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Abstract

This thesis treats the problem of positioning in WiFi networks and proposes a
solution using hidden Markov models and particle filters based on sequential im-
portance sampling with resampling. Hidden Markov models prove to be a powerful
framework for this type of problem exhibiting both an intuitive and adaptive model
structure. One of the difficulties encountered when filtering this model is that it
is increasing in dimension over time. To get around this problem in this thesis, a
method called sequential importance sampling is used which makes it possible to
update the estimation sequentially using the previous estimate to calculate the new
one. In addition, parameter inference is conducted using expectation-maximization-
based likelihood inference in the proposed model. To estimate model parameters
in a hidden Markov model smoothing is done to reconstruct the underlying state
sequence given all data observations. These states are then used to calculate suf-
ficient statistics for the sought parameters. Finding the smoothing distribution it
might be necessary to use a large number of particles in the filter to overcome de-
generation of the approximation. A method called fixed-lag smoothing is therefore
investigated in order to get better estimates. Finally we illustrate the model and
the estimation algorithms on data from a real world application.
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Notations and abbreviations

The following notations and abbreviations are used in this paper.

E[X] the expectation of X
V[X] the variance of X
P(X ∈ A|Y ) the conditional probability of X ∈ A occurring given Y
f(x|y) the conditional probability density function of x given y
µ� λ µ dominates λ
φk|k the filtering distribution at step k
φk|n the smoothing distribution given observations up to n > k
φ0:k|n the joint smoothing distribution for all states up to k
X ∼ f X is a stochastic variable distributed with density f
1{x ∈ A} The indicator function equal to 1 when x ∈ A is fulfilled and zero otherwise

AP 802.11 WLAN access point
BSSID Basic service set identification
EM Expectation maximization
HMM Hidden Markov model
MC Monte Carlo
RSSI Received signal strength
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CHAPTER 1

Introduction

The global positioning system used in many mobile devices today makes it
possible to get an accurate and reliable estimate of a device’s current position on
a map. Most people have used a GPS receiver at some point in their lives and
therefore know why this might be of value in a large amount of different scenarios.
One limitation of this system is that it depends on satellite communication to
estimate the position. This works perfectly fine if the signal from the satellite can
travel unhindered; however, as soon as you block this signal, for instance by using
the GPS receiver indoors, it will not be able to deliver any reasonable estimate
anymore. This makes it impossible to use GPS positioning in indoor environments
where positioning might be of interest.

The need for indoor positioning might in a lot of scenarios still be as imminent
as it is in the outdoor case, for instance in robotics where positioning is crucial for
a large amount of context aware tasks. Another potential area of usage could be
for automatic delivery of area specific information in museums and malls or just
guidance for people in large buildings such as airports and train stations. It is
therefore of interest to look for a different solution, i.e one that does not depend
on satellite communication to function but rather some other local signal which
preferably is already available in most indoor environments. One such signal could
be the IEEE 802.11 signal used for WiFi communication.

Most mobile devices today rely on internet communication, which has created a
need for good 802.11 WiFi coverage in public and commercial areas. These networks
consist normally of a number of access points placed in different locations all over
the building to increase the connection coverage. By measuring the signal strength
of these access points it is possible to get a rough estimate of the distance between
the same and and the receiver. Knowing a few of these distances should then make
it possible to decide the current position of the device in the room. The problem
is that this signal is heavily obfuscated by noise. Not only is the signal noisy by
itself, moving people, other electric or radio transmitting devices, concrete walls
and reflective glass windows all contribute to a very noisy signal environment. This
makes it hard to use simple ad-hoc methods such as trilateration. If however the
signal is covered in noise it should be possible to filter the signal and increase the
accuracy using a more complex statistical model instead of simple measurement of
distances.

Despite the interest from several researchers during the last few years, a final
solution of this problem is hitherto lacking. Some models presented in different
research papers include projection-based approaches such as multiple discriminant
analysis described in [FL09], where the received signals are projected onto a dis-
criminant space in order to classify the position of the receiver. This method
requires a number of reference locations to be measured beforehand in order to be
able to classify where in the reference space the current measurement is located.
The paper in question focuses mainly on the extraction of information from the
signal and compares the method with other similar methods such as principal com-
ponent analysis. Even if this model shows promising performance it completely
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2 1. INTRODUCTION

leaves out the possibility to use the movement pattern of the receiver in order
to increase the accuracy of its position estimate. Another approach, described in
[LPNM12], involves classification using the Viterbi algorithm on a discrete hid-
den Markov model (HMM). To make sense this algorithm requires a completely
discretized map, which makes the model somewhat blunt. The use of transition
probabilities between adjacent squares does make use of movement information
concerning the target but does not open for complex movement patterns. In addi-
tion, the accuracy is also highly dependent on the granularity of the discretization.
The authors of [SS00] uses table-based measurements and neural nets for classifi-
cation which again require some kind of fingerprinting of the signal space in order
to classify the current position. Neural networks are known to exhibit good results
in some classification problems and the method presented in the mentioned paper
showed great accuracy for some specific areas in the data set. This model also
require a large set of measurements to be done beforehand in order to classify the
position. The lack of restrictions on movement patterns also makes it possible for
the classification to move between different areas that are far from each other in the
building. Some, as for example [AMRE12], have tried a different approach using
the movement pattern of people to improve the estimate of position. This was
achieved with Monte Carlo-based filters in generalized switching multiple model
frameworks. The Markov switching model opened for modeling of a movement
pattern with the possibility to switch between different motion sub-models and in
order to estimate the position they used a Rao-Blackwellized particle filter where
part of the estimate was computed exactly using a Kalman filter step.

Hidden Markov models form a powerful model framework when working with
nonlinear, inhomogeneous or otherwise obscured stochastic processes. The basic
idea of a Markov process hidden underneath a layer of noise is easily translated
to a vast amount of processes present within several fields such as signal process-
ing, finance and biology. The underlying Markov chain makes the process more
manageable than models with longer dependence structures and it opens up for
more straightforward simulation and approximation schemes. Although since the
observations are not Markov the process can still be hard to handle depending on
this obfuscating layer of noise.

This paper intends to take an approach similar to the one described in [AMRE12],
using hidden Markov models and sequential Monte-Carlo based particle filters for
proposing a solution to the positioning problem.

Adaptation of a hidden Markov model to this problem proves to be both in-
tuitive and powerful. The model framework opens up for construction of complex
models which are still both interpretable and efficient when conducting inference
on both hidden states and parameters within the model.

HMM state inference mainly consist of two problems; filtering and smoothing.
The first is the on-line problem of estimating the current state given observations
up to the same time point, the second is reconstructing a previous states using all
observations available. During the course of this thesis both these problems will
be addressed in order to present a model which is fit for both state and parameter
estimation.

As the number of possible positions increase exponentially with time, this prob-
lem puts a strict demand on the computational complexity of the algorithms in-
volved during state inference. A Monte Carlo method that makes it possible to han-
dle this increasing dimensionality is sequential importance sampling which plays an
important role in this thesis. SIS uses a swarm of particles to estimate the sought
distributions. This is done by attaching to each individual particle an importance
weight measuring how well the particle estimate meets the target distribution. The



1. INTRODUCTION 3

weights together morphs the swarm to fit the target which makes it possible to use
more efficient ways of propagating the particles in the state space.

Depending on the model intricacy it however possible that a large amount of
particles will be required in order to acquire a reasonable accuracy of the esti-
mates. One way of decreasing the amount needed by adjusting the swarm to the
approximated distribution is to use auxiliary weights. These weights can be used
for nudging the swarm towards a more tractable area and hence increase the overall
accuracy of the same.

In order to estimate model parameters the smoothing distribution is approxi-
mated using the same particle filter with some minor modifications. Instead of only
looking at the current point, the whole trajectory of the particles is of interest. The
complete set of particle trajectories and the corresponding weights can then be used
to find a smoothed trajectory where all points have been estimated using all obser-
vations.The parameters to the model can then be estimated using this result. In
order to find the parameters an algorithm called expectation maximization is used.
This algorithm calculates estimations of the sought parameters iteratively using the
estimate at each step to generate the next until convergence.

In order to avoid degeneracy looking at the whole trajectories, a method called
fixed-lag smoothing is used, making it possible to estimate the model parameters
for longer sequences and more complex model structures.

In chapter 2 some theory is discussed to remind and update the reader in the
main areas approached in this thesis. The main subjects addressed are the theory
behind HMMs and some inference theory needed for understanding of the EM algo-
rithm. Chapter 3 goes into detail on the proposed model and the physical relations
used to deduce its structure. Once the model is in place the problem of filtering
using the SISR method is described in chapter 4. This chapter also discusses how
the filter can be modified in order to produce more efficient estimates. The process
of estimating the model parameters is described in chapter 5 where also further
discussions on degeneracy in the smoothing setting and how ways around it can be
found. Fixed-lag smoothing is therefore introduced taking advantage of a forget-
ting property of the latent chain when evolving conditionally on the observations.
In this way the degeneration can be avoided by performing smoothing for shorter,
truncated observation sequences. Chapter 6 shortly discusses the methods used
for collecting data and chapter 7 presents the numerical results found using the
proposed techniques. Finally chapter 8 points out the conclusions drawn from the
results.





CHAPTER 2

Preliminaries

Some prior knowledge of probability theory and Monte Carlo methods will be
required throughout this thesis. A brief introduction to a few of the central concepts
is given in this section.

1. Markov chains

A Markov chain is a discrete time stochastic process that exhibits transitions
in some measurable state space (X,X ). We will here start by defining measurable,
for further reference please confer [Bil12, section 2].

Definition 2.1. A class A of subsets of some space Ω is said to be a σ-algebra
if it contains Ω and is closed under complements and countable unions.

(i) Ω ∈ A (2.1)

(ii) A ∈ A ⇒ Ac ∈ A (2.2)

(iii) A1, A2, . . . ∈ A ⇒ A1 ∪A2 ∪ . . . ∈ A (2.3)

Any set in A is then said to be measurable.

If the process is memoryless it is said to hold the Markov property and a process
exhibiting this property in discrete time is called a Markov chain. A Markov chain
is more formally defined as follows; see [Str05, ch. 2] and [CMR05, p. 35–41] for
further reference.

Definition 2.2. Let {Xk}∞k=0 be a sequence of stochastic variables defined on
some probability space (Ω,A, P ) taking values in a measurable space (X,X ). This
process is called a Markov chain if for every k ∈ Z∗ the Markov property holds such
that

P(Xk+1 ∈ A|Xk, Xk−1, . . . , X0) = P(Xk+1 ∈ A|Xk), ∀A ∈ X (2.4)

In addition, if the transition probability is independent of k, we call the chain time
homogeneous.

Due to the flexibility paired with simplicity, Markov chains have a wide spread
use in many different sectors such as physics, biology, economics, chemistry, linguis-
tics, and information sciences. Common examples of use are changes in insurance
bonus programmes, random walks in directed graphs, queuing models, and Brow-
nian motion.

The transitions of a Markov chain can be described by a Markov transition
kernel. This kernel is a function that expresses the probability of moving from one
position to another within the state space. Formally we can express this as follows.

Definition 2.3. Let (X,X ) and (Y,Y) be two measurable spaces. A Markov
transition kernel is a function Q : X × Y 7→ [0, 1] where Q(x,Y) = 1, ∀x ∈ X.
Q(x,A) then denotes the probability of a transition from x to the set A ∈ Y.
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6 2. PRELIMINARIES

2. Hidden Markov Models

A hidden Markov model (HMM) is a two level stochastic process consisting of
a Markov chain {Xk}k≥0, which is not directly observable, and another observable
process {Yk}k≥0, which depends conditionally on the underlying chain {Xk}k≥0,
see [CMR05, p. 42].

Definition 2.4. A hidden Markov model is a bivariate stochastic process {(Xk, Yk)}k≥0,
defined on the product space (X×Y,X ⊗Y), where {Xk}k≥0 is a Markov chain tak-
ing values in X and {Yk}k≥0, defined on some state space Y, is, conditionally on
{Xk}k≥0, a sequence of mutually independent random variables such that for every
k the conditional distribution of Yk depends exclusively on Xk.

Xk Xk+1

Yk Yk+1

. . . . . .

Figure 2.1. Schematic graph over the dependence struc-
ture of a hidden Markov model

A schematic figure over the dependence structure within a HMM is displayed
in Fig. 2.1.

Hidden Markov models needs two different transition kernels to explain the
transitions within the state spaces. In this paper the transition kernel of the hid-
den chain is denoted Q(x, ·), the transition kernel from the hidden states to the
observations is denoted G(x, ·). Thus, for each k, Xk+1|Xk = x ∼ Q(x, ·) and
Yk|Xk = x ∼ G(x, ·). In addition, the probability density of each distribution
G(x, ·) is denoted by g(x, y). We will frequently suppress the explicit dependence
on the observation yk, which often will be considered as fixed, and instead write
gk(x) = g(x, yk).

Example 2.5. (Bearings only tracking) The problem of bearings only tracking
arises in a number of different problems such as radar tracking or submarine detec-
tion. In the sense of WiFi positioning this example is a good starting point due to
the close resemblance in problem statement with tracking of a moving target.

Consider a moving object for which we can estimate the position only in discrete
time steps. The object will then change position between samples according to{

xk+1 = xk + T ẋk

ẋk+1 = ẋk + T ẍk
. (2.5)

Here T denotes the sample period, ẋ the velocity and xk the position at time k.
Assuming that the velocity does not change much over time, the acceleration can
be modeled as stationary noise. Supposing this noise is Gaussian, we can model
the transitions by [

xk+1

ẋk+1

]
=

[
1 T
0 1

] [
xk
ẋk

]
+

[
1
2T

2

T

]
uk (2.6)

where uk is an independent Gaussian noise vector, see [SARGM04, Jak12]. As
stated above the acceleration is neglected here and variations in velocity are only
modeled as Gaussian noise. This somewhat limits the model to handling only well
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behaved targets, moving according to linear Gaussian dynamics; we will return to
this later in the thesis.

Extending the model to motion in the plane yields the following state equations
x1,k+1

x2,k+1

ẋ1,k+1

ẋ2,k+1

 =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1



x1,k

x2,k

ẋ1,k

ẋ2,k

+


1
2T

2 0
0 1

2T
2

T 0
0 T

[u1,k

u2,k

]
. (2.7)

In addition to the state equation (2.7) the measurements at time k is given by
the bearing of the tracked target, i.e. the angle between the observer’s direction of
movement and the position of the target. This leads to an additional equation de-
scribing the nonlinear relation between these measurements and the state equation
above,

yk = arctan

(
x1,k

x2,k

)
+ vk, (2.8)

where vk is some, usually Gaussian, measurement noise.
This model describes an underlying unobservable Markov chain with states

Xk = (x1,k, x2,k, ẋ1,k, ẋ2,k) and observations (2.8) and hence, clearly this model
can be cast into the framework of HMMs. The bearings-only tracking problem is
then to estimate the trajectory, X0:k given the observations up to time k as

X̂0:k|k = E [X0:k|Y0:k] (2.9)

As can be seen this problem is increasing in dimension over time and hence calls
for some method which can compute the steps recursively.

3. Filtering

Estimation of the current underlying state given the observations up to this
point is called filtering and this is normally done online, calculating each step as a
new observation is aquired. It can be proved that the best estimator in terms of
variance is given by the expectation,

X̂0:k|k = E [X0:k|Y0:k] =

∫
x0:kφ0:k|k(xk)dx0:k, (2.10)

where φk|k(·) is the kernel of each of the hidden states up to Xk given the obser-
vations up to the same time point, Y0:k. This distribution is generally called the
posterior distribution and finding a good approximation to this distribution is a
key problem in solving the expectation of interest.

Rewriting the posterior using Bayes formula it is apparent that this integral is
unsolvable in most cases. The denominator of the posterior might not even exist
as a closed form expression.

φ0:k|k(x0:k) =
χ(x0)g0(x0)

∏k
i=1 gi(xi)q(xi−1, xi)∫

· · ·
∫
χ(x0)g0(x0)

∏k
i=1 gi(xi)q(xi−1, xi)dx0 . . . dxk

(2.11)

Here χ(x0) is the initial distribution and gk(·) and q(x, ·) is the same densities as
defined in section 2.

Even if this integral is unsolveable analytically it might be possible to sample
from some function f0:k(x0:k) ∝ φ0:k|k(x0:k) which opens up for approximating the
expectation using Monte Carlo integration.
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4. Smoothing

Inference on all the underlying states in a HMM given all observations up to a
current point is called smoothing. The best estimator in terms of variance in this
setting is the expectation of the states conditional on the observation, as in filtering
but extended to cover all states

X̂0:k|n = E [X0:k|Y0:n] =

∫
x0:kφ0:k|n(x0:k)dx0:k. (2.12)

Here φ0:k|n(·) denotes the posterior joint smoothing distribution of the hidden states
given all observations for each state. Finding this distribution is usually more intri-
cate than in the case of filtering and will hence also require Monte Carlo methods
to find a solution.

5. Monte Carlo integration

The basic idea behind Monte Carlo integration is to draw samples from the
distribution of a random variable X and use the samples to estimate the expectation
of a function h(X), called the target function,

E [h(X)] =

∫
X

h(x)fX(x)dx, (2.13)

where fX(x) is the probability density function for X.
Let {ξi}Ni=1 be N independent samples from the distribution of X, then it

follows directly from the strong law of large numbers, see [Gut09, p. 182],[CMR05,
p. 553], that the mean of these samples will converge to the true expectation,

1

N

N∑
i=1

h(ξi)→ E [h(X)] , a.s. as N →∞. (2.14)

Example 2.6. Suppose that you want to estimate the integral

τ =

∫ 2π

0

x sin

(
1

cos [log(x+ 1)]

)
dx, (2.15)

then we can rewrite it as an expectation

τ =

∫
2πx sin

(
1

cos [log(x+ 1)]

)
fX(x)dx, (2.16)

where fX(x) = 1/2π, 0 ≤ x ≤ 2π is the probability density function of the uni-
form distribution Unif(0, 2π). DrawingN random variables {xi}Ni=1 from Unif(0, 2π)
it is possible to approximate the integral as

τn =
1

N

N∑
k=1

xi sin

(
1

cos [log(xi + 1)]

)
. (2.17)

Which for N = 106 gave the following result in 0.049113 seconds when entered into
MATLAB,

τn = 2.7369

As a comparison WolframAlpha R©, solving it symbolically, gave the answer 2.73538.
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6. Importance sampling

Simulating efficiently from arbitrary distributions may not always be so straight-
forward. For many known parametric distributions it is possible to sample directly
using the inverse method but most often the posterior, or more generally the target
distribution, is much more complicated and might only be known up to a normal-
izing constant. In these cases one might approximate the integral by simulating
from another distribution that dominates the posterior distribution and weighing
or alternatively discarding a certain amount of the results to approximate the real
posterior. Let us define the concept of a dominating distribution [LC98, p. 14].

Definition 2.7. A probability distribution R defined on (X,X ) is said to dom-
inate another distribution Q, denoted R � Q, if the support of R is larger than
that of Q, such that for every set N ∈ X , R(N) = 0⇒ Q(N) = 0.

This makes it possible to rewrite the sought integral as

E [h(X)] =

∫
X

h(x)
fX(x)

π(x)
π(x)dx, (2.18)

which is defined since π � fX . This opens up the possibility to sample from the
dominating density π(x), called the proposal density, instead of fX(x) and then
update the estimator accordingly, preserving the expectation, see [RC04, p. 84].

E [h(X)] ≈ 1

N

N∑
i=1

fX(ξi)

π(ξi)
h(ξi). (2.19)

It is easy to identify this estimator as a weighted average with weights ωi = fX(ξi)
π(ξi) ,

corresponding to the difference in probability density between the two distributions.
If the density fX(x) is known only up to a normalizing constant one might still use
the same method but the weights will not sum up to N . It is easy to circumvent
this problem by simply normalizing the weights, providing the estimator

E [h(X)] ≈
N∑
i=1

ωi∑N
k=1 ω

k
h(ξi). (2.20)

This method greatly simplifies solving complicated integrals but still does not
solve the issue of increasing dimensionality as mentioned previously. In order to
do this we need to change the method so that it is possible to update the estimate
on-line, i.e. by using previous, already calculated estimates to estimate the new
position as new data arrives.

7. Sequential Importance Sampling

Moving back to the original problem of estimating underlying states where we
want to solve the integral in (2.12), it would be preferable if it were possible to
update the estimates sequentially to refrain from using an estimator that grows
in complexity with the number of time steps. This idea was originally proposed
in [GSS93] and consists of drawing a swarm of so called particles (ξi0:k)i=1:N and
using these to estimate the process recursively.

The key trick for achieving this sequential updating is to choose a proposal
density such that

πk(x0:k) = πk(xk|x0:k−1)πk−1(x0:k−1). (2.21)

This way it is possible to sample each new step recursively conditionally in the old
samples and then append these to the previous sequence.
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Looking at the importance weights, these may also be computed recursively
according to

ωik =
φk(ξi0:k)

πk(ξi0:k)
=

φk(ξi0:k)

φk−1(ξi0:k−1)πk(ξik|ξi0:k−1)
ωik−1, (2.22)

such that fk(x) = φk(x)/ck. As the weights are normalized this normalizing con-
stant will cancel out. This makes it possible to sample from a larger set of functions
and not only densities.

We then form a filter which simply draws different realizations from the pro-
posal distribution, πk, and calculates a weight for each of these depending on the
difference between the selected distribution and the posterior. Identifying fk in
(2.11) we can see that the denominator is only a normalizing constant and we get

fk(x0:k) = χ(x0)

k∏
i=1

gi(xi)q(xi−1, xi) (2.23)

resulting in the recursive weight update

ωik = ωik−1 × gk(ξik)
q(ξik−1, ξ

i
k)

πk(ξik|ξi0:k−1)
(2.24)

The ratio between the transition density and the proposal density is more formally
called a Radon-Nikodym derivative denoted

dQ(ξk−1, ·)
dRk(ξk−1, ·)

(ξik),

which is defined for all Rk � Q. Seeing this as a derivative also helps the notion of
weighing as depending on the relative changes in probability between proposal and
transition kernels. The change of distribution can then be seen as a change of basis
when integrating over probability spaces where the Radon-Nikodym derivative is
corresponding to the Jacobian determinant in multivariate integration.

The method described above is called Sequential Importance Sampling (SIS), as
described in [CMR05, p.217], and we define it in a more concise form in Algorithm
1 below.

Algorithm 1 SIS

1: Draw an i.i.d sample
(
ξ1
0 , . . . , ξ

N
0

)
from the initial distribution ρ0 and set

ωi0 = g0(ξi0)
dν

dρ0
(ξi0)

2: for k = 0, 1,. . . do
3: Draw

(
ξ1
0 , . . . , ξ

N
0

)
conditionally, independently from the instrumental kernel

ξik+1 ∼ Rk+1(ξk, ·) given the previous particles {ξj0:k, j = 1, . . . , N}.
4: Append the new particles to the set of previous ones,

ξi0:k+1 = (ξi0:k, ξ
i
k+1), ∀i

5: Update importance weights

ωik+1 = ωik × gk+1(ξik+1)
dQ(ξik, ·)

dRk+1(ξik, ·)
(ξik+1), ∀i

6: end for
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8. Degeneration of importance weights

Optimally there will always be a large number of particles with a large likelihood
and the average of these will give us a good approximation of the posterior. This
will, however, not be the case in practise. Eventually, all particles will get small
importance weights over time since they are drawn from another distribution than
the actual posterior. When increasing the dimension of this distribution there will
be a smaller and smaller chance of drawing a particle that actually falls within the
main body of the posterior distribution. Because of this only a few particles will
keep their large weights and the weighted average of the particles will form a poor
approximation of the true posterior distribution.

This degeneration might not seem as a problem at first glance, since the esti-
mator normalizes over all the weights. In this way the particles with a small weight
will just not contribute to the estimate. But if this particle does not contribute
to the swarm any more it also means the information is deteriorating within the
particle swarm. Consider a random walk on R2. The further we walk the total
number of possible ways increase exponentially and the probability of a particle
walking the correct path is therefore decreasing at the same rate. Then after some
time the particle swarm will only, if at all, hold a few particles that contain any sort
of valuable information. This results in an inefficient estimator of the position that
wastes a lot of computational power on calculating particles that do not provide
any information, and since only a few particles hold any information the variance
of the estimator will increase as well.

Since this degeneracy effectively deteriorates the estimation it might be of in-
terest to be able to detect when the set of weights start to become imbalanced or
in some other way measure the amount of information the swarm holds concerning
the filtering distribution. One way is the effective sample size Neff [CMR05, p.
235] given by

Neff(k) =

 N∑
i=1

(
ωik∑N
j=1 ω

j
k

)2
−1

(2.25)

This measure approximates the amount of particles contributing to the approxima-
tion of the posterior. Another good measure is the Shannon entropy of the weights
[CMR05, p. 235],

Ent(k) = −
N∑
i=1

ωik∑N
j=1 ω

j
k

log2

(
ωik∑N
j=1 ω

j
k

)
(2.26)

which is the expectation of the self-information contained in the weights. This
essentially measures the amount of uncertainty in the set of weights, reaching a
maximum when the particles have uniform weights. Because of the logarithm the
entropy makes it easier to spot differences when few particles have large weights.

These methods only provide ways of measuring the number of valuable particles.
This makes it possible to know if the SIS algorithm still gives a good estimate but
the degeneration is still imminent and prohibits the usage of the SIS algorithm for
larger problems or longer periods of time.

9. Sequential Importance Sampling w. Resampling

The solution to degeneracy is to use something called resampling. The idea,
originally presented in [GSS93], is simple but brilliant. After the calculation of
weights in the SIS algorithm one simply draws a set of new particles with replace-
ment from the distribution of particles with probability mass function given by the
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normalized weights. This essentially multiplies the good particles and kills off the
ones having very small weights.

The distribution of particles and their respective weights approximate the fil-
tering distribution, resampling with replacement from this distribution will not
change the expectation of the distribution itself, thus at worst only retaining the
previous bias of the estimator. It will nevertheless introduce some additional vari-
ance [CMR05]. But this increase in variance is in general a small price to pay
for a stable algorithm. Remember as well that the variance of the estimator still
increases if fewer particles hold valuable information. In some cases the resampling
might conduce to a need for a larger amount of particles in order to ensure the
same speed of convergence.

Since resampling introduces additional variance and since it also increases the
computational complexity of the algorithm, it might be of interest to resample as
little as possible. One can use the measures described in the previous section to set
up a limit on the number of effective particles and then resample once this limit is
breached. This way it is possible to hold the increase in variance at bay and at the
same time keep a stable algorithm.

This extension of the SIS algorithm is called Sequential Importance Sampling
with Resampling [CMR05, p. 237], the full algorithm is stated in Algorithm 2.

Algorithm 2 SISR

1: Draw an i.i.d sample
(
ξ1
0 , . . . , ξ

N
0

)
from the initial distribution ρ0 and set

ωi0 = g0(ξi0)
dν

dρ0
(ξi0)

2: for do k = 0, 1,. . .
3: Draw (ξ̃1

k+1, . . . , ξ̃
N
k+1) conditionally independently from the instrumental

kernel ξ̃ik+1 ∼ Rk+1(ξik, ·), i = 1, . . . , N . given the previous particles up to step

k, {ξj0:k, j = 1, . . . , N}.
4: Update importance weights

ωik+1 = gk+1(ξ̃ik+1)
dQ(ξik, ·)

dRk+1(ξik, ·)
(ξ̃ik+1)

5: Draw, conditionally independently given {(ξi0:k, ξ̃
j
k+1), i, j = 1, . . . , N}, a

set of N indexes, (I1
k+1, . . . , I

N
k+1), with probability mass function given by the

respective normalized importance weights,

ω1
k+1∑N

j=1 ω
j
k+1

, . . . ,
ωNk+1∑N
j=1 ω

j
k+1

6: Reset importance weights to some constant
7: Update the particle trajectory

ξi0:k+1 = (ξ
Iik+1

0:k , ξ̃
Iik+1

k+1 ), ∀i
8: end for

10. Inference theory

10.1. Sufficient statistics. Consider a random variable X with a given para-
metric distribution Pθ. If one were to estimate the parameters θ using a number
of realisations of X, x0:n, it might be so that the observations could be reduced
in some way without any loss of information about the specific parameter. Say it
would be possible to extract the necessary information from the data using some



10. INFERENCE THEORY 13

statistic S(X). This statistic is said to be sufficient if it is containing all information
about θ. A more rigorous definition is given below.

Definition 2.8. A statistic S(X) is said to be sufficient for the parameter θ
or for X distributed according to the family of distributions P = {Pθ, θ ∈ Ω}, if the
conditional probability of X given S = s is independent of θ for all s.

This definition can be interpreted as the sufficient statistic S holding all the
information about θ such that if S is given, the probability can no longer depend
on θ as all information known. Yet, the definition given does not provide much help
in finding sufficient statistics for a certain parameter. A convenient way to find a
sufficient statistic for a distribution is Fisher’s factorization criterion.

Definition 2.9. (Fisher’s factorization criterion) A statistic S(X) is sufficient
for θ if and only if there exists non-negative functions h and g such that the prob-
ability density function of X can be factorized as

fθ(x) = h(x)gθ(S(x))

For more information on sufficient statistics see [LC98, chapter 1.6].

10.2. Exponential families. A very common family of distributions is the
exponential family.

Definition 2.10. A family of distributions P = {Pθ, θ ∈ Ω} is said to form
an s-dimensional exponential family if the probability densities of the distributions
in P can be written on the form

pθ(x) = exp

[
s∑
i=1

ηi(θ)Ti(x)−B(θ)

]
h(x)

where ηi and B are real valued functions.

Using this definition and the factorization criterion it is possible to deduce that
there exists sufficient statistics for all distributions which are members within the
exponential family. For further reference on exponential families and their use in
inference theory the interested reader is referred to [LC98].





CHAPTER 3

Model for dynamical tracking in WiFi networks

1. The relation between position and RSSI

The received signal strength indication is a measure on IEEE 802.11 signal
strength given in dBm. This unit is defined as

Y = 10 log10(P ) + 30 (3.1)

where P is the power of the transmitted signal in watt and Y the received RSSI. The
power of the signal decreases with the square of the distance from the source. This
is easily seen by letting the power of the source be projected on the surface area of a
sphere with the distance to the receiver being the radius. Indoor environments are
not optimal settings for signals because of walls and people blocking and dampening
the transmitted signal even further. It has been shown that the signal decreases
at a power of 4 in a common indoor environment. The resulting relation between
position and RSSI will then be

Y = 10 log10

 cl(√
(x− x̃l)2 + (y − ỹl)2

)4

+ 30 (3.2)

where cl is a constant corresponding to the transmit power of AP number l. Sim-
plifying and combining constants we get

Y = −20 log10

(
(x− x̃l)2 + (y − ỹl)2

)
+Dl (3.3)

where Dl denotes the combined constants in the RSSI domain. Note that the
position of the access points, (x̃l, ỹl) is considered to be known parameters in this
expression.

One more thing to take into account is the height difference between the access
point (AP) and the target. This height will not make much difference on longer
distances but will definitely effect the result when close by. To account for this
the height needs to be added to the distance part in (3.2), as easily derived from
Pythagora’s theorem, resulting in

Y = −20 log10

(
(x− x̃l)2 + (y − ỹl)2 + h2

l

)
+Dl (3.4)

2. The state space model

The problem of positioning in a WiFi-network is similar to the bearings only
tracking problem described before. The major differences are that it is now the
target itself that does the tracking and also that the measurements are not bearings
but received signal strength indication (RSSI) per available access point. But more
on this later.

The movement in the bearings only tracking example above assumes Gaussian
changes in velocity. The changes in velocity of a walking person indoors will,
however, most likely not change according to Gaussian noise. Furthermore the
majority of the changes will be in direction or change to a sudden halt. So let us
extend the model to include this.

15
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A possible modification, to account for changes in direction, corresponding
to turning, could be to include a state variable for the angular acceleration, αk,
and then update the velocity accordingly for each time step depending on this
change in direction. This is done by extending the model in (2.7) by adding a
rotation operator to the velocity parts in the transition matrix and the primitive of
this operator handling the change in position. This gives the following dynamical
system which was also discussed by [AMRE12, SARGM04].

x1,k+1

x2,k+1

ẋ1,k+1

ẋ2,k+1

 =


1 0 sin(αkT )

αk
− 1−cos(αkT )

αk

0 1 1−cos(αkT )
αk

sin(αkT )
αk

0 0 cos(αkT ) − sin(αkT )
0 0 sin(αkT ) cos(αkT )



x1,k

x2,k

ẋ1,k

ẋ2,k

+

+


1
2T

2 0 0 0
0 1

2T
2 0 0

0 0 T 0
0 0 0 T



u1,k

u2,k

u3,k

u4,k


(3.5)

where T denotes the sample period and u1:4,k are Gaussian noise variables at time
k accounting for other changes in acceleration. The matrix multiplied with the
Gaussian vector derives from the changes in velocity due to the noise. This is given
by ẋk+1 = T ẍk and the same principle holds for the position yielding xk+1 = 1

2T
2ẍk.

The angular acceleration is updated at each step by drawing from the conditional
distribution αk ∼ p(αk|αk−1).

It is important to point out that this turning model only handles a target that
is turning. The matrix given by the limit where αk → 0 is the matrix in (2.7)
which is equivalent to walking straight. The matrix is however not defined in 0 and
walking indoors will probably switch between these two patterns, that is periods
of straight walking will be followed by sudden turns. It is therefore of interest to
combine the model for constant velocity and the model for coordinated turns in
some way. Since a person seldom moves indoors without a halt it would also be
reasonable to include in the model a state of standing still.

A way to account for the switching between different movement patterns could
be to add another dynamics to the model, namely a maneuver chain (Mk). Let this
chain have Markovian evolution between the states, walking straight (W ), turning
(T ), stopping (S), and starting to walk (I), shown in Fig. 3.1. The maneuver chain
affects primarily the original model by changing the transition matrix depending
on the current state in the maneuver chain, Mk. Resulting in αk ∼ f(αk|αk−1,Mk)
and Mk ∼ p(Mk|Mk−1).

WT S I

Figure 3.1. Schematic figure over the maneuver chain’s
state space.

Since all transitions between the states in our state space are Markovian and
since the underlying states are not directly observable, this model fits a hidden
Markov model. Denoting the states (xk, yk, ẋk, ẏk, αk) as Xk, the maneuver chain



2. THE STATE SPACE MODEL 17

as Mk and the observations as Yk we have a model structure as depicted in Fig.
3.2. This figure clearly shows the HMM structure where each observation Yk only
depends on the underlying position Xk, which in turn depends on the previous
position Xk−1 and the current maneuver Mk.

Mk Mk+1

Xk Xk+1

Yk Yk+1

. . . . . .

. . . . . .

Figure 3.2. Schematic graph over the transitions in the
Hidden Markov model

The generalized state space equations for this extended model are given below.

Mk+1 ∼ p(Mk+1|Mk),

αk+1 ∼ f(αk+1|αk,Mk+1),

Xk+1 = A(αk+1,Mk+1)Xk +RUk,

Yk+1 = B(Xk) + SVk

(3.6)

Here, p(Mk+1|Mk) is the transition probabilities for the maneuver chain, f(αk+1|αk,Mk+1)
the conditional density for the angular acceleration, A(αk,Mk) the conditional ma-
trix taking the underlying state as a parameter. These are defined as

A(αk,Mk) =




1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 , Mk = W


1 0 sin(αkT )

αk
− 1−cos(αkT )

αk

0 1 1−cos(αkT )
αk

sin(αkT )
αk

0 0 cos(αkT ) − sin(αkT )
0 0 sin(αkT ) cos(αkT )

 , Mk = T, I


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , Mk = S

(3.7)

R is the matrix which transforms the acceleration noise to position and velocity
noise, given by

R =


1
2T

2 0 0 0
0 1

2T
2 0 0

0 0 T 0
0 0 0 T

 , Mk = W,T, I, S (3.8)
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The function B(Xk) computes the signal strength of the access points Yk given the
current states, Xk, as given in (3.4), and Vk is a Gaussian variable representing
additive measurement noise.

When in state S, both the position and the velocity state are held constant apart
from some noise. This noise is needed to make sure that the complete likelihood
does not collapse to a Dirac pulse. Even if the true velocity is zero when standing
still the velocity is kept as the previous value so that it might be used to initialize
the chain in a similar direction once the target starts moving again. This might
seem as using an older state which would violate the Markov property but since the
updating still takes place the transitions will only depend on their current values
preserving the Markov property of the chain. Observe that the kernel itself is
changed so that the velocity does not change while in the S state. The velocity will
in that sense hold false information while the chain is in this mode.

3. Sub-model distributions and parameters

With a complete model structure the only missing part before it is possible to
simulate from the model is to decide which distributions the underlying parameters
should have. Not only should the transition probabilities in the maneuver chain be
set, but also the distributions from where we draw the angular acceleration. These
distributions corresponds to the prior knowledge of model parameters and should
therefore be selected to mirror how a person moves indoors.

To decide which distributions to set as these priors one must look at the move-
ment patterns of people. The model structure takes care of selection of the different
sub-models but once the maneuver chain is in state (T ) the distribution of angu-
lar accelerations should cover the possible turn rates a person moves according to.
Looking at a map of a building it is quite reasonable to think that most turns

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2
Beta distribution on interval 0..pi w. params, a=3, b=3. 

Figure 3.3. Beta distribution between 0 and π with α =
3, β = 3.

will be sharp and usually with a steep angle close to π/2. After observing people
moving indoors the mean turn rate of π/2 per 2 seconds was chosen. The different
possible angles were selected to be everything between 0 and ±π radians with a
maximum in ±π/2 according to a Beta(3, 3) distribution as displayed in Fig. 3.3.
This distribution was selected due to the fact that it has a limited interval with
good possibility for configuration of the mode.

This distribution of angular acceleration will in 1 second result in a change
in velocity according to Fig. 3.4 assuming the initial velocity was (1, 0) and the
resulting change in position is displayed in Fig. 3.5. In addition to this there will
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be an additive Gaussian noise accounting for all other changes as described earlier.

Figure 3.4. Distribution of velocities after one second of
turning, given the starting velocity (1, 0).

Figure 3.5. Distribution of velocities after two seconds
of turning, given the starting velocity (1, 0).

Walking straight will be modeled by the matrix in (3.7) with a Gaussian addi-
tive noise.

The (I) state will draw the angular acceleration uniformly, which opens up
for the possibility of very sharp turns such as changing direction completely. The
previous direction will however still be the expected direction.

The transition probabilities will be estimated using parameter inference dis-
cussed later in the thesis.





CHAPTER 4

On-line filtering algorithm

1. Initial implementation, the Bootstrap filter

The initial implementation of the SISR algorithm was done using the transition
kernel of the hidden chain as the instrumental kernel for the filter. This type of
filter is called a bootstrap filter, originally proposed in [GSS93]. The gain in
sampling from the transition density itself is mainly two things. The first is that it
is normally very easy to sample from this kernel since it only requires implementing
the model structure. The other one is that the calculation of the incremental weights
is greatly simplified as the Radon-Nikodym derivative will be 1, see line 4 Algorithm
2, resulting in the simple expression

ωik+1 = ωikgk+1(ξ̃ik+1) (4.1)

It is then possible to implement a filter which for each step propagates each of the
particles according to the model structure and then calculates importance weights
using the local likelihood.

2. The auxiliary filter

The bootstrap filter may be easy to implement but it is far from optimal when it
comes to variance of the estimation as it propagates the particles “blindly”, without
utilizing any of the information contained in the observations to move the swarm.
This will affect the filter performance as an increased amount of particles will be
needed in order to get a good approximation of the posterior distribution. Since
the run-time complexity of the algorithm is dependent on the number of particles
this will lead to a large increase in computational intensity. It might therefore be
of interest to propagate the particles more efficiently using some dynamics different
from that of the hidden chain. Better would be to use the optimal kernel given by

Tk(x, h) =

∫
h(x′)q(x, x′)gk+1(x′)dx′∫
q(x, x′)gk+1(x′)dx′

. (4.2)

The optimal kernel comprises information concerning both the state dynamics and
the current observations, see [RC04]. This results in a lower variance of the esti-
mation. There is however one problem with using this kernel: it is in many cases
not feasible to sample from it. The optimal kernel may still however offer ways to
improve the propagation of the particles in order to lower the variance of the esti-
mator. Modifying the proposal kernel to fit the model better is a way to adapt the
filtering algorithm to the model under consideration. An early example of adapta-
tion of particle filters is the auxiliary particle filter proposed by [PS99]. Auxiliary
particle filters increase weights for particles more likely to do well, by calculation
of an extra auxiliary weight for each particle. This weight, which is multiplied
with the original weight before selection, is divided out in the calculation of the
subsequent weights in order to keep the bias of the approximation unchanged.

Initially pilot particles, see [OR11], were used to move the swarm towards the
more likely long term survivors. These pilot particles are an extra propagation of
the particles testing the ground before the real propagation is performed. In this

21
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way the particles that are more likely to do well at the next propagation are given a
larger weight and will thus be more likely to survive the selection step. This means
that most particles will be more similar to the posterior distribution and thus the
variance of the filtering is reduced. The extra propagation will of course harm the
running time of the algorithm but this improvement might still be of value due to
the reduction in variance.

The auxiliary filter is defined Algorithm 3. For a more in-depth analysis of
auxiliary particle filters consult [OR11].

Algorithm 3 APF with pilot sampling

1: for i = 1..N do
2: simulate ξi0 ∼ ρ0

3: set ωi0 ← g0(ξi0)
dν

dρ0
(ξi0)

4: set ϑi0 ← 1
5: end for
6: for k = 0..n− 1 do
7: for i = 1..N do

8: simulate Iik+1 ∼
(

ω`kϑ
`
k∑N

j=1 ω
j
kϑ

j
k

)N
`=1

9: simulate ζik+1 ∼ Rk(ξ
Iik+1

k , ·)

10: simulate ξik+1 ∼ Rk(ξ
Iik+1

k , ·)

11: calculate ωik+1 =
gk+1(ξik+1)

ϑ
Iik+1

k

dQ(ξik, ·)
dRk+1(ξik, ·)

(ξik+1)

12: calculate ϑik+1 = gk+1(ζik+1)
dQ(ξik, ·)

dRk+1(ξik, ·)
(ζik+1)

13: append (ξik+1, ω
i
k+1) to the set of particles and their weights

14: end for
15: end for

The pilot particles act as estimates of the conditional expectation of the next
hidden state and will when inserted into the local likelihood serve as an estimate of
the next filtering distribution. This estimate will be unbiased but far from optimal.
A way to reduce the variance of the estimate and at the same time reduce the
computational complexity is to derive the expected position and let this serve as
the base of the auxiliary weight calculation instead of the pilot particles. This
expectation might not always be so simple to calculate but it might be possible to
approximate it. This way a completely analytical expression is acquired, if possible,
and no extra particle propagation is needed to calculate the auxiliary weights.

Using the model structure and the tower property we can find a good start for
the calculation of the expectation.

E [Xk+1|Xk,Mk] = E [E [Xk+1|Xk,Mk,Mk+1] |Xk,Mk]

=
∑
j

pMk,jE [Xk+1|Mk+1 = j,Xk]

=
∑
j

pMk,jE [A(αk+1,Mk+1)Xk|Mk+1 = j,Xk]

=
∑
j

pMk,jE [A(αk+1,Mk+1)|Mk+1 = j]Xk

(4.3)
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A way to calculate an approximation of this expectation is to do a Taylor series
expansion in the mean and then take the expected value of the first few terms.

E [f(X)] = E [f(µX + (X − µX))] =

= E
[
f(µX) + f ′(µX)(X − µX) +

f ′′(µX)

2
(X − µX)2 +O((X − µX)3)

]
≈

≈ f(µX) + f ′(µX)E [X − µX ] +
f ′′(µX)

2
E
[
(X − µX)2

]
=

= f(µX) +
f ′′(µX)

2
V [X]

(4.4)

where µX is the expectation of X.
The full calculation of (4.3) using this approximation is given in Appendix 8.

The resulting approximation of the expected step serves as a prediction, giving
additional weight to particles with expected high future fitness. Since the approxi-
mation is completely analytical it will be used instead of the pilot particles in order
to reduce the execution time of the algorithm.





CHAPTER 5

Estimation of model parameters

The proposed model holds a fair amount of unknown parameters which most
probably differs between different locations. In order to be able to use the model
on real data it must be possible to calibrate the parameters of the model. This
section will focus on an algorithm called Expectation Maximization (EM) and how
this method can be used in order to estimate unknown parameters.

A first step is to identify which parameters the model consists of and to identify
the parameters that can be considered known beforehand. Looking at the prob-
ability density functions used in the model we can easily identify the parameters
listed in Table 1.

Parameter Model property

Dl AP signal strength
hl AP height over ground
x̃l AP x-coordinate
ỹl AP y-coordinate
σ2
v Measurement noise variance
σ2
u Acceleration noise variance
pij Maneuver transition probability

Table 1. Table of model parameters

among the above parameters the AP locations and height over ground can be
considered known. The remaining parameters will have to be estimated using the
mentioned algorithm.

1. Expectation Maximization algorithm

A common algorithm used for parameter estimation in HMMs is the expectation
maximization, or EM, algorithm originally suggested in [DLR77]. The idea behind
the algorithm, given in a general form in Algorithm 4, originates from maximum
likelihood estimation and consists of maximizing the likelihood through recursive
maximization of another quantity called the intermediate quantity Q(·, θi).

Definition 5.1. The intermediate quantity of EM is the family of functions
defined as

Q(θ; θ′) = Eθ′ [logLc(θ;x)] (5.1)

where Lc is the complete data Likelihood.

Something which is of interest when conducting inference in hidden Markov
models is the complete data likelihood.

Definition 5.2. The complete data likelihood, denoted Lcn(θ;x0:n, y0:n), is the
likelihood of the parameter θ given all data, including the hidden states X0:n, up to
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point n. Strictly the complete data likelihood is the function defined as

θ 7→ pθ(x0:n, y0:n). (5.2)

It can be shown that an increase in the intermediate quantity implies an increase
of the log likelihood [CMR05, p. 351]. Since every step in EM maximizes the
intermediate quantity the algorithm is a monotone optimization of the likelihood
function.

A fact that should not be ignored is that a gradient-based method for opti-
mization of the likelihood function might work just as well and will in some cases
perform better than the EM algorithm [CMR05, p. 359]. The EM algorithm was
chosen in this paper due to its robustness and easy implementation.

Algorithm 4 EM algorithm

1: for i=1. . . do
2: E-step: Determine Q(θ; θi)
3: M-step: Maximize θi+1 = arg max

θ∈Θ
(Q(θ; θi))

4: end for

In order to implement this algorithm a fair amount of calculations need to be
performed. Taking advantage of the fact that the model distributions belong to the
exponential family it is however possible to simplify a few of the steps.

1.0.1. Determination of sufficient statistics for model parameters. In order to
find sufficient statistics for the parameters in the model one need to look at the
complete data likelihood. The complete data likelihood for our model is given by,

Lcn(θ; y0:n,x0:n, α0:n,M0:n) =

= χ(x0)g0(x0)

n−1∏
k=0

p(αk+1)p(P ;Mk,Mk+1)

(
L∏
l=1

g(Dl, σv; xk+1, yk+1)

)
q(σu; xk,xk+1)

= χ(x0)g0(x0)

n−1∏
k=0

[
1

2π
pMk,Mk+1

×

(
L∏
l=1

1√
2πσ2

v

exp

{
− 1

2σ2
v

(
yk+1 + 20 log10

[
(x1,k+1 − xl)2 + (x2,k+1 − yl)2 + h2

l

]
−Dl

)2})

× 1

(2π)2 |Σ|1/2
exp

{
−1

2

[
(xk+1 −A(αk+1,Mk+1)xk)TΣ−1(xk+1 −A(αk+1,Mk+1)xk)
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Expanding the quadratic expressions and using |Σ|1/2 =
T 6σ4

u

4
yields
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Using the factorization criterion and membership in the exponential family we can
identify the sufficient statistics as

s1,i(l) =

n−1∑
k=0

(
yk+1 + 20 log10

[
(x1,k+1 − xl)2 + (x2,k+1 − yl)2 + h2

l
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(5.3)

s2,i =
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k=0

L∑
l=1

(
yk+1 + 20 log10

[
(x1,k+1 − xl)2 + (x2,k+1 − yl)2 + h2

l

] )2
(5.4)

s3,i =

n−1∑
k=0

(xk+1 −A(αk+1,Mk+1)xk)T (RRT )−1(xk+1 −A(αk+1,Mk+1)xk), (5.5)

where subscript i denotes particle trajectory number i.
These statistics are calculated each step using draws from the smoothing dis-

tribution. The smoothing distribution is approximated by the particle trajectories
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and their respective weight. Using these we can form the statistics as
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j
n

s1,i(l) (5.6)
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s2,i (5.7)

ŝ3 =
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j=1 ω

j
n

s3,i (5.8)

where N is the total number of particles and ωin is the weight for the particle
trajectory i at step n.

1.0.2. Calculations for maximization. Using these statistics we can form a con-
densed expression of the complete log-likelihood as
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With this expression we can find estimators of the parameters maximizing the
complete data likelihood
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The transition probabilities are estimated by the following estimator

p∗ij =

∑n−1
k=0 φk,k+1|n(i, j; θ′)∑n−1

k=0 φk|n(i; θ′)
(5.12)

where φk|n(i; θ′) and φk,k+1|n(i, j; θ′) are the smoothing probabilities Pθ′(Mk =
i|y0:n) and Pθ′(Mk = i,Mk+1 = j|y0:n), respectively. These probabilities can be
estimated using the draws from the smoothing distribution according to

P∗θ′(Mk = i|y0:n) =

N∑
`=1

ω`n∑N
j=1 ω

j
n

1{Mk,` = i}
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and

P∗θ′(Mk = i,Mk+1 = j|y0:n) =

N∑
`=1

ω`n∑N
j=1 ω

j
n

1{Mk,` = i,Mk+1,` = j}

where 1{·} is the indicator function and N is the number of particles used.
This way the transition probabilities can be estimated using the following re-

lation

p∗ij =

∑n−1
k=0

∑N
`=1 ω

`
n1{Mk,` = i,Mk+1,` = j}∑n−1

k=0

∑N
`=1 ω

`
n1{Mk,` = i}

(5.13)

Calculating the sufficient statistics and inserting them into the maximizing
estimators is all that is needed for the EM algorithm. The calculated parameter
estimates are then used for generating the next MC sample used in the expectation
step. Iterating these steps until the values converge will give estimates of the model
parameters.

2. Degeneration

The particle estimation of the smoothing distribution might not always be
easily obtained. The resampling step solved degeneration in the case of filtering
but when approximating the smoothing distribution there is an imminent risk that
the resampled particle trajectories after some time will originate from only a single
particle. This problem is illustrated in Fig. 5.1–5.2 showing clearly the collapse in
origin to the same ancestor.
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Geneological tracing of particles

Figure 5.1. Genealogical tracing of 500 particles over
time showing original ancestor index on the y-axis and
EM iteration, or generation, on the x-axis. After just
under 30 steps all particles origin from the same ancestor.

The collapse results in a loss of information and a bad approximation of the
smoothing distribution. This in turn leads to bad estimates during parameter
inference resultng in an expectation-maximization estimate with a large bias. In
some cases the estimation algorithm will not even converge.
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Figure 5.2. Degenerated sample of 500 particle trajec-
tories showing a bad diversity which will lead to a poor
approximation of the smoothing distribution.

3. Fixed-lag smoothing

The first and most simple solution of this problem is to increase the amount of
particles used. Since it might be enough with a few particles to get a rough estimate
it is possible to start the EM algorithm using a smaller amount of particles and
then let the number increase with each iteration. This will allow for a considerable
increase in particles but focusing the majority of the computations on the later
iterations which require a better smoothing approximation to get a precise estimate.
But solemnly increasing the amount of particles will not be a solution for longer
sequences of data. Depending on the complexity of the HMM it might require such
a large amount of particles to avoid degeneracy that the running time will suffer
too much.

One method for avoiding degeneracy, discussed in [OCDM08], is called fixed-
lag smoothing. This method uses the idea that it might be possible to approximate
the smoothing distribution with a smaller amount of observations than the full
trajectory. One might expect that the smoothing of a certain point would mainly
depend on observations up to a certain point and that the later observations would
affect the distribution less and less. This idea is based on something called the
forgetting property of the hidden Markov chain. A geometrically ergodic chain will
exhibit this property and forget its previous states geometrically and geometric
ergodicity can be proven to hold under these circumstances. The interested reader
is referred to [OCDM08] for an in depth discussion on the topic.

As the trajectories collapse after a certain amount of steps it would be tractable
to use a fixed amount of observations, shorter in duration than the typical collapsing
time. The fixed-lag smoothing uses the forgetting property to fight the degeneracy
using trajectories that has not yet collapsed. Since chain forgets its previous states
the data points further ahead will only provide very little information, if any, to
the approximation of the smoothing distribution and can therefore be omitted.

The fixed-lag smoothing technique is mainly defined for additive functionals
over the sequence of the form

tn(x0:n) =

n−1∑
i=0

sk(xk:k+1). (5.14)
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Here sk is a series of functions defined on the product space X×Y. Looking at the
estimators used in EM they are additive functionals based on the sufficient statistics
from the exponential family fitting exactly this format. One can then assume that
the fixed-lag smoothing should suit our needs well.

So in the EM setting the expectations computed over the smoothing distribu-
tion can be approximated using observations up to a fixed lag for each function
value in the sequence,

E [sk(Xk:k+1|Y0:n)] ≈ E[sk(Xk:k+1|Y0:k(∆n))], ∀k (5.15)

where
k(∆n) = (k + ∆n) ∧ n. (5.16)

This function is used in the notation to ensure that the lag does not extend further
ahead than the number of available observations. Using this notation and combining
it with the particle and weight trajectories we can write the sufficient statistics in
(5.6-5.8) as
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ŝ3 =

n−1∑
k=0

N∑
i=1

ωik(∆n)∑N
j=1 ω

j
k(∆n)

(ξik+1 −A(αk+1,Mk+1)ξik)T (RRT )−1(ξik+1 −A(αk+1,Mk+1)ξik)

(5.19)

Essentially this means that for each step k : k + 1 we update the functional values
using the current particles and the associated smoothing weights at lag k(∆n)
ahead. By using the additive structure of the functional it is possible to update the
statistics recursively using previous values and just record the particle trajectories
and weights as time progress. Apart from slightly higher storage requirements, this
updating scheme will therefore not increase the computational complexity of the
algorithm beyond the original smoothing algorithm.





CHAPTER 6

Data collection

The data needed for estimation and testing is the signal strengths from each
AP, the id of these AP’s and points in time when the measurement were made. In
order to be able to control the correctness of the estimates one also needs to know a
true trajectory and the correct AP locations. All existing data which was available
failed on one or more of these aspects and it was therefore needed to construct some
kind of data collection device. Smart phones are perfect for this task since they are
both mobile and open for quick and easy application development. The Android
platform is especially suitable because of the possibility of free development and
easy access to the file system.

1. Development of a data mining application

Developing an Android application for data collection is pretty straightforward
since all the needed libraries for reading the WiFi scans are contained within the
Android SDK. A main Activity was created together with a BroadcastReceiver
that listens on the completion of a WiFi scan. Another class, called DataPoint,
was created to save and structure the output of each result. Since the default
scan rate was a bit too slow, a Task scheduler initiating scans was set up on a
more desirable frequency. Unfortunately there is no way to control the WiFi scans
explicitly since these initiations of scans are only requests to the system. The
OS seemed to sometimes ignore these requests completely resulting in somewhat
irregular scan intervals. Unfortunately there does not seem to be solution to this
problem. The Android SDK does not provide any other possibility to initiate WiFi
scans which most probably is due to stability concerns from the OS developers. It
would probably be possible to control this using kernel modules directly but since
this would require a lot more complex programming it was not pursued further.

Two other buttons were created. One which starts and stops recording to file
and one that clears the interface. The data is saved to file in CSV format for ease
of import in other applications.

The source code of the resulting application can be found on https://github.

com/while/RSSIMiner and is available for further usage and development under the
MIT licence.
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CHAPTER 7

Numerical results

1. Analysis of algorithm performance

The first tests performed were done on simulated data to assess the perfor-
mance on the different algorithmic improvements. The first part was to compare
the auxiliary filter with the bootstrap filter and auxiliary filter without the ma-
neuvering state (S), i.e. the ability to stop completely. This test was done to
assert the performance improvement introduced by the auxiliary filter and also the
performance difference depending on inclusion or exclusion of the (S) state in the
model.

As can be seen in Fig. 7.1-7.3 and Fig. 7.5 the auxiliary filter performs slightly
better then the original bootstrap filter. The biggest difference is displayed during
straight walks which seem to be because the pilot particles manage to predict this
maneuver state better than others. One possible explanation here might be that the
turns are more complex to predict and since these occur less frequently it might be
so that the pilot propagation does not capture the turn that the actual particle will
take. This is quite reasonable to expect since the pilot propagation is meant as an
approximation of the expected value of the next step and as the walk is symmetric
the expected step will not turn nor stand still. Non the less the accuracy of the
filter increase with the use of pilot particles.

One can also conclude that the inclusion of the (S) state is of value since
introducing this state leads to a significant improvement of the performance of the
filter. The root-mean-square error of 64 sequential tests on the different test cases
displayed in Fig. 7.5 clearly show a significant difference in performance. As soon
as the walk comes to a halt the model stripped of this state is incapable of predicting
the position with any reasonable precision. Instead this model in many cases walks
around the neighbouring area. As can be seen in right test in Fig. 7.3 the no-(S)
model finds a local max walking around the AP instead of standing still.

This result points to the fact that the model is not very sensitive to inclusion of
motion sub-models that are somewhat uncommon but rather that they contribute
if the pattern emerges in the data.

As can be seen in Fig. 7.5 some of the models increase in error towards the end
of the test walk. This might seem as the models are unstable after a large amount
of steps but is rather due to the fact that some of the test walks leaves the area
where the APs are located which results in a larger uncertainty in the estimate of
position. The further away from all AP locations the receiver is located the flatter
the local likelihood will be in the area of interest. The predictions will therefore
also exhibit a larger uncertainty and error.

The simulated RSSI data belonging to each of the test cases are displayed in Fig.
7.4. In order to simulate the real RSSI measurements a cut off limit at −110dBm
was introduced. Real world devices cannot receive signals under a certain limit at
which point no signal is received at all. The fact that the receiver needs to be at a
certain distance in order for this to happen was not used in the model since no good
way was found that did not affect the estimate in a negative way. Simply not using

35



36 7. NUMERICAL RESULTS

the data in that point increases the uncertainty but even if as few as two AP’s are
in range for shorter amounts of time the model can handle it well. This is because
of the models usage of previous movements which gives enough information to the
model in order for it to single out where the most likely position regardless of the
sometimes bi-modal local likelihood. The coloring in the graphs correspond to the
AP with the same color in Fig. 7.1-7.3.

RMS errors of the bootstrap filter, the original auxiliary filter with pilot par-
ticles and the auxiliary filter using approximation by Taylor series expansion is
displayed in Fig. 7.6. It is clear that the Taylor approximated auxiliary filter also
performs better than the bootstrap filter and that it is very similar to the original
one. The approximated expected value seem to coincide with the majority of pilot
particles on the parts where the straight maneuver is in action. This strengthens
the earlier hypothesis on the auxiliary filters performance on straights compared to
the bootstrap filter. It is then natural that neither of the two should do any better
than the bootstrap filter in areas where the walk is turning or standing still as the
auxiliary weights mostly contribute information when walking straight.

The auxiliary filter with Taylor series expansions run in about half the time the
original auxiliary filter. This is due to the fact that even though the same amount
of approximations is calculated in the algorithms, the complexity of propagating
particles and calculating weights is much less than that of a matrix-vector mul-
tiplication. This operation is both simpler computationally but also much more
optimized in a vast majority of languages and architectures. There is of course
a possibility that it might be possible to vectorize entirely the calculation of the
auxiliary weights or in some other way parallelize the computation involved but the
approximation should still provide faster execution times.

2. Estimation of model parameters

To ensure the effectiveness and convergence of the EM algorithm with fixed-
lag smoothing, it was first run on simulated data. The result is displayed in Fig.
7.7-7.16. As can be seen all the Dl parameters converged beautifully within a few
iterations together with the standard deviation of the noise, σv.

The transition probabilities generally converged but did show difficulty con-
verging to the true value in some cases. This was mostly the walking straight and
turning probabilities that seemed to interfere in some cases. This was probably
due to the possibility for the turning state to actually capture the walking straight.
This possibly introduced a chance to get particle trajectories with large weight us-
ing either of the two states which made them interfere during the EM estimation.
Turning should however not be as likely as the actual straight walk but because of
other parameters being estimated at the same time it might be so that they may
cancel out each other or find other combinations that generates a high likelihood for
just this specific case. There are definitely room for improvement here where some
kind of regularization or cross-validation might improve the estimation and remove
overfitting to one specific sequence. This was however not pursued any further in
this thesis.

Estimation of σu did show some difficulties and estimation together with other
parameters did not succeed. The estimated parameter did always fall off towards
zero which indicates that measurement noise somehow takes over to be the single
source of noise. In order to at least see that the suggested estimator converges, the
parameter was estimated with all other parameters set for a longer duration. This
estimate can be seen in Fig. 7.15. Even though it takes a long time it seems that
the parameter at the near end converges to a value in in the near proximity of the
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true value. Similar result was obtained for different walks so the problem does not
seem to be related to the same problem as the transition probabilities.

3. Testing on real-world data

To see how well the model and suggested algorithms work in a real environment
with real data, measurements were made in one of the buildings at Lund Institute of
Technology using the previously described Android application. The resulting walks
are displayed in Fig. 7.12-7.13. As can be seen the results are reasonably good.
Even though a large bias is present the model manages to capture the movement
pattern and predict the position to within a few meters. Due to the large amount
of concrete pillars in the area, the signal was very intermittent and is switching a
lot between different APs. This resulted in data from very few APs at the same
time resulting in movement sideways and some other strange movements. Errors
due to these were very consistent between different measurements as displayed in
Fig. 7.13. The presence of people also made the signal deteriorate a lot. During
some busy hours the Dl parameter changed due to dampening of the signal.

Parameter inference on the real data seems to work well for most of the pa-
rameters, just as in the simulated case. The estimated parameters increased the
accuracy for both tests even if it is much more apparent in Fig. 7.12 then in Fig.
7.13. Comparison is made with a manual estimate where the parameters were
brought forth by manual iteration. Guessing is tedious and not very accurate but
it works well here as a base case to see if there is any improvement introduced by
the EM estimation.

A difficulty encountered when estimating the parameters on real-world data
was the missing values. The filtering can easily handle the missing values without
loosing much precision, as previously discussed, but the EM algorithm and smooth-
ing was a lot more susceptible to this change. In the real setting it is however hard
to ensure that this does not happen without using professional equipment and con-
trolled environments. In order to make the estimation possible it was decided to
set a base value in case of a missing value so that a value is present even though
not entirely correct. This way it was possible to make the estimate but some kind
of bias is most probably introduced due to this blunt fix. A missing signal does
however tell us something and it might be of interest to investigate how to incor-
porate this into the model to enhance the estimates instead of bluntly introducing
a bias.

The parameters the EM algorithm managed to estimate were acquired using
2000 particles and a fixed lag of 15 steps. A setting with runs reasonably fast on a
modern computer.
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4. Figures

The resulting figures are all collected under this section.
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Figure 7.1. Test run 1 and 2, using both bootstrap and an auxilliary filter,
together with the respective number of effective particles, the Shannon entropy
and error distance for the two different methods. The step with the least amount
of effective particles has been encircled in green and the access point locations
have been marked with stars in different colors.
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Figure 7.2. Test run 3 and 4, using both bootstrap and an auxilliary filter,
together with the respective number of effective particles, the Shannon entropy
and error distance for the two different methods. The step with the least amount
of effective particles has been encircled in green and the access point locations
have been marked with stars in different colors.
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Figure 7.3. Test run 5 and 6, using both bootstrap and an auxilliary filter,
together with the respective number of effective particles, the Shannon entropy
and error distance for the two different methods. The step with the least amount
of effective particles has been encircled in green and the access point locations
have been marked with stars in different colors.
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Figure 7.4. RSSI data for the different test cases.
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Figure 7.5. RMS error over 64 test runs for each of the different test cases.
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Figure 7.6. RMS error over 64 test runs for each of the different test cases.
Gauss is the algorithm using the Taulor series expansions.
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Figure 7.7. Simulated data used for estimation of parameters using the EM
algorithm. The generated walk had 200 steps and 5 APs were used for generation
of RSSI. The APs in the grid corresponds to the RSSI with the same color.
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Figure 7.8. Estimation of Dl and σv parameters for simulated data using 30
iterations of the EM algorithm. As can be seen, all parameters converge quickly
towards the correct value.
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Figure 7.9. Estimation of σu for simulated data using the EM algorithm. Be-
cause of the convergence trouble this parameter exhibited, it was run separately
with an increased number of iterations.
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Figure 7.10. Estimation of transition probabilities on simulated data using 30
steps of the EM algorithm. As the probabilities in P(2,2) and P(2,3) were very small
they droped off to zero. This might be avoided using loger walks for estimation
or the average of several different walks.
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Figure 7.11. Smoothing of underlying maneuver chain for each of the 30 iter-
ations. The coloring represents the EM iteration. As can be seen in the figure
the smoothing reconstruction gets better and better with each iteration.
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Estimated walks in Studiecentrum LTH using measured WiFi data
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Figure 7.12. Estimated walks in Studiecentrum LTH based on real RSSI mea-
surements. The figure displays a comparison between a qualitative guess on
the parameters and the ones estimated using the EM algorithm. Two different
estimations were done for both parameter sets using 1000 and 5000 particles
respectively.
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Estimated walks in Studiecentrum LTH using measured WiFi data
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Figure 7.13. Estimated walks in Studiecentrum LTH based on real RSSI mea-
surements. The figure displays a comparison between a qualitative guess on
the parameters and the ones estimated using the EM algorithm. Two different
estimations were done for both parameter sets using 1000 and 5000 particles
respectively.
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Figure 7.14. Estimation of Dl parameters using real-world measurments. The
differences in level between the access points might be due to the many concrete
walls in the building, other disturbances in the area or simply that the different
stations had diferent transmit power.

0 5 10 15 20 25 30 35
1

2

3

4

5

6

7

8

EM estimation of σ
v

Iteration

Figure 7.15. Estimation of the σv parameter using real-world measurments.
This parameter exhibits a fast convergeance.
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Figure 7.16. Estimation of transition probabilities on real-world data using 30
steps of the EM algorithm. The red lines are the last value obtained from the
estimation which later was used in the filter.





CHAPTER 8

Conclusions

Experiments have shown that hidden Markov models in combination with aux-
iliary particle filters can form a powerful framework when estimating positions in
WiFi networks. The model performs relatively well and manages to predict the
trajectories even in real-world, uncontrolled, noisy environments. The estimations
are maybe not good enough to be used in any application where good precision is
required but it might serve well as a rough estimator when errors up to a few meters
are acceptable. The poor precision might also be improved if APs were positioned
with more than coverage in mind. At several times very few access points were in
range which definitely affected the accuracy of the position estimates. Given these
circumstances the model performed well once the parameters were tuned to their
right value.

The estimation of parameters was slightly harder than expected. This is of
course a negative aspect of the proposed model. One might argue that the conver-
gence of the EM estimator might have been better if longer measurements would
have been made. The short walks did not always give enough data to leave only a
single optimal point in the parameter space. It is probably possible to improve the
estimation procedure there. Some small changes to the model setup or change in
the algorithm might be enough to fix these problems but has not been confirmed.
This will require further investigation and is left for more in-depth studies of the
problem.

Another problem encountered were the rapidly changing signal space in the real
world environment. This is another area which is open for further investigation.
It might call for some need to design an algorithm that learns and reconfigures
the parameters as it is used. One idea here is to use something called on-line
smoothing which is an area with a lot of ongoing research. Another idea might
be to use some combination of machine learning algorithms and hidden Markov
models in order to improve the estimation. It is possible that one can use the
discriminatory power of machine learning algorithms to extract more information
from the signal space before inserting it into the hidden Markov model. This might
open up for making longer measurements in areas with poor coverage and use this
to improve the position estimate. How this should work in details is left for further
studies of the problem.

Finally the different maneuver sub-models might be investigated further. It
is possible that there are other maneuvers that will make it possible to filter the
process even better.
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Appendix

The full calculation of (4.3) in matrix form.
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∑
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