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A B S T R A C T

The goal of this dissertation is to estimate the amount of water in
snowpacks at the areas Kultsjön and Rensaren in northen Sweden.
A model is built using spatial statistics, and the estimations will be
done by Integrated Nested Laplace Approximations (INLA). Then a
validation process was done by removing data from the data set to
create a validation set, and compare the estimations done by INLA to
a simple linear regression. Finally the model is applied to the areas
of interest, and the results are analysed.
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Part I

I N T R O D U C T I O N





1
B A C K G R O U N D

When trying to predict the spring and summer inflow of water into
reservoirs of hydroelectric power stations, estimation of snow depth
in mountain regions of northen Sweden is of great importance.

Using an ultrasound receiver, towed behind a snowmobile, high
quality measurements of the snow depth along lines have been ob-
tained, and will be the subject of modelling. The goal of this Master’s
dissertation is to develop a model, using the availible data, to esti-
mate the snow depth at unobserved locations.

The dissertation starts with presenting the availible data in chapter
2. The theory behind our model is then presented in chapter 3, and
then applied to our data to build our model in chapter 4. The mod-
elling is based on spatial statistcs (see Handbook in Spatial Statistics
[6]), Gaussian Markov Random Fields, and Integrated Nested Laplace
Approximations.

Some validation on the estimations are performed in chapter 5,
where we create some test data to validate on, and then apply the
model to estimate on the area of interest; we discuss the results, to-
gether with some suggestions of future work in chapter 6.

Plenty of previous works done on snow estimation exists; the papers
used in the modelling process used a binary regression tree (Win-
strahl et al. [19]), and kriging with a nonlinear trend model (Erickson
and Williams [4]) were used. To our knowledge, no previous works
on snow depth using Integrated Nested Laplace Approximations (see
www.r-inla.org) have been done.
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2
D ATA

The availible data is: elevation, wind shelter, density of the snow, and
snow depth. The elevation, and wind shelter data exists on a grid
with 50 metres between grid points and will be used as covariates in
the modelling process.

The density of the snow, and snow depth were measured at loca-
tions typically located between the grid points. The density and depth
of the snow is used to calculate the amount of water at each observed
location (more on this later on in 2.2).

Because most of the observations were located in-between grid
points, an interpolation is applied to obtain covariate data at observa-
tion locations. Matlab’s interp2 is used with a bilinear interpolation
option to accomplish this (see 3.1).

2.1 area

The areas Kultsjön and Rensaren together creates the area to be mod-
elled in this project. A map of the surrounding area together with the
snow measures can be seen in Figure 1. Each point on this map has
elevation, and wind shelter data available.

Figure 1: Picture of the map. The blue line outlines the area of interest, and
the red lines are the observations.

In the upper-left corner of the area of interest, many neighbour-
ing points shares the same elevation, which implies that the area has

5



6 data

lower resolution than other areas on the map. Because several points
at this area shares the same height, the slope in this area can not be
correctly calculated. This causes the wind shelter data calculation (re-
lies on slope, as shown in 2.4) to fail, and will cause strange values in
this area.

Cutting off these points, with the surrounding area (which we are
not interested in), the grid to be modelled can be seen in Figure 3.
Note that we will have to apply bilinear interpolation before remov-
ing the low-resolution area, since one of the observation lines reaches
into the area to be removed. We will have to ensure reasonable covari-
ates along this line.

Plots showing the covariates of the line extending into the low res-
olution region can be seen in Figure 2. The elevation of the line inside
the low resoluted area has a quite steep rise, but a rise of about 140
metres in about 1.2 km is not entirely unreasonable. While the wind
shelter data seems a bit strange, the values vary within a reasonable
range.

Figure 2: Elevation and wind shelter data of the line extending into the re-
moved area. The bold part is inside the area with low resolution.

Since the covariate data of the line doesn’t seem to be too unrea-
sonable, it will be kept in the model.

2.2 snow water equivalent

Snow Water Equivalent (SWE) is a measure of the water content in a
pack of snow; it can be interpreted as the resulting water depth if all
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Figure 3: Map of the area with the lines of observations. The area with low
resolution is removed together with the surrounding areas. Note
the line stretching out into the removed area.

snow would melt. SWE is measured in metres as a function of snow
depth, water density, and snow density in this project; it can also be
represented as kg/m

2 (NASA [14]).

Definition 1. Snow Water Equivalent (SWE)

SWE = snow depth × snow density
water density

(2.1)

The observations of SWE data will be modelled using Gaussian dis-
tributions 3.2). If the data has significant skewness any analysis based
on Gaussian distributions will provide incorrect estimates (Morel [13])
and a Gaussian model would be inappropriate. A histogram of the
SWE data of the lines can be seen in the upper left graph in Figure 4,
where it is easy to see a long right tail of the SWE data. A transforma-
tion will have to be applied to reduce skewness of the data in order
to improve model fit.

Three simple transformations are tested:
√

SWE, 3
√

SWE, and log(SWE+
1) (Box and Cox [2]), where the skewness is estimated by b1 = (n−1

n )3/2 µ3

µ
3/2
2

(Gill and Joanes [7]).
The original data had a skewness estimation of ≈ 1.74, the

√
SWE

transformation ≈ 0.78, 3
√

SWE ≈ 0.43, and the tranformation log(SWE+
1) yielded the estimation ≈ −0.36. Graphs of the transformations can
be seen in Figure 4.
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Figure 4: Application of the transformations discussed in 2.2.

The log transform gave skewness closest to zero, and will be used
in the modelling. Note that some skewness remains, and could per-
haps be improved on.

2.3 elevation

The elevation is measured in kilometers, and is obtained from the
map of the region. A summary of the elevation data can be found in
the table in Table 1. The range of elevation data in the lines is smaller
than for the entire area, and we need to be careful with predictions
that extrapolate to unobserved elevation values.

2.4 wind shelter

As suggested by Winstrahl et al. [19], a way of characterising the ef-
fect of wind on snow could be a significant factor when predicting
snow depth. The wind shelter factor tries to quantify the degree of
shelter/exposure and thus quantify where snow gathers. It is calcu-
lated as:

Definition 2. Wind shelter

For the search distance dx, the wind shelter is calculated as

Sdx(u) = max
uv

�
tan

�
H(uv)−H(u)

|uv −u|

��
, (2.2)

where H is the elevation of point u, and uv is a point within the search

distance in the chosen wind direction uv = u+ v · t, 0 � t � dx.
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Figure 5: The elevation of the lines, each segment is a single line.

Figure 6: Elevation in km of the area of focus.

The wind shelter data was computed for eight different wind di-
rections; 22.5◦, 67.5◦, 112.5◦, 157.5◦, 202.5◦, 247.5◦, 292.5◦, 337.5◦. For
each direction, wind shelter has been computed using three different
seach distances; 250, 750, and 1500 metres.

As with the elevation data, a summary of wind shelter data can be
found in Table 1. The table shows that the representation of the areas
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Figure 7: Wind shelter of the lines.

wind shelter is quite poor in the measurement locations. Unlike the
elevation data, where the area data was only slightly outside the line
data, the range of wind shelter data for the entire area is a magnitude
larger than for the observations.

Using all wind shelter data in the model would be infeasible. Er-
ickson and Williams [4], and Winstrahl et al. [19] only used wind
shelter for the dominant wind direction and our aim is to do the
same here. However, the dominant wind direction is unknown, we
also have three different search distances. Determining which combi-
nation of wind direction and search distance to use will be done in
4.1.2.
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Figure 8: Wind shelter of the area.

Observations Grid

min mean max min mean max

elv 0.548 0.820 1.10 0.536 0.790 1.57

wsh -5.49 2.07 18.4 -38.8 2.85 61.0

SWE 20.2 534 2520 — — —

log(SWE + 1) 3.05 6.06 7.83 — — —

x 2.01 4.55 7.15 1.91 4.66 6.89

y 0.395 3.09 5.29 1.22 2.83 4.00

elv.rm — — — 0.803 1.02 1.40

wsh.rm — — — -58.9 6.62 82.0

Table 1: Wind shelter is abbreviated as wsh, elevation as elv, and the suffix
.rm refers to the removed data of the area with low resolution. x
and y are the coordinates on the map.





3
T H E O RY

This chapter presents the theory used in the modelling.

3.1 interpolation

Since the observations are located in-between grid points, we need
to interpolate from the grid points to create covariate data at the ob-
servation locations. Bilinear interpolation is a interpolation technique
used to find the value of a point given four surrounding points. One
could think of it as linear interpolations in three dimensions (Farin [5,
chap. 14]).

Definition 3. Linear interpolation

Let u1 and u2 be two points on R2
, then if the x-coordinate of a point u

between these points is known, the coordinates of u can be calculated as

u = tu1 + (1− t)u2, t ∈ [0, 1]. (3.1)

where t = x2−x
x2−x1

; (xi,yi), i = 1, 2 is the coordinates of ui.

This can be seen as a weighted average, with the weights x2−x
x2−x1

and
x−x1
x2−x1

.

Figure 9: Example of linear interpolation with points u1 = (x1,y1), u2 =
(x2,y2) to a point u = (x,y).

13
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Now assume four points u1,1, u1,2,u2,1,u2,2 in R3. The bilinear
interpolation is done by first interpolating in direction t

u1 = tu1,1 + (1− t)u1,2,
u2 = tu2,1 + (1− t)u2,2,

(3.2)

and then interpolated again in the other direction s (note that it does
not matter which direction we start in).

u = su1 + (1− s)u2, (3.3)

and we have interpolated the four points u1,1, u2,1,u1,2,u2,2 to a point
u. The interpolation process can be written in one step as:

u = s [tu1,1 + (1− t)u1,2] + (1− s) [tu2,1 + (1− t)u2,2] , (3.4)

where t = x2−x
x2−x1

, and s = y2−y
y2−y1

.

Figure 10: Graphic example of bilinear interpolation

3.2 spatial modelling

The common way to model a spatial stochastic process in geostatistics
consists of a latent Gaussian field, x, modelled as a normal distribu-
tion with mean µ and covariance Σ as

x ∈ N(µ,Σ). (3.5)

Observing the latent field x at locations u we can form a new distri-
bution of these observations. The observations y of the latent field x

are also modelled as a normal distribution

y|x ∈ N(Ax,σ2
�), (3.6)
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where A is a matrix extracting appropriate elements from x, and σ
2
�

is the nugget effect [6, chap. 2].

Definition 4. Nugget effect

The nugget effect ε at the point u is spatially uncorrelated error that de-

scribes the (observational) error in repeated observations at u. The nugget

has zero mean and variance σ
2
�.

The model parameter(s) are then added to form the following model
for the observations and latent field:

x|θ ∈ N(µ,Σ(θ)),

y|x,θ ∈ N(Ax,σ2
�),

(3.7)

where Σ(θ) is a parametric model for the covariance of x, with the pa-
rameters θ; the Matérn covariance model will be used in this project
(see 3.2.1). At a observation location u, the observation y can be mod-
elled as a sum of parts:

y(u) = µ(u) + η(u) + �(u), (3.8)

where µ is the mean component, η is the field spatial component de-
scribed by Σ(θ), and � is the nugget effect. The mean component can
be modelled using a parametric mean model of y, µ(u) = E[y(u)]; the
spatial component η(u) tries to model the remaining spatial structure,
see further 3.3.

The goal of the modelling process is to use the observations y to
find the distribution of the unknown parameters π(θ|y), and to re-
construct the latent field x, π(x|y).

3.2.1 Random field

A simple interpertation of a random field is describing it as a vector
of stochastic variables, with a joint distribution[6, chap. 2]. However,
a more formal definition is:

Definition 5. Random field

A random field x̃(u),u ∈ Ω, is a random function defined on some index set

Ω.

Where the index set typically is Ω ⊆ R2 or Ω ⊆ N2. A random field
with a Gassian probability density is called a Gaussian Random Field
(GRF).

To calculate the covariance between two points on a GRF, sepa-
rated by a distance d, on a random field, a parametric model for the
covariance is used. The model used in this dissertation is the Matérn
covariance, which is a class of isotropic covariance functions named
after Bertil Matérn [6, chap. 5].
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Definition 6. Matérn covariance

The Matérn covariance for two points, d distance units apart is given by

rM(d) = σ
2 1

Γ(ν)2ν−1
(Kd)νKν(Kd), (3.9)

where Γ is the gamma function, K is a scale parameter, ν is a shape parameter,

and Kν is the modified Bessel function of the second kind.

The range parameter can be calculated with the empirically derived
definition ρ =

√
8ν/κ [11].

Figure 11: Example of Matérn covariance with σ
2 = 1,ν = 1, κ ≈ 0.977,

resulting in range ρ ≈ 2.89.

3.3 gaussian random markov field

A major issue with Gaussian fields for huge datasets is the big and
dense covariance matrix of the latent field x (3.5), which leads to ex-
pensive computations. With a GMRF, we use the precision matrix
Q = Σ−1, which is constructed using the markov property for some
neighbourhood structure N. This leads to a Q with sparse structure,
which sparsity makes it possible to achieve more efficent computa-
tions.

3.3.1 Markov property

To define the Markov property for the Gaussian Random Field (a
random field with a Gaussian probability density), a neighbourhood
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structure is required to describe the range of conditioned dependence
between locations.

Definition 7. Neighbourhood structure

A neighbour structure is a symmetric relation which defines which locations

are neighbours of each other (Lindgren [10, chap. 4]).

N(u) = {v; such that v is a neighbour of u},
v ∈ N(u) ⇔ u ∈ N(v)

(3.10)

The neighbourhood structure can be used to define a Markov prop-
erty, which puts requirements on the conditional distribution of one
location given the value of all other locations.

Definition 8. The Markov condition

P(x̃(u) = x | x̃(v), v �= u) = P(x̃(u) = x | x̃(v), v ∈ N(u)) (3.11)

Under the Markov condition, the conditional distribution of x̃(u) de-
pends on the rest of the field only through its neighbours [10, chap.
4]. The implication for the precision matrix Q will be that for each
location u, only the neighbours of u have Qu,v �= 0 in the preci-
sion matrix, with zeros for all non-neighbouring points. The markov
condition creates the sparsity structure for the precision matrix Q,
therefore avoiding the dense covariance matrix Σ, leading to compu-
tational gains.

The simplest example of a GMRF is an AR(1)-process in time series
analysis (Madsen [12]); like an AR(1)-process conditionally depend-
ing on only the nearest previous value in time, so for a GMRF the
conditional distribution of u depends on only its spatial neighbours,
Nu.

3.3.2 Definition of a GMRF

Definition 9. Gaussian Markov Random Field (GMRF)

A Gaussian random field x ∈ Rn
is called a GMRF with mean µ and

precision matrix Q > 0, iff its probability density has the form

π(x) =
1

(2π)n/2
|Q|1/2exp

�
−
1

2
(x− µ)TQ(x− µ)

�
, (3.12)

and satisfies the markov property (3.11) for some neighbourhood N.

3.3.3 Stochastic Partial Differential Equations

Stochastic Differential Equations (SDE) are a class of differential equa-
tions where the driving right hand side is replaced by stochastic noise;
as an extension, a Stochastic Partial Differential Equation (SPDE) is a
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SDE of more than one parameter (Holden et al. [8]). No theory re-
garding SPDEs is presented here, as such theory is beyond the scope
of this paper; only a brief overview will be presented here.

According to Whittle [17, 18], fields in Rd with Matérn covariances
are solutions to the following SPDE:

(κ−∆)α/2
τx(u) = W(u), α = ν+ d/2, (3.13)

where W is Gaussian white noise, τ is variance scaling, and ∆ is the
Laplacian ∆ =

�n
i=1

∂
∂x2

i
; ν and κ from (3.9).

In Lindgren et al. [11] it is shown how the SPDE (3.13) can be solved
using a finite element method on a triangulation of the data locations
(see 4.2.1). The solution can then be constructed as a basis function
expansion

x(u) =
n�

k=1

ψk(u)wk, (3.14)

with Gaussian-distributed weights wk, and basis functions ψk. The
basis functions are chosen to be piecewise linear in each triangle, such
that ψk = 1 at vertex k, and 0 at all other vertrices [11].

The precision matrix of the weights in (3.14), Qα,κ2 , can be written
as:

Q1,κ2 =Kκ2

Q2,κ2 =Kκ2C−1Kκ2

Qα,κ2 =Kκ2C−1Qα−2,κ2Kκ2C−1, α = 3, 4, . . .

(3.15)

Where the n×n matrices C,G, and K have entries

Cij = < ψi,ψj >

Gij = < ∇ψi,∇ψj >

Kκ2 =κ
2C+G,

(3.16)

where < f,g > is the scalar product < f,g >=
�
fg dx

3.4 bayesian statistics

In classical (or frequentist) statistics, data would be treated as a ran-
dom sample generated from a distribution with fixed parameters;
whereas in Bayesian statistics we assume that data is fixed and treat
the parameters as unobserved random variables (Kypraios [9]). Cen-
tral to Bayesian statistics (hence its name) is Bayes’ theorem.

Definition 10. Bayes’ theorem

π(θ|y) =
π(y|θ)π(θ)

π(y)
∝ π(y|θ)π(θ). (3.17)
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As described in 3.2, we let θ denote the parameters, and y the
observed data.

• π(θ) is the prior distribution, which summaries the prior knowl-
edge of the parameters θ.

• π(y|θ) likelihood function, how probable it is to have observed
y given θ.

• The posterior distribution π(θ|y) summarises the information
about θ given by data and priors.

• π(y) is the marginal distribution, and is often treated as an un-
known (and ignorable) normalising constant in the posterior.

3.4.1 Prediction and estimation

Continuing from 3.2, where our goal is to predict the posterior dis-
trubition of the latent field x, given the observations y, π(x|y), and
estimate the posterior of the parameters θ, given the observations y,
π(θ|y). Our observational data y are measurements of a latent field x,
such that y is a conditional distribution given x and θ. Using Bayes’
theorem (10) we can write these two posteriors as

π(θ|y) =
π(y|θ)π(θ)

π(y)
∝ π(y|θ)π(θ) (3.18)

π(x|y,θ) =
π(y|x,θ)π(x|θ)π(θ)

π(y,θ)
∝ π(y|x,θ)π(x|θ)π(θ). (3.19)

Using (3.18), we estimate the posterior of the parameters, given the
observations, as:

π(θ|y) =

�
π(x,y|θ)π(θ)dx =

�
π(y|x,θ)π(x|θ)π(θ)dx, (3.20)

The posterior distribution of the field, given the observations, can be
obtained by integrating out the parameter uncertainty in (3.19)

π(x|y) =

�
π(x,θ|y)dθ =

�
π(x|y,θ)π(θ|y)dx. (3.21)

Usually these integrals are too hard to solve analytically, except for
rather simple models (Sköld [16]). (3.7) is an example of a simpler
model, because x and y|x are both Gaussian. However, π(θ|y) in (3.21)
is an unknown distribution, and the integral (3.21) will have to be
computed using numerical methods e.g. Monte-Carlo methods, or
Integrated Nested Laplace Approximations, which will be described
in 3.5.
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3.5 integrated nested laplace approximations

A short introduction to Integrated Nested Laplace Approximations
(INLA) is presented in this section. INLA is an alternative to using
Markov Chain Monte Carlo (MCMC) [15] to find a numerical solution
to the integrals (3.20) and (3.21).

INLA’s approach to Bayesian inference is as follows: the latent
field x is assumed to be GMRF, and our distribution of observations
π(y|x,θ) factors as π(y|x,θ) =

�nobs
i=1 π(yi|xi,θ), so that yi depends

on only one xi. The posterior marginals can then be written as

π(θj|y) =

�
π(θ|y)dθ−j,

π(xi|y) =

�
π(xi|y,θ)π(θ|y)dθ,

(3.22)

where xi is the i:th component of x, and θj is the j:th component
of θ. Each of the densities will be approximated, letting π̃ be the
approximation of π.

The numerical approximation of the latent field π(xi|y) is done
in three steps; first the posterior π(θ|y) is approximated; second, if
π(y|x,θ) is non-gaussian, a Laplace approximation of π(xi|y,θ) is
computed; in the third step these two approximations are combined
by numerical integration in (3.22).

Only a brief introduction is presented in this section, ignoring sev-
eral features not relevant to our analysis. Interested readers can find
more information about the inner workings of INLA in Rue et al. [15],
and regarding the SPDE implementation in Lindgren et al. [11].

3.5.1 Parameter estimation π̃(θ|y)

The approach to approximating π̃(θ|y), (3.20), is based on the law of
total probability:

π(y|x,θ)π(x|θ) = π(x,y|θ) = π(x|y,θ)π(y|θ)

⇒ π(y|θ) =
π(x,y|θ)
π(x|y,θ).

(3.23)

Inserting into (3.18), we obtain

π(y|θ) ∝ π(x,y|θ)π(θ)
π(x|y,θ)

=
π(x,y,θ)
π(x|y,θ).

(3.24)

Using the calculated results, the approximation of the posterior dis-
tribution π(y|θ) is done in INLA as

π̃(θ|y) ∝ π̃(y, x,θ)
π̃G(x|y,θ)

���
x=x∗(θ)

, (3.25)

where π̃G is a Gaussian approximation for the full conditional of x,
obtained as a taylor expansion of logπ(x|y,θ) around the mode x∗(θ)
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of the full conditional. For our model π(y|x,θ) is Gaussian, and it
follows that π(x|y,θ) is also Gaussian, and no approximation will be
necessary.

3.5.2 Approximation of π(xi|y,θ)

In our case π(xi|y,θ) is Gaussian, and this step of INLA will not be
necessary, otherwise the same approximation π̃G(x|y,θ) as in (3.25)
can be used.

3.5.3 Computing π(xi|y)

Having obtained approximations π̃(x|y,θ) and π̃(θ|y), the posteriors
are computed by numerical integration in (3.25) as:

π̃(θj|y) =

�
π̃(θ|y)dθ−j ≈

�

θ−j

π̃(θ|y)∆θ−j,

π̃(xi|y) =

�
π̃(xi|y,θ)π̃(θ|y)dθ ≈

�

θ

π̃(xi|y,θ)π̃(θ|y)∆θ.
(3.26)
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M O D E L

This section will cover the implementation of mean and spatial com-
ponents (as introduced in 3.2) of the model.

4.1 mean component

4.1.1 Covariates

Erickson and Williams [4], found that elevation data is a significant
predictor in a mean model. Using a similar model, the mean compo-
nent will be modelled as:

µ(u) = β0 +β1h(u) +β2Sx(u) +β3h(u)Sx(u) +β4S
2
x(u), (4.1)

where h, and Sx, are elevation and wind shelter of location u; βi are
the weight of the covariates.

4.1.2 Choice of wind direction and search distance

Now consider the wind shelter data; as stated in section 2.4, the data
was availible in eight different directions, with three different search
distances for each direction. To decide which direction/search dis-
tance combination to use in the mean component, the mean model
(4.1) was implemented in matlab, and linear regression (see a basic
coursebook in statistics, e.g. Blom et al. [1]) is used to estimate the
parameters. The parameters are then used to estimate the SWE data,
and test which direction and distance yields the lowest Mean Squared
Error (MSE).

Definition 11. Mean Squared Error (MSE)

MSE =
1

n

n�

i=1

(x̂i − xi)
2, (4.2)

where x̂ is the estimation, and x the observed data [1].

The results of the regression test of wind shelter direction and search
distance can be seen in Figure 12, which shows that index 6 (corre-
sponds to wind direction 247.5◦), with search distance of 250 yields
the lowest MSE.
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Figure 12: Regression test of wind direction and search distance combina-
tions. Each point on the x-axis corresponds to an index in 22.5◦,
67.5◦, 112.5◦, 157.5◦, 202.5◦, 247.5◦, 292.5◦, 337.5◦.

4.2 spatial component

The spatial component is modelled using a GMRF as described in 3.3,
where the latent field x will be assumed to be a GMRF to be able
to estimate π(θ|y) and π(x|y) by INLA. The neighbourhood of x is
created by a triangulation, or mesh, function (as described in 3.3.3).

4.2.1 Mesh

The created triangulation can be seen in Figure 13. Vertices are placed
at each measurement location (with some minimum distance between
vertices added). The mesh is extended outside the area to reduce the
effects of the boundrary conditions when the SPDE is solved; there
is no practical interest in the outer extension, and the resolution does
not have to be as fine as the inner area (Cameletti et al. [3]). The
minimum angle of each triangle is specified to 21 degress, because of
numerical stability issues.

4.3 full model

The final model to be used with INLA can now be formulated as:

y = A(η+ 1 ·β0) +B ·β+ �, (4.3)
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Figure 13: Mesh grid of the area.

where (η+ 1 · β0) is the random spatial component and intercept, B
is a matrix of covariates, and β the weights of the covariates. A is an
matrix that maps the spatial component defined on the mesh to the
observation locations, and � is the nugget effect.

Comparing to (3.7), the latent field x can be formulated as x = A(η+
1 · β0) + Bβ, with η ∈ (0,Q−1) and µ = A · 1 · β0 + Bβ, giving
x ∈ N(µ,Q−1). As a consequence, the observations can be written
as y = x+ �, where the nugget effect is � ∈ N(0, Iσ2

�), resulting in
y|x ∈ N(x, Iσ2

�).

The model is now finished, and estimations will be performed us-
ing the methods discussed in chapter 3. The R code for the estimation
can be found in appendix A.
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R E S U LT S

5.1 validation

The validation was done by removing one line (20 lines of observa-
tions exists in total) from the data to create data to perform validation
on. Each line was tested by removing that line from the data set, and
then running INLA on the remaining data. Almost every line caused
the program to crash because failing to factorize Q; only line 14 was
successful.

The INLA estimation together with a linear regression estimation
can be seen in Figure 14; residuals of the INLA estimation can be seen
in Figure 16. MSE (4.2) is used, together with confidence coverage and
bias, to evaluate the estimations

Figure 14: Validation plot of line 14. Line SWE data is plotted as a thin black
line, the linear regression estimation is plotted in black, and its
95% confidence interval as a dotted black line. The INLA estima-
tion is plotted in the same fashion, but in grey instead.

The figures showed that the INLA estimation was very poor; since
most of the lines failed to be successfully estimated with INLA, the
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Figure 15: Residuals of the INLA estimation on line 14.

residuals of the linear regression is used with the autocorrelation
function to check if dependence between the residuals exists.

The graph of the autocorrelation function can be seen in Figure
17, which shows a clear dependence between the residuals. An AR(1)
component was added to the model, giving the extended model y =
A(η+ 1 ·β0) +Bβ+ �AR(1) + �nugget, and the tests were redone.

INLA could, with the AR(1) component added, successfully run all
tests; examples of estimations on line 14 and line 5 can be seen in
Figure 19 and 18.

Line 14 had a MSE of ∼ 0.220 and its confidence interval covers
∼ 98.5% of the SWE data, it is a slight improvement over the linear re-
gression which had a MSE of ∼ 0.35 and confidence interval coverage
of ∼ 97.0%. Results of estimation on all the lines can be seen in Table
2.
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Figure 16: Residuals of the linear regression on line 14.

Figure 17: Autocorrelation function of the linear regression residuals.
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Figure 18: Validation plot of line 14. Line SWE data is plotted as a thin black
line, the linear regression estimation is plotted in black, and its
95% confidence interval as a dotted black line. The INLA estima-
tion is plotted in the same fashion, but in grey instead.

Figure 19: Validation plot of line 5.
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INLA Linreg

line MSE Conf. MSE Cov

1 0.48 94% 0.53 88%

2 0.26 99% 0.24 98%

3 0.13 99% 0.13 99%

4 0.44 95% 0.49 95%

5 0.76 87% 0.66 88%

6 0.045 100% 0.18 100%

7 0.47 93% 0.46 94%

8 0.28 100% 0.31 100%

9 0.090 100% 0.12 100%

10 0.81 90% 0.80 88%

11 0.032 100% 0.013 100%

12 0.86 89% 0.70 87%

13 0.22 98% 0.34 97%

14 0.029 100% 0.035 100%

15 0.84 84% 0.82 82%

16 0.64 88% 0.66 86%

17 0.25 99% 0.27 99%

18 0.16 100% 0.15 97%

19 0.29 100% 0.30 99%

20 0.42 96% 0.48 91%

Total 0.375 95.6% 0.384 94.4%

Table 2: Results of INLA estimations. MSE is the Mean Squared Error, Cov is
the covariance coverage, and Bias is the bias of the estimator.
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5.2 estimating swe on the grid

Normally, the estimation on the grid can be performed by INLA, but
the availible computer (4 GB RAM) did not have enough memory to
successfully run INLA with grid data added. This is circumvented
by manually mapping the spatial component from the mesh to the
grid by a suitable observation matrix, the mean component is also
calculated for each grid point and added to the spatial component.

The mean component can be seen in Figure 20, and the spatial
component in Figure 21. The estimations in the figures are shown in
log(y+ 1), because the inverse transformation made the figures less
disconcernable.

Figure 20: Mean component of the INLA estimation.

The full INLA estimation, where the mean and spatial components
are added, can be seen in Figure 22; as a comparison, a linear regres-
sion estimation can be seen in Figure 23.
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Figure 21: Spatial component of the INLA estimation.

Figure 22: INLA estimation created by adding the mean and spatial compo-
nent.
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Figure 23: Linear regression estimation.
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The estimation is unreasonably large at several locations at the map,
the inverse transformation applied to a estimated value of 25 yields
the SWE estimation of e25 − 1, a very large number. A likely cause of
this is the mismatch of range between the covariates of observation
locations and the grid points.

The covariates on the grid points are truncated, such that all covari-
ate values outside the range of the observations is set to the largest or
smallest value of the observations covariates. The results on the INLA
and linear regression estimations can be seen in Figure 24 and 25.

Figure 24: INLA estimation with truncated wind shelter and elevation data.

The INLA and Linear regression estimations are at some locations
still very large, even with truncation. The maximum is about e13 − 1,
and while not as large as e

25 − 1, shows that there is some error in
our estimation.
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Figure 25: Linear regression estimation with truncated wind shelter and el-
evation data.



6
D I S C U S S I O N

Validation data was created by removing one line from the data,
INLA is performed on the rest of the data, and then tested by using
the validation line.

The INLA estimation without the AR-part added could only be run
with the line 14 used as validation without crashing due to factoriza-
tion issues. The estimation for the line ended up being very poor as
well. Using the residuals from the linear regression with the autocor-
relation function, we saw a clear correlation between the residuals.
An AR(1) component was added to the INLA code, and this made it
possible to perform INLA with each line used for validation.

The results of the validation can be seen in table 2, where INLA
had lower MSE than linear regression in 11 out of 20 cases. But the
MSE in general between the validations were quite close, only differ-
ing by a small margin in all cases.

When the estimation was applied to the grid, we could see that for
some locations on the map, the estimation was quite poor. SWE esti-
mations of size ∼ e

25 exists, which is a very strange result.
A major cause to this can be the mismatch of wind shelter and el-

evation data between the observation locations and the grid, where
the range of the grid data is a magnitude longer than for the observa-
tions.

We tried to solve this by truncating both wind shelter and elevation
data, but there is still severe overestimation at some locations. This is
probably due to the size of the intercept (β0 = 5.58), the covariates
multiplied with its corresponding weight does not yield negative val-
ues to offset the high value of the intercept, resulting in overestima-
tions.

As we can see in Figure 21, the spatial component at most locations is
quite small compared to the mean component. One interesting ques-
tion is whether we have enough observations to form a spatial depen-
dence relevant to the estimations.

On a final note, INLA did not manage to produce results signifi-
cantly better than the linear regression in the validation, and provided
the same overestimations as the linear regression when applied to the
grid data.
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6.1 future work

Since the computer used in the estimations were did not have enough
memory. One improvement in the existing code could be using a
more powerful computer to run the INLA estimations, which makes
it possible to include the grid in the model fitting done by INLA.

One big issue in the estimations are the extreme points where the
estimated SWE values are either unreasonable big or negative. We
tried to solve it by truncating the data; while we could always wish
for observations at these locations, a solution could be trying extrap-
olate data using e.g. a spline function.

Another solution to the problem with the wind shelter range could
be creating a simpler mean model, where the wind shelter is re-
moved.

A final suggestion regarding the modelling approach, is modelling
the snow depth and snow density separately, and then combine the
estimations to estimate the SWE.
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C O D E

# Perform the INLA operations on the data to check the valdiation on line R
source("misc.r")

inla.AR = function(data, n)
{
# Check if snow data set is supplied
if ( missing(data) ) {
stop("Error, data sets is required.")
}

if ( missing(n) ) {
stop("Validation line must be specified")
}

# Perform inla
res <- perform.inla(data = data, line = n)

return(res)
}

perform.inla = function(data, line)
{

# Create one dataset for line n
data.val <- create.val(data,line)
data.est <- remove.val(data,data.val)

# create mesh
mesh <- inla.mesh.create.helper(
# Locations that should be present
points = cbind(data.est$x,data.est$y),
# Determines the domain extent
points.domain = map,
# Allow no smaller triangle than the length below
cutoff = 0.05,
# Maximum length of the edge, first parameter
# is inside the domain, latter is outside.
max.edge = c(0.25,1),
# Offsets outside the edge, the negative values
# gives a scaled offset.
offset = c(-.1,-.2),
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# Minimum angle of triangles
min.angle = 21
)

# Saving position for vertrices
field.indicies <- inla.spde.make.index("field", n.mesh = mesh$n)

# Creating the SPDE model
spde <- inla.spde2.matern(mesh = mesh,
# Operator order
alpha = 2,
# Setting up prior variance
prior.variance.nominal = 1,
# Precision on observations
theta.prior.prec = 1
)

# -------------- Creating data stacks ----------------------
est.AR <- make.AR(data.est)
val.AR <- make.AR(data.val)

# Estimation stacks
A.est <- inla.spde.make.A(mesh = mesh, loc = cbind(data.est$x,data.est$y))
stack.est <- inla.stack(data = list(SWE = data.est$SWE),
A = list(A.est,1),
effects = list(c(field.indicies, list(Intercept = 1)),
list(Elevation = data.est$elevation,
Windshelter = data.est$windshelter,
Windshelter2 = data.est$windshelter2,
index = est.AR$index, # Added for AR(1)
replicate = est.AR$repl
))
,tag = "est"
)

# Validation stack
A.val <- inla.spde.make.A(mesh = mesh, loc = cbind(data.val$x,data.val$y))
stack.val <- inla.stack(data = list(SWE = NA),
A = list(A.val,1),
effects = list(c(field.indicies, list(Intercept = 1)),
list(Elevation = data.val$elevation,
Windshelter = data.val$windshelter,
Windshelter2 = data.val$windshelter2,
index = val.AR$index, # Added for AR(1)
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replicate = (val.AR$repl + 20)
))
,tag = "val"
)

#Prediction stack
stack.pred <- inla.stack(data = list(SWE = NA),
A = list(1),
effects = list(c(field.indicies, list(Intercept = 1))
),
tag = "pred"
)

# Putting together the stacks
stack <- inla.stack(stack.est, stack.val, stack.pred)

# Setting up the formula
formula <- SWE ~ -1 + Intercept + Elevation*Windshelter +
Windshelter2 + f(field, model = spde, initial = 0) +
# f(replicate, model = "iid"), part of the non-AR model
f(index, model = "ar1", replicate = replicate)

# Setting up initial theta, not used in the non-AR model
a<-inla.models()$likelihood$gaussian$hyper
a$theta$initial <- 15
a$theta$fixed <- TRUE

# Perform inla
r <- inla(formula, data = inla.stack.data(stack,spde = spde),
family = "gaussian",
control.predictor = list(A = inla.stack.A(stack), compute = TRUE),
control.inla = list(h = 0.001),
verbose = TRUE,
control.family = list(hyper = a),
num.threads = 1
)

res <- list(r = r, stack = stack, mesh = mesh, n = data.val$line[1],
size = tail(val.AR$index,1) )

return(res)
}
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Estimering av snödjup med spatial statistik

Magnus Öhlund π07

5 april 2013

Vi är intresserade av att estimera snödjupet
i ett område för att mäta hur mycket vatten
som kommer flöda in i floder och vattenci-
sterner när snön smälter på våren. Områ-
det som är i fokus i detta projekt är Kult-
sjön/Rensaren i norra Sverige, där vi har
mätningar av snödjup längs linjer.

Dessa mätningar är gjorda med hjälp av ult-
raljud, där det resulterande snödjupet är be-
räknat på hur lång tid det tar för signalen att
komma tillbaka till mätutrustningen. Utöver
snölinjerna, vet vi även höjden på området,
samt hur utsatt för vind alla platser på om-
rådet är.

Figur 1: Karta över Kultsjön/Rensaren, de
röda linjerna är mätningarna av snödjup.

Närliggande platser på ett område kan vara
beroende av varandra, och med spatial sta-
tistik försöker vi skapa en statistisk modell
som fångar detta beroende. De tillgängliga
snölinjerna modelleras med hjälp av spati-

al statistik, där höjddatan och exponeringen
används som förklarande variablar i skatt-
ningen.

När vi konstruerat en statistisk modell, är
nästa steg att validera modellen genom att
ta bort en av de tillgängliga linjerna och se-
dan rekonstruera denna med hjälp av enbart
mätningar längs de återstående linjerna; ef-
ter valideringen appliceras modellen på om-
rådet. I valideringen så jämför vi vår modell
mot en modell skapad med linjär regression
(en grundläggande statistisk metod för att
anpassa en ekvation till data).

Figur 2: Exempel på en återskapad linje, den
grå linjen är den framtagna statistiska mo-
dellen. Den tunna svarta linjen är observa-
tioner längs den borttagna linjen, och den
svarta linjen är rekonstrueringen med linjär
regression.
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Alla linjer återskapas, och generellt sett så
gav modellen med spatial statistik något
bättre resultat än linjär regression. Då mo-
dellen gav vettiga resultat i valideringen, så
applicerar vi den på helan området; resulta-
tet ses i figuren nedan.

Figur 3: Estimering av snödjupet på områ-
det. Figuren är i logaritmisk skala.

Vi kan se i figuren att vi har toppar som är
2.7225 ≈ 72 004 899 337, vilket är ett väldigt
orimligt resultat. Ett problem med de förkla-
rande variablarna, höjd och exponering, är
att linjernas värden hos de förklarande vari-
ablarna inte alls täcker områdets värden på
de förklarande variablarna.

En enkel metod för att försöka lösa proble-
met med de förklarande variablarna är att
trunkera höjd- och exponeringsdatan, så att
vi trunkerar alla värden som över- eller un-
derstiger värden på linjernas; d.v.s. dessa
värden sätts till de högsta eller lägsta vär-
de längs med linjerna.

Estimeringen görs om med de trunkerade
förklarande variablarna, de nya resultaten
ses i figur 4.

Här ser resultatet mer rimligt ut, dock så

Figur 4: Ny estimering av snödjupet på om-
rådet, de förklarande variablarna är trunke-
rade.

är estimeringen för vissa platser fortfaran-
de stora, topparna är på 2.7213 ≈ 442 413,
vilket är för stort för att vara ett rimligt re-
sultat.

Förslag till framtida arbeten för att lösa pro-
blemet med för stora värden, kan vara t.ex.
en smartare lösning till de förklaranade va-
riablarna; trunkeringen löste problemet till
viss del, men resultatet blev inte riktigt bra.
Mätdata kring topparna där estimeringarna
är stora hade också hjälpt, då ytterligare da-
ta förhoppningsvis hade förbättrat modellen
och, på så sätt, tagit hand om problemet.
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