doubleVec pv ,
i n tVec l o ad i nd ,
doubleVec p re l o ad s ,
out doubleMat ElemForces ,
out doubleVec F ,
out doubleVec u) th rows RangeErro r ;
} ;

An interface in Slice corresponds to an interface in C++, i.e a class with all member
functions purely virtual. In this case, the pure virtual function is the execute method.
This method has to be implemented by any servant implementing the remoteCompu-
tation interface. The preceding metadata [”ami”, ”amd”] has to do with asynchronous
method invokation/dispatch and will be discussed later. The input/output parameters to
the function will be mapped in a way that follows C++ coding standard. For example
the first parameter will be mapped into the corresponding C++ parameter const ::re-
moteComputation::doubleMat& and the last into ::remoteComputation::doubleVec&. The
parameters are described as follows:

Coords The coordinate matrix.

Edof The topology matrix.

ElProp Element properties.

6.2. CLIENT IMPLEMENTATION 41

nnd The number of nodes in the mesh.

nel The number of elements.

nnl The number of prescribed nodal loads.

npv The number of prescribed variables.

pvind Indices of the prescribed variables.

pv Numerical values of prescribed variables. The actual indices of the variables are de-
ferred from their corresponding entries in the pvind vector.

loadind Indices of prescribed loads.

preloads Numerical values of prescribed loads. This is the same construct as with the
prescribed variables. The reason for this way of sending the data is minimizing
overhead.

Elemforces The output element forces. This parameter is preceeded with the Slice key-
word out which makes it possible to receive it as an output from the remote procedure
call.

F The output force vector.

u The output displacement vector.

In case of a calculation error, the execute method can throw a RangeError. This is
basically all that has to specified to be able to produce a simple client/server application
for distributed computations. In the next section the client implementation is described.

6.2 Client Implementation

The implemented client is a simple console based application written in C++, where all
communication with the server is handled by the Ice runtime. The client reads input data
from text files and invokes the execute procedure (described above) remotely. Since the
purpose of the client is not to provide a full finite element application but to illustrate
how one could take advantage of distributed computations this is sufficient. A diagram
describing the different classes in the client application can be seen in figure 6.1. The client
depends on the Ice libraries. All information pertaining client/server communication,
defined in the Slice definition is in the remoteComputation header so this also has to be
included. Furthermore all reading from input files is done by the ElemData class. When
invoking remote procedure calls on large problems, or when many clients are connected
to the server, response times from the server could be very long. Now, Ice is inherently
an asynchronous library but it forces synchronous behaviour by default. This means that
when using the default Ice behaviour in these case the client will wait for a response
from the server before continuing with program execution. This is not acceptable for
any realistic finite element application. To overcome this problem, Ice provides tools for
making asynchronous method invokations (AMI) where client execution continues after
the remote procedure call.

42 CHAPTER 6. DISTRIBUTED INTERFACE FOR THE PARALLEL SOLVER

Figure 6.1: Dependency diagram for the client application.

This is the reason for the ”ami” metadata proceeding the definition of the execute method
in the Slice definition. This directive causes the compiler to generate code for asyn-
chronous method invokation in the remoteComputation class. The user only has to create
a callback object for the procedure call and specify what to do when receiving the re-
sults from the server (also error handling has to be specified). All this is done in the
AMI remoteExecution executeI class which is an implementation of the
AMI remoteExecution execute interface. This interface is in turn generated (in the remote-
Computation header) by the Slice compiler when specifying the ”ami” metadata directive
for the execute function. In the next section the actual code written will be reviewed in
detail.

6.2.1 Client Code

The code for the ElemData class is trivial and not relevant to distributed computations so
therefore it is not discussed here. First the code for the main client program is presented,
then we show how to handle the callback from the asynchronous method invokation in the
AMI remoteExecution executeI class. The complete client code (except for ElemData) is
included in appendix A.

Listing A.2 shows the code for the main client program. The client inherits from
Ice::application, which is a helper class that Ice provides in order to eliminate writing the
same boiler plate code over and over. Among other things, it initiates a communicator
and handles interrupts from the user.

The client has two public and methods one private method. The first public method is the
run method. This is needed by the main method defined in Ice::application and defines
what is to happen when running the client. Basically the run method replaces the actual
main method, but is contained inside another method handling some basic initializations
and interrupt listening. The main method of the client is shown below.

i n t

main (i n t argc , char ∗ argv [])
{

Asyn cC l i e n t app ;

6.2. CLIENT IMPLEMENTATION 43

return app . main (argc , a rgv) ;
}

As the reader can see the main method inherited from Ice::Application is called. This
method in its turn calls the runmethod implemented by the derived application.

interruptCallback is an optional method that has to be defined if the statement

c a l l b a c kOn I n t e r r u p t () ;

is specified in the run method. The purpose of this method is to override the default
interrupt behaviour of Ice::Application.

The run method has to basic responsibilities:

1. Create a proxy to a remoteExecution servant.

2. Initiate the user menu and when prompted make the remote procedure call.

The servant creation is illustrated below:

I c e : : Ob jec tPrx base = communicator ()−>s t r i ngToProxy (
”S imp l eP r i n t e r : d e f a u l t −p 10000 ”) ;

remoteExecut ionPrx r e = remoteExecut ionPrx : : checkedCas t (base) ;
i f (! r e)
throw ” I n v a l i d p roxy ” ;

AMI remo teExecut ion execu tePt r cb =
new AMI remo teExecu t i on execu t e I ;

After these lines, the variable re holds a ”remote object reference” to an instance of a
class implementing the interface defined in the Slice definition. In this case the remote
object is on the local computer (localhost) but could easily be changed. On the last line
in the preceding code snippet a callback object is created for the asynchronous method
invokation. Next, the input data structures are defined and read by calling methods in
the ElemData class:

i n t nnd , ne l , nn l , npv ;
doubleMat Coords , E lemForces ;
intMat Edof ;
v e c to r<in t> pv ind , l o a d i n d ;
ve c to r<double> pv , p r e l o a d s , F , u ;
v e c to r<double> ElProp ;

: : r e adProb l emS i z e (nnd , ne l , nn l , npv) ;
: : readBCandElProp (nnl , npv , l o a d i n d ,
p r e l o a d s , pv ind , pv , E lProp) ;
: : readNode (Coords , nnd) ;
: : r e a dE l e (Edof , n e l) ;

44 CHAPTER 6. DISTRIBUTED INTERFACE FOR THE PARALLEL SOLVER

The remote procedure call is then execucted in the following way:

re−>e x e c u t e a s yn c (cb , Coords , Edof , ElProp ,
nnd , ne l , nn l , npv , pv ind , pv ,
l o a d i n d , p r e l o a d s) ;

The execution will immediately continue after this call and the callback object created
will handle the response when it arrives. Last in the run method, error handling is done.
As shown by the code examples implementing a Ice client is not very complicated.

To complete the asynchronous method implementation the server response callbacks must
also be implemented. The full code for the AMI remoteExecution executeI can be found in
listing A.3. There are two methods in this class; ice response indicates that the operation
is completed successfully and ice exception indicates that a local or user exception was
raised. The definition of the the ice response method is given below.

v i r t u a l void i c e r e s p o n s e (
const : : remoteComputat ion : : doubleMat& ElemForces ,
const : : remoteComputat ion : : doubleVec& F ,
const : : remoteComputat ion : : doubleVec& u)

{
cout << ”F i n i s h e d Ca l c u l a t i o n ” << end l ;
/∗DO SOMETHING WITH THE RESULTS∗/

}

The ice response method receives the output parameters defined in the Slice definition as
input parameters. In this method the results can be modified or put into an other data
structure.

In the ice exception method, the error is received as an input parameter, is printed.

v i r t u a l void i c e e x c e p t i o n (
const : : I c e : : E xcep t i on& ex)

{
t r y {

ex . i c e t h r ow () ;
}
catch (const I c e : : L o c a l E x c e p t i o n& e) {

c e r r << ”c a l c u l a t i o n f a i l e d ” << e << end l ;
}

}

This completes the code for the asynchronous method invokation. Compared to other RPC
libraries, Ice significantly reduces the amount of complexity and code needed to implement
asynchronous code.

6.3. SERVER IMPLEMENTATION 45

6.3 Server Implementation

The server is also implemented in C++ and does not involve more work than writing
a client, however, there are some issues to consider. If all of the servers threads (one
thread in our case) are busy dispatching long-running operations then no threads are
available to process new requests. This may lead to long response times for client requests.
Asynchronous Method Dispatch (AMD), the server side equivalent of AMI, addresses this
scalability issue. When using AMD the server can suspend the processing of incoming
requests in order to release the dispatch thread as soon as possible. In our case, this
means queueing the request as a job in a workqueue and forking a new thread responsible
for performing the tasks in the queue.

An aspect that can make implementing a server difficult, is linking C++ with Fortran.
The solver is implemented in Fortran and Ice and Slice does not have a Fortran binding.
When building the server in Visual Studio, linking was accomplished using a dynamic link
library (DLL) built with the Intel Visual Fortran compiler. When building on GNU/Linux
using the Intel C++ compiler, linking was done directly to object files built with the Intel
Fortran compiler. There are also issues in the way that matrices are stored in C++ and
Fortran. Fortran uses column-major order while C++ the row-major order. To solve this
problem, and also to make the transition from std::vector to the arrays needed by Fortran,
a modified version of the FMatrix [13] template class written by Carsten A. Arnholm is
used.

Figure 6.2 shows the different classes in the server application. As shown in this figure, all

Figure 6.2: Dependency diagram for the server application. The diagram also shows public
methods without input parameters for some classes.

the information pertaining a specific calculation is held within an object of the class Job.
It also holds a callback object (the cb variable) which is similar to the AMI case. The
execute method in this class starts jobs and handles the callbacks. The Job class has a
private method solve system which converts the input matrices using the FMatrix class,

46 CHAPTER 6. DISTRIBUTED INTERFACE FOR THE PARALLEL SOLVER

calls the Fortran routines for solving the system and finally converts the Fortran results
to appropriate STL vectors.

The WorkQueue holds a list of pointers to Jobs. These are smart pointers defined by Ice. A
smart pointer is a pointer that automatically frees the associated memory when the pointer
goes out of scope or is deleted, eliminating many of the memory management errors in
C++. WorkQueue inherits from IceUtil::thread and therefore implements a method, run,
which is the method that is called by the Ice runtime when starting a new Workqueue
thread. It also has a destroy method handling the destruction of the queue and an add
method for adding jobs to the queue.

The server itself is defined in a very similar way as the client, inheriting from Ice::application
and implementing a run and interruptCallback method. On the server side, the remote-
Execution interface from the Slice definition, must be implemented. This is the respon-
sibility of the remoteExecutionI class. The execute async method only adds a job to the
workqueue.

6.3.1 Server Code

In this section the most important parts of the server code is reviewed. All code with the
exception of the FMatrix template class can be found in appendix A. Listing A.4 shows the
server specific code, it is very similar to the client code, inheriting from Ice::application.
To handle remote method calls a workqueue is first instantiated. An object adapter and a
servant for the remoteExecution interface is created and the servant is added to the object
adapters active servant map (ASM).

workQueue = new WorkQueue () ;

I c e : : Ob j e c tAdap t e rP t r adap t e r
= communicator ()−>c r ea t eOb j e c tAdap t e rWi thEndpo i n t s (
”S imp l eP r i n t e rAdap t e r ” , ”d e f a u l t −p 10000 ”) ;
I c e : : Ob j e c tP t r o b j e c t = new r emo t eE x e cu t i on I (workQueue) ;
adapte r−>add (ob j e c t ,
communicator ()−>s t r i n g T o I d e n t i t y (”S imp l eP r i n t e r ”)) ;

The workqueue thread is spawned which implies executing the code in its run method in
a new thread.

workQueue−>s t a r t () ;

The adapter is activated, and the server will actively start listening for requests over the
specific network interfaces.

adapte r−>a c t i v a t e () ; ;

The server then waits for a shutdown request.

6.3. SERVER IMPLEMENTATION 47

communicator ()−>waitForShutdown () ;

As the reader can se, writing this server is not very complicated. In the servant implemen-
tation (the implementation of the remoteExecution interface) the only thing that is done
is calling the workqueues add method, adding a job to the workqueue.

The code for the workqueue is illustrated in listing A.5 and A.6. The code in the run
method is illustrated below:

void

WorkQueue : : run ()
{

I c e U t i l : : Monitor< I c e U t i l : : Mutex > : : Lock l o c k (mon i t o r) ;

while (! done)
{

i f (j o b s . s i z e () == 0)
{

mon i to r . wa i t () ;
}

i f (j o b s . s i z e () != 0)
{

JobPtr c u r r e n t J o b = j o b s . f r o n t () ;
i f (! done)
{

cu r r en t Job−>execu t e () ;
j o b s . p o p f r o n t () ;

}
}

}

l i s t <JobPtr > : : c o n s t i t e r a t o r p ;
f o r (p = j o b s . b eg i n () ; p != j o b s . end () ; ++p)
{

cout << ”Cance l ed r e qu e s t ” << end l ;
(∗p)−>n o t i f y J o bCa n c e l l e d () ;

}
}

The workqueue thread waits until there are jobs to process, pops the one in the front
and calls its execute method. When the server is shutdown (implies done is set to true)
outstanding client requests are notified of cancellation.

Denna sida skall vara tom!

Chapter 7

Conclusions and Future Work

7.1 Conclusions

After reviewing the different approaches to parallelization, it was found that Intel MKL
and the PARDISO solver was the most suitable alternative. The implemented parallel
solver turned out to be very fast and scaled well on multiple processors. One problem
with using the PARDISO solver is the required CSR sparse matrix format. After some
experimentation with banded formats, a good solution was found in assembling in to the
COO format and then converting to CSR.

The solver was compared with FEM-Designs original skyline solver. The study showed
that the new PARDISO based solver was more efficient than the original solver. Besides
the parallel computations, the differences also derive from the fact that FEM-Designs
original solver uses a lot of disk IO even if there is memory available in the machine.

A client/server applications for distributed computations was implemented in C++ using
Ice. It turned out to be very convenient and efficient to use Ice for these kinds of appli-
cations. A special template class was written in order to link to the Fortan solver. The
application uses asynchronous method invokation/dispatch. On the client side, the user
shouldn’t have to wait for computations to finish before performing other tasks and the
server has to be able to handle multiple client requests

7.2 Future Work

A future task is looking att some smart CSR assembly methods in order to eliminate the
conversion overhead. This work focused mostly on Intel MKL for parallel computations.
It is suggested that further testing of the PETSc libraries be done in the future. This is
especially important when problems grow extremely large. Since PETSc uses a distributed
memory model via MPI, it is more suitable for large clusters like the ones at LUNARC.

The parallel solver should be fully integrated in FEM-Design using the Intel Visual Fortran
10.0 Compiler. This required more work as the existing code had to be adopted for the
new compiler which was not possible in the timeframe of this work. It would also be

49

50 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

interesting to do more work with the distributed computations. For example making a
full integration with FEM-Design and testing other language mappings. Also, a more
object oriented interface could be developed, allowing computations on many different
problems.

Appendix A

Client/Server code

In this appendix the code for the client/server application is shown, some code is excluded
because it is trivial and not relevant to the matter at hand.

A.1 Slice definition

Listing A.1: Slice definition

// ∗∗
//
// S l i c e d e f i n i t i o n f i l e f o r d i s t r i b u t e d computat ions
//
// Wr i t t en by : F i l i p Johansson and F r e d r i k Hansson
//
//
// ∗∗

module remoteComputat ion
{

sequence <int> i n tVec ;
sequence <in tVec> intMat ;
sequence <double> doub leVec ;
sequence <doubleVec> doubleMat ;

e x c ep t i on RangeError
{
} ;

e x c ep t i on Reques tCance l edExcep t i on
{
} ;

51

52 APPENDIX A. CLIENT/SERVER CODE

i n t e r f a c e r emoteExecu t i on
{

[”ami ” , ”amd”] vo id execu t e (doubleMat Coords ,
intMat Edof ,
doub leVec ElProp ,
i n t nnd ,
i n t ne l ,
i n t nnl ,
i n t npv ,
i n tVec pvind ,
doub leVec pv ,
i n tVec load ind ,
doub leVec p r e l o ad s ,
out doubleMat ElemForces ,
out doub leVec F ,
out doub leVec u) th rows RangeError ;
} ;

} ;

A.2 Client code

Listing A.2: Main client application

// ∗∗∗
//
// Main c l i e n t program . Uses a synch ronou s method i n v o k a t i o n
// f o r the d i s t r i b u t e d
// computat ions .
//
// Wr i t t en by : F i l i p Johansson and F r e d r i k Hansson
//
// ∗∗∗

#inc lude < I c e / I c e . h>
#inc lude <remoteComputat ion . h>

#inc lude <AMI remoteExecu t i on execu t e I . h>
#inc lude <ElementData . h>

us ing namespace s t d ;
us ing namespace remoteComputat ion ;

c l a s s Asyn cC l i e n t : pub l i c I c e : : A p p l i c a t i o n
{

pub l i c :
v i r t u a l i n t run (int , char ∗ []) ;
v i r t u a l vo id i n t e r r u p t C a l l b a c k (i n t) ;

p r i va t e :
vo id menu () ;

} ;

i n t

A.2. CLIENT CODE 53

main (i n t argc , char ∗ argv [])
{

Asyn cC l i e n t app ;
r e tu rn app . main (argc , a rgv) ;

}

i n t Asyn cC l i e n t : : run (i n t argc , char ∗ argv [])
{

c a l l b a c kOn I n t e r r u p t () ;

i n t s t a t u s = 0 ;
t r y {

I c e : : Ob jectPrx base = communicator ()−>s t r i ngToProxy (
”S imp l eP r i n t e r : d e f a u l t −p 10000 ”) ;

r emoteExecu t i onPrx r e = remoteExecu t i onPrx : : checkedCast (base) ;
i f (! r e)

throw ” I n v a l i d p roxy ”;

AMI remoteExecu t i on execu t ePt r cb =
new AMI remoteExecu t i on execu t e I ;

i n t nnd , ne l , nn l , npv ;
doubleMat Coords , E lemForces ;
intMat Edof ;
vec to r <int> pv ind , l o a d i n d ;
vec to r <double> pv , p r e l o ad s , F , u ;
vec to r <double> ElProp ;

: : r eadProb l emS ize (nnd , ne l , nn l , npv) ;
: : readBCandElProp(nnl , npv , l o a d i n d ,
p r e l o ad s , pv ind , pv , ElProp) ;
: : readNode (Coords , nnd) ;
: : r e a dE l e (Edof , n e l) ;

char c ;
menu () ;
do

{
cout << ”==>” ;
c i n >> c ;
i f (c == ’ c ’)

re−>e x e cu t e a s yn c (cb , Coords ,
Edof , ElProp , nnd ,
ne l , nn l , npv , pv ind , pv ,
l o a d i n d , p r e l o a d s) ;

e l s e i f (c == ’ x ’)
i n t e r r u p t C a l l b a c k (0) ;

e l s e

{
cout <<

”unknown command ‘ ”
<< c << ” ’ ”
<< end l ;

menu () ;
}

}

54 APPENDIX A. CLIENT/SERVER CODE

whi le (c i n . good ()) ;

} catch (const I c e : : Excep t i on & ex) {
c e r r << ex << end l ;
s t a t u s = 1 ;

} catch (const char ∗ msg) {
c e r r << msg << end l ;
s t a t u s = 1 ;

}
r e tu rn s t a t u s ;

}

vo id

Asyn cC l i e n t : : i n t e r r u p t C a l l b a c k (i n t)
{

t r y

{
communicator ()−>d e s t r o y () ;

}
catch (const I c e U t i l : : Excep t i on& ex)
{

c e r r << appName() << ”: ” << ex << end l ;
}
catch (. . .)
{

c e r r << appName() << ”: unknown exc ep t i on ” << end l ;
}
e x i t (EXIT SUCCESS) ;

}

vo id

Asyn cC l i e n t : : menu ()
{

cout <<

”usage :\ n ”
”c : c a l c u l a t e \n ”
”x : e x i t \n ”
;

}

Listing A.3: Class for handling callback from asynchronous method invokation

#inc lude ”remoteComputat ion . h ”

us ing namespace s t d ;

c l a s s AMI remoteExecu t i on execu t e I :
pub l i c remoteComputat ion : : AMI remoteExecu t i on execut e

{
v i r t u a l vo id i c e r e s p o n s e (

const : : remoteComputat ion : : doubleMat& ElemForces ,
const : : remoteComputat ion : : doub leVec& F ,
const : : remoteComputat ion : : doub leVec& u)

{
cout << ”F i n i s h e d Ca l c u l a t i o n ” << end l ;

A.3. SERVER CODE 55

/∗DO SOMETHING WITH THE RESULTS∗/
}

v i r t u a l vo id i c e e x c e p t i o n (
const : : I c e : : Excep t i on& ex)

{
t r y {

ex . i c e t h r ow () ;
}
catch (const I c e : : L o c a lE x c ep t i on& e) {

c e r r << ”c a l c u l a t i o n f a i l e d ” << e << end l ;
}

}
} ;

A.3 Server Code

Listing A.4: Main server application

// ∗∗
//
// Main s e r v e r program f o r d i s t r i b u t e d comput ing a p p l i c a t i o n
//
// Wr i t t en by : F i l i p Johansson and F r e d r i k Hansson
//
//
// ∗∗

#inc lude < I c e / I c e . h>
#inc lude <remoteComputat ion . h>

#inc lude <WorkQueue . h>
#inc lude <Job . h>
#inc lude < I c e / Ap p l i c a t i o n . h>
#inc lude <FMatr ix . h>
#inc lude < l i s t >

typedef i n t INTEGER ;
typedef double REAL ;

us ing namespace s t d ;
us ing namespace remoteComputat ion ;

c l a s s ServerApp : v i r t u a l pub l i c I c e : : A p p l i c a t i o n {
pub l i c :

v i r t u a l i n t run (int , char ∗ []) {

c a l l b a c kOn I n t e r r u p t () ;

workQueue = new WorkQueue() ; // I n i t i t a t e the work queue

I c e : : Ob jec tAdap t e rPt r adap t e r

56 APPENDIX A. CLIENT/SERVER CODE

= communicator ()−>c r ea t eOb jec tAdap t e rWi thEndpo in t s (
”S imp l eP r i n t e rAdap t e r ” , ”d e f a u l t −p 10000 ”) ;

I c e : : Ob jec tPt r o b j e c t = new r emo t eExe cu t i on I (workQueue) ;
adapter−>add (ob j ec t ,

communicator ()−>s t r i n g T o I d e n t i t y (”S imp l eP r i n t e r ”)) ;

workQueue−>s t a r t () ;
// spawn workqueue th read

adapter−>a c t i v a t e () ;
// adap t e r s t a r t s l i s t e n i n g to network i n t e r f a c e

communicator ()−>waitForShutdown () ;

i f (i n t e r r u p t e d ()) {
c e r r << appName() <<

” : r e c e i v e d s i g n a l , s h u t t i n g down ” << end l ;
}
adap t e r = 0 ;
workQueue−>ge tTh readCon t ro l () . j o i n () ;

r e tu rn 0 ;
}

v i r t u a l vo id i n t e r r u p t C a l l b a c k (i n t)
{
cout <<

”Rece i ved i n t e r r u p t s i g n a l , t e rm i n a t i n g ! ” << end l ;
workQueue−>d e s t r o y () ;

communicator ()−>shutdown () ;
}

p r i va t e :
WorkQueuePtr workQueue ;

} ;

i n t main (i n t argc , char∗ argv [])
{
ServerApp app ;
r e tu rn app . main (argc , a rgv) ;
}

Listing A.5: The workqueues header.

// ∗∗
//
// Header f i l e f o r c l a s s h and l i n g the work queue i n the AMD model
//
// w r i t t e n by : F i l i p Johansson
//
// ∗∗

#i f n d e f WORK QUEUE H
#def ine WORK QUEUE H

#inc lude <remoteComputat ion . h>

#inc lude < I c e U t i l /Thread . h>
#inc lude < I c e U t i l /Monitor . h>

A.3. SERVER CODE 57

#inc lude < I c e U t i l /Mutex . h>
#inc lude <Job . h>

#inc lude < l i s t >

c l a s s WorkQueue : pub l i c I c e U t i l : : Thread
{
pub l i c :

WorkQueue() ;

v i r t u a l vo id run () ;

vo id add (const remoteComputat ion : : AMD remoteExecut ion executePtr & cb
,
const doubleMat& Coords ,
const intMat& Edof ,
const doub leVec& ElProp ,
i n t nnd ,
i n t ne l ,
i n t nnl ,
i n t npv ,
const i n tVec& pv ind ,
const doub leVec& pv ,
const i n tVec& l oad i n d ,
const doub leVec& p r e l o a d s) ;

vo id d e s t r o y () ;

p r i va t e :

/∗ s t r u c t Ca l l b a c kEn t r y
{

con s t remoteComputat ion : : AMD remoteExecut ion executePt r cb ;
doubleMat Coords ;
intMat Edof ;
doub leVec ElProp ;
i n t nnd ;
i n t n e l ;
i n t nn l ;
i n t npv ;
i n tVec p v i n d ;
doub leVec pv ;
i n tVec l o a d i n d ;
doub leVec p r e l o a d s ;
doubleMat E lemForces ;
doub leVec F ;
doub leVec u ;

} ; ∗/

I c e U t i l : : Monitor< I c e U t i l : : Mutex> mon i t o r ;
s t d : : l i s t <JobPtr> j o b s ;
bool done ;

} ;

typedef I c e U t i l : : Handle<WorkQueue> WorkQueuePtr ;

58 APPENDIX A. CLIENT/SERVER CODE

#end i f

Listing A.6: The workqueues implementation.

// ∗∗
//
//
//
// Wr i t t en by : F i l i p Johansson
//
// ∗∗

#inc lude < I c e / I c e . h>
#inc lude <WorkQueue . h>
#inc lude <FMatr ix . h>

us ing namespace s t d ;

WorkQueue : : WorkQueue() :
done (f a l s e)

{
}

vo id

WorkQueue : : run ()
{

I c e U t i l : : Monitor< I c e U t i l : : Mutex > : : Lock l o c k (mon i t o r) ;

whi le (! done)
{

i f (j o b s . s i z e () == 0)
{

mon i t o r . wa i t () ;
}

i f (j o b s . s i z e () != 0)
{

//
// Get next work i t em .
//
JobPtr c u r r e n t Job = j o b s . f r o n t () ;

i f (! done)
{

//
// Execute c a l c u l a t i o n / send c a l l b a c k to c l i e n t
//
cu r r en t Job−>execu t e () ;

// Job executed , remove from queue
j o b s . p op f r on t () ;

}
}

}

A.3. SERVER CODE 59

//
// Throw exc ep t i on f o r any ou t s t a nd i n g r e q u e s t s .
//
l i s t <JobPtr > : : c o n s t i t e r a t o r p ;
f o r (p = j o b s . b eg in () ; p != j o b s . end () ; ++p)
{

cout << ”Cance led r e qu e s t ” << end l ;
(∗p)−>n o t i f y J o bCa n c e l l e d () ;

}
}

vo id

WorkQueue : : add (const remoteComputat ion : : AMD remoteExecut ion executePtr &
cb ,

const doubleMat& Coords ,
const intMat& Edof ,
const doub leVec& ElProp ,
i n t nnd ,
i n t ne l ,
i n t nnl ,
i n t npv ,
const i n tVec& pv ind ,
const doub leVec& pv ,
const i n tVec& l oad i n d ,
const doub leVec& p r e l o a d s)

{
I c e U t i l : : Monitor< I c e U t i l : : Mutex > : : Lock l o c k (mon i t o r) ;

i f (! done)
{

//
// Add work i t em .
//
JobPtr newJob = new Job (cb , Coords , Edof ,
ElProp , nnd , ne l , nn l , npv ,
pv ind , pv , l o a d i n d , p r e l o a d s) ;

i f (j o b s . s i z e () == 0)
{

mon i t o r . n o t i f y () ;
}
j o b s . push back (newJob) ;

}
e l s e

{
//
// Dest royed , throw exc ep t i on .
//
cout << ”Dest royed ! ! ! ” << end l ;
cb−> i c e e x c e p t i o n (Reques tCance l edExcep t i on ()) ;

}

}

vo id

WorkQueue : : d e s t r o y ()

60 APPENDIX A. CLIENT/SERVER CODE

{
I c e U t i l : : Monitor< I c e U t i l : : Mutex > : : Lock l o c k (mon i t o r) ;

//
// Set done f l a g and n o t i f y .
//
done = t rue ;
mon i t o r . n o t i f y () ;

}

Listing A.7: Servant implementation

// ∗∗
//
// Imp lemen ta t i on o f r emoteExecu t i on s e r v a n t .
//
// Wr i t t en by : F i l i p Johansson and F r e d r i k Hansson
//
//
// ∗∗

#inc lude < I c e / I c e . h>
#inc lude <remoteComputat ion . h>

#inc lude <WorkQueue . h>
#inc lude <Job . h>
#inc lude < I c e / Ap p l i c a t i o n . h>
#inc lude <FMatr ix . h>
#inc lude < l i s t >

typedef i n t INTEGER ;
typedef double REAL ;

us ing namespace s t d ;
us ing namespace remoteComputat ion ;

c l a s s r emo t eExe cu t i on I : v i r t u a l pub l i c r emoteExecu t i on {
pub l i c :

r emo t eExe cu t i on I (const WorkQueuePtr&) ;

v i r t u a l vo id e x e cu t e a s yn c (
const remoteComputat ion : : AMD remoteExecut ion executePt r & cb ,

const doubleMat& Coords ,
const intMat& Edof ,
const doub leVec& ElProp ,
i n t nnd ,
i n t ne l ,
i n t nnl ,
i n t npv ,
const i n tVec& pv ind ,
const doub leVec& pv ,
const i n tVec& l oad i n d ,
const doub leVec& p r e l o ad s ,

A.3. SERVER CODE 61

const I c e : : Cu r r en t&) ;

p r i va t e :
WorkQueuePtr workQueue ;

} ;

r emo t eExe cu t i on I : : r emo t eExe cu t i on I (const WorkQueuePtr& workQueue) :
workQueue(workQueue)

{
}

vo id r emo t eExe cu t i on I : :
e x e cu t e a s yn c (const remoteComputat ion : : AMD remoteExecut ion executePtr &

cb ,
const doubleMat& Coords ,
const intMat& Edof ,
const doub leVec& ElProp ,
i n t nnd ,
i n t ne l ,
i n t nnl ,
i n t npv ,
const i n tVec& pv ind ,
const doub leVec& pv ,
const i n tVec& l oad i n d ,
const doub leVec& p r e l o ad s ,
const I c e : : Cu r r en t&)

{

workQueue−>add (cb , Coords , Edof , ElProp , nnd ,
ne l , nn l , npv , pv ind , pv , l o a d i n d , p r e l o a d s) ;

}

Listing A.8: Header file for the Job class

#i f n d e f Job h
#def ine Job h

#inc lude <remoteComputat ion . h>

#inc lude < I c e U t i l / I c e U t i l . h>
us ing namespace remoteComputat ion ;

c l a s s Job : pub l i c I c e U t i l : : Shared {
pub l i c :

Job (const AMD remoteExecut ion executePtr & cb ,
const doubleMat& Coords ,
const intMat& Edof ,
const doub leVec& ElProp ,
i n t nnd ,
i n t ne l ,
i n t nnl ,
i n t npv ,
const i n tVec& pv ind ,
const doub leVec& pv ,

62 APPENDIX A. CLIENT/SERVER CODE

const i n tVec& l oad i n d ,
const doub leVec& p r e l o a d s) ;

vo id execu t e () ;
vo id n o t i f y J o bCa n c e l l e d () {

cb−> i c e e x c e p t i o n (Reques tCance l edExcep t i on ()) ;
}

p r i va t e :
bool s o l v e s y s t em () ;

AMD remoteExecut ion executePt r cb ;
doubleMat Coords ;
intMat Edof ;
doub leVec ElProp ;
i n t nnd , ne l , nn l , npv ;
i n tVec pv ind , l o a d i n d ;
doub leVec pv , p r e l o a d s ;
doubleMat E lemForces ;
doub leVec F , u ;

} ;
typedef I c e U t i l : : Handle<Job> JobPtr ;
#end i f

Listing A.9: Implementation of the Job class

Job : : Job (const AMD remoteExecut ion executePtr & cb ,
const doubleMat& Coords ,
const intMat& Edof ,
const doub leVec& ElProp ,
i n t nnd ,
i n t ne l ,
i n t nnl ,
i n t npv ,
const i n tVec& pv ind ,
const doub leVec& pv ,
const i n tVec& l oad i n d ,
const doub leVec& p r e l o a d s) : cb (cb) ,
Coords (Coords) , Edof (Edof) , E lProp (ElProp) , nnd (nnd) ,
n e l (n e l) , n n l (nn l) , npv (npv) , p v i n d (p v i n d) ,
pv (pv) , l o a d i n d (l o a d i n d) , p r e l o a d s (p r e l o a d s)

{
}
vo id Job : : e xecu t e ()
{

i f (! s o l v e s y s t em ()) {
cb−> i c e e x c e p t i o n (RangeError ()) ;

r e tu rn ;
}
cb−>i c e r e s p o n s e (ElemForces , F , u) ;

}

extern ”C” d e c l s p e c (d l l i m p o r t) shor t

c d e c l e x e c u t e f o r t r a n (
REAL∗ Coords , INTEGER∗ Edof , REAL∗ ElProp , REAL∗ F ,

A.3. SERVER CODE 63

REAL∗ u , INTEGER∗ Pre , INTEGER∗ nnd , INTEGER∗ ne l ,
INTEGER∗ npv , REAL∗ ElemForces) ;

bool Job : : s o l v e s y s t em ()
{

FMATRIX<REAL> Coo r d s f o r t r a n (Coords , nnd , 2) ;
FMATRIX<INTEGER> Ed o f f o r t r a n (Edof , n e l , 6) ;
FMATRIX<REAL> E lP r o p f o r t r a n (ElProp , 3 , 1) ;
FMATRIX<REAL> E l emFo r c e s f o r t r a n (ne l , 3) ;

FMATRIX<REAL> F f o r t r a n (nnd ∗2 ,1) ;
F f o r t r a n . i n i t i a t e v a l u e s (l o a d i n d , p r e l o a d s) ;
FMATRIX<REAL> u f o r t r a n (nnd ∗2 ,1) ;
u f o r t r a n . i n i t i a t e v a l u e s (pv ind , pv) ;
FMATRIX<INTEGER> P r e f o r t r a n (nnd ∗2 ,1) ;
P r e f o r t r a n . i n i t i a t e v a l u e s (p v i n d) ;

e x e c u t e f o r t r a n (Coo rd s f o r t r a n , Edo f f o r t r a n , E lP r op f o r t r a n ,
F f o r t r a n , u f o r t r a n , P r e f o r t r a n , & nnd ,
& ne l , & npv , E l emFo r c e s f o r t r a n) ;

F f o r t r a n . toSTL (F) ;
u f o r t r a n . toSTL (u) ;
r e tu rn true ;

}

Denna sida skall vara tom!

Appendix B

Parallel application code

In this appendix the code for the parallel application is shown. The application is divided into five
modules.

B.1 Main program

Listing B.1: main.f90

program main

use p u b l i cV a r s
use inout

use s t r e s s
use fem
use s o l v e

i m p l i c i t none

in teger , parameter : : i n f i l e = 15 , o u t f i l e = 16

i n t ege r : : nnd , ne l , nn l , npv , n l
r e a l (8) , dimens ion (: , :) , a l l o c a t a b l e : : Coords , E lemForces
r e a l (8) , dimens ion (:) , a l l o c a t a b l e : : F , u , ElProp

! Pre i s the v e c t o r d e s c r i b i n g which node
! d i s p l a c emen t s tha t a r e p r e s c r i b e d

i n teger , dimens ion (: , :) , a l l o c a t a b l e : : Edof
i n teger , dimens ion (:) , a l l o c a t a b l e : : Pre
charac te r (60) g e ome t r y f i l e , b c e l p r o p f i l e , o u t p u t f i l e
i n t ege r : : Kt e s t (3 ,3) , u t e s t (3) , f t e s t (3) , K sub (11) , i a s u b (6) ,

j a s u b (11) , Pre sub (5) , nnz sub
i n t ege r : : i , t e s t v e c (2) , updof (3)

g e om e t r y f i l e = ”geometry . t x t ”
b c e l p r o p f i l e = ”b c e l p r op . t x t ”
o u t p u t f i l e = ”u tda ta . dat ”

c a l l r e a dp r ob l ems i z e (nnd , ne l , nn l , npv)

a l l o c a t e (Coords (nnd , 2))

65

66 APPENDIX B. PARALLEL APPLICATION CODE

a l l o c a t e (Edof (ne l , 6))
a l l o c a t e (ElProp (3))
a l l o c a t e (F(nnd∗2))
a l l o c a t e (u (nnd∗2))
a l l o c a t e (Pre (nnd∗2))
a l l o c a t e (E lemForces (ne l , 3))

c a l l r e a db cand e lp r op (F , u , Pre , ElProp , nn l , npv , nnd , b c e l p r o p f i l e)

c a l l readgeomet ry (Coords , Edof , nnd , n e l)

c a l l execu t e (Coords , Edof , ElProp , F , u , Pre , nnd ,&
ne l , npv , E lemForces)

dea l l o c a t e (Coords)
dea l l o c a t e (Edof)
dea l l o c a t e (ElProp)
dea l l o c a t e (F)
dea l l o c a t e (u)
dea l l o c a t e (Pre)
dea l l o c a t e (E lemForces)

end program main

B.2 File reading/writing

Listing B.2: inout.f90

module inout

use p u b l i cV a r s
conta in s

! Sub rou t in e tha t p a r s e s the i n pu t f i l e and p roduce s the system ma t r i c e s .

sub rout ine r e a dp r ob l ems i z e (nnd , ne l , nn l , npv)

i n t ege r : : nnd , ne l , nn l , npv
i n teger , parameter : : i n f i l e = 15

open (un i t=i n f i l e , f i l e = ’ meshing/ t r i a n g l e . 1 . node ’ , access=’
s equent ia l ’ ,&
ac t ion=’ read ’ , s tatus =’old ’)

read (i n f i l e , ∗) nnd

c l o s e (i n f i l e)

open (un i t=i n f i l e , f i l e = ’ meshing/ t r i a n g l e . 1 . e l e ’ , access=’ s equent ia l

’ ,&
ac t ion=’ read ’ , s tatus =’old ’)

read (i n f i l e , ∗) n e l

B.2. FILE READING/WRITING 67

c l o s e (i n f i l e)

open (un i t=i n f i l e , f i l e = ’ b c e l p r op . txt ’ , access=’ s equent ia l ’ ,&
ac t ion=’ read ’ , s tatus =’old ’)

read (i n f i l e , ∗) nnl , npv

c l o s e (i n f i l e)

end subrout ine r e a dp r ob l ems i z e

sub rout ine readgeomet ry (Coords , Edof , nnd , n e l)

i n t ege r : : i , j , dummy , nodeNbrs (3) , Edof (ne l , 6)
i n teger , parameter : : i n f i l e = 15
r e a l (8) : : Coords (nnd , 2)
open (un i t=i n f i l e , f i l e = ’ meshing/ t r i a n g l e . 1 . node ’ , access=’

s equent ia l ’ ,&
ac t ion=’ read ’ , s tatus =’old ’)

read (i n f i l e , ∗)
wr i te (∗ ,∗) ’ nnd : ’
wr i te (∗ ,∗) nnd
wr i te (∗ ,∗) ’ n e l : ’
wr i te (∗ ,∗) n e l
do j =1,nnd

read (i n f i l e , ∗) dummy , (Coords (j , i) , i =1 ,2)
end do

c l o s e (i n f i l e)

open (un i t=i n f i l e , f i l e = ’ meshing/ t r i a n g l e . 1 . e l e ’ , access=’ s equent ia l

’ ,&
ac t ion=’ read ’ , s tatus =’old ’)

read (i n f i l e , ∗)

do j =1, n e l
! w r i t e (∗ ,∗) j
read (i n f i l e , ∗) dummy , (nodeNbrs (i) , i =1 ,3)
do i =1,3

Edof (j , 2∗ i −1) = 2∗ nodeNbrs (i)−1
Edof (j , 2∗ i) = 2∗ nodeNbrs (i)

end do

end do

c l o s e (i n f i l e)

end subrout ine readgeomet ry

sub rout ine r e a db cand e lp rop (F , u , Pre , ElProp , nn l , npv , nnd , i n p u t f i l e)

i m p l i c i t none

in teger , parameter : : i n f i l e = 15
i n t ege r : : nn l , npv , nnd , i , j , node , dof , Pre (nnd∗2)
r e a l (8) : : F(nnd∗2) , u (nnd∗2) , ElProp (3)
charac te r ∗ (∗) i n p u t f i l e

68 APPENDIX B. PARALLEL APPLICATION CODE

open (un i t=i n f i l e , f i l e = i n p u t f i l e , access=’ s equent ia l ’ ,&
ac t ion=’ read ’ , s tatus =’old ’)

read (i n f i l e , ∗) nnl , npv

F=0
i f (nn l > 0) then

do j =1, nn l
read (i n f i l e , ∗) node , dof , F(2∗ node+dof −2)

end do

end i f

Pre = 0 ;
u = 0 ;
do j =1,npv

read (i n f i l e , ∗) node , dof , u (2∗ node+dof −2)
Pre (2∗ node+dof −2) = 1

end do

read (i n f i l e , ∗) (ElProp (i) , i =1 ,3)

end subrout ine r e a db cand e l p rop

sub rout ine w r i t e r e s u l t (F , u , Pre , nnd , ne l , o u t p u t f i l e , E lemForces)

i n teger , parameter : : o u t f i l e = 16
r e a l (8) , dimens ion (nnd∗2) : : F , u
i n t ege r : : i , nnd , ne l , Pre (nnd∗2)
charac te r ∗ (∗) o u t p u t f i l e
r e a l (8) , dimens ion (ne l , 3) : : E lemForces

open (un i t=o u t f i l e , f i l e=ou t p u t f i l e , access=’ s equent ia l ’ , &
ac t ion=’write ’ , s tatus =’unknown ’)

wr i te (o u t f i l e , ∗) ’ Fo rce s : ’
wr i te (o u t f i l e , ∗) ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’
wr i te (o u t f i l e , ’ (T2 ,A, T15 ,A, T32 ,A) ’) ’Node ’ , ’ Fx [N] ’ , ’ Fy [N] ’
wr i te (o u t f i l e , ∗) ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’
do i =1, s i z e (F , 1) /2

! i f (Pre (i) == 1) then
wr i te (o u t f i l e , ’ (T2 , I0 , T10 , 2 F15 . 8) ’) i , F(2∗ i −1) ,F(2∗ i)

! end i f
end do

wr i te (o u t f i l e , ∗) ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’
wr i te (o u t f i l e , ∗) ’ ’
wr i te (o u t f i l e , ∗) ’ ’
wr i te (o u t f i l e , ∗) ’ D i sp l a cemen t s : ’
wr i te (o u t f i l e , ∗) ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’
wr i te (o u t f i l e , ’ (T2 ,A, T10 ,A, T32 , A) ’) ’Node ’ , ’ ux [m] ’ , ’ uy [m] ’
wr i te (o u t f i l e , ∗) ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’
do i =1, s i z e (u , 1) /2

! i f (Pre (i) == 0) then
wr i te (o u t f i l e , ’ (T2 , I0 , T10 , F10 . 6 , T32 , F10 . 6) ’) i , u (2∗ i −1) , u

(2∗ i)
! end i f

end do

B.3. FEM CALCULATIONS 69

wr i te (o u t f i l e , ∗) ’
−−−’

wr i te (o u t f i l e , ∗) ’ ’
wr i te (o u t f i l e , ∗) ’ ’
wr i te (o u t f i l e , ∗) ’ S t r e s s e s : ’
wr i te (o u t f i l e , ∗) ’

−−−’

wr i te (o u t f i l e , ’ (T2 ,A, T17 ,A, T37 ,A, T57 , A) ’) ’ Element ’ , &
’ s igmax [N/m2] ’ , ’ s igmay [N/m2] ’ , ’ s igmaxy [N/m2] ’

wr i te (o u t f i l e , ∗) ’
−−−’

do i =1, s i z e (ElemForces , 1)
wr i te (o u t f i l e , ’ (T2 , I0 , T17 , F17 . 7 , T37 , F17 . 7 , T57 , F17 . 7) ’) i ,

E lemForces (i , 1) , &
ElemForces (i , 2) , E lemForces (i , 3)

end do

wr i te (o u t f i l e , ∗) ’
−−−’

c l o s e (o u t f i l e)
end subrout ine w r i t e r e s u l t

end module inout

B.3 FEM calculations

Listing B.3: fem.f90

module fem
! Module c on t a i n g f e r e l a t e d methods l i k e a s s emb l i n g and
! e lement methods
! a l s o c o n t a i n s a f u n c t i o n r e t u r n i n g a sy s t ems bandwidth
use p u b l i cV a r s
conta in s

subrout ine g e t n b r d e l c o l v e c (n b r d e l c o l v e c , Pre , updof)

i n t ege r : : i , n b r d e l c o l =0, u pdo f i d x=0
i n teger , dimens ion (:) : : n b r d e l c o l v e c , Pre , updof

n b r d e l c o l v e c = 0

do i =1, s i z e (Pre)
i f (Pre (i) . ne . 0) then

n b r d e l c o l = n b r d e l c o l+1
e l s e

updo f i d x = updo f i d x+1
updof (u pdo f i d x) = i

end i f

n b r d e l c o l v e c (i) = n b r d e l c o l

70 APPENDIX B. PARALLEL APPLICATION CODE

end do

end subrout ine g e t n b r d e l c o l v e c

sub rout ine assemCOO(edof , Pre , u , F , K sparse , Ke , nnz , ik , jk ,
n b r d e l c o l v e c)

i n t ege r : : i , j , nnz , n , row , i g l o b , j g l o b
i n teger , dimens ion (:) : : ik , jk , edof , Pre , n b r d e l c o l v e c
r e a l (8) , dimens ion (:) : : K sparse , u , F
r e a l (8) , dimens ion (: , :) : : Ke

n = s i z e (Ke , 1)
row = 0

do i =1, n
i g l o b = edo f (i)
i f (Pre (i g l o b) . eq . 0) then

row=row+1
do j =1, n

j g l o b = edo f (j)
i f (Ke(i , j) . ne . 0) then

i f (Pre (j g l o b) . ne . 0) then

F(j g l o b) = F(j g l o b)−Ke(i , j) ∗u (j g l o b)
e l s e i f (j g l o b . ge . i g l o b) then

nnz=nnz+1
K spa r se (nnz) = Ke(i , j)
i k (nnz) = i g l o b −n b r d e l c o l v e c (i g l o b)
j k (nnz) = j g l ob −n b r d e l c o l v e c (j g l o b)

end i f

end i f

end do

end i f

end do

end subrout ine assemCOO

sub rout ine COOtoCSR(K sparse , ik , jk , nnz , neq)

! i n t e r n a l work a r r a y s f o r s p a r s k i t 2 methods
i n teger , a l l o c a t a b l e : : indu (:)
i n teger , a l l o c a t a b l e : : iwk (:)

r e a l (8) , dimens ion (:) : : K spa r se
i n teger , dimens ion (:) : : ik , j k
i n t ege r : : nnz , neq

a l l o c a t e (indu (neq))
a l l o c a t e (iwk (neq+1))

! w r i t e (∗ ,∗) ’ innan c o i s c r ’
!−−−−− Convert to compressed s p a r s e row format −−−−−
c a l l c o i c s r (neq , nnz , 1 , K sparse , jk , ik , iwk)

! w r i t e (∗ ,∗) ’ innan c l n c s r ’
!−−−−− Add d u p l i c a t e e l emen t s and s o r t v e c t o r s −−−−−
c a l l c l n c s r (3 ,1 , neq , K sparse , jk , ik , indu , iwk)

B.3. FEM CALCULATIONS 71

nnz=i k (neq+1)−1

dea l l o c a t e (indu , iwk) ! d e a l l o c a t e i n t e r n a l work a r r a y s

end subrout ine COOtoCSR

sub rout ine c o i c s r (n , nnz , job , a , ja , ia , iwk)
i n t ege r i a (nnz) , j a (nnz) , iwk (n+1)
r e a l ∗8 a (∗)

!−−
! IN−PLACE coo−c s r c o n v e r s i o n r o u t i n e .
!−−
! t h i s s u b r o u t i n e c o n v e r t s a mat r i x s t o r e d i n c o o r d i n a t e format i n t o
! the c s r format . The c o n v e r s i o n i s done i n p l a c e i n tha t the a r r a y s
! a , ja , i a o f the r e s u l t a r e o v e rw r i t t e n onto the o r i g i n a l a r r a y s .
!−−
! on en t r y :
!−−−−−−−−−
! n = i n t e g e r . row d imens ion o f A .
! nnz = i n t e g e r . number o f nonzero e l emen t s i n A .
! j ob = i n t e g e r . Job i n d i c a t o r . when job =1, the r e a l v a l u e s i n a a re
! f i l l e d . Othe rw i se a i s not touched and the s t r u c t u r e o f the
! a r r a y on l y (i . e . ja , i a) i s ob ta in ed .
! a = r e a l a r r a y o f s i z e nnz (number o f nonzero e l emen t s i n A)
! c o n t a i n i n g the nonzero e l emen t s
! j a = i n t e g e r a r r a y o f l e n g t h nnz c o n t a i n i n g the column p o s i t i o n s
! o f the co r r e s p ond i n g e l emen t s i n a .
! i a = i n t e g e r a r r a y o f l e n g t h nnz c o n t a i n i n g the row p o s i t i o n s
! o f the co r r e s p ond i n g e l emen t s i n a .
! iwk = i n t e g e r work a r r a y o f l e n g t h n+1
! on r e t u r n :
!−−−−−−−−−−
! a
! j a
! i a = c on t a i n s the compressed s p a r s e row data s t r u c t u r e f o r the
! r e s u l t i n g mat r i x .
! Note :
!−−−−−−−
! the e n t r i e s o f the output mat r i x a r e not s o r t e d (the column
! i n d i c e s i n each a re not i n i n c r e a s i n g o r d e r) use c ooc s r
! i f you want them s o r t e d .
!−−c
! Coded by Y. Saad , Sep . 26 1989 c
!−−c

r e a l ∗8 t , t n e x t
l o g i c a l v a l u e s

!−−−
v a l u e s = (job . eq . 1)

! f i n d p o i n t e r a r r a y f o r r e s u l t i n g mat r i x .
do 35 i =1,n+1

iwk (i) = 0
35 cont inue

do 4 k=1,nnz
i = i a (k)
iwk (i +1) = iwk (i +1)+1

72 APPENDIX B. PARALLEL APPLICATION CODE

4 cont inue

!−−
iwk (1) = 1
do 44 i =2,n

iwk (i) = iwk (i −1) + iwk (i)
44 cont inue

!
! l oop f o r a c y c l e i n ch a s i n g p r o c e s s .
!

i n i t = 1
k = 0

5 i f (v a l u e s) t = a (i n i t)
i = i a (i n i t)
j = j a (i n i t)
i a (i n i t) = −1

!−−
6 k = k+1

! c u r r e n t row number i s i . d e t e rm ine where to go .
i p o s = iwk (i)

! save the chased e lement .
i f (v a l u e s) t n e x t = a (i p o s)
i n e x t = i a (i p o s)
j n e x t = j a (i p o s)

! then occupy i t s l o c a t i o n .
i f (v a l u e s) a (i p o s) = t
j a (i p o s) = j

! update p o i n t e r i n f o rma t i o n f o r next e lement to come i n row i .
iwk (i) = i p o s+1

! d e t e rm ine next e lement to be chased ,
i f (i a (i p o s) . l t . 0) goto 65
t = tn e x t
i = i n e x t
j = j n e x t
i a (i p o s) = −1
i f (k . l t . nnz) goto 6
goto 70

65 i n i t = i n i t +1
i f (i n i t . gt . nnz) goto 70
i f (i a (i n i t) . l t . 0) goto 65

! r e s t a r t c h a s i n g −−
goto 5

70 do 80 i =1,n
i a (i +1) = iwk (i)

80 cont inue

i a (1) = 1
r e tu rn

!−−−−−−−−−−−−−−−−− end o f c o i c s r −−
!−−
end subrout ine c o i c s r

sub rout ine c l n c s r (job , va lue2 , nrow , a , ja , ia , indu , iwk)
! . . S c a l a r Arguments . .

i n t ege r job , nrow , va l u e 2
! . .
! . . Ar ray Arguments . .

i n t ege r i a (nrow+1) , indu (nrow) , iwk (nrow+1) , j a (∗)
r e a l ∗8 a (∗)

! . .

B.3. FEM CALCULATIONS 73

!
! Th is r o u t i n e pe r fo rms two t a s k s to c l e a n up a CSR mat r i x
! −− remove d u p l i c a t e / ze ro e n t r i e s ,
! −− per form a p a r t i a l o r d e r i n g , new o rd e r l owe r t r i a n g u l a r part ,
! main d iagona l , upper t r i a n g u l a r p a r t .
!
! On en t r y :
!
! j ob = op t i on s
! 0 −− noth ing i s done
! 1 −− e l i m i n a t e d u p l i c a t e e n t r i e s , z e ro e n t r i e s .
! 2 −− e l i m i n a t e d u p l i c a t e e n t r i e s and per form p a r t i a l o r d e r i n g .
! 3 −− e l i m i n a t e d u p l i c a t e e n t r i e s , s o r t the e n t r i e s i n the
! i n c r e a s i n g o r d e r o f clumn i n d i c e s .
!
! v a l u e 2 −− 0 the mat r i x i s p a t t e r n on l y (a i s not touched)
! 1 mat r i x has v a l u e s too .
! nrow −− row d imens ion o f the mat r i x
! a , ja , i a −− i n p u t mat r i x i n CSR format
!
! On r e t u r n :
! a , ja , i a −− c l e a n ed mat r i x
! indu −− p o i n t e r s to the b eg i n n i n g o f the upper t r i a n g u l a r
! p o r t i o n i f j ob > 1
!
! Work space :
! iwk −− i n t e g e r work space o f s i z e nrow+1
!
! . . Loca l S c a l a r s . .

i n t ege r i , j , k , ko , i pos , k f i r s t , k l a s t
r e a l ∗8 tmp

! . .
!

i f (job . l e . 0) r e tu rn

!
! . . e l i m i n a t e d u p l i c a t e e n t r i e s −−
! a r r a y INDU i s used as marker f o r e x i s t i n g i n d i c e s , i t i s a l s o the
! l o c a t i o n o f the en t r y .
! IWK i s used to s t o r e d the o ld IA a r r a y .
! mat r i x i s cop i ed to squeeze out the space taken by the d u p l i c a t e d
! e n t r i e s .
!

do 90 i = 1 , nrow
indu (i) = 0
iwk (i) = i a (i)

90 cont inue

iwk (nrow+1) = i a (nrow+1)
k = 1
do 120 i = 1 , nrow

i a (i) = k
i p o s = iwk (i)
k l a s t = iwk (i +1)

100 i f (i p o s . l t . k l a s t) then

j = j a (i p o s)
i f (indu (j) . eq . 0) then

! . . new en t r y . .
i f (v a l u e 2 . ne . 0) then

i f (a (i p o s) . ne . 0 .0D0) then

74 APPENDIX B. PARALLEL APPLICATION CODE

indu (j) = k
j a (k) = j a (i p o s)
a (k) = a (i p o s)
k = k + 1

end i f

e l s e

indu (j) = k
j a (k) = j a (i p o s)
k = k + 1

end i f

e l s e i f (v a l u e 2 . ne . 0) then

! . . d u p l i c a t e en t r y . .
a (indu (j)) = a (indu (j)) + a (i p o s)

end i f

i p o s = i p o s + 1
go to 100

end i f

! . . remove marks b e f o r e work ing on the next row . .
do 110 i p o s = i a (i) , k − 1

indu (j a (i p o s)) = 0
110 cont inue

120 cont inue

i a (nrow+1) = k
i f (job . l e . 1) r e tu rn

!
! . . p a r t i a l o r d e r i n g . .
! s p l i t the mat r i x i n t o s t r i c t upper/ lowe r t r i a n g u l a r
! pa r t s , INDU po i n t s to the the b eg i n n i n g o f the upper p a r t .
!

do 140 i = 1 , nrow
k l a s t = i a (i +1) − 1
k f i r s t = i a (i)

130 i f (k l a s t . gt . k f i r s t) then

i f (j a (k l a s t) . l t . i . and . j a (k f i r s t) . ge . i) then

! . . swap k l a s t wi th k f i r s t . .
j = j a (k l a s t)
j a (k l a s t) = j a (k f i r s t)
j a (k f i r s t) = j
i f (v a l u e 2 . ne . 0) then

tmp = a (k l a s t)
a (k l a s t) = a (k f i r s t)
a (k f i r s t) = tmp

end i f

end i f

i f (j a (k l a s t) . ge . i) then

k l a s t = k l a s t − 1
end i f

i f (j a (k f i r s t) . l t . i) then

k f i r s t = k f i r s t + 1
end i f

go to 130
end i f

!
i f (j a (k l a s t) . l t . i) then

indu (i) = k l a s t + 1
e l s e

indu (i) = k l a s t
end i f

B.3. FEM CALCULATIONS 75

140 cont inue

i f (job . l e . 2) r e tu rn

!
! . . o r d e r the e n t r i e s a c c o r d i n g to column i n d i c e s
! bu rb l e−s o r t i s used
!

do 190 i = 1 , nrow
do 160 i p o s = i a (i) , indu (i)−1

do 150 j = indu (i)−1, i p o s +1, −1
k = j − 1
i f (j a (k) . gt . j a (j)) then

ko = j a (k)
j a (k) = j a (j)
j a (j) = ko
i f (v a l u e 2 . ne . 0) then

tmp = a (k)
a (k) = a (j)
a (j) = tmp

end i f

end i f

150 cont inue

160 cont inue

do 180 i p o s = indu (i) , i a (i +1)−1
do 170 j = i a (i +1)−1, i p o s +1, −1

k = j − 1
i f (j a (k) . gt . j a (j)) then

ko = j a (k)
j a (k) = j a (j)
j a (j) = ko
i f (v a l u e 2 . ne . 0) then

tmp = a (k)
a (k) = a (j)
a (j) = tmp

end i f

end i f

170 cont inue

180 cont inue

190 cont inue

retu rn

!−−−− end o f c l n c s r −−
!−−−
end subrout ine c l n c s r

sub rout ine submatrixCSR (neq , K, ia , ja , nnz sub , Pre , updof)
! Per forms an in−p l a c e e x t r a c t i o n o f the submat r i x to be used f o r the

p a r d i s o
! s o l v e r , a l s o c a l c u l a t e s the v e c t o r updof c o n t a i n i n g the

u n p r e s c r i b e d
! d eg r e e s o f freedom

i n teger , dimens ion (:) : : Pre
r e a l (8) , dimens ion (:) : : K
i n teger , dimens ion (:) : : i a , ja , updof
i n teger , dimens ion (:) , a l l o c a t a b l e : : n b r d e l c o l v e c
i n t ege r : : i , neq , nnz , nnz sub , row = 0 , tmp rowstar t , n b r d e l c o l ,

c o l

nnz sub = 0 ! i n i t i a l i z e number o f non−z e r o s i n submat r i x

76 APPENDIX B. PARALLEL APPLICATION CODE

a l l o c a t e (n b r d e l c o l v e c (neq))
n b r d e l c o l v e c = 0
n b r d e l c o l = 0

do i =1, neq
i f (Pre (i) . ne . 0) then

n b r d e l c o l = n b r d e l c o l + 1
end i f

n b r d e l c o l v e c (i) = n b r d e l c o l
end do

do i =1, neq ! l oop ove r a l l rows o f K
i f (Pre (i) . eq . 0) then ! t h i s dof i s u n p r e s c r i b e d

row = row+1 ! the submat r i x has a new row
updof (row) = i
tmp rowsta r t = nnz sub+1 ! i n d e x where row i n submat r i x s t a r t s
do j =1, i a (i +1)− i a (i) ! l oop ove r columns i n t h i s row

c o l = j a (i a (i) + j − 1)
i f (Pre (c o l) . eq . 0) then ! found a nonzero to be

added
nnz sub = nnz sub +1
K(nnz sub) = K(i a (i) + j−1) ! o v e rw r i t e i n to K
j a (nnz sub) = c o l − n b r d e l c o l v e c (c o l) ! o v e rw r i t e

the column i n t o the o ld v e c t o r
end i f

end do

i a (row) = tmp rowsta r t
end i f

end do

i a (row+1) = nnz sub+1 ! Add s p e c i a l l a s t e n t r y

dea l l o c a t e (n b r d e l c o l v e c)

end subrout ine submatrixCSR

sub rout ine loadBANDmul(bw , neq , K, u , f)

i n t ege r : : bw , neq , j , i
r e a l (8) , dimens ion (: , :) : : K
r e a l (8) , dimens ion (:) : : u , f

do j =1,neq ! l oop through the d i s p l a c emen t v e c t o r
i f (u (j) . ne . 0) then ! i f v a r i a b l e p r e s c r i b e d (not to ze ro)

per form m u l t i p l i c a t i o n
do i =1, neq

i f (i . gt . j . and . i−j . l e . bw) then ! be low d iagona l ,
make symmetr ic s h i f t
f (i) = f (i) − K(j , i− j +1)∗u (j)

e l s e i f (i . l e . j . and . j− i . l e . bw) then ! above
d i a gon a l
f (i) = f (i) −K(i , j− i +1)∗u (j)

end i f

end do

end i f

end do

B.3. FEM CALCULATIONS 77

end subrout ine loadBANDmul

sub rout ine e l emen tMat r i x (Ke , Edof , Coords , ElProp , elnum)

! f2py i n t e n t (in , out) Ke

i n t ege r : : elnum

r e a l (8) : : E , v , t , detC , x1 , x2 , x3 , y1 , y2 , y3

r e a l (8) , dimens ion (6 ,6) : : C , invC , Ke

r e a l (8) , dimens ion (3 ,3) : : D

r e a l (8) , dimens ion (3 ,6) : : Q

r e a l (8) , dimens ion (: , :) : : Coords

r e a l (8) : : ElProp (:)

i n teger , dimens ion (: , :) : : Edof
E = ElProp (1)
v = ElProp (2)
t = ElProp (3)

x1 = Coords (Edof (elnum , 2) /2 ,1)
x2 = Coords (Edof (elnum , 4) /2 ,1)
x3 = Coords (Edof (elnum , 6) /2 ,1)
y1 = Coords (Edof (elnum , 2) /2 ,2)
y2 = Coords (Edof (elnum , 4) /2 ,2)
y3 = Coords (Edof (elnum , 6) /2 ,2)

C (1 , :) = (/ 1 .0 ap , x1 , y1 , 0 .0 ap , 0 .0 ap , 0 .0 ap /)
C (2 , :) = (/ 0 .0 ap , 0 .0 ap , 0 .0 ap , 1 .0 ap , x1 , y1 /)
C (3 , :) = (/ 1 .0 ap , x2 , y2 , 0 .0 ap , 0 .0 ap , 0 .0 ap /)
C (4 , :) = (/ 0 .0 ap , 0 .0 ap , 0 .0 ap , 1 .0 ap , x2 , y2 /)
C (5 , :) = (/ 1 .0 ap , x3 , y3 , 0 .0 ap , 0 .0 ap , 0 .0 ap /)
C (6 , :) = (/ 0 .0 ap , 0 .0 ap , 0 .0 ap , 1 .0 ap , x3 , y3 /)

D(1 , :) = E/(1−v∗v) ∗(/ 1 .0 ap , v , 0 .0 ap /)
D(2 , :) = E/(1−v∗v) ∗(/ v , 1 .0 ap , 0 .0 ap /)
D(3 , :) = E/(1−v∗v) ∗(/ 0 .0 ap , 0 .0 ap , (1−v) /2 /)

Q(1 , :) = (/ 0 .0 ap , 1 .0 ap , 0 .0 ap , 0 .0 ap , 0 .0 ap , 0 .0 ap /)
Q(2 , :) = (/ 0 .0 ap , 0 .0 ap , 0 .0 ap , 0 .0 ap , 0 .0 ap , 1 .0 ap /)
Q(3 , :) = (/ 0 .0 ap , 0 .0 ap , 1 .0 ap , 0 .0 ap , 1 .0 ap , 0 .0 ap /)

detC = x1 ∗(y2−y3) + x2 ∗(y3−y1) + x3 ∗(y1−y2)

c a l l matinv (6 , C , invC)

Ke = matmul (matmul (matmul(matmul (t r a n sp o s e (invC) ,&
t r a n sp o s e (Q)) ,D) ,Q) , invC) ∗0.5∗ detC∗ t

r e tu rn

end subrout ine e l emen tMat r i x

78 APPENDIX B. PARALLEL APPLICATION CODE

i n t ege r func t ion bandWidth (Edof)

i n teger , dimens ion (: , :) : : Edof

i n t ege r : : elemWidth (s i z e (Edof , 1))

do i =1, s i z e (Edof , 1)
elemWidth (i) = maxval (Edof (i , :)) − minva l (Edof (i , :)) + 1

end do

bandWidth = maxval (elemWidth)

end func t ion bandWidth

sub rout ine countnnz (K, bw , nnd , nnz)
i n t ege r : : bw , nnz , nnd
r e a l (8) , dimens ion (: , :) : : K

nnz = 0
do i =1, nnd∗2

do j =1,bw
i f (K(i , j) . ne . 0) then

nnz = nnz + 1
end i f

end do

end do

end subrout ine countnnz

sub rout ine BANDtoCSR(K, Kvec , ia , ja , bw , nnd)

i n teger , dimens ion (:) : : i a , j a
r e a l (8) , dimens ion (: , :) : : K
r e a l (8) , dimens ion (:) : : Kvec
i n t ege r : : c o l i d x , bw , nnz=0

i a = 0

do i =1, nnd∗2
c o l i d x = i
do j =1, bw

i f (K(i , j) . ne . 0) then

nnz = nnz +1 ! i n c r emen t non−ze ro coun t e r
Kvec (nnz) = K(i , j) ! i n s e r t the non−ze ro e lement
j a (nnz) = c o l i d x ! the i n s e r t e d non−z e r o s co lumn index
i f (i a (i) . eq . 0) then

i a (i) = nnz
end i f

end i f

c o l i d x = c o l i d x +1
end do

end do

i a (nnd∗2+1) = nnz+1 ! Add s p e c i a l l a s t e n t r y

end subrout ine BANDtoCSR

B.3. FEM CALCULATIONS 79

sub rout ine assem (Edof , Ke , elnum , K)

! f2py i n t e n t (in , out) K

i n teger , dimens ion (: , :) : : Edof
r e a l (8) , dimens ion (: , :) : : Ke , K
i n t ege r : : elnum , n
i n teger , dimens ion (s i z e (Edof , 2)) : : e l d o f

e l d o f = Edof (elnum , :)

n = s i z e (Ke , 1)
do j =1,n

do i=j , n
i f (e l d o f (i) >= e l d o f (j)) then

i f (abs (Ke(j , i)) . gt . 1e−12) then

K(e l d o f (j) , e l d o f (i)−e l d o f (j)+1) = &
K(e l d o f (j) , e l d o f (i)−e l d o f (j)+1) + Ke(j , i)
end i f

e l s e

i f (abs (Ke(i , j)) . gt . 1e−12) then

K(e l d o f (i) , e l d o f (j)−e l d o f (i)+1) = &
K(e l d o f (i) , e l d o f (j)−e l d o f (i)+1) + Ke(j , i)
end i f

end i f

end do

end do

end subrout ine assem

sub rout ine matinv (n , a , a i)

!
! Th is s u b r o u t i n e i n v e r t s a mat r i x ”a ” and r e t u r n s the i n v e r s e i n ”a i

”
! n − I npu t by user , an i n t e g e r s p e c i f y i n g the s i z e o f the mat r i x to

be i n v e r t e d .
! a − I npu t by user , an n by n r e a l a r r a y c o n t a i n i n g the mat r i x to

be i n v e r t e d .
! a i − Returned by sub r ou t i n e , an n by n r e a l a r r a y c o n t a i n i n g the

i n v e r t e d mat r i x .
! d − Work a r ray , an n by 2n r e a l a r r a y used by the s u b r o u t i n e .
! i o − Work a r ray , a 1−d imen s i on a l i n t e g e r a r r a y o f l e n g t h n used by

the s u b r o u t i n e .
!
! From ht tp ://www. mae . usu . edu/ f a c u l t y / w p h i l l i p s /MAE6510 . html
! Mod i f i ed by Jonas Lindemann
!

i m p l i c i t r e a l (A−I ,M−Z)

i n t ege r : : n , i , j , m
r e a l (8) : : a (n , n)
r e a l (8) : : a i (n , n)

i n teger , a l l o c a t a b l e : : i o (:)

80 APPENDIX B. PARALLEL APPLICATION CODE

r e a l (8) , a l l o c a t a b l e : : d (: , :)

! ! $omp p a r a l l e l p r i v a t e (i , j ,m, io , d)

a l l o c a t e (i o (n))
a l l o c a t e (d (n ,2∗ n))

! F i l l i n the ” i o ” and ”d ” mat r i x .
! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
do i =1,n

i o (i)=i
end do

do i =1,n
do j =1,n

d (i , j)=a (i , j)
i f (i . eq . j) then

d (i , n+j) =1.0 8
e l s e

d (i , n+j) =0.0 8
end i f

end do

end do

! S c a l i n g
! ∗∗∗∗∗∗∗

do i =1,n
m=1
do k=2,n

i f (abs (d (i , k)) . gt . abs (d (i ,m)))m=k
end do

tmp=d (i ,m)
do k=1,2∗n

d (i , k)=d (i , k) /tmp
end do

end do

! Lower E l im i n a t i o n
! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

do i =1,n−1

! P i v o t i n g
! ∗∗∗∗∗∗∗∗

m=i
do j=i +1,n

i f (abs (d (i o (j) , i)) . gt . abs (d (i o (m) , i)))m=j
end do

i tmp=i o (m)
i o (m)=i o (i)
i o (i)=itmp

! S c a l e the P ivo t e lement to u n i t y
! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

r=d (i o (i) , i)
do k=1,2∗n

B.4. EXECUTION 81

d (i o (i) , k)=d (i o (i) , k) / r
end do

! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

do j=i +1,n
r=d (i o (j) , i)
do k=1,2∗n

d (i o (j) , k)=d (i o (j) , k)−r ∗d (i o (i) , k)
end do

end do

end do

! Upper E l im i n a t i o n
! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

r=d (i o (n) , n)
do k=1,2∗n

d (i o (n) , k)=d (i o (n) , k) / r
end do

do i=n−1,1,−1
do j=i +1,n

r=d (i o (i) , j)
do k=1,2∗n

d (i o (i) , k)=d (i o (i) , k)−r ∗d (i o (j) , k)
end do

end do

end do

! F i l l Out ”a i ” mat r i x
! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

do i =1,n
do j =1,n

a i (i , j)=d (i o (i) , n+j)
end do

end do

dea l l o c a t e (i o)
dea l l o c a t e (d)

! ! $omp end p a r a l l e l

r e tu rn

end subrout ine matinv
end module fem

B.4 Execution

Listing B.4: stress.f90

module s t r e s s

82 APPENDIX B. PARALLEL APPLICATION CODE

use p u b l i cV a r s
use fem
use s o l v e
use inout

conta in s

subrout ine execu t e (Coords , Edof , ElProp , F , u , Pre , nnd ,&
ne l , npv , E lemForces)

! f2py i n t e n t (in , out) F
! f2py i n t e n t (in , out) u
! f2py i n t e n t (in , out) E lemForces

i m p l i c i t none

i n t ege r : : nnd , ne l , bw , i e r r , i , j , nnz , npv , neq
r e a l (8) , dimens ion (: , :) : : Coords
i n teger , dimens ion (: , :) : : Edof
r e a l (8) , dimens ion (: , :) : : E lemForces
r e a l (8) , dimens ion (:) : : F , u

r e a l (8) , dimens ion (:) , a l l o c a t a b l e : : u p a r d i s o , F p a r d i s o
i n teger , dimens ion (:) : : Pre
r e a l (8) : : s t a r t , end

r e a l (8) omp get wt ime
ex te r na l omp get wt ime

i n teger , dimens ion (:) , a l l o c a t a b l e : : updof ! v e c t o r c o n t a i n i n g the
u n p r e s c r i b e d v a r i a b l e s

i n t ege r : : nnz sub
r e a l (8) , dimens ion (: , :) , a l l o c a t a b l e : : K
! Spa r se system mat r i x s t o r a g e

r e a l (8) , dimens ion (:) , a l l o c a t a b l e : : Kvec
i n teger , dimens ion (:) , a l l o c a t a b l e : : i a , j a
! Element mat r i x

r e a l (8) , dimens ion (6 ,6) : : Ke
! Element s t r e s s e s and p r o p e r t i e s

r e a l (8) : : s igmae (3) , ElProp (3)
i n teger , dimens ion (:) , a l l o c a t a b l e : : n b r d e l c o l v e c , ik , j k
r e a l (8) , dimens ion (:) , a l l o c a t a b l e : : K spa r se
i n t ege r omp get thread num
ex te r na l omp get thread num

neq = nnd∗2

a l l o c a t e (n b r d e l c o l v e c (s i z e (Pre)))
a l l o c a t e (K spa r se (n e l ∗21))

a l l o c a t e (i k (n e l ∗21))
a l l o c a t e (j k (n e l ∗21))
a l l o c a t e (updof ((nnd∗2−npv)))

c a l l g e t n b r d e l c o l v e c (n b r d e l c o l v e c , Pre , updof)
nnz = 0

s t a r t = omp get wt ime ()
do i =1, n e l

c a l l e l emen tmat r i x (Ke , Edof , Coords , ElProp , i)
c a l l assemCOO(Edof (i , :) , Pre , u , F , K sparse , Ke , nnz , ik ,

jk , n b r d e l c o l v e c)

B.5. SYSTEM SOLVING 83

end do

end = omp get wt ime ()
wr i te (∗ , ’ (A, F) ’) ’ assem t ime : ’ , end−s t a r t

dea l l o c a t e (n b r d e l c o l v e c)

s t a r t = omp get wt ime ()
c a l l COOtoCSR(K sparse , ik , jk , nnz , neq)
end = omp get wt ime ()

wr i te (∗ , ’ (A, F) ’) ’ c oo t o c s r t ime : ’ , end−s t a r t

a l l o c a t e (F p a r d i s o (s i z e (updof)))
a l l o c a t e (u p a r d i s o (nnd∗2−npv))

F pa r d i s o = F(updof)

u p a r d i s o =0
u=0

s t a r t = omp get wt ime ()
c a l l p a r d i s o s o l v e (neq−npv , K sparse , ik , jk , u p a r d i s o , F p a r d i s o)
end = omp get wt ime ()
wr i te (∗ , ’ (A, F) ’) ’ p a r d i s o t ime : ’ , end−s t a r t

u (updof) = u p a r d i s o

dea l l o c a t e (K spa r se)
dea l l o c a t e (i k)
dea l l o c a t e (j k)
dea l l o c a t e (updof)
dea l l o c a t e (u p a r d i s o)
dea l l o c a t e (F p a r d i s o)

! $omp p a r a l l e l do d e f a u l t (p r i v a t e) sha red (Edof , Coords , ElProp , u ,
ElemForces , n e l)

do i =1, n e l
c a l l c a l c e l e m e n t f o r c e s (Edof , Coords , ElProp , i , sigmae , u)
E lemForces (i , :) = sigmae

end do

! $omp end p a r a l l e l do

do i =1, n e l
do j =1,3

wr i te (∗ ,∗) E lemForces (i , j)
end do

end do

end subrout ine execu t e
end module s t r e s s

B.5 System solving

Listing B.5: solve.f90

84 APPENDIX B. PARALLEL APPLICATION CODE

sub rout ine p a r d i s o s o l v e (n , a , ia , ja , x , b)
! . . I n t e r n a l s o l v e r memory p o i n t e r f o r 64− b i t a r c h i t e c t u r e s
! . . INTEGER∗8 pt (64)
! . . I n t e r n a l s o l v e r memory p o i n t e r f o r 32− b i t a r c h i t e c t u r e s
! . . INTEGER∗4 pt (64)
! . . Th is i s OK in both c a s e s
INTEGER∗8 pt (64)
! i n t e g e r pt (64)
! . . A l l o t h e r v a r i a b l e s
i n t ege r : : maxfct , mnum, mtype , phase , n , nrhs , e r r o r , m sg l v l
i n t ege r : : iparm (64)
i n t ege r , dimens ion (:) : : i a , j a
r e a l (8) , dimens ion (:) : : a , b , x
i n t ege r : : i , idum
r e a l (8) : : walt ime1 , walt ime2 , ddum , mem
i n t ege r omp get max threads
ex te r na l omp get max threads

! . . F i l l a l l a r r a y s c o n t a i n i n g mat r i x data .
n rh s = 1
maxfct = 1
mnum = 1

! . .
! . . Set up PARDISO co n t r o l parameter
! . .
do i = 1 , 64
iparm (i) = 0
end do

iparm (1) = 1 ! no s o l v e r d e f a u l t
iparm (2) = 2 ! f i l l −i n r e o r d e r i n g from METIS

iparm (3) = omp get max threads () ! numbers o f p r o c e s s o r s , v a l u e o f
OMP NUM THREADS

iparm (4) = 0 ! no i t e r a t i v e −d i r e c t a l g o r i t hm
iparm (5) = 0 ! no u s e r f i l l −i n r e d u c i n g pe rmuta t i on
iparm (6) = 0 ! =0 s o l u t i o n on the f i r s t n compoments o f x
iparm (7) = 16 ! d e f a u l t l o g i c a l f o r t r a n u n i t number f o r output
iparm (8) = 9 ! numbers o f i t e r a t i v e r e f i n emen t s t e p s
iparm (9) = 0 ! not i n use
iparm (10) = 13 ! p e r t u r b e the p i v o t e l emen t s with 1E−13
iparm (11) = 1 ! u se nonsymmetr ic p e rmuta t i on and s c a l i n g MPS
iparm (12) = 0 ! not i n use
iparm (13) = 0 ! not i n use
iparm (14) = 0 ! Output : number o f p e r t u r b ed p i v o t s
iparm (15) = 0 ! not i n use
iparm (16) = 0 ! not i n use
iparm (17) = 0 ! not i n use
iparm (18) = −1 ! Output : number o f nonze ro s i n the f a c t o r LU
iparm (19) = −1 ! Output : Mf lops f o r LU f a c t o r i z a t i o n
iparm (20) = 0 ! Output : Numbers o f CG I t e r a t i o n s
e r r o r = 0 ! i n i t i a l i z e e r r o r f l a g
msg l v l = 1 ! p r i n t s t a t i s t i c a l i n f o rma t i o n
mtype = 2 ! symmetr ic p o s i t i v e d e f i n i t e mat r i x

! . . I n i t i l i a z e the i n t e r n a l s o l v e r memory p o i n t e r . Th is i s on l y
! n e c e s s a r y f o r the FIRST c a l l o f the PARDISO s o l v e r .

B.5. SYSTEM SOLVING 85

do i = 1 , 64
pt (i) = 0
end do

! . . R eo r d e r i n g and Symbol ic F a c t o r i z a t i o n , Th is s t e p a l s o a l l o c a t e s
! a l l memory tha t i s n e c e s s a r y f o r the f a c t o r i z a t i o n
phase = 11 ! on l y r e o r d e r i n g and symbo l i c f a c t o r i z a t i o n
wr i te (∗ , ’ (A, I ,A) ’) ’ S o l v i n g system on ’ , iparm (3) , ’ p r o c e s s o r s ’
CALL p a r d i s o (pt , maxfct , mnum, mtype , phase , n , a , ia , ja , idum ,

nrhs , iparm , msg lv l , ddum , ddum , e r r o r)

WRITE(∗ ,∗) ’ R eo r d e r i n g completed . . . ’
IF (e r r o r .NE . 0) THEN

!WRITE(∗ ,∗) ’The f o l l o w i n g ERROR was d e t e c t e d : ’ , e r r o r
STOP

END IF

!WRITE(∗ ,∗) ’Number o f nonze ro s i n f a c t o r s = ’ , iparm (18)
!WRITE(∗ ,∗) ’Number o f f a c t o r i z a t i o n MFLOPS = ’ , iparm (19)

! . . F a c t o r i z a t i o n .
phase = 22 ! on l y f a c t o r i z a t i o n
CALL p a r d i s o (pt , maxfct , mnum, mtype , phase , n , a , ia , ja , idum ,

nrhs , iparm , msg lv l , ddum , ddum , e r r o r)

!WRITE(∗ ,∗) ’ F a c t o r i z a t i o n completed . . . ’
IF (e r r o r .NE . 0) THEN

!WRITE(∗ ,∗) ’The f o l l o w i n g ERROR was d e t e c t e d : ’ , e r r o r
STOP

ENDIF

! . . Back s u b s t i t u t i o n and i t e r a t i v e r e f i n emen t
iparm (8) = 2 ! max numbers o f i t e r a t i v e r e f i n emen t s t e p s
phase = 33 ! on l y f a c t o r i z a t i o n
CALL p a r d i s o (pt , maxfct , mnum, mtype , phase , n , a , ia , ja , idum ,

nrhs , iparm , msg lv l , b , x , e r r o r)

do i =1 ,10
wr i te (∗ ,∗) x (i)

end do

!WRITE(∗ ,∗) ’ So l ve completed . . . ’
wr i te (∗ , ’ (A, I) ’) ’ iparm (7) = ’ , iparm (7)
wr i te (∗ , ’ (A, I) ’) ’ iparm (8) = ’ , iparm (8)
wr i te (∗ , ’ (A, I) ’) ’ iparm (14) = ’ , iparm (14)
! . . Te rm ina t i on and r e l e a s e o f memory
phase = −1 ! r e l e a s e i n t e r n a l memory
CALL p a r d i s o (pt , maxfct , mnum, mtype , phase , n , ddum , idum , idum ,

idum , nrhs , iparm , msg lv l , ddum , ddum , e r r o r)
end subrout ine p a r d i s o s o l v e

end module s o l v e

Denna sida skall vara tom!

Bibliography

[1] O. Schenk and K. Gärtner, Two-level dynamic scheduling in PARDISO: Improved
scalability on shared memory multiprocessing systems, 2002

[2] O. Schenk and K. Gärtner, Solving Unsymmetric Sparse Systems of Linear Equations
with PARDISO, Journal of Future Generation Computer Systems, 20(3):475–487,
2004.

[3] O. Schenk and K. Gärtner, On fast factorization pivoting methods for symmetric
indefinite systems, Elec. Trans. Numer. Anal., 23:158–179, 2006.

[4] Intel. Intel MKL 10.0 manual

[5] OpenMP specification, http://www.openmp.org/mp-documents/spec25.pdf

[6] Miguel Hermanns, Parallel Programming in Fortran 95 using OpenMP, School of
Aeronautical Engineering, Universidad Politécnica de Madrid, 2002

[7] Jonathan Richard Shewchuk, Triangle: Engineering a 2D Quality Mesh Generator
and Delaunay Triangulator in “Applied Computational Geometry: Towards Geomet-
ric Engineering” (Ming C. Lin and Dinesh Manocha, editors), volume 1148 of Lecture
Notes in Computer Science, pages 203-222, Springer-Verlag, Berlin, May 1996. (From
the First ACM Workshop on Applied Computational Geometry.)

[8] Henning, M., and S. Vinoski. 1999. Advanced CORBA Programming with C++. Read-
ing, MA: Addison-Wesley.

[9] World Wide Web Consortium. 2002. SOAP Version 1.2 Specification.
http://www.w3.org/2000/xp/Group/# soap12. Boston, MA: World Wide Web
Consortium.

[10] World Wide Web Consortium. 2002. Web Services Activity.
http://www.w3.org/2002/ws. Boston, MA: World Wide Web Consortium.

[11] Microsoft. 2002. .NET Infrastructure & Services.
http://www.microsoft.com/technet/treeview
/default.asp?url=/technet/itsolutio ns/net/Default.asp. Bellevue, WA: Microsoft.

[12] Henning, M. and Spruiell, M. et al. 2007. Distributed Programming with Ice ZeroC,
Inc. http://www.zeroc.com.

[13] Carsten A. Arnholm. 1997 Mixed language programming using C++ and FORTRAN
77 http://arnholm.org/software/index.htm

87

88 BIBLIOGRAPHY

[14] Division of Structural Mechanics, LTH, Software Development for Technical Applica-
tions, http://www.byggmek.lth.se/utbildning/kurser/valfria/vsm032%2C
programutveckling foer tekniska tillaempningar%2C 6 hp/

[15] Satish Balay and Kris Buschelman and William D. Gropp and Dinesh
Kaushik and Matthew G. Knepley and Lois Curfman McInnes and Barry
F. Smith and Hong Zhang. 2001 http://www-unix.mcs.anl.gov/petsc/petsc-
2/documentation/referencing.html

[16] John Burkardt TRIANGULATION RCM Reverse Cuthill-McKee Node
Reordering, School of Computational Science, Florida State University.
http://people.scs.fsu.edu/ burkardt/f src/triangulation rcm/triangulation rcm.html

