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Abstract 
 

During this thesis work, a frequency stabilization system for an External Cavity Diode Laser 

(ECDL) at 370 nm has been set up and tested. The goal of the frequency stabilization is to 

achieve a long term frequency stability of less than  50 kHz within 8 hours, which will be 

used for the single Ce ion detection project in the quantum information group. 

The system design is centered around a Fabry-Pérot (FP) cavity which is composed of two 

mirrors optically contacted onto the ends of a cylindrical spacer made of Ultra-Low 

Expansion (ULE) glass. To first order, the cavity spacer has a zero thermal expansion 

coefficient around a certain temperature. 

The method for achieving the required frequency stability is to actively stabilize the ECDL 

output frequency through controlling both the ECDL driving current and the grating position 

by a piezoelectric actuator. Pound-Drever-Hall (PDH) locking technique [1] is used to lock 

the laser frequency onto one of the resonance lines of the stable FP cavity. To be able to get 

the desired performance each segment of the system has to be set up correctly. The work 

include aligning the laser beam polarization, coupling laser into a single mode polarization 

maintaining fiber, setting up the radio frequency resonance tank used for the Electro-Optic 

Modulator (EOM), putting together the vacuum chamber where the FP cavity sits inside, 

installing the cavity spacer into the vacuum chamber, aligning the laser beam to match the 

cavity modes and designing the electronic filter circuits etc. 

Finally, after eight months of hard work, this laser could be locked around 2 hours and gave a 

good start for the future work. However the locking performance has not been characterized 

due to the shortness of time. Considering the time plan for this thesis, the improvement for a 

longer-time locking is remained. 

 

 

 

 

 

 

 

 

 



 

 

Popular Science 
 

The frequency stabilization technology plays an important role for precision measurement in 

many areas of science. In quantum computing field, the single ion detection also needs this 

technology for reading out a single qubit ion state.  

In this mater thesis, one 370 nm frequency stabilization system was set up and tested based on 

Pound-Drever-Hall technique. In this platform, the laser source is an External cavity diode 

laser, one piezoelectric transducer is attached onto the grating holder which changes the 

cavity length by using the voltage to control the piezoelectric transducer movement. Thus, 

there are two keys can stabilize the laser’s frequency. One is the driver current adjustment and 

another one is the voltage control for the piezoelectric transducer displacement.  

As the core of the stabilization platform, the Pound-Drever-Hall method can be simply 

explained like this: by using a Fabry-pérot cavity to measure the frequency of laser and an 

error signal can be detected when the laser is out of resonance with the cavity (the frequency 

of the laser was drifted). This error signal is analyzed by using the laser servo and then a 

correct signal will be sent to laser driver, the fine current adjustment stabilizes the laser’s 

frequency. Figure 1 shows the basic layout of the Pound-Drever-Hall method. The solid and 

dash line corresponds to the light and electrical signal path, respectively. 

 

Figure 1. The basic principle diagram for PDH locking. 

Finally, the frequency of the laser might be stabilized over few hours, but the actually result 

depends on the design target and testing process. For the correct error signal detection, there 

are many tasks should be solved one by one, such as the single mode polarization maintaining 

fiber coupling, electro-optic modulator alignment, mode matching with the cavity, electric 

device testing etc. Every segment might break the locking system, thus studying and 

recording the formation process of the stabilization system is necessary and valuable.   
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AC Alternating Current 

DC Direct Current 

DDS Direct digital synthesizer 

DP AOM Double path acousto-optic modulator 

ECDL External cavity diode laser 

EOM Electro-optic modulator 

FP cavity Fabry-Pérot  cavity 

FSR Free spectral range 

LD Laser diode 

PBS Polarization beam splitter 

PDH Pound-Drever-Hall 

PM Polarization maintaining 

PZT Piezoelectric transducer 

TEC Thermal electric cooler 

RF Radio frequency 

ULE Ultra-low expansion 
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Chapter 1 Introduction 
 

The motivation of stabilizing the laser frequency is to have a system which is able to detect a 

single Ce ion for the purpose of reading out a single qubit ion state. One of the important 

criteria in quantum computing is how to scale to large number of qubits. One way to construct 

multiple qubits is to let each ion represent one qubit, and then there is large possibility to find 

ion clusters which contains tens of ions for reasonable dopant concentrations [2]. However, in 

this approach the technique to read out a single qubit ion state needs to be developed. 

Wesenberg et.al suggested to add an additional ion (called as readout ion hereafter) into the 

same crystal as the qubit ions [3]. This readout ion has a strong interaction with the nearby 

qubit ion when they sit close enough to each other [4]. It will send out fluorescence photons 

when the qubit is at one level, otherwise not. A schematic diagram of the interaction is shown 

in Figure 1.1.  

 

 

 

 

This qubit state dependent fluorescence of the readout ion will help us to identify which state 

the single qubit ion is after the qubit operation is done. For doing that, we first need to 

develop a system capable of detecting a single readout ion by collecting its fluorescence. A 

stabilized laser is one part of that system. At this time, the Ce ion is considered as the 

candidate for as the readout ion. Because the excited state of Ce ion has lifetime of ~50 ns and 

the transition linewidth is of ~3 MHz. If we want the laser interacts with the same ion within a 

few hours and also want to keep a reasonable stable signal, then we would like the laser 

Figure 1.1. The readout ion schematic diagram [4]. The local E-field 

changes when the qubit ion is excited from |0> to |e> at frequency 𝜈1, the 

transition frequency of the readout ion is changed with  δν . So the 

frequency  𝜈𝑟 cannot excite the readout ion anymore, and the fluorescence 

will be turned off.  
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frequency does not move 1/30 of the line width, which means the laser frequency should not 

drift more than  50 kHz over a few hours.   

A laser diode can emit light over a range of a few nanometers and its output frequency 

depends on the injection current and the diode temperature strongly. To reduce the linewidth 

of a laser diode, an external cavity can be used [5]. However to obtain a stable and narrow 

linewidth frequency output, it is important to stabilize the diode's injection current and the 

temperature, also stabilize the length of the laser cavity. In the current external cavity diode 

laser the zero order beam reflects off the grating providing the output, while the first-order 

diffracted beam is directed back into the laser diode as a feedback. The optical feedback from 

the grating is spectrally narrowed and could be peaked at a frequency that differs from the 

central frequency of the free-running laser diode. The grating feedback narrows the laser 

linewidth down to ~1 MHz [6]. To tune the central frequency of the laser, the tilt angle of the 

grating is adjusted by applying a voltage (0~150 V) to the Piezoelectric Transducer (PZT) 

attached on the grating holder. 

For this project, the 370 nm laser frequency stabilization platform serves as the narrow 

linewidth laser source for detecting the single Ce ion, which is a key step for developing a 

scalable quantum computer hardware based on the rare earth ions [7]. 

This diploma work contains the following chapters: 

Chapter 2 will introduce the components on the platform as well as the principle of the PDH 

locking scheme. 

Chapter 3 emphasizes on the installation part of the vacuum chamber assembly and the 

components baking out procedures. 

Chapter 4 is the testing process. The performance of the locking system have been recorded 

and discussed. Then is a short overview for the future work. 

At the end of the report include 3 Appendixes: 

(A) Two electronic filter design circuits. 

(B) The cable connection diagram for the new laser controller. 

(C) The baking data of the vacuum chamber recorded with some information note. 
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Chapter 2 System Overview 
 

This chapter will introduce the equipments used in the system and to some extent show the 

design idea behind the equipments. At the beginning of this chapter shows the outline of the 

platform. Next, the laser source and FP cavity will be introduced. Finally, the PDH locking 

principle will be presented in a simplified form. 

 

2.1 Sketch of the setup 
 

We wish the whole stabilization platform could be compact so that it can be easily moved to 

another lab in a nearby building, where the next experiment will run. For that purpose, an 

optical table with the size of 90 cm 70 cm was considered, which is right below the size of 

the door in most of the laboratories. However not sure we can fit all the components in such a 

limited area, so the first task of my thesis work is to make a real drawing of the whole system 

components to see if the platform is large enough. In this limited area, many components 

should be setup at the suitable and reasonable places. The flexibility and convenience of the 

light path should be considered. The design works were completed by using the Microsoft 

Visio. The final design is shown in Figure 2.1. This is a top view for the platform, all the 

components dimension (top view) should be set correctly at first. The next step is to arrange 

the position of the components, the laser beam should not be blocked and overlapped. In some 

special cases, the beam height will be changed, e.g. the DP AOM and the error signal 

detection path. The dashed and dotted line in Figure 2.1indicates these two parts, respectively. 

Moreover, some adjustments need to be done when we do the testing, so the distances 

between each component should be considered, e.g. DP AOM, Electro-optic modulator (EOM) 

alignment, fiber coupling, mode matching, etc. The mode numbers and manufacturers of all 

components are listed in Table 1. 
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Figure 2.1. Overview of the optical components on the platform. About the detail components 

information please see Table 1. 
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Table 1. List of the components on 370nm stabilization platform 

Code in 

Figure 6  

Component Model Manufacturer 

ECDL External cavity diode laser - Home made 

OFR Optical faraday rotator  IO-5-370.7-HP P/N Thorlabs 

HWP Half wave plate WPZ-1310-370-L/2 CASIX 

BS1 Beam splitter BSS10 Thorlabs 

RM1~12 Dielectric mirror Ø1” BB1-E01 Thorlabs 

SRM1~5 Dielectric mirror Ø1/2" BB05-E01 Thorlabs 

PM1~2 Pick up mirror BB1-E01 Thorlabs 

L1, L2 Plano-convex lens LA1979-A Thorlabs 

UDM Up and down mirrors BB1-E01 Thorlabs 

FM1~2 Flip mirrors BB1-E01 Thorlabs 

PL1~3 Polarizers GLP6306 Foctek 

FC1~3 Fiber coupler  KT110 Thorlabs 

 Adaptor for fiber coupler 19.5AM 25 Schafter Kirchoff 

 Polarization maintaining fiber PM-S350-HP Thorlabs 

 Fiber adapter plate SM1FCA Thorlabs 

PBS Polarization beam splitter cubes custom order Foctek 

L3  Plano-convex lens LA1172-A Thorlabs 

    Quarter wave plate custom order CASIX 

ULE cavity ULE spacer custom order Advanced Thin 

Film 

 Vacuum chamber SPE-10028975-10-1 Vacom 

BS2 Beam splitter BSS10 Thorlabs 

Camera  Camera after ULE cavity FFMV-03M2M-CS Point Grey 

D1 Transmission intensity detector HCA-10M-100K-C Femto 

D2 Error signal detector HCA-S Femto 

AOM Acoustic–optic modulator  1250C-829A ISOMET 

EOM Electro-optic modulator PM25 KD*P Linos 
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2.2 External Cavity Diode Laser 
 

The line center of the Ce ion (in an       crystal) transition is at 370.7 nm (air wavelength). 

The laser source selection is the first step. Laser Diode (LD) is a very popular laser source and 

there are diodes emission covering this wavelength. Comparing with other laser source, the 

LD has many advantages such as small volume, light weight, convenient modulation, quake-

proof and so on.  But a LD is very sensitive to overhead driving current and static electric 

shots. A good illustration of the ECDL working principle can be found in Chapter 3 of the 

reference [5]. The cavity length of the ECDL is about 2 cm and the corresponding Free 

Spectral Range (FSR)       is 

      
 

   
         

where n is the refractive index of air, L is the cavity length.  

Figure 2.2 shows the ECDL inside structure. The positions of the main components are shown 

in the left panel of the figure.   

 

Figure 2.2. The structure of the ECDL 

2.2.1 Piezoelectric Transducer 

 

Changing the cavity length is a necessary step to scan the laser frequency. PZT can be used to 

change the cavity length when it is attached to one of the cavity optics, as an example here the 

PZT is attached to the grating holder and the position is shown in Figure 2.2. By controlling 

the supply voltage to PZT its physical length can be changed due to the electrostriction effect. 

The maximum range of its length can change is a property of the material. 
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Considering a thermal expansion coefficient of the aluminum (grating holder 22.2  

     m/m·K), the laser cavity length variation over ±5 °C is 0.94 um. To compensate for this 

thermal drift, one small PZT was ordered from Thorlab and the supply voltage is from 0~150 

V (apply positive voltage to upper limit, reverse bias will destroy the PZT) corresponding to a 

length deformation of 0~4.6 um. Considering the angle between the normal line of the grating 

surface to the incident laser beam, 4.6 um displacement roughly corresponds to a cavity 

length change of 1.38 um. The change of the laser frequency (  ) relates to the cavity length 

change (  ) as  

      
     
   

 

Where       is the FSR of the laser cavity, and λ is the wavelength of the laser. So the 

maximum frequency change which the PZT can compensate is about 50GHz. 

The dimension of the PZT is shown in Figure 2.3. In ECDL the piezo was installed on the 

grating holder, and the position is shown in Figure 2.2. One thing is worth to be noted for the 

PZT installation, to prevent the PZT from being destroyed by the directly contact of the strong 

(hard) screw tip, one sapphire disk was glued on the end of the PZT. 

 

Figure 2.3. The PZT drawing 

 

2.2.2 Laser controller and servo 

 

The laser controller and servo were manufactured by Vescent Photonics. The laser controller 

supplies the driven current to laser diode and the servo receives the error signal meanwhile 

output two signals. One is the error correction signal to laser driving current. The other is the 

correction signal to PZT voltage. They share one power supply. Figure 2.4 shows a photo of 

them. 

The laser controller contains two temperature controllers and a 200 mA diode laser driver 

based on the Libbrecht-Hall circuit [8]. One temperature controller controls the temperature of 

the laser house, the other controls the temperature of the LD, both of them setting range is 

1~50   and the long term stability is around 1 mK/day. The current noise density is lower 

than 100    √   . This is one of the fewer laser diode drivers with such low current noise on 

the market, which is very important for the frequency stabilization. The extremely fast current 
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modulation type is designed for the laser controller which can process the high-speed signal 

from servo control to adjust the laser’s frequency. The current servo input matches with the 1 

kΩ impedance and supports input frequencies up to 10 MHz. 

The Laser Servo contains a tunable      loop filter for firm locking to an error signal. It can 

work either in side lock mode or in peak lock mode. These two modes were described in [8]. 

In our system, the peak lock mode has been chosen because we want to lock the laser 

frequency onto the peak position of the resonance line of the FP cavity. In this mode, the user 

can select the zero-crossing by add a Direct Current (DC) offset to the error signal if one 

wants to lock the laser at an offset frequency relative to the resonance line. The slope of error 

signal can be either positive or negative, one switch controlling this is on the front panel. The 

input and output impedance is 50   and the maximum input voltage signal amplitude from -

500 mV to +500 mV. Additionally, there is an internal ramp generator included. It could be 

used to sweep the PZT voltage. The amplitude of the sweep is from -5 V to +5 V in dipolar 

mode and the frequency is 500 Hz. However the supply voltage to PZT has to be positive 

otherwise the PZT possibly be permanently destroyed. One way to solve that problem is 

adding a voltage offset to the auxiliary output from the laser servo before the signal goes to 

the PZT as shown in Section 4.3. 

More information on the laser servo and controller can be found on the home page: 

www.vescentphotonics.com   

 

Figure 2.4. The laser control system 
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2.3 ULE cavity 

2.3.1 Property 

 

The FP cavity which is made of premium grade ULE glass is the essential part of the whole 

system. The ULE glass has a very low thermal expansion coefficient (0±30×     m/m·°C) at 

zero crossing temperature [9] and the length of the cavity won’t change with the temperature 

to the first order around its zero crossing temperature. In our system, the cavity was ordered 

from Advanced Thin Film company. This is a cylindrical cavity with diameter of 44 mm and 

the length of 55 mm, a 6 mm diameter hole along the cylindrical axis permitting the laser 

beam pass through, and two sink holes on each side for the supporting purpose [10]. The 

reflectivity of the mirror coating is shown in Figure 2.5. It is a high reflectivity coating 

covering two bands of 575-615 nm and 365-375 nm. 
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Figure 2.5. The reflectivity of the cavity mirror coating 

The basic parameters of this cavity are as following.  

The FSR is  

   
 

  
        

Cavity finesse is 

            
 √ 

1  
 = 30000 

where c is the speed of the light, R is the mirror reflectivity of 99.99% (seen from Figure 2.5) 

around 370 nm. 

The line width 

                
  

 
        

The cavity mirrors were also made of premium grade ULE, optically contacted to each end of 

the cavity spacer. Figure 2.6 shows this cavity. The two mirrors have the same high reflection 

coating and the parameters shows in Figure 2.5. However the coating areas are different, the 

larger one is on the concave mirror and the small one is on the plane mirror. To identify these 

two mirrors is very important for the later cavity mode matching which will be introduced in 

Section 4.1. 



11 

 

 

Figure 2.6. The ULE cavity 

 

2.3.2 Vacuum chamber 

 

A vacuum chamber is needed for ULE cavity, because the disturbance caused by the thermal 

convection, acoustic and pressure vibration will be minimized. Since the system is limited by 

space, one mini vacuum chamber is designed by Ying Yan and custom ordered in Vacom. 

Figure 2.7 shows this mini vacuum chamber with a length of 120 mm. The port A is for 

connecting to a turbo pump, port B is for the connection to an ion pump port and port C (on 

the opposite side of port B) is for the electric feed through for the Thermal Electric Cooler 

(TEC) inside the cavity.  The installation details will be shown in section 3.2. 

 

Figure 2.7. The vacuum chamber  
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2.3.3 Radiation shield 

 

The radiation shield supplies a shielded and constant temperature environment. The material 

of the radiation shield is copper which has good thermal conductivity, thus the uniform 

temperature can be provided inside the radiation shield. The gold coating reflects most of 

incoming thermal radiation back and keeps the ULE cavity less disturbed by the outer 

environmental temperature. Figure 2.8 shows the radiation shield. Part A shows the threaded 

M3 (1.6 mm) holes where a screw will be fit in for the purpose of supporting the ULE cavity 

spacer. The detail connection will be introduced in Chapter3. Part B is the lid for radiation 

shield and in the middle of the lid there is a window (part C) for light path and the 

transmission efficiency of the window coating is larger than 99.9% @ 370 nm. Part D shows 

the venting holes for the pumping purpose. Those holes should have a proper lean angle. On 

one hand should keep the ventilation air path short so that not decreasing the pump speed 

much. On the other hand the radiation flowing along the hole should not hit the cavity spacer 

for the purpose of minimizing the thermal radiation influence on the cavity temperature 

variation. The two lids will be mounted onto the cylinder structure by M3 (1.6 mm) screws. It 

is important to note that all screws used in vacuum chamber must have vented holes along its 

axis, otherwise the air could be easily trapped inside and it will be a problem to achieve a 

higher vacuum level. 

. 

 

Figure 2.8. The radiation shield  
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2.4 Introduction to Pound-Drever-Hall Locking 

2.4.1 Working principle 

 

The essential part of the PDH locking is doing a phase modulation on the input light so that 

the beam contains a carrier frequency and two sidebands. The phase modulation will be 

introduced in next section. The reflected beams can be seen as the coherent superposition of 

two fields. One is the direct reflection from the first mirror of the cavity and another one is the 

leakage field from the intra cavity field. These two fields are 180°out of phase, when the 

incoming light is on resonance with the lossless ULE cavity. In this case these two fields will 

cancel each other completely. Otherwise, there is a non-zero residual field left from the 

interference of these two fields. This residual field contains the error signal information. 

Figure 2.9 shows the basic diagram for a PDH locking. The solid and dash line corresponds to 

the light and electrical signal path, respectively. In order to separate the incoming light and 

the reflected light, one Polarization Beam Splitter (PBS) cube and a     plate is set before the 

cavity. The polarization state of incoming light should be in pure linear (vertical or horizontal), 

thus the reflected light will be rotated 90° compare with the incoming light. In this approach, 

the reflected light can be picked with the PBS cube.  

The error signal is created from a mixer, where the signal from the error signal detector 

multiplied with a signal from the DDS. Then the signal passes through one phase shifter and 

two filters (one is low pass filter and another one is the low pass & notch filter). According to 

the error signal the laser controller will adjust the driver current on a time scale of μs and the 

voltage to the PZT on a slower time scale of ms, both of them keep the laser working on 

resonance with the cavity, thus the laser frequency is stabilized [1].  

Laser

ULE Cavity
EOM PBS

Notch
filter

Low pass 
and notch
filter

Feed back 
loop system

Amp

Error signal 
detector

Transmission 
intensity 
detector

Phase
detector

DDS

λ/4
plate 

Phase
shifter

 

Figure 2.9. The basic principle diagram for PDH locking. 
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2.4.2 EOM phase modulation 

 

As mentioned in previous section, the laser beam should be phase modulated before going to 

the ULE cavity. An EOM can do the job. It is a device based on the electro-optical effect, the 

crystal changes its reflective index when an electric filed is applied. The electric field of the 

light passed through the EOM has the following expression,  

     
 [        (   )] 

where     is the amplitude of the incoming E-filed,    is the frequency of the incoming light, 

  is the modulation frequency, and the m is called as modulation index which is the effective 

amplitude of the modulating field. If the modulation index is small, the equation can be 

written as 

     
 [        (   )] 

   [  ( ) 
      1( ) 

 (     )   1( ) 
 (     ) ] 

These three parts corresponds three different frequencies. The first one is the carrier 

frequency, and the other two are the sidebands with plus and minus the modulation frequency 

offset relative to the carrier [11]. The Radio Frequency (RF) source used for the EOM phase 

modulation needs to have a low phase noise and good frequency stability. A Direct Digital 

Synthesizer (DDS) (Model 409B from Novatech) was used, with low enough phase noise and 

high frequency stability. This DDS has four independent output channels for sinusoidal wave 

with maximum output of 1     into 50 ohm. The frequency range is from 0.1 Hz to 171 MHz 

and the step is 0.1 Hz. The RF signal power is too low to achieve the required modulation 

index (m =1.08 is an optimal modulation depth [1]), so one high power amplifier (ZHL-20W-

13+, Minicircuits) was used. The amplifier has a gain of ~50 dB (slightly varies for different 

RF frequencies and with different supply voltage). In order to decrease noise contribution 

from the supply voltage, A linear power supply was selected. The linear power supply 

generally has much low noise than a switched-mode power [12]. 

Even with the amplification of the above mentioned amplifier, the peak to peak supplying 

voltage of the RF signal is only 5.9 V.  However, according to the datasheet of the EOM, the 

λ/10 voltage at 633nm is 200V. It relates the EOM material parameters as 

     
 

  
      

 

where,    is known as the half-wave voltage. It is the applied voltage at which the phase shift 

changes by  . d is the thickness of EOM crystal, l is the length,    is the refractive index of 

the EOM, and     is element of EOM tensor. From this the half wave voltage at 370 nm is 

calculated as       and for achieving a modulation index of 1.08, 402 V peak to peak voltage 

is required. 
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In order to achieve this, the resonance tank is used. A simple LC resonance circuit is 

contained in the resonance tank, Figure 2.10 shows the structure of the homemade resonance 

tank and the simple electronic diagram is on the right. The circuit was designed and tested by 

Mahmood (PhD student in the quantum information group). 

SMA connector
 (RF input)

Grounded

Copper coil

Banana connectors to 
connect with EOM

30pF 
Capacitance of EOM  

Figure 2.10. The resonance tank for 370nm stabilization system. 

 

2.4.3 Error signal  

 

As mentioned in previous section, the electric field of the incoming light contains three 

different frequencies.  For the carrier, the frequency error can be detected when the incoming 

light is out of resonance with the cavity, in order to know the polarity of the frequency error, a 

phase modulation is done before the cavity.  A very good illustration about how the sidebands 

help to identify the error polarity in terms of field interference is shown in [11]. 

When the incoming light is on resonance with the cavity, the two sidebands beat with each 

other generating a      intensity modulation on the reflected beam; otherwise, the reflected 

signal has a beat pattern at frequency of    . The reflected signal is an Alternating Current 

(AC) signal which is detected by a high-speed photodetector HCA-S (custom made by Femto). 

This signal multiplies with a synchronized sine signal which with the same frequency as the 

phase modulation  via a phase detector (mixer), so the output of the mixer contain signal both 

DC term and AC term with twice modulation frequency. Here the low frequency signal is the 

useful part. One low pass filter on the output of the mixer extracted this low frequency signal 

which is called as error signal. The recorded error signal will be shown in Section 4.2. 
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Chapter 3 Set up  

3.1 ECDL 
 

Based on the existing ECDL, a few things were modified. (i) The piezo was installed onto the 

holder of the grating. There are two knobs controlling the grating tiltment in two directions. In 

order to change the length of the cavity, the PZT was installed onto the horizontal knob 

position. One surface of the PZT was glued onto the holder to enhance the firmness by a two 

parts epoxy. The cure time is about one to two hours at room temperature. To avoid the 

possible damage of the PZT by the hard tip of the knob, one sapphire plate (3mm*3mm area 

with ~2mm thickness) was glued onto the other surface of the PZT. In order to make sure the 

grating only has the displacement in horizontal direction, the contact surface of the PZT 

should be perpendicular to the translation direction of the knob. More situations of the grating 

movement have been discussed in reference [13].  

 (ii) The laser power cables were made in order to work with the low noise driver from 

Vescent Technology. Each connection should be checked carefully since any erroneous 

connection probably causes a short circuit which possibly damages the laser diode or driver. 

A breakout circuit board provided by the company was used at the moment as an intermediate 

step between the laser driver and the laser housing.  This way of connection makes the circuit-

testing more convenient. The new connection diagram is shown in Appendix B.  

(iii) Cautions need to be paid on the isolation and shielding of the power supply cables. 

Because it was found that there was a 20MHz intensity modulation on the laser output, which 

might come from the leakage of the EOM resonance tank. Several steps are helpful to prevent 

the RF disturbance: (1) The power supply for the laser driver had better be independent from 

other electronics in case they interfere with each other electronically. (2) The cable between 

the laser driver and laser house better be well shielded to prevent any kind of RF source 

interference going to the diode driving current. (3) The cover of the D-sub connectors on the 

laser housing better be in metal. The cover of the connector is connected with the shielded 

layer of the cables, so the better grounded for the laser housing can be supplied. (4) Ferrites 

could be used to block the interference from RF-source under certain frequencies.  Ferrite is a 

passive electric component and has high impedance (attenuation) in certain frequency range, 

see Figure 3.1. The exact turning frequency between the high and low attenuation depends on 

the particular configuration. One disadvantage of using the ferrite is that it might reduce the 

laser driving current bandwidth, but with a careful selection of the ferrite, this problem could 

be minimized. In this platform, two kinds of ferrite were used, both bought from Farnell 

(model number: 0431164951 Farnell code: 146-3432 and 0431164281 Farnell code: 146-

3447). They helped to remove more than one third (this was tested when the good EOM 

shield haven’t be done) of RF noise on the laser. Figure 3.2 shows the metal cover of D-sub 

connectors and ferrites used on the laser driving cables. 

file:///C:/Users/afzxq/Desktop/Thesis%20V3/370nm%20laser%20stabilization_V2(chapter%203).docx%23_Appendix_A
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Figure 3.1. The impedance curve of the ferrites used in the system. 

 

 

Figure 3.2. The metal pin connectors and ferrites for the laser house. 
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3.2 Ultra Low Expansion cavity spacer 
 

This section I will introduce how we put together the ULE cavity assembly into a vacuum 

chamber. There are several steps involved. First, everything inside the vacuum chamber 

should be cleaned carefully. Ethanol is recommended as a good cleaning liquid, because there 

is no residual left after cleaning and no chemical reactions. If possible, clean the components 

in an ultrasonic cleaner [14]. Second, bake all components in the vacuum chamber to get rid 

of the gasses trapped in the material to large extent. This will be introduced in Section 3.2.1. 

Third, put every component into the correct places (Section 3.2.2). Fourth, seal the vacuum 

chamber (Section 3.2.3).   

 

3.2.1 Bake out all components 

 

Outgassing is a problem to maintain the ultrahigh vacuum environments. It is an important 

issue to be considered and NASA provides a datasheet for some low outgassing materials [15]. 

The outgassing always comes from the impurity and material itself, so besides cleaning, the 

baking out process is very helpful. The lower the pressure wants to go the higher the baking 

temperature is needed, e.g. if the pressure want to reach below          mbar, the vacuum 

baking system probably need to should be heated around 200 °C with the pumping system 

running [16]. Here the target pressure is around      mbar, so a high baking temperature 

above 200 °C is needed. But there are some components cannot stand very high temperature, 

in that case extending the baking time is helpful. Table 2 summarizes the maximum baking 

temperature of each component, which will be used in the vacuum chamber. The limiting 

component is the plastic handwheel of the valve, which is used for controlling the entrance to 

a turbo pump. However it can be unplugged. 

Table 2. The maximum baking temperatures of the components 

Components Baking 

temperature  

Components Baking 

temperature  

Components Baking 

temperature  

Gauge of 

Turbo Pump 
150°C 

PEEK shrink 

tube from 

Accu-Glass 

 
250°C 
 

Plug 

atomsphere 

side 

180°C 

Conductance 

wire  with 

Kapton 

insulation 

250 °C 

Epoxy for 

UHV 

Accu-Glass 

Operating 

temperature to 

250°C 

Plug vacuum 

side 
140°C 

Steel 450°C Viton rod 

150-200°C, 

depending on 

type 

Electric feed 

through on a 

CF flange 

350°C 

viewport 
200°C 

3°C/minutes 

Crimp contact 

Gold plated 
200°C Valve body 150 °C 

Copper gasket 450°C TECs 200°C Hand wheel 120 °C 

PTFE shrink 

tube 
260°C 

Temperature 

sensor 
300°C   
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The baking out process followed the Steps 1-6. 

Step1.  Put all components need to be baked into the vacuum chamber, and seal the vacuum 

chamber properly.  

Step2. Covered the glass view port with some aluminum foil as shown in Figure 3.3. To avoid 

the direct contact between the heating band and the view ports. The point is to use the thermal 

radiation rather than convection. In that way the increasing of temperature of the view port is 

more evenly.  

Step3. Wrapped the heating band around the vacuum chamber as uniform as possible, trying 

to avoid the heating band folding upon itself. Because the overlapping heating band could 

give rise to a higher local temperature which possibly damages some sensitive components.  

 

Figure 3.3. The baking out step 1-3. 

Step4. Wrapped aluminum foils around the heating band to reflect the outgoing thermal 

radiation back to the vacuum chamber. Four independent temperature sensors were inserted to 

monitor the temperature at two view ports, main body of the chamber and the valve body 

(setting here because the baking temperature for handle wheel is a limitation). Figure 3.4 

shows the temperature probes position. 
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Figure 3.4. The baking out step 4. 

Step5. A blanket was used to cover the whole vacuum chamber assembly, to prevent the heat 

dissipation into the environment and increase the heating speed. Meanwhile, to avoid the high 

baking temperature influence other devices on the optical table, one glass tray was placed 

upside-down on the table. And the vacuum chamber assembly sits on top of it. Several posts 

were fixed around the chamber as safe guards in case the assembly is falling off accidently. 

Figure 3.5 shows the final state of the baking out. Up to now the baking out preparation work 

was done.  

 

Figure 3.5. The baking out step 5. 



21 

 

Step6. Turn on the heater and increase the supplying voltage gradually. From the temperature 

monitor, one can read the instant temperature for different parts, and control the heater in a 

reasonable speed. In one minute the temperature change should be lower than 3°C, because 

the windows might crack due to too quick expansion or contraction.   

Figure 3.6 shows the temperature and pressure of the first time baking out. For this vacuum 

chamber the pressure is going down very quickly from   4.6×10
-6 

mbar to 4.6×10
-7 

mbar after 

two days baking with a maximum temperature of 80 °C. When the baking temperature was 

increased, the pressure went up due to the outgassing. After several heating and cooling 

cycles, the temperature variation does not influent the pressure as prominent as before. Finally 

after 10 days, the pressure arrived to 4.0×10
-7 

mbar by using the turbo pump. 

 

Figure 3.6. The first baking out data 

Appendix C shows more records of the baking out just as a reference for someone who want 

to do similar works.   

 

3.2.2 The ULE cavity assembly 

 

After the baking out, the ULE cavity was installed into the vacuum chamber. First step, four 

copper adapters were glued onto the inner wall of the vacuum chamber, shown in Figure 3.7. 

These four adaptors will support the radiation shield. Before glue the adapter, the proper 

position should be found. One can put the radiation shied into the chamber and look for the 

correct adapter position, and then glue the adapter one by one. The vacuum compatible two 

parts epoxy glue was used. The glue is not conducting the heat very well, so the thickness of 

the glue layer should be as thinner as possible. The cure time of the glue is around 8 hours at 

room temperature, so heating the chamber body is a good choice to save time. To avoid the 
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adapters change their positions, four clamps were used to fix the adapters until the glue was 

cured.  

 

Figure 3.7. Four copper adapters were installed 

Second step is similar to the previous step, where the TECs were glued onto the adapters.  

Here several things should be noticed: (1) The TECs wire connection should be designed and 

connected well making sure the cables are not on the way then the ULE spacer is installed 

later because there is only 3mm gap between the ULE spacer and the inner wall of the 

vacuum chamber. An illustration of the TECs connection is shown in Figure 3.8. 

 

Figure 3.8. TECs connection. Four TEC were connected in series by crimp contacts. 



23 

 

(2) The wires and connectors on the TEC are not insulated (in Figure 3.8, the wire insulated 

type was ordered), so the insulation protection is very important. (3) TEC is a fragile device 

and any soundable collision will possibly destroy it even though it is not cracked, so in this 

step, one need circumspection and patience. Before and after this step, the TEC testing is 

necessary. Using a multimeter to test the impedance is a choice but the value varies with 

temperature and how well the wires are insulated, etc. It helps to identify if there is a break 

out in the circuit but it is not enough to tell if the TEC works as it should. Another choice is to 

connect it to a power supply, supply the suitable voltage to it (according to the data sheet of 

the TEC) meanwhile monitor the current value to see if the current is as it is expected from 

the datasheet. Again heat the chamber to speed up the glue cure time. Figure 3.9 shows the 

chamber after the TECs were installed.  

 

Figure 3.9. The TECs were installed  

The third step is assembling the ULE spacer into the radiation shield. Four sets of screws, 

spring wires and Viton rods were used for holding the cavity onto the radiation shield. Figure 

3.10 shows the structure when the installation was done. When the thin spring wires hold the 

spacer, in order to predict the deflection, a rough beam calculation was done by Yan. The 

spring wire with 0.5mm diameter was used.  Its length is 11mm. The assembling process 

followed the following procedure. (1) Slide the ULE spacer into the radiation shield. Rotate 

the radiation shield gently until the sink holes are in vertical direction. (2) Insert some gaskets 
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(here the cleaned Viton rod and aluminum foil were used) under the ULE spacer to push ULE 

spacer up closer to radiation shield. (3) Put the four Viton rods into the sink holes. In the 

middle of the Viton rod there is a small hole (diameter is 0.52mm) for connecting with the 

spring wire, so the surface of the Viton rod should face the hole. (4) One person used a 

flashlight illuminating the Viton rod, another person inserted the spring wire into the Viton 

rod by using a tweezer. (5) Screw the socket button head screws into the radiation shield and 

let the spring wire go into the small hole (diameter is 0.52mm) in the center of the screw.  

 

Figure 3.10. The structure of the ULE spacer hanging onto the radiation shield. 

The fourth step becomes easier, putting the radiation shield into the chamber. During this 

process, the wires of the sensor might be blocked by the TEC, so this step needs patience as 

well. One person pulls the wires out from the feed through port gently and another person 

pushes the spacer into the chamber gently. In order to fix the radiation shield, the epoxy glue 

was used again. Some Viton rods were used in-between the radiation shield and vacuum 

chamber to hold the radiation shield position until the glue was cured. Figure 3.11 shows the 

situation. 

 

Figure 3.11. Putting the radiation shield into the vacuum chamber. 
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Before the vacuum chamber was sealed, the circuit connection need to be rechecked. As 

mentioned before, there is a feed through port which connects the wires from the TECs and 

temperature sensor with the temperature controller outside. The feed through is shown in 

Figure 3.12. The left part is the outside connector, and the right one shows one plastic 

connector inside the vacuum chamber which is ordered from Vacom. The inside plastic 

connector have two types.  One is the crimp contact type which should be used with the crimp 

tools, but we don’t have the proper tools for doing that and the thin wire is very easy to break 

after a few times bending. So another solder type connector was ordered and used finally. 

Better to check all the electronic connections are working before and after sealing the vacuum 

chamber. 

 

Figure 3.12. The feed through structure 

3.2.3 Pump the chamber to vacuum 

 

From baking out until the final assembly, the vacuum chamber was assembled and 

disassembled several times for different reasons, for instance baking at difficult temperature, 

the pressure is not low enough so that suspecting a leakage. The correct sealing method can 

protect the fringe of the connection flange, thereby ensure a good contact and a closed 

environment. Figure 3.13 shows the tighten methods and torque values used for different bolt 

size screws [17]. In order to protect the flange surface, the tighten blots should be in a 

crisscross star pattern. Better to use a torque wrench to have a good control. 

 

Figure 3.13. The tighten method and torque value used for different bolt sizes [17]. 
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The vacuum chamber has been mentioned in Section 2.3.2. There are two steps for pumping 

the chamber to high vacuum. First, starting with the turbo pump the pressure can go from 

atmospheric pressure down to          mbar. For an even lower pressure, the ion pump 

should be used. The next step is to turn on the ion pump. The datasheet of the ion pump states, 

one needs to close the valve to turbo pump completely before starting the ion pump. However 

that did not work because the ion pump was automatically shut down giving an error message 

complaining that the pressure is too high. The reason might be that if the pressure is too low 

when starting the ion pump, the controller might be supplying too much power than estimated 

for the given pump size and in that case it will shut down [18]. Then we tried not closing the 

valve completely, rather leave it about a quarter turn open, the ion pump can start working 

properly. Afterwards completely closed the valve to turbo pump and disconnect the turbo 

pump from the chamber. This situation may be an individual case on this vacuum chamber.  

The lowest pressure of this vacuum chamber achieved with this ion pump is        mbar 

(In the end of last year, it was this pressure) after a few months pumping. 
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3.3 PDH locking setup  
 

When the pressure and temperature of the vacuum chamber was stabilized, the laser light 

should be coupled into the cavity and then detect the error signal. In this section I will 

introduce three important optical elements (DP AOM, polarization maintaining fiber and 

EOM) before the beam is ready to be coupled into the cavity, and two electronic filters before 

the error signal detector. Figure 3.14 is an overview of the electronic layout of the 

stabilization system, where many components will be mentioned in following sections. 
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Figure 3.14. Overview of the electronic system 
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3.3.1 Double Pass AOM 

 

DP AOM setup is mostly used for the single ion detection experiment providing 200 MHz 

frequency scanning ability. When one wants to search a single ion (homogeneous line width is 

~3 MHz), the laser frequency need to scan at least tens of megahertz meanwhile keep the laser 

locked to the cavity during the scanning process. AOM consists of an acousto-optic medium 

and a piezoelectric transducer. When a RF signal applies to the piezoelectric transducer, it 

will create an ultrasonic wave to the acousto-optic medium, and the reflection index of the 

acousto-optic medium will be changed periodically. This refractive index change makes the 

medium acting like a Bragg grating to deflect the incoming laser into different orders. So the 

output laser frequency can be changed by changing the frequency of the RF source.  But the 

angle of the deflected light will change as well when the RF frequency changes. This change 

of the deflection angle can be compensated if the laser beam passes through the same AOM 

twice as shown in Figure 3.15. 

The RF bandwidth of the AOM is  50 MHz around the center frequency of 260 MHz. The 

active aperture inside the AOM is quite small, around 450 um. If one wants to get the first 

order diffraction efficiency around 80%, the diameter of the laser beam should be around 75 

um. In order to get the suitable diameter of the beam, one combination of lenses were set 

down before the DP AOM.  

The DP AOM alignment procedure is as following. For simplicity considering the incoming 

beam as a collimated light and the beam height is 75.4 mm (this height is determined by the 

laser source). The AOM should be set at the focal point of L1 (in Figure 3.15), meanwhile the 

distance between AOM and L2 should be f 2 (focal length of L2). Then the deflected light 

after the AOM will be collimated by L2. The L2 position should be checked by measuring the 

distance between 0 and 1
st
 order light at near and far filed after L2, if the L2 is at the correct 

position the distance between those two beams should be constant all the way. The 

intersection angle between M1 and M2 mirrors is almost 90 degree to pick up the 2
nd

 pass 

beam easily. The first incoming light was aligned higher than each other which make sure the 

reflected light is parallel with the incoming light. In order to prevent the overlapping between 

the incoming and reflected light, the incoming light should be higher than the optical axis of 

the L1 by about 5mm. Depending on the ultrasonic wave direction the beam will be divided 

into several order after the AOM. 

Figure 3.15 shows the beam path.  After the first path, all others orders light were blocked and 

only the 1
st
 order beam propagates freely. The 1

st
 order reflected light passes through the 

AOM a second time, its 1
st
 order light is right below the incoming light. The 2

nd
 pass beam 

and incoming light are vertically symmetrical around the optical center of the L1. Final the 

pickup mirror which is under the incoming beam will reflect the light forward.  

The AOM transmission efficiency and the light movement should be measured. Firstly 

measure the power of the incoming light. Secondly the first order diffracted light power (at 

the center RF frequency) is measured around 80% of the incoming beam. Thirdly the 1
st
 order 



29 

 

diffraction of the second pass was measured. The diffraction efficiency of the double pass 

light is around 60% at the center RF frequency and 30% at the two ends of bandwidth. To 

check how well the DP AOM was aligned, the beam after double passing through the AOM 

was coupled into a single mode fiber. If the beam position does not move within ±50 MHz 

range across the center RF frequency, the fiber coupling efficiency should be almost the same. 

Otherwise, the up and down mirror should be fine adjusted. If this doesn’t help the AOM 

position could be fine adjusted as well. 

RF signal

Side view

Top view

Pick up mirror 

under the 

incoming beam

AOM

AOM

f 1 f 2

L1 L2

M1

M2

1st order

0 order
0 order

1st order

260MHz ±50MHz

 

Figure 3.15. Double pass AOM setup  

 

3.3.2 Single mode polarization maintaining fiber 

 

After the beam passes through the AOM, there is big risk that the spatial beam profile has 

been distorted. To get one well shaped spatial mode the light is coupled into a single mode 

polarization maintaining (PM) fiber before the beam is coupled to the cavity. The single mode 

fiber only supports the fundamental mode (     ) and all other modes will be heavily 

attenuated and thereby filtered out. The fiber (referred as stabilization fiber) is 50 cm long and 

was bought from Thorlabs (model PM-S350-HP). Coupling the laser beam into a signal mode 

fiber is a very tricky task, especially when the spatial mode of the laser itself is not good. 

Figure 3.16 shows the beam path of the fiber coupling. At the beginning, trying to use the 

reflected light from the fiber as a guidance and then adjust the two mirrors in front of the fiber 

to overlap the incoming beam with the reflected light. But because of a few reasons, it is very 

difficult to achieve a coupling efficiency of more than 1%. Those reasons are: (i) It is not easy 

to get a well-defined reflected beam from the fiber. Most often the reflected beam looks like 

cutting somewhere because the beam is not sufficient close to the correct path.  (ii) Mirror 1 

used for adjusting the input beam tiltment is a little far away from the fiber, because there are 
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more optics in between of them. Thus it makes the beam movement at the fiber position is so 

sensitive to the adjustment of that mirror. (iii) The spatial mode of the output from the laser 

diode is not good. That provides local maxima when coupling into a fiber. In this situation, 

another way was applied. There is another piece of fiber (referred as experimental fiber) on 

the platform. The laser is already coupled into it. So we disconnect the experimental fiber 

from its own output coupler and connect it onto the input coupler of the fiber which we want 

to couple light into. Then use the output laser from the experimental fiber as a guiding light 

for the beam alignment.  Later the fiber transmission efficiency was tested. Here, several 

times testing were done. The light is after the DP AOM, when the RF signal for AOM at the 

center frequency, the transmission efficiency is around 40% and at the ends of the bandwidth, 

the transmission efficiency is around 35%. The testing result is a good criterion to judge the 

DP AOM alignment, and the testing result proves this alignment which fulfills the 

requirement.  

Fiber 
coupler

The light after DP AOM
Pick up 
mirror

Mirror 1

Half wave 
plat

Polarizer

 

Figure 3.16. The beam path of the fiber coupling 

After the laser is coupled into the fiber, the polarization state of the laser should be measured 

and adjusted. Here, one halfwave plate and polarizer was set up before the fiber to adjust and 

purify the laser beam polarization state. Our stabilization fiber is a panda type fiber. For this 

type of fiber there are two axes, one is called fast axis (the direction having a low refractive 

index) and another one is slow axis (with a high index of refraction). Typically when the light 

polarization is along the slow axis, a better polarization maintaining is achieved [19] and the 

direction of the slow axis is often indicated on the fiber connector by the manufacture. How 

well the polarization maintaining of the fiber is can be tested by slightly changing the 

temperature of the fiber and watch the throughput power of a polarizer which sits after the 

fiber output collimator. If the input beam polarization is not exactly along the fiber slow axis, 

the throughput power will change obviously when holding the fiber by hand. Another way is 

to measure the extinction ratio [19] at the fiber output, when the extinction ratio get the largest 

value which means the polarization state has the best match between the laser beam and the 

fiber. Comparing the angle position of the polarizer in two testing methods, the discrepancy is 

around 2 degrees. 
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3.3.3 Electro Optic Modulator 

 

The electro-optical crystal inside the EOM is a birefringent crystal. When the incoming laser 

beam has a polarization state not matched with one of the crystal axis, the polarization state of 

output beam will be turned, which could cause the residual amplitude modulation (RAM) on 

the laser beam [20]. The modulation frequency is exactly the EOM input RF signal frequency. 

The RAM signal could be wrongly taken as the error signal since they have the same 

frequency. To avoid the RAM, one needs to find the EOM crystal axis and align the input 

beam polarization along one of the axis. Measuring the extinction ratio is a convenient 

method. Use two cross polarizers to do that. One sits before and one after the EOM. If the 

incident beam polarization matches one of the crystal axis, the out coming beam will not be 

rotated. So the throughput from the output polarizer is minimized. Otherwise there will be 

some throughput. Change the polarization orientation of the first polarizer and the second one 

correspondingly (make sure they are always perpendicular) as well until the throughput 

intensity is minimized. An extinction ratio of 39 dB was measured. One also needs to make 

sure the input beam polarization should be in vertical direction, if not slightly rotate the EOM 

orientation.   

As mentioned in Section 2.4.2 in order to get high enough voltage to achieve the reasonable 

modulation index, a resonance tank is used. First of all, one needs to check the resonance 

frequency of the tank. The design resonance frequency of the resonance tank is 20MHz, it 

means that at 20MHz the impedance of the circuit is 50 Ω so that the signal reflection is very 

low, but at other frequencies the reflection is a lot higher. Possibly the RF amplifier will be 

damaged instantly. The testing tools include a signal generator with frequency sweep and 

marker output function, a coupler and an oscilloscope. Figure 3.17 shows the connections 

between them. The output of the generator should be set in frequency sweep mode and the 

range covers the testing frequency (e.g. from 15 to 25MHz) and the marker signal can start 

with 20MHz. The coupled port of the coupler is the reflection signal from the resonance tank. 

Figure 3.18 shows the testing result recorded by an oscilloscope. One can change the starting 

frequency of the marker signal to indicate the resonance frequency. During these test, one 

need to make sure all equipment has an input or output impedance of 50 Ω.  
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Figure 3.17. The resonance frequency testing 
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Figure 3.18. The resonance frequency testing result 

Secondly, the modulation index should be measured. It tells how much power is distributed 

on the carrier and sidebands respectively. This value will influence the strength of the error 

signal. The modulation index can be tuned by changing the input RF power to the resonance 

tank. Based on the modulation index measurements done by Yan, when the input power is 

~34 dBm (±1dBm) a modulation index of 1.08 was achieved which is the optimal value we 

want [1].  

When the input RF signal power is more than 1Watt or the Lab temperature varies, the 

temperature of EOM will be changed and the stability for EOM will be influenced. Thus, one 

heating band and a temperature sensor (NJ28MA0103H from Farnell) were installed on the 

EOM, and then they are connected to a temperature controller (HTC-1500, Wavelength 

Electeonics). It stabilizes the temperature of the EOM to a temperature slightly above the 

room temperature. Figure 3.19 shows the configuration of the EOM. The two aluminum 

covers not only protect the optical aperture of the EOM but also reduce the RF signal leakage 

from EOM. In next paragraph, the RF shielding will be continued to discuss. 

 

Figure 3.19. The configuration of the EOM with the heating band and aluminum cover 
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Thirdly, one should make sure there is a good contact between the resonance tank and the 

EOM, and the EOM should be grounded well. If the connection is not good, the EOM will 

become a high power RF radiator which will disturb the error signal detection and could also 

interfere with the laser driver to create an intensity modulation on the laser output, which once 

was a big trouble for us. The effective way to prevent this is to ensure a good contact between 

the EOM and tank, and shield the tank as good as you can. For getting a good contact, one 

copper adapter is made which increases the contact area between the resonance tank and 

EOM electrodes, as shown in Figure 3.20 Finally a better contact was achieved and the 

resonance tank has been grounded, thus the RF shielding is satisfactory. 

 

Figure 3.20. The EOM with resonance tank 

 

3.3.4 Electronic Filters 

 

Two electronic filters were used in the system, Figure 3.1 shows the connections. One is the 

40 MHz notch filter which sits after the error signal detector. The function is to kill the 40 

MHz frequency components in the reflected beam from the ULE cavity. The other one 

include an 8 MHz low pass filter and a 40 MHz notch filter, which is placed after the phase 

detector. The low pass filter is aiming for filtering away the high frequency components 

above 8 MHz (As a rule of thumb, this turning frequency should be roughly 1/3 of the phase 

modulation frequency) in the electronic signal carrying the error signal. 

Both filters were designed in the diplexer mode which has the low signal reflection. Firstly 

design the circuit diagram according to the requirement. The parameter for each component in 

the circuit should be determined [21]. Secondly, the simulation for the circuit should be done. 

By using Micro-cap do the simulation and the impedance match curve can be got, the better 

impedance matches the lower signal reflection is. Figure 3.21 shows the simulation result. At 

8MHz the signal attenuation is around 3dB and at 40MHz the attenuation reaches 75dB. The 

result fulfills the requirement. Figure 3.22 shows the testing results which agrees with the 

simulation result, meanwhile the power of the reflection signal is reasonably low comparing 

with the input signal.  
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Figure 3.21. The simulation result of the filter circuits 

 

 

Figure 3.22. The testing result for the two filters  
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Thirdly, the print circuit board is designed. The design was done in Protel 99. For the circuit 

board, the thickness of a single layer circuit board is 1.6 mm , so the stripes should be 1.85 

mm wide and the thickness is 2 um (for 50 ohm impedance) [22]. There should be a 2 mm 

gap in-between the stripe and the earth plane. Interconnections between the top and bottom 

earth plane should be made by adding some via holes. All the components’ model numbers 

were shown under the circuit drawing and were printed on the circuit boards as well. 

The circuit boards were fabricated on a custom-order from a Chinese company (SHENZHEN 

SEN YAN ELECTRONICS CO.,LTD). The circuit diagram and the printed circuit board are 

shown in Appendix A. 

To shield the filter, one special card-slot type aluminum boxes were ordered. This kind of box 

(Bopla Alubos 1040 enclosure profiles) can be sealed easily and the gaskets were selected as 

the electric conduction type (EMC seals DI 1040-EMV). Thus the filter has a good RF 

shielding. Figure 3.23 shows what the filter looks like. 

 

Figure 3.23. The filter boards and the aluminum boxes 

Up to now, all the optical setup work is done and most of the electronic devices are set under 

the table. The complete platform is shown in Figure 3.24. Next work is to couple the beam 

into the ULE cavity to do the mode-matching, check the error signal, and feed the error signal 

back to the laser. These will be discussed in next chapter.  

file:///C:/Users/afzxq/Desktop/Thesis%20V3/370nm%20laser%20stabilization_V2(chapter%203).docx%23_Appendix_B
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Figure 3.24. The complete platform of 370 nm laser stabilization system 
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Chapter 4 Test and Measurement  

4.1 Cavity mode matching  
 

To efficiently do the cavity mode matching, some calculations should be done at first. The 

cavity mode can be determined by the length of the cavity, the separation of the longitudinal 

mode is the free spectral range which is equal to 2.7GHz. For this ULE cavity, the length is 

55mm, and the beam diameter on plane surface can be calculated as. 

                       1
  

  

 
 √

 

 (1  )
                    

 

 
 

where  1  is the radius of the beam on plane surface and the result is 136um,   is the 

wavelength of the laser, R is the radii of the concave mirror surface which is equal to 0.5.  

The distance from the fiber coupler output to ULE cavity is limited by the arrangement, in 

order to couple light into the cavity, the incident beam has to have the same divergence as the 

cavity mode. One need to consider what lens is needed during the beam path, and how large 

the input beam diameter should be. As a guidance for the real alignment, I first ran a 

simulation using the ABCD matrix (initial program was written by another Diploma worker, 

Adam Wiman) in Matlab to check what focal length lens is needed [23], where the beam at 

the lens surface should have a certain input beam diameter with certain divergence. During 

the simulation, the refractive index for each component and the distance between each other 

were checked. This simulation assumes the end surface is the plane mirror and the light emit 

from here. Figure 4.1 shows the simulation results, where the blue lines mean the interfaces 

which the light passes through.  

In order to find the suitable lens, the following steps were done. (i) The output of fiber 

collimator position is fixed, and the output beam divergence can be tuned in a small range by 

adjusting the position of the collimating lens surface 6 in Figure 4.1. This variation range is a 

good reference for the simulation, so by using the beam profile measure the variation range. 

(ii) Adjusting the fiber collimator divergence, selecting one suitable position for the lens (the 

surface 5 in Figure 4.1) before the vacuum chamber, and then change the focal length until the 

beam diameter in the variation range at the surface 6. (iii) With the simulation as guidance, 

setting down the focal lens, and by using the beam profile measure the beam diameter again 

after the fiber collimator and lens separately, the result should be close to the simulation. 

Some fine adjustments are needed.  

The simulation result shows that the focal length of 400mm is suitable and the distance 

between the lens and the end surface of the ULE cavity is 484mm. The beam radius is 

405.8um on the lens surface. Meanwhile the beam radius on the fiber collimator is 320.4um 

which fulfills the variation range.  
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Figure 4.1. The beam sizes at different positions from fiber collimator until the ULE cavity. 

After the beam diameter correction, next step is to find the correct incidence angle and 

position of the beam going towards the cavity to get a       mode matching.  

First of all, one needs to put a camera after the cavity on the transmission path of the beam 

trying to get a signal on which to start the optimization of the beam adjustment. Then one 

needs to scan the laser frequency more than one FSR by scanning the PZT in the laser cavity 

either using an external signal generator or the RAMP function on the laser servo. The 

purpose is to find the resonance line of ULE cavity. Thirdly, start to adjust the beam. The 

light path before the cavity is shown in Figure 4.2. In order to decouple the adjustment of the 

beam position and its tilt angle, it is better to have one mirror rather close to the cavity, in this 

case is M3 and put one mirror far away from the cavity, in this case is M1. Adjusting the 

mirrors in both horizontal and vertical directions until one can see some patterns on the 

camera. Figure 4.3 shows some example transmission patterns one can see on the camera. 

Once you can see something, then it is just a matter of time to get a pure       mode. 

However there are some practical difficulties, e.g. we don’t have a very good control of the 

mode-hop-free scanning range of the laser frequency, meaning there is large possibility there 

are mode jumps during the scanning.  

 

Figure 4.2. The light path before the cavity 
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Figure 4.3. The mode change form high order to 00 mode, left is       mode, middle is 

    1 mode, right is the       mode. 

When the mode match is reasonably good, the transmission beam should be strong enough to 

be coupled into a DC detector. Figure 4.4 shows the transmitted beam intensity during one 

scan with the EOM phase modulation being turned off. Comparing with the input laser power, 

the transmission efficiency is around 2.5%, which is far away from the expected value of 

~10%. This might be due to the laser line width is much broader or the losses in the cavity is 

much larger than we thought. 

 

Figure 4.4. The transmission intensity curve 

 

4.2 Error signal 
 

After a good mode matching is achieved, next step is to look for the correct error signal. It 

should be detected with a 20MHz intensity modulation when the cavity mode is matched.  
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The beam carrying the error signal is the beam reflected back from the ULE cavity. The 

reflected beam is separated from the input beam by a PBS. The incoming beam is a pure 

vertical polarized light, the light polarization will be changed to right-circularly polarized 

after passing through the quarter wave plate as shown in Fig. 11.  The polarization state of the 

reflected light from the ULE cavity is changed to be the left-circularly polarized. Then the 

polarization state will be turned by 90° comparing with the incoming beam.  So the reflected 

beam is reflected by the PBS.  

 

Figure 4.5. The beam path of the error signal.  

The error signal is based on the phase modulation as described in Section 2.4.2. First we 

checked the phase modulated signal on the transmitted intensity (while the laser is scanning), 

shown in Figure 4.6. There are two sidebands around the center frequency with a separation 

of 40MHz in between them. The right sideband is lower than the left sideband slightly. That is 

because the 60MHz (at 3dB) bandwidth limitation of the detector. The side band intensity is 

about 1/3 of the carrier, which corresponds to a modulation index of ~1.08.  

 

Figure 4.6. Transmitted intensity from the ULE cavity when the laser is scanning across the 

resonance line. 
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After making sure the modulation index is correct, one needs to couple the reflected beam 

from cavity onto the error signal detector. Firstly, one could check the monitor output of the 

error signal detector to see if the laser hit the detector chip. Then switch to the AC output port 

and record the signal. To see the 20 MHz modulation more clearly, it is better to do a FFT of 

the signal by using the oscilloscope which with the FFT function. Figure 4.7 shows the FFT 

of the reflected beam. When the cavity mode is matching very well, the strong signal at 

20MHz was observed meanwhile a weak 40MHz signal also detected. When the EOM phase 

modulation is turned off, both signals will be gone. That means the 20 MHz and 40 MHz 

signal really comes from the phase modulation.  

 

Figure 4.7. The reflected signal in FFT 

Next is to feed the signal from error detector into a 40 MHz notch filter, as illustrated in 

Figure 4.8, the reason for doing that is to cancel the 40MHz signal which remains in the signal, 

here only the 20MHz signal is what we want.  

40MHz 
NF

Laser Servo

8MHz LP & 
40MHz NF

Amp ZFL-500LN+
28dB

Phase 
detector 
ZRPD-1+

Laser driver

Error signal 
detector

DDS
409B

ϕ 
Phase 
shifter

 

Figure 4.8. The error signal detection 
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Then the output is connected to a phase detector (mixer ZRPD-1+, Mini-Circuits), which 

multiplies two input signals and then gets the dispersion signal. In order to get the correct 

dispersion signal, the intensity of the two input signals should be at the same level. Here, the 

other synchronized signal is sent to phase detector from DDS 409B which supplies the 

modulation signal to EOM also. The error signal is too weak compare with the synchronized 

signal from DDS 409B, thus a low noise amplifier (ZFL-500LN+, Mini-Circuits) was set 

before the phase detector. The frequency of the synchronized signal and reflected beam signal 

are the same, and the multiplication result is the error signal. In order to get correct error 

signal, firstly make these two signals orthogonal to each other by changing the phase of 

synchronized signal, then the multiplication signal is 0. Let’s take this phase as a reference, 

referring it as   orthognal. Then changing the phase of synchronized signal by 90°, the 

strongest intensity can be got. Figure 4.9 shows the dispersion curve in several phase 

differences. The slope of the dispersion curve depends on the sweep frequency signal which is 

the black line in Figure 4.9. The sign of the slope should be checked when re-lock the system, 

next section will give more explanation about this. 

The output of the phase detector goes to an 8MHz low pass filter and a 40MHz notch filter 

again. This filter attenuates the noise signal higher than 8MHz heavily because the error 

signal is a DC signal at this stage. The 40MHz notch filter has the same function as the one 

before the phase detector. Then we get the dispersion curve.  

 

Figure 4.9. The dispersion curve at three different phase reference (negative slope). 
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4.3 Feed the error signal back to the laser servo 
 

The final step is feeding the error signal back to the laser servo. The stabilization system can 

be locked in two ways. The first one is changing the laser driver current in a fast time scale 

(~us) and another one is by using the voltage to control the PZT movement in a slow time 

scale (~ms). If the best stabilization wants to get, these two methods will be cooperated, but at 

the beginning one can adjusts one by one. The schematic connection diagram is shown in 

Figure 4.10. 

370nm ECDL

Laser Servo

Laser 

driver

To piezo

Power 

supply

Power 

supply

Error signal

Driver current 

feedback loop
PEG +18V

offset

Voltage 

feedback 

loop

 

Figure 4.10. The connection diagram of the two feedback loop. 

Firstly, the current feedback loop was tested. The adjustment followed this order. (i) Scan the 

laser frequency by using the laser servo Ramp signal and look for the       mode shown on 

the camera. Then gradually decrease the scanning range until only the       mode appears 

within one scanning range. (ii) Adjusting the voltage to PZT to find the       mode. In order 

to control the voltage conveniently, one power supply is used in the feedback loop to the PZT. 

This power supply should have low noise, meanwhile make sure it has fine turning function 

which makes the adjustment convenient. (iii) When the       mode is found, the 

transmission intensity is very high meanwhile the intensity of the carrier in dispersion curve is 

higher. (iv) At this moment, the system locking can be tried. Figure 4.11 shows this moment. 

On the oscilloscope, Channel 1 (white curve) is the transmission intensity and Channel 2 

(green curve) is the dispersion curve. The       mode pattern is shown on the left monitor. 

Here one thing should be noticed, on the laser servo front panel there is a ‘gain sign’ switch 

which changes the sign of the feedback error signal. Switch this sign is equivalent to change 

the slope polarity of the dispersion curve. Make sure that this switch is at the correct position. 

Then activate the lock function of the servo, Figure 4.12 shows the signal when the locking is 

successful.  
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Figure 4.11. The state ready for locking 

 

Figure 4.12. The locking state 

If the locking can’t be succeeded, recheck the slope of the dispersion curve. If the 

transmission intensity is too low when the system is locked, one could check if the DC offset 

is still at zero position. This offset should be set around zero level, which will influence the 

lock point position. 

When the current feedback loop is working well, it is time to add the PZT feedback loop into 

the system. The laser servo has an ‘Auxiliary Servo Output’ which sends out a voltage 

regulation signal to the PZT on ECDL trying to keep the laser diode current regulation signal 

close to zero. This output voltage is in the range of -15 V to 15 V, but the servo voltage to the 

PZT should be positive, thus a constant voltage should be added to the ‘Auxiliary Servo 

Output’. Here two +9 V batteries are connected in series to protect the PZT. The locking steps 

are the same as previous. When I tested the stabilization system, the longest locking time was 

around 2 hours. 
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4.4 Future work 
 

The goal of this project is to stabilize the laser frequency at least for 8 hours. Unfortunately 

the longest lock-in time duration is only ~2 hours. There are still some works to improve, 

however that is beyond the scope of this thesis due to the time limitation. Here are some 

suggestions for the future adjustment. 

1. The unstable output voltage of the additional power supply will influence the PZT directly, 

therefore break the locking. Thus, the power supply in the PZT feedback loop should be 

upgraded. 

2. The RF shielding has been mentioned so many times in this report, we think the problem 

was solved since it can’t be detected from the laser intensity, but not sure it disappears 

completely. 
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Appendix C 
 

The baking out recording (Unit Temperature:       Pressure: mbar) 

The first baking out 

Date Time Temp.1 

Valve 

body 

Temp. 2 

View 

port 1 

Temp. 3 

Chamber 

body 

Temp. 4 

View 

port 2 

Heater Turbo 

pump 

pressure 

Ion 

pump 

pressure 

05.04 11:06      6.3  

 11:18      8.6e-5  

 13:15      4.6e-6  

 15:25      1.6e-6  

 17:02      1.2e-6  

 18:37 27 26 27 26 5 1.6e-6  

 19:30 35 31 35 30 10 1.6e-6  

05.05 09:15 45 39 43 37 10 6.3e-7  

 10:50 67 51 62 49 18 1.2e-6  

 13:30 91 68 80 64 20 2.5e-6  

 16:40 67 57 61 54 11 7.4e-7  

05.07 08:30 42 36 40 35 10 5.4e-7  

 10:40 66 50 60 47 18 8.6e-7  

 16:48 103 78 90 71 22.5 7.4e-7  

 18:41 100 77 87 71 20 7.4e-7  

05.08 09:40 93 71 86 64 25 6.3e-7  

 13:00 115 86 104 77 26 7.4e-7  

 17:00 107 83 98 76 25 5.4e-7  

 19:35 103 81 94 73 23 6.3e-7  

05.09 09:25 99 76 90 68 24 4.0e-7  

 11:53 111 84 102 76 27 4.6e-7  

 14:40 114 87 105 79 27 6.3e-7  

 20:16 101 80 94 73 23 5.4e-7  

05.10 08:30 95 74 88 67 23 3.4e-7  

 13:15 117 89 108 80 26 7.4e-7  

 18:30 111 86 103 78 24 4.6e-7  

 20:30 102 81 95 73 24 5.4e-7  

05.11 09:50 101 78 93 69 25 5.4e-7  

 11:10 109 82 100 74 26 4.6e-7  

 13:26 116 88 106 80 26.5 5.4e-7  

 17:50 113 87 104 79 24 5.4e-7  

05.13 13:30 100 77 92 69 24 5.4e-7  

05.14 08:45 99 76 91 69 24 3.4e-7  

 10:40 81 66 76 61 19 3.4e-7  

 15:02 48 45 47 43 6 3.0e-7  

 18:06 30 29 31 30 0 3.4e-7  
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The second baking out (The ion pump has been installed) 

 

 

 

Date Time Temp.1 

Valve 

body 

Temp. 2 

View 

port 1 

Temp. 3 

Chamber 

body 

Temp. 4 

View 

port 2 

Heater Turbo 

pump 

pressure 

Ion 

pump 

pressure 

05-15 13:00      room  

 13:07      8.6e-5  

 13:55      1.0e-5  

 14:30 25 24 25 24 5 4.0e-6  

 15:30 25 27 35 29 14 1.9e-6  

 16:35 25 37 55 42 18 1.2e-6  

 17:35 25 46 69 52 20 1.0e-6  

 18:40 78 55 82 62 24 8.6e-7  

 20:50 98 68 101 77 24 6.3e-7  

05-16 09:20 108 75 109 84 24 7.4e-7  

 10:25 100 72 100 80 20 4.6e-7  

 12:10 76 59 75 64 12 4.0e-7  

 14:30 48 42 48 44 2 4.0e-7  

 15:30 38 36 39 36 0 7.4e-7  

Turn on the ion pump when the temperature decreases to normal. The valve of the turbo pump 

should not be closed tight. 

 18:15 25 25 25 25 0 stop 3.0e-6 

 20:00       1.6e-6 

05-17 11:00       5.05e-8 

 16:00       9.6e-8 

 20:20       4.6e-8 

05-18 09:20       3.8e-8 

The screws were fixed again 

 10:50       4.3e-8 

 14:00       2.9e-8 

 16:00       1.0e-6 

Turn on the turbo pump  

05-21 08:30      5.0e-7  

 10:25      stop 5.4e-6 

 10:30       2.6e-6 

 14:15       3.6e-6 

05-22 08:35       5.09e-8 

 10:35       7.8e-8 

 18:20       6e-8 

05-23 08:40       5.1e-8 

 18:40       6.2e-8 

05-24 08:40       5e-8 

05-25 09:10       5.22e-8 

 17:15       5.8e-8 

05-28 09:40       7.75e-8 
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Baking the radiation shield 

 

 

Date Time Temp.1 

Valve 

body 

Temp. 2 

View 

port 1 

Temp. 3 

Chamber 

body 

Temp. 4 

View 

port 2 

Heater Turbo 

pump 

pressure 

Ion 

pump 

pressure 

05-30 21:00      3.5e-5  

05-31 08:40 22 22 21 22 0 1.6e-6  

 10:40 23 23 24 23 10 1.2e-6  

 13:10 49 50 75 54 21 5.4e-6  

 16:20 61 56 78 65 18 7.4e-6  

 20:05 61 57 78 67 18 3.4e-6  

06-01 08:35 60 56 77 66 18 1.0e-6  

 13:30 71 64 91 76 21 1.4e-6  

 14:45 76 68 99 80 23 1.6e-6  

 16:45 68 63 85 76 17 1.4e-6  

 18:05 52 52 59 61 6 8.7e-7  

 18:31 48 48 55 56 6 7.4e-7  

 19:45 50 48 64 54 15 8.6e-7  

 20:45 59 55 80 61 20 7.4e-7  

06-03 15:30 68 63 90 73 20 5.4e-7  

06-04 09:40 67 62 89 73 20 4.6e-7  

 10:45 63 59 82 70 14 4.6e-7  

 12:30 46 46 53 54 3 4.6e-7  

Turn on the ion pump 

 14:00 25 25 25 25 0 6.3e-7 5.5e-6 

 15:30       1.8e-6 

 19:15       8.4e-8 

06-05 10:55       7.34e-8 

 14:40       1.16e-7 

 17:30       7.9e-8 

 18:10       7.1e-8 

06-07 08:40       1.0e-7 

 10:00       8.57e-8 

 10:08       1.0e-7 
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Baking out after the cavity spacer installation 

Date Time Temp.1 

Inside 

cavity 

Temp. 2 

View 

port 1 

Temp. 3 

Chamber 

body 

Temp. 4 

View 

port 2 

Heater Turbo 

pump 

pressure 

Ion 

pump 

pressure 

06-30 01:30 26.5 25 30 25 10 1.6e-4  

 15:00 30.5 28 33 28 15 3.0e-6  

 16:30 35 31 43 31 19 3.0e-6  

 18:00 40 35 51 35 18 3.4e-6  

07-02 09:00 45 38 52 37 18 7.4e-7  

 18:00 45 40 54 40 18 7.4e-7  

07-03 09:05 47 38 53 38 18 5.4e-7  

 18:00 47 38 53 38 18 5.4e-7  

07-04 08:50 47 38 53 38 18 4.6e-7  

Turn on the ion pump 

 11:20 47 38 53 38 18 4.6e-7 7.75e-6 

Turn off the ion pump and the heater. 

 11:53  38 49 39 12 4.6e-7  

 14:30  30 30 31 0 4.0e-7  

Turn on the ion pump 

 16:20  27 27 27 0 5.4e-7 3.9e-6 

 16:27  27 27 27 0 Off valve 8.0e-6 

 18:50  25 26 26   2.76e-6 

07-05 08:50       1.64e-6 

 12:15       1.62e-6 

 16:00       1.48e-6 

 18:40       1.33e-6 

07-06 08:38       1.09e-6 

 11:50       1.19e-6 

 18:30       1.38e-6 

 20:20       1.52e-6 

07-09 07:45       2.36e-6 

 10:35       1.81e-6 

07-10 08:40       1.99e-6 

Check with the turbo pump and try to decrease the pressure 

 11:35      Open 

valve fully 

stop 

 11:35      8.6e-7  

 12:26 24.5 23 23 23 10 7.4e-7  

 14:23 16.52k 29 42 28 18 5.4e-7  

 18:45 7.2k 45 61 43 20 6.3e-7  

07-11 08:40 50 43 59 42 20 5.4e-7  

 11:00 5.3k 51 80 49 26 5.4e-7  

 15:10 4.0k 57 89 55 29.5 7.4e-7  

 18:43 2.65k 65 105 63 32 1.0e-6  

 20:50 76 64 97 62 25 8.6e-7  

 21:50 3.44k 58 82 56 23 7.4e-7  

 22:25 65 54 73 53 19 6.3e-7  
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Date Time Temp.1 

Inside 

cavity 

Temp. 2 

View 

port 1 

Temp. 3 

Chamber 

body 

Temp. 4 

View 

port 2 

Heater Turbo 

pump 

pressure 

Ion 

pump 

pressure 

07-12 09:10 7.44k 43 60 42 19 4.0e-7  

 11:00 5.87k 49 79 47 27 4.0e-7  

 13:45 72 64 105 60 33 5.4e-7  

 16:00 80 69 110 65 33 7.4e-7  

 18:15 2.26k 71 112 67 33 8.6e-7  

 19:30 2.27k 70 107 66 27 7.4e-7  

 20:35 74 62 80 60 18 5.4e-7  

07-13 09:30 8.45k 41 55 40 18 4.0e-7  

 11:50 39 34 38 32 5 3.4e-7  

 14:10 28 26 25 25 0 3.4e-7  

Turn on the ion pump 

 15:05 18.52k 24 24 23 0 5.4e-7 6.0e-6 

 15:40 19.18k 24 23 23 0 Off valve 2.8e-6 

 16:30 19.80k 23 23 23 0  1.0e-6 

07-15 21:15       3.6e-7 

07-16 08:45       3.42e-7 

 19:30       4.3e-7 

07-17 09:35       4.2e-7 

 22:00       3.1e-7 

07-18 08:40       4.0e-7 

07-19 13:00       3.6e-7 

07-20 09:30       2.8e-7 

07-23 09:00       2.17e-7 

07-24 11:30       2.16e-7 
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