
Linus Håkansson & Filip Larsson

Developing a Workflow for
Cross-platform 3D Apps
using Game Engines

Master's Thesis

Department of Design Sciences
Lund University
ISRN:LUTMDN/TMAT-5171-SE

EAT 2013

Developing a Workflow for Cross-platform
3D Apps using Game Engines

(Master Thesis)

Linus Håkansson
ic08lh1@student.lth.se

Filip Larsson
ic08fl7@student.lth.se

June 18, 2013

Master’s thesis work carried out at
the Department of Design Sciences, Lund University.

Supervisor: Joakim Eriksson, joakim.eriksson@design.lth.se

Examiner Gerd Johansson, Gerd.Johansson@design.lth.se

mailto:ic08lh1@student.lth.se
mailto:ic08fl7@student.lth.se
mailto:joakim.eriksson@design.lth.se
mailto:Gerd.Johansson@design.lth.se

Abstract

Cross-platform developing is not a new approach. However, consid-
ering it is common for developers to release an application exclusively
for a single platform, the use of cross-platform developing is noticeably
low. In this master’s thesis, aspects regarding the development of a
cross-platform 3D application is examined and discussed. A comparision
between different motion capture systems used for character animations
is presented along with a pipeline for the process of creating a character
to be used in a mobile application. This thesis also provides guidelines
and recommendations for independent game developers.

Keywords: Unity, Kinect, cross-platform, Qualisys, game

2

Acknowledgements

We would like to thank the Lund University Humanities Lab (Humlab) and espe-
cially Carolina Larsson and Stefan Lingren, for guidance with- and access to the
Qualisys Motion Tracking System. We would also like to thank our supervisor
Joakim Eriksson for guidance and support throughout the thesis. For helping us
with iOS testing related issues, we would like to thank Mattias Wallergård. Finally,
we would like to thank our girlfriends Linn and Emelie for their love and support
throughout the thesis and for Emelie’s contribution of art and design to the user
interface.

3

4

Contents

1 Introduction 7
1.1 Purpose and Problem Description . 8
1.2 Outline . 8

2 State of the art 9
2.1 Platforms . 9

2.1.1 iOS . 9
2.1.2 Android . 10

2.2 Game Engines . 11
2.2.1 Licencing . 12
2.2.2 Unity . 14

2.3 Animation . 18
2.3.1 Motion Capture . 18

2.4 Character Design . 21

3 Design and Implementation of an Example Collection 27
3.1 Game functionality . 27

3.1.1 Mini games . 28
3.1.2 Matchmaking and User Community 34

3.2 Cross-platform development . 36
3.2.1 User interface . 36
3.2.2 Server architecture . 37
3.2.3 Deployment . 39
3.2.4 Performance . 40

3.3 Character Design . 41
3.3.1 Base modelling . 41
3.3.2 High polygon modelling . 42
3.3.3 Retopology . 42
3.3.4 UV mapping . 43
3.3.5 Texturing . 44

5

CONTENTS

3.3.6 Rigging and weights . 44
3.3.7 Other Software . 45

3.4 Animations . 48
3.4.1 Motion Capture . 48
3.4.2 Mecanim/Animation transitions 56

4 Conclusion and Discussion 61
4.1 Animation . 61

4.1.1 Mecanim . 63
4.2 Cross-platform Development . 63
4.3 Character Design . 65
4.4 Future Work . 65
4.5 Final Conclusions . 65

Bibliography 67

6

Chapter 1

Introduction

A common problem for developers today is the extra effort, knowledge and time
needed to develop an application or a game that runs on several different platforms.
This often results in a single platform release, which leads to the product only being
able to reach out to a limited part of the target group. A common example of this
phenomenon is to be found in the smartphone application market where the two
biggest platforms Google Android and iOS hold 75 % respectively 17.3 % of the
market (however these percentages do not represent the annual income of app sales)
[1].

Cross-platform developing is not a new approach. However, considering it is
common for developers to release an application exclusively for a single platform,
the use of cross-platform developing is noticeably low. There is a big variety of
cross-platform 3D engines available on the market such as Unreal Development Kit,
Unity and ShiVa3D.

An important part of 3D game development is animations, and more specifi-
cally character animations. Two of the greatest difficulties when integrating the
animations in a game engine are generating graphically smooth transitions between
different animations and also the advanced scripting that is required for the differ-
ent animation state transitions. However, Unity recently released Unity 4. Unity 4
comes with the new animation system called Mecanim, which has built in functions
that are meant to simplify the tasks mentioned above.

When creating character animations in a third-party program, a common ap-
proach in both the video and the game industry is to record an actor’s movement
and apply it to the virtual character. There are different ways to record such move-
ment. The more advanced techniques require a lot of expensive equipment, such
as a passive or active marker system, which results in a higher quality. Another
cheaper and more primitive option is to record the movement using a semi-passive
imperceptible marker, for example with a Microsoft Xbox 360 Kinect.

Creating a 3D character for a game is a very time-consuming process, which

7

1. Introduction

requires a lot of practice and skills using a lot of applications. For an independent
(indie) game developer this can be a very expensive development part, since it
requires a good designer working full time with the character.

It should be noted that material created in this thesis will only be used for edu-
cational purposes and are never to be used for any commercial reasons whatsoever.

1.1 Purpose and Problem Description
The main purpose of this thesis is to develop a network cross-platform 3D appli-
cation using the game engine Unity. Another purpose is to provide guidelines and
recommendations that could be used either by an educational institution or by in-
die game developers facing economical or efficiency related issues discussed in this
thesis. This thesis will also investigate and answer the following questions, related
to the problems described in the introduction:

• What pipeline is the fastest, most efficient and most economical to develop a
fully rigged character?

• What difficulties occur and what differences exist that are related to cross-
platform development in general and in Unity?

• How does a Microsoft Kinect compare to a Qualisys system for motion capture,
when recording character animations?

• Is Unity’s Mecanim a good tool for managing different animation transitions?

1.2 Outline
Chapter 2 gives a brief explanation of the major subjects which are discussed in
this thesis, such as multiple platforms, game engines, motion capture techniques
and character creation. How these subjects were dealt with and how the implemen-
tation of the application proceeded is explained along with presentation of results
in Chapter 3. In Chapter 4, the questions asked in the problem description is an-
swered and the implementation process of the application discussed, before the final
conclusions are being made.

8

Chapter 2

State of the art

2.1 Platforms
A platform is an underlying computer system which allows an application to run.
Windows and OS X are examples of platforms on personal computers. For mo-
bile platforms, Android, iOS and Windows Phone are the main competitors on the
market. This thesis will focus on the two mobile platforms Android and iOS.

2.1.1 iOS
iOS is a mobile operating system developed by Apple Inc. powering devices such
as the iPhone, iPad and iPod touch which are also created by Apple. By creating
both software and hardware Apple obtains a greater control over the performance
of their devices, making sure the software works perfectly.

In order to develop applications for iOS, the iOS SDK (Software Development
Kit), which was released in February 2008, is needed. The SDK itself is free to
download, but in order to release applications for the iOS, enrolment in the iPhone
Developer Program is needed. This will cost US$99 as an enrolment fee once a year.
The SDK can only be installed on a Mac running Mac OS X[2]. Free development
and testing is limited to an iOS emulator on the Mac. If the application is to
be tested on a physical device, the enrolment in the iPhone Developer Program is
required.

Some of the different devices which use iOS have few different resolutions, shown
in Table 2.1.

There are big differences in performance between the old and the latest de-
vices. The oldest devices are not supported in modern game engines such as
Unity. More details about the performance of the different devices can be seen
on http://www.iphonebenchmark.net/.

9

2. State of the art

Table 2.1: Screen resolutions for different devices running on
iOS

device pixel resolution
iPhone/3g/3gs and iPod touch 1/2/3 320 x 480 pixels

iPhone 4/4s and iPod touch 4 640 x 960 pixels
iPhone 5 and iPod touch 5 640 x 1136 pixels

iPad /2/Mini 1024 x 748 pixels
iPad 3/4 2048 x 1536 pixels

Devices running on iOS only has one single physical button. In order to navigate
in an application running on iOS, virtual buttons are needed. According to the iOS
Human Interface Guidelines, a navigation bar enables navigation through different
views and, optionally, management of the content of the views. In the navigation
bar, a back button should be located in the top left corner. The back button should
be labelled with the previous view’s title. In the centre of the navigation bar there
should be a title corresponding to the current view. The title should change to the
new view’s title if the view is changed. The navigation bar should only contain the
back button, the current title of the view and a control that manages the view’s
content [3].

Figure 2.1: iOS navigation bar

2.1.2 Android
Android is an operating system designed for mobile devices. It was developed by
Android Inc. and later bought by Google. Android is an open platform, making it
possible for other companies to use and customise the operating system in order to
suit the companies hardware. For creating applications to be run in Android, the
programming language Java is mainly used.

Since there is a wide variety of hardware which uses the Android operating
system as its platform, there is a lot of different resolutions running on different
devices. The most common resolutions are listed in Table 2.2, however, there also
exists other resolutions which are not present in the table.

Android applications can be developed on Windows, Mac OS X and Linux.
Developing an Android application requires the Android SDK. The development of
an application is free to try, but when publishing an application for Google Play, it
will cost US$25 as a registration fee.

A big problem with Android is that with the open platform, a company can
design a brand new phone but use cheap hardware. This will limit the number
of supported phones by an application. Especially a modern 3D application must
define which devices that are not supported by the application.

10

2.2 Game Engines

Table 2.2: Common screen resolutions for different devices
running on Android

Name pixel resolution
QVGA 240 x 320
HVGA 320 x 480
WVGA 480 x 800
qHD 540 x 960
HD 1280 x 720
FHD 1920 x 1080

WXGA 1280 x 800
WQXGA 2560 x 1600

An application running on Android can use either physical and/or virtual navi-
gation buttons on the phone. Like for iOS, an Android application should contain
a virtual back button, in Android called an up button. If there also is a physical
back button on the device, this will result in possible navigation through both the
up button in the application, and the device’s physical back button. The up button
should be visible if there exists a screen which is positioned one step above the cur-
rent view in the navigational hierarchy. This will result in the starting page in the
application not having any up button. The device’s physical back button should be
used to navigate in reverse chronological order. The up button will ensures that the
user stays in the application, the physical back button however can be used to ei-
ther close the application or to switch to another application. As for the navigation
bar in iOS, Android’s equivalence is called the action bar. The action bar should
contain the icon of the application, together with the up button, in the left part of
the bar. Next to the icon there should be a view control that allows the user to
switch between views. If the application does not support different views, this space
could be changed into a non-interactive component such as a label of application
title. The action buttons are located next to the view control and enable users to
perform different action on the application such as editing settings. If there is a
lot of action buttons, an action overflow button will appear, containing the buttons
which did not fit in the action bar [4].

Figure 2.2: Android Action Bar

2.2 Game Engines
A game engine is a system or framework used by a developer to create games or ap-
plications. Such a framework provides functionality for some of the most crucial and

11

2. State of the art

common components in a typical game. Some of the most common functionality that
a game engine provides are physics handling, user input, rendering, animation and
scripting. The idea and purpose of a game engine is to prevent the developer from
recreating standard components and functionality that have already been created
in a previous, similar game. Instead, the developer is provided with a framework
that allows the developer to put more focus on the creation of the game content.
The game content, or the game assets, refers to the collection of scripts, textures,
animations, sounds, models, etc. that will be used within the game engine to create
the graphical and functional content of the game [5].

There is a wide variety of game engines available with different pros and cons,
but due to the scope of this thesis, only game engines that support 3D, iOS and
Android will be of interest. These requirements leave out some other popular game
engines such as CryENGINE 3 and Torque 3D. The most common and popular
game engines that fit into the description are Unreal Development Kit (UDK)/
Unreal Engine 3, ShiVa 3D and Unity. A very crucial and deal breaking factor to
look at when deciding which game engine to use is the licencing. Since each game
engine company uses different methods of licencing, this is not an easy process.

2.2.1 Licencing
UDK offers a completely free licence for educational and non-commercial use. Here,
the term non-commercial refers to whether a released game is making revenue or
not. This means that a game that is completely free and without any commercial
aspects such as advertising or in-game content, is allowed to be released with the free
UDK licence. The platforms that this free licence covers are limited to Apple iOS
and Windows. If the UDK will be used to develop and release games or applications
for commercial purposes, a commercial licence is available for US$99 per year. This
commercial licence is not paid per-seat, instead, the licence could be used either by
a single developer or a team of developers from the same company. There are no
restrictions regarding the number of different games that are developed and released
under the licence. However, the company has to pay the creators of UDK, Epic
Games, 25% royalty on the revenue of the games or applications developed with
UDK. This royalty only apply to revenues that exceed US$50000. If, for example,
a company earns US$60000 from a game developed with UDK, that company must
pay US$2500 to Epic Games because of the 25% royalty applied on the US$10000.
For larger companies with more experienced and professional developers, there is an
option to licence Unreal Engine 3. The differences between the UDK and the Unreal
Engine 3 is that, though the UDK uses the same features as the Unreal Engine 3,
an Unreal Engine 3 licence includes the underlying source code to the engine. Ad-
ditionally, a full Unreal Engine 3 licence can release games for Adobe Flash, Google
Android, Microsoft Xbox 360, Mac OS, Sony PlayStation 3, Sony PlayStation Vita
and Nintendo Wii U. The price for this licence is not officially known due to the
owner of the licence being under a NDA (Non-Disclosure Agreement) with Epic
Games [6] [7] [8] [9].

Unity has a different licence system to that of UDK. As for UDK, a free licence
exists. This free licence does not include all the features of Unity, but games devel-

12

2.2 Game Engines

oped by the free licence can be sold without any per-title fee or royalties. However,
companies that exceed an annual revenue of US$100000 will not be licenced with a
free licence and need to purchase the full version of Unity. For developers that wish
to take advantage of the full feature set of Unity, a licence called Unity Pro could be
bought for US$1500. This licence applies only to one specific individual and is not
allowed to be shared with other developers, regardless of them being in the same
team or company. However, one licence is valid for two different computers, used
by the individual. The free licence of Unity gives the developer the possibility to
develop games and applications for PC, Mac, Linux, Adobe Flash, Microsoft Xbox
360, PlayStation 3, Nintendo Wii U, Google Native Client, Web Player, Apple iOS
and Google Android. It should be noted that development for Wii U, Xbox 360 and
PlayStation 3 requires approval from the specific platform holder, this is also the case
for development with Unreal Engine 3. Two additional licences exists for Unity, iOS
Pro and Android Pro. Each licence brings additional features to the development for
the respective platform which neither the Unity free nor Unity Pro includes. Both
licences are priced at US$1500 each and requires the Unity Pro licence. With that
said, a developer who wishes to take full advantage of the features of development
for Google Android, needs to purchase the Unity Pro and Android Pro licences for
a total of US$3000. Additionally, Unity offers a so called Team Licence, priced at
US$500. The Team Licence does not require Unity Pro. The licence gives the user
access to the built in Unity Asset Cache Server and Unity Asset Server, giving the
developer features of reducing asset import time and using team collaboration [10]
[11] [12] [13] [14] [15].

The ShiVa3D Engine offers a free web edition of their ShiVa Editor for download.
The web edition has very few restrictions when it comes to features of the game
engine itself, however, it only allows for publishing the material to the web browser.
For the other supported platforms Nintendo Wii, PC, iOS, Android, Palm WebOS
and Blackberry, publishing is restricted to testing purposes only. If a developer
wishes to publish for those platforms, a Basic licence is required. The Basic licence
has a price of US$400 and is valid for one machine only. ShiVa3D also offers an
advanced licence, which includes more features than the free and basic versions.
These additional features include SVN (subversion) support, LOD (level of detail)
and plug-in export. The Advanced licence is priced at US$2000 and is, like the Basic
licence, only valid for one machine. Neither the Basic nor the Advanced licences have
any publishing fees, royalties or revenue restrictions [16].

When looking at the different licences for Unity, UDK and ShiVa3D, a conclu-
sion can be made about the minimum price one has to pay in order to be able to
release commercial games for both the iOS and Android platforms. For Unity, if
the assumption is made that the game will not revenue more than US$100000, the
need is met with the free licence since it allows publishing for both the iOS and
Android platforms. Additionally, Unity Technologies will not demand any royalties
or other fees from the profit of possible sales. If we instead look at the UDK, it is
a bit more complicated. A big problem here is that neither the free nor commercial
licence allows games being published to Android. The solution would be to apply for
a full Unreal Engine 3 licence but since that licence is meant for larger companies,
it is out of the scope of this thesis. Finally, the ShiVa3D Engine require a Basic or

13

2. State of the art

Advanced licence in order to allow publishing for the iOS and Android platforms.
The cheapest solution here would be to purchase one Basic licence and, since the
licence is bound to one machine only, share that machine amongst the development
team. This solution would cost US$400.

The decision of which game engine to use in this thesis went to Unity based on
three important factors. First and foremost, the US$400 price difference between
Unity and ShiVa3D is a deal breaker due to the almost nonexistent budget of the
project. Secondly, Unity has a larger community than ShiVa3D. Finally, Unity is
a natural choice since the writers of this thesis does not have hands-on experience
with UDK or ShiVa3D.

2.2.2 Unity
Unity, developed by Unity Technologies, is the most used mobile game engine by
developers according to a survey published in an issue of the Game Developer Mag-
azine. In the survey, 53.1% of the developers used Unity when releasing applications
for iOS and Android [17]. A selection of games developed in Unity and released on
both iOS and Android are: Temple Run 2 and Bad Piggies [18].

The most vital part of the Unity engine is the integrated editor (Figure 2.3).
Here, the Game View functions as a WYSIWYG (What You See Is What You Get)
preview of how the game will look and function. To manipulate objects in the scene,
the Scene View window lets the user move, rotate and scale objects that are already
in the scene. To insert objects into the scene, the user could drag and drop objects
into the scene either from the Project View or the Hierarchy View. The Hierarchy
View is a list of all objects and assets that are currently in the chosen scene. In order
to modify or place objects into the scene, the assets must be accessible and placed
inside the project folder, showed in the Project View. The last of the standard Views
in Unity is the Inspector View. This view lists all the components that are currently
attached to a selected asset, i.e. transform, animation and script components.

The Unity engine supports the use of three different programming languages
namely C#, Boo and JavaScript. All languages are running on the Open Source
.NET platform Mono, and can be written and debugged in Mono Develop, the IDE
(Integrated Development Environment) that comes with Unity [19].

Mecanim
As of Unity version 4, which was released in November 2012, a powerful animation
technology called Mecanim is included [20]. Mecanim gives the user functionality
to setup and control animations for a character inside the Unity editor. There are
two types of character types supported by Mecanim, namely humanoid and generic
characters. A humanoid is a character that resembles the appearance of a human
being whereas a generic character has no predefined bone structure, centre of mass
or orientation. If a generic character is to be used with Mecanim, some of the
elementary features provided by Mecanim will not be available. A simple example
of a generic character is a dog. When a humanoid character is to be imported to
Unity and used with Mecanim, Mecanim creates an Avatar. An Avatar is an interface

14

2.2 Game Engines

Figure 2.3: The Unity editor showing the Game, Scene, Hier-
archy, Project and Inspector Views

which translates the characters bone structure to the bone structure understood by
Mecanim. Figure 2.4 shows a successful translation mapping between the Mecanim
bone structure and the actual bones in the character.

When a character has been successfully created with an Avatar, Mecanim allows
the user to tell the game engine how and when different character animation clips
should be played. For more information on animation clips, see Section 2.3.3. A
powerful tool within Mecanim is the Animator component. In the Animator compo-
nent, different states and layers are defined and controlled. A state in the Animator
component corresponds to the specific set of actions and the environment of the
character in the game. For example, a state defined as ’Idle’ could correspond to
a scenario in the game where the character is not moving at all. In this particular
state, a looped animation clip of an idle motion could be applied to the state, forc-
ing the character to play that animation while in the ’Idle’ state. In order for the
character to perform another action of movement, another state must be defined.
For example, if the character is supposed to run, a state called ’Running’ could be
created, holding a clip of a looped running motion. Also, transitions between the
two states must be defined, allowing the character to switch between the idle motion
and a running motion. A transition is controlled by one or more conditions that
have to be met in order to switch between the states. A condition is controlled by
a user defined variable which in turn is controlled by a script. As for the example
with the two states, the transition from the ’Idle’ to ’Running’ state could be trig-
gered if the condition of the user defined variable ’Speed’ is greater than a specific
value. Figure 2.5 demonstrates an example of how a layer with different states and
transitions will look like inside the Animator component.

Another powerful feature of the Animator component is the Blend Trees. A
Blend Tree could be created inside a state to replace the current animation clip

15

2. State of the art

Figure 2.4: The Mecanim’s Avatar Configuration, mapping
the character’s bone structure to Mecanim’s bone structure.

in that state. For example, the ’Running’ state’s running motion clip could be
replaced by a Blend Tree, see figure 2.6. The newly created Blend Tree could
then include a multiple number of motion clips i.e., ’RunForward’, ’RunLeft’ and
’RunRight’. When the ’Running’ state i active, the Blend Tree plays one of its
motion clips depending on a user defined variable. In this example such a variable
could represent the direction of the run in order to let the character run left, right or
forward accordingly. If the value of the direction variable is in the middle between
the threshold values of two motions, say ’RunLeft’ and ’RunForward’, the animations
will blend into a dynamic animation which interpolates between the two motions.
This feature results in smooth and dynamic transition motions between different
animation clips [21] [22] [23] [24] [25] [26] [27] [28].

16

2.2 Game Engines

Figure 2.5: The Mecanim’s Animator component, showing
an example of different animation states and the transitions
between them.

Figure 2.6: The Mecanim’s Animator component, showing an
example of a Blend Tree including three different animation
clips.

Graphical User Interface

Graphical User Interface (GUI) is an interface that lets the user interact with the
application through graphical objects like buttons and images. Unity offers imple-
mentation of such an interface through its own UnityGUI. With UnityGUI, the user
is able to access the GUI class in order to create a Graphical User Interface. Exam-
ples of controls that are supported with the UnityGUI are labels, textures, buttons,
textfields and pop-up windows. Though UnityGUI offers great features for develop-
ers, the UnityGUI is officially not recommended for use in mobile applications. The
reason for this is because of how the UnityGUI functions. Whenever a GUI object
is to be used or displayed on the screen, a script must call the OnGUI() function.
This call will be made several times per frame hence requiring additional processor
time and eventually decreasing the performance of the application [29] [30] [31] [32]
[33]. With the purpose of solving this issue for mobile platforms, several third-party
GUI frameworks exist. The three most popular ones are EZ GUI from Above and
Beyond Software, Next-Gen UI (NGUI) developed by Tasharen Entertainment and
prime[31]’s UIToolkit. With EZ GUI and NGUI being priced at US$199 and US$95

17

2. State of the art

respectively, this thesis only focuses on the free UIToolkit framework [34] [35] [36].
The UIToolkit lets the user create interactive 2D-objects with one single draw

call, instead of several per frame. In order to get textures working with UIToolkit
and Unity, the free version of the software TexturePacker could be used. Tex-
turePacker is a software which takes multiple textures and outputs a single, com-
pressed, texture called a sprite sheet. Along with the sprite sheet, a data file called
a sprite atlas is generated. The sprite atlas file contains information and coordinates
of every texture that is currently present in the sprite sheet. There is a few per-
formance related reasons behind packaging multiple textures into one single sprite
sheet instead of importing each and every texture by itself into the game engine [37]
[38].

2.3 Animation
A simple explanation of what an animation is could be given as “Animation is a
sequence of images, with slight differences from one image to the next, that gives
the impression of movement.”

3D animation originates from 2D animation, but includes one more dimension.
When animating in 3D, the developer will have to consider all of the different angles
in order to have a good understanding of the animation, which makes the view-port
in the 3D animation program very important. Time is the most important factor
of animation. In animation, frames are used to measure time. The measurement of
animation time is defined by the number of frames existing within a second of an
animation. The standard number of frames in a second differs between geographical
locations and the purpose of the animation. 24 frames per second (fps) is used
in films, 30 frames per second is the standard in North American (NTSC) and 25
frames per second is the European standard (PAL). When creating 3D animations in
a computer, a common term that is used is key frame, the name originates from key
in 2D animations, where the key position was the picture which the lead animators
drew. The assistant animators then drew the frames in between two key frames.
In a modern animation software, the key frames are frames where the key positions
of different objects are set. Frames between two key frames will be automatically
predicted and generated [39].

2.3.1 Motion Capture
Motion capture, often referred to as MoCap, is the process of recording an entity’s
movement. MoCap has a variety of usage and system types but will, in this thesis,
only be discussed in relation to computer animation and optical systems. When
MoCap is used in the fields of film making or software development, a common
process is to record the movement of a human actor, then using the recorded data
in order to create animations to digital character models. Optical motion capture
systems can be further divided into marker based and marker less systems.

In a marker-based optical motion capture system, markers are placed on the
object which motions will be recorded. The markers are either reflective (passive)

18

2.3 Animation

or light emitting (active). Passive markers are made of reflective material and shaped
as spheres. The size of the markers depends on the resolution of the cameras and
what is to be recorded. Smaller markers are used for facial and hand captures and
larger markers are used for captures of the rest of the body. The markers are placed
directly on the subject’s skin or clothes. Alternatively, the markers can be attached
to a MoCap suit, making the marker setup phase faster and easier. Cameras in a
passive system both have an emitter and a receiver in order to track the positions of
the markers. In an active system, the markers will illuminate, either one at a time or
all at the same time using different amplitudes and frequency modulations for each
marker. Both marker systems are sensitive to different lighting conditions, especially
a passive system using natural light. Marker-based systems require an environment
of at least two cameras to detect the markers 3D-positions, however three or more
cameras are preferred to achieve better accuracy. If a marker is covered by a body
part, making the marker hidden from all cameras, there will be a loss of data from
the recording. There are different editing techniques to fix this, but when too many
markers are covered, or if the time which the marker has been hidden is too long, it
will not be easy to fix the problems related to the loss of data [40].

Marker-less Motion Capture Systems use advanced computer vision to identify
and track subjects without the need of special suits or markers. Instead, computers
use advanced algorithms to track motion in real time. Marker less systems have
a few advantages over marked-based systems, for example the environment setup
is faster. It is also easier for children to use a marker-less system since no special
suits or markers are needed. The difficulties, however, is in implementing accurate
tracking algorithms that perform good enough results in real time usage [41].

The data recorded in a motion capture session is then used for the characters
in a game. The recorded data will be applied to a rigged skeleton, which is the
framework that moves and makes the character come alive. When applying the
motion capture data to the skeleton, the easiest pose to work with is the T-pose. In
the T-pose, the subject to be recorded will face forward to the camera with the arms
straight out and with the palms down. The feet should be about shoulders’ width
apart. The body pose will now resemble a T. In a motion tracking application, the
recorded data will be mapped to a skeleton. This process will be initialised on a
frame where the subject is in a T-pose for easier mapping between the data and the
skeleton. [40].

Kinect
The Microsoft Xbox 360 Kinect is a device that lets the users use their body as a con-
troller. By identifying the positions of the user’s body parts, the user’s movements
can be used to control a character in a game or to record animations.

The Kinect has an infra-red light projector and a receiver to measure the time
for the light to reflect on an object. This will result in a depth map with the size of
320x240 pixels at 30 frames per second. The Kinect also has a regular RGB colour
camera with the resolution of 640x480 pixels. The Kinect is an example of a marker
less motion capture system [42]. The cost of a Kinect is US$99.

An external program is needed in order to record animation data from the Kinect.

19

2. State of the art

Since this thesis investigates recordings made from both one and two Kinects sen-
sors, only software supporting animation recording from two or more sensors are
of interest. Two software that match such a requirement are nuiCapture Animate,
developed by Cadavid Concepts, Inc and iPi Recorder, developed by iPiSoft LLC.
nuiCapture Animate is priced at US$399 and iPi Recorder Basic Edition is priced at
US$595. Both companies offers a trial version of their respective software with nu-
iCapture Animate trial version including a capture session limitation of 30 seconds
and iPi Recorder being available for free (the program iPi Mocap Studio is needed
to analyze the recorded data and comes with a 30 day trial including all features of
the Basic Edition.) Neither of the trial licences are allowed for commercial purposes
[43] [44][45] [46].

Qualisys
The Qualisys Motion Capture System system is a marker-based optical motion cap-
ture system. In this thesis, the Qualisys system at Lund University Humanities Lab,
which consisted of eight cameras at 240Hz for tracking, used. The complete system
was priced at approximately SEK 1 000 000. Things needed to make a recording in
the lab are:

• A recording computer (always prefer the faster stationary Qualisys computer),
with Qualisys Track Manager (QTM)

• Motion tracking cameras, including power cables and ethernet cables.

• Camera mounting equipment, tripods and/or poles.

• A data cable (Ethernet-to-parallel if stationary computer, otherwise the Ethernet-
to-PCMCIA-card if laptop).

• Markers

• Calibration kit (calibration frame and a wand, sized depending on size of
measurement volume).

• Double-sided tape for placing markers. A blanket to reduce glare from table
or other equipment in the room.

The cameras should be placed in a way so that at least three of the cameras can
see the intended markers all times.

A software called Qualisys Track Manager is used to record and export the data
as a motion file to Autodesk MotionBuilder [47]. Before recording, a calibration of
the system is needed in Qualisys Track Manager. This is done by using a calibration
wand to make sure all the cameras are seeing the markers used in the recording
session.

20

2.4 Character Design

Figure 2.7: The Qualisys calibration wand

2.4 Character Design
When creating a character for a game there is often a predefined workflow or pipeline
which includes a lot of steps. The pipelines can be very different, however there are
usually similarities for the different steps. Some of the most common steps include
concept design, base modelling, high poly modelling (sculpting), low poly modelling
(retopology), unwrap, texturing and rigging/skinning. The company Zero Point
Software A/S has created a game called Interstellar Marines [48]. On their website,
they present the pipeline that is being used when creating characters for their games.
This pipeline will be the inspiration of the workflow used in this thesis regarding the
creation of a character. The first step of creating a character is to come up with a
concept. A concept can be a painting or sketch, illustrating the desired appearance
and theme of the finished character.

Figure 2.8: Conceptual art of a character used in the game
Interstellar Marines

The next step is base modelling. In this step, the base model should consist of a
rough model, with the proportions and shapes fairly correct while still keeping the
geometry simple. This step is usually done in a 3D computer graphics software such
as Blender and Autodesk 3ds Max. Blender is a free and open source software used
for modelling and creating animated films, visual effects, interactive 3D applications
or video games under the GNU General Public License [49]. 3ds Max is similar to

21

2. State of the art

Blender, but has more advanced features and is not free to use. 3ds Max is priced
at e4485 [50] [51].

Figure 2.9: The base mesh used for the character in the In-
terstellar Marines game

After the base model has been created, a high poly model is to be made. This
can be done by sculpting the base model to add more detail to the character, for
instance wrinkles. Due to the introduction of high level details, this step can be very
time-consuming. The sculpting process can be described as shaping a low polygon
virtual clay mesh into a high polygon detailed clay mesh. This process is often done
in Zbrush, Sculptris, Mudbox or Blender. Both Zbrush and Sculptris are made by
Pixologic. Sculptris is completely free, but Zbrush is priced at US$699 [52] [53] [54].
Mudbox is developed by Autodesk and has a price of e795 [55][56].

Figure 2.10: A high polygon model in the Interstellar Marines
game.

The next step is to create a model which similar to the base mesh uses fewer
polygons than the high polygon model. This is done by creating a type of low
polygon shell on top of the high polygon model. The reason behind this is that
the high polygon model will have too many vertices, resulting in performance issues
when the application is running on a mobile platform. By reducing the level of

22

2.4 Character Design

detail and number of polygons in the modelling program, the details applied in the
previous step will be lost, hence reducing the quality of the character. However, a
solution reducing the loss of quality will be presented in the steps to follow. In order
to create the low polygon shell on top of the high polygon mesh, a new mesh is
created. This step is often called retopology and can be executed in several different
ways. There is a program called 3D-Coat that can do this process automatically,
but the software comes with the price of US$349. Retopology can also be done in
Blender, ZBrush, 3ds Max or Topogun, priced at US$100. If it is done manually, the
new mesh’s vertices are attached to the high polygon mesh. Then, the new mesh
creates big polygon squares on top of the high polygon mesh’s surface. The larger
the created squares, the less detailed surface is made. On areas that need lower
quality, such as the torso and back, bigger squares are created compared to squares
that surface more detailed areas such as eyes and nose. When working with mobile
platforms, this is one of the most crucial steps. Lower polygon count will result in
a model more suitable for mobile devices, but with lower quality. The number of
polygons and the quality will have to be adapted correctly for each project [57].

Figure 2.11: A retopologized mesh of the character used in
the Interstellar Marines game

When the retopology process is done, an unwrap needs to be applied to the mesh.
An UV map resembles the complete surface of the low polygon model and consists
of a flat 2D image. The surface of the low polygon model can be split into several
different parts which are all then assembled into one UV map. This map will be
used as the base for the next steps when baking the colour map and the normal
map.

Texturing is the next step. Here, both the high polygon and the low polygon
models are used to create a normal map. A normal map is a method of faking
bumps and dents in order to create more details without increasing the number of
polygons.The normal map is created by baking the high polygon model’s surface onto
the low polygon model using the coordinates from the UV map. When importing
and applying the normal map onto the low polygon character in the game engine,
the low polygon character will almost contain the same amount of details as the
high poly character, but with a vastly reduced number of polygons. Additionally,
a colour map will be generated. A colour map contains the texture that has been

23

2. State of the art

Figure 2.12: An UV map of the surface on the character used
in the Interstellar Marines game.

painted on the character [58].

Figure 2.13: The texturing made in Interstellar Marines game,
showing both the normalmap and the colourmap.

When the design and modelling of the character is complete, the character needs
to be rigged and skinned in order to be able to use with animations inside a game
engine. Character animation is the most advanced type of animation. Unlike a tree,
a character not only needs to be able to move, it also must be able to express itself
and show emotions. To rig the character, a skeleton built together by different bones
needs to be added to the character. The bones need to be attached to the character
using a skin modifier. This process is to ensure that the geometry surrounding the
bones deforms properly when the skeleton moves. In 3ds Max, a skeleton could either
be created by adding and connecting different bones to each other or by creating
a Biped component, which is a predefined two legged skeleton. Similar approaches
can be made in Blender with either a separate bone connection approach or with
Blender’s equivalence of Biped, the Rigify system. When a skeleton has been created
and placed in order to fit with the proportions and anatomy of the character, the
bones must be skinned to the character. In 3ds Max, a Skin modifier is used. With
the modifier, each bone will have to be adjusted with envelopes and weights to
connect the correct vertices to the bone for that specific body part [39].

24

2.4 Character Design

Instead of making the character design process manually, there are tools to gen-
erate a fully rigged and skinned low polygon character with corresponding maps.
Such a program is MakeHuman, which is an open source tool for making 3D charac-
ters. All of the content created with MakeHuman is licensed under the CC0 license.
This will give artists a really high freedom of using the creations from MakeHuman
in any way imagined. Another tool available is called Project Pinocchio and is cre-
ated by Autodesk. The Project Pinocchio is similar to MakeHuman but does not
have the same possibilities of making the character unique. With Project Pinocchio
the appearance of a character is defined by editing parameters corresponding to the
differences between two already defined characters. There are also other programs,
but with limited licenses and heavy price tags. Some of those programs are DAZ
Studio, made by DAZ Productions and Poser, made by Smith Micro Software [59]
[60] [61] [62].

25

2. State of the art

26

Chapter 3

Design and Implementation of an Example
Collection

In order to illustrate the workflow, a collection of game examples were developed

3.1 Game functionality
The basic idea of the game example collection is to challenge other users in a tic-tac-
toe based adventure game. When facing another user in a game, a tic-tac-toe board
is created consisting of nine empty squares. Behind each square hides an unknown
mini game. When the user who is drawn to make the first play on the board, decides
to play one of the nine squares, the hidden mini game presents itself for the user in
a new scene. The different mini games are explained in greater detail below. In a
mini game, the user is first given instructions on how to play the game along with
information regarding eventual high scores for that level. When the user is ready
to play the mini game, a timer starts to count down. Before the time runs out, the
user should collect as many points as possible in that mini game. Some of the mini
games can also end prematurely if the user fails with a specific action. When a mini
game has been completed, the square corresponding to the finished mini game will
update with an icon showing the owner of the square along with the score that needs
to be beat in order to overtake that square. The name of the mini game behind a
square is only visible to a user which has already played that particular square on
the corresponding board. A square could be overtaken by a user if the highest score
for that square is beaten. The highest score for a square could also be updated if
a user is already the owner of a square but wishes to improve the score that the
opponent needs to beat. As with standard tic-tac-toe rules, a game is won by a user
if he or she owns three squares in a row. An example of how the game board could
look is presented in Figure 3.1. The initial placement along with the spawning of

27

3. Design and Implementation of an Example Collection

objects in each mini game has a factor of randomness resulting in a uniquely looking
mini game each time a mini game is played.

Figure 3.1: The tic-tac-toe board shown on an Android device.

3.1.1 Mini games
Though the tic-tac-toe game consisted of nine different squares resulting in nine
different mini games, hi-fi prototypes were made for 13 different mini games. The
mini games were then evaluated by a group of 12 participants. Each participant had
to remove four of the mini games, in no particular order, which he or she did not
wish to be included in the game. The result of the evaluation is shown in Table 3.1.
Based on the evaluation, four of the mini games were removed. The mini games not
developed further and instead removed from the game, were internally called Brick
Breaker, Bomb Game, Boat Race and Obstacle Run.

Below are the presentation of the mini games that were selected after the eval-
uation. Each mini game is described in greater detail regarding the goals, controls
and scoring system. The mini games Wall Jump, Throw Game and Rolling Stones
are the most developed mini games in terms of features, assets and design. The
Tightrope and Bowling games are also very close to completion. However the Co-
conut, Car, Raft Jump and Whack a Mole games require some more development
before they are to be fully integrated into the game.

Wall Jump
The object of this game is to get as many points as possible by getting as far up
in the sky as possible. The character moves up in the sky by jumping on platforms
and springs spawned throughout the sky. Bonus points could also be collected by
acquiring bubbles which are present on some of the platforms. The platforms have
different properties. A standard platform has a fixed position in the sky and if the

28

3.1 Game functionality

Table 3.1: User evaluation results.

participant game
participant 1 Brick Breaker, Bomb Game, Boat Race, Obstacle Run
participant 2 Bomb Game, Car, Boat Race, Wall Jump
participant 3 Raft Jump, Bomb Game, Obstacle Run, Whack A Mole
participant 4 Brick Breaker, Bomb Game, Whack A Mole, Obstacle Run
participant 5 Bomb Game, Obstacle Run, Boat Race, Brick Breaker
participant 6 Raft Jump, Bowling, Tightrope, Obstacle Run
participant 7 Brick Breaker, Boat Race, Throw, Obstacle Run
participant 8 Boat Race, Bomb Game, Obstacle Run, Coconut
participant 9 Coconut, Obstacle Run, Boat Race, Brick Breaker
participant 10 Brick Breaker, Boat Race, Raft Jump, Obstacle Run
participant 11 Obstacle Run, Bomb Game, Bowling, Brick Breaker
participant 12 Rolling Stones, Car, Boat Race, Obstacle Run

character lands on the platform it will give the character a vertical boost. Depending
on a random factor along with the height of the character, some platforms with a
moving behaviour might be spawned. These platforms will move back and forth on
the horizontal axis between two fixed positions. There is also a platform with a fixed
position that will be destroyed when jumped upon by the character. Finally, a fourth
platform exists, also with a fixed position. This platform contains a spring which, if
if jumped by the character, will give the character a vertical turbo boost. The mini
game will end if the time limit is exceeded or if the character falls downwards for a
long period of time.

A virtual joystick on the left side of the screen is used to move around in the
vertical-axis. If the character is grounded, the character will use a strafe motion
when moves. If the character is in the air, the character will move in a flying
behaviour.

Figure 3.2: A screenshot from the Wall Jump mini game.

29

3. Design and Implementation of an Example Collection

Throw

In this mini game, the objective is to hit as many birds and dolphins as possible
by throwing balls at the objects. Points are given when either of the objects are
hit, however, a dolphin is harder to hit than a bird therefore gives three times more
points if hit. This mini game also features a score combination system. When an
object is hit by the ball, the score given for hitting that object is multiplied with
how many objects the user has hit in a row. If the ball misses an object, the streak
is set to zero.

To throw a ball in the mini game, a screen swipe gesture is needed. The swipe
gesture is made by putting down the finger in the bottom of the screen and then
dragging it upwards in the desired angle. The velocity of the ball is calculated as
the time taken between the beginning of the swipe gesture and when the the finger
is released from the screen. The mini game will only finish when the time limit is
exceeded.

Figure 3.3: A screenshot from the Throw mini game

Rolling Stones

The objective of this mini game is to catch coins which are bouncing down towards
the character from a mountain. To increase the difficulty, large burning rocks are
also bouncing down the mountain. The player needs to collect coins in order to
acquire score but the user must also avoid getting hit by the rocks. The score in this
mini game are given when a coin is collected. If the coins are collected in a streak, a
multiplier will be added to the score of each coin collected with the same principles
as for the Throw mini game. The mini game will finish if the time limit is exceeded
or if the character is hit by a bouncing burning rock.

To move the character, a virtual joystick is used. Movement can only be done
with a strafing motion along the horizontal axis.

30

3.1 Game functionality

Figure 3.4: A screenshot from the Rolling Stones mini game

Tightrope
The objective in this mini game is to collect as many coins as possible. The coins
are placed on different platforms. By jumping between the platforms, coins are
collected. The user must also avoid to lose the balance and fall into the water. The
platforms will spawn with smaller and smaller sizes as the user progresses in the
mini game. In this mini game, the user controls the movement of a ball that rolls
forward with a constant speed. As for the combination systems of the Rolling Stones
and Throw mini games, if coins are collected in a streak, a multiplier will be added.
However if the user misses to collect a coin, the streak is reset. The mini game will
finish if the time limit is exceeded or if the ball falls into the water.

In order for the ball to move sideways, the accelerometer on the device is used.
The steering is done in the horizontal axis by tilting the device to the left or right.
To jump from one platform to another, a tap on the screen will make the ball jump.

Figure 3.5: A screenshot from the Tightrope mini game

31

3. Design and Implementation of an Example Collection

Bowling
This game’s objective is to get as many points as possible by hitting pins with a
bowling ball. There are three different objects that can spawn on the track. First
there is set of pins. If the ball hits a pin it might fall depending on the collision
speed and angle. Also, pins might fall by colliding with each other. The points are
given when hitting a set if pins as in regular bowling with a strike working as a
score multiplier. There is also holes in the ground being spawned on the track, if
the ball falls down such a hole, the mini game will finish. Finally, there are speed
boosts objects which will, on collision with the ball, boost the speed of the ball over
a period of time. The mini game will finish if the time limit is exceeded or if the
ball falls into a hole.

The controls of this mini game is the same as for the Tightrope mini game except
the ability to jump is not available in this game

Figure 3.6: A screenshot from the Bowling mini game

Coconut
This game is about catching as many coconuts as possible. A coconut is caught
if it falls into the basket carried by the character. When a coconut falls from the
sky, it will bounce one time on the ground for the player to have an extra chance
of catching it. Points are given when catching the coconut in the basket. If the
coconut is caught before bouncing on the ground, the points will be higher than if
there was a bounce before it was caught.

To move the character, a virtual joystick is used. Movement can only be done
with a strafing motion along the horizontal axis.

Car
In this game the user should drive a car around a randomly created track. The track
consists either of straight stretches, left turns and right turns.

32

3.1 Game functionality

Figure 3.7: A screenshot from the Coconut mini game

To steer the car, the virtual joystick is used in order to turn left or right. There
is also a throttle button and a break button which will power and break the car.

Figure 3.8: A screenshot from the Car mini game

Raft Jump
The objective of this game is to collect as many coins as possible. The coins are
located on floating rafts. In order to collect the coins, the character must jump
upon the rafts and catch the coins. The rafts float with different velocities and have
different sizes. The number of coins on each platform is also based on a random
factor. If a platform is hit by another platform, the platform with the lowest velocity
will sink into the water along with eventual coins on it. The mini game will finish
if the time limit is exceeded or if the character falls into the water.

A virtual joystick is used in order to move the character in the x and z-axis.
Also, a jump button exists to make the player jump between platforms.

33

3. Design and Implementation of an Example Collection

Figure 3.9: A screenshot from the Raft Jump mini game

Whack a Mole
The objective of this game is to whack as many moles as possible by hitting them
with a bat. The moles raises from their respective holes in random intervals. Some
moles stay up for a longer period of time than others, before going back down in
the ground again.

A virtual joystick is used in order to move the character in the x and z-axis.
Also, a whack button exists to make the character unleash a hit with the bat.

Figure 3.10: A screenshot from the Whack a Mole mini game

3.1.2 Matchmaking and User Community
When starting the game for the first time, the user is presented with a login screen
which allows the user to enter his or her user name and password in order to login.

34

3.1 Game functionality

If the user wishes to register a new account, the user could do so by proceeding to
the register forms. The login screen is showed in Figure 3.11.

Figure 3.11: The login screen containing forms for user name
and password along with buttons for login and registration of
a new account. This screen is identical for both Android and
iOS devices.

When the user is successfully logged in (whenever the application is started,
the user will be automatically logged in if an account is already connected to the
device and the remembered password is still valid) to the application, the main
lobby shown in Figure 3.14 is presented. Here the user can choose whether to start
a new game, access the board of a currently active or recently completed game
or use the navigation bar. The games are listed in different frames depending on
whether it is the user’s turn, the opponent’s turn or if the game is finished. The
navigation bar is visible on most parts of the application and contains navigation
for previous/back/logout and access to the friends screen and settings screen. If the
user chooses to start a new game it will be presented with the screen shown in Figure
3.12. In this lobby the user is able to start a new game against a random opponent,
accept eventual received challenges from friends or challenge a friend. The user is also
encouraged with a button to add a new friend. The game’s matchmaking system is
heavily inspired by popular cross-platform multiplayer games such as Wordfeud [63].
If the user decides to play against a random opponent, the application searches for
the user who has waited the longest period of time without being given an opponent
and matches that user to the user most recently requesting a game. If there is no
available opponent, the user’s newly requested game will be put in a waiting list
until the system finds a match. If the user instead decides to challenge a friend, the
challenged friend receives a challenge request from the user. If the friend accepts
the challenge request, the game will be accessible in the main game lobby for both
users. The challenge requests will be presented to the user in the main lobby.

If the user navigates to the friends list, either by pressing the friends icon in the
navigation bar or pressing the add new friend button in the start new game lobby,
the user is presented with the screen shown in Figure 3.13. Here, eventual friend
requests are shown along with a list of current friends. The user can either choose
to accept eventual requests available in the request list or to challenge a friend as
possible in the start new game lobby. Additionally, the user can add a friend by
typing in the friend’s user name and pressing the add friend button. If a user with

35

3. Design and Implementation of an Example Collection

Figure 3.12: The start new game lobby shown on an Android
device.

corresponding user name exists, a friend request will be sent to that user. If and
when the request is accepted by the other user, the new friend will be present in the
friends list.

Figure 3.13: The start new game lobby.

Apart from participating in challenges with friends and random games against
opponents, the game also includes a highscore system that lets the users compete
with themselves and against all other users. Before playing a specific mini game the
user is presented with instructions and highscores. Except for the score to beat in
order to overtake the square belonging to the mini game, the user’s personal best
score for that level is presented along with the user name and score of the world’s
best score for that level.

3.2 Cross-platform development
3.2.1 User interface
Creating the user interface was the biggest cross-platform development related issue
that was dealt with in this thesis. Normally when creating an Android application,
the user interface is created in an IDE, i.e. Eclipse, and designed in a graphical editor

36

3.2 Cross-platform development

and/or with an (Extensible Markup Language) file. This is often the ideal solution
because of the support of standard Android components, different types of layouts,
multiple screen sizes and easy navigation. For iOS, the equivalent of designing user
interfaces is the Interface Builder, integrated in the IDE XCode. Using these meth-
ods of designing separate user interfaces for iOS and Android would require some
type of integration of the Unity application with the XCode and Eclipse IDE’s. This
would not comply well with the goals and purposes of the cross-platform develop-
ment in this thesis because of the work needed to design two separate interfaces and
applications. Instead, the user interfaces of the game was designed and developed
inside Unity with the prime[31] UIToolkit framework. By using this method instead
of creating separate interface solutions in the respective IDE for every platform,
the amount of time and line of code needed to change something in the interface is
reduced. With this solution, almost the same code is run, independent of the plat-
form, in order to create the user interfaces. The guidelines and differences in the
interfaces between the two platforms are explained in section Platforms. In order
to comply with those guidelines, the application determines whether the device is
running on the Android or iOS platform and adds specific user interface components
to the generic interface based on the guidelines for that specific platform. An exam-
ple of this could be seen in Figure 3.14 respectively Figure 3.15. Here Figure 3.14
shows how the main lobby in the game looks like when using an Android device.
The same lobby is shown in Figure 3.15 but here on a device running iOS. In the
latter figure, some graphics and navigation components differ from those shown on
the Android devices in order to comply with the interface guidelines for iOS appli-
cations. Though some of the visual entities present are not exactly the same in both
figures, most of the components shown in the example is identical and is built with
the same code independently of the used device.

Figure 3.14: The main lobby of the game presented on a device
running on Android.

3.2.2 Server architecture
Unity comes with support for networked multiplayer with methods like State Syn-
chronisation and Remote Procedure Calls [64]. Except for Unity’s network support,
which is built upon the networking engine RakNet [65], there is a lot of networking

37

3. Design and Implementation of an Example Collection

Figure 3.15: The main lobby of the game presented on a device
running on iOS.

engines available that could be used with Unity i.e Photon Server [66] and Player.IO
[67]. However, the game developed in this thesis does not use Unity’s networking
features or any other networking engines. The reason for this is that those network-
ing features are mainly intended for active multiplayer applications where two or
more players interact in real time. Since this is not the case in the game in this
thesis, using those networking features would be excessive and inefficient. Instead,
the game’s networking is built mostly from scratch. The overview of the server ar-
chitecture is presented in Figure 3.16. In the client game application, information
is sent to a PHP Script located on the web host Binero [68]. The PHP Scripts
interpret the information sent from the game application before either manipulating
the database or retrieving information from it. Depending on whether the PHP
Script performed a manipulative or retrieving action on the database, the PHP
Script sends information to the game application. This information contains either
whether the manipulation was successful or not, or relevant information retrieved
from the database. Unlike real time multiplayer networking, the client-server com-
munication is not in real time. Instead, information between the client and server
is shared upon requests or in time intervals. For example, the states of the different
squares on a board is updated once every ten seconds but also each time the user
access the specific board. The server architecture in this game is completely plat-
form independent and does not need to know whether a client is using an iOS or
Android platform.

The server needs to handle features regarding user credentials, match making,
high scores and match status. A list of networking and multiplayer features in
the game is displayed in Table 3.2. The initiation of the database tables, along
with the action on them through PHP scripts, is made with the relational database
management system MySQL [69]. For managing and viewing the database, the web
browser tool phpMyAdmin [70] was used.

38

3.2 Cross-platform development

Figure 3.16: The Mecanim’s Avatar Configuration, mapping
the character’s bone structure to Mecanim’s bone structure.

Table 3.2: Networking and multiplayer features

type feature
user Create new user, return whether successful or not
user Login, return whether successful or not
user Add friend by name, return whether successful or not
user Accept friend request
user Challenge friend
user Accept a challenge from a friend
user Start new game against a random opponent
user Retrieve board and square information
user Play square, return whether allowed or not

matchmaking Find random open game and if one exists, join it
matchmaking If no games exist, create a new open game
matchmaking When challenging a friend, create a new game
matchmaking If accepting a challenge from friend, join that game
matchmaking Return game information regarding next turn and last action
matchmaking Return game information regarding next turn and last action
highscore Return the user’s high score for a specific level
highscore Update the user’s high score if improved
highscore Return the world high score for a specific level
highscore Update the world high score if improved
match Update and show the status of a recently played square and present the score
match Update user turns and match status when a square has been played

3.2.3 Deployment

Android

In order to develop on Android, the Android SDK was installed. When the in-
stallation was complete, the device that would be used was in need of drivers. On

39

3. Design and Implementation of an Example Collection

Windows, the drivers sometimes gets installed automatically otherwise they will be
needed to be downloaded manually. On Mac OSX there is no need of installing
drivers. On the device, USB Debugging was needed to be turned on, which only can
be enabled if the user is a developer on the device. When using an Android version
from Android Jelly Bean, developer options are hidden and will only appear if the
user taps on the build number in the settings menu six times. When the SDK and
device had been set up, Unity needed to recognise the Android SDK location. This
was done by specifying the SDK location in the Unity settings. When exporting the
application to an Android device, a number of settings were to be changed. First of
all, there must be a company name and a product name specified. Then an icon for
the game should be added. Also, the orientation of the game was to be specified,
whether or not the status bar should be hidden or visible had to be chosen, and the
minimum Android API level was chosen. There was also a lot more specific device
configurations like device filter, install location and graphics level. When all the
settings were made and the device was plugged in through an USB cable, building
the application resulted in the game starting on the device.

iOS
To be able to run the application on a device running iOS, a bit more setup was
required. First of all a developer license was needed to be able to push the application
onto the device. The operating system needs to be upgraded to the latest version,
since the latest XCode version was only supported in the latest OSX. When the
newest OSX was up and running it was time to download the latest iOS SDK from
the iOS dev center. The latest iOS SDK also included the latest version of XCode.
The next step was to connect the iOS device that would use the application and
launch XCode. XCode will detect the plugged in device and the device should be
selected to use for development. In XCode, an identifier code was not presented.
In the iOS dev center, a new device was added, holding the identifier code and the
corresponding device name. In the iPhone developer program portal, a certificate
was created with the application id and the device identifier code. This certificate
was imported and installed in XCode. Finally, after editing the settings inside Unity,
the application was built with Unity, resulting in an XCode project. The XCode
project was then opened inside XCode and built to the connected iOS device.

3.2.4 Performance
A problem with exporting to an Android device was the native Unity terrain. On
devices with Tegra and Mali-400 GPUs (Graphics Processing Unit), the terrain got
very pixelated as shown in Figure 3.17. On other devices with different GPUs using
the same terrain, the terrain had the correct appearance as can be seen in Figure3.18.
This hardware problem occurs because of the Tegra and Mali-400 GPU’s having too
low precision. To solve this issue, the camera in the game had to be set at a higher
distance from the terrain to make the eventual pixelisation less visible to the user.
Also, the resolution of the terrain texture was lowered.

When the native terrain asset in Unity had been replaced with a plane object

40

3.3 Character Design

holding a texture instead, the fps increased a lot. The drawback of this was that
the plane now used as a terrain did not look as good as the native terrain because
of its flat layout.

Figure 3.17: A part of the Unity terrain as seen on a device
using a Tegra or Mali-400 GPU.

Figure 3.18: A part of the Unity terrain as seen on a device
using a precise GPU.

3.3 Character Design
3.3.1 Base modelling
The base model was created in Blender. First of all, sketches of the concept was not
made. Instead, reference images were found and used as a background in Blender
[71]. After the background image had been inserted in the front view and the left
view, a vertex was placed in the centre of the belly on the background image. From
this vertex, a line was extruded up to the head. The extruded line contained several
breakpoints. When the centre line was done, a mirror modifier was added in order
to make the mesh symmetrical on both sides. When extruding from the neck out
to one arm, the other arm was identically extruded. The extrude was made out to
the arms and legs. When all the lines were completed, the skin modifier was added.
This added a cuboid around the line. To make this smoother, a subdivision surface

41

3. Design and Implementation of an Example Collection

modifier was added. With the modifiers placed, scaling the points from the lines in
the beginning in x, y and z-axis were made. This resulted in the base mesh looking
like Figure 3.19. In order to create a base hand, the end points on the arm was
extruded to a hand and fingers. Again, the skin modifier and subdivision surface
modifier was used. The same tools were used to extrude and create base feet.

Figure 3.19: The base mesh created in Blender.

3.3.2 High polygon modelling
When the base mesh was finished, the next step was to import the base mesh into
Sculptris. Here, the head was sculpted using different tools such as crease, scale,
draw, grab, smooth and pinch. Since the symmetry option was turned on, only
half of the head needed sculpting. All details on the head, except for the eyeballs,
was sculpted directly on the base mesh. The eyeballs were added in Scluptris by
creating two new spheres which were placed in the eye sockets. Using Sculptris, the
different body parts were sculpted in order to acquire accurate body proportions.
The finished sculpted head can be seen in Figure 3.20.

3.3.3 Retopology
When finished with the sculpting process in Sculptris, the high polygon mesh was
imported into Blender for retopologising. The imported high polygon mesh con-
sisted of 174194 triangles, which had to be vastly reduced in order for the character
to properly function on a mobile platform. First, a plug-in called Bsurfaces was
activated in Blender. When Bsurfaces had been activated, a new mesh in form of
a plane was added. The plane was then snapped to the high polygon mesh. From
this plane, using the grease pencil inside Blender, Bsurfaces would fill in a space on
the plane with quads. In the more detailed areas such as around the eyes, mouth,
nose and ears, a lot more quads was drawn compared to on areas which did not have

42

3.3 Character Design

Figure 3.20: The high polygon head, sculpted on the base
mesh in Sculptris.

as much detail, for instance the skull. A lot of the quads were made by extracting
other quads, since it was difficult to draw everywhere. When two quads met, a join
of the vertices was needed to be done to make the quads stick together.

Figure 3.21: Retopologising in Blender using Bsurfaces

3.3.4 UV mapping
When the retopology process was completed, an UV map was created. In order to
create the UV map, seams were needed to be added to the character in order to

43

3. Design and Implementation of an Example Collection

split the flat image into different pieces. In Figure 3.22, the seams are marked in
red, and resembles where the image will be cut. The seams were created along with
the edges of the quads.

Figure 3.22: An UV mapping of the character. The seams are
shown with a red colour.

When creating the normal map, both the low polygon mesh and the high polygon
mesh were selected. Then, the Baking tool in Blender was used to create the normal
map. This resulted in a normal map with sharp edges. The smooth edges tool was
needed for the normal map to become smoother, which can be seen in figure 3.23.

3.3.5 Texturing
The texturing of the character was made by painting the character directly in the
3D view in Blender and generating the texture map based on the previously created
UV map. The result can be seen in figure 3.24

3.3.6 Rigging and weights
When the character was created, there was just one final step before it could be
imported into Unity and used with animations, namely rigging of the character.
The whole rigging process was made in both 3ds Max as well as in Blender. The
first attempt was made in Blender using the Rigify plug-in. The skeleton was first
placed inside the character using manual fitting. Then, the generate button was
pressed, making Rigify automatically fitting the skeleton inside the character and
also skinning the character to the bones in the skeleton. The second attempt was

44

3.3 Character Design

Figure 3.23: The baked normal map of the character.

Figure 3.24: The baked texture map of the character.

made in 3ds Max. Here, the Biped tool was used. The biped skeleton could be
seen next to the character model in Figure 3.25. The predefined skeleton was then
manually fitted into the character before the Skin modifier was added. With the
envelope tool in the Skin modifier, the vertices had to be adjusted so that they
corresponded to the correct parts of the bones in the skeleton as shown in Figure
3.26.

3.3.7 Other Software
The Project Pinocchio was also tested to compare the manually created character
with an automatically generated character. To use the Project Pinocchio, an Au-
todesk account was needed. The tool is only available online and is used in a web

45

3. Design and Implementation of an Example Collection

Figure 3.25: Fitting the skeleton inside the character

Figure 3.26: Changing the envelope on the arm

browser. The account can be created instantly and used to login. When logged in, a
new character was created. First a reference character was selected. This reference
character was selected from a list of about 20 previously created characters. When
the reference character had been selected, a window with the option to change the
appearance of the character, see figure 3.27 was presented. Here, parameters cor-
responding to the differences between the chosen reference character and another
reference character was edited. When the body and face details were created, a
hairstyle and hair colour was selected. The next step was to select clothes for the
character. Here, a variety of shirts, pants and shoes could be picked, all with differ-
ent styles and colours. When the character was completed and ready for export, the

46

3.3 Character Design

height of the character, a low polygon resolution and a quad geometry was picked as
options. Also, a normal map, a texture map and a specular map was chosen to be
exported with the character. Finally, the export process was completed resulting in
a FBX file ready for use within Unity and Mecanim. Figure 3.28 shows a comparison
of the manually created character and the character created with Project Pinocchio.

Figure 3.27: The editor in Project Pinocchio

Figure 3.28: Comparison of the manually created character
to the left with the character created in Project Pinocchio to
the right in the Unity editor

47

3. Design and Implementation of an Example Collection

3.4 Animations

3.4.1 Motion Capture
This thesis deals with two different motion capture devices and techniques which
are described in greater depth in Section 2.3.1, namely Microsoft Xbox 360 Kinect
and Qualisys Motion Capture System. Here, the method and workflow of how the
character animations were recorded and processed is described. The motion capture
using Kinect was made with both one and two Kinect devices in order to compare
the quality between both options.

Kinect
The first motion capture setup was using one Kinect device. First, the Microsoft
Kinect SDK was downloaded and installed along with Microsoft .NET Framework
4.0. When using Windows 8, this was a required step for getting the Kinect devices
to work with the iPi Soft programs iPi Recorder and iPi Mocap Studio. Then, the
programs iPi Recorder and iPi Mocap Studios were downloaded and installed. A
30 days trial was activated. Figure 3.29 shows how the environment was setup for
the motion capture session using a single Kinect device. The free software iPi Rec
order lets the user record a depth and RGB (Red, Green, Blue) video of an actors
performance. Figure 3.30 demonstrates how a live frame looks like when recording
an actors performance with the iPi Recorder. An area in the frame that is covered
in a dark blue colour tells that the Kinect sensor is capable of determine precise
depth data from that area. A yellow area however tells that the Kinect sensor can
only determine some or no depth data in that area. The purple area seen on the
actor in the frame means that the depth data determination in this area is not as
good as it is in front of the actor, however, it is still quite good compared to the red
and yellow areas behind the actor.

Figure 3.29: The setup of the environment using one Kinect.

48

3.4 Animations

Figure 3.30: A frame in an iPi Recorder session showing the
depth and RGB video.

When a session had been recorded with the iPi Recorder, it was saved for use in
the iPi Mocap Studio. The iPi Mocap Studio analyzes the depth data recorded in
order to track the actor’s motion to a predefined skeleton. The predefined skeleton
is in a standard T-Pose when initiated, therefore it is recommended to begin each
session with the actor also in a T-pose. An example of how this can look is shown
in Figure 3.31. In the figure, no actual motion tracking has been made yet since the
purple actor depth data and the predefined skeleton is not aligned. Aligning these
was done by moving and resizing the skeleton until it was fairly aligned with the
depth data of the actor as shown in Figure 3.32. iPi Mocap Studio provides a feature
called Refit Pose which automatically aligns the skeleton with the actor depth data,
however this feature was best used after a fairly good manual aligning had been
made. When a good aligning was made, the software started to automatically track
the motion frame by frame, using the previous frames for prediction.

When a motion tracking session with iPi Mocap Studio was completed, the take
was exported as a Biovision Hierarchy (BVH) file which is a popular character anima-
tion file format. The BVH file was then imported into the Autodesk MotionBuilder
software as shown in Figure 3.33. After import, the imported animations was al-
ready playable inside the MotionBuilder software, however they were not ready for
use with Unity’s Mecanim. In order to achieve this, the skeleton shown in Figure
3.33 must be defined. To do this, the Skeleton button in Character Controls was
pressed as shown in Figure 3.34. Then, the bones in the skeleton needs to be mapped
to the definition of the character. This is simply made by selecting a bone of the
skeleton and right-clicking on the corresponding part of the body of the character
in the definition. A successfull mapping is shown in Figure 3.35. The final step
that was done before exporting was characterising the skeleton. This was done by
dragging the Character template from the Asset Browser on a bone of the skeleton
and selecting the Biped option in the pop-up window that appears. This step is
shown in Figure 3.36. Finally, the file was saved as a FBX file.

This thesis also examines the use of two Microsoft Xbox 360 Kinect devices for
recording with iPi Recorder. Some of the steps are very similar to the case when
using only one Kinect but additionally the process requires a calibration step. The

49

3. Design and Implementation of an Example Collection

Figure 3.31: A frame in iPi Mocap Studio showing the RGB
video (back), purple actor depth data (middle) and the pre-
defined skeleton (front).

Figure 3.32: A frame in iPi Mocap Studio showing the actor
depth data and the skeleton aligned together manually.

calibration step is needed for the software in order to calculate the distance and
angle between the both devices. The environment of the setup using two Kinect
devices is shown in Figure 3.37. The calibration was made by recording a special
calibration session in the iPi Recorder. In order to let the software calculate the
angle and distance parameters between the Kinect devices, the software looks to

50

3.4 Animations

Figure 3.33: Autodeks MotionBuilder after importing one or
several BVH files. The skeleton in the picture is automatically
created and corresponds to the skeleton present in the iPi
Mocap Studio.

Figure 3.34: Creating a Control Rig using the Skeleton button
in Character Controls.

identify a square like object which should be visible in both sensors. A side panel of a
computer case was used as the square object in the session to let the software identify
the object and, based on the object’s motion and location in the space, determine
the angle and distance between the Kinect devices. Figure 3.38 shows how a frame
in the calibration session inside iPi Recorder looked. In the frame shown in the
figure, the computer case panel is clearly visible in both Kinect sensors, allowing the
software to easier identify the object. In the calibration session, the object was also
waved in different directions and angles, allowing the software to make more precise
calculations of the position of the object. The calibration recording was then saved
for use in iPi Mocap Studio where a calibration project was created. In order for
the iPi Mocap Studio to use the recorded calibration video, a region of interest, that
covered a set of frames where the computer case panel was visible in both Kinect

51

3. Design and Implementation of an Example Collection

Figure 3.35: A successful mapping between the skeleton and
character definition.

Figure 3.36: The characterisation using a biped character
template.

sensors, was selected. Then the system started its calibration process. Figure 3.39
shows a frame in the calibration process with iPi Mocap Studio. In the figure, the
green dots is automatically showed when possible for the sofware to determine the
calibration object’s corners and centre. The calibration was then saved as a scene
file within iPi Mocap Studio.

When the calibration was done, as for with one Kinect device, the iPi Recorder
was again used to record the actor’s depth video session. A frame showing the actor
performing a move in the recording session is shown in Figure 3.40. Note that there
is now two depth videos compared to only one when using a single Kinect device.
When the session was recorded, the video file was saved and then opened in iPi
Mocap Studio. Here, an Action project was created using the calibration scene file
that was saved in the calibration step. The next steps for skeleton tracking, export
and characterisation in Autodesk MotionBuilder are identical to when using only
one Kinect device.

52

3.4 Animations

Figure 3.37: The environment setup using two Kinect devices
with an angle of 180 degrees between the devices.

Figure 3.38: A frame in the recording of the calibration pro-
cess.

Qualisys
The Qualisys Motion Capture System used in this thesis consisted of eight cameras.
The position, angle and height of each camera can be seen in Figure 3.41. Before any
recording was performed, Qualisys Track Manager, the software used to record and
track the motion, needed a calibration step. The calibration was done by moving and
rotating a calibration wand, explained and showed in Section 2.3.1. The actor had a

53

3. Design and Implementation of an Example Collection

Figure 3.39: A frame in the iPi Mocap Studio processing the
calibration data.

Figure 3.40: A frame of a record session in iPi Recorder using
two Kinect devices.

marker placement that was made by following a marker placement guide [72]. Figure
3.42 shows the reference picture of the marker placement that was used when placing
the different markers on the actor. When the recording sessions were completed, a
skeleton tracking similar to the skeleton tracking when using the iPi Mocap Studio,
was performed. Instead of aligning depth data with the bones of a skeleton as with

54

3.4 Animations

the case with the Kinect capture, the Qualisys system identified each marker in the
frame and mapped them to a skeleton. The skeleton was not predefined as with
the case with the one used in iPi Mocap Studio. Instead, the connection between
markers were defined in order to create bones between the markers. For instance, the
markers placed on the heel, ankle, innermost toe and outermost toe were connected
in Qualisys Track Manager to resemble a foot. Quite often, the motion capture
system lost track or identity of one or several markers in a frame. When a marker
was interpreted as unknown, the user had to identify the marker manually. For
instance, in Figure 3.44 the system was unsuccessful with determining the identity
of the marker placed on the ankle of the actor, resulting in a lost bone connection
between the foot and leg but also between the ankle, innermost toe and outermost
toe. To correct this, the system needs to be told the true identity of the unidentified
marker. In Figure 3.43, the marker has now been correctly identified and the correct
bone connections are applied.

Figure 3.41: Qualisys Track Manager showing all of the eight
cameras and the markers (red) placed on the actor.

When a session had been recorded and the actor’s motion applied to the skeleton,
the optical data was exported as a C3D file for use in Autodesk MotionBuilder. In
MotionBuilder, the optical data was mapped onto an Actor using the Actor tool.
The optical data applied to the Actor, along with the mapping between the Actor
reference marker structure and the markers used in the recording is shown in Figure
3.45. The structure of the Actor is not compatible with Mecanim because of the
Actor not being characterised. Instead, the rigged skeleton described in Section
3.3.6 was imported into MotionBuilder where it was characterised and had its bones
defined in the Character Controls as shown in Figure 3.46. Then the characterised
skeleton was modified so its Input Type was set to Actor. This had the effect of
aligning the skeleton to the Actor. The next step was to plot all the animation
takes to skeleton using the Actor as the reference. This was done by using the Bake
(plot) Skeleton tool in the Character Controls. Now that the animation takes were

55

3. Design and Implementation of an Example Collection

Figure 3.42: The reference picture illustrating how to place
the markers on the actor.

Figure 3.43: A frame in the session where the Qualisys system
is unsuccessful in identifying the identity of the marker placed
on the heel of the actor.

applied to the Mecanim compatible skeleton, the Actor could be deleted from the
MotionBuilder project. Finally, the project was saved as an FBX file for use in
Unity.

3.4.2 Mecanim/Animation transitions
When a FBX animation file was imported into Unity, the type of animation had
to be defined as a Humanoid in order for Mecanim to create a successful mapping
of the bones. In Mecanim, each animation that was recorded in a session had
to be manipulated before it was to be used within the game. First, a source take
containing a full recording of a certain type of motions, running motions for instance,

56

3.4 Animations

Figure 3.44: A frame in the session where all the markers are
identified, resulting in a correct connection of the bones.

Figure 3.45: A frame in the session where all the markers are
identified, resulting in a correct connection of the bones.

was selected. Based on that source take, different smaller clips were extracted, each
one representing a specific motion to be applied to a character. An example of such
a motion, that was extracted from the running motions source take, was the forward
run motion. In Mecanim, a starting and ending frame which would represent the
start and end point of the motion that was to be extracted, had to be chosen from the
source take. When the start and end frames have been selected and if the animation
is to be looped, Mecanim would tell whether or not the selected clip has a loop match
based on three different parameters. A green loop match is shown when the rotation,
y position and xz position of the character using the animation clip is similar for
both the start and end points. Figure 3.47 shows a clip where the character runs
forward, extracted from the source take holding all the run motions. In the figure,
the top three loop matches lights are green, however the light representing the xz

57

3. Design and Implementation of an Example Collection

Figure 3.46: A frame in the session where all the markers are
identified, resulting in a correct connection of the bones.

position is red. For a forward run motion this is a wanted behaviour due to the
fact that the z position must be changed in order for the character to actually run
forward in 3D space. This workflow had to be repeated for every single animation
clip that was extracted from a source take.

For every level in the game, a different Animator component was created and
placed on the character in the specific level. Figure 3.48 shows an example of how
the states and transitions in the Animator component were created in the game.
In the example, the Animator controls the character animations played in the Wall
Jump mini game. The standard state of the character animation in this game
is the Grounded state, active when the Grounded parameter is set to true and
the magnitude parameter is close to zero. In the Grounded state, an idle motion
animation clip is playing. From the Grounded state, the character will go into the
Strafe state if the magnitude is greater than zero and if the character is still on the
ground. If the character is not grounded, the state transitions into the InAir state
where the character is performing a flying-like motion. From the InAir state, there
might be transitions into the Falling, SmallJump and BigJumps states depending on
what happens in the game. Different Animator components with the same principles
was created for every mini game.

58

3.4 Animations

Figure 3.47: An animation clip showing a forward run motion.
Notice the loop match lights, telling the user whether the pose
is fitting for a loop or not.

59

3. Design and Implementation of an Example Collection

Figure 3.48: The Mecanim’s Animator component showing
the different states and transitions that were used in the Wall
Jump mini game.

60

Chapter 4

Conclusion and Discussion

4.1 Animation
When using a single Kinect device as the motion capture system, the workflow was
very easy and straightforward. The biggest problem with using only one Kinect
device was the loss of depth data when one or several of the actor’s body parts were
hidden behind other body parts. When this happens, a single Kinect is unable to
determine the position and motion of the hidden bones, resulting in very awkward
looking animations. On the other hand, using only one Kinect device allows for an
easier environment setup due to a small amount of required space.

Using two Kinects, facing each other with 180 degrees between them, almost
eliminates the problem of depth data loss due to hidden bones. However there are
cases when the problem is still present. If for example an actor faces one of the
Kinects, putting the arms in an arm-cross in front of the body, the Kinect device
behind the actor will not register any of the arms. The Kinect in front of the actor
will have a hard time calculating the arm that is hidden by the other arm. With
that being said, using two kinects greatly reduces such errors compared to when only
using one kinect but it should be noted that such errors might still exists in a motion
capture session using two devices. Also, the calibration steps needed when using two
Kinects are quite time-consuming. In a situation where the environment is changed,
for instance if one of the Kincets are moved, the calibration process must be done
all over again in order for the system to adapt to the new environment. When using
two Kinects, there are more requirements on the environment in terms of size and
structure of the room. When only one device is used, a smaller part of the room
needs to be freed from space compared to an environment using two Kinects. On
the other hand, the area where the actor’s movement is fairly accurately registered,
is greater when using two devices. Due to the dual depth videos provided by two
Kinect devices, the system makes fewer guesses of predicted bone positions than

61

4. Conclusion and Discussion

when using a single device, resulting in a an animation with greater quality and less
jitter.

The Qualisys Motion Capture System used in this thesis puts even more require-
ments on the environment. Firstly, the size of the room needs to be bigger than
the size of a room needed when using one or two Kinects. Secondly, managing and
storing the entities used in the system could be a big issue when there is a porta-
bility factor, mainly due to its many cameras. The calibration process is not as
time-consuming compared to the calibration used when using two Kinects. How-
ever, other parts of the process is more time-consuming compared to using Kinects.
Depending on the quality of the recorded data itself, the tracking process could
be more time-consuming than the iPi Mocap Studio’s tracking process when using
Kinects. The steps in MotionBuilder needed to make the animation ready for use
with Unity and Mecanim are more and complexer for the Qualisys system compared
to when using Kinects. This is because of the steps involving the Actor Tool and
the Actor to skeleton baking of the animations, not needed when using the Kinect
workflow. The quality of the animation however is greatly improved when using the
Qualisys system and the jitter is vastly reduced.

The question about how a Microsoft Kinect compare to a Qualisys system for
motion capture , when recording character animations to be used in a mobile game
application, can now be answered. This thesis finds that using a motion capture sys-
tem with two Microsoft Xbox 360 Kinects is the most feasible approach for an indie
game developer. This conclusion is based on two major factors. First and foremost
there is the economical factor. The Qualisys system used in this thesis had a price
tag of approximately SEK1 000 000 which is out of budget for many developers. This
can be compared to the cost of recording animations with two Kinects, using the
same workflow and software as in this thesis. That cost is approximately US$5000
based on the sum of prices for two Kinect devices (US$100 each) , the iPi Motion
Capture Basic Edition (US$595) and the Autodesk MotionBuilder (US$4195). Sec-
ondly, though the difference in quality and jitter between animations recorded with
Qualisys and Kinect devices are noticeable, it is not as of huge importance due to
the environment in which the animations are being played. If the animations were
to be used within a PC game, video game or in an animated movie, the quality of
the animations recorded with the Kinects would probably not be of enough quality
without hours of manual work with improving the animation quality. However, in
the mobile platform environment, this thesis conclude that the animations recorded
with two Kinect devices are, without any manual improvement of the quality, good
enough for indie mobile games. Animation recording with a single Kinect device
would, by using the workflow and software used in this thesis, cost approximately
US$4600 which is about US$400 cheaper than when using two Kinects. This solu-
tion is only recommended for animation recordings using very simple motions and
since using two Kinects is only eight percent more expensive, this thesis recommend
using two Kinect devices over one whenever the budget allows it.

62

4.2 Cross-platform Development

4.1.1 Mecanim
Unity’s Mecanim tool was very handy because of its many functions. First of all,
importing an FBX file that was exported from MotionBuilder using the workflow ex-
plained in this thesis, required no manual bone configuration because of the Mecanim
automatically recognising and mapping the bones. Also, Mecanim provided very
usable features when editing and managing the different animation clips. If an an-
imation session, recording different runs, had been captured using one single take,
Mecanim could use this whole take in order to create different animation clips from
it. For instance, a separate clip consisting of a looped forward run motion could
easily be extracted from the larger source take. Mecanim also provided good loop
tools for creating a good loop match in an animation clip. The transition and blend-
ing tools were also very powerful. The use of Unity’s Mecanim reduced the number
of other animation software needed in the workflow. The only negative aspect was
found when the FBX file was to be exported from Unity back into MotionBuilder.
The reason behind this action was because of how the optical data obtained from
the Qualisys capture was stored in the FBX file. When the optical data had been
used in MotionBuilder in order to create the Avatar in Skeleton (see Section 3.4.1)
it became redundant. However, the optical data was not deleted from the Motion-
Builder project before the FBX export to Unity was made. This resulted in a very
large FBX file due to the optical data size. When this was found, the FBX file
had already been processed with Mecanim, extracting and looping a large number
of animation clips from the original source takes. The extracted animation clips is
stored in the FBX file but are not exported in a way so that MotionBuilder recog-
nises it. This led to that if the optical data was to be deleted from the FBX file
inside MotionBuilder, the new exported FBX file would not contain the extracted
animation clips, resulting in a loss of many hours of work. The optical data was
actually present and shown as a file inside the Unity explorer but unfortunately it
could not be deleted.

This thesis conclude that Unity’s Mecanim is a very useful and handy tool that
contains all the features needed in this thesis in order to get the animation behaviour
correct. The possibilities of extracting and looping different animation clips from
a source take reduced the amount of necessary software, for instance bvhacker.
However, the management of the different files inside the the FBX file could have
been better implemented bearing in mind that the optical data could not be deleted.

4.2 Cross-platform Development
One of the greatest challenges relating to the cross-platform development in Unity
was the issue with the user interface. As using Unity’s native interface is officially
not recommended for use with mobile platforms, it came to using an external plug-in
to develop the interface. Due to economical reasons the decision went to prime[31]’s
UIToolkit. The use of the UIToolkit was quite complex due to several factors. First
and foremost, the support and community around UIToolkit is very limited and
the documentation of the C# implementation was not very deep. The process of

63

4. Conclusion and Discussion

getting the toolkit up and running was also quite complex. On the other hand,
many features were very powerful and the workflow was straightforward when using
the TexturePacker software to create sprite sheets. The positioning and parenting
features was very good when creating a user interface layout. Also, the UIToolkit in-
cluded more advanced functions that could be used by the interface objects in a more
dynamic environment such as colour blending and position animations. Though the
toolkit came with most of the common components used in a interface, the lack of
text fields were a disappointment. Instead, the native text fields had to be used
in the same environment as the UIToolkit. prime[31]’s UIToolkit is a good tool for
creating interfaces for mobile platforms but depending on the budget of a project,
a purchase of the EZ GUI or NGUI should be in consideration.

A great advantage when developing a cross-platform application with the Unity
game engine was the option to create a generic user interface within Unity. This
generic interface developed in this thesis determines whether the device running
the application runs on iOS or Android. The generic components is first created
and then based on the platform, the platform specific components are added to the
interface. This approach removes the necessity to develop two separate interfaces
within an iOS IDE respectively an Android IDE. Although the generic cross-platform
user interface approach is very effective in terms of time and lines of code, it lacks
the graphical interface tools available in IDEs such as XCode and Eclipse.

Unity provided good features to generate form data to post to web servers with
the WWW and WWWForm classes. Those classes were used with ease in order to
send and retrieve information between the Unity application and the PHP scripts
located on the web server.

Though this thesis has not made deeper investigation in the ShiVa3D and UDK
game engines, it can be concluded that economically, Unity is the best choice.

One of the most difficult aspects we experienced related to cross platform de-
velopment was the device deployment and testing. There is such a wide variety
of different devices, especially devices running on Android, with different hardware
and screen resolutions. In this thesis, all of the different devices and screen solutions
have not been tested. Also, since the user interface in the game is not fully adapted
to fit and look good on every device and resolution, there is no guarantee that the
application and especially the user interface, will look good on a particular device.

When testing the application on an Android device, the process was very straight
forward with a single build deploying the application to a device connected via an
USB cable. A more complex and time-consuming process had to be made when
testing on an iOS device. For more details about this see Section 3.2.3.

The database used with the game was created and manipulated with MySQL
through PHP scripts, which in turn were communicating with the Unity application.
Because of this generic setup, the network solution was platform independent and
no database related problems occurred in the thesis.

64

4.3 Character Design

4.3 Character Design
To create a character without having a background of art design, character sculpting
and character modelling is a tough task. The process involves many different steps
and many different softwares. The pipelines and workflows used to create a game
character is very different depending on which company that develops the character.
However, the pipeline and different steps used in this thesis could be viewed upon
as a guideline. This thesis found that creating a character from scratch without the
appropriate background, competence and resources was extremely time-consuming.
Therefore, it is instead recommended for indie developers who wishes to create their
own characters to look at other alternatives. If outsourcing this specific task to
another person or company is out of the budget, one can instead turn the attention
to free character creation tools such as MakeHuman and Autodesk’s Project Pin-
nocchio. This alternative comes with other limitations such as limitations regarding
the appearance, clothing and the structure of the character. If, however, an own
pipeline is to be used, this thesis concludes that using completely free softwares such
as Blender throughout the whole pipeline is feasible and very economical.

A problem with Blender’s Rigify tool was that the generated skeleton was not
fully compatible with Mecanim. 3ds Max’s Biped tool was more compatible with
Mecanim, however the weighting system is not as good as it is with Blenders’ Rigify.

4.4 Future Work
Since the game is not completely implemented, there is some work to do before the
game is ready to be released. First and foremost, only five of the nine mini games
are in a completed or close to be completed state. The other four games might need
three or four weeks of implementation before being considered as completed. Also,
some user related functions also need to be implemented before an eventual release.
The most important one being a password reset function.

Before releasing the game, more usability tests needs to be carried out on the
game in order to obtain more user input and detect more bugs. Tests focusing on
a wider range of devices and screen resolutions must also be performed. Finally, if
the game is to be released, content that has been produced using trial licences of
different software must be replaced by other content. This includes the animations
recorded with both the Kinect devices and the Qualisys system. Instead, there are
free animation files available that need to be used instead.

4.5 Final Conclusions
This thesis has presented the development of a cross-platform, multiplayer, 3D game
application. The thesis has not focused on the programming aspects of the game.
Instead, issues regarding cross-platform development (in general and especially for
Unity), animation techniques and character design workflow has been the main

65

4. Conclusion and Discussion

focus. These aspects has also been examined from an economical point of view in
order to provide recommendations and guidelines for indie game developers.

It is in this thesis concluded that Unity is a powerful and free game engine
which lets the user develop cross-platform games with very few platform specific
differences. A difference however is described regarding the implementation of user
interfaces. In the thesis, a generic user interface was developed inside Unity using
the free prime[31]’s UIToolkit plug-in. In order to comply with interface guidelines
provided by the companies behind both platforms, some dynamic adjustments are
being made dynamically on the generic interface depending on the running platform.
Unity also provided good support for connecting to a cross-platform independent
multiplayer network, using an external web server and database, which was also
implemented in this thesis.

The thesis investigated and compared three different motion capture systems and
techniques for use in recoding of character animations. It was concluded that using
a setup consisting of two Microsoft Xbox 360 Kinect devices was a cheap and good
enough solution for use in a environment not that dependant of animation quality,
such as a mobile platform.

As for the character design, this thesis explains the pipeline and workflow used to
develop a fully rigged human character that can be used in a 3D game. However, due
to complexity and time needed for an individual to create a good character without
having a character design background, some alternatives to creating a character from
scratch is described. This thesis concludes that, if an indie development team does
not have experience or knowledge regarding character creation, it is recommended
if deemed suitable to use automatically created characters. For instance with the
Project Pinnocchio software.

66

Bibliography

[1] John Koetsier. Windows phone jumps to third in global
smartphone market share — and could be second faster
than you think. http://venturebeat.com/2013/05/16/
windows-phone-jumps-to-third-in-global-smartphone-market-share-and-could-be-second-faster-than-you-think/,
May 2013.

[2] Apple Inc. ios developer program. https://developer.apple.com/programs/
ios/, May 2013.

[3] Apple Inc. ios ui element usage guidelines. http://developer.apple.com/
library/ios/#documentation/userexperience/conceptual/mobilehig/
UIElementGuidelines/UIElementGuidelines.html, May 2013.

[4] Google. Android design patterns. http://developer.android.com/design/
patterns/pure-android.html, May 2013.

[5] A. Thorn. Game Engine Design and Implementation. Foundations of game
development. Jones & Bartlett Learning, 2011.

[6] Epic Games. Udk licensing faq. http://www.unrealengine.com/udk/
licensing/licensing-faqs/, May 2013.

[7] Epic Games. Game developer licensing for unreal engine 3. http://www.
unrealengine.com/en/licensing/, May 2013.

[8] Epic Games. Unreal engine game platforms. http://www.unrealengine.com/
en/platforms/, May 2013.

[9] Epic Games. Udk commercial licence terms. http://www.unrealengine.com/
udk/licensing/commercial_license_terms/, May 2013.

[10] Unity Technologies. Unity - store. https://store.unity3d.com/products,
May 2013.

67

http://venturebeat.com/2013/05/16/windows-phone-jumps-to-third-in-global-smartphone-market-share-and-could-be-second-faster-than-you-think/
http://venturebeat.com/2013/05/16/windows-phone-jumps-to-third-in-global-smartphone-market-share-and-could-be-second-faster-than-you-think/
https://developer.apple.com/programs/ios/
https://developer.apple.com/programs/ios/
http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/mobilehig/UIElementGuidelines/UIElementGuidelines.html
http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/mobilehig/UIElementGuidelines/UIElementGuidelines.html
http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/mobilehig/UIElementGuidelines/UIElementGuidelines.html
http://developer.android.com/design/patterns/pure-android.html
http://developer.android.com/design/patterns/pure-android.html
http://www.unrealengine.com/udk/licensing/licensing-faqs/
http://www.unrealengine.com/udk/licensing/licensing-faqs/
http://www.unrealengine.com/en/licensing/
http://www.unrealengine.com/en/licensing/
http://www.unrealengine.com/en/platforms/
http://www.unrealengine.com/en/platforms/
http://www.unrealengine.com/udk/licensing/commercial_license_terms/
http://www.unrealengine.com/udk/licensing/commercial_license_terms/
https://store.unity3d.com/products

BIBLIOGRAPHY

[11] Unity Technologies. Unity software license agreement. http://unity3d.com/
company/legal/eula, May 2013.

[12] Unity Technologies. Frequently asked questions. http://unity3d.com/unity/
faq, May 2013.

[13] Unity Technologies. Unity for mobile. http://unity3d.com/unity/
multiplatform/, May 2013.

[14] Unity Technologies. Unity for console games. http://unity3d.com/unity/
multiplatform/consoles, May 2013.

[15] Unity Technologies. Unity collaboration. http://unity3d.com/unity/
collaboration/, May 2013.

[16] Stonetrip. Shiva editor. http://www.stonetrip.com/shiva-editor.html,
May 2013.

[17] Gamasutra. Mobile game developer survey leans heavily toward
ios, unity. http://www.gamasutra.com/view/news/169846/Mobile_game_
developer_survey_leans_heavily_toward_iOS_Unity.php, May 2013.

[18] Unity Technologies. Gamelist. http://unity3d.com/gallery/
made-with-unity/game-list, May 2013.

[19] Unity Technologies. Unity scripting. http://unity3d.com/unity/workflow/
scripting, May 2013.

[20] Inc Marketwire. Unity 4.0 launches. http://www.marketwire.com/
press-release/unity-40-launches-1726144.htm, May 2013.

[21] Unity Technologies. Unity animation. http://unity3d.com/unity/
animation/, May 2013.

[22] Unity Technologies. Animator component and animator controller. http://
docs.unity3d.com/Documentation/Manual/Animator.html, May 2013.

[23] Unity Technologies. Mecanim animation system. docs.unity3d.com/
Documentation/Manual/MecanimAnimationSystem.html, May 2013.

[24] Unity Technologies. Retargeting of humanoid animations. http://docs.
unity3d.com/Documentation/Manual/Retargeting.html, May 2013.

[25] Unity Technologies. Creating the avatar. http://docs.unity3d.com/
Documentation/Manual/CreatingtheAvatar.html, May 2013.

[26] Unity Technologies. Generic animations in mecanim. http://docs.unity3d.
com/Documentation/Manual/GenericAnimations.html, May 2013.

[27] Unity Technologies. Workning with humanoid animations. http://docs.
unity3d.com/Documentation/Manual/AvatarCreationandSetup.html, May
2013.

68

http://unity3d.com/company/legal/eula
http://unity3d.com/company/legal/eula
http://unity3d.com/unity/faq
http://unity3d.com/unity/faq
http://unity3d.com/unity/multiplatform/
http://unity3d.com/unity/multiplatform/
http://unity3d.com/unity/multiplatform/consoles
http://unity3d.com/unity/multiplatform/consoles
http://unity3d.com/unity/collaboration/
http://unity3d.com/unity/collaboration/
http://www.stonetrip.com/shiva-editor.html
http://www.gamasutra.com/view/news/169846/Mobile_game_developer_survey_leans_heavily_toward_iOS_Unity.php
http://www.gamasutra.com/view/news/169846/Mobile_game_developer_survey_leans_heavily_toward_iOS_Unity.php
http://unity3d.com/gallery/made-with-unity/game-list
http://unity3d.com/gallery/made-with-unity/game-list
http://unity3d.com/unity/workflow/scripting
http://unity3d.com/unity/workflow/scripting
http://www.marketwire.com/press-release/unity-40-launches-1726144.htm
http://www.marketwire.com/press-release/unity-40-launches-1726144.htm
http://unity3d.com/unity/animation/
http://unity3d.com/unity/animation/
http://docs.unity3d.com/Documentation/Manual/Animator.html
http://docs.unity3d.com/Documentation/Manual/Animator.html
docs.unity3d.com/Documentation/Manual/MecanimAnimationSystem.html
docs.unity3d.com/Documentation/Manual/MecanimAnimationSystem.html
http://docs.unity3d.com/Documentation/Manual/Retargeting.html
http://docs.unity3d.com/Documentation/Manual/Retargeting.html
http://docs.unity3d.com/Documentation/Manual/CreatingtheAvatar.html
http://docs.unity3d.com/Documentation/Manual/CreatingtheAvatar.html
http://docs.unity3d.com/Documentation/Manual/GenericAnimations.html
http://docs.unity3d.com/Documentation/Manual/GenericAnimations.html
http://docs.unity3d.com/Documentation/Manual/AvatarCreationandSetup.html
http://docs.unity3d.com/Documentation/Manual/AvatarCreationandSetup.html

BIBLIOGRAPHY

[28] Unity Technologies. Configuring the avatar. http://docs.unity3d.com/
Documentation/Manual/ConfiguringtheAvatar.html, May 2013.

[29] Unity Technologies. Gui scripting guide. http://docs.unity3d.com/
Documentation/Components/GUIScriptingGuide.html, May 2013.

[30] Unity Technologies. Unity ios basics. http://docs.unity3d.com/
Documentation/Manual/iphone-basic.html, May 2013.

[31] Unity Technologies. Gui basics. http://docs.unity3d.com/Documentation/
Components/gui-Basics.html, May 2013.

[32] Unity Technologies. Gui. http://docs.unity3d.com/Documentation/
ScriptReference/GUI.html, May 2013.

[33] Unity Technologies. Ongui(). http://docs.unity3d.com/Documentation/
ScriptReference/MonoBehaviour.OnGUI.html, May 2013.

[34] Above and Beyond Software. Ez gui. http://www.anbsoft.com/middleware/
ezgui/, May 2013.

[35] Tasharen Entertainment. Ngui: Next-gen ui. http://u3d.as/content/
tasharen-entertainment/ngui-next-gen-ui/2vh, May 2013.

[36] prime[31]. Uitoolkit. https://github.com/prime31/UIToolkit#readme, May
2013.

[37] Andreas Löw. Increasing your game’s performance. http://www.codeandweb.
com/what-is-a-sprite-sheet-performance, May 2013.

[38] Andreas Löw. What is a sprite sheet? http://www.codeandweb.com/
what-is-a-sprite-sheet, May 2013.

[39] Inc Autodesk and Autodesk. 3ds Max 9 Essentials: Autodesk Media and Enter-
tainment Courseware. Autodesk media and entertainment courseware. Taylor
& Francis, 2007.

[40] M. Kitagawa and B. Windsor. MoCap for artists: workflow and techniques for
motion capture. Focal Press. Elsevier/Focal Press, 2008.

[41] Organic Motion. What is motion capture? http://www.organicmotion.com/
products/openstage/motion-capture, May 2013.

[42] Computable Minds. Kinect: How works its 3d body tracking. http:
//www.computableminds.com/post/kinect/how-works/characteristics/
microsoft/xbox-360/3d-body-tracking, May 2013.

[43] iPi Soft LLC. Software. http://ipisoft.com/store/, May 2013.

[44] iPi Soft LLC. End-user licence agreement. http://ipisoft.com/EULA_
Studio.html, May 2013.

69

http://docs.unity3d.com/Documentation/Manual/ConfiguringtheAvatar.html
http://docs.unity3d.com/Documentation/Manual/ConfiguringtheAvatar.html
http://docs.unity3d.com/Documentation/Components/GUIScriptingGuide.html
http://docs.unity3d.com/Documentation/Components/GUIScriptingGuide.html
http://docs.unity3d.com/Documentation/Manual/iphone-basic.html
http://docs.unity3d.com/Documentation/Manual/iphone-basic.html
http://docs.unity3d.com/Documentation/Components/gui-Basics.html
http://docs.unity3d.com/Documentation/Components/gui-Basics.html
http://docs.unity3d.com/Documentation/ScriptReference/GUI.html
http://docs.unity3d.com/Documentation/ScriptReference/GUI.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.OnGUI.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.OnGUI.html
http://www.anbsoft.com/middleware/ezgui/
http://www.anbsoft.com/middleware/ezgui/
http://u3d.as/content/tasharen-entertainment/ngui-next-gen-ui/2vh
http://u3d.as/content/tasharen-entertainment/ngui-next-gen-ui/2vh
https://github.com/prime31/UIToolkit#readme
http://www.codeandweb.com/what-is-a-sprite-sheet-performance
http://www.codeandweb.com/what-is-a-sprite-sheet-performance
http://www.codeandweb.com/what-is-a-sprite-sheet
http://www.codeandweb.com/what-is-a-sprite-sheet
http://www.organicmotion.com/products/openstage/motion-capture
http://www.organicmotion.com/products/openstage/motion-capture
http://www.computableminds.com/post/kinect/how-works/characteristics/microsoft/xbox-360/3d-body-tracking
http://www.computableminds.com/post/kinect/how-works/characteristics/microsoft/xbox-360/3d-body-tracking
http://www.computableminds.com/post/kinect/how-works/characteristics/microsoft/xbox-360/3d-body-tracking
http://ipisoft.com/store/
http://ipisoft.com/EULA_Studio.html
http://ipisoft.com/EULA_Studio.html

BIBLIOGRAPHY

[45] Inc Cadavid Concepts. Purchase. http://nuicapture.com/purchase/, May
2013.

[46] Inc Cadavid Concepts. Trial. hhttp://nuicapture.com/download-trial/
download-nuicapture-animate-stable-version/, May 2013.

[47] Humlab. General knowledge base for using the qualisys 240hz system for mo-
tion tracking. http://wiki.humlab.lu.se/dokuwiki/doku.php?id=public:
motion_tracking#appendixtested_setups_and_lessons_learned, May
2013.

[48] Zero Point Software. Interstellar marines. http://www.interstellarmarines.
com/, May 2013.

[49] Blender. Blender. http://www.blender.org/, May 2013.

[50] Autodesk. Autodesk 3ds max 2014 purchase. http://store.autodesk.eu/
store/adsk/en_IE/pd/productID.269713600?mktvar004=ilt_wwm_emea_
ie_nc___3dsmax2014___, May 2013.

[51] Autodesk. Autodesk 3ds max overview. http://www.autodesk.com/
products/autodesk-3ds-max/overview, May 2013.

[52] Pixologic. Purchase zbrush. http://store.pixologic.com/
ZBrush-4R5-Single-User-License/, May 2013.

[53] Pixologic. Zbrush. http://pixologic.com/zbrush/, May 2013.

[54] Pixologic. Sculptris. http://pixologic.com/sculptris/, May 2013.

[55] Autodesk. Autodesk mudbox overview. http://www.autodesk.com/
products/mudbox/overview, May 2013.

[56] Autodesk. Autodesk store. http://store.autodesk.eu/DRHM/store, May
2013.

[57] T. Mullen. Mastering Blender. Wiley, 2012.

[58] Zero Point Software. Character modeling pipeline. http:
//www.interstellarmarines.com/articles/development/
character-modeling-pipeline/, May 2013.

[59] MakeHuman. Makehuman. http://www.makehuman.org/, May 2013.

[60] Autodesk. Project pinocchio. http://projectpinocchio.autodesk.com/,
May 2013.

[61] Daz 3D. Daz studio. http://www.daz3d.com/products/daz-studio/, May
2013.

[62] Smith Micro Software. Poser. http://poser.smithmicro.com/, May 2013.

70

http://nuicapture.com/purchase/
hhttp://nuicapture.com/download-trial/download-nuicapture-animate-stable-version/
hhttp://nuicapture.com/download-trial/download-nuicapture-animate-stable-version/
http://wiki.humlab.lu.se/dokuwiki/doku.php?id=public:motion_tracking#appendixtested_setups_and_lessons_learned
http://wiki.humlab.lu.se/dokuwiki/doku.php?id=public:motion_tracking#appendixtested_setups_and_lessons_learned
http://www.interstellarmarines.com/
http://www.interstellarmarines.com/
http://www.blender.org/
http://store.autodesk.eu/store/adsk/en_IE/pd/productID.269713600?mktvar004=ilt_wwm_emea_ie_nc___3dsmax2014___
http://store.autodesk.eu/store/adsk/en_IE/pd/productID.269713600?mktvar004=ilt_wwm_emea_ie_nc___3dsmax2014___
http://store.autodesk.eu/store/adsk/en_IE/pd/productID.269713600?mktvar004=ilt_wwm_emea_ie_nc___3dsmax2014___
http://www.autodesk.com/products/autodesk-3ds-max/overview
http://www.autodesk.com/products/autodesk-3ds-max/overview
http://store.pixologic.com/ZBrush-4R5-Single-User-License/
http://store.pixologic.com/ZBrush-4R5-Single-User-License/
http://pixologic.com/zbrush/
http://pixologic.com/sculptris/
http://www.autodesk.com/products/mudbox/overview
http://www.autodesk.com/products/mudbox/overview
http://store.autodesk.eu/DRHM/store
http://www.interstellarmarines.com/articles/development/character-modeling-pipeline/
http://www.interstellarmarines.com/articles/development/character-modeling-pipeline/
http://www.interstellarmarines.com/articles/development/character-modeling-pipeline/
http://www.makehuman.org/
http://projectpinocchio.autodesk.com/
http://www.daz3d.com/products/daz-studio/
http://poser.smithmicro.com/

BIBLIOGRAPHY

[63] hbwares. Wordfeud. http://wordfeud.com/, May 2013.

[64] Unity Technologies. Networked multiplayer. http://docs.unity3d.com/
Documentation/Manual/NetworkedMultiplayer.html, May 2013.

[65] Jenkins Software LLC. Raknet 4. http://www.jenkinssoftware.com/
features.html, May 2013.

[66] Exit Games. Photon server. http://www.exitgames.com/Photon/Unity, May
2013.

[67] Yahoo! Player.io. http://playerio.com/, May 2013.

[68] Binero AB. Binero. http://www.binero.se/webbhotell, May 2013.

[69] Oracle Corporation. Mysql. http://www.mysql.com/, May 2013.

[70] The phpMyAdmin Project. phpmyadmin. http://www.phpmyadmin.net/
home_page/index.php, May 2013.

[71] Dr Dan Saranga. Athletic male. http://www.the-blueprints.com/
blueprints/humans/humans/32708/view, May 2013.

[72] Carnegie Mellon University. Marker placement guide. http://mocap.cs.cmu.
edu/markerPlacementGuide.pdf, May 2013.

71

http://wordfeud.com/
http://docs.unity3d.com/Documentation/Manual/NetworkedMultiplayer.html
http://docs.unity3d.com/Documentation/Manual/NetworkedMultiplayer.html
http://www.jenkinssoftware.com/features.html
http://www.jenkinssoftware.com/features.html
http://www.exitgames.com/Photon/Unity
http://playerio.com/
http://www.binero.se/webbhotell
http://www.mysql.com/
http://www.phpmyadmin.net/home_page/index.php
http://www.phpmyadmin.net/home_page/index.php
http://www.the-blueprints.com/blueprints/humans/humans/32708/view
http://www.the-blueprints.com/blueprints/humans/humans/32708/view
http://mocap.cs.cmu.edu/markerPlacementGuide.pdf
http://mocap.cs.cmu.edu/markerPlacementGuide.pdf

	Introduction
	Purpose and Problem Description
	Outline

	State of the art
	Platforms
	iOS
	Android

	Game Engines
	Licencing
	Unity

	Animation
	Motion Capture

	Character Design

	Design and Implementation of an Example Collection
	Game functionality
	Mini games
	Matchmaking and User Community

	Cross-platform development
	User interface
	Server architecture
	Deployment
	Performance

	Character Design
	Base modelling
	High polygon modelling
	Retopology
	UV mapping
	Texturing
	Rigging and weights
	Other Software

	Animations
	Motion Capture
	Mecanim/Animation transitions

	Conclusion and Discussion
	Animation
	Mecanim

	Cross-platform Development
	Character Design
	Future Work
	Final Conclusions

	Bibliography

