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Abstract

Consider two gases being pumped into a container of some sort. How will they mix? How will they interact
with one another? And how do you model the mixing using a computer?

One way is to first divide the two gases into smaller groups called particles and then let these particles
interact with one another at random. Two of the models that is used today is CURL and Modified CURL.
They work well and the results are consistent with experimental data. One drawback with them is that
neither of them can handle mixing with two particles of different sizes. So here is presented a new model
based on CURL and Modified CURL but with the extension of handling particles of different sizes. To test
the consistency of these new models simulations are done using DARS, a product of LOGE.
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Abbreviations

CAD Crank Angle Degree.

MDF Mass Density Function.

PDE Partial Differential Equation.

SI Spark-Ignition.

SOI Start Of Injection.

SRM Stochastic Reactor Model.

TDC Top Dead Centre.

Nomenclature

CΦ Proportionality constant.

F The MDF.

P Pressure [Nm−2].

R Ideal gas constant ≈ 8.314[Jmol−1K−1].

T Temperature [K].

V Volume [m3].

Φ Vector of random variables.

Ψ Realization variable.

β CURL mixing model constant.

τ Characteristic time for mixing [s].

∗ Superscript indicating new particle.

A Subscript indicating particle A.

B Subscript indicating particle B.

c Concentration as mass fraction [:].

h Mass specific enthalpy [Jkg−1].

m Mass of container [kg].

n Number of particles [mol].

r Size ratio model [:].

rm Size ratio mixing 0 ≤ mB

mA
≤ 1 [:].

t Time [s].
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Chapter 1

Introduction

The fundamental principle of a combustion engine is a piston moving up and down inside a cylinder, being
powered by combustion by fuel. Diesel in a diesel engine and petrol in an SI-engine. A cycle in the engine
then happens in the following pattern: the piston starts in the bottom when the volume in the cylinder
is at is maximum and air is sucked in to the cylinder, the piston goes up and the pressure rises and as a
consequence the temperature also goes up to comply with the ideal gas law, PV = nRT . In modern engines
fuel is injected right before the piston reaches its maximum, called the top dead centre (TDC) and mixes
with the background gas, in older engines fuel was injected together with the background gas. At high
pressure and temperature, the fuel/air mixture is ignited. The resulting pressure increase forces the piston
downwards, converting chemical energy into rotational movement.

The reason one would like to model this is to understand how a system of chemical kinetic would behave
given an initial state. In the engine case this can be used to optimize fuel injection and the design of the
cylinder and piston without building a physical model.

To simulate this using a computer the background gas and the injected fuel needs to be discretised into
a set number of particles. To weave all the particles together into a continuous system the different particles
has to interact with each other. This is done by mixing the particles together. The models that are used
today, CURL [1] and Modified CURL [3], gives a good fit with experimental data but has one drawback.
The drawback is that both of them require that all particles are of the same size. Here two new models with
roots in CURL and Modified CURL will be presented that can handle particles of different sizes. The new
mixing models will behave as CURL or Modified CURL when the size ratio between two mixing particles is
1. Optimally there should be no need to retune different parameters when using the new models on cases
that has been tuned to fit experimental data with today’s models.

The reason why one would like to have a mixing routine that can handle particles of different sizes is
computational time. In the engine case the number of particles that make up the background gas could be
bigger, and thus fewer, while still maintaining a high discretisation in the injected gas. The total number of
particles will thus be lower and the computational costly simulations are done particle by particle and fewer
particles will then give faster runtime.
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Chapter 2

Theory

2.1 SRM

To model an engine in a computer, it needs to be discretized in a couple of ways. The background gas and
the injected fuel needs to be split up into groups called particles. The cylinder could be divided into smaller
containers, but in this model a 0-dimensional model is used and thus no discretization of the cylinder, and
lastly time. An order of operations is also needed for each time step. This is called operational splitting
[2] and gives a series of PDE:s that can be seen in 2.2. Those equations are then solved one by one and
the system is updated between each equation. A simplified version of which operations are used and in
which order they are executed are seen in the flowchart in figure (2.1). The initial step is how the system
looks when the simulation starts, with background gas sucked in to the chamber with a certain pressure and
temperature. Then the piston moves a small step and adjustment in volume affecting the system by the ideal
gas law takes place. Then the mixing takes place. In the time steps leading up to fuel being injected, the
system is rather homogeneous and the only differences is the random process of heat losses to the walls and
the following chemistry. Inhomogeneities in the system changes how the system works and the discretizised
particles need to interact to model the mixing effect of the gases. After fuel has been injected the fuel
mixes out to the background gas in this step. After that chemical reaction occur before heat is lost to the
surrounding walls. Then the piston advances one time step. All this is done using LOGE:s SRM-model and
code and all implementations of code are done directly into that system.

2.2 The Curl model and the modified Curl

In a paper published in 1963, [1], Curl presents a model of how to mix two fluids in a computer simulation.
The method presented in this paper is to divide the the two fluids into smaller particles that are of the same
size and contains either one of the two fluids. Then randomly pick two of these particles, put them together
into one and then split the resulting particle into two new particles with equal distribution of the content
in the first two particles. Then this step is repeated. If m is the mass of one of the two particles and cA is
the concentration of one of the fluids in particle A and cB is the concentration of the same fluid in particle
B then the concentration of that fluid in the new particles become

c∗A = c∗B =
mcA +mcB

2m
=
cA + cB

2
(2.1)

which is the mean of the two particles. This leads to that the number of different concentrations that the
particles can have after a certain number of mixing events being exactly 2n + 1. An illustration of how
these different concentrations occur can be seen in figure 2.3. A simulation of this using 100 particles can be
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Figure 2.1: A flowchart of the time steps in the model used, [4].
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Figure 2.3: A model showing the first possible concentrations for a particle to have after a few mixing events.
It is assumed that there is at least two particles of each fluid for the purpose of this picture.

Figure 2.4: A simulation of the Curl model using 100 particles with a 1:3 relation between the two fluids
that are mixed. After 50 mixing events the different discrete states of concentration can be seen clearly and
the width of each state also gives a hint about how probable it is to be in that state, in the next plot with
100 mixing events the effect is still visible but it has started to look continuous and in the last plot the effect
is only visible at a hand full of points. The y-axes represent the concentration of one fluid in each particle
normalized while the x-axes is the just the particle index sorted by concentration.

seen in figure 2.4 with snapshots after some mixing events have occurred without any chemistry happening
between the steps.

Two problems that exists with the standard Curl model is that there is a discrete number of concentrations
possible and that every particle that has been mixed always has a twin particle that looks exactly the same.
A solution to this was presented by Janicka et al in [3] were the Modified Curl was introduced to the world.
The basic idea of the new model is that only a fraction, h, of the involved particles are mixed and this h is
a uniformly distributed random number between 0 and 1. The equation for is mixing model then becomes

c∗A = cA + h(Φc − cA) (2.2)

c∗B = cB + h(Φc − cB) (2.3)

with Φc =
mcA +mcB

2m
. Since the particles are not mixing completely the same amount of homogeneity

as in CURL is not reached at each event. This needs to be compensated for when calculating how many
mixing events have occurred and when there is time to do some chemistry. This compensation can be either
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Figure 2.5: A simulation of the Modified Curl mixing model using the same set up as in figure 2.4 without
regarding that less mixing is happening in each loop and instead just counting the number of events. Here
the discrete states in the CURL model are not seen due to the incomplete mixing of particles. The y-axes
represent the concentration of one fluid in each particle normalized while the x-axes is the just the particle
index sorted by concentration.

to count each mixing event as a fraction equal to h of a standard Curl mixing or to double the number of
mixing events, this approach follows from E[U(0, 1)] = 1/2. A simulation of modified CURL similar to the
one for regular Curl can be seen in figure (2.5) with the lack of discrete levels easily spotted.

2.3 Turbulence

The amount of mixing that happens inside of the engine changes over time and specially it goes up when
fuel is injected due to the increase of turbulence that follows the momentum that the injected particles has.
This is modelled by the factor τ in the mixing part of 2.2. The dependence of τ regarding number of mixing
event is inverse proportional, so when τ grows the number of mixing event goes down. An example of a
τ -curve used later in during the simulations are seen in 2.6.
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Figure 2.6: A plot of τ against CAD. The decrease in tau at −8CAD corresponds to the start of injection
of fuel into the cylinder. Since the mixing of the gas prior to fuel injection is not of great importance, the
tau value at CAD < −8 has not been tuned.
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Chapter 3

A weighted model

As stated in the introduction the new weighted model should behave as either CURL or Modified CURL

when the ratio, (defined as rm =
mB

mA
with mA, mB being the weight of the mixing particles, A and B with

mA ≥ mb holds), goes to one. For example if a simulation injects fuel that is discretized to particles that are
smaller than those of the background gas, then CURL or Modified CURL will happen in the cases when two
background particles mixes or when two of the injected fuel particles mixes. As a consequence if the ratio is
set to 1 when starting the simulation it will be the same as running today’s versions of CURL and Modified
CURL but with some more calculations that becomes one. So it is not recommended to do so because of
the adding of computation needed and round off errors that might occur.

The other extreme, when the smaller particle becomes infinitesimal, or the larger particle goes to infinity,
this model goes to that the smaller particle doubles in size by taking a portion of it self from the bigger one.
This leads to that the bigger one having the same concentration as before and the smaller one being as in
the CURL model before it splits up into two. The idea behind this comes from thermodynamics and the
idea of a heat reservoir that is so so relatively large that it is unaffected by contact with the smaller body.

In between these two extremes interpolation happens and to understand it is easiest to split up the
process into three parts. The first is the CURL bit, and that will consist of a fraction equal to rm of the two
particles, the second is the moving from particle A to particle B and that is equal to the rest of particle B,
or (1 − rm) then lastly there is a portion of A left that will be left untouched. A flowchart with the steps
and pictures is located below in figure 3.1 with the resulting equations at each step and a visualization of
the particles masses split into a number of parts.

The modified CURL version of this model follows the main theory of the modified CURL and simply
just letting a fraction of each particle go into the mixing. A simulation of these two new models that have
been described here can be seen in figure 2.5 and 3.3

For these models to be consistent with other models there is need for a way to measure the impact of
each mixing event. The difference between the two is the same as between CURL and Modified CURL, that
is the weight of each mixing event in the new weighted Modified CURL is a fraction equal to h of the weight
that it would have been if the new weighted CURL had been used instead. The weight of each event in
weighted CURL is set to be the mass of the total except the non-mixing part A3 in figure 3.1.

Regarding the probability for particles to be selected at each mixing event is not uniform over all particles
but rather it is weighted with the size of each particle. This is to ensure that the fuel from the injected
particles are distributed into the system with the same speed as in today’s models. The only downside
with this is that a mixing of two background particles is as heavily weighted as r mixing events between

two injected particles and r2−r+2
2 time as heavy as a mixing between a background particle and an injected

particle. Here r is the size ratio that is set by the user for the simulation and is the ratio between the
background particles and the injected particles. Since the probability to chose either a background particle
or an injected one is the same as in CURL and Modified CURL it might become a problem that the mixing
events between two background gas particles are weighted too much. This might just be a small problem
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Figure 3.1: A scheme over how the new mixing model works with the splitting and combining to two new
containers. If the ratio, rm is 1, that is that the containers are of the same size, only step one is left and
the mixing becomes a regular Curl-mixing. Bellow follows an explanation to each step.

1. A fraction of each container, A1 and B1, equal to the ratio, r is mixed using the Curl method weighted
with the size of the fraction and no mass is moved between the two containers, just concentration.

2. A piece with the same size as the remaining fraction of the smaller container, A2 and B2, is moved
over from the bigger. Since they have the same size the concentration of them together is going to be
the mean of the two particles.

3. What remains of bigger container, A3, is left untouched.

4. The pieces are then put together and a new mass fraction is calculated for the two containers.

9



Figure 3.2: The same plot as in figure 2.4 and 2.5 but using the new weighted model instead. Here there is
just 50 particles to counter that each small particle is only half the size of the bigger particles. The probability
to choose a smaller particle or choosing a bigger particle is, with these changes in size and number, the same
as in the simulations with CURL and modified CURL. That is the total normalized mass of the smaller
particles is the same in this case as in the old case. The size of each point corresponds to the weight of that
particle. There exists some discrete states as in figure 2.4 but since the mixing particles do not end up the
same this feature is not as prominent in this case. As in the other plots the x-axis is the particle index and
on the y-axes the corresponding concentration.

Figure 3.3: The same set up as in 3.2 but with the new modified CURL instead. Here, as one would expect,
there are no discrete lines. The axes are the same as in the other three plots.
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and can be fixed by increasing the turbulence and thus the amount of mixing taking place.
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Chapter 4

Results & Outlook

4.1 Performance

The first simulations that were made indicated that the two new models worked and it was possible to
go down to a size ratio of four while still giving similar results as the standard mixing model. But these
simulations were based on confidential data and thus cannot be presented here. The reason that those
simulations worked so good was because they were very insensitive to discretization. As a result of that once
could go down to rather few particles in today’s CURL and still get a decent result. Because of that a new
test case were set up and sadly the new case gave not nearly as good results as the ones before.

There is mainly three things that are off with these results as seen in figures 4.3 and 4.4 compared to
figures 4.1 and 4.2; firstly the big difference in maximum pressure and temperature, secondly the difference
in CAD when the engine ignites and lastly there is a dip in temperature when the fuel is injected. The last
one is easiest spotted with 50 particles in figure 4.4. The last two is somewhat related since the rather small
dip temperature might be just enough for the fuel not to ignite when it is supposed to. Instead it needs more
fuel or a higher pressure to achieve the sweet spot where it ignites. These problem can also be linked to the
first one since the local extreme value happens at a later CAD the piston has moved away and the volume is
larger and to comply with the ideal gas law the two parameters, pressure and temperature, becomes smaller.

Regarding computation time and to get numbers that are comparable to each other there is a small
problem with modern cpus and that is called hyperthreading and turbo. These together leads to that if
the computer uses all of the logical cores it is slower than if it just uses the physical cores. To minimize
the problem caused by this when timing the simulations a maximum of simulations equal to the number of
physical cores were run simultaneously, otherwise a speed up could have happened when the faster simulations
were completed and the cpu went in to turbo mode. So with this in mind when running the simulations the
result of gain in computation time can be seen in figures 4.5 and 4.6. The benefit of going down in number
of particles is big, it is almost linear with the number of particles so to have a good model that runs on
fewer particles would significantly lower the computation time. There is a bigger variance in the case with
100 particles in today’s model but that might just be a runtime interruption because when looking at the
raw, it was found that all the slowest cycles were consecutive

4.2 Tuning

One possible cause of the problem with the engine igniting to late could be that either to much or to little
mixing is happening. This arises from that particle A is assumed to be homogeneous after mixing and that
the internal mixing between A1 and A3 leading to the resulting A is not accounted for. That is to say that
the calculation of the weight of each mixing event is done wrongly. In figure 4.8 the problem is illustrated.
So to fix this one could add some fraction of A3 to the weight of each mixing event, but to see if this would
give the appropriate result a change in the number of mixing events that are happening at each time step

12



Figure 4.1: A simulation of the new test case using CURL. Here the pressure is plotted as a function of time
steps in CAD. Each colour is a different number of particles and the dotted lines are one motor cycle while
the line is the average of multiple runs, here this is over 11 motor cycles. It looks good for 100 and for 50
particles but when the number of particles are pushed down to 25 and 12 the result becomes worse, which was
suspected. The peak in maximum pressure happens a little earlier and the pressure has a lower maximum in
the case with 25 particles and is higher with 12 particles. As will be seen in figure (should there be a reference
here?) the variance in between runs are also higher when the number of particles drop.

Figure 4.2: The corresponding temperature curve to figure 4.1.
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Figure 4.3: This is the same test case as in figure 4.1 but using the new presented mixing model instead.
For each halving of the number of particles the size ratio have been doubled to maintain the same size of the
injected particles. The case with 100 particles is set to be the standard with a size ratio of 1 and from that
follows that it in practice uses CURL as a mixing model. It is easy to see that none of the others are working
well. Both the cases with 50 and 25 particles ignite late and as a result they do not reach as high in pressure.
For the case with 12 particles the simulation does not ignite at all. Although there is a rise in pressure before
the others and that can be traced back to that some outgoing gas is pumped back into the system and there is
some fuel left that can burn.

Figure 4.4: The corresponding temperature curve to figure 4.3.
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Figure 4.5: The execution time for one motor cycle running with today’s CURL model.

Figure 4.6: Execution time for one motor cycle running the weighted CURL model. Since the number of
computations that are added in the new model are rather few and all of them are simple manipulations with
scalars, the result is the same as in figure 4.5.
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Figure 4.7: Pressure curve of simulations of Weighted CURL with different τ curves. t/n indicates that each
value of τ has been divided by n.

and not have to fiddle with the code. The result of such a change in numbers of events are seen in figure
4.7 were the number of events have been changed in both directions. This gives an over all improvement
but at the cost of a lot more mixing taking place. The time of ignition is still not perfect and neither is
the overall fit. But with a huge increase in mixing taking place one could get a working model that would
require tuning, which is not what is wanted.

The time of ignition is just off by a few CAD so the problem could be that the time step is too large, it
is set to 1 CAD in the simulations so a smaller time step might give an earlier ignition time. The result of
testing this with a time step of 0.2 is seen in figure 4.9. Although this gives a better result it does not give
as much of an improvement that is needed and it is a tuning factor that should not be needed in the best
case, even tough shorter time step often gives a faster simulation. So this way of solving the problem can be
ruled out.

The problem is still there and at the moment the model is not working perfectly but an idea that would
probably fix things has to do with discretion and that when mixing both the bigger particle and the smaller
particle misses the sweet spot of ignition. When a particle that has ignited is mixed with a background
particle the resulting bigger particle is to big with to little fuel so it burns out.

There is still some hope left that the Weighted Modified CURL version will perform better. The result
of this is seen in figure 4.10 and is to be compared with figure 4.11 that is the same simulation but with
today’s modified CURL. Since going down to 12 particles and a size ratio of 8 was far off to even ignite that
simulation is ignored in these tests. As seen in the figures it performs much better for 50 particles with a
size ratio of 2 but the problem with late ignition is still there. For a size ratio of 4 and with 25 particles also
performs better but neither of the two cases are good enough. So to conclude the Weighted Modified CURL
with its not perfect mixing works better than Weighted CURL but none of them works perfectly.
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A

B
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Figure 4.8: This is an illustration of the mixing that happens if the size ratio is set to 4. In the top is how
it would be in today’s model, that is that one of particle B mixes with one of particle A. Beneath is how it
happens in the weighted model, one particle B mixes with a four times larger particle A and both are set to
be internally homogeneous after the mixing has occurred. But the mixing that happens inside of the big A is
unaccounted for and might be as large as 3 mixing events of today’s model.

Figure 4.9: A simulation of CURL and Weighted CURL with a reduced time step from 1CAD to 0.2CAD.
As seen the problem with time of ignition is still there, but there is an overall better result to fit.
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Figure 4.10: The pressure curve of a simulation of Weighted Modified CURL for different particle sizes.

Figure 4.11: The pressure curve of a simulation of Modified CURL for different particle sizes.
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4.3 Outlook

So what needs to be changed to make it work? One possible solution is to some degree separate A3 from
the resulting particle A. That is from two particles that goes in to the mixing three comes out, we’ll not
always get a new particle but a larger fraction of A3 goes to form a new particle with other fractions of A3

from other mixing events and when they become sufficiently large, maybe in the size of the background gas
before fuel was injected, they pop out as a new particle and the coming fractions of A3 would form a second
particle and so forth. This will lead to some mixing taking place inside of the creation of new particles but
that factor should be the same in all cases and can thus be tuned in once. The great advantage with doing
this is that the resolution is better and the particles that have the right fuel to air ratio to burn is larger.
The disadvantage is that it might be slower since the number of particles will grow, but the speed up from
before the fuel is injected might be large enough to still give a significant gain in overall computing time.
This fix has not yet to be implemented but is the way to go to end up with a model that is as consistent
with other models as possible.
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Appendix A

Python code

Here follows at simple python code that implements the four mixing models that was mentioned in the text.
This piece of code, with some modification for plotting, was used to make the plots in figure 2.4, 2.5, 3.2
and 3.3.

import numpy as np

% Define a function for each of the four mixing models all taking the input in the same way

% and returning it the same way.

def curl(x1,x2):

return [[(x1[0]*x1[1] + x2[0]*x2[1])/(x1[1] + x2[1]),x1[1]],

[(x1[0]*x1[1] + x2[0]*x2[1])/(x1[1] + x2[1]),x2[1]]]

def modcurl(x1,x2):

a = random()

return [[x1[0] + a*((x1[0]*x1[1] + x2[0]*x2[1])/(x1[1] + x2[1]) - x1[0]),x1[1]] ,

[x2[0] + a*((x1[0]*x1[1] + x2[0]*x2[1])/(x1[1] + x2[1]) - x2[0]), x2[1]]]

def weicurl(x1,x2):

r = x2[1] / x1[1]

c_curl = (x1[0]*x1[1] + x2[0]*x2[1])/(x1[1]+x2[1])

phi_1 = (c_curl*x1[1]*r + x1[0]*(x1[1]*(1-r)-x2[1]*(1-r))) / (x1[1]-(1-r)*x2[1])

phi_2 = (c_curl*x2[1]*r + x2[1]*(x1[0]-x2[0])*(1-r)) / (x1[1]+(1-r)*x2[1])

return [[phi_1, x1[1] - (1-r)*x2[1] ] ,

[phi_2, x2[1] + (1-r)*x2[1]]]

def weimodcurl(x1,x2):

a = random()

r = x2[1] / x1[1]

c_curl = (x1[0]*x1[1] + x2[0]*x2[1])/(x1[1]+x2[1])

phi_1 = (c_curl*x1[1]*r + x1[0]*(x1[1]*(1-r)-x2[1]*(1-r))) / (x1[1]-(1-r)*x2[1])

phi_2 = (c_curl*x2[1]*r + x2[1]*(x1[0]-x2[0])*(1-r)) / (x1[1]+(1-r)*x2[1])

return [[ x1[0] + a*(phi_1-x1[0]), x1[1] - x2[1]*(1-r)*a ],

[x2[0] + a*(phi_2 -x2[0]), x2[1] + x2[1]*(1-r)*a ]]

% This function together with the next picks two indices at random using the size of the

% container as weight and checking so that the two indices are not the same

def drawone(X):
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a = random()

for i in xrange(size(X)//2):

if a < sum(X[1,:i]):

break

return i

def draw(X):

i = drawone(X)

j = drawone(X)

while i==j:

j = drawone(X)

if i>j:

return i,j

else:

return j,i

% The main function that set up matrix with the different containers and normalize the weight.

% After that is done it loops over the matrix a fixed number of times and in each loop it

% picks two containers using the draw function and then runs them through the one of the

% mixing models.

def mix(mixing, npa=100, sizeratio=2, npratio=5, last=150):

"""

mixing: 1 - Curl

2 - Modified Curl

3 - Weighted Curl

4 - Weighted Modified Curl

"""

if mixing== 1:

mixa = curl

elif mixing == 2:

mixa = modcurl

elif mixing == 3:

mixa = weicurl

elif mixing == 4:

mixa = weimodcurl

else:

print ""

return

X = np.zeros([2, npa])

X[0,npa // npratio:] = 1

X[0,:]=X[0,:]/sum(X[0,:])

if mixing <= 2:

X[1,:] = 1

X[1,:] = X[1,:]/sum(X[1,:])

else:

X[1,npa//npratio:]=1

X[1,:npa//npratio]=1/sizeratio

X[1,:] = X[1,:]/sum(X[1,:])
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for k in xrange(last+1):

i,j = draw(X)

if X[1,i] > X[1,j]:

[X[:,i], X[:,j]] = mixa(X[:,i], X[:,j])

else:

[X[:,j], X[:,i]] = mixa(X[:,j], X[:,i])

return X
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