
Master’s Dissertation
Structural

Mechanics

JAKOB ARVIDSSON and JESPER GRÖNVALL

ANALYSIS OF CREEP IN
PAPERBOARD PACKAGES
WITH PLASTIC TOPS



Detta är en tom sida!



Copyright © 2004 by Structural Mechanics, LTH, Sweden.
Printed by KFS I Lund AB, Lund, Sweden, August 2004.

For information, address:

Division of Structural Mechanics, LTH, Lund University, Box 118, SE-221 00  Lund, Sweden.
Homepage: http://www.byggmek.lth.se

Structural Mechanics

Master’s Dissertation by

Jakob Arvidsson och Jesper Grönvall

Supervisors:

Kent Persson, Div. of Structural Mechanics

Eskil Andreasson, Tetra Pak R&D AB

ISRN  LUTVDG/TVSM--04/5128--SE (1-80)
ISSN 0281-6679

ANALYSIS OF CREEP IN

PAPERBOARD PACKAGES

WITH PLASTIC TOPS



Detta är en tom sida!



Acknowledgement

The work presented in this master’s thesis was carried out at the Division of Structural
Mechanics, LTH, Lund University, Sweden in cooperation with Tetra Pak R&D AB dur-
ing February - August 2004.
We would like to express our gratitude to our supervisor, Ph.D. Kent Persson at the
Division of Structural Mechanics, for his guidance during this work. We would also like
to thank our supervisor M.Sc. Eskil Andreasson at Tetra Pak R&D AB for supporting
us with thoughts and ideas.
A special thank to the staff at the Division of Structural Mechanics, graphics techni-
cian Bo Zadig for creating some of the pictures used in this report and technician Thord
Lundgren for helping us out during the experimental tests performed at the Division of
Structural Mechanics.
We are also very grateful to Ph.D. Johan Tryding and M.Sc. Magnus Just at Tetra Pak
Carton & Ambient AB and M.Sc. Peter Bengtsson, Ph.D. Keihan Lindborg, Charlotte
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Abstract

Beverage packages made of paper and plastic materials that are stored for a long time,
deform due to creep deformations. The phenomena is termed bulging and means that the
package changes its shape. Bulging is a major issue for the producers of beverage packages.

The purpose of this master’s dissertation, is to develop a Finite Element-model for simu-
lation of bulging of beverage packages at varying loadings and time scales that is verified
to experimentally determined data of creep.

In order to formulate a suitable FE-model for simulation of creep, a profound knowl-
edge of the material behavior of the various materials in a beverage package is required.
Therefore, creep tests of paper, polymer, and aluminum foil were performed. The creep
deformation of paper was found to be approximately four to six times larger in CD than
in MD. The elastic + creep deformation of the laminate is approximately three times
larger in CD in comparison to MD.

A creep material model for each of the materials in the laminate was calibrated to exper-
imental data. The creep behavior of the FE-model was compared to bulge tests, which
described the deflection of the package. The FE-model was proven to produce accurate
results for shorter time periods and acceptable results for longer time frames.

As experimental creep tests require long time frames, it is important to anticipate the
creep behavior with a mathematical model. The FE-method was shown to be an excellent
tool in order to describe, understand, and predict the phenomena of creep.

Keywords: creep, beverage package, paper properties, FEM, ABAQUS, Power-law,
crease.
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Dictionary

anisotropy different material properties in different directions.

compliance a measure of a materials willingness to deform [4].

creep time-dependent slowly increased deformation
by material exposed to a mechanical load [21].

dissipation transformation of mechanical energy into heat [5].

orthotropy a material possess two or three symmetrical planes.

relaxation the applied stress on a specimen attached to a
device, decreases as a function of the time, i.e.
the strain is kept constant and the stress
decreases over time [21].

residual stress stress that remains in a material after the manufacturing.

rheology the study of deformation and flow of materials [4].

tensors are quantities that change in a particular manner
when the coordinate system is changed [22].

viscosity describing the flow-property of fluids, i.e. liquids
and gases, due to the inner friction of the fluid [21].

viscoelasticity a combination of elastic and viscous properties
of a material [21].
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1. Introduction

1.1. Background

Packages made from paper and plastics have many advantages compared to packages
made from other materials, e.g. paper and plastics are easy to manufacture and are
environment-friendly. A drawback is that beverage packages made of paper and plastic
materials stored for a long time, deform due to creep deformations, causing swelling of the
packages, which adopt the shape of a ”balloon”, shown in Figure 1.1. This phenomena is
called bulging. In the end the final customers, i.e. you and I, will think that the content
is fermented and will pick another package. Thus, the swelled packages will be rejected
and unsold.

As experimental creep tests require long time frames, it is important to be able to antici-
pate the creep behavior with a mathematical model. The FE-method is an excellent tool
in order to describe, understand, and predict the phenomena of creep.

Figure 1.1: Bulging of a beverage package.
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1.2. Objectives

The main objectives in this master’s dissertation are to investigate whether any of the
available creep models in the computer program ABAQUS are suitable for describing
bulging of a beverage package and to find experimental data to such a model. The work
in this thesis is divided into four subtasks:

• Literature study of creep in paper and plastics

• Perform a survey of available creep models in ABAQUS

• Experimental study of creep with various materials, loading and time scales

• Development and verification of a FE-model for simulation of creep in beverage
packages

The conclusive aim is to establish a material model, which would be applicable on various
Tetra Pak packages.



2. Beverage Packages

2.1. General Remarks

In this chapter some basic information about beverage packages are discussed. More in-
formation about the subject is given in [1].

Paper packages are usually filled with fluids, e.g. milk or water, but they may also
be filled with particles, i.e. food. The main part of the packages usually consists of paper
material, but also contains various types of other materials. The top of the package, for
example, sometimes consist of plastic material, e.g. Tetra Top. Tetra Pak manufactures
many different types of packages, the most common are presented in Figure 2.1.

Within Tetra Pak, several abbreviations are used for packages. TBA is one of these ab-
breviations, where the first letter T stands for Tetra. The second letter B, which stands
for Brick, defines the shaped geometry of the package. In this case, B says the package
is rectangular shaped. Other designations of the shaped geometry are P-Prisma and W-
Wedge. The last letter, A, indicates the package is aseptic, which means the filling and
sealing process make the content free from bacteria. Consequently, the product does not
need to be refrigerated. Thus, TBA is an abbreviation for Tetra Brick Aseptic. Other
names used are Tetra Base, Tetra Slim, and Tetra Square.

Figure 2.1: Tetra Pak packages, from left to right: Tetra Classic, Tetra Wedge, Tetra Rex,
Tetra Prisma, Tetra Brik, Tetra Fino, Tetra Top, PET bottles and EBM bottles [1].

3



4 CHAPTER 2. BEVERAGE PACKAGES

Packages with different properties are made to satisfy several types of customers. For
instance, TPA is developed as a more exclusive beverage package, unlike the low cost
version TFA, which is developed for the emerging markets. TWA packages are usually
made for small-portions of fluids and TBA is the most common ordinary package.

2.2. Materials in Packages

The material in a beverage package is a laminate that is organized in different layers.
Typically, the laminate consist of paper, polyethylene, and aluminium foil. Each layer
has specific properties. Paper consist of wood fibers, where the orientation depends on the
manufacturing process. Fibers have a tendency to be oriented in the Machine Direction,
shortened MD. The directions are illustrated in Figure 2.2, where CD is the cross-machine
direction and the Z-direction denotes the direction out of the MD-CD plane. These are
frequently used as the principal directions of paper. In almost every beverage package
made by Tetra Pak, MD is oriented in the vertical height direction.

The material composition of the laminate layers in the packaging material, are different
for each package. For instance, the layers in a package (from the inside to the outside)
may be: three layers of LDPE (Low Density Polyethylene), aluminium foil, LDPE, paper,
and finally an exterior surface of LDPE as shown in Figure 2.3.

Figure 2.2: The directions defining Machine Direction (MD), Cross machine Direction
(CD) and Z-Direction (ZD) [1].
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LDPE

Outside

LDPE

Paper

Aluminium foil

Film  LLDPE / LDPE

Inside

Figure 2.3: The layers of a laminate.

Since paper is the major material component of the package, the bulging is highly depen-
dent on the properties of the paper. To get a non-diffusive package and to protect the
content from light, a thin aluminium foil is used. The printing on the package is protected
by the outer polyethylene layer. This layer and the inner polyethylene layers protect the
paper from moisture. The intermediate polyethylene layer is gluing the aluminium foil
and the paper together.
During the manufacturing of the package, the paper is creased to simplify the folding of
the laminate. A crease is made by pressing a channel into the paper or board as the result
of a scoring or grooving operation [2]. The appearance of a crease is displayed in Figure 2.4.

Figure 2.4: Micrograph of the cross-section of a crease [1].
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2.3. Manufacturing of Packages

The process of manufacturing packages basically consists of six steps; printing, creasing,
lamination, forming, filling, and finally sealing. The first step, printing, gives the paper
material its final appearance. In the third step, the aluminium foil is laminated together
with the paper, glued by melted polyethylene. The complete material is produced by
applying the remaining two polyethylene layers. The folding, filling and sealing process
are made in the filling machine to complete the manufacturing of a beverage package. The
principle of the filling and sealing process of a package type TBA is shown in Figure 2.5.

Figure 2.5: The principal of the filling and sealing process of package type TBA [1].



3. Constitutive Models

3.1. General Remarks

This chapter presents a survey of the models describing the physical behavior of the
materials in the beverage packages. The time-dependent long-term properties of paper
and polymer may be modelled in several ways. In this chapter, a number of constitutive
models are investigated. An overview of the creep models available in the general purpose
FE-program ABAQUS, is also presented.

3.2. Linear Elastic Behavior

At pure elastic deformation the emerged stress depends merely on the imposed strain.
The storage of the strain energy supplied to the material, is recovered when the material
is relieved, i.e. the elastic deformation is reversible.

As long as the elastic deformation is sufficiently small, a linear constitutive description is
suitable. In a cartesian coordinate system (x1, x2, x3), the linear constitutive equation for
a infintesimal strain εkl can be formulated according to

σij = Dijklεkl (3.1)

where summation convention is used and the elastic tensor Dijkl is a symmetrical fourth
order tensor [3]. The so-called summation convention in index notation claims that if an
index is repeated twice, then summation over this index is performed. The corresponding
equation in matrix notation, is convenient for calculations and takes the following form

σ = D · ε (3.2)

where D, is the flexibility matrix describing the elasticity and is for elastic materials a
symmetrical matrix. For an anisotropic material (non-symmetric material), the dimension
of D is 6×6 with 21 independent material constants.
In order to obtain an expression suitable to interpret the experimental data, simply invert
the Eq. (3.2) and the inversion yields

ε = C · σ (3.3)

where C = D−1 denotes the stiffness matrix [19].

7



8 CHAPTER 3. CONSTITUTIVE MODELS

Ordinary materials, usually consists of a couple of internal symmetries. Therefore, a
number of irrespective components is reduced in the elastic matrix. For a linear isotropic
pure elastic material, the general constitutive equation Eq. (3.1), may be written as

σij =
(

K − 2

3
G
)

εkkδij + 2Gεij (3.4)

where δij is Kroneckers delta [3]. The bulk modulus (K) describes the volumetric change
of the material exposed to a hydrostatic pressure. Further, the shear modulus (G) corre-
sponds to the change of shape. At uniaxial tensile load in the x1-direction, the following
relation between stress and strain is obtained

σ11 = Eε11 (3.5)

where E denotes the modulus of elasticity [3].

3.3. Creep

Creep can be defined as a progressive increase of strain in a material exposed to a con-
stant load, observed over an extended period of time. The three types of dynamic tests
are creep, recovery, and stress relaxation. Creep tests involve a sample with a set weight
and observation of the strain change over time. Recovery tests look at how the material
relaxes once the load is removed. Stress relaxation is the inverse of creep: a sample is
held at a set length and the force it generates is measured [4].

A typical time-dependent material at constant load obtains the appearance in Figure 3.1
[5]. The curve can be divided into three regions. In the primary region the initial strains
appears instantaneous with the load and the strain rate (dε/dt) decreases. Even though
the load is constant in the secondary region, the deformation continues to increase. The
main part of the creep deformation occurs in the secondary region. Eventually, in the
tertiary region, the strain rate increases until the material reaches the failure stress.

Creep can be modelled in different ways, for example, by the aid of viscoelasticity. How-
ever, another approach is to modelling creep-strains, i.e. summarize the elastic strain rate
with the creep strain rate.

3.4. Viscoelasticity

The theory of viscoelasticity is suitable on bodies which both exhibit elastic and viscous
effects, i.e. simultaneous storage of interior energy and dissipation at deformation [5].
When the deformation is irreversible, the mechanical energy supplied to the material, is
transformed (dissipated) into heat [3]. Normally, the transformation requires a certain
amount of time and cannot occur instantaneous, as a time-independent plastic deforma-
tion.
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Figure 3.1: A creep curve divided into three regions.

If a material exhibits a combination of elastic and viscous behavior, the relation between
stress and strain can not be prosperous described with material constants. Hence, the
material behavior must be described by time-dependent material functions. At a general
constitutive formulation, the stress becomes a functional of the strain, i.e. depending on
the entire strain history. Thus, the stress at a given time is dependent on all previous
moments [3].

At a certain time, the strain of a linear viscoelastic material increases linearly with the
stress, contrary to a non-linear viscoelastic material, as presented in Figure 3.2 [6]. When
the strains exceeds the proportional limit, the behavior becomes non-linear viscoelastic
[8].

3.4.1. Maxwell and Kelvin-Voigt

To conveniently describe the viscoelastic material behavior, mechanical models are re-
quired. Hereby, the governing differential equations can be visualized. Even though these
models occasionally yields a verbose description of the macroscopic material behavior, it
is important to underline the models do not reflect the mechanism governing the molec-
ular or atomic interaction [3].

The two simplest constitutive equations for modelling viscoelasticity are the Maxwell
and the Kelvin-Voigt models. The mechanical properties of a material that exhibits lin-
ear viscoelasticity can be illustrated by a model consisting of a Hookean spring and a
Newtonian dashpot, as shown in Figure 3.3.
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Linear viscoelasticity
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Non-linear viscoelasticity
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t = t3

t = t2

t = t1

Figure 3.2: Isochronous curves, a linear viscoelastic material to the left and a non-linear
viscoelastic material to the right [6].

Figure 3.3: (a) Spring with stiffness E, (b) damper with viscosity η.

The established stress in the Hookean spring equals the modulus of elasticity multiplied
by the elastic strain as

σe = Eεe (3.6)

while in the Newtonian element, the stress equals the viscosity multiplied by the strain
rate as

σv = ηε̇v (3.7)

where superscripts e and v denote the elastic and viscous behavior, respectively. More-
over, a dot denotes the time derivative, i.e. the strain rate ε̇v=dεv/dt [7].

The combination of these two elements forms more complex mechanical models, which
depict a viscoelastic material behavior. In this consistency, the Maxwell element is one of
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Figure 3.4: A Maxwell element, consisting of a spring and a dashpot in series.

the most ordinary models. Figure 3.4 depicts a single spring and a dashpot in series.

When two elements connected in series are loaded, they will obtain the same stress. To
achieve the total strain, the strain in the spring and damper are summarized. Thus, a
connection between the stress and strain is expressed

sε̃(s) = L
{

dε(t)

dt

}

= L
{

1

E

dσ(t)

dt
+
σ(t)

η

}

=

(

s

E
+

1

η

)

σ̃(s) (3.8)

⇐⇒

ε̃(s) =

(

1

E
+

1

sη

)

σ̃(s) (3.9)

Hence, the retardance for the Maxwell-element is obtained

ŨM(s) =
1

E
+

1

sη
(3.10)

In a similar manner, the relaxance is displayed

Q̃M(s) =
EτMs

1 + τMs
(3.11)

where the relaxation-time τM =
η

E
[3].

Apart from the Maxwell element, another simple model is the Kelvin-Voigt, shown in
Figure 3.5, where the elements serve as a pair in parallel.
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Figure 3.5: A Kelvin-Voigt element consisting of a spring and a dashpot in parallel.

When the system is loaded, the elements in pair obtain the same strain, whereas the total
stress is the sum of the stress in the spring and the damper. Laplace transformation yields

σ̃ = L{σs(t) + σd(t)} = L
{

Eε(t) + η
dε(t)

dt

}

= (E + ηs)ε̃(s) (3.12)

From the equation above, the relaxation of the Kelvin-Voigt element is obtained

Q̃kv(s) = E + ηs (3.13)

The retardation is given by

Ũv(s) =
1

E(1 + τvs)
(3.14)

where, the retardation time equals τv =
η

E
[3].

3.4.2. Isochronous and Isometric curves

Isochronous stress-strain curves and isometric stress-time curves can be obtained from
creep curves at different stress levels. Isochronous curves are constructed from cross
sections in the creep curves at different times, as shown in Figure 3.6 and isometric curves
are made from cross sections at different strains, presented in Figure 3.7. These curves
are very useful for characterizing the viscoelastic behavior of a material [8].

3.4.3. Stress and Relaxation

Stress relaxation is defined as the time-dependent reduction of stress at a constant strain.
If a constant strain, ε0 is applied to a specimen, we can investigate the decay of the stress
σ(t) over time, as displayed in Figure 3.8.
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Figure 3.6: Construction of isochronous curves from creep curves [8].

Figure 3.7: Construction of isometric curves from creep curves [8].

For a linear viscoelastic material, the stress relaxation modulus may conveniently be ex-
pressed as E(t)=σ(t)/ε. In order to obtain an equilibrium value where the stress and the
stress relaxation modulus are constant, i.e. σ(t) ≈ σ∞ and E(t)≈ E∞, the material must
be kept under strain for a sufficiently long time.

The relaxation curve can be described as a distribution of relaxation times. For a linear
viscoelastic material, the relaxation modulus E(t), is expressed below in terms of a relax-
ation function E(τ)

E(t) = E∞ +
∫

∞

0

E(τ)e−t/τdτ (3.15)

where τ is the relaxation time.
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Strain
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Time

Figure 3.8: Stress relaxation of a viscoelastic material. The strain is kept constant and
the stress decays over time [8].

We may facilitate the relaxation modulus through a Dirichlet series

E(t) = E∞ +
∑

i

Eie
−t/ti (3.16)

where Ei and ti are constants.

Since straining cannot be performed at infinite speed, it takes a certain time t0 to reach
the deformation during a relaxation experiment. If the strain is constant, the relaxation
modulus is expressed by the relation

E(t) = E∞ +
∫

∞

0

E(τ)e−t/τ τ

t0
(et0/τ − 1)dτ (3.17)

where t is the total elapsed time [8].

3.4.4. Creep Curves

In order to give an illuminating exposition of an arbitrary creep curve for a polymeric
material, the appearance in Figure 3.9 is considered. The rapid response of the initial
deformation is displayed as the portion O to A in the creep curve, i.e. increment a. This
is followed by a region of creep, A to B, where the strain rate decreases to a constant
rate introduced in section B to C. Once the stress is removed, the instantaneous elastic
response O to A is fully recovered from C to D, i.e. the distance a’=a. Then the curve
drops from D to E in a slower recovery. However, this recovery is never completed, due
to the initial state by the increment c’=c. This response is completely non-recoverable
and a measure of the plastic flow [9].
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Figure 3.9: The appearance of a creep curve: a, initial elastic response; b, region of creep;
c, irrecoverable plastic flow [9].

The elastic response reproduces the changes a and a’ in Figure 3.9. A convenient element
to model this response is the Hookean spring. The Kelvin-Voigt model corresponds to the
changes b and b’ in the region of creep. Eventually, a dashpot represent the plastic flow
of the changes c and c’. To understand the appearance of the creep curve, the following
mechanical models in Figure 3.10 may be useful.

The model is an assembly of a Maxwell element and a Kelvin-Voigt element, where the
components of the latter are time-dependent. In Figure 3.10 (i) the system is at rest.
When exposed to the stress σ, Figure 3.10 (ii), the spring E1 of the system extends in-
stantaneous to the amount of σ/E1=a. Then, in Figure 3.10 (iii), the creep rate decreases
with a gradually increase of load-carrying in the spring E2, until it is completely extended
and the dashpot η2 no longer carries any load. As the spring E2 now is fully extended, the
creep rate switches to a constant phase, corresponding to the plastic flow in the dashpot
η3. The dashpot is deformed until the load is removed, illustrated in Figure 3.10 (iv).
Now, the spring E1 rapidly retreats (a’) and the recoverable period ensues (b’). During
this time, the dashpot η2 is forced to retract to its initial position by the spring E2. The
position of the dashpot η3 will remain in the extended state, since no spring can influence
its position, Figure 3.10 (v). Thus, the non-recoverable plastic flow c’=σt/η3 is depicted
by the dashpot η3 [9].
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Figure 3.10: Use of mechanical models to describe the creep behavior of a polymeric ma-
terial [9].

3.4.5. Boltzmanns Superposition Principle

The linearity in creep experiments can advantageously be expressed by the Boltzmann
superpositions principle, which represents the linear viscoelastic behavior. Despite the
application of stress or strain, which may cause a time-dependent response, each incre-
ment of stress or strain contributes to the final deformation. By simple addition of each
contribution, the final deformation can be obtained [11]. An elementary derivation of
Boltzmanns superpositions integral is

ε(t) = σ0D(t) + (σ1 − σ0)D(t− u1) + . . .+ (σi − σi−1)D(t− ui) (3.18)

where the quantity D(t), is the creep compliance defined as D(t)=ε(t)/σ, i.e. the transient
strain per unit stress [12]. A more facilitated expression is

ε(t) =
n
∑

i=1

σiD(t− ui) (3.19)

Equation (3.19) can in integral form be written as

ε(t) =
∫ t

−∞

∂σ(u)

∂u
D(t− u)du (3.20)

In order to describe the creep compliance D(t) of a linear viscoelastic material, the retar-
dation function D(τ) may be established

D(t) = Di +
∫

∞

0

D(τ)(1 − e−1/τ )dτ (3.21)

where τ is the retardation time and Di is the instantaneous elastic compliance [8].

However, the following requirements must be fulfilled:
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1. The compliance is independent of the applied stress.

2. The elongation due to a certain load is independent of the elongation due to a
previous load [11].

3.4.6. Schapery’s Model

To model non-linear viscoelastic creep, more advanced models must be utilized. The non-
linear viscoelastic creep model for uniaxial loading derived by Schapery may be written

ε(t) = g0A0σ + g1

∫ t

0

∆A (ψ − ψ′)
dg2σ

dτ
dτ (3.22)

where A0 is the initial component and ∆A (ψ − ψ ′) is the transient component of the
linear viscoelastic creep compliance. The definition of the reduced time ψ is

ψ = ψ(t) =
∫ t

0

dt′

aσ

(3.23)

and

ψ′ = ψ(τ) =
∫ τ

0

dt′

aσ

(3.24)

From the equations (3.22),(3.23), and (3.24) the parameters g0, g1, g2, and aσ are functions
of the stress, σ. Moreover the material parameter aσ is also a function of temperature
and humidity [13]. For loading in the linear region, the material functions obtain a value
of 1, according to Schapery. Thus, the Boltzmanns superpositions principle is employed
[6]. In literature [14], it is shown that a creep model built on Schapery’s theory, is well
suited for small deformations in paper materials.

3.5. Modelling Creep-strains

Another way to modelling creep is to summarize the elastic strain rate with the creep
strain rate, i.e.

˙̄ε = ˙̄ε
e
+ ˙̄ε

cr
(3.25)

In the FE-program ABAQUS, there are a number of creep models based on viscoelasticity.
However, these cannot model the orthotropic behavior of paper.

A suitable model for isotropic or orthotropic creep is the power-law model, which is
quite appealing for its simplicity. However, the range of application is restricted. The
power-law creep model consists of two versions of hardening, namely time-hardening and
strain-hardening. The first and simplest one is convenient when the applied load is con-
stant. The strain-hardening version is suitable under fluctuating load. Moreover, rela-
tively low stress holds for either version of the power-law.

If the achieved stress in the material widely exceeds the yield stress, the hyperbolic-
sine creep law is applicable. However, if the load is cyclic, neither the power-law nor the
hyperbolic-sine creep law are adequate [15].
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3.5.1. Power-law Model

In the time-hardening form, the uniaxial equivalent creep strain rate ˙̄ε
cr

depends on the
uniaxial equivalent deviatoric stress q̃ and the total time t, i.e.

˙̄ε
cr

= Aq̃ntm (3.26)

where A, n, and m are functions of the temperature, that need to be determined by
experiment. For physically reasonable behavior, A and n, must be positive and -1< m ≤
0. The value of A, may be very small for typical creep strain rates. However, if A is less
than 10−27, numerical difficulties can cause errors in the material calculations [15]. The
parameters is presented in Tab. 3.1.

Table 3.1: Example of numerical values fetched from the ABAQUS Online Documentation
[15].

ABAQUS
A > 10−27

n > 0
m -1< m < 0

The material is defined as isotropic or orthotropic. The parameter q̃, then corresponds to
the Mises equivalent stress and the Hill’s orthotropic deviatoric stress, respectively.

Since the load is constant and the stress is consistently less than the yield stress, the
power-law model in the time-hardening form, is the most suitable for simulating paper of
the creep laws available in ABAQUS. Therefore, no exposition is carried out of the other
laws.

3.5.2. Orthotropic Creep

For materials that exhibit different creep behavior in different directions, orthotropic creep
is applicable in conjunction with the *CREEP option. To be able to model orthotropic
creep in ABAQUS, Hill’s function is conveniently used

q̃(σ) =
√

F (σ22 − σ33)2 +G(σ33 − σ11)2 +H(σ11 − σ22)2+

+2Lσ2
23 + 2Mσ2

31 + 2Nσ2
12 (3.27)

where q̃(σ) is the equivalent stress and F, G, H, L, M, and N, are constants extracted
from experimental tests made in various directions of the material, defined as
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F =
1

2

(

1

R2
22

+
1

R2
33

− 1

R2
11

)

G =
1

2

(

1

R2
33

+
1

R2
11

− 1

R2
22

)

H =
1

2

(

1

R2
11

+
1

R2
22

− 1

R2
33

)

L =
3

2R2
23

M =
3

2R2
13

N =
3

2R2
12

(3.28)

The variables R11, R22, R33, R12, R13, and R23, are orthotropic creep stress ratios, which
the user must define in each direction [15]. However, the variables cannot be chosen
arbitrarily. The yield surface in the deviatoric stress plane must be a closed surface.
Thus, the following constraint is established.

4

R2
11R

2
22

>

[

1

R2
33

−
(

1

R2
11

+
1

R2
22

)]2

(3.29)

This inequality restricts the degree of orthotropy for which application of Hill’s criterion
is permissible [16].

To model orthotropic creep, the *POTENTIAL option in ABAQUS is used to specify
the stress ratios appearing in Eq. (3.28). When the creep strain rates are the same in
all directions, Rij describes the quotients between the current stresses and the equivalent
stress, i.e.

R11 =
σ11

q̃
, R22 =

σ22

q̃
, R33 =

σ33

q̃
,

R12 =
σ12

q̃/
√

3
, R13 =

σ13

q̃/
√

3
, R23 =

σ23

q̃/
√

3
(3.30)

The ratios are either constants or functions of the temperature. If the Rij values are set
to unity, isotropic creep is obtained [15].

3.5.3. Creep Models Available through Subroutines

A material model for simulating orthotropic creep behavior, is the model introduced in
literature [17]. This model was originally made for describing creep in wood but may also
be applicable on paper, since both paper and wood are fibrous orthotropic materials.
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Based on the superpositions principle where each increment of stress contributes to the
final deformation, see Boltzmann superpositions principle Eq. (3.19), the creep strain is
given by

ε̄cr =
∫ t

0

C̄c(t, t
′)
dσ̄(t′)

dt′
dt′ (3.31)

where C̄c(t, t
′) is the creep compliance matrix for the orthotropic directions and σ̄(t′) is

the local stress vector. Consider a constant stress applied at the time t’, i.e. σ(t) =
σΘ(t − t′), Eq. (3.31) shows that the creep strain is proportional to the stress, because
ε(t) = Cc(t

′)σ(t′). A suitable definition of the relative creep is the ratio φ = εc/εe, i.e.
the quotient of the creep strain and the elastic strain. The step function φ(t− t′) obtain
a value of 1 when (t-t’)≥0 and 0 when (t-t’)<0. Hence, the creep compliance matrix
C̄c(t, t

′) for an orthotropic material takes the form

C̄c(t, t
′) =























1

El

φσl
−νrl

Er
φνrl

−νtl

Et
φνtl

0 0 0

−νlr

El

φνlr

1

Er
φσr

−νtr

Et
φνtr

0 0 0

−νlt

El

φνlt
−νrt

Er
φνrt

1

Et
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0 0 0

0 0 0 1

Glr

φτlr
0 0

0 0 0 0 1

Glt

φτlt
0

0 0 0 0 0 1

Grt
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(3.32)

where the relative creep functions φσl
, φσr

, and φσt
, depend on constant uniaxial tensile

stress in the respective orthotropic directions. Further, φτlr
, φτlt

, and φτrt
, correspond to

the relative shear functions due to constant shear stress in respective orthotropic plane.
Finally, φνrl

, φνlr
, φνtl

, φνlt
, φνtr

, and φνrt
, denote the relative Poisson’s creep function due

to uniaxial tensile stress in the respective orthogonal directions.

For plane stress considered, the compliance matrix C̄c(t, t
′) can be reduced to

C̄c(t, t
′)ps =









1

El

φσl
−νrl

Er
φνrl

0

−νlr

El

φνlr

1

Er
φσr

0

0 0 1

Glr

φτlr









(3.33)

Because the compliance matrix is symmetric, the requirement φνrl
=φνlr

, φνtl
=φνlt

, and
φνtr

=φνrt
must be fulfilled. This means when plane stress is adopted, four functions

describe the viscoelastic behavior. These functions must be calibrated by experiment.



4. Material Behavior of Paper and

Polymers

4.1. General Remarks

In order to formulate a suitable FE-model, based on creep, a profound knowledge of the
material behavior of the various materials in a beverage package is required.
This chapter presents an overview of the laminate structure, material directions, and
mechanical properties of paper and polymers.

4.2. Paper

Paper is a bonded, layered network of randomly arranged short fibers lying mainly in
the plane of the sheet [18]. The average length of the fibres exceeds the thickness of the
web, which results in a more or less pronounced two-dimensional network. Paper may be
considered as a homogenous multiphase composite, comprised of fibres, moisture, voids,
and chemical additives [14].

The material behavior of paper is to a large extent anisotropic, i.e. the material exhibit
various properties of the principal directions of paper. With three orthogonal symmetric
planes, the paper material is designated as orthotropic.

In comparison to the MD, the tensile stiffness in the CD is half of the stiffness, and
in the ZD the magnitude is commonly two orders lower than in the MD [14]. In Fig-
ure 4.1, the mutual relationship of MD and CD is shown. At the same stress level, the
creep-rate of paper is considerably higher in the CD than in the MD.

The behavior of paper may be considered as linear and orthotropic in the elastic region.
To describe the linear elastic behavior of paper, the following assumptions are made [19]

1. The material is homogenous and uniform.

2. The material is orthotropic.

An orthotropic material consists of three symmetrical planes with differing material prop-

21
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Figure 4.1: Stress-strain curves for paper in MD and CD [14].

erties. Hooke’s law, Eq. (3.3), for an orthotropic material becomes





















ε11
ε22
ε33
γ23

γ13

γ12





















=























1

E1

−ν21

E2

−ν31

E3

0 0 0

−ν12

E1

1

E2

−ν32

E3

0 0 0

−ν13

E1

−ν23

E2

1

E3

0 0 0

0 0 0 1

G23

0 0

0 0 0 0 1

G13

0

0 0 0 0 0 1

G23











































σ11

σ22

σ33

τ23

τ13

τ12





















(4.1)

where the normal strains ε and the shear strains γ, relates to the normal stresses σ and
the shear stresses τ . However, it can be shown that this matrix is symmetric, if the strain
energy is independent of the loading path. Symmetry emerges when

ν21

E2

=
ν12

E1

;
ν31

E3

=
ν13

E1

;
ν32

E3

=
ν23

E2

(4.2)

The in-plane parameters describe the behavior in the MD-CD-plane and ZD is the out-of-
plane direction. In this study, the index 1 denotes the MD, index 2 denotes the CD and
the index 3 denotes ZD. Consider a material exposed to an uniaxial stress state, σ11 6= 0,
then the following is obtained

ε22
ε11

= −ν12

ε33

ε11

= −ν13 (4.3)

and similar for σ22 6= 0
ε11
ε22

= −ν21

ε33

ε22

= −ν23 (4.4)
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while for σ33 6= 0
ε11
ε33

= −ν31

ε22

ε33

= −ν32 (4.5)

In order to calculate Poisson’s ratios, these relations are useful. However, these equations
are general and do not require symmetry of the D matrix [19].

4.2.1. Mechanical Properties of Paper

In accordance with other polymerical materials, the mechanical properties of paper are
strongly moisture- and time-dependent. For an increase in moisture content the elastic
stiffness reduces markedly. The time-dependency results in viscoelasticity, and creep, and
in combination of moisture changes, mechano-sorptive creep. The time-dependent mate-
rial behavior of paper, generally demands a non-linear constitutive model. Despite the
absence of an established theory of non-linear material behavior, several models built on
linear pure viscoelastic assumptions have been suggested. In numerous studies, it has
been shown that many cellulosic materials have a non-elastic viscoelastic behavior. The
interaction of load and moisture content in paper can cause many practical problems,
even under constant load [20].

4.2.2. Mechano-Sorptive Creeping

Paper exposed to a variable relative humidity and to a constant load, exhibits an acceler-
ated creep. This phenomena is called mechano-sorptive creep. The mechanical response
of paper, due to loading, differs substantially from a constant relative humidity environ-
ment, to a cycled relative humidity climate.

The results of three tensile creep tests, tested with equal loading and various moisture
conditions, are shown in Figure 4.2.

The first test was made at a constant moisture level of 30% RH, the second at a constant
moisture level of 90% RH, and the third, the RH was cycled between 30% and 90%, at
a rate of 1% RH/min through four full cycles. In the latter, the load was applied at
the initiation of cycling. In Figure 4.2, the acceleration in creep, due to the variation in
relative humidity, is shown together with the creep curves for constant moisture conditions
[20].

4.3. Polymer

Polymers are either synthetic or natural, usually organic substances, which are built up
by chains of molecules. These consist of smaller molecules called monomers [21].
A polymeric material is in most cases either amorphous or partly crystalline. For low
temperatures, amorphous polymers, constitued of plastic, are vitreous and the chains
immobile. When heating an amorphous polymer to glass transition temperature Tg, the
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Figure 4.2: Moisture accelerated creep under a variable relative humidity [20].

chains begin to coordinate large-scale motions and after a time, the polymer (the plastic)
turns viscous and formable. The material behavior of polymers is isotropic, i.e. the prop-
erties are the same in all directions. Thus, the material parameters ν and E are sufficient
to describe the constitutive relations.

In Figure 4.3, a typical stress-strain curve for a polymeric material is shown. In the
linear region, the material behavior is linear elastic and in the non-linear region, the ma-
terial turns plastic and eventually, reaches the failure stress.

With a pronounced temperature-dependent behavior, the polymers become less brittle
with the increase of temperature [4]. Further, as the temperature increases, the elongation
generally increase, whereas both the yield strength and rigidity decrease [9].

4.3.1. Mechanical Properties of Polymers

Polymers generally possess a viscoelastic behavior, i.e. the mechanical properties are
time-dependent. Neither the Maxwell or the Kelvin-Voigt model alone can reproduce the
creep behavior of polymers. Instead, a proper model is the four-element model shown in
Figure 3.10.
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Figure 4.3: Generalized stress-strain curve for polymerical material [4].
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5. Material Characterization

5.1. General Remarks

This chapter presents a survey of the various experiments needed to develop a suitable
FE-model, for simulation of bulging. The tests performed in this study, determined the
modulus of elasticity of paper, and, creep tests of paper, laminate (the package material),
aluminium, and polymers were carried out. Further, the stiffness and residual moment
of the creases were determined by experiment, and finally, a bulge test determining the
change in shape of a package was performed, used as a verification model.

Only tensile creep tests were performed on the materials. Since the stored package is
subjected to forces from the internal pressure of the liquid only, creep due to compressive
forces was neglected in the tests. However, creep due to shearing forces may develop in
the package, but was not tested experimentally.

During the performed literature study of creep in paper and plastics, it was hard to
find other sources of information, regarding tensile creep test. Therefore, experimental
tests were performed at the Div. of Structural Mechanics, LTH. However, some of the
experimental tests presented in this study were obtained from Tetra Paks study of creep
at SP Bor̊as.

5.2. Determination of the Modulus of Elasticity in Paper

Two different methods, Alwetron and Instron were utilized to determine the modulus
of elasticity (MOE). The method-Alwetron gives merely a value of the MOE, therefore,
method-Instron is needed to obtain a complete stress-strain curve.

5.2.1. Experimental Method-Alwetron

All tests, according to method-Alwetron, were performed in the Paper Laboratory at
Tetra Pak. To determine the modulus of elasticity of paper, a standardized test method
used by Tetra Pak was employed. In this method, the paper specimens were mounted
to a tensile-strength machine, manufactured by Alwetron TH1, displayed in Figure 5.1.
Further, 10 specimens were cut out from each of the MD- and CD-direction with a length
of 140 mm and a width of 15 mm from several sheets of paper, (taken from various parts
of the paper-roll). Before cutting out the samples, the paper were dried for 30 minutes in
an oven and then stabilized at the ambient climate of 23◦C and RH 50%. To include the

27
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Figure 5.1: The tensile testing machine.

variation of the material behavior, the specimens were sampled from various locations of
the paper-roll. The specimens were tested at a constant strain rate of 10 mm/min in MD
and 20 mm/min in CD, until failure occurred.

5.2.2. Results

The result data from the machine was based on stiffness per meter and to determine the
MOE, the results were divided by the thickness of the paper. The average thickness was
determined to 0.395 mm by the L&W Micrometer 51 device, shown in Figure 5.2. The
modulus of elasticity was determined as mean values of ten tests in each direction to 5121
MPa in MD and to 2670 MPa in CD.

5.2.3. Experimental Method-Instron

The complete stress-strain curve of the paper material, was not available by using the
Alwetron tensile test machine. Therefore, a uniaxial tensile test was performed to obtain
the full stress-strain curve by aid of an Instron 4400R device, shown in Figure 5.3.

Specimens with a width of 15 mm and a length of 140 mm were tested in uniaxial stress-
state at a strain rate of 1 mm/min. The paper strips were loaded to failure. For each
material direction, one test was made and the obtained curves are shown in Figure 5.4
and Figure 5.5.
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Figure 5.2: Thickness measurement device L&W Micrometer 51.

Figure 5.3: A uniaxial tensile test set-up in an Instron 4400R device.

5.2.4. Results

On the basis of the force-displacement curves, the MOE can be determined, from the
initial slope of the curve in the elastic region. Further, the stress was calculated as the
imposed load divided by the area of the cross-section and the strain as the displacement
of the load cell divided by the initial length. The MOE was determined in this way
in MD to 3353 MPa and to 1434 MPa in CD. These values are considerable lower in
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Figure 5.4: Displacement versus load in MD determined by use of the Instron 4400R
device.

Figure 5.5: Displacement versus load in CD determined by use of the Instron 4400R
device.

comparison to the values determined in method-Alwetron. In comparison to previous test
result in literature [19], the higher values of the modulus of elasticity, as determined by
method-Alwetron, are assumed to give more accurate values.

5.2.5. Summary

An comparison of the modulus of elasticity determined by the method-Alwetron and the
method-Instron, is shown in Tab. 5.1.
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Table 5.1: The modulus of elasticity as determined by the method-Alwetron and the
method-Instron, respectively.

Material direction Method-Alwetron Method-Instron
MD [MPa] 5121 3353
CD [MPa] 2670 1434

5.3. Determination of the Creep Behavior of Paper

5.3.1. Experimental Method

Strips of paper were cut out from sheets, taken from various parts of a large paper-roll.
The width of the paper strips were 10 mm and the fixed length was set to 120 mm. The
specimens were placed in a controlled climate at 23◦C and RH 50%. As the mass of the
paper strips varies with the moisture content, the specimens were weighed at certain in-
tervals, to determine whether the specimens were in equilibrium with the ambient climate.

In order to get a picture of the variability in creep of the paper material, at least two tests
at each load-level were performed, in the MD- and CD-directions, respectively. To deter-
mine the stress dependence of the creep rate, the specimens were exposed to a stress-level
of 5-10 MPa, defined by Tetra Pak. Therefore, the corresponding load-levels were 20 N,
40 N, and 50 N. The load-levels correspond to the stress-levels of 5 MPa, 10 MPa, and
12.5 MPa, respectively.

As can be seen in Figure 5.6, the strips were clamped in the upper end, while the other
end was loaded with weights of 2 kg, 4 kg, or 5 kg. The fixing was made with sand paper
glued to the inside of two brackets, clamping the specimen. The weight, was lying on
a dial gauge, which registered the displacement of the specimen. To prevent the weight
from pendulate, a tiny hole was drilled in the weight, where the top of the dial gauge was
inserted. Before loading, strings were mounted between a crane and the weight to keep
it still and to prevent the specimen from being loaded. The loading was made by simply
lowering the crane. The specimens were allowed to creep for two weeks and the dial gauge
was read periodically, frequently in the beginning and more rarely in the end, due to the
logarithmic behavior of the creep.

5.3.2. Results

The measurement results are shown in Figure 5.7 and Figure 5.8. The graph labelled TP,
was obtained data from Tetra Pak, the other curves were performed at LTH. Further, the
stress-levels of 12.5 MPa, 10 MPa, and 5 MPA correspond to the loads of 50 N, 40 N, and
20 N, respectively.

For tests with low creep rate, the influence of the sources of error becomes more notice-
able. The discrepancy of the 10 MPa creep curves shown in Figure 5.7, depends likely
on the variable material behavior of paper. It hardly seems probable that the paper strip
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Figure 5.6: Creep test set-up of paper.
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Figure 5.7: Results of creep tests of paper in MD.
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Figure 5.8: Results of creep tests of paper in CD.

has slipped in the fixing. The elapsed time of the various creep experiment varies, due to
external circumstances.

It is of great interest to know how the paper is creeping. Therefore, the elastic part
is withdrawn from the creep curves shown in Figure 5.9 and 5.10. An increase of the
load-level varies non-linearly with the creep deformation. An increase from 5 MPa to
10 MPa, results in double the creep deformation in MD. In CD, an increase from 5-10
MPa gives a creep deformation more than three times larger. The creep deformation is
approximately four to six times larger in CD, than in MD.

5.4. Determination of the Creep Behavior of Laminate

5.4.1. Experimental method

Similar to the tests made on plain paper, creep tests were carried out for the entire lam-
inate in Figure 2.3. The load-levels of 40 N and 50 N, correspond to the stress-levels of
10 MPa and 12.5 MPa, respectively.

Unlike the creep tests of paper, four laminate strips were allowed to creep for six weeks,
instead of two weeks.
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Figure 5.9: Creep of paper in MD without the elastic part.
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Figure 5.10: Creep of paper in CD without the elastic part.

5.4.2. Results

In Figure 5.11 and 5.12, it is obvious that an increase of the load varies non-linearly with
the elastic + creep deformation. The elastic + creep deformation is approximately three
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Figure 5.11: Results of creep tests of laminate in MD.

times larger in CD, in comparison to MD. Further, an increase from 10 MPa to 12.5 MPa,
corresponds to an increase of 60 % of the elastic + creep deformation in CD. In MD,
that kind of comparison is useless, due to the 10 MPa curve on top, which probably is
caused by the material spreading or some errors made in the measurement. Within this
thesis, there is no room for an investigation of the possible sources of error. Therefore,
the results are not ignored.

5.5. Determination of Creep Behavior of Aluminium

Although the aluminium layer in the laminate is very thin, it contributes significantly
to the overall stiffness, due to its high modulus of elasticity. The creep of the laminate,
compared to plain paper, may be reduced if the creep of the aluminium is low. In order to
consider the creep of aluminium, the time-dependent deformation must be experimentally
determined. Due to the experimental cost, only two tests could be performed.

5.5.1. Experimental Method

The creep tests of aluminium was made similar to the tests made on paper and laminate,
described in Section 5.3 and 5.4. Strips from an aluminium foil were cut out with a width
of 20 mm. However, the thickness of 9 µm used in the laminate, was too thin and difficult
to handle, therefore, a 14 µm foil was utilized. Instead of using weights, the specimen was
mounted in to a MTS (Material Test System) uniaxial tensile device, in the Structural
Mechanics laboratory, shown in Figure 5.13.
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Figure 5.12: Results of creep tests of laminate in CD.

The free measuring length was approximately 140 mm and the test was made with two
load levels of 14 N and 20 N, corresponding to 50 MPa and 71 MPa, respectively. As
the aluminium is highly temperature-sensitive with a coefficient of linear heat expansion

Figure 5.13: Creep test set-up of aluminium in a MTS.
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Figure 5.14: Creep of aluminium, at the load-levels of 14 N and 20 N.

of 2.4·10−5/K, the ambient climate in the testing room was stabilized at 23◦C and RH
50%. The load cell and the piston position sensor was connected to a computer, which
registered the time, the displacement, and the load.

5.5.2. Results

The following creep curves shown in Figure 5.14 were obtained. Due to a break of the
MTS, a perturbation of the 71 MPa graph occurred.

An increase of the stress-level of 50 MPa to 71 MPa, results in double the elastic +
creep deformation. Therefore, it can be stated that the increase of the load varies non-
linearly with the elastic + creep deformation. Moreover, the higher the stress, the slower
the curvature.

5.6. Determination of the Creep Behavior of Polymer

5.6.1. Experimental Method

A tensile-test device DMA 2980 shown in Figure 5.15, was used for the determination
of the creep behavior of the polymer, found in the top of the package. DMA stands for
Dynamic Mechanical Analyzer. The tests were performed in the Polymer Laboratory at
Tetra Pak R&D AB.
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Figure 5.15: The DMA 2980 testing machine.

In Figure 5.16, a specimen of the polymer HDPE (High Density Polyethylene) material
with a thickness of 0.325 mm, a width of 6.3 mm and a free length of 9.9 mm is shown.
The specimens were exposed to an arbitrary chosen constant load of either 10 N or 18 N,
corresponding to 4.5 MPa and 8 MPa, respectively. For each load-level, two experiments
were performed.

Figure 5.16: A HDPE specimen clamped in the DMA testing machine.
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Figure 5.17: Creep tests of polymer, performed by a tensile test device DMA 2980, at a
constant load of either 10 N or 18 N over time.

5.6.2. Results

In Figure 5.17, the creep of the polymer is presented. The elapsed time of the tests per-
formed, varies due to limited access to the DMA 2980 device. The 10 N tests were allowed
to creep for approximately three days and the 18 N tests for about six days. The variabil-
ity of the curves might be caused by gliding in the fixing, the variable material behavior
of the polymer, or the fact that the thickness of the specimens varied (0.310-0.330 mm).

An increase of the stress-level of 4.5 MPa to 8 MPa, increases the elastic + creep de-
formation by a factor of four to six. The higher the load, the slower the curvature.

5.7. Determination of the Residual Moment of Creases

5.7.1. Experimental Method

To model the behavior of the creases in a package, the stiffness and the residual moment
of the creases need to be determined. The residual moment, i.e. the moment that remains
in the material after the manufacturing of the package.

Strips of 25 mm in width were cut out from a sheet of laminate, which contained a
number of creases. The laminate was stabilized at 23◦C and RH 50%. A special de-
vice of the type Lorentzen & Wettre Creasability Tester PTS in the Paper Laboratory at
Tetra Pak R&D AB, was used to determine the residual moment, displayed in Figure 5.18.
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Figure 5.18: The Lorentzen & Wettre Creasability Tester.

The angle of the creases in the package of consideration is 45◦, the laminate was therefore
tested for this bending angle, shown in Figure 5.19.

The strips were clamped adjacent to a crease and 10 mm from the clamp, a load cell
prevented the laminate from rotating with the clamp. The strip was initially bent to
45◦, where it remained loaded for 50 sec, and then un-loaded and re-loaded, as shown in
Figure 5.20.

5.7.2. Results

The laminate strips were bent, and the force and rotational angle were registered by a
computer, which calculated the residual moment. The obtained results from the two tests,
are shown in Figure 5.20.

5.8. Bulge Test

In Figure 1.1 on page 1, the appearance of the bulging phenomena is shown. In the bulge
test, the change in length and width, along the height, of a package were studied over a
period of time.

5.8.1. Experimental Method

To be convinced the package always would be correctly placed, a customized holding fix-
ture was made. The fixture was surrounded by four laser devices, working in pair. One
group determined the width of the package and the other group determined the length. In
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Figure 5.19: Schematic drawing of the bending test of creases.

order to measure length or width along the height, one of the laser devices determined the
distance to the front of the package and the opposite laser device measured the distance
to the backside. Thus, the length and width were determined by a computer for the entire
height of the package.

To show the effects of bulging, bulge tests were performed at different times. Five pack-
ages were included to the test. Each package was initially measured empty as a reference,
then the packages were filled and measured periodically, frequently in the beginning and
more rarely in the end, due to the logarithmic behavior of the creep.

5.8.2. Results

Due to the geometry of the specific package, the measurement of the length is too insecure
and therefore, only the width of the package is presented.

In Figure 5.21, the result of the bulge test is displayed. Each curve is actually a mean-
value curve of five bulge tests. The width is the distance from an imagined centre line,
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Figure 5.20: The moment versus bending angle of a crease, exposed to loading, un-loading,
and re-loading.

which splits the entire package in half and the height is the vertical distance.

Of the result in Figure 5.22, one specific point of the package is considered. The bulging
in this point is displayed over time. The point is located at an altitude of 100 mm, from
the bottom of the package.
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6. Constitutive Models for Simulation of

Creep in Packages

6.1. General Remarks

The essence of this master’s thesis is to produce a resemblance of the experimental data to
the constitutive models. To form the basis of the establishment of a more refined model,
it is convenient to start with simple FE-models.

In this chapter a parameter study of a creep model is performed. Further, fitting of
the parameters of this creep model to experimental data is carried out for a number of
materials. But first and foremost, the model chosen for creep simulations is presented.

6.2. Model Chosen for Creep Simulations

When choosing a model, the specific case must me studied. In this study, the modelling is
restricted to a constant temperature at 23◦C and a humidity of 50% RH. No consideration
is taken to the moisture content variation of the material, nor the fact that cyclic relative
humidity cause accelerated creep.

The material properties of paper are orthotropic, i.e. different behavior in MD, CD,
and ZD. Unlike paper, the material properties of aluminium and plastic are isotropic.
Further, the load-levels of the simulations is held constant, in order to correspond to the
constant loading conditions of the experimental tests.

Due to the constant loading conditions, the Power-law creep model with time-hardening
was chosen in the simulations. The Power-law model is easy to use and calibrate and
the parameters A, n, and m must be determined by experiment. To be able to model
orthotropic creep, the *POTENTIAL option in ABAQUS was used to specify the stress
ratios Rij appearing in Eq. (3.28). The parameters R11, R22, and R12, need to be exper-
imentally determined. However, R12 is too difficult to determine by experiment. There-
fore, R12 was weighted for the modulus of elasticity and the shear modulus, according to
R12 = R11G12/E1.

The theories of Boltzmann, Schapery, and mechano-sorptive creeping are neglected and
have no influence of this model. Due to limitation of the master’s dissertation, the creep
model of S. Ormarsson [17], was not tested.
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6.3. Parameter Study of Creep Model

To determine the parameters of the creep model, chosen for simulating bulging of pack-
ages, the parameters were fitted to the experimental data by the aid of the FE-method.
Further information of the FE-method can be found in Chapter 7.

In Section 3.5, a detailed description of the material model chosen to describe the creep
behavior of the materials in a package is carried out. The creep rate ˙̄ε

cr
, is given once

more as
˙̄ε
cr

= Aq̃ntm (6.1)

where the constraints
A > 0;
n > 0;
−1 > m > 0;

hold for the parameters.

To determine the influence of the parameters of the creep model on the shape of the
resulting creep curve, a parameter study was performed in ABAQUS. A set of parameters
were selected as a reference case and then by modifying either A, n, or m, case 1, 2, and
3 was obtained, respectively. For each case, a simulation with the aid of ABAQUS was
made. The results from the four cases are shown in Figure 6.1 and Tab. 6.1.

Table 6.1: The parameters chosen for the four cases in the parameter study.
A n m

Ref 4.2089 · 10−21 2.31 -0.98
case 1 9 · 10−21 2.31 -0.98
case 2 4.2089 · 10−21 2.2 -0.98
case 3 4.2089 · 10−21 2.31 -0.95

From Figure 6.1, it can be concluded that the parameter A determines the level of the
overall creep-deformations, whereas the parameter m changes the curvature. Further, n

describes how the creep rate depends on the stress level.

6.4. Fitting of Creep Model Parameters to Experimental Data

The fitting process comprises the calibration of the materials of aluminium, polymer, and
paper, as well as the whole laminate. The paper and the laminate consider the material
directions of MD and CD.

The approach of the fitting procedure was to calibrate the corresponding strips mod-
elled in the FE-program ABAQUS to the experimental data, presented in Chapter 5. By
exposing the modelled strip to the same stress-level, exposed to the specimens in the
experimental tests, calibration was viable by fitting the parameters of the material model
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Figure 6.1: The influence of the parameters A, n, and m, on the creep curve.

in Eq. (6.1), to the experimental data. In Figure 6.2, the modelled specimen adopts the
cross-section, thickness, and fixed length, of the specimens used in the experimental study.
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Figure 6.2: A modelled creep specimen for fitting of experimental data to the creep model.
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6.4.1. Paper

In Figure 6.3-6.5, the fitting of the model parameters to paper is shown as time-elongation
curves in at load-levels of 20 N, 40 N, and 50 N, in MD and CD. The load-levels correspond
to the stress-levels of 5 MPa, 10 MPa, and 12.5 MPa. It is possible to calibrate an
identical curve, with the parameters of the material model, to a single arbitrary creep
curve. However, since the same value of the parameters A, n, and m hold for the various
load levels, the fitting becomes a compromise between the different load levels and material
directions. The overall fitting of the model parameters to paper is better in CD, than in
MD. Further, the higher the load-level, the better the fitting. However, the fitting of the
model parameters to paper is quite satisfying.
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Figure 6.3: Fitting of the model parameters to paper exerted to a load of 20 N, for MD
respectively CD.
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Figure 6.4: Fitting of the model parameters to paper exerted to a load of 40 N, for MD
respectively CD.
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Figure 6.5: Fitting of the model parameters to paper exerted to a load of 50 N, for MD
respectively CD.

6.4.2. Aluminium

In Figure 6.6, the fitting of the model parameters to aluminium is shown as time-
elongation curves. The load-levels of 14 N and 20 N, correspond to 50 MPa, respectively
71 MPa. The fitting becomes a compromise, due to the parameters A, n, and m, hold
for either of the load-levels. The fitting of the model parameters to aluminum is overall
good, but the fitting of 20 N is somewhat better than the 14 N.
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Figure 6.6: Fitting of aluminium exerted to a load of 14 N respectively 20 N.

6.4.3. Laminate

The fitting of the model parameters to the laminate, shown in Figure 6.7-6.8, is unsatis-
factory. Even though the fitting of the materials in the laminate are satisfying, the fitting
to the laminate is not. Possible sources of error, are the material spreading of the laminate
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or some errors made in the measurement. Another source of error, is the experimental
study of aluminium, where a 14 µm foil was used instead of the original 9 µm foil of the
laminate. Thus, a different thickness and quality was used in the creep tests. There is no
room for an investigation of the possible sources of error, within this thesis.

The laminate was exposed to the load-levels of 40 N and 50 N, corresponding 10 MPa
and 12.5 MPa, respectively. The values of A, n, and m, hold for the various load-levels
and material directions. The fitting is considerably better in CD than in MD. There is
no big difference in accuracy of the fitting of the two load-levels.
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Figure 6.7: Fitting of the model parameters to laminate exerted to a load of 40 N, for MD
respectively CD.
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Figure 6.8: Fitting of the model parameters to laminate exerted to a load of 50 N, for MD
respectively CD.
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6.4.4. Polymer

In Figure 6.9, the fitting of the model parameters to the polymer HDPE (High Density
Polyethylene) is presented. The loads 10 N and 18 N, correspond to the stress-levels of
4.5 MPa and 8 MPa. The values of A, n, and m, hold for the various load-levels. The
fitting of the model parameters to the polymer is satisfying. However, the fitting is most
suitable to the load-level of 10 N.
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Figure 6.9: Fitting of the model parameters to polymer exerted to a load of 10 N respectively
18 N.

6.4.5. Summary

In Tab. 6.2, the parameters A, n, and m are presented for paper, aluminium, and HDPE
(High Density Polyethylene). A determines the level of the overall creep-deformations,
whereas the parameter m changes the curvature. Further, n describes how the creep rate
depends on the stress level.

Table 6.2: The parameters A, n, and, m presented for each material.
Parameter Paper Aluminium HDPE
A 4.2089·10−21 2.2·10−21 2.2·10−20

n 2.31 2.0 2.52
m -0.98 -0.72 -0.96
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7. FE-modelling

7.1. General Remarks

It is necessary to simulate the function and strength of the package early in the devel-
opment process, preferably integrated in the entire product development process, to have
a decisive influence on the time of development and future properties. The necessity of
prototypes diminish and testing can be focussed on the most important matters. Thus,
the product development becomes faster and more cost-effective.

As experimental creep tests require long time frames, it is important to be able to antici-
pate the creep behavior with a mathematical model. The FE-method is an excellent tool
in order to describe, understand, and predict the phenomena of creep.

This chapter contains an exposition of the FE-model describing simulation of bulging.
Numerical examples of the simulation, are also presented. The commercial general pur-
pose finite element program, ABAQUS, was used for all calculations.

7.2. FE-method

The Finite Element Method (FEM), is a numerical method by which general differential
equations may be solved. Usually, these equations are impossible to solve in an analytical
manner and therefore, the numerical approach is an excellent tool. By introducing the
approximation of the displacement field, a, in Eq. (7.1), the computional effort reduces
at the expense of the accuracy of the solution.

K · a = f (7.1)

where K is the stiffness matrix, a is the displacement vector, and f is the load vector. The
main idea of FEM is that a body or structure is subdivided into a number of elements
of a finite size. To each of these elements, an approximation of the displacement field is
adopted for the elements. The approximation is most often made by adopting polynomial
functions, which may be linear, quadratic, or cubic. Once the degree of the polynomials
are selected, the stiffness matrix Ke

· ae = fe of each element can be determined. In
order to obtain an approximate solution for the behavior of the entire body, the elements
are assembled to the global equations. The overall data, i.e. force, displacement, and
boundary conditions, are associated to the nodes.

The first step of a FE-analysis, is to select the appropriate type of elements and mesh.
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However, to make this decision, a thorough physical knowledge of the problem considered
is of great importance. For any given type of element, it is obvious the smaller the ele-
ments, the greater the accuracy [22].

The FE-method is extremely well suited for computer calculations of differential equations.
It can be applicable on diverse physical phenomena, such as heat conduction, diffusion,
groundwater flow, and analysis of beams and plates [22]. In this master’s dissertation,
the bulging phenomena of a liquid filled package is simulated.

7.3. The Specific Package

The beverage package that will be studied by use of the finite element method is a 1000
ml bottle intended for UHT-milk (Ultra Heat Treatment), that will be stored in indoor
climate for six months, this amount of time is called shelf life. The top of the package
is made of plastic material HDPE (High Density Polyethylene) and is equipped with a
plastic screw cap. The remainder of the package is made of a laminate constructed from
different types of materials, as presented in Figure 2.3 on page 5. As previously men-
tioned, in order to facilitate the folding of the material, the laminate is creased where
the corners will emerge in the package. Since the product is not yet introduced on the
market, it is not possible to show the appearance of the package.

7.4. Geometry

An efficient means to reduce the time required for a FE-analysis, is the use of symmetri-
cal planes. The body is divided at the symmetry planes into a minor part, of which the
calculation is performed.
Two symmetrical planes exist in the package and thus a quarter of the package was
modelled. Hence, the numbers of elements were reduced with a factor of four. A third
horizontal plane is not viable, due to neither the vertical geometry or hydrostatic pressure,
from the liquid in the package, are symmetric.

The geometry of the package consists of an octagonal bottom plate, flat front, and back-
side connected with semicircular sides and uppermost is a plastic top. The geometry is
modelled with the pre/post processor ABAQUS/CAE. The laminate is creased at the
corners between the flat sections and the semicircular sections. A crease deteriorates the
stiffness of the paper, since the paper is damaged in the creased zone. Moreover, the pa-
per is bent, and therefore, acts like a compressed spring, with a spring back force, called
residual moment.

To incorporate the residual moment into the model, a subroutine implemented by Måns
Danelius and Kent Persson (at the Division of Structural Mechanics), was utilized. In
Appendix B the subroutine is presented. The input parameters needed for the crease
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Figure 7.1: Experimental and model behavior of the moment versus bending angle for a
crease.

model, were the modulus of elasticity in MD and CD, Poisson’s ratio in the MD-CD
plane, shear modulus in MD-CD-plane, initial curvature of the crease, and finally, a digit
indicating the orientation of the crease, 1 for crease in MD and 2 for crease in CD. In
Figure 7.1, the moment as a function of the bending angle of the model is shown together
with experimental results.

7.5. Element Type and Mesh

The package was modelled with shell elements, where the plastic top was modelled as a
homogenous shell and the remainder of the package as a composite shell. A composite
shell allows several layers of materials to be defined in an element, where the layers are
stacked from the inside to the outside, i.e. in the direction of the normal to the shell.

ABAQUS/CAE comprise various types of mesh techniques as structured, swept, and free.
The mesh technique used, was the structured meshing with quadratic element shape, since
it allows the best control over the mesh.

In shell elements, plane stress is assumed, which is suitable for thin bodies loaded in
the plane. The in-plane stresses σxx, σyy, and σxy, are the only non-zero stresses, whereas
the non-zero strains are εxx, εyy, εzz, and γxy.

The S4R elements were chosen, which is a four-node linear doubly curved thin shell with
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reduced integration, hourglass control, and finite membrane strains. Reduced integration
means that the numerical integration scheme is of one order less than required for full
integration of the selected interpolation. The advantage of the reduced integration is that
it gives a more accurate element stiffness, a decrease of the analysis cost, and at the same
time, it provides a more accurate stress prediction. However, a serious disadvantage is it
can result in a mesh instability, called ”hourglassing”, which produce zero-energy modes,
that cause no straining at the integration points, resulting in an inaccurate solution. To
suppress the excessive deformations, hourglass control was employed that affiliates a small
artificial stiffness to the the zero-energy deformation modes [15].

7.6. Materials

In order to simulate creep, the power-law model in conjunction with the *POTENTIAL
option, describing orthotropy as described in Section 3.5 and Chapter 6, was used.

The parameters A, n, and, m in the model, were chosen according to the experimen-
tally fitted data as described in Chapter 6. In Tab. 7.1, the calibrated parameters A,
n, and, m of paper, aluminium, and polymer (HDPE) that were used for the model are
presented.

Table 7.1: The parameters A, n, and, m presented for each material.
Parameter Paper Aluminium HDPE
A 4.2089·10−21 2.2·10−21 2.2·10−20

n 2.31 2.0 2.52
m -0.98 -0.72 -0.96
R11 1 - -
R22 0.55 - -
R12 0.24 - -

To obtain a model that produce accurate results, reliable material data is required. The
parameters required by the FE-model apart from the creep parameters A, n, m, R11, R22,
and R12, are the modulus of elasticity, the shear modulus, and the Poisson’s ratio of the
materials. Since aluminium and HDPE are considered as isotropic, no values of Rij is
needed.

The material data of paper, employed in the FE-model, is presented in Tab. 7.2, where t,
E1, and E2, were chosen on the basis of the experimental results, presented in the material
characterization in Chapter 5. The other parameters were taken from the literature [19].

The material data in Tab. 7.3 was obtained from Tetra Pak. Material data of aluminium,
LDPE (Low Density Polyethylene), and HDPE (High Density Polyethylene), were also
required by the FE-model. LDPE is used in the laminate and HDPE in the plastic top.
As the paper material is orthotropic, the orientation of the material must be considered.
Thus, a local material coordinate system is defined for each part, shown in Figure 7.2.
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Table 7.2: Material data chosen for paper.
Parameter Paper
t [µm] 395
E1 [MPa] 5121
E2 [MPa] 2670
E3 [MPa] 17
ν12 0.38
ν13 -2.2
ν23 0.54
G12 [MPa] 1230
G13 [MPa] 8.8
G23 [MPa] 8

Table 7.3: Material data of aluminium, LDPE (Low Density Polyethylene), and HDPE
(High Density Polyethylene).

Parameter Aluminium LDPE HDPE
t [µm] 9 13 305
E [MPa] 70 000 150 894
ν 0.3 0.35 0.38

The material orientation is then aligned with the local coordinate system. This is not the
case, for the isotropic materials (aluminium and plastics), where no direction have to be
considered.

Figure 7.2: The material orientations of an arbitrary package [1].
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7.7. Loads, Boundary Conditions, and Steps

Since bulging of an open package was simulated, it was sufficient to simulate the loading
from the fluid by applying an interior hydrostatic pressure only. Hydrostatic pressure p,
may be written as

p = ρgh (7.2)

where ρ is the density of the liquid, g acceleration of gravity, and h is the hydrostatic
pressure height.

At the symmetry boundaries, boundary conditions were applied, according to Figure 7.3.
The bottom was constrained in the vertical direction. Initially, boundary conditions were
imposed around the crease.

Since large deformations occured, a geometric non-linear analysis was performed. The
geometric non-linear analysis is based on equilibrium on deformed geometry. This type
of analysis is requested by including the *NLGEOM option in ABAQUS, to the model.
A non-linear geometric FE-analysis requires a great computional effort and is for that
reason rather time demanding.

Symmetry

Figure 7.3: The boundary conditions introduced to the model.

To analyze the model, several analysis steps were needed to be defined. The step sequence
provided a convenient way to capture changes in the loading and boundary conditions of
the model, during the course of the analysis.

The simulation of bulging of a beverage package, was divided into four analysis steps.
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In the first step, the boundary conditions around the crease and the boundary conditions
shown in Figure 7.3, were imposed on the model. Further, the residual moments were
applied to the crease by the aid of a subroutine, which is presented in Appendix A. The
next analysis step involved the removal of the boundary conditions of the crease. Thus,
the residual moments were exerted to the whole package, causing the package to change
its shape. In the third step, the only load exerted to the package, was the hydrostatic
pressure, where the hydrostatic height was the origin of the load. Eventually, in step four,
the package was allowed to creep. This step was however, rather time demanding.

The simulation of bulging was made in the following four analysis-steps:

• Step 1: Introduction of boundary conditions and residual moments from the creases.

• Step 2: Removal of the BC around the creases.

• Step 3: The hydrostatic pressure was introduced.

• Step 4: Viscoelastic step, the creep simulation of the package.

where the first three steps are static.

7.8. Numerical Examples

It is of great interest to compare the FE-model, presented in Chapter 7, to the bulge
tests performed in Section 5.8. Therefore, three numerical examples were carried out.
The two first examples display the instantaneous bulging after eight days and nine weeks,
respectively. In the third example, the creep deformation over time, for a certain point is
presented.

In Figure 7.4 and 7.5, a comparison of simulations with bulge test results are shown
for empty and filled packages. The bulge test curves are actually mean value curves of
five bulge tests. After eight days, the ABAQUS simulations show a satisfying agreement
with the bulge tests, as can be seen in Figure 7.4. In Figure 7.5, after nine weeks of
creep, the agreement between simulations and experimental data is acceptable. With a
discrepancy of 1/10 mm in width after nine weeks, the simulation gives an acceptable
description of the creep behavior.

In order to display bulging with a time scale, the creep deformation at a certain point
of the package is considered. This point is located at an altitude of 100 mm, on the
symmetrical section on the flat side of the package. The packages were allowed to creep
for nine weeks. Figure 7.6 presents the creep deformation over time for the simulation and
the bulge tests. When comparing the results in Figure 7.6 with the results in Figure 7.5,
the creep deformation of the ABAQUS simulation, seems to be somewhat too large.
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Figure 7.4: Bulging after eight days.

0.037 0.0375 0.038 0.0385 0.039 0.0395 0.04
0.06

0.08

0.1

0.12

0.14

0.16

0.18

width (m)

he
ig

ht
 (m

)

ABAQUS empty
Empty
ABAQUS filled
Filled

Figure 7.5: Bulging after nine weeks.



7.8. NUMERICAL EXAMPLES 61

0 1 2 3 4 5 6 7 8 9

x 104

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (min)

el
on

ga
tio

n 
(m

m
)

ABAQUS
Bulge test
Bulge test
Bulge test
Bulge test
Bulge test

Figure 7.6: Creep deformation over time, for a certain point.
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8. Results and Discussion

In this master’s thesis, a FE-model for simulation of creep in beverage packages has been
developed. The FE-model was proven to produce accurate results for shorter time periods
and acceptable results for longer time frames, but still, further work and resources are
required to achieve a model that will provide accurate results for longer time frames.
The benefit of a carefully calibrated FE-model, is the prediction of the creep behavior.
Thus, the product development becomes faster and more cost-effective.

Within the FE-model, the material model chosen was the Power-law model and the
compiled parameters governing the creep curve are presented in Tab. 8.1, for paper,
aluminium, and HDPE (High Density Polyethylene).

Table 8.1: The parameters A, n, and, m presented for each material.
Parameter Paper Aluminium HDPE
A 4.2089·10−21 2.2·10−21 2.2·10−20

n 2.31 2.0 2.52
m -0.98 -0.72 -0.96

The conclusion of the experimental study in Chapter 5, was that the creep deformation
is approximately four to six times larger in CD, than in MD. Thus, the bulging depends
on how the paper is oriented in the package.

The numerical examples of bulging presented in Section 7.8, showed a slightly disagree-
ment as compared to the experimental results of the bulge tests. The major cause of
the disagreement is probably that the creep of the laminate was underestimated in the
simulation. This may due to several factors.
The FE-model was calibrated to the experimental data of the materials in the laminate.
In the experimental study, the materials of the laminate were allowed to creep for approxi-
mately two weeks. Preferably, the FE-model should have been calibrated to experimental
data of three months, in order to consider the logarithmic behavior of creep.
The experimental study of aluminium, was performed on a 14 µm foil of somewhat dif-
ferent quality than the original 9 µm aluminium foil in the laminate. Thus, a different
quality and thickness was used in the creep tests. Therefore, the result of the creep be-
havior of the aluminium foil may differ from the behavior of the actual aluminium foil in
the laminate.
The moisture content of the paper in the laminate, may have been changing during the
elapsed time of the bulge tests. Therefore, the significance of a moisture-dependent FE-
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model, which also includes mechano-sorptive creeping, is decisive to be able to perform
an accurate simulation of bulging.

8.1. Proposals for Future Work

Proposals for future work and for the continuation of the work made in this thesis are,

• The creep model presented in literature [17], is originally established for the creep
of timber, but may also be suitable to describe creep of paper. A suggestion is to
calibrate this model and to see if it is possible to describe creep of paper.

• A numerical and experimental parameter study of the laminate, to obtain a more
accurate calibration of the model parameters to the laminate.

• Simulation of bulging on sealed and stacked packages with fluid elements, which is
more close to a real loading scenario for bulging.

• Development of moisture-dependent models. The significance of a moisture-dependent
FE-model, which also includes mechano-sorptive creeping, is decisive to be able to
perform an accurate simulation of bulging.
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A. Subroutine

Subroutines used in ABAQUS need to be implemented in the programming language
Fortran. This subroutine was used for describing the moment bending angle relationship
of the crease.
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SUBROUTINE UGENS (DDNDDE,FORCE,STATEV,SSE,SPD,PNEWDT,STRAN,

1 DSTRAN,TSS,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CENAME,NDI,

2 NSHR,NSECV,NSTATV,PROPS,JPROPS,NPROPS,NJPROP, COORDS,CELENT,

3 THICK,DFGRD,CURV,BASIS,NOEL,NPT,KSTEP,KINC,NIT,LINPER)

C------------------------------------------------------------------

C User subroutine "UGENS" to ABAQUS for simulating the non-linear

C moment-curvature relation and residual moment of creases.

C------------------------------------------------------------------

C Props(1) = Emd , Modulus of elasticity in MD

C Props(2) = Ecd , Modulus of elasticity in CD

C Props(3) = vmdcd, Poissons ratio md-cd

C Props(4) = Gmdcd, Shear modulus in md-cd-plane

C Props(5) = Initial curvature of crease

C Jprops(1) = 1 or 2. 1 for crease in MD. 2 for crease in CD.

C-------------------------------------------------------------------

C

IMPLICIT REAL*8(A-H,O-Z)

CHARACTER*80 CENAME

DIMENSION DDNDDE(NSECV,NSECV),FORCE(NSECV),STATEV(NSTATV),

1 STRAN(NSECV),DSTRAN(NSECV),TSS(2),TIME(2),PREDEF(*),

2 DPRED(*),PROPS(4),JPROPS(*),COORDS(3),DFGRD(3,3),

3 CURV(2,2),BASIS(3,3)

C

REAL*8 DFORCE(1:6), DSTRAN1(1:6)

PARAMETER(NPRECD=2)

LOGICAL OP

C

C Definitions for crease in MD

C

IF (JPROPS(1).EQ.1) THEN

C

C Definition of stiffness matrix

C

DO 10 I=1,6

DO 20 J=1,6

DDNDDE(I,J)=0D0

20 CONTINUE

10 CONTINUE

C

C11=1/PROPS(1)

C22=1/PROPS(2)

C21=PROPS(3)/PROPS(1)

A=1/(C11*C22-C21**2)

B=(THICK**3)/12

DDNDDE(1,1)=THICK*C22*A

DDNDDE(1,2)=THICK*C21*A
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DDNDDE(2,1)=THICK*C21*A

DDNDDE(2,2)=THICK*C11*A

DDNDDE(3,3)=THICK*PROPS(4)

DDNDDE(4,4)=B*C22*A

DDNDDE(5,5)=B*C11*A

DDNDDE(6,6)=B*PROPS(4)

C

D1=8.1E-6

D2=156.3E-6

D3=83.0E-6

D4=45.0E-6

C

B1=85.7E-3

B2=442.9E-3

B3=1000E-3

C

C Setting curvature in first increment for determination

C of residual moment

C

IF (KINC.EQ.1 .AND. KSTEP.EQ.1) THEN

STRAN(5)=PROPS(5)

ENDIF

C

C Calculation of incremental forces and moments

C

CALL MULT(DDNDDE,DSTRAN,DFORCE)

DO 30 K=1,6

FORCE(K)=FORCE(K)+DFORCE(K)

30 CONTINUE

C

C Calculation of stiffness and moment for crease

C

TSTRAN=(STRAN(5)+DSTRAN(5))

C

IF (TSTRAN.LT. B1) THEN

DDNDDE(5,5)=D1

FORCE(5)=D1*TSTRAN

ELSEIF (TSTRAN .GE. B1 .AND. TSTRAN .LT. B2) THEN

DDNDDE(5,5)=D2

FORCE(5)=D1*B1+D2*(TSTRAN-B1)

ELSEIF (TSTRAN .GE. B2 .AND. TSTRAN .LT. B3) THEN

DDNDDE(5,5)=D3

FORCE(5)=D1*B1+D2*(B2-B1)+D3*(TSTRAN-B2)

ELSEIF (TSTRAN.GE. B3) THEN

DDNDDE(5,5)=D4

FORCE(5)=D1*B1+D2*(B2-B1)+D3*(B3-B2)+D4*(TSTRAN-B3)

ENDIF
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C end crease in MD

C

C Definitions for crease in CD

C

ELSEIF(JPROPS(1).EQ.2)THEN

C

C Definition of stiffness matrix

C

DO 40 I=1,6

DO 50 J=1,6

DDNDDE(I,J)=0D0

50 CONTINUE

40 CONTINUE

C

C11=1/PROPS(1)

C22=1/PROPS(2)

C21=PROPS(3)/PROPS(1)

A=1/(C11*C22-C21**2)

B=(THICK**3)/12

DDNDDE(1,1)=THICK*C22*A

DDNDDE(1,2)=THICK*C21*A

DDNDDE(2,1)=THICK*C21*A

DDNDDE(2,2)=THICK*C11*A

DDNDDE(3,3)=THICK*PROPS(4)

DDNDDE(4,4)=B*C22*A

DDNDDE(5,5)=B*C11*A

DDNDDE(6,6)=B*PROPS(4)

C

D1=8.1E-6

D2=156.3E-6

D3=83.0E-6

D4=45.0E-6

C

B1=85.7E-3

B2=442.9E-3

B3=1000E-3

C

C Setting curvature in first increment for determination

C of residual moment

C

IF (KINC.EQ.1 .AND. KSTEP.EQ.1) THEN

STRAN(4)=PROPS(5)

ENDIF

C

C Calculation of incremental forces and moments

C



71

CALL MULT(DDNDDE,DSTRAN,DFORCE)

DO 60 K=1,6

FORCE(K)=FORCE(K)+DFORCE(K)

60 CONTINUE

C

C Calculation of stiffness and moment for crease

C

TSTRAN=(STRAN(4)+DSTRAN(4))

C

IF (TSTRAN.LT. B1) THEN

DDNDDE(4,4)=D1

FORCE(4)=D1*TSTRAN

ELSEIF (TSTRAN .GE. B1 .AND. TSTRAN .LT. B2) THEN

DDNDDE(4,4)=D2

FORCE(4)=D1*B1+D2*(TSTRAN-B1)

ELSEIF (TSTRAN .GE. B2 .AND. TSTRAN .LT. B3) THEN

DDNDDE(4,4)=D3

FORCE(4)=D1*B1+D2*(B2-B1)+D3*(TSTRAN-B2)

ELSEIF (TSTRAN.GE. B3) THEN

DDNDDE(4,4)=D4

FORCE(4)=D1*B1+D2*(B2-B1)+D3*(B3-B2)+D4*(TSTRAN-B3)

ENDIF

C end crease in CD

C

ENDIF

RETURN

END

C...........................................................

C SUBRUTIN MATRIX MULTIPLICATION, A*B=C

C

SUBROUTINE MULT(A,B,C)

C

IMPLICIT REAL*8(A-H,O-Z)

DIMENSION A(6,6),B(6),C(6)

C

DO 4 I=1,6

E=0

DO 3 J=1,6

3 E=E+A(I,J)*B(J)

4 C(I)=E

5 CONTINUE

RETURN

END


