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Abstract

Value-at-Risk (VaR) forecasting in the context of Monte Carlo simulations is evaluated.

A range of parametric models is considered, namely the traditional Generalized Autore-

gressive Conditional Heteroscedasticity (GARCH) model, the exponential GARCH and

the GJR-GARCH, which are put in the context of the Gaussian and Student-t distri-

butions. The returns of the S&P 500 provide the basis for the study. Monte Carlo

simulations are then applied in the estimation and forecasting of index returns. Two

forecasting periods are employed with respect to the Global Financial Crisis (GFC). The

forecasting accuracy of the various models will be evaluated in order to determine the

applicability of these VaR estimation techniques in different market conditions. Results

reveal that: (i) no model has consistent performance in both volatile and stable mar-

ket conditions; (ii) asymmetric volatility models offer better performance in the post

crisis forecasting period; (iii) all models underestimate risk in highly unstable market

conditions.
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Chapter 1

Introduction

1.1 Background

The importance of financial risk management has been increasing continuously during

the last decades in light of a number of severe stock market crashes, starting with “Black

Monday” in 1987 and finishing with the Global Financial Crisis (GFC) in 2008/09. In

order to prevent the recurrence of such events and to mitigate the losses associated with

them, regulators have prompted financial institutions to put greater emphasis on risk

management. The makings of GFC became apparent in 2008 when a number of financial

institutions in the U.S., such as Fannie Mae and Freddie Mac were nationalized, and

Lehman Brothers filed for bankruptcy after being denied governmental support. The

downward spiral that followed these and other events shone a light on the pivotal role

of forecasting risk in extreme market conditions.

Value-at-Risk (VaR), pioneered in 1993 as part of the RiskMetrics model of J.P.

Morgan, presents a viable example of a model useful in the context of managing finan-

cial risk. Its inclusion in the 1996 Basel II framework has since made it an integral

part of the operations of financial institutions globally. According to the most recent

update of the Basel III framework (2010), banks are allowed to internally estimate a

VaR forecast, based on which the amount of regulatory required capital is determined.

This implies, that VaR can be viewed as both a regulatory mechanism to prevent sys-

temic disturbances due to mismanagement of financial risk, and as internal means for

financial institutions to estimate their risk exposure to a particular asset or a portfolio

of assets (Gerlach et al., 2011). The two main time horizons in VaR calculations are

10-days and 1-day VaR, with the former being the regulatory requirement and the latter

representing the industry standard. A major problem related to this divergence is lack

of a theoretically sound mechanism that can be applied in order to convert 1-day VaR

estimates into 10-day VaR. The other alternative, the estimation of a value relevant for

1
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the entire period of interest, cannot be deemed viable unless restrictions that may be

viewed as unreasonable in certain practical contexts are imposed. In light of this, the

comparison between the results obtained when using a number of different models to

estimate 1- and 10-day VaR can still be of great relevance, particularly when the much

more stringent banking supervision nowadays is accounted for.

Considering that VaR is an estimate and not an uniquely defined value, it is impor-

tant to emphasize that there are a number of methodologies used in order to calculate

it, with some of the most important being: Monte Carlo simulations; non-parametric

methods which include historical simulations; semi-parametric approaches, such as ex-

treme value theory (EVT) and the dynamic quantile regression CAViaR model (Engle

and Manganelli, 2004; Gerlach et al., 2011); and parametric approaches that fully spec-

ify model dynamics and distributional assumptions, such as RiskMetrics and generalized

autoregressive conditional heteroskedasticity (GARCH) models (Engle, 1982 and Boller-

slev, 1986; Gerlach et al., 2011). When these computation alternatives are evaluated, it

is vital to point out that even though GARCH models require time-consuming sample

parameter estimation, Gerlach et al. (2011) highlight the fact that GARCH models out-

perform stochastic volatility models in almost all cases related to financial risk manage-

ment. Since Engle (1982) and shortly thereafter Bollerslev (1986) laid the foundations of

the ARCH and GARCH theoretical frameworks, the models in the GARCH family have

become some of the most influential tools available to econometricians when analysing

financial data. Due to their ability to account for the so-called “ARCH effects”, related

to a correlation between the residual over time, these models offer superior forecasting

accuracy with respect to asset return computations. When Monte Carlo (MC) simu-

lations are taken into consideration, Berry (2013) points to the fact that they exhibit

robustness to the occurrence of extreme events, for which MC simulations even provide

in-depth details. Furthermore, MC simulations can account for parameter uncertainty

not only in point but also in probabilistic forecasting and guarantee efficient and flexible

usage of complex models and non-standard parameters. This, coupled with the fact

that any statistical distribution can be used to simulate the returns, have made such

simulations the industry standard when it comes to measuring risk. Incorporating the

fact that GARCH models have wide theoretical application and MC simulations are

commonly used in practice, a combination of these two VaR estimation methods would

certainly be of interest.

The aim of this paper is to calculate 1- and 10-day VaR forecasts based on the pa-

rameter estimations of three different econometric models in two different subsamples.

The models used are the traditional GARCH of Bollerslev (1986), the GJR-GARCH of

Glosten et al. (1993) and the exponential GARCH (EGARCH) pioneered by Nelson

(1991). A regular, normally distributed GARCH model provides the means in order
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to calculate parameters, which are then incorporated into MC simulations. This en-

ables the construction of probability density functions (pdfs). The relevant 1% and 5%

quantiles are then extracted, in order to compute VaR estimates for the different time

horizons of interest. The same procedure is repeated when the more sophisticated GJR-

GARCH and EGARCH models are applied to the relevant dataset. Since the normal

distribution only accounts for the mean and standard deviation of the data, a Student

t-distribution, which also incorporates excess kurtosis, will be applied to the GARCH

models listed above. This would enable the comparison of a wider range of alternatives

that can be used in the VaR estimation procedure. A number of different evaluation

criteria, namely back-testing, market risk charge, violation rate and absolute deviation

given a violation, will be employed in an attempt to better assess the models’ perfor-

mance, when compared to the actual observed market losses. Finally, the analysis of

the VaR estimates obtained from the two forecasting periods will enable the compari-

son of VaR computation models under both highly volatile and relatively stable market

conditions.

Using 15 years data of daily returns from the Standard & Poor’s (S&P) 500 in-

dex, divided into two subsamples, this paper will argue that the performance of the

various VaR estimation techniques employed fluctuates markedly, when put in the con-

text of diverse market conditions. No model showed satisfactory forecasting accuracy

in the extremely volatile setting of the GFC, with all estimations being much more pre-

cise during the post crisis period. Furthermore, incorporating asymmetric responses to

volatility shocks proved to be of higher significance than accounting for excess kurtosis

in the relevant computation process.

The rest of this paper is structured in the following fashion: the next section

gives the theoretical framework on which the empirical study was build. It includes

an overview of the various GARCH models used; details about the VaR framework;

explanation of the Monte Carlo simulations technique; and a brief description of density

forecasting. Section three is associated with the details related to the dataset being

used. Section four deals with VaR estimation procedure, as well as the various criteria

applied to evaluate the performance of the underlying forecasting models. Section five

portrays the results of the empirical work and offers the associated analysis. The last

section contains the concluding remarks.



Chapter 2

Background Theory

2.1 Generalized AutoRegressive Conditional

Heteroscedasticity (GARCH)

The Autoregressive Conditionally Heteroscedastic (ARCH) model was pioneered by En-

gle (1982) and has since become one of the most influential statistical tools for analyzing

financial data due to its ability to account for heteroscedasticity. The GARCH model

(see Bollerslev, 1986) has further improved Engles framework by allowing the conditional

variance to be dependent not only on the immediately previous value of the squared er-

ror term, as is the case in a regular ARCH model, but also on its own previous lags.

The implication of the added lagged variance is that a first order GARCH model, one

that uses only one lag of both the error term and the variance, can incorporate all the

relevant information in order to compute the conditional variance and is sufficient to

capture the persistence in volatility (Bollerslev et al., 1992).

There has been extensive research regarding the further development of the original

GARCH model over the years, which has yielded a wide variety of models. Some of

these models have been able to account for factors the original framework somewhat

neglected. Dynamic volatility and volatility persistence, fatter tails of the distribution,

mean reversion and asymmetric responses to volatility are among the characteristics of

financial data, which the original GARCH model was unable to account for (Gerlach et

al. 2011). In this paper popular extensions of the GARCH framework are considered,

namely the GJR-GARCH and the exponential GARCH (EGARCH). Furthermore, all

the models being discussed are not only put in the context of the Gaussian distribution,

accounting only for the mean and standard deviation of the data, but also in the Student

t-distribution in order to incorporate the potential existence of excess kurtosis in the

relevant dataset.

The GJR-GARCH model, also known as asymmetric GARCH, can account for the

4



A.D.T. Baltaev & I. Chavdarov • Lund University • 2013 5

asymmetric responses of the volatility to positive and negative shocks of the return

innovations (Amado et al. 2011). Incorporating such effects could prove beneficial in

terms of forecasting accuracy. EGARCH, much like GJR-GARCH, is able to incorporate

the fact that positive return shocks have a different impact on volatility that negative

shocks (Engle and Ng 1993). Furthermore, the model guarantees that the forecasted

conditional variance will be non-negative since it uses the log value of the lagged volatil-

ity. Considering these characteristics of both models, their application in the process of

analyzing financial data should provide a feasible alternative to the traditional GARCH

model, and present an opportunity to evaluate the forecasting accuracy of a number of

models with somewhat different characteristics.

2.2 Models

In this paper, VaR forecasting is based on three different models from the GARCH family

used in both the Gaussian and Student t-distributions. The distributions’ specifications

are presented in the Appendix. Each of the models has the following mean equation,

rt = µ+ εt (2.1)

where rt represents the time varying log returns from rt = log(Pt − Pt−1). εt is the

normalized error, defined accordingly,

εt =
√
htzt (2.2)

and zt is normalized by the conditional standard deviation, σt. For this study, zt follows

the Normal- and the Student t-distribution. Furthermore, zt is also expected to be

independent and identically distributed (i.i.d), with mean zero and unit variance given

the information up to t − 1. Finally, ht expresses the conditional variance of rt. The

variation in the models is represented by the different specification of the conditional

variance equation, starting with the traditional GARCH model,

ht = ω + αε2t−1 + βht−1 (2.3)

with the imposed restriction that α + β <1 in order for the model to be stationary. A

final point worth mentioning is that neither the α nor the β coefficients can gain negative

values, a restriction known as the non-negativity constraint (Brooks, 2008). Since both

the GJR-GARCH and the EGARCH incorporate asymmetric effects into the respective

conditional variance estimates, the volatility dynamics specifications for these models

differ, when compared to the traditional GARCH model.
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The conditional variance for the GJR-GARCH at time t is calculated in the follow-

ing fashion,

ht = ω + αε2t−1 + γε2t−1I (εt−1 < 0) + βht−1 (2.4)

where,

I =

{
1 if εt−1 < 0,

0 if εt−1 > 0.

The model allows for positive and negative return innovations to have different impact

on the conditional variance, with the effects of positive innovations solely modelled by

α, whereas the negative returns are incorporated by ω + α+ γ.

The variance equation for the EGARCH is expressed as follows,

ln (ht) = ω + β ln (ht−1) + γ
εt−1

ht−1
+ α

[
εt−1

ht−1
−
√

2

π

]
(2.5)

where γ measures the asymmetric responses to volatility shocks. Thus, if γ = 0 the

model is symmetric. If γ < 0, then positive shocks have a smaller effect than negative

shocks. When γ > 0 then positive shocks increase the volatility more than negative

once.

2.3 Value-at-Risk (VaR)

According to Jorion (1997), VaR is a measure of the highest expected loss, over a given

time period, under normal market conditions, and a given confidence level. VaR thus

represents a conditional quantile of the asset return loss distribution. Mathematically

VaR can be defined as,

V aRα (L) = min {l : Pr (L > l) ≤ 1− α} (2.6)

where l is the smallest loss, such that the probability of a portfolio loss L that is larger

that l is smaller than or equal to 1-α (Nilsson, 2013). There are two arbitrarily chosen

parameters related to this expression: the portfolio holding period and the confidence

level. When the confidence level is taken into consideration, it is naturally related to the

accuracy of the obtained results, in other words, the higher the confidence level, the less

likely it is that a loss greater than the estimated VaR will occur under normal market

conditions (Berry, 2013). The holding period on the other hand, is related to the horizon

that serves as basis for risk analysis. The two most commonly chosen holding periods

are one and ten days. If the 1-day VaR is taken into consideration, one is interested

in the worst possible loss that can occur given a predetermined confidence level under

normal market conditions (Nilsson, 2013).
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The estimation of the 10-day VaR provides the foundations on which the Basel

III framework has been build and deviates from the 1-day time frame, which is most

commonly employed in practice. This is due to the fact that there is no universally

acceptable methodology applicable in the process of 10-day VaR computations. Finger

(2009) emphasizes the tensions that arise between regulators and financial institutions

because of the divergence in the regulatory and banks’ time-horizon for risk manage-

ment. Hallerbach (1999) presents one solution to this problem, under which VaR is

calculated over the entire time frame of interest. A severe drawback of this approach is

that if the composition of the portfolio changes rapidly throughout the holding period,

the relevance of such calculations can be deemed inadequate. An alternative comes in

the form of the Square Root of Time Rule (SRR), deemed as the preferred practical so-

lution. It involves scaling 1-day VaR estimates by taking the square root of the holding

period. Even though such an approach is relatively easy to implement, when it comes to

its theoretical soundness the method is rather controversial. Kaufman (2004), McNeil,

Frey and Embrechts (2005) and Danielsson and Zigrand (2006) all point to the fact that

the SRR is most relevant if the risk factors are normally distributed with zero mean

and also independently and identically distributed over time. Such assumptions can

rarely be justified when it comes to financial risk factors, especially such that have high

frequencies. Moreover, time variation in the loss distribution is also ignored, further

solidifying the notion that the approach has little theoretical foundations when imple-

mented in conditional VaR estimates. Finally, Diebold et al., (1998) argue that the

SRR overestimates VaR for short horizons and underestimates it for longer time frames.

Although of small importance for conservative portfolios with short horizons, this char-

acteristic makes the SRR estimates susceptible to sizable mistakes, when the nature of

the portfolio is risky and the holding period is relatively long. The end result is the

encouragement of risk taking for risky portfolios, implying that the employment of the

SRR undermines one of the fundamental principles behind the regulatory methodology.

With all this in mind, and with regards to the absence of theoretical soundness, the SRR

method will not be further considered in this paper.

Like any theoretical model, there are a number of disadvantages related to VaR

and its practical application. Artzner et al. (1999) emphasize that when using this

estimation technique it is impossible to predict the amount of a loss in the case of a tail

event. Since VaR is calculated based on the assumptions that market conditions will

remain normal under the holding period, it is not necessarily feasible to estimate risk

in extreme circumstances. Moreover, because of its widespread usage, this method can

have a systemically destabilizing effect, in the sense that all financial institutions might

become simultaneously inclined to terminate their portfolio positions because they use

the same method to manage macroeconomic risk. Additionally, VaR does not always

promote diversification, meaning that it is not a coherent risk measure (Nilsson, 2013).
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According to Danielson et al. (2005) this is not a pertinent worry considering that sub-

additivity violations are not of high relevance for assets that meet the stylized facts of

returns.

Although VaR has its drawbacks, its widespread practical application points to the

fact that the benefits related to this model far outweigh its pitfalls. If the advantages

of this risk management tool are taken into consideration, it needs to be stated that

VaR estimates are easy to interpret in monetary terms. More to the point, the method

focuses on bad outcomes and is a risk measure applicable to all asset classes. It offers a

probabilistic view on losses, meaning that it presents information about the probability

of a loss that is bigger than the amount calculated based on the confidence interval

in question. Lastly, VaR takes a holistic approach on losses by accounting for all the

underlying risk factors via focusing on the distribution of portfolio losses (Nilsson, 2013).

2.4 Monte Carlo Simulations

When the MC simulations approach is taken into account, it was originally a method

developed by physicists to use random number generation to compute integrals (Walsh,

2004). This simulation method has however quickly gained traction in other fields, with

finance presenting a prominent example. Even though, the practical application of this

estimation methodology is rather cumbersome, from a theoretical perspective it offers

a number of important benefits, which has enabled MC simulations to gain enormous

traction in the financial industry.

Berry (2013) defines MC simulations as an algorithm generating random numbers

used to compute a formula that does not have a closed (analytical) form. That implies

the simulation process requires some trial and error until an assessment about the results

produced by the formula can be made. Since multiple random numbers are drawn

over a large number of times the method offers a reasonable indication of what the

output in the formula should be. More to the point, when forecasting and inference

are taken into consideration, MC simulations provide valid and efficient estimations

under parametric conditions. This forecasting technique can produce exact inference

for infinite samples and can model instruments with non-linear and path-dependent

payoff functions. Regarding the aforementioned complexity of financial instruments

and the necessity for ever more sophisticated models required in risk management, MC

simulations appear to be a viable choice in the process of estimating VaR.

Due to the uncertainty of forcasting, it is pivotal for to run a large number of

simulations when striving to obtain a range, on which further analysis can be based.

When the number of iterations in the simulation process is taken into account, there

is a variety of alternatives presented in the literature. Berry (2013) states that the
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financial industry standard is 10,000, even if 1,000 iterations are enough to produce

efficient estimates for terminal prices of most assets. 10,000 simulations provide a wide

basis from which a better prediction for the movements of the future index prices can

be extracted. Gerlach et al. (2011) however, have chosen to use an even higher number

of iterations: 20,000, with Moller et al. (2004) using 100,000 iterations in their work.

Since the research done by Gerlach et al. (2011) serves as the basis for this work, 20,000

MC iterations can be viewed as a plausible alternative in this particular context.

2.5 Density Forecasting

Tay (2004) defines density forecasting of the realization of a stochastic variable as estima-

tion, related to the probability distribution of the possible future values of that variable.

It gives a complete description of the uncertainty related to a forecast, something that

can be seen as a palpable advantage when compared to point forecasting, which encom-

passes no description of the uncertainty in itself. Density forecasts for a time series,

rather than the calculation of conditional mean and variance, has gained more and more

recognition in the decision-theoretical context. Since financial returns are difficult to

predict, it is hardly surprising that this is an area where such an estimation technique

is readily applied, especially when it comes to high frequency trading (Timmermann,

2000). Diks et al. (2011) further emphasize the notion, that density forecasts provide

the most comprehensive explanation for the uncertainty related to the movement of a

random variable. The academic literature points to the fact that there are two main

fields in which density forecasts are most commonly applied, namely in Central banks’

inflation forecasting and risk management for financial institutions. With respect to the

previously discussed strength of density forecasting when dealing with uncertainty and

the importance of VaR in risk management, the implementation of the former estima-

tion methodology in the computation of the latter can be viewed as adequate from a

theoretical perspective. Finally, it needs to be stated that there is a variety of techniques

presented by the literature when it comes to evaluating density forecasts, such as the

weighted likelihood ratio test (Amisano et al., 2005), the probability integral transform

(Diebold et al., 1998) and the model confidence set (Hansen et al., 2011). The lack of

consensus about the optimal way such an assessment should be executed, coupled with

the complexity of the process itself, render the evaluation of densities presented below

beyond the scope of this paper. With that said, it would still be beneficial to compare

the results of the density forecasts developed, based on the different underlying models

with the true unobservable densities. Such a comparison will simplify the assessment of

the forecasting accuracy of the various GARCH models in the context of financial risk

management.



Chapter 3

Data

The data in this study comprises of daily continuously compounded returns of the S&P

500 index obtained from Thompson Financial Datastream. Descriptive statistics re-

garding the data are presented in Table 3.1. The estimations carried out are based on

the daily returns of the S&P 500 index in the period from 04/01/1998 to 30/12/2012.

Considering that the U.S. stock market is both the biggest in terms of trading volume

and the most empirically studied, it can be viewed as an obvious choice for any study,

which is focusing on the management of financial risk. Furthermore, the aforementioned

timeframe incorporates two periods of major financial turmoil, the IT crash of 2000 and

the GFC, as well as periods of relative systemic stability. In order to examine the accu-

racy of the above described VaR estimation methods under varying market conditions,

two distinct forecasting periods will be examined. The first dataset taken under con-

sideration consists of in-sample period, which begins 04/01/1998 and ends 30/12/2007.

Based on the parameter estimates obtained from the different models, a forecasting

period starting 04/01/2008 and ending 30/12/2009 will be examined. This timeframe

incorporates the effects of the GFC and will determine the accuracy of VaR estimation

methods under conditions of high volatility. The second dataset contains an in-sample

period starting 04/01/2000 and ending 30/12/2010, with a forecasting period beginning

04/01/2011 and finishing 30/12/2012. This would enable the assessment of the post-

crisis performance of the most widely applied financial risk measure and determine the

suitability of VaR in the context of a somewhat less turbulent market environment.

10
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Table 3.1: Descripitive Statistics

Measure 1998–2007 2000–2010 2008–2009 2011–2012

No. of observations 2607 2869 522 520

Mean (%) 0.0159 0.0051 0.0527 0.0220

Max (%) 5.5732 10.9572 10.9572 4.6317

Min (%) 7.0438 9.4695 9.4695 6.8958

Skewness 0.0383 0.1151 0.1178 0.5256

Excess Kurtosis 2.8565 7.8993 4.5451 4.6723

Yearly SD (%) 17.6936 21.4907 34.3005 18.478

JB <0.0001 <0.0001 <0.0001 <0.0001

Autocorr. lag 1 0.0326 0.0871 0.1418** 0.0853

Autocorr. lag 2 0.0242 0.0671* 0.1049** 0.1111**

Autocorr. lag 3 0.0212 0.0307* 0.0791** 0.1694**

Note: This table shows the descriptive statistics for the daily Standard & Poor’s 500 returns for different

relevant periods. Standard errors are presented in parenthsis. JB is the p-value from the Jarque and

Bera (1987) test with the null hypothesis of normally distributed returns. *Denotes significance at the

5% level. **Denotes significance at the 1% level.

3.1 Simulated Returns and VaR Quantiles

As the focus of this paper lies in the forecasting process of 1- and 10-day VaR estimates,

the MC method is implemented to simulate conditional variances and returns. Initially,

parameters are estimated, for the relevant mean and variance equations. The α and

the β coefficients are the only estimated parameters in the context of the traditional

GARCH framework, with the addition of the leverage coefficient γ for the EGARCH

and the GJR-GARCH models. For the Student t-distribution, the degrees of freedom

parameter υ is also estimated. The parameter estimates, together with the empirical

residuals from the in-sample period are used as inputs for the MC simulations and 20,000

alternative sample paths are generated. The simulations will result in a matrix, denoted

Mt, with i number of rows and k number of columns. The first step in order to construct

10-day VaR estimations, involves creating a submatrix, consisting of 10-day cumulative

returns at any given day t. (3.1) below is considered for this process,

Mt∗ =

10∑
j=1

Mt−j+1 ∀k (3.1)
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for any day t in the out-of-sample period, the equation sums j number of days for all

k colums, from the simulated matrix, Mt. The output is a matrix Mt∗, with 10-day

cumulative over-lapping returns.

In order to extract 10-day VaR estimates from Mt∗, the following equation was

implented,

V aRα (10) = −G−1
α (Mt∗) (3.2)

where (3.2) is the holding period, −G−1
α is the inverse of the return probability density

function and α is the confidence level of interest. Finally, by applying (3.1) on (3.2), a

vector of 10-day VaR estimates is obtained.

3.2 Testing and comparing VaR models

Since the density forecasts obtained from the MC simulations will be compared with the

true unobservable densities, and because of the fact that such an approach may not give

sufficient information as to which of the models is optimal in this particular situation,

criteria to compare the competing VaR forecasting models need to be implemented (Wil-

helmsson, 2011). Gerlach et al. (2011) point to a number of viable alternatives, namely

observed violation rates (VRate), market risk charges (MRC), absolute deviation (AD)

given a violation and two standard back-testing criteria.

When starting with the back-testing, the most commonly applied tests are the Ku-

piec unconditional overage (UC) test and the Christoffersen conditional coverage (CC)

test. The UC test is aiming to determine whether the reported frequency of VaR vi-

olations is significantly more (or less) than the predetermined frequency. Thus, if the

number of observed violations is statistically different from the number of expected vi-

olations, the null hypothesis of accurate VaR model is rejected (Berkowitz et al., 2011).

In the context of this study, the test will be carried out in its two-sided version, where

a confidence interval is constructed, and if the number of forecasted violations falls out-

side this interval the underlying model is rejected. The CC test further improves the

stringency of the back-testing methodology by requiring, not only correct unconditional

coverage, but also independence of the violations. Thus, the test investigates not only

if the evaluated model presents the correct frequency of VaR violation, but also if the

violations are independent of each other (Nilsson, 2013). Since the test is essentially

composed of two parts, unconditional coverage and independence test, there are two

likelihood ratios (LR) comprising the CC test, with the details concerning their specifi-

cations presented in the Appendix of this paper.

Regarding the fact that 10-day VaR estimations will be computed based on rolling

and over-lapping 10-day intervals, neither of these tests are relevant in this context.

Violations cannot be expected to be independent in such a setting, nor should the i.i.d
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assumption related to the UC or CC tests hold (Gerlach et al., 2011). Both tests will

however be applied to the 1-day VaR forecasts.

The VRate is among the simplest criterion used to compare different VaR forecast,

and is estimated with the following formula,

V Rate =
m∑

t=n+1

I

(
rt < −V aRt

m

)
(3.3)

where,

I =

{
1 if rt <−V aRt,
0 if rt >−V aRt.

Thus the VRate is simply the number of VaR violations divided by the forecasted sample

size, where n represents the number of in-sample observations and m stands for the

forecast sample size. A straightforward implication of this method is the fact that a

VRate that is close to the α confidence level is desirable, with models overestimating

risk more favourable in the context of the Basel legislative framework (Gerlach et al.,

2011).

The MRC is based on a number of quantitative VaR parameters: a 10-trading day

horizon; at least a year of in-sample data and a 99% confidence interval (Jorion, 2002).

For each day t in the out-of-sample period, the MRC is thereafter calculated as follows,

MRCt = sup

{(
V aRt−1, V aR60t × 3 + k

)}
(3.4)

where MRCt is equal to the supremum of V aRt−1, which is the VaR estimate for the

previous day, and V aR60t, representing the 60 day VaR moving average, and k is the

penalty factor. The k is related to the process of penalizing market risk projections that

are not sufficiently conservative, with its respective values being presented in the Table

3.2. A model with lower MRC is deemed to be more adequate in terms of financial risk

management (Gerlach et al., 2011). Finally, the mean value of the MRC will be used as

an evaluation criterion of the forecasting accuracy of each of the models.

Considering that the size of the expected loss given a violation needs to be per-

ceived as an important characteristic of a risk management tool, the magnitude of the

violations and not solely their frequency should be taken into account. McAleer et al.

(2008) emphasize the importance of this analytical approach and propose the following

estimation method of the size of the loss given a violation,

ADt = |rt − (−V aR)t| (3.5)
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where rt is only considered when there is a violation. The mean and the maximum for

this criterion will be computed, and models with lower AD values will be preferable.

Table 3.2: Modified Basel Accord Penalty Zones.

Zone Violations Cumulative Probability Plus k -factor

Green 0 0.0054 0.0000

1 0.0336 0.0000

2 0.1076 0.0000

3 0.2366 0.0000

4 0.4051 0.0000

5 0.5807 0.0000

6 0.7333 0.0000

7 0.8459 0.0000

8 0.9191 0.0000

Yellow 9 0.9611 0.4010

10 0.9828 0.4982

11 0.9933 0.6480

12 0.9973 0.7512

13 0.9991 0.8505

Red 14 0.9999 1.0000

Note: The Modified Basel Accord Penalty Zones are evaluated by the Basel Committee on Banking

Supervision (1996) based on 520 and 522 trading days; true coverage is 99%. The k -factor is obtained

by linear interpolation, based on the number of trading days and the binominal cumulative distribution.



Chapter 4

Results

The empirical part of this work begins with the presentation and analysis of the pa-

rameter estimates obtained from the different GARCH models. The 1– and 10–day

VaR estimates for both subsamples are then presented and compared in an attempt to

determine which of models produced the most accurate forecasting results.

4.1 Parameter Estimation

Tables 4.1 and 4.2 display the relevant coefficients obtained from the parameter estima-

tion based on the different models and sample periods. The µ coefficient is stationary,

and is related to the mean equation of the models. It is relatively close to zero in all the

cases that are being analysed. This should not be seen as surprising, when one takes

into account the characteristics of financial data. When turning to the parameters

obtained based on the variance equation, it is important to point out that the α and

β coefficients in the GARCH model are very close to unity in both distributions and

subsamples, relating to the implication that shocks in the conditional variance are

highly persistent. The non-negativity constraint is also not breached in none of the

cases, proving the theoretical soundness of the model when applied to this particular

dataset. Turning the focus to the GJR-GARCH parameters, it is beneficial to point out

the fact, that the mean of the Normal distribution is negative in both subsamples, albeit

it being very close to zero. In all the cases discussed, the γ coefficients have value of

zero, implying that the lagged squared error term only has significance in the estimation

of the conditional variance when negative. Furthermore, in both subsamples the γ

coefficients are significant at the 1% confidence level, implying that the well-documented

leverage effects is present in this dataset. Another intriguing aspect of the estimates

is the negative value of the γ coefficient in the context of EGARCH framework. This

leads to the implication that positive return shocks generate less volatility. The final

point worth exploring in the context of parameter estimates analysis is related to the

fact that the γ coefficients for EGARCH and GJR-GARCH have opposite signs. This

15
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is the case because both models use different means in order to account for asymmetric

volatility responses.

Table 4.1: Parameter estimates from Standard & Poor’s index 1998–2007.

Model µ ω α γ β υ LL

1 GARCH-N 0.0376* 0.0111** 0.7532** 0.9179** -4259.54

(0.0171) (0.0017) (0.0071) (0.0073)

2 EGARCH-N 0.0039 0.3878** 0.0932** -0.1275** 0.9844** -4194.90

(0.0158) (0.0012) (0.0102) (0.0078) (0.0013)

3 GJR-N -0.0064 0.0122** 0 0.1280** 0.9260** -4193.03

(0.0167) (0.0016) (0.0124) (0.0078)

4 GARCH-t 0.0482** 0.0076** 0.0753** 0.9179** 7.1835** -4215.13

(0.0159) (0.0028) (0.0098) (0.0092) (0.9833)

5 EGARCH-t 0.0206 0.0008** 0.8996** -0.1328** 0.9872** 8.2813** -4157.74

(0.0154) (0.0015) (0.0136) (0.0111) (0.0019) (1.1721)

6 GJR-t 0.0165** 0.0093** 0 0.1327** 0.9276** 8.8847** -4161.82

(0.0158) (0.0022) (0.0164) (0.0094) (1.3531)

Table 4.2: Parameter estimates from Standard & Poors index 2000–2010.

Model µ ω α γ β υ LL

1 GARCH-N 0.0388* 0.0097** 0.0615** 0.9312** -3674.84

(0.0177) (0.0016) (0.0061) (0.0066)

2 EGARCH-N 0.0076 0.0025** 0.0792** -0.1149** 0.9838 ** -3616.31

(0.0168) (0.0012) (0.0112) (0.0071) (0.0016)

3 GJR-N -0.0004 0.0118** 0 0.1187** 0.9313** -3616.34

(0.0167) (0.0017) (0.0116) (0.0079)

4 GARCH-t 0.0473** 0.0063** 0.0621** 0.9348** 7.8461** -3632.93

(0.0163) (0.0026) (0.0090) (0.0090) (1.0517)

5 EGARCH-t 0.0202 0.0005 0.0814** -0.1187** 0.9866** 9.4984** -3580.42

(0.0160) (0.0015) (0.0015) (0.0103) (0.00123) (1.3644)

6 GJR-t 0.0194 0.0089** 0 0.1239** 0.9327** 9.6880** -3586.43

(0.0162) (0.0022) (0.0161) (0.0096) (1.4266)

Note: These tables report the in-sample parameter estimates for the daily Standard & Poor’s 500 returns

for the two in-sample periods. Standard errors are given in parentheses. LL is the log likelihood function

value. *Dentoes significance at the 5% level. **Denotes significance on the 1% level. All are obtained

with the Econometrics Toolbox in MATLAB.
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4.2 Subsample I

4.2.1 10-day VaR

The analysis of the VaR estimates begins with the period containing the effects of the

GFC. Table 4.3 presents the relevant criteria in the assessment of each of the models for

both the 1% and the 5% risk level for 10-day VaR estimates. In an attempt to measure

the performance of each of the estimation methods, they are ranked in accordance with

the specifications of each of the evaluation criteria. It must be emphasized that, since

MRC is incorporated in the Basel II framework, it only focuses on the 1% risk level,

thus the computation of this criteria for α = 5%, is deemed redundant.

Table 4.3: Summary statistics for 10-day VaR forecast 2008–2009

Model VRate (%) MRC mean AD max AD min Penalty Violations

α = 1%

1 GARCH-N 6.43 35.9991 20.7020 5.5821 1.0 33

2 EGARCH-N 4.68 44.7815 18.5121 5.228 1.0 24

3 GJR-N 4.87 41.2491 19.3265 6.0471 1.0 25

4 GARCH-t 4.68 42.3760 19.2265 5.8311 1.0 24

5 EGARCH-t 4.68 44.8816 18.5467 5.3600 1.0 24

6 GJR-t 4.68 45.3738 17.9925 5.0219 1.0 24

α = 5%

1 GARCH-N 12.48 – 24.5895 5.5358 – 64

2 EGARCH-N 9.75 – 23.3536 5.7335 – 50

3 GJR-N 11.50 – 24.1336 5.5635 – 59

4 GARCH-t 12.28 – 24.3383 5.4460 – 63

5 EGARCH-t 9.94 – 23.6295 5.9354 – 51

6 GJR-t 11.31 – 24.1234 5.7872 – 58

Based on the results presented in the table it is apparent that all the mod-

els underestimate risk substantially. When starting with the number of violations for

α = 1%, they range from 24 to 33, with GARCH-N performing the worst of all models

considered. In terms of VRate the two EGARCH models, GJR-t and GARCH-t all yield

the same violation rate. This leads to the conclusion that in this particular case the

incorporation of asymmetric volatility shocks does not increase the forecasting accuracy

of the models at the 1% level. α̂, which represents the actual VRate of the models’VaR

estimates, is approximately equal to 4.7%, further ascertaining the inadequacy of the

forecasting results in the context of such turbulent macroeconomic environment as the

one observed during the GFC. This result is however to be expected, since as previously
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stated, one of the major drawbacks of the VaR framework is the fact that it cannot

efficiently account for losses under extreme market conditions. The implication of

this pitfall is the somewhat paradoxical fact that the best performing model in terms

of MRC is the GARCH-N, which offers the highest number of VaR violations in this

dataset. This is partially due to the fact that all the models have a penalty factor of

one in accordance with the Basel II framework. Thus, the model that underestimates

risk the most and has a α̂ ≈ 6.3%, or more than six times the desired value, yields the

best result in terms of MRC. When the AD criterion is being analysed, GJR-t is the

model offering the lowest maximum and mean. GARCH-N is performing the worst in

terms of maximum loss, further solidifying the notion that it is the least conservative

model in this context.

EGARCH-N performs best at the 5% risk level having 50 violations, with

GARCH-N offering the poorest precision. With a VRate of α̂ = 9.75% however, it can

hardly be claimed that the EGARCH-N estimates present a reliable source of reference

in the context of financial risk management. The difference in the estimation accuracy

can be related to the incorporation of asymmetric responses to volatility shocks, with

EGARCH in both distributions outperforming the other two frameworks. EGARCH-N

is also the estimation method scoring best in relation to the maximum AD criterion,

rendering it the most accurate forecasting technique at this confidence level A final

point worth exploring is the fact that accounting for excess kurtosis in this dataset

does not seem to grant a palpable difference in the VaR estimation precision, with the

integration of asymmetric responses to volatility shocks being much more relevant.

4.2.2 1-day VaR

Table A.1 (Appendix) shows the p-values for the UC and CC test for the 1-day VaR

estimation models with respect to both the 99% and 95% confidence level. All of the

models fail both tests at both confidence levels. With that said, the other available

evaluation criteria will still be applied to the forecasting results in an effort to obtain a

more detailed overview of the models effectiveness.

The overall performance of the different GARCH models’ estimates was even poorer

when the 1-day VaR is taken into consideration. It needs to be stated that all models fell

in the red penalty zone of the Basel II framework and thus have a penalty factor of one

when the MRC is being computed. This streams from the fact that the model having the

lowest VRate is GJR-t with α̂ = 4.79%. Even though the forecasting accuracy offered by

the models is not adequate, accounting for excess kurtosis has proven beneficial in the

context of this criterion, with the models using the Student t-distribution outperforming

the rest. In terms of MRC, GARCH-N offers the lowest value, due to the fact that the

model underestimates risk the most and gives the lowest VaR estimates. GARCH-t



A.D.T. Baltaev & I. Chavdarov • Lund University • 2013 19

has the smallest AD maximum, with GARCH-N having the lowest mean value in this

criterion. Accounting for asymmetric responses to volatility shocks and excess kurtosis

does not seem to have any significant impact in relation to neither the MRC, nor the

AD criteria.

Table 4.4: Summary statistics for 1-day VaR forecast 2008–2009

Model VRate (%) MRC mean AD max AD min Penalty Violations

α = 1%

1 GARCH-N 7.85 11.5067 6.6045 1.7398 1.0 41

2 EGARCH-N 5.94 12.7156 6.3050 1.9543 1.0 31

3 GJR-N 7.09 12.0010 6.4237 1.8149 1.0 37

4 GARCH-t 5.17 14.0192 5.9180 1.8621 1.0 27

5 EGARCH-t 5.36 13.2332 6.1771 2.0226 1.0 28

6 GJR-t 4.79 13.6477 6.2442 2.1068 1.0 25

α = 5%

1 GARCH-N 15.52 – 7.6710 1.6392 – 81

2 EGARCH-N 13.98 – 7.4904 1.6404 – 73

3 GJR-N 15.53 – 7.7156 1.6872 – 80

4 GARCH-t 15.13 – 7.6393 1.6342 – 79

5 EGARCH-t 14.18 – 7.5803 1.6961 – 74

6 GJR-t 15.33 – 7.7927 1.6977 – 80

EGARCH-N has the lowest VRate at the 5% risk level, with EGARCH-t

being the second best model. However, both estimation methods offer relatively

low forecasting precision, with their α̂ values being 13.98% and 14.18% respectively.

EGARCH-N has the lowest maximum AD value, whereas the GARCH-t has the

lowest AD mean. With that said, all the models offer low forecasting accuracy, and

it is difficult to view them as adequate estimators of financial risk when the market

conditions are as volatile as during the GFC.

4.3 Subsample II

4.3.1 10-day VaR

The empirical results for the 10-day VaR forecasts related to the post crisis forecasting

period are presented in Table 4.5. It is of interest to point out the relative conserva-

tiveness of all of the models being employed. When it comes to the number of observed

VaR violations, all estimation techniques fall in the green zone of the Basel II legis-

lation. This varifies that they are all acceptable from a regulatory point of view and
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do not encourage risk-taking in this particular context. The model that performs best

in terms of VRate is EGARCH-t with a α̂ = 0.97%. Although EGARCH-N produces

even conservative estimates, its α̂ = 0.78% is further away from the desired value of

1%, making it the second best model according to this criterion. Overall, the EGARCH

models in the context of both the Gaussian and Student t-distribution outperform the

other forecasting methods being used. A further proof of this can be found when the

maximum of the AD criterion is examined. This implies that the means this framework

uses, in the process of incorporating asymmetric responses to volatility shocks are the

most suitable for this dataset. The relevance of the different distributions is however

somewhat muted, especially in the case of the GJR-GARCH models, where both distri-

butions produce the same number of VaR violations and the GJR-N yields better results

in terms of AD mean. GARCH-N is the model ranked best according to MRC, followed

by GJR-N and GJR-t. The models that are most conservative in their estimates are the

ones that score the worst in the context of this evaluation criterion. This is due to the

fact that their forecasted VaR values are higher and the same penalty factor is applied

to all models.

Table 4.5: Summary statistics for 10-day VaR forecast 2011–2012.

Model VRate (%) MRC mean AD max AD min Penalty Violations

α = 1%

1 GARCH-N 1.56 26.9931 9.5165 3.6692 1.0 8

2 EGARCH-N 0.78 35.1579 6.4950 2.7411 1.0 4

3 GJR-N 1.36 28.0694 8.6561 2.4896 1.0 7

4 GARCH-t 1.36 30.9006 8.5223 3.2144 1.0 7

5 EGARCH-t 0.97 33.1660 6.9722 2.8629 1.0 5

6 GJR-t 1.36 28.6856 8.7487 3.6117 1.0 7

α = 5%

1 GARCH-N 4.68 – 12.8750 3.0458 – 24

2 EGARCH-N 2.34 – 11.3117 3.9516 – 12

3 GJR-N 4.29 – 12.5071 3.0759 – 22

4 GARCH-t 5.46 – 13.0286 2.7731 – 28

5 EGARCH-t 3.31 – 12.1715 3.4831 – 17

6 GJR-t 6.24 – 13.0854 2.5558 – 32

The EGARCH models are overly conservative when the 5% risk level is

analysed. They overestimate risk in the context of both distributions, and naturally

offer lower VRate than any of the other models. The best performing model in the

context of this criterion is GARCH-N with α̂ = 4.68 followed by GARCH-t with α̂

= 5.46%, proving that the most conservative estimation method is not necessarily
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the most optimal in terms of forecasting VaR. The EGARCH-N is however the model

performing best in the context of maximum AD, with the GJR-t having the lowest

mean AD. Due to the discrepancy in the forecasting accuracy of the models, it is

difficult to assess which aspects of the forecasting techniques are most significant in this

setting.

4.3.2 1-day VaR

Table A.2 in Appendix shows the p-values for the UC and CC test for the 1-day VaR

estimation models, with respect to both the 99% and 95% confidence level for the post

crisis subsample. In this context, all models pass the Kupiec test and only the EGARCH-

N failed the CC test at α = 5%. The performance of the models is thus much better

in light of this evaluation criterion if compared to the results obtained from subsample

one.

Table 4.6: Summary statistics for 1-day VaR forecast 2011–2012.

Model VRate (%) MRC mean AD max AD min Penalty Violations

α = 1%

1 GARCH-N 2.12 8.6014 4.1307 1.0975 0.6480 11

2 EGARCH-N 1.35 9.8604 3.5841 1.1798 0.0 7

3 GJR-N 2.12 8.0554 4.2737 1.1288 0.6480 11

4 GARCH-t 1.35 10.1324 3.8107 1.3549 0.0 7

5 EGARCH-t 1.54 9.6801 3.7917 1.1514 0.0 8

6 GJR-t 1.35 10.4593 3.5841 1.1798 0.0 7

α = 5%

1 GARCH-N 6.35 – 12.8750 3.0458 – 24

2 EGARCH-N 5.38 – 11.3117 3.9516 – 12

3 GJR-N 6.73 – 12.5071 3.0759 – 22

4 GARCH-t 6.35 – 13.0286 2.7731 – 28

5 EGARCH-t 6.35 – 12.1715 3.4831 – 17

6 GJR-t 5.38 – 13.0854 2.5558 – 32

In terms of VRate, the models presenting the most accurate 1-day VaR es-

timates for the post-crisis forecasting period are EGARCH-N, GARCH-t and GJR-t.

All of these models, including the EGRACH-t, are in the green penalty zone of the

Basel framework. The GJR-N and the GARCH-N however fall in the yellow zone and

are therefore assigned a penalty factor in accordance with the regulatory requirements.

This is done by a linear interpolation in order to approximate the k penalty values

that are specified in relation to the number of violations and binominal cumulative
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probabilities in Table 3.2. Although still acceptable in the context of risk management,

both models can be regarded as somewhat less conservative than desirable, especially

considering that the market conditions during this forecasting period are relatively

stable. With that in mind, these models are related to the lowest mean MRC values at

this confidence level. This might be deemed, as an additional argument supporting the

notion that in some situations, the fact that a model underestimates risk can have a

more significant impact on the value than the k penalty factor, particularly when the

number of violations is close to the green zone. In terms of maximum AD, EGARCH-N

and GJR-t are the top ranked models, while GARCH-N has the lowest mean according

to this criterion.

At the 5% level, GJR-t and EGARCH-N provide the most precise VRate forecasts,

with the same two models having the lowest mean AD values. EGARCH-N offers the

lowest maximum AD as well, making it the best performing model in this context.

Accounting for asymmetric responses to volatility shocks can thus be seen as beneficial,

while simultaneously it could be claimed that incorporating excess kurtosis is not of

great significance in this setting.

4.4 Summary of VaR forecasting

The final part of this analysis is associated with the comparison of the VaR estimates

for the two different subsample periods. A general overview of the overall performance

of the different models highlights that the accuracy of the forecasted 1-day and 10-day

VaR values fluctuates greatly, when the underlying market conditions experience sizable

deviations. When the crisis period of 2008 and 2009 is considered, all the models under-

estimate the inherent systemic risk. Contrary to this, during the period associated with

relatively low levels of volatility, the models being employed tend to overestimate risk

and produce 10-day VaR forecasts that are somewhat more conservative than required.

The 1-day VaR estimates tend to be less restrictive and consequently more fitting in the

context of the post-crisis market conditions. The lack of conservativeness in a turbulent

systemic environment is however far from desirable. Since financial risk management

is most important in highly volatile market conditions, the employment of more liberal

estimation methods seems to undermine the most pivotal aspect of the Basel Accord.

The EGARCH models are certainly the most conservative when it comes to the

10-day VaR computations in the period after the GFC. It can be stated that in both

distributions, these models emphasize risk more noticeably at the 5% level. With that

said, both frameworks are associated with the most accurate VRate results when α =

1%, where GARCH-N is ranked highest according to the MRC criterion simply because

in these circumstances the model is presenting the least conservative VaR estimates.

At the 1% risk level for the 1-day VaR, no model offers superior violation frequency,
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with none of the models being overly conservative. On the contrary, the GJR-N and

GARCH-N fall in the yellow penalty zone of the Basel framework. With that said, both

model are related to the lowest MRC values, even though all other forecasting techniques

are assigned a penalty factor of zero. Finally, it should be noted that the EGARCH-

N exhibits the highest overall 1-day VaR forecasting accuracy at α̂ = 5%, whereas no

model can be viewed as superior in the setting of 10-day VaR estimates for the same

confidence level.

When the estimates related to the GFC period are taken into consideration, it is

very difficult to point out which of the various characteristics of the estimation techniques

being used are of highest importance in the process of forecasting VaR. The performance

of all of the models at the 1% level is relatively similar, with the GARCH-N yielding

worst results when the number of 1- and 10-day VaR violations is evaluated. However,

the same model offers the lowest MRC score in both settings, further emphasizing the

fairly poor overall performance of the forecasting methods during the financial crisis.

With that in mind, the EGARCH models have proven to be slightly more conservative

than any of the other estimation techniques in this study at the 5% risk level, for both

computation horizons. The precision of these models is nevertheless inadequate, fur-

ther solidifying the premise that the models being analyzed struggled and substantially

underestimated the risk levels during the GFC.



Chapter 5

Conclusion

This paper evaluated the possibility of implementing Monte Carlo simulations in the

process of estimating 1- and 10-day VaR forecasts across a variety of parametric het-

eroscedastic models. Regular GARCH, EGARCH and GJR-GARCH were all considered

in both the Gaussian and Student t-distributions. The models were put in the context

of diverse market conditions in an attempt to test their forecasting accuracy, in both ex-

treme and relatively stable systemic environment. No model performed consistently well

across the various estimation horizons, confidence levels and market settings. For the

10-day VaR estimates during the GFC, none of the models outperformed the others, with

the GARCH-N offering the worst forecasting precision at both quantile levels. In terms

of 1-day computations, the models’ability to adapt to extreme market conditions was

further diminished, with their performance being inferior for this estimation horizon.

The forecasting precision of the models was substantially improved in the post crisis

subsample, where all 10-day estimates satisfied the requirements of the Basel Accord

and fall in the green penalty zone at the 1% risk level. As far as 1-day VaR results for

this subsample are concerned, EGARCH-N was the model contributing the most exact

forecasts, indicating that volatility asymmetry is an important feature in this setting.

An interesting empirical finding was the fact that conservative models tend to present

better VaR violation rates, but this conservativeness impairs their performance in terms

of mean market risk charge. Thus, a combination of sophisticated models can be seen

as a viable managerial strategy in the context of financial risk management and VaR

forecasting. The performance of additional parametric models, placed in the context

of distributions allowing for additional skewness presents an appealing opportunity for

future research.
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Appendix

A.1 Equations

Christoffersen conditional coverage test is defined accordingly,

LRuc = −2
[
ln
(
px (1− p)N−x

)
− ln

(
πx (1− π)N−x

)]
∼ χ2 (1) (A.1)

where N is the number of observations in the testing period, x being the number of ob-

served violations, p representing the anticipated frequency of violations and denoting the

actual violation frequency. The test statistic is asymptotically chi-squared distributed,

with one degree of freedom.

In the independence part of the test, violations are assigned a value of one and non-

violations a value of zero. The test statistics for the independence part of the Conditional

Coverage test is presented below,

LRind = −2ln

(
L0

L1

)
= −2 [ln (πn0

0 πn1
1 )− ln (πn00

00 π
n01
01 π

n10
10 π

n11
11 )] ∼ χ2 (1) (A.2)

where n00 represents the number of transitions from state zero to state zero; n01 is the

number of transitions from state zero to state one; n10 denotes the number of transitions

from state one to state zero; and n11 signifies the number of transitions from state one

to state one. Thus, the conditional frequency of transitions between the states can be

calculated accordingly,

π00 =
n00

n00 + n01
(A.3a)

π01 =
n01

n00 + n01
(A.3b)

π10 =
n10

n10 + n11
(A.3c)

π11 =
n11

n10 + n11
(A.3d)
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n0 captures the number of non-violations and is equal to n0 = n00 + n10. n1 stands for

the number of violations obtained by n1 = n01 + n11. n0 is then equal to π0 = n0/N

and π1 = n1/N with π0 and π1 being the unconditional frequency of violations and

non-violations respectively. Finally the results of the two likelihood ratios (LR) are

combined,

LRCC = LRUC + LRIND ∼ χ2 (2) (A.4)

where the test statistic is asymptotically chi-squared distributed, with two degrees of

freedom. All the specifications regarding the CC test stream from the work of Nilsson

(2013).

A.2 Tables & Figures

Table A.1: p-values for the CC, UC and IND tests 2008-2009.

Model LR CC (%) LR UC LR IND

α = 99%

1 GARCH-N <0.0001 <0.0001 0.9416*

2 EGARCH-N <0.0001 <0.0001 0.9600**

3 GJR-N <0.0001 <0.0001 0.9554*

4 GARCH-t <0.0001 <0.0001 0.9064*

5 EGARCH-t <0.0001 <0.0001 0.113***

6 GJR-t <0.0001 <0.0001 0.9592**

α = 95%

1 GARCH-N <0.0001 <0.0001 0.8697

2 EGARCH-N <0.0001 <0.0001 0.8456

3 GJR-N <0.0001 <0.0001 0.8611

4 GARCH-t <0.0001 <0.0001 0.8611

5 EGARCH-t <0.0001 <0.0001 0.8456

6 GJR-t <0.0001 <0.0001 0.8611
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Table A.2: p-values of unconditional and conditional coverage tests for each model

Model LR CC (%) LR UC LR IND

α = 99%

1 GARCH-N 0.9853** 0.9741** 0.9384*

2 EGARCH-N 0.7482 0.5491 0.8613

3 GJR-N 0.9851** 0.9743** 0.9384*

4 GARCH-t 0.7484 0.7474 0.8612

5 EGARCH-t 0.8313 0.5492 0.8663

6 GJR-t 0.7482 0.5491 0.8611

α = 95%

1 GARCH-N 0.6793 0.3162 0.8531

2 EGARCH-N 0.9981*** 0.9994*** 0.8992

3 GJR-N 0.7411 0.5911 0.8443

4 GARCH-t 0.6783 0.3093 0.8531

5 EGARCH-t 0.9462* 0.9461* 0.8532

6 GJR-t 0.8684 0.7572 0.8994

Note: CC represents the conditional coverage test, UC denotes the unconditional coverage test and IND

is the independence test. These tables present the p-values for each model. Equations for the tests are

presented in this chapter. *Denotes significance at the 10% level. **Denotes significance at the 5% level.

***Denotes significance at the 1% level.
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Figure A.1: 10-day VaR-forecast for 2008–09 period: (t) α = 1% (b) α = 5%.
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Figure A.2: 1-day VaR-forecast for the Global Financial Crisis period: (t) α = 1%
(b) α = 5%.
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Figure A.3: 10-day VaR-forecast for the period after the Global Financial Crisis
period: (t) α = 1% (b) α = 5%.
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Figure A.4: 1-day VaR-forecast for the period after the Global Financial Crisis period:
(t) α = 1% (b) α = 5%.
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