
Bachelor Thesis

Lund University

Theoretical Physics

Computational Biology

INCREASING MODEL
ROBUSTNESS FOR STEM
CELL REGULATION IN

PLANT SHOOTS

Author:
Niklas Korsbo

Supervisor:
Prof. Henrik Jönsson

July 19, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lund University Publications - Student Papers

https://core.ac.uk/display/289952656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Contents

1 Background 2
1.1 Meristem properties . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Regulatory dynamics . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Receptor mutants . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Previous computational models . . . . . . . . . . . . . . . . . 5
1.5 Buffering dynamics . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Modelling molecular dynamics . . . . . . . . . . . . . . . . . . 7

2 Results 9
2.1 A simple negative feedback between WUS and CLV3 cannot

explain buffering . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Self-activation of WUS . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Indirect WUS self-activation . . . . . . . . . . . . . . . . . . . 16
2.4 Alternative interactions in the CLV-WUS network . . . . . . 21

3 Methods 23
3.1 Modelling strategy . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Mutants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Model attempts . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Discussion 30

Appendix 34

Acronyms 35

i



Abstract

The transcription factor WUSCHEL and the peptide CLAVATA3 have key
roles to plat in the regulatory network effecting the differentiation of the
stem cells at the shoot apical meristem of Arabidopsis.

The signal pathway of this network has been under investigation for sev-
eral years and models utilizing the already identified parts of the network
have been developed. Such models have however so far been unable to ex-
plain a buffering ability of WUSCHEL against certain perturbations made
experimentally to the promoter strength of CLAVATA3.

For this thesis several alternative models have been proposed and investi-
gated. All of them have a basis in a previously published model and adds or
replaces different connections in order to be able to produce the experimen-
tally observed dynamics.

These in silico experiments have yielded several new models that are able to
explain the buffering capabilities of WUSCHEL. They also show that many
types of self-activation of WUSCHEL can produce not only the WUSCHEL
buffering dynamics, but also the dynamics of the additional six mutant ex-
periments that were used as a basis for the previous model.
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Chapter 1

Background

1.1 Meristem properties

The plant Arabidopsis has during the passed decades been used as a model
plant to study the dynamics of different cell types in the plant shoot. There
are different sites in the plant which contain stem cells, but the specific region
of interest to this report is the shoot apical meristem (SAM).

The SAM is a region of a plant which can give rise to any above ground
organ (Sablowski, 2007; Bleckmann and Simon, 2009). In order to maintain
the pluripotency (the ability to give rise to many types of cells) of the stem
cells while developing new organs the SAM contains several different types
of cells which regulates the shape and the properties of the region (Schoof
et al., 2000).

Different cell types exist in different zones of the SAM and contribute differ-
ently to the dynamics of the shoot. The stem cells are located at the very
apex, in the so called Central Zone (CZ). These cells enables the plant to
form new organs in the post-embryonic life of the plant. In creating a new or-
gan a stem cell must differentiate and thereby loose its pluripotency. But as
the plant can form new organs throughout its life the number of undifferen-
tiated stem cells must be maintained. The stem cells in the CZ divide slowly
and the cells that get pushed out of the CZ will instead enter the Peripheral
Zone (PZ) in which they will start differentiating into the specific cell types
required for the further development of the plant (Meyerowitz, 1997). The
cells that remain in the CZ will however retain their pluripotency and allow
for the process to repeat.

The cells of the CZ secrete a small extracellular protein called CLAVATA3
(CLV3) (Fletcher et al., 1999). This protein down-regulates the expression
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CHAPTER 1. BACKGROUND 3

of WUSCHEL (WUS) through a signal pathway that will be discussed below
(Mayer et al., 1998; Schoof et al., 2000).

The transcription factor WUS is expressed in the Organizing Center (OC)
from the gene WUSCHEL. The OC is the region right beneath the CZ which
is believed to contain a large part of the regulatory function that determines
the size of the CZ.

1.2 Regulatory dynamics

A primary feature of the studied network is the secretion of WUS which
is required for the maintenance of stem cell identity of the cells in the CZ
(Schoof et al., 2000).

In the network, which is represented in figure 1.1, CLV3 is transported from
the CZ to the OC where it can bind to the receptor CLAVATA1 (CLV1)
or to the receptor CORYNE (CRN), which are found at the cell membrane
of the cells in the OC. The bound form of the receptors and the CLV3
then give rise to an intra-cellular signal which results in the repression of
WUS transcription (Clark et al., 1997; Muller et al., 2008). Finally the
feedback network is completed by the transportation of WUS from the OC
to the CZ where it stimulates an increased expression of CLV3 (Yadav et al.,
2011).

The major phenotypical effect of the network described comes from the reg-
ulation of WUS and CLV3. It has been shown that CLV3 functions as a
promoter for differentiation of stem cells (Fletcher et al., 1999). Various
CLAVATA mutants have been induced in Arabidopsis, and it is clear that
over-expression of CLV3 will cause an increased differentiation of the stem
cells and lead to a diminishing region of pluripotent cells and a decreased
WUS activity (Yadav et al., 2010).

WUS however does the opposite, it promotes a maintained stem cell identity
of the cells in the CZ. Over-expression of WUS lead to an expanding CZ,
an increase in the number of stem cells and an increase in the number of
organs formed from the SAM (Laux et al., 1996; Reddy and Meyerowitz,
2005).

1.3 Receptor mutants

In the investigation of the signaling pathway between CLV3 and WUS several
receptor mutant experiments have been made. The following such mutants
were used as a test set for the models:
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CLV3

CRN CRN/CLV3 CLV1CLV1/CLV3

X

WUS

Nucleus

wall

Cellular

membrane

OZ

CZ

Figure 1.1: The regulatory network of the SAM as described in Sahlin et al.
(2011). The gene CLV3 is expressed in the CZ and the protein CLV3 is
secreted. CLV3 reaches the OC and reacts with the receptors CLV1 and
CRN located at a cell membrane. The receptor/CLV3 complexes gives rise
to an unknown substance X which acts as a repressing transcription factor
for WUS. The protein WUS is then transported to the CZ where it acts as
an activating transcription factor for the production of CLV3.
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clv1-1 a CLV1 Loss-of-function (LOF) mutant, rendering the CLV1 path-
way less efficient.

clv1-11 a CLV1 null mutant, completely disabling the production of func-
tional CLV1.

crn-1 a CRN LOF mutant, rendering the CRN pathway less efficient.

crn-1 clv2-1 a null mutant for the receptor CRN.

crn-1 clv1-11 a double mutant which causes LOF for the receptor CRN
and disables the receptor CLV1.

crn-1 clv1-1 a double mutant which causes LOF for both the receptors
CRN and CLV1.

The result of these mutants was measured by the phenotypical changes,
changes to the actual appearance of the plant. This was especially quantified
by the average number of carpels that grew from the SAM and these results
are represented in table 1.1.

Mutant Carpels
Wild type 2.0
crn-1 3.9
clv1-11 (null mutant) 3.9
crn-1 clv2-1 (null mutant) 3.8
clv1-1 4.2
crn-1 clv1-11 5.3
crn-1 clv1-1 4.5

Table 1.1: Mutants and their phenotypical effect. The first five items are
the data optimized against in Sahlin et al. (2011) and the last two are the
control mutants that were used to verify the parameter set.

1.4 Previous computational models

There are several computational models for the negative feedback network
between CLV3 and WUS (Sahlin et al., 2011; Hohm et al., 2010; Fujita et al.,
2011; Yadav et al., 2011, 2013). The backbone for all of the models that were
attempted in this particular research project comes from the computational
model that was published by Sahlin et al. (2011). It showed that a non-
spatial model of differential equations (Methods) could successfully account
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for the phenotypical difference between the wild-type (WT) and the six
different mutant experiments listed in section 1.3.

The parameters of the model were optimized against the average carpel num-
bers of the receptor mutants represented in table 1.1 (Sahlin et al., 2011). By
optimizing against data from the WT and four different mutants they were
able to attain parameter sets such that the model could show the same equi-
librium relations as experimentally seen for the mutants in question. Data
from two additional mutant experiments were used as a filtering criteria for
the attained parameter sets and in the end the model could fully account for
the changes in phenotype for all the different mutants.

The major result of this model was to show that the conceptual setup seen
in Figure (1.1), especially with the function of CRN, can account for the
phenotypical effect of the clv1-1 (LOF) mutant being stronger than the effect
of the clv1-11 (null) mutant. Normally a completely disabled mechanism
should have a larger effect on a system then a mechanism with only reduced
function. However if in this case CLV3 still binds to CLV1 but the signal
from the complex is weak then it could have a greater effect then if it does
not bind at all, leaving more CLV3 to bind to the still functioning CRN
receptor instead.

1.5 Buffering dynamics

The Sahlin et al. (2011) model can produce the phenotypical effects of certain
mutants of CLV1 and CRN in Arabidopsis. There is however a set of data
that this model cannot account for.

It was shown by Müller et al. (2006) that the phenotype of Arabidopsis
is remarkably robust to perturbations in the promoter strength of CLV3.
They showed that CLV3 promoter strengths ranging from 33% to 300% of
WT does not effect the phenotype of the plant. At 16% of normal CLV3
promoter strength the size of the SAM and the number of carpels increased,
which is consistent with the previously mentioned effects of CLV3.

Since WUS is both necessary and sufficient for stem cell identity (Laux et al.,
1996; Mayer et al., 1998) stability of the SAM size and carpel number in-
dicate stability of WUS concentration. For this to be incorporated into a
computational model the model must thus be able to account for a stable
WUS concentration for perturbations ranging from 33% to 300% of WT
CLV3 promoter strength. For stronger perturbations the model should be-
have as seen in other mutant experiments; over-differentiation of the stem
cells for high concentrations of CLV3 and over-production of stem cells for
low CLV3 and thus high WUS concentrations.
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1.6 Modelling molecular dynamics

There are several ways to model molecular dynamics Among these is the
non spatial mass action formalism which has been used throughout this re-
search project. It is a deterministic approach which uses ordinary differential
equations to attain the change rate of concentrations. The basic idea is that
the rate of a reaction is proportional to the product of the concentrations of
the reactants involved (Jönsson, 2012). A rate constant for the reaction will
then represent the speed at which the reaction occurs, the time it takes for
diffusion to make the molecules meet, the probability that a reaction occurs
when the molecules meet, etc.. This simple way of modelling can be effi-
cient at certain types of reactions given that the system reaction rate does
not change with the effects of any diffusive behavior, that any of the other
rate parameter representations are time dependent or that the number of
molecules is so small that stochastic reaction fluctuations matter.

If for example the reaction

A+ 2B
k+−−⇀↽−−
k−

C

were to be modelled using mass action formalism it would yield:

d [C]

dt
= −d [A]

dt
= −1

2

d [B]

dt
= k+ [A] [B]2 − k− [C]

Transcription can be modelled by the use of Hill equations which is a version
of Michaelis-Menten formalism.

The Hill equation for A acting as an activating transcription factor for B has
the following appearance:

d[B]

dt
= vmax

[A]n

Kn + [A]n

If A instead acts as a repressor the equation looks as follows:

d[B]

dt
= vmax

Kn

Kn + [A]n

The Hill formalism is a empirically, rather then mathematically, motivated
alteration of the Michaelis-Menten which itself is derived from the mass
action modelling of transcription or enzymatic reactions as
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A+ E
k1−⇀↽−
k2
AE

k+−−→ B + E

with the constraints that the amount of E is constant, k+ is so much smaller
than k1 and k2 that the left side of the reaction representation is in quasi-
equilibrium. In the transcription case A would be a transcription factor, E
the DNA and B the transcribed RNA.
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Results

A large amount of additional interactions was proposed and tested for the
Sahlin et al. (2011) model. First the original model was analyzed by opti-
mizing it using the buffering data. Then the focus was on finding a simple
addition to the model which enabled it to produce a buffering capability of
WUS. Rather than to presuppose the success of one or two model additions
and testing them extensively a broad approach was taken, testing a multi-
tude of possible propositions and discarding them if they did not show the
desired dynamics.

2.1 A simple negative feedback between WUS and
CLV3 cannot explain buffering

An analysis of the original model was made and it was found that the original
model could not explain the Müller et al. (2006) buffering data, regardless
of which parameter set was used. Despite the 19 parameters in the model
there needs to be either non-linearities or competing, opposite, effects in
the system of differential equations in order for it to be able to produce
buffering. The Sahlin et al. (2011) model has no such competing effects,
but there is one non-linear term in the effect of X on WUS. This non-
linearity however cannot create the buffering capabilities seen in the CLV3
perturbation experiments.

This can be indicated analytically and becomes clear when the model is
scaled down to the only dynamics that possibly could provide the WUS
buffering capabilities. Removing as many of the linear steps as possible yet
retaining a functional and representative network yields the following system
of differential equations:

9
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{
d[x]
dt ∝ a[WUS]− b[x]
d[WUS]
dt ∝ c

c+X − [WUS]
(2.1)

where a is the constant that is changed by the perturbation experiment and
x represents the total CLV3 signalling. WUS concentration at equilibrium
will then have the following dynamics

[WUS](a) ∝ 1

2a
+

√
1 +

1

4a2
(2.2)

which cannot explain the WUS plateau at any range of a

An optimization of the model against the CLV3 promoter perturbation data
was made to further indicate that it could not produce the WUS buffering
behavior and to provide a reference for the other attempts to be compared
with. None of the parameter sets attained from the optimization could pro-
duce the equilibrium relations sought (Figure 2.1). So in order for the model
to be able to explain both the data used by Sahlin et al. (2011) and the
perturbative data shown in Müller et al. (2006) reactions must be changed
or added.

Figure 2.1: The results of the best five parameter sets out of 25 optimizations
for the Sahlin et al. (2011) model in trying to reproduce the results shown
in the CLV3 perturbation experiments. The model does not fully produce
the required buffering of WUS against perturbations in CLV3 even when
specifically and exclusively optimized against this.
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Figure 2.2: An overview of all the additional dynamics tested together with
labeling for easier discussion of the different model attempts.

2.2 Self-activation of WUS produced all-over excel-
lent results

A set of candidates for additional interactions were modelled and tested (Fig-
ure 2.2). 25 parameter optimizations were made against the WUS buffering,
as seen in experiments. The approach gave distinct differences on the ability
to account for the buffering for different model versions (Table 2.1). The
best energy value attained was used as a criteria for further investigation.
These models were then optimized against not only the CLV3 perturbation
experiments, but also against all the data that were used to create and verify
the Sahlin et al. (2011) model.
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Path added Brief description Lowest energy value
13 Repression of CLV1 by WUS 6.9e-05
6 WUS self-activation 8.5e-05
8 Repression of X by WUS 0.00036
12 Indirect WUS activation through Y

repression
0.00042

11 Indirect WUS activation through Y
activation

0.00043

1 Hill repression and linear activation
of CLV3 by WUS

0.0031

5 Hill activation replacing linear acti-
vation of CLV3 by WUS

0.0068

10 CLV1 self-activation 0.020
7 WUS self-repression 0.037
4 CLV3 self-repression 0.045
9 CLV1 self-repression 0.046
3 CLV3 self-activation 0.047

None Unaltered model 0.054
2 Activation of WUS by CLV3 0.063
1 Hill repression replacing the linear

activation of CLV3 by WUS
0.11

Table 2.1: 25 optimizations were made against only the WUS buffering for
each of the proposed models. The best energy values attained for each model
is listed here and only the six best performing models were tested further.
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(a) (b)

(c)

Figure 2.3: Direct self interaction of WUS was initially tried in three three
different ways, two different logics for activation and one for repression (a).
The models were optimized 25 times against the WUS buffering towards
CLV3 promoter perturbation and the best resulting dynamics for each model
is shown in b) where both of the activator logics show an ability to perfectly
produce the required buffering whereas repression does not. In c) direct
Hill-type self-activation of WUS were examined and proved very effective at
producing not only the dynamics seen in the CLV3 promoter mutants but
also the dynamics of the receptor mutants, using the same parameter set.
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(a) (b)

Figure 2.4: a) show the five best buffering behaviours from the 25 optimiza-
tions initially done to the multiplied version of WUS self activation. Notice
that despite 25 optimizations only three parameter sets allowed the model
to show promising buffering capabilities. b) show the dynamics of the best
5 over-all fits to all the available mutant data from 85 optimizations. The
behaviour of the model do not differ greatly with these parameter sets, but
it is still quite noticeable. The parameter values used in b) are listed in table
4.1 of the appendix.

Despite a relatively large number of models that seem apt at producing a
buffering ability of WUS only three mechanisms proved able to represent the
full dynamics that is required of a successful model. These were the direct
self-activation of WUS, the repression of X by WUS and WUS activating the
WUS activator Y (models 6, 8 and 11). Interestingly, all of these successful
attempts is some form of WUS self-activation.

Direct self-activation of WUS was tried using two different logics for mod-
elling: adding or multiplying a hill activator to the hill type repression that X
already asserts on WUS (Methods). Both of these alterations to the original
model were able to produce the desired buffering capability of WUS (Figure
2.3). Neither of these models are likely to accurately depict reality. This
as both of the models would ensure WUS production as long as any WUS
exists, regardless of the rest of the system. Experiments have shown that
an ectopic (driven by another promoter) expression of WUS in Arabidposis
does not start up the normal WUS expression and thus direct self-activation
of WUS is unlikely (Yadav et al., 2010). The results are however still infor-
mative as they give strong indications that indirect self-activation of WUS
would work.

Simulations were performed using different parameter sets and the dynamical
difference these produce was examined. In figure 2.4b the five best parameter
sets from the optimizations against the WUS buffering are represented. It
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(a) (b)

Figure 2.5: Behavioural analysis of the WUS self-activation model using
successful parameter sets. a) show the relative strength of the CLV1 to
CRN pathway for simulations using the five all-over best parameter sets
(represented in table 4.1 and used in subfigure 2.4a). The closer a point is
to the line y=x the smaller the difference in strength of the pathways. The
simulation of a WT plant was used to attain this data and all of it shows
that the pathways are equally strong. This agrees well with a similar analysis
done by Sahlin et al. (2011) for their model. b) show the development of a
system where all the concentrations were initiated with the value 0.1. The
WT WUS self-activation model were used along with the best parameter set
obtained for this model (parameter set 1 in table 4.1 of the appendix).

shows that there are parameter sets even amongst the top five that was un-
able to produce buffering, despite the proven success of this model. The rela-
tive strength of the network pathways CLV1 and CRN was examined by per-
forming simulations of a WT representative model with WUS self-activation,
multiplying the constant controlling the effect of the receptor/CLV3 bound
state to X with the concentration of the bound state and comparing these
(Figure 2.5a). This examination showed that the strength of the two path-
ways are almost identical for the five different parameter sets used (for pa-
rameter values, see Appendix). The best parameter set was also used to
produce a graph of the dynamics of the different concentrations during equi-
libration. Here the sigmoidal curvature of the WUS concentration due to
the Hill equation can clearly be seen (Figure 2.5b).

Direct self-repression of WUS was, as comparison, shown to be able to pro-
duce only a weak buffering tendency of the concentration of WUS for differ-
ent CLV3 expression levels (Figure 2.3b). The produced result fit relatively
poorly with the experimental data and after this assessment the model at-
tempt was not pursued further.
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2.3 Indirect WUS self-activation

After seeing the success of the direct WUS self-activation 5 different indirect
self-activations were attempted (path 1, 8, 11, 12 and 13 in Figure 2.2).
These are:

Model 1, in which a hill type repression of CLV3 by WUS was added, man-
aged to produce buffering dynamics for WUS when optimized solely against
this (see Figure 2.6b). However, no parameter set out of 50 optimizations
were able to account for all the available experimental data at the same time
(subfigure 2.6c).

(a) (b)

(c)

Figure 2.6: Model 1, in which linear activation and hill-type repression of
CLV3 by WUS (a) resulted in WUS buffering for the initial 25 optimizations
against the Müller et al. (2006) data (b). But when the model was opti-
mized against all of the mutant data at the same time the required buffering
dynamics was not seen (c).
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Model 8, where WUS leads back to the intra-cellular CLV3 pathway, was apt
at creating the buffering expected from WUS. It was modelled by removing
the constant base-production of X and replacing it with a hill-type equation
using WUS as a repressor. The best results from this attempt show that
this model is capable of not only explaining a buffering of WUS but it is also
able to explain the other mutant experiments using a single parameter set
(Figure 2.7).

(a) (b)

(c)

Figure 2.7: Model 8, where WUS acts as a repressor on X (a) produced
good results. b) show a good buffering capacity of WUS and c) show that
this buffering and all the receptor mutant dynamics can be achieved by
the model. This was not given, but it was not surprising seeing as this is
an indirect self-activation of WUS with few intermediate steps, and direct
WUS self-activation has proved to work.
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Model 11 was built around an added compound Y that interacts with WUS.
It was built to represent an unknown and very simplistic external network
controlling the expression of WUS but could also conceivably represent in-
teraction with ARR proteins as described by Zhao et al. (2010). Path 11
was modelled using Y which had a base production and degradation in com-
bination with a Hill function that used WUS as an activator. Y in turn was
the activator for a Hill function multiplied to the pre-existing Hill function
that represents the WUS repression by X (Methods).

(a)
(b)

(c)

Figure 2.8: Model 11, in which WUS activation of an external activator Y (a)
is able to produce almost perfect WUS buffering (b) and manages to produce
good over-all dynamics when optimized and tested for all the mutants (c).

Path 12 was modelled in a similar way, but with hill repressors instead of
activators. Somewhat surprisingly model 11 produced all-over good results,
while model 12 did not manage to produce the combined WUS buffering
with receptor mutant dynamics (Figures 2.8 and 2.9).
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(a)

(b)

(c)

Figure 2.9: Model 12, in which WUS repression of an external repressor Y
(a) proved effective at producing buffering dynamics for WUS (b) but did
not, using any of the attained parameter sets, manage to produce all the
required dynamics from the mutant experiments (c).
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Path 13 was modelled by replacing the base production of CLV1 with a hill-
type repression by WUS, which has been indicated in large-scale experiments
(Zhao et al., 2010). This model showed an excellent ability to account for the
WUS buffering against CLV3 perturbation (Figure 2.10b) but 50 optimiza-
tions failed to produce a parameter set that was able to explain the buffering
while retaining the ability to explain the receptor mutant experiments (Fig-
ure 2.10c). It is worth noting that the base-line model is symmetrical in the
receptor pathways and thus any results obtained from an altered CLV1 is
directly applicable to the same scenario for CRN.

(a) (b)

(c)

Figure 2.10: Model 13, where WUS acts as a repressor on CLV1 (a) were
able to produce WUS buffering (b), but not at the same time as explaining
the previously known mutant effects (c).



CHAPTER 2. RESULTS 21

(a)

(b)

Figure 2.11: Models 3 and 4, which were self-interactions of CLV3 (a) did
not produce the experimentally seen CLV3 perturbation data (b).

2.4 Alternative interactions in the CLV-WUS net-
work

Both self-activation and self-repression of CLV3 was attempted but showed
only a weak buffering-like dynamics when optimized solely against the WUS
buffering (see figure 2.11). These model attempts were therefore not pursued
further than the initial 25 optimizations.

Direct self-activation and self-repression of CLV1 were also modelled. Note
once again that the receptor pathways is in this model mathematically iden-
tical before the optimizations, so all results from CLV1 interactions are also
directly applicable to CRN. The results are represented in Figure 2.12 and
they show that self activation of CLV1 (model 10) can produce some form
of buffering even though the received energy value is relatively high and the
WUS concentration does not reach zero as required. Self repression of CLV1
(model 11) however displays almost no tendencies to buffering at all.

Model 1 was created by replacing the linear activation of CLV3 by WUS
with a Hill-type repression. The result showed no buffering capabilities at
all and got a worse energy value than the unaltered model.

Model 5 was created by replacing the linear activation of CLV3 by WUS
with a hill-type, non linear, activation. This produced fairly good results
but was above the energy threshold for further investigation.

The results of models 1 and 5 are represented in figure 2.13.
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(a)

(b)

Figure 2.12: Direct self-interactions of CLV1 (a) did not manage to produce
the WUS response to CLV3 promoter perturbations seen in experiments (b).

(a) (b)

Figure 2.13: Model 1, which replaces the linear activation of CLV3 by WUS
with a Hill-type repression (a) failed to produce buffering of WUS (b). Model
5, where the linear activation of CLV3 of WUS was instead replaced with
a Hill-type activation (a) produced a form of buffering, even if it did not
accurately reproduce the buffering data as required (b).
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Methods

3.1 Modelling strategy

The models were built non-spatially using mass action formalism together
with a hill formalism for the modelling of transcriptions. All the models
were relatively small alterations of the Sahlin et al. (2011) model which
was used as a baseline model, defined by the following system of differential
equations:

d[CLV1]
dt

=t1(s1 − [CLV1])− k1[CLV1] · [CLV3] (3.1)

+ k2[CLV1/CLV3]
d[CRN]
dt

=t2(s2 − [CRN])− k4[CRN] · [CLV3] (3.2)

+ k5[CRN/CLV3]
d[CLV3]

dt
=t3(s3 − [CLV3]) + kW [WUS] (3.3)

− k1[CLV1] · [CLV3]+ k2[CLV1/CLV3]
− k4[CRN] · [CLV3]+ k5[CRN/CLV3]

d[CLV1/CLV3]
dt

=k1[CLV1] · [CLV3]− k2[CLV1/CLV3] (3.4)

− t1[CLV1/CLV3]
d[CRN/CLV3]

dt
=k4[CRN] · [CLV3]− k5[CRN/CLV3] (3.5)

− t2[CRN/CLV3]
d[X]
dt

=t4(s4 − [X]) + k3[CLV1/CLV3]+ k6[CRN/CLV3] (3.6)

d[WUS]
dt

=k7
Kn

Kn + [X]n
− dW [WUS] (3.7)
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Where k1 and k4 is the reaction rates for the binding of CLV3 to the receptors
and k2 and k5 the unbinding rate for the same. t1, t2, t3 and t4 is the
degradation rate for the concentrations they effect while t1s1, t2s2, t3s3 and
t4s4 is a constant, baseline, production rate for their respective molecule
representation. k3 and k6 is the rates at which the bound states of the
receptors produce X while k7 provides the maximal production of WUS and
the scale for the Hill function using X to repress the WUS production. K is
a dissociation constant for the Hill function and n is the Hill exponent. kW
is the production rate constant for the linear activation of CLV3 by WUS
and dW is the degradation rate of WUS.

3.2 Mutants

All of the mutant representations require some form of alterations to the
equations of section 3.1, especially to the parameters. But as the entire
point of the optimization procedure is to produce a single parameter set
that can account for all the network behavior the mutant representations
were never allowed to alter the values of the parameters as displayed in the
figure. Instead a number of dummy variables were added to the system of
differential equations. These dummy variables were used either as binary
switches for certain reactions or as discrete adjustments to the rate of the
reactions.

The program was built up incrementally as more specific data was required to
further the progress. The first step was to implement [CLV3Strength] which
was used to represent the values of the CLV3 promoter perturbations used
in the experiments by Müller et al. (2006). 25 optimizations were performed
for each of the attempted models (section 3.4). The models that recieved an
energy value under 0.005 were investigated further.

After the initial evaluation of the proposed models binary dummy variables
were added to allow the optimizer to find the overall best parameter set for
11 different systems representing the different mutants. The null mutants
clv1-11, and crn-1 clv2-1 were modelled by activating their dummy variable
(Table 3.1), which stopped the production of CLV1 or CRN respectively.
The LOF mutants crn-1 and clv1-1 were treated differently from each other,
activating the crn-1 dummy variable turned off the production of X from the
bound CRN/CLV3 state, while activating the clv1-1 started an interference
process that represents the receptors binding to each other and thereby losing
their function.

During the build-up phase of the baseline model every major alteration was
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d[CLV1]
dt

=t1(s1[clv1-11]− [CLV1])− k1[CLV1][CLV3] (3.8)

+ k2[CLV1/CLV3]− km[clv1-1][CLV1][CRN]

d[CRN]
dt

=t2(s2[crn-1 clv2-1]− [CRN])− k4[CRN][CLV3] (3.9)

+ k5[CRN/CLV3]− km[clv1-1][CLV1][CRN]

d[CLV3]
dt

=t3(s3[clv3Strength]− [CLV3]) (3.10)

+ kW [clv3Strength][WUS]− k1[CLV1][CLV3]
+ k2[CLV1/CLV3]− k4[CRN][CLV3]+ k5[CRN/CLV3]

d[CLV1/CLV3]
dt

=k1[CLV1][CLV3]− k2[CLV1/CLV3] (3.11)

− t1[CLV1/CLV3]

d[CRN/CLV3]
dt

=k4[CRN][CLV3]− k5[CRN/CLV3] (3.12)

− t2[CRN/CLV3]

d[X]
dt

=t4(s4 − [X]) + k3[CLV1/CLV3] (3.13)

+ k6[crn-1][CRN/CLV3]

d[WUS]
dt

=k7
Kn

Kn + [X]n
− dW [WUS] (3.14)

Figure 3.1: The system of differential equations of the baseline model with
the functions of all the mutant representations added. The parameters have
interpretation as those of the same name in section 3.1. The only additional
parameter is km which regulates the strength of the clv1-1 mutant.
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Dummy variable Activating value Deactivating value
clv3Strength 0.1, 0.3, 3, 10 1
clv1-11 0 1
crn-1 0 1
clv1-1 1 0
crn-1 clv2-1 0 1

Table 3.1: Dummy variables used to emulate the mutants with the same
name.

followed by an analysis in which the first step of a simulation with a given
parameter set were compared with a pen and paper calculation of what the
values and derivatives after this step should be. The equilibrium values were
also compared with those that resulted from the program used by Sahlin
et al. (2011) for their model to see that they matched when the clv3Strength
was set to 1.

3.3 Model attempts

Tests were performed for 13 new interactions. They were implemented as
follows:

Path 1 was modelled by replacing the t3s3[clv3Strength] term in eq. 3.10
of figure 3.1 with

s3[clv3Strength]
Knw
w

Knw
w + [WUS]nw

Path 2 was modelled by replacing the term

k7
Kn

Kn + [X]n

in eq 3.14 with:

k7
Kn · [CLV3]nw

(Kn + [X]n) (Knw
w + [CLV3]nw)

Path 3 was modelled by replacing the t3s3[clv3Strength] term in eq. 3.10
with:

s3[clv3Strength]
[CLV3]nw

Knw
w + [CLV3]nw

Path 4 was modelled by replacing the t3s3[clv3Strength] term in eq. 3.10
with:

s3[clv3Strength]
Knw
w

Knw
w + [CLV3]nw
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Path 5 was modelled by replacing the t3s3[clv3Strength] term in eq. 3.10
with:

s3[clv3Strength]
[WUS]nw

Knw
w + [WUS]nw

Path 6 was modelled in two different ways: by adding or multiplying a hill
activator in eq 3.14 and thus effectively replacing equation 3.14 by one of
the following:

d[WUS]
dt

=k7
Kn · [WUS]n2

(Kn + [X]n)(Kn2
2 + [WUS]n2)

− dW [WUS] (3.15)

d[WUS]
dt

=k7
Kn

Kn + [X]n
+ kw

[WUS]n2

Kn2
2 + [WUS]n2

− dW [WUS] (3.16)

Both were used to test for wus buffering, but only the multiplied version (eq
3.15) were analysed further.

Path 7 was modelled by replacing the k7 Kn

Kn+[X]n term in eq 3.14 by:

k7
Kn ·Kn2

2

(Kn + [X]n)(Kn2
2 + [WUS]n2)

Path 8 was modelled by replacing the t4 · s4 term in eq 3.13 with:

s4
Knw
w

Knw
w + [WUS]nw

Path 9 was modelled by replacing the t1·s1[clv1-11] term in eq 3.8 with:

s1[clv1-11]
Knw
w

Knw
w + [CLV1]nw

Path 10 was modelled by replacing the t1·s1[clv1-11] term in eq 3.8 with:

s1[clv1-11]
[CLV1]nw

Knw
w + [CLV1]nw

Path 11 was modelled by removing eq. 3.14 and instead adding to the figure
3.1 system of equations two additional equations:


d[WUS]
dt = k7

Kn·[Y]n2

(Kn+[X]n)(Kn2
2 +[Y]n2 )

− dW [WUS]

d[Y]
dt = ky

[WUS]ny

K
ny
y +[WUS]ny − dY [Y]

(3.17)
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Path 12 was modelled by removing eq. 3.14 and instead adding to the figure
3.1 system of equations two additional equations:


d[WUS]
dt = k7

Kn·Kn2
2

(Kn+[X]n)(Kn2
2 +[Y]n2 )

− dW [WUS]

d[Y]
dt = ky

K
ny
y

K
ny
y +[WUS]ny − dY [Y]

(3.18)

Path 13 was modelled by replacing the term t1·s1[clv1-11] in eq 3.8 with:

s1[clv1-11]
Knw
w

Knw
w + [WUS]nw

3.4 Optimization

The optimization was done using a simulated annealing scheme (Kirkpatrick
et al., 1983; Press et al., 2007) which followed a sequence of steps:

1. An initial set of parameters pinitial were created by generating a ran-
dom, real, number between 1 and 3 for the Hill parameters (all the
parameters n, regardless of index) and between 0 and 1 for the rest of
the parameters. This parameter set were then used for the simulations
of step 2.

2. One simulation for each mutant was run. They ran for 400 time units
using a fifth order Runge-Kutta solver with adaptive step size. The
initial step size, and also the maximally allowed step size was 1.0 and
the error allowance was 10−12. After 400 time units the system would
have equilibrated and the concentration of WUS was used to calculate
an energy value according to:

E =
∑
i

([WUS]i − Ci)
2 (3.19)

Where the sum is over all the different mutants and Ci the carpel
numbers associated with the mutant, and is assumed to correlate with
the total amount of WUS in a meristem.

3. A new parameter set pnew was proposed by choosing a random param-
eter from the old parameter set and, with equal chance, multiplying or
dividing it by 1.01.

4. pnew was used in a repetition of step 2 and, with a probability of
Paccept = min

(
1, e−β(E(pnew)−E(pold))

)
replaced the old parameter set.
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5. Steps 1-4 were repeated for 1000 update attempts at each temperature
1/β which started at 1 and was multiplied by 0.9 until it reached 10−5.
The last parameter set that this method yielded was the one used as
the result of the optimization.

Many simulations were run during the early stages of this research and
equilibrium was reached before 100 time units in all observed cases.
400 time units was chosen for the optimization processes to ensure
that the network always had time to stabilize, despite the changes
that were made to the model.
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Discussion

It was shown that there are several different ways to modify the Sahlin et al.
(2011) mass action, hill transcription model so that it produces the experi-
mentally seen buffering dynamics. Although it would have been convenient
to find that one model alteration produced excellent result and all the other
conceivable alterations resulted definitively in an inability to produce the
right dynamics it was not unexpected that this was not the case. A com-
plete understanding of the stem cell regulatory network is not expected to
be achieved in one single research project. The benefit of these particular
results are numerous.

A primary result was the proof that by making a relatively small change to
the computational model by Sahlin et al. (2011), and probably other models
based on the negative feedback between CLV3 and WUS, an additional set
of data that was previously unexplained can be explained. This shows that
even if the simplistic model was falsified by the CLV3 promoter perturbations
the major concept behind it is not.

It was also shown that addition of self-activation of WUS to the model, which
is sufficient to explain the buffering, maintains the equipotency of the two
receptor pathways (Figure 2.5a). This lends credence to the belief that the
two pathways have an equal impact on the production of WUS.

Another result was to give pointers as to where further research is justified.
A large amount of models were proposed and some worked excellently while
other did not work at all. The self-activation of WUS in particular showed
so much promise and versatility for both direct and indirect feedback that
further modelling and experimental investigation would be justified. This is
especially interesting in the light of the finding by Zhao et al. (2010) that
WUS binds to proteins of the ARR family.

Self-activation of WUS was tested quite thoroughly. After seeing the suc-
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cess of the direct version several indirect WUS activations were devised to
see how well the results of direct activations transferred to indirect. The
subsequent results show that although properties are not directly transfer-
able some indirect activations does display similar dynamics to that of direct
activation.

Thereby the success of WUS repressing X in the signaling pathway or acti-
vating an external factor Y indicate a likeliness of there being an unknown
indirect self-activation of WUS either internally in the already known net-
work or via an external network. The results also allow for some speculations
about the indirect connection not being too indirect, as they somewhat in-
dicate that a close self connection, with few intermediate steps works better
than a connection of longer range.

It was unexpected that WUS repressing the repressor Y did not work when
the activator counterpart and X repression did. With appropriately tuned
parameters, which the optimizer should take care of, the dynamics of repress-
ing the repressor Y could be quite similar to that of activating the activator
Y. The dynamics when WUS repressed X is somewhat different to the dy-
namics of repressing Y since X with WUS as a repressor is doubly connected
to WUS, but it was still unexpected that this would be the difference between
success and failure. This observation may require some further investigation.
The simplest investigation would be to run more optimizations in order to
eliminate any statistical effects. But if this does not work then a detailed
analysis of the modelling logic itself is called for.

An interesting point can be made from the parameters listed in the appendix
where the value of km, the parameter regulating the effect that the clv1-1
mutant has, is consistently very high. In the model dynamics a very high
value of this parameter will result in a very low concentration of one of the
receptors CLV1 or CRN. This is a falsifiable statement and could be used
to test the validity of the model.

The broad approach in testing many different model attempts led to an
objective assessment of these attempts and to the finding of three truly
viable model additions. Even though the positive results would not have
benefitted from a more narrow approach with higher statistical accuracy
the negative results would. The statistical inaccuracy means that the failed
attempts can not from these results with certainty be rejected as candidates
for the regulatory network. This is especially true for those models that
were rejected after the first 25 optimizations. The precariousness of such a
low number of optimizations is emphasized by the fact that the multiplied
direct WUS self-activation model only got three successful parameter sets
during these initial optimizations and yet that model turned out to be able
to account for all the dynamics sought.
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The activation of CLV3 by WUS in the baseline model is linear. While this
reduces the number of parameters it is somewhat inconsistent with the type
of modelling used for the suggested updates as WUS is a transcription factor.
The suggested updates have all been non-linear and have been supposed to
represent transcriptional reactions. When using this approach it would have
made sense to change the baseline model in order to be consistent in the
modelling techniques, but this was not done. The CLV3 activation was
changed to a non-linear one in a few attempts, so the possibility of this
reaction being the problem was not overlooked. But the reaction was left
as a linear one for the rest of the attempts in order to keep the degree of
freedom for the model down. The idea of doing so was to keep the number
of false positives down, but it is never-the-less conceivable that it could have
produced a false negative.

Despite this attempt to keep the models degree of freedom down the fact
still remains that there is quite a large amount of free parameters. Many of
these parameters are linearly dependent, so they do not each constitute a
degree of freedom when optimizing the system. But there is still a danger of
over-optimization when there are about twice as many parameters as there
are data points against which to optimize. This is hard to avoid without
extensive, expensive, experimentation, but the effects of limited data could
in future research be mitigated by dividing the optimization procedure into
validation pools, as done by Sahlin et al. (2011).

The number of parameters differed for the different model attempts, but the
number of iterations of the optimizer did not. It could have made sense
to keep the average number of updates per parameter constant and thus
allowing them to cover the same range in each of the models, but this was
not done. Instead the decrease in updates per parameter when increasing the
number of parameters were kept as a form of penalty for the added degree of
freedom of the system. With more added parameters, especially for the non-
linear reactions that often were attempted, comes a stronger ability to fit
any data, and this was penalized. It is possible to give an energy cost to the
number of parameters (Lomax and Hahs-Vaughn, 2007), but since relatively
few parameters were added it was not done in this initial investigation and
was instead left for future research.

Hill formalism was used for modelling of transcription. Michaelis-Menten
formalism would have had a lower degree of freedom, which is not a bad
thing at all, but the Hill formalism was chosen. This was partly because of
the dynamics the Hill exponent allows for, it provides a means of sharpening
the sigmoidal curve that the reaction produces, which makes sense when
looking for the type of buffering dynamics the CLV3 perturbations show.
The other part of the reason for choosing a Hill formalism was how it allows
for cooperative effects of the molecules simulated.



CHAPTER 4. DISCUSSION 33

The modelling logic for multiple transcriptions to the same compound was
mainly that of multiplying the hill equations with each other. A property this
results in is that the reaction will halt if any activator has a concentration of
zero, while a reaction with only repressors will have a base production that
fairly quickly goes towards zero as the concentration of repressors goes to
infinity. Another modelling logic was used in the added hill equations of eq.
3.16. But this logic also have some specific properties that may be unwanted;
an infinite amount of repressors will not stop the production if there is any
activators at all. It also has one extra parameter which may be considered a
bad quality. The multiplied version was deemed the more representative of
the options and was therefore used to a larger extent. A future project could
be to investigate further the effects the choice of logic has on the network
and correlate this to biological data or possibly even see if this may yield
testable predictions as to how the small-scale reactions work.



Appendix

1 2 3 4 5 StdDev
t1 0.0461088 0.0704032 0.103227 0.0768508 0.0935173 0.019765
t1 · s1 1.04223 1.13085 0.921652 0.415877 0.976577 0.250678
km 564.57 194.726 183.904 256.661 99.3173 160.402
t2 0.0796362 0.108209 0.0781681 0.155493 0.0161939 0.045355
t2 · s2 0.404389 0.481322 0.471885 0.449558 0.356501 0.0464576
t3 · s3 5.75236 8.1904 6.89993 4.15578 0.0509163 2.81283
t3 0.16782 0.184646 0.147577 0.0748002 0.298746 0.0724559
kW 0.604878 0.282874 0.174243 0.19693 2.18794 0.764976
t4 · s4 3.27925 4.1209 3.00346 0.741165 0.355905 1.48182
1/s4 2.27058 0.800698 1.36145 2.69982 2.07323 0.676497
k3 0.395188 0.202621 0.195896 0.0845212 0.261272 0.101311
k6 1.72945 0.721043 0.294628 0.147171 0.123626 0.602577
k7 0.571763 1.71173 1.71425 1.0756 0.524369 0.521649
K2 0.448685 0.39192 0.527883 0.429439 0.435171 0.0447801
n2 2.5351 2.86917 2.33533 2.61409 2.67107 0.174265
K 2.303 2.71496 1.31461 0.72071 6.11791 1.87911
n 2.77503 4.02222 3.63686 5.04691 2.50757 0.910728
dw 0.106261 0.306067 0.276529 0.203801 0.097857 0.0852333
k1 0.599896 1.30917 0.475919 0.780304 1.47441 0.394385
k2 0.0582162 0.548655 0.204043 0.866578 0.157024 0.299523
k4 1.06637 0.154505 0.715546 0.641257 1.73269 0.523563
k5 0.459904 0.0408815 0.67191 0.467353 0.743573 0.2448
Energy 0.00157325 0.00331588 0.00864325 0.0101971 0.0104988 0.003690

Table 4.1: The five best parameter sets that was received from the optimi-
sation of the direct WUS self-activation model.
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Acronyms

SAM shoot apical meristem
The region of a plant shoot that contains undifferentiated stem cells
which can eventually, after differentiation give rise to new organs of
the plant.

WUS WUSCHEL
A transcription factor that is produced in the stem cells of the SAM.

CLV3 CLAVATA3
A peptide produced in the stem cells of the SAM.

CLV1 CLAVATA1
A receptor kinase found in the cell membrane of the cells in the OC
and that binds to CLV3.

CRN CORYNE
A protein that together with the protein CLV2 forms a receptor for
CLV3 in the cell membrane of cells in the OC.

CZ Central Zone
The centrally located region at the SAM apex in which the pluripotent
stem cells can be found.

OC Organizing Center
The zone beneath the CZ which excretes the transcription factor WUS
and thereby plays a large part in the regulatory network of the SAM.

PZ Peripheral Zone
The zone around the OC in which stem cells have begun their differ-
entiation to form the tissue required for the growth of the plant.

LOF Loss-of-function
A description of the effect of a mutant. The mutated gene may produce
a protein which still functions, but not as efficiently as the wild type.

WT wild-type
The normal, non-mutated version of a plant.
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