
SIMULATION OF

WASTEWATER TREATMENT

PLANTS MODELED BY A

SYSTEM OF NONLINEAR

ORDINARY AND PARTIAL

DIFFERENTIAL EQUATIONS

GUSTAV MAURITSSON

Master’s thesis
2013:E62

Faculty of Engineering
Centre for Mathematical Sciences
Mathematics

C
E
N

T
R

U
M

S
C

IE
N

T
IA

R
U

M
M

A
T
H

E
M

A
T
IC

A
R

U
M

Simulation of Wastewater Treatment Plants
Modeled by a System of Nonlinear Ordinary and

Partial Differential Equations

Gustav Mauritsson
Faculty of Engineering, Lund University

Advisor: Stefan Diehl
Co-advisor: Sebastian Far̊as

November 14, 2013

Abstract

Wastewater treatment consists of mechanical, chemical and biological pu-
rification. This master thesis concerns the biological part of the wastewater
treatment called the activated sludge process (ASP). Two different mathemat-
ical models, one simplified and one complete, of the ASP are investigated. The
models contain systems of nonlinear partial and ordinary differential equa-
tions. The nonlinearities in the equations give rise to discontinuous solutions,
known as shock waves, which complicate the numerical analysis of the equa-
tions. The aim of the thesis is to implement the models in MATLAB and
investigate how to solve these equations most efficiently with respect to accu-
racy and speed. Several time discretization schemes including built-in routines
in MATLAB will be compared. The results show that a certain semi-implicit
method seems to be the most efficient way to solve these equations numeri-
cally. Higher order fixed time step methods such as Runge-Kutta methods of
order 2 and 4 are not suitable and perform even worse than the very simple
Euler method of order 1.

Populärvetenskaplig sammanfattning

I ett vattenreningsverk nyttjas b̊ade mekanisk, kemisk och biologisk rening. Detta
examensarbete berör matematiska modeller som ställts upp för att kunna beskri-
va den biologiska reningsprocessen. Den biologiska reningen i ett vattenreningsverk
nyttjar gravitationen för att separera partiklar fr̊an inkommande avloppsvatten. I
vattnet som kommer in till reningsverket finns lösta näringsämnen, substrat, s̊asom
kväve och syre, samt partikulärt material, biomassa, best̊aende av bakterier och
mikroorganismer som konsumerar och bryter ner substraten. Den biologiska rening-
en, kallat den aktiva slamprocessen, av ett vattenreningsverk best̊ar typiskt av ett
antal reaktortankar samt en sedimenteringstank. Avloppsvatten flödar in i reaktor-
tank nummer 1 och sedan vidare in till reaktortank nummer 2 och s̊a vidare. I
reaktortankarna förbrukas substraten av biomassan, som i sin tur nybildas och dör.
Slutligen flödar vattnet in i sedimenteringtanken. Denna tank best̊ar av ett inlopp
och tv̊a utlopp. Till inloppet kommer vatten fr̊an den sista i serien av reaktortankar.
I sedimenteringstanken f̊ar den partikulära biomassan sjunka under gravitationens
inverkan. I övre delen av av tanken uppst̊ar d̊a en zon med renat vatten där ett
av utloppen sitter. I botten av tanken bildas en zon med slam och här sitter det
andra utloppet. Det mesta av detta slam återförs till reaktortank nummer 1 medan
en liten del bortförs fr̊an verket för att exempelvis användas i gödningsmedel.

För att kunna beskriva den biologiska reningsprocessen krävs rigorösa matematis-
ka modeller som tar hänsyn till fysikaliska och biologiska effekter. Modelleringen
ger upphov till ett olinjärt system av ordinära och partiella differentialekvationer.
Dessa ekvationer kan inte lösas exakt, annat än i vissa specifika fall. Istället måste
de behandlas med numeriska metoder, som med hjälp av beräkningsprogram ger
approximativa lösningar. Lösningarna till ekvationerna inneh̊aller ofta diskontinui-
teter, eller chockv̊agor, där lösningen abrupt byter värde. Denna egenskap försv̊arar
den numeriska behandlingen.

Detta examensarbete syftar till att undersöka tv̊a matematiska modeller för den bi-
ologiska reningen. Den ena modellen är en förenklad modell som endast inneh̊aller
en typ av substrat, en typ av biomassa och en reaktortank. En fullständig modell
inneh̊allandes sju substrat, sex biomassor och fem reaktortankar i serie kommer
ocks̊a att undersökas. Modellerna implementeras i datorprogrammet MATLAB som
är ett vanligt förekommande program vid matematiska och tekniska beräkningar.
Den numeriska metoden skall önskvärt reproducera den exakta lösningen med ett
s̊a litet fel som möjligt samtidigt som den kräver lite beräkningstid. Därför kommer
mycket av undersökningarna i arbetet mäta hur effektiva olika lösningsmetoder är
med avseende p̊a hastighet och exakthet. Resultaten kan vara av intresse för vat-
tenreningsbranschen som vägledning för vilka lösningsmetoder som ger effektivast
simuleringar av den biologiska reningen.

Contents

1 Introduction 9

2 Mathematical background 11
2.1 The conservation law . 11
2.2 Characteristics . 12
2.3 Shock waves and entropy condition 13

3 Modeling of the process 17
3.1 Simplified model . 17
3.2 Constitutive relations . 18
3.3 Extended model . 20

4 Discretization of the mathematical model 25
4.1 The conservation law on integrated form 25
4.2 Approximations . 27

4.2.1 The convective flux . 27
4.2.2 The dispersion and compression fluxes 28

4.3 Time discretization . 29
4.3.1 Explicit Euler method . 29
4.3.2 Other Runge-Kutta methods 31
4.3.3 Semi-implicit method . 31
4.3.4 MATLAB built-in solvers . 36

5 Simulations and Results 39
5.1 Simplified model . 39

5.1.1 Scenario 1 . 39
5.1.2 Scenario 2 . 41
5.1.3 Scenario 3 . 42
5.1.4 Efficiency of different solvers 45
5.1.5 Smearing of shock-waves . 53

5.2 Extended model . 55
5.2.1 Storm weather influent data 55
5.2.2 Storm weather scenario . 57
5.2.3 Efficiency of different solvers 58

6 Conclusions and summary 61

1 Introduction

Wastewater treatment is a process of purifying wastewater from different contami-
nants. The wastewater treatment contains several different processes, namely phys-
ical (mechanical), chemical and biological, in order to remove respective contami-
nants. The aim of this master thesis is to simulate different models of the biological
treatment process, the activated sludge process (ASP). This process uses a series of
biological reactor tanks where incoming sewage, the substrate, mainly consisting of
organic material and nutrients, are consumed and decomposed by microorganisms,
the biomass, (Diehl, 2012). The substrate is soluble and thus dissolved in the wa-
ter while the biomass is particulate material. Both the substrate and the biomass
contain several different components. Apart from the series of biological reactor
tanks, the ASP also consists of a sedimentation tank, also known as the settler. The
settler contains one inlet and two outlets. Water consisting of activated sludge, both
biomass and substrate, flow from the biological reactor to the inlet of the settler.
In the settler the flocculated biomass settles slowly under the force of gravity. The
top end of the settler will normally be free from flocculated biomass and here one
of the outlets are placed, from which purified water flows. In the bottom end of
the settler the second outlet is placed. The sludge flowing out from here are partly
recycled, i.e. taken back to the biological reactor and partly removed from the plant,
for instance being used as fertilizer. The greater part is recycled since one wants to
keep the waste sludge as small as possible for economical and environmental reasons
(Diehl, 2012).

This master thesis will firstly consider a simplified model of a wastewater treatment
plant, consisting of only one reactor tank, one substrate component and one biomass
component. It will also consider an extended, more realistic model, with five reac-
tor tanks, seven substrate components and six biomass components. The aim is
to implement the two models using MATLAB and investigate the efficiency, with
respect to speed and accuracy, of several different time discretization schemes for
the nonlinear system of differential equations involved in the mathematical models.

The mathematical models of the ASP are derived from the conservation law which
will be discussed in Section 2. This section also includes relevant mathematical
background and concepts necessary for modeling the process and interpret the so-
lutions. Section 3 contains the modeling equations as well constitutive relations
modeling physical effects that are present in the process. To be able to solve the
system of nonlinear partial and ordinary differential equations (PDE:s and ODE:s)
the mathematical model has to be discretized in both space and time. Section 4
will go through this procedure in a rather detailed way. In Section 5 simulations of
some different scenarios and results of the efficiency tests are presented. In Section
6 there will be a brief discussion of the results and a concluding summary.

9

10

2 Mathematical background

2.1 The conservation law

It is very common that physical phenomena obey the conservation law. The change
of the total amount of some physical entity in a certain region of space equals the
flux into the region through the boundary minus the flux out through the boundary.
If the region contains sinks and sources these also contribute to the change of the
amount. Conservation laws are used to model a great variety of physical phenomena
such as gas and fluid dynamics, traffic flows and sedimentation of solid particles in
a liquid, as is the case in the wastewater treatment plant (Diehl, 1996).

To exemplify this one may consider one-dimensional traffic flow. Let the x-axis be
situated along the road and let u(x, t) denote the density of cars [number of cars/m]
at the point x at the time point t. The number of cars per unit time passing a point
x at time t is the flow rate of cars, denoted by f . If (x1, x2) is an arbitrary interval
of the x-axis, the conservation law may be written in integral form as:

d

dt

x2∫

x1

u(x, t) dx = f |x=x1 − f |x=x2 , (2.1)

where the right hand side can be written as

f |x=x1 − f |x=x2 = −
x2∫

x1

∂f

∂x
dx.

Assuming that the concentration u(x, t) ∈ C1 allows for the derivative to be put
inside the integral in the left hand side of (2.1) and then one gets

x2∫

x1

(
∂u

∂t
+
∂f

∂x

)
dx = 0.

Since the interval is chosen arbitrarily and since the integrand is assumed to be
continuous it follows that

∂u

∂t
+
∂f

∂x
= 0 ⇐⇒ ut + fx = 0. (2.2)

The partial differential equation (2.2) is called the continuity equation and is the
differential form of the conservation law.

A common assumption on the flux function f is that it depends on the unknown
only:

f = f
(
u(x, t)

)
, (2.3)

11

where f(u) is assumed to be a smooth function. Using this allows one to rewrite
equation (2.2) as

ut + f(u)x = 0 ⇐⇒ ut + f ′(u)ux = 0. (2.4)

In the case of traffic flow one may assume that the car speed v depends only on the
local concentration of cars at a given point x at time t. Thus one can model the
speed as v = v(u) = v0(1 − u

umax
), where v0 is the free speed of a car, that is the

limit speed of the road, and umax is the maximum concentration of cars. With this
choice of the speed function, the total flux function becomes

f(u) = v(u)u = v0

(
1− u

umax

)
u, 0 ≤ u ≤ umax. (2.5)

In order to solve equation (2.4) one must give some initial concentration distibution
at the time t = 0. Then one gets the initial value problem

{
ut + f(u)x = 0, x ∈ R, t > 0

u(x, 0) = u0(x), x ∈ R.
(2.6)

For some further details on this topic, the reader is referred to Diehl (1996).

2.2 Characteristics

Consider a level curve x = x(t) in the x− t plane, that is

u(x(t), t) = constant = U0.

Differentiating with respect to t yields

uxx
′(t) + ut = 0,

and using ut = −f ′(u)ux with u(x(t), t) = U0 then gives

ux
(
x′(t)− f ′(U0)

)
= 0.

In general this implies that x′(t) = f ′(U0) must hold which means that the level
curve is a straight line in the x − t plane with the slope 1

f ′(U0)
. f ′(U0) is called the

signal speed since it is the propagation speed of a wavefront or disturbance. The
straight lines that are the level curves are called characteristics. Given some initial
data one may now construct a solution in implicit form to the initial value problem
(2.6): {

x = f ′
(
u0(x0)

)
t+ x0

u = u0(x0).
(2.7)

In Diehl (1996) some examples of this procedure is provided.

12

2.3 Shock waves and entropy condition

If f is a nonlinear function of u it may happen that the characteristic lines intersect.
In this case the procedure described above breaks down and it is not possible to
define a continuous solution after a time at which characteristics intersect. Even
when u0(x) ∈ C1, discontinuous solutions may appear after a finite time. In order
to obtain a solution u(x, t) ∈ C1, the first part of (2.7) needs to be solved for
x0 = x0(x, t) and then substituted into the second part of equation (2.7). The
implicit function theorem states that it is possible if

dx

dx0

= f ′′
(
u(x0)

)
u′0(x0)t+ 1 6= 0. (2.8)

This holds for small t > 0 and thus if u0(x) is smooth then there is a smooth solution
u(x, t) for small t > 0. The smallest time for which dx

dx0
= 0 is called the critical time

and this is the point where the discontinuity appears.

To handle the discontinuity one reformulates the conservation law given by (2.4).
Let ϕ = ϕ(x, t) ∈ C1

0 be a test function with compact support, multiply this by
(2.4) and integrate over the entire x−axis:

∞∫

−∞

utϕ dx+

∞∫

−∞

f(u)xϕ dx = 0,

∞∫

−∞

utϕ dx+
[
f(u)ϕ

]∞
−∞︸ ︷︷ ︸

=0

−
∞∫

−∞

f(u)ϕx dx = 0.

Now one integrates over the t−axis:

∞∫

0

∞∫

−∞

utϕ dx dt−
∞∫

0

∞∫

−∞

f(u)ϕx dx dt = 0,

∞∫

−∞

[uϕ]∞t=0 dx−
∞∫

0

∞∫

−∞

uϕt dx dt−
∞∫

0

∞∫

−∞

f(u)ϕx dx dt = 0,

and one finally gets

∞∫

0

∞∫

−∞

(uϕt + f(u)ϕx) dx dt+

∞∫

−∞

u(x, 0)ϕ(x, 0) dx = 0, ∀ ϕ ∈ C1
0 . (2.9)

Any function u that satisfies (2.9) is called a weak solution of the conservation law
(2.4).

The conservation law also contains information about the movement of the discon-
tinuity. If u is a piecewise C1 solution, x = x(t) ∈ C1 is a curve in the x− t plane,

13

along which u is discontinuous, (a, b) is an interval parallel with the x-axis, such
that the curve x(t) intersects the interval at a time t and if u± = u(x(t)± 0, t) are
the values of the solution to the left and right of the discontinuity curve, then (2.1)
gives for the interval (a, b) :

f
(
u(a, t)

)
− f

(
u(b, t)

)
=

d

dt

b∫

a

u dx =
d

dt
(

x(t)∫

a

u dx+

b∫

x(t)

u dx) =

=

x(t)∫

a

ut dx+ u−x′(t) +

b∫

x(t)

ut dx− u+x′(t) =

= [ut = −fx] = f
(
u(a, t)

)
− f

(
u(b, t)

)
+

+ f(u+)− f(u−)− (u+ − u−)x′(t)

and thus the speed of the discontinuity satisfies

x′(t) =
f(u+)− f(u−)

u+ − u− . (2.10)

This equation is called the jump condition or the Rankine-Hugoniot condition. If
u(x, t) is a piecewise smooth function satisfying u(x, 0) = u0(x), then u(x, t) is a
weak solution of (2.9) if and only if the conservation law is satisfied at every point
where u ∈ C1 and (2.10) is satisfied at discontinuities (Diehl, 1996).

There is a problem involved with the weak solutions. For some given initial data
one may obtain several solutions that fulfills both (2.9) and (2.10) and thus are
valid weak solutions, see Diehl (1996) for details on this. In order to select a unique
solution that is physically relevant, one must impose some extra condition, the
entropy condition. Instead of (2.4) consider the viscous equation

ut + f(u)x = εuxx, ε > 0. (2.11)

By letting ε be small one obtains approximately the same solutions as for (2.4) but
the shocks will be somewhat smoothed. Consider now a solution u to (2.4) which
consists of one single shock moving with speed x′(t) =: s and left and right limits
u− and u+. A shock is allowed only if it satisfies the viscous profile condition which
states that for given constants u−, u+ and

s =
f(u+)− f(u−)

u+ − u− ,

there exists a traveling wave solution, or viscous profile

u(x, t) = v(ξ), with ξ =
x− st
ε

, (2.12)

14

of equation (2.11) with v(ξ) → u± as ξ → ±∞. Thus if ε → 0+ the traveling wave
converges to the expected shock with speed s. Now combining (2.11) and (2.12)
yields v′′ = f(v)ξ − sv′ and after an integration one gets

v′ = f(v)− sv + C, (2.13)

for some constant C. Now using (2.10) and letting ξ → ±∞ yields that C =
−f(u−) + su− = −f(u+) + su+ and thus v(ξ) satisfies the ordinary differential
equation

v′ = f(v)− f(u−)− s(v − u−) = f(v)− f(u+)− s(v − u+), (2.14)

where one defines
f(v)− f(u−)− s(v − u−) =: ψ(v). (2.15)

Assume now that u− > u+. If v′(ξ0) = ψ
(
v(ξ0)

)
= 0 for some ξ0, then v(ξ) = v(ξ0)

is the unique solution of (2.14). Since v(ξ) → u± as ξ → ±∞, v is either strictly
increasing or strictly decreasing. The only possibility is thus that v′(ξ) = ψ

(
v(ξ)

)
<

0, ∀ ξ ∈ R. Hence ψ(v) < 0 for v ∈ (u+, u−) or by using (2.15)

s <
f(v)− f(u−)

v − u− , for all v strictly between u− and u+. (2.16)

Equation (2.16) also holds if u− < u+ and is a necessary condition for an admissible,
that is a physically relevant, shock. The condition

s ≤ f(v)− f(u−)

v − u− , for all v between u− and u+ (2.17)

is a sufficient condition for uniqueness of a weak solution to the problem (2.6).
Now by letting v → u− or v → u+ one gets from the definition of the derivative
that f ′(u−) ≥ s and analogously one can show that f ′(u+) ≤ s, thus the entropy
condition implies

f ′(u−) ≥ x′(t) ≥ f ′(u+). (2.18)

For some further details on the derivation of the entropy condition the reader is
referred to Diehl (1996).

15

16

3 Modeling of the process

3.1 Simplified model

The activated sludge process, Figure 1, consists of two different tanks, the biological
reactor tank and the sedimentation tank. Wastewater is flowing into the biological
reactor with the volumetric flow rate Q [m3/s]. The wastewater contains only one
type of soluble organic material and nutrients (substrate) which is consumed and
decomposed by only one type of biomass. The concentration of the substrate is
denoted by S [kg/m3] and the concentration of the biomass is denoted by X [kg/m3].
The control parameters r and w govern the amount of sludge going back into the
reactor tank and the amount of waste sludge.

Sin

Se

Sf

Su

Q

Qr = rQ Qw = wQ

Qf = (1 + r)Q

Qe = (1− w)Q

Qu = (r + w)Q

Xf

Xe

Xu

Xin

−H

B

sewage

sludge blanket

level

biological reactor

recirculation waste sludge

purified water

settler

thickening zone

clarification zone

x

0

Figure 1: The activated sludge process consists of two tanks, a biological reactor and
a sedimentation tank. The indices stand for f = feed, e = effluent, u = underflow, r
= recycle, w = waste and in = influent.

The model equations provided by Diehl (2012) are

V
dSf

dt
= QSin + rQSu − (1 + r)QSf − V

µ(Sf)

Y
Xf , (3.1)

V
dXf

dt
= QXin + rQXu − (1 + r)QXf + V (µ(Sf)− b)Xf , (3.2)

A
∂S

∂t
+ A

∂

∂x

(
F s(S, x, r, w,Q, t)

)
= (1 + r)QSfδ(x), (3.3)

A
∂X

∂t
+ A

∂

∂x

(
F (X, x, r, w,Q, t)

)
=

= A
∂

∂x

((
γ(x)dcomp(X) + ddisp

(
x,Qf(t)

))∂X
∂x

)
+ (1 + r)QXfδ(x). (3.4)

17

Here V [m3] denotes the volume of the biological reactor, A is the cross-sectional
area of the settler, Y is a positive, dimensionless constant which relates the usage of
substrate to growth of biomass, b [s−1] is the death rate of the biomass and µ [s−1] is
a function modeling the growth rate of the biomass. The functions F s(S, x, r, w,Q, t)
and F (X, x, r, w,Q, t) are the convective fluxes of S and X respectively. They are
given by

F s(S, x, r, w,Q, t) :=

{
− (1−w)Q(t)

A
S, for x < 0,

(r+w)Q(t)
A

S, for x > 0,
(3.5)

F (X, x, r, w,Q.t) :=





− (1−w)Q(t)
A

X, for x < −H,
fbk(X)− (1−w)Q(t)

A
X, for −H < x < 0,

fbk(X) + (r+w)Q(t)
A

X, for 0 < x < B,
(r+w)Q(t)

A
X, for x > B,

(3.6)

where fbk(X) is the Kynch batch flux density function

fbk(X) := Xvhs(X), (3.7)

where vhs(X) [m/s] is the hindered settling velocity, see Section 3.2. The discontin-
uous function

γ(x) :=

{
1 for −H ≤ x ≤ B,

0 for x < −H or x > B,
(3.8)

makes sure that compression only occur within the settler tank. The functions
dcomp(X) and ddisp

(
x,Qf(t)

)
are the compression and diffusion functions, see Section

3.2. The substrate is completely dissolved in the water and is thus not subject to
any compression and diffusion. δ(x) is the Dirac delta function.

3.2 Constitutive relations

When modeling the process of wastewater treatment assumptions on the constitutive
relations, that is the physical relations between quantities, have to be made. The
modeling or calibration of the constitutive relations involves the solving of an inverse
problem and is a subject of its own. The inverse problem is solved by finding optimal
values of the parameters in the constitutive relations, such that the solution to the
system of equations fit as well as possible with measured data. The inverse problem
for the activated sludge process seems to be ill conditioned, implying difficulties in
finding unique optimal parameter values. There is thus plenty of problems when
modeling the constitutive relations and they go beyond the frame of this thesis.

The growth rate µ of the biomass can be modeled using the Monod relation, then

µ(S) = µ̂
S

K + S
, (3.9)

18

where µ̂ [s−1] is the maximal growth rate and K [kg/m3] is the half saturation
constant.

For the hindered settling velocity vhs(X) several suggestions has been made. Here
the expression suggested by Vesilind (1968),

vhs(X) = v0e−rVX , (3.10)

will be used. v0 [m/s] is the settling velocity of a single particle and rV > 0 [m3/kg]
is a parameter. Combining this expression with the expression for the Kynch batch
flux density function (3.7) one gets

fbk(X) = v0Xe−rVX . (3.11)

The expression for the compression function dcomp(X) is given by

dcomp(X) =
ρs

(ρs − ρf)g
vhs(X)σ′e(X), (3.12)

where ρf and ρs [kg/m3] are the fluid mass density and the solid mass density with
ρs > ρf , g [m/s2] is the acceleration of gravity and σe(X) [N/m2] is the effective solid
stress function. For the effective solid stress function several suggestions has been
made as well, a particular simple one is

σe(X) =

{
0 for X < Xc,

a(X −Xc) for X ≥ Xc,
(3.13)

where a [m2/s2] is a positive parameter and Xc is the critical concentration for which
compression effects start to take place. This choice implies that

σ′e(X) =

{
0 for X < Xc,

a for X ≥ Xc,
(3.14)

and thus

dcomp(X) =

{
0 for X < Xc,
ρsav0e−rVX

(ρs−ρf)g
for X ≥ Xc,

(3.15)

The dispersion function ddisp

(
x,Qf(t)

)
models turbulence and mixing phenomena

that occurs near the feed inlet. Thus this function should be zero at a certain
distance away from the feed inlet. One can set

ddisp

(
x,Qf(t)

)
=
Qf(t)

A
L
(
x,Qf(t)

)
, (3.16)

where L is some continuous function that vanishes at some certain distance away
from the feed inlet. Since dispersion only takes place inside the tank, the dispersion
function must satisfy

ddisp

(
x,Qf(t)

)
{

= 0 for x ≤ −H and x ≥ B,

≥ 0 for −H < x < B.
(3.17)

19

Now several different choices of L can be made as long as (3.17) is fulfilled. In this
paper L is chosen such that

ddisp

(
x,Qf(t)

)
=




α1Qfexp

(
−x2/(α2Qf)

2

1−|x|/(α2Qf)

)
for |x| < α2Qf ,

0 for |x| ≥ α2Qf .
(3.18)

α1 [m−1] and α2 [s/m2] are parameters where (3.17) requires that

α2 <
min(H,B)

max
t≥0

Qf(t)
.

3.3 Extended model

The extended model of the process contains five different biological reactor tanks,
seven different soluble substrates and six types of organic biomass. The model used
here is the Activated Sludge Model no. 1 (ASM1) described by Copp (2002). Figure
2 shows an overview of the wastewater treatment plant. Table 1 contains all the
different state variables that are included in the extended model.

Figure 2: Overview of the wastewater treatment in the extended model. The figure
is taken from Alex et al. (2008).

Let Qk, Zk and rk denote the flow rate, concentration and conversion rate of the
state variable Z in unit k with the volume Vk. Then the general mass balance in
the reactor tanks is described by the following ODE:s:

For k=1:
dZ1

dt
=

1

V1

(QaZa +QrZr +Q0Z0 + r1V1 −Q1Z1), (3.19)

Q1 = Qa +Qr +Q0,

20

Definition Notation
Soluble inert organic matter SI

Readily biodegradable substrate SS

Particulate inert organic matter XI

Slowly biodegradable substrate XS

Active heterotrophic biomass XB,H

Active autotrophic biomass XB,A

Particulate products arising from biomass decay XP

Oxygen SO

Nitrate and nitrite nitrogen SNO

NH4+ + NH3 nitrogen SNH

Soluble biodegradable organic nitrogen SND

Particulate biodegradable XND

Alkalinity SALK

Table 1: List of state variables with definitions and notations.

For k=2, 3, 4, 5:
dZk
dt

=
1

Vk
(Qk−1Zk−1 + rkVk −QkZk), (3.20)

Qk = Qk−1,

with the oxygen being a special case

dSO,k

dt
=

1

Vk
(Qk−1SO,k−1 + rkVk + (KLa)kVk(S

∗
O − SO,k)−QkSO,k), (3.21)

where S∗O [kg/m3] is a saturation concentration for oxygen and KLa [s−1] is an oxygen
transfer coefficient which can be manipulated to control the concentration of the
dissolved oxygen. The parameter Qa is the internal recycle flow rate from unit 5 to
unit 1 and is a control parameter.

The conversion rates, following the order in Table 1, for the respective state variables
are:

21

r1 = 0, (3.22)

r2 = − 1

YH

ρ1 −
1

YH

ρ2 + ρ7, (3.23)

r3 = 0, (3.24)

r4 = (1− fP)ρ4 + (1− fP)ρ5 − ρ7, (3.25)

r5 = ρ1 + ρ2 − ρ4, (3.26)

r6 = ρ3 − ρ5, (3.27)

r7 = fPρ4 + fPρ5, (3.28)

r8 = −1− YH

YH

ρ1 −
4.57− YA

YA

ρ3, (3.29)

r9 = −1− YH

2.86YH

ρ2 +
1

YA

ρ3, (3.30)

r10 = −iXBρ1 − iXBρ2 −
(
iXB +

1

YA

)
ρ3 + ρ6, (3.31)

r11 = −ρ6 + ρ8, (3.32)

r12 = (iXB − fPiXP)ρ4 + (iXB − fPiXP)ρ5 − ρ8, (3.33)

r13 = −iXB

14
ρ1 +

(
1− YH

14 · 2.86YH

− iXB

14

)
ρ2 −

(
iXB

14
+

1

7YA

)
ρ3 +

1

14
ρ6. (3.34)

The biological behavior of the system is described by eight basic processes,

ρ1 = µH

(
SS

KS + SS

)(
SO

KO,H + SO

)
XB,H, (3.35)

ρ2 = µH

(
SS

KS + SS

)(
KO,H

KO,H + SO

)(
SNO

KNO + SNO

)
ηgXB,H, (3.36)

ρ3 = µA

(
SNH

KNH + SNH

)(
SO

KO,A + SO

)
XB,A, (3.37)

ρ4 = bHXB,H, (3.38)

ρ5 = bAXB,A, (3.39)

ρ6 = kASNDXB,H, (3.40)

ρ7 = kh
XS/XB,H

KX +XS/XB,H

[(
SO

KO,H + SO

)

+ ηh

(
KO,H

KO,H + SO

)(
SNO

KNO + SNO

)]
XB,H, (3.41)

ρ8 = kh
XS/XB,H

KX +XS/XB,H

[(
SO

KO,H + SO

)

+ ηh

(
KO,H

KO,H + SO

)(
SNO

KNO + SNO

)]
XB,H(XND/XS). (3.42)

22

Parameter Unit
YA dimensionless
YH dimensionless
fP dimensionless
iXB dimensionless
iXP dimensionless
µH s−1

KS kg/m3

KO,H kg/m3

KNO kg/m3

bH s−1

ηg dimensionless
ηh dimensionless
kh s−1

KX dimensionless
µA s−1

KNH kg/m3

bA s−1

KO,A kg/m3

kA m3/(kgs)

Table 2: List of parameters in ASM1 with their SI-units.

Table 2 contains the units of the different parameters appearing in the equations
for the basic processes and conversion rates. For explanations of the parameters the
reader is referred to Copp (2002).

All different substrates are treated separately in the settler tank and thus seven
different PDE:s have to be solved, one for each substrate. The six different biomass
components however are modeled as being clustered together in the settler tank, thus
only contributing with one more PDE. The different substrate components and the
clustered biomass obey Equations (3.3) and (3.4) respectively. The concentration of
biomass leaving tank 5 and flowing into the settler tank is:

Xf =
1

frCOD−SS

(XS,5 +XP,5 +XI,5 +XB,H,5 +XB,A,5) =

= [frCOD−SS = 4/3] =
3

4
(XS,5 +XP,5 +XI,5 +XB,H,5 +XB,A,5). (3.43)

Similar equations hold when calculating the concentrations of biomass Xe leaving at
the effluent level and Xu leaving at the underflow level. Furthermore for simplicity,
the distribution of the different biomass components is assumed to remain constant
across the settler:

XS,5

Xf

=
XS,u

Xu

. (3.44)

23

This is a pretty crude assumption since it does not take into account the time it
takes for the particles to sink in the settler. In a stationary situation the assump-
tion is however correct. Similar equations hold for the other biomass components
XP,u, XI,u, XB,H,u, XB,A,u and XND,u.

24

4 Discretization of the mathematical model

4.1 The conservation law on integrated form

Equations (3.3) and (3.4) are of the form

∂Z

∂t
+

∂

∂x
F (Z, x, t) =

∂

∂x

((
γ(x)dcomp(Z) + ddisp

(
x,Qf(t)

))∂Z
∂x

)
+
Qf(t)Zf(t)

A
δ(x).

(4.1)
Here Z denotes the concentration of any substrate or biomass. In both models
only one type of biomass occurs in the settler. Meanwhile there are not only one
but seven types of substrates in the settler using the extended model compared to
the simplified one. Of course the compression and dispersion terms vanish for all
substrates since these are dissolved in the water. In order to solve equation (4.1) one
needs to establish a reliable numerical method. Since F (Z, x, t) is a discontinuous
function of x and dcomp(Z) vanishes for a range of concentration values it is not
possible to solve (4.1) by standard methods. The solution Z = Z(x, t) of (4.1) may
be discontinuous and thus cannot be interpreted in the pointwise sense. Instead
(4.1) needs to be reformulated on an integrated form which allows for a derivation
of a nonlinear system of ODE:s (Bürger et al., 2012b). The integrated form of
the equation does not involve the partial derivatives ∂Z

∂t
and ∂Z

∂x
, which are not well

defined for a discontinuous function Z. The total flux Φ is defined as

Φ

(
Z,
∂Z

∂x
, x, t

)
= F (Z, x, t)−

(
γ(x)dcomp(Z) + ddisp

(
z,Qf(t)

))∂Z
∂x

, (4.2)

and (4.1) may then be rewritten as

A
∂Z

∂t
= −A∂Φ

∂x
+Qf(t)Zf(t)δ(x), (4.3)

Now consider an arbitrary interval (x1, x2) on the x-axis and integrate (4.3) over x
to obtain

d

dt

x2∫

x1

AZ(x, t) dx = A(Φ|x=x1 − Φ|x=x2) +

x2∫

x1

Qf(t)Zf(t)δ(x) dx. (4.4)

Equation (4.4) is in fact just the conservation law of mass stating that the rate of
increase in (x1, x2) equals the flux in minus the flux out (Φ|x=x1 − Φ|x=x2) plus the
production inside the interval (the integral term).

In order to discretize the model, the x-axis is divided into N internal layers where
each layer has the depth ∆x = (B + H)/N. B is the depth of the thickening zone
and H is the height of the clarification zone. The boundary points of the layers are
then located at xj := j∆x − H, j = 0, . . . , N. Layer j is defined as the interval

25

[xj−1, xj]. The feed layer, that is the layer which contains the feed inlet (x = 0) is
located in (xjf−1, xjf] where jf := dH/∆xe. In order to obtain a correct numerical
implementation an additional four layers are added to the computational domain,
two of these layers are located in the effluent zone and two layers are located in
the underflow zone. In all, the computational domain thus consists of N + 4 layers
of depth ∆x with the boundaries located at the points xj, j = −2,−1, . . . , N + 2.
Figure 3 shows an illustration of the subdivision of the settler into layers.

ppp ppp

ppp ppp

Z−1

Z0

Z1

Z2

Z3

Zjf−2

Zjf−1

Zjf

Zjf+1

Zjf+2

ZN−1

ZN

ZN+1

ZN+2

x−2

x−1

effluent level: −H = x0

x1

x2

xjf−2

xjf−1

xjf

xjf+1

xN−1

feed level: x = 0

underflow level: B = xN

xN+1

xN+2

ppp

ppp

?
x

underflow zone





thickening zone





clarification zone





effluent zone





Figure 3: The sedimentation tank is subdivided into layers in order to discretize the
space.

The average Zj = Zj(t) of the exact solution Z over layer j at time t is defined as

Zj(t) :=
1

∆x

xj∫

xj−1

Z(x, t) dx. (4.5)

The primitive of dcomp is defined as

D(Z) :=

Z∫

Zc

dcomp(s) ds, (4.6)

26

and thus

dcomp(Z)
∂Z

∂x
=

∂

∂x
D(Z).

Now by defining

Jdisp(x, t) := ddisp

(
x,Qf(t)

)∂Z
∂x

, (4.7)

Jcomp(x, t) := γ(x)
∂D(Z)

∂x
, (4.8)

(4.2) can be written as
Φ = F − Jdisp − Jcomp. (4.9)

Now using equations (4.5)-(4.9), (4.4) can be rewritten as

dZj
dt

=− F (Z(xj, t), xj, t)− F (Z(xj−1, t), xj−1, t)

∆x
+
Jdisp(xj, t)− Jdisp(xj−1, t)

∆x
+

+
Jcomp(xj, t)− Jcomp(xj−1, t)

∆x
+

1

∆x

xj∫

xj−1

Qf(t)Zf(t)

A
δ(x) dx, (4.10)

which holds for all layers j = −1, 0, 1, . . . , N + 2.

It should be noted that (4.10) is indeed an exact form of Equation (4.4) for each layer
j. What appears to be finite difference quotients in the right hand side of (4.10) are
in fact not, the expressions follow from the conservation law. Equation (4.10) is now
a discretized version of Equation (4.1) rewritten as a system of ordinary differential
equations, depending on the time t. This system of equations can now be solved
using some time discretization scheme.

4.2 Approximations

Equation (4.10) consists of several terms that need to be approximated to be able
to be solved.

4.2.1 The convective flux

The convective flux F (Z(xj, t), xj, t) at a certain position xj is assumed to only de-
pend on the adjacent layer concentrations Zj(t) and Zj+1(t), that is,

F num
j (Zj(t), Zj+1(t), t) ≈ F (Z(xj, t), xj, t).

The convective flux function for the substrate given by (3.5) is linear in S and thus
can be easily approximated by

F s,num
j = F s,num

j (Sj, Sj+1, t) =

{
− (1−w)Q

A
Sj+1, for xj < 0,

(r+w)Q
A

Sj, for xj > 0,

27

which written out for each layer is

F s,num
j =

{
− (1−w)Q

A
Sj+1, for j = −2,−1, . . . , jf − 1,

(r+w)Q
A

Sj, for j = jf , jf + 1, . . . , N + 2.
(4.11)

The approximation of the convective flux function for the biomass given by (3.6) is
slightly more complicated as it involves an approximation of the nonlinear Kynch
batch flux density function (3.7). A good approximation choice in terms of simu-
lation speed is to use the Godunov numerical flux Gj = Gj(Xj, Xj+1) on fbk as an
approximation of fbk

(
X(xj, t)

)
, that is,

fbk

(
X(xj, t)

)
≈ Gj =





min
Xj≤X≤Xj+1

fbk(X), if Xj ≤ Xj+1,

max
Xj≥X≥Xj+1

fbk(X), if Xj > Xj+1.
(4.12)

Now the approximated flux can be written as

F num
j = F num

j (Xj, Xj+1, t) =





−Qe(t)
A
Xj+1, for x < −H,

−Qe(t)
A
Xj+1 +Gj, for −H < x < 0,

Qu(t)
A
Xj +Gj, for 0 < x < B,

Qu(t)
A
Xj, for x > B,

which written out for each layer is

F num
j :=





−Qe(t)
A
Xj+1, for j = −2,−1,

−Qe(t)
A
Xj+1 +Gj, for j = 0, 1, . . . , jf − 1,

Qu(t)
A
Xj +Gj, for j = jf , jf + 1, . . . , N,

Qu(t)
A
Xj, for j = N + 1, N + 2.

(4.13)

In Bürger et al. (2012a) it is investigated whether the use of the Godunov numerical
flux leads to convergence to a unique solution. With another approximation of
the convective flux, the Engquist-Osher numerical flux, and the use of an explicit
Euler time integrator, convergence to a unique solution is guaranteed. Simulations
provided in the article indicate that the Godunov method and an explicit Euler time
integrator yields the same result as the Engquist-Osher method. It is thus assumed
that the use of the Godunov numerical flux leads to convergence to a unique solution,
although it remains to be proven. The reason for working with the Godunov method
instead of the Engquist-Osher method is that the former is easier to implement. For
further details on this topic see Bürger et al. (2012a).

4.2.2 The dispersion and compression fluxes

The dispersion flux given by (4.7) can be approximated by a finite difference quotient

Jdisp(xj, t) ≈ Jnum
disp,j := ddisp,j

Xj+1 −Xj

∆x
. (4.14)

28

In the same way the compression flux (4.8) can be approximated by

Jcomp(xj, t) ≈ Jnum
comp,j := γ(xj)

Dnum
j+1 −Dnum

j

∆x
, (4.15)

where

Dnum
j := D(Xj) =

Xj∫

Xc

dcomp(s) ds. (4.16)

With the particular choice of the effective solid stress function (3.13) the compression
function is given by (3.15) and the primitive can be computed exactly. Trivially for,
0 ≤ Xj < Xc, D

num
j = 0. For Xj ≥ Xc,

Dnum
j = D(Xj) =

Xj∫

Xc

dcomp(s) ds =
ρsav0

(ρs − ρf)rVg

(
e−rVXc − e−rVXj

)
,

so to conclude

Dnum
j =

{
0 for Xj < Xc,

ρsav0

(ρs−ρf)rVg

(
e−rVXc − e−rVXj

)
for Xj ≥ Xc.

(4.17)

Now the exact conservation law (4.10) for the biomass can be rewritten by an ap-
proximate method-of-lines formula

dXj

dt
=− F num

j − F num
j−1

∆x
+

1

∆x

(
Jnum

disp,j − Jnum
disp,j−1 + Jnum

comp,j − Jnum
comp,j−1

)
+

+
QfXf

A∆x
δj,jf , j = −1, 0, . . . , N + 2, (4.18)

and analogously for the substrate

dSj
dt

= −
F s,num
j − F s,num

j−1

∆x
+
QfSf

A∆x
δj,jf , j = −1, 0, . . . , N + 2, (4.19)

where δj,jf = 1 if j = jf and δj,jf = 0 otherwise.

4.3 Time discretization

4.3.1 Explicit Euler method

Equations (4.18) and (4.19) are systems of ordinary differential equations depending
only on time t. In order solve them one needs to make use of some time discretization
scheme. The simplest one is the explicit Euler method. Select a time step size

29

∆t > 0 and define tn := n∆t, n = 0, 1, 2, To ensure stability of the numerical
scheme the time step has to be sufficiently short. The time step must satisfy the
CFL (Courant-Friedrichs-Lewy) condition given by

∆t ≤
[

1

∆x

(
max

0≤t≤T

Qf(t)

A
+ max

0≤Z≤Zmax

∣∣f ′bk(Z)
∣∣
)

+

+
2

(∆x)2

(
max

0≤Z≤Zmax

dcomp(Z) + max
−H≤x≤B,

0≤t≤T

ddisp

(
x,Qf(t)

))
]−1

.

(4.20)

Only Equation (4.18) contains second-order derivative terms that arises from the
compression and diffusion and thus this equation will be far more restricting to the
time step length then Equation (4.19) for which these terms will vanish.

In accordance with (4.5) one defines the layer concentration at time tn as

Zn
j := Zj(tn) =

1

∆x

xj∫

xj−1

Z(x, tn) dx, j = −1, 0, . . . , N + 2, n = 0, 1, 2, . . .

and the time derivative is approximated by

dZj
dt
≈
Zn+1
j − Zn

j

∆t
. (4.21)

Now putting (4.21) into (4.18) and (4.19) one obtains the fully discrete method for
the biomass and the substrate respectively

Xn+1
j = Xn

j −
∆t

∆x

(
F num,n
j − F num,n

j−1

)
+

+
∆t

∆x

(
Jnum,n

disp,j − Jnum,n
disp,j−1 + Jnum,n

comp,j − Jnum,n
comp,j−1

)
+

∆tQf(tn)Xf(tn)

A∆x
δj,jf ,

j = −1, 0, . . . , N + 2, n = 0, 1, 2, . . . (4.22)

Sn+1
j = Snj −

∆t

∆x

(
F s,num,n
j − F s,num,n

j−1

)
+

∆tQf(tn)Sf(tn)

A∆x
δj,jf ,

j = −1, 0, . . . , N + 2, n = 0, 1, 2, . . .

(4.23)

In order to solve this system of equations one also has to impose initial conditions on
the concentrations, that is one has to prescribe X0

j and S0
j for j = −1, 0, . . . , N + 2.

The ordinary differential equations in the models, i.e. Equations (3.1), (3.2), (3.19),
(3.20) and (3.21) are discretized in the same way and need also be subject to some
initial condition.

30

4.3.2 Other Runge-Kutta methods

The Runge-Kutta methods, often denoted the RK methods, is a family of solvers for
initial value problems. The explicit Euler method is an RK method of convergence
order 1. There exists a great variety of RK methods having different orders of
convergence. The CFL condition (4.20) is a limitation on the step size using the
Euler method. Higher order RK methods may be able to take larger time steps
than this, while maintaining stability, thus making up for the extra computations
needed in each time step. For most initial value problems higher order Runge Kutta
methods are superior to the Euler method both in terms of speed and accuracy.
Equations (4.18) and (4.19) are initial value problems that hold for each layer j.
The two equations may both, after redefining their respective right hand sides be
written as

dZj
dt

:= f(t, Zj), Zj(0) = Z0
j , t ∈ [0, T]. (4.24)

In the same fashion as for the explicit Euler method one chooses a time step of
length ∆t, and defines Zn

j = Zj(tn) = Zj(n∆t) for n = 0, 1, 2, A second order
RK method (RK2) to solve (4.24), the so called midpoint method, is given by





F1 = f(tn, Z
n
j),

F2 = f(tn + ∆t/2, Zn
j + ∆tF1/2),

Zn+1
j = Zn

j + ∆tF2.

(4.25)

A fourth order RK method (RK4), also known as the classical method, is given by





F1 = f(tn, Z
n
j),

F2 = f(tn + ∆t/2, Zn
j + ∆tF1/2),

F3 = f(tn + ∆t/2, Zn
j + ∆tF2/2),

F4 = f(tn + ∆t, Zn
j + ∆tF3),

Zn+1
j = Zn

j + ∆t
6

(F1 + 2F2 + 2F3 + F4).

(4.26)

Similar formulas of course hold for Equations (3.1), (3.2), (3.19), (3.20) and (3.21).
For more details on RK methods the reader is referred to Edsberg (2008).

4.3.3 Semi-implicit method

When solving (4.18) the greatest restriction on the length of the time step ∆t given
by the CFL condition (4.20) arises from the second-order derivative terms, i.e. the
compression and dispersion terms, since these are multiplied by 2

(∆x)2 instead of 1
∆x

as
is the case for the first-order derivative terms. An idea of increasing the simulation
speed is to use a semi-implicit method that uses two different methods to solve
the hyperbolic part (containing the first-order derivative terms) and the parabolic

31

part (containing the second-order derivative terms) of the equation respectively. The
hyperbolic part is solved with the explicit Euler method using a step size that fulfills

∆t ≤
[

1

∆x

(
max

0≤t≤T

Qf(t)

A
+ max

0≤X≤Xmax

∣∣f ′bk(X)
∣∣
)]−1

. (4.27)

Now the idea is to use the same time step to solve also the parabolic part of the
equation using an implicit method. The cost for taking this larger time step is the
need to solve a nonlinear system of equations at every time step. The method is
established by first modifying (4.22) so that

Xn+1
j = Xn

j −
∆t

∆x

(
F num,n
j − F num,n

j−1

)
+

+
∆t

∆x

(
Jnum,n+1

disp,j − Jnum,n+1
disp,j−1 + Jnum,n+1

comp,j − Jnum,n+1
comp,j−1

)
+

+
∆tQf(tn)Xf(tn)

A∆x
δj,jf , j = −1, 0, . . . , N + 2, n = 0, 1, 2, . . .

(4.28)

where the time index has been changed from n to n+1 for the second-order derivative
terms. Now with Xn

j given, take an explicit Euler step for the hyperbolic part of
the equation,

Xn
j,hyp := Xn

j −
∆t

∆x

(
F num,n
j − F num,n

j−1

)
+

∆tQf(tn)Xf(tn)

A∆x
δj,jf , (4.29)

to obtain

Xn+1
j = Xn

j,hyp +
∆t

∆x

(
Jnum,n+1

disp,j − Jnum,n+1
disp,j−1 + Jnum,n+1

comp,j − Jnum,n+1
comp,j−1

)
,

or equally

0 = Xn+1
j −Xn

j,hyp −
∆t

∆x

(
Jnum,n+1

disp,j − Jnum,n+1
disp,j−1 + Jnum,n+1

comp,j − Jnum,n+1
comp,j−1

)
,

which, using (4.14)-(4.17), can be written as

0 = Xn+1
j −Xn

j,hyp −
∆t

(∆x)2

(
ddisp,j

(
Xn+1
j+1 −Xn+1

j

)
− ddisp,j−1

(
Xn+1
j −Xn+1

j−1

)

+ γ(xj)
(
Dnum,n+1
j+1 − 2Dnum,n+1

j +Dnum,n+1
j−1

))
=: Mj(X

n+1), (4.30)

where Xn+1 is a vector containing all the layer concentrations at the time point
n+ 1. Let M denote the column vector with components Mj and the problem thus
reduces to solve the nonlinear system of equations given by

M(Xn+1) = 0. (4.31)

32

The system of equations can for instance be solved by using the Newton-Rhapson
method. At each iteration k, the method computes the root of a first order Taylor
approximation, at a point X0, of M by approximating

M(X) ≈M(X0) + M′(X0)(X−X0). (4.32)

Now the right hand side of (4.32) with X = Xn+1,k+1 and X0 = Xn+1,k is put into
(4.31) giving the equation

M(Xn+1,k) + M′(Xn+1,k)(Xn+1,k+1 −Xn+1,k) = 0, (4.33)

where M′ is the Jacobian matrix given by

M′(Xn+1) =




∂M−1

∂Xn+1
−1

∂M−1

∂Xn+1
0

· · ·
∂M0

∂Xn+1
−1

∂M0

∂Xn+1
0

· · ·
...

...
. . .


 . (4.34)

For more details on the Newton-Rhapson method see Edsberg (2008). The two
outmost layers, indexed j = −1 and j = N + 2 are not subject to any compression
and dispersion terms and need not to be included here. These layers only contain
first-order derivative terms and can be solved with the explicit Euler method directly.
Thus one considers only layers j = 0, 1, . . . , N+1 when solving the system. Looking
at (4.30) it is evident that the Jacobian matrix has a tridiagonal structure, that is
(now excluding the layers at the top as well as the bottom),

M′(Xn+1) =




∂M0

∂Xn+1
0

∂M0

∂Xn+1
1

0 0 · · ·
∂M1

∂Xn+1
0

∂M1

∂Xn+1
1

∂M1

∂Xn+1
2

0 · · ·
0 ∂M2

∂Xn+1
1

.

0 0
. ∂MN

∂Xn+1
N+1

...
...

. . . ∂MN+1

∂Xn+1
N

∂MN+1

∂Xn+1
N+1




, (4.35)

where

∂Mj

∂Xn+1
j−1

= − ∆t

(∆x)2

(
ddisp,j−1 + dcomp

(
Xn+1
j−1

))
, (4.36)

∂Mj

∂Xn+1
j

= 1 +
∆t

(∆x)2

(
ddisp,j + ddisp,j−1 + 2dcomp

(
Xn+1
j

))
, (4.37)

∂Mj

∂Xn+1
j+1

= − ∆t

(∆x)2

(
ddisp,j + dcomp

(
Xn+1
j+1

))
, (4.38)

33

for the layers j = 2, 3, . . . , N − 1 and

∂M0

∂Xn+1
−1

= 0, (4.39)

∂M0

∂Xn+1
0

= 1 +
∆t

(∆x)2
dcomp

(
Xn+1

0

)
, (4.40)

∂M0

∂Xn+1
1

= − ∆t

(∆x)2
dcomp

(
Xn+1

1

)
, (4.41)

∂M1

∂Xn+1
0

= − ∆t

(∆x)2
dcomp

(
Xn+1

0

)
, (4.42)

∂M1

∂Xn+1
1

= 1 +
∆t

(∆x)2

(
ddisp,1 + 2dcomp

(
Xn+1

1

))
, (4.43)

∂M1

∂Xn+1
2

= − ∆t

(∆x)2

(
ddisp,1 + dcomp

(
Xn+1

2

))
, (4.44)

∂MN

∂Xn+1
N−1

= − ∆t

(∆x)2

(
ddisp,N−1 + dcomp

(
Xn+1
N−1

))
, (4.45)

∂MN

∂Xn+1
N

= 1 +
∆t

(∆x)2

(
ddisp,N−1 + 2dcomp

(
Xn+1
N

))
, (4.46)

∂MN

∂Xn+1
N+1

= − ∆t

(∆x)2
dcomp

(
Xn+1
N+1

)
, (4.47)

∂MN+1

∂Xn+1
N

= − ∆t

(∆x)2
dcomp

(
Xn+1
N

)
, (4.48)

∂MN+1

∂Xn+1
N+1

= 1 +
∆t

(∆x)2
dcomp

(
Xn+1
N+1

)
, (4.49)

∂MN+1

∂Xn+1
N+2

= 0. (4.50)

Consider a general tridiagonal matrix

An =




a1 b1 0 0 · · ·
c1 a2 b2 0 · · ·
0 c2

.

0 0
. bn−1

...
...

. . . cn−1 an



.

The matrix An is said to be strictly diagonally dominant if

|a1| > |b1|, |ai| > |bi|+ |ci−1|, for i = 2, 3, . . . , n− 1, |an| > |cn−1|.

According to theorem (8.3.1) in DuChateau and Zachmann (1989), it holds that
An is invertible if it is strictly diagonally dominant. This condition thus provides
a sufficient condition for the invertibility of a tridiagonal matrix but it is not a

34

necessary one. For the Jacobian matrix given by (4.35) the sufficient conditions
guarantee invertibility if





1 + ∆t
(∆x)2dcomp

(
Xn+1

0

)
> ∆t

(∆x)2dcomp

(
Xn+1

1

)

1 + 2∆t
(∆x)2dcomp

(
Xn+1
j

)
> ∆t

(∆x)2

(
dcomp

(
Xn+1
j−1

)
+ dcomp

(
Xn+1
j+1

))

1 + ∆t
(∆x)2dcomp

(
Xn+1
N+1

)
> ∆t

(∆x)2dcomp

(
Xn+1
N

)
(4.51)

are fulfilled for j = 1, 2, . . . , N. From the above conditions one can easily get a condi-
tion on the step size ∆t that gives a restrictive condition guaranteeing invertibility.
From (4.51) it is clear that invertibility is guaranteed if

∆t

(∆x)2
dcomp

(
Xn+1
j

)
<

1

2

for all j = 0, 1, . . . , N + 1. This implies

∆t

(∆x)2
max(dcomp) <

1

2
,

which written out becomes

∆t <
(∆x)2

2 max(dcomp)
=
g(ρs − ρf)(∆x)2

2ρsav0e−rVXc
. (4.52)

This is a restrictive condition because of the factor (∆x)2 and it gives the same
condition as the one that arises in the CFL condition given by (4.20). Thus this
condition is not very useful since the point of the semi-implicit scheme is to be able
to take larger time steps. In most physical relevant situation this condition will
turn out to be overly restrictive. The distribution of particles exhibit discontinuous
behavior below the critical concentration Xc but above that concentration it will
be continuous. In an article by Bürger et al. (2005) a proof is given regarding the
convergence of semi-implicit difference scheme for an initial-boundary value problem
for a strongly degenerate parabolic equation. Lemma (3.3) in the article implies
that the there exists a unique solution to the semi-implicit scheme above, thus
guaranteeing the invertibility of the Jacobian matrix.

Now since the Jacobian matrix is invertible, (4.33) gives the iterative method

Xn+1,k+1 = Xn+1,k −
(
M′(Xn+1,k)

)−1
M(Xn+1,k). (4.53)

In order for the method to converge one needs to guess an initial solution that is
sufficiently close to the actual solution. Assuming that the concentration changes
little in each time step one is led to take Xn+1,0 = Xn, that is the concentration
in the last time step, as the initial guess. The iteration proceeds until a certain
termination criteria is fulfilled, for instance the iteration may be terminated if

||Xn+1,k+1 −Xn+1,k||
||Xn+1,k||

< ε,

35

for some chosen small tolerance ε. This means that the iteration is terminated if
the relative change in the solution is small. It will be investigated how this toler-
ance should be chosen for optimal performance with respect to simulation time and
accuracy. It is not necessarily so that a very small tolerance yields a significantly
more accurate numerical solution than the case with a higher tolerance but the
computations will be more expensive resulting in longer simulation times.

Another way to solve equation system (4.33) is to make use of an LU- decomposition
of the Jacobian Matrix M′. The expression (4.33) can be written as

M′(Xn+1,k)Xn+1,k+1 = M′(Xn+1,k)Xn+1,k −M(Xn+1,k). (4.54)

Since the Jacobian matrix is tridiagonal one can make use of the so called Thomas
algorithm, see Conte and de Boor (1972) and Thomas (1949), that is a simplified
form of Gaussian elimination. The system (4.54) can be written as




a1 b1 0 0 · · ·
c1 a2 b2 0 · · ·
0 c2

.

0 0
. bn−1

...
...

. . . cn−1 an







x1

x2
...
...

xn−1

xn




=




d1

d2
...
...

dn−1

dn



.

The algorithm first modifies the coefficients and successively eliminates unknown
from the equations:

b′i =

{
bi
ai

for i = 1
bi

ai−b′i−1ci−1
for i = 2, 3, . . . , n− 1

d′i =

{
di
ai

for i = 1
di−d′i−1ci−1

ai−b′i−1ci−1
for i = 2, 3, . . . , n.

Then by a back substitution one obtains the solution
{
xn = d′n
xi = d′i − b′ixi+1 for i = n− 1, n− 2, . . . , 1.

4.3.4 MATLAB built-in solvers

In MATLAB there are a number of built-in ODE solvers, each with their advantages
and disadvantages. All these solvers are using a variable step size contrary to the
solvers described above which all use a fixed step size during the entire simulation.
With a variable step size the solver takes an initial time step and then estimates the
error. If the error is below a given tolerance the step is accepted, otherwise if the

36

error is above the preset tolerance the step is rejected and the solver will try again
using a smaller step size. The disadvantage using a variable step size contrary to a
fixed step size is the cost of estimating the error. Also if the equation is very stiff it
may happen that the time step approaches zero causing the time integration to get
stuck. The obvious advantage is that the solver often can take larger time steps well
above the step size limit given by the CFL condition. Three different ODE solvers
that are included in MATLAB will be tested, these are ode45, ode23 and ode15s,
the latter is suitable for stiff problems. For more information on these solvers one
may consult the documentation in MATLAB.

37

38

5 Simulations and Results

Throughout the simulations the parameter values are those found in Table 3 if not
mentioned otherwise.

5.1 Simplified model

The simulations using the simplified model will only consider the biomass in a stand
alone settler tank, thus neglecting the substrate and the reactor tank equations. It
is sufficient to only consider the settler tank when investigating the efficiency of the
different solvers since the settler equations will use most of the computer power.

5.1.1 Scenario 1

The first scenario is a very simplified situation with a stand alone settler. There are
no bulk flows present and thus no dispersion effects take place, also all compression
effects are neglected. In this simulation another expression for the Kynch batch flux
density function is used. Instead of the expression given by Equation (3.11), the
expression

fbk =

{
v0X(1−X), for 0 ≤ X ≤ 1,

0, for X > 1,

will be used. The reason to use this artificial expression is that it makes it easier
to find ”worst case scenarios” which means that one is forced to take time steps
very close to the CFL condition to achieve a meaningful solution. When testing
the efficiency of the different solvers one wishes to use such scenarios. The system
is released with an initial sludge blanket at the point x = 0. Two different shock
waves appear and merge after a short time when the solution reaches a steady state.
Figure 4 shows the solution using the Euler method on a space grid of 2430 internal
layers.

39

Parameter Value
YA 0.24
YH 0.67
fP 0.08
iXB 0.08
iXP 0.06
µH 1/6 h−1

KS 0.01 kg/m3

KO,H 0.0002 kg/m3

KNO 0.0005kg/m3

bH 0.0125 h−1

ηg 0.8
ηh 0.8
kh 0.125 h−1

KX 0.1
µA 1/48 h−1

KNH 0.001 kg/m3

bA 1/480 h−1

KO,A 0.0004 kg/m3

kA 25/12 m3/(kgh)
S∗O 0.008 kg/m3

H 1 m
B 3 m
A 1500 m2

v0 10 m/h
rV 0.37 m3/kg
g 9.81 m/s2

ρs 1050 kg/m3

∆ρ 52 kg/m3

Qa 0 kg/m3

(KLa)1 0 s−1

(KLa)2 0 s−1

(KLa)3 0 s−1

(KLa)4 0 s−1

(KLa)5 0 s−1

V1 1000 m3

V2 1000 m3

V3 1333 m3

V4 1333 m3

V5 1333 m3

Table 3: List of parameter values used in the simulations. Note that some parameters
may differ between simulations but if not stated otherwise these values will be used.

40

−1
0

1
2

3

0

2

4

0

0.5

1

depth (m)

Concentration of biomass in settler tank

time (h)

co
nc

en
tr

at
io

n
(k

g/
m

3)

Figure 4: Simulation 1. Reference solution obtained using the Euler method with
N=2430 plotted for 100× 100 points.

5.1.2 Scenario 2

The second scenario also has no bulk flows and thus no dispersion present. However
it takes compression into account contrary to Scenario 1. For the same reason as
described under Scenario 1 another expression for the Kynch batch flux density
function will be used,

fbk = v0X
2e−rVX .

The parameters in the compression function given by (4.17) are a = 0.1 m2/s2 and
Xc = (2 −

√
2)/rV ≈ 1.58 kg/m3. Figure 5 contains a simulation using the Euler

method with a space grid consisting of 2430 internal layers.

41

Parameter Value
a 0.5 m2/s2

Xc 6 kg/m3

r 0.35
w 0.0155
α1 0.01 m−1

α2 0.5638 s/m2

rV 0.45 m3/kg
Xf 3.28 kg/m3

Table 4: List of additional parameter values used in Scenario 3.

−1
0

1
2

3

0

0.2

0.4

0

10

20

30

depth (m)

Concentration of biomass in settler tank

time (h)

co
nc

en
tr

at
io

n
(k

g/
m

3)

Figure 5: Simulation 2. Reference solution obtained using the Euler method with
N=2430 plotted for 100× 100 points.

5.1.3 Scenario 3

The third simulation is a more realistic scenario containing bulk flows, dispersion
and compression. Here the Kynch batch flux density function (3.11) is used. Figure
7 shows the simulation starting from a steady state profile obtained from a simu-
lation with constant influent. The solution is obtained with the Euler method and
810 internal layers. The volumetric inflow is depicted in Figure 6 and additional
parameter values are found in Table 4. By the end of the simulation the settler
becomes overloaded with sludge going up in the effluent zone.

42

0 2 4 6 8 10
0

500

1000

1500

2000

2500

3000

3500

4000

Volumetric inflow in scenario 3

time (h)

In
flu

en
t (

m
3 /h

)

Figure 6: Volumetric inflow in Scenario 3.

−1
0

1
2

3

0

5

10
0

5

10

depth (m)

Concentration of biomass in settler tank

time (h)

co
nc

en
tr

at
io

n
(k

g/
m

3)

Figure 7: Simulation 3. Reference solution obtained using the Euler method with
N=810 plotted for 100× 100 points.

Figures 8 and 9 show what may happen when the CFL condition is violated. In
this situation the time step length is set to approximately 20 % above the maximum

43

time step length given by the CFL condition. As the simulation shows the solution
blows up after some time.

−1
0

1
2

3

0

5

10
0

5

10

depth (m)

Concentration of biomass in settler tank, solution blows up

time (h)

co
nc

en
tr

at
io

n
(k

g/
m

3)

Figure 8: The CFL condition is violated and thus the solution blows up after some
time.

−1
0

1
2

3

9
9.2

9.4
9.6

9.8
0

5

10

depth (m)

The solution collapses due to violation of the CFL condition

time (h)

co
nc

en
tr

at
io

n
(k

g/
m

3)

Figure 9: A closer look at when the solution blows up due to the violation of the
CFL condition.

44

5.1.4 Efficiency of different solvers

The most time consuming equation to solve is Equation (3.4), that is the PDE
modeling the concentration of the biomass in the settler tank. After establishing
the integrated form and the method-of-lines formulas, the equation transforms into
the system of ordinary differential equations given by (4.18). A good numerical
method should be both fast and accurate and thus it is highly interesting to see how
the different initial value problem solvers described in Section 4.3 perform when
solving (4.18) numerically. In the following the different scenarios are simulated
using different methods that are compared to each other with respect to the CPU
time needed to execute the simulation and the relative error when compared to the
reference solution for the specific scenario.

The different methods used are the explicit Euler method, the midpoint method
(RK2), the classical method (RK4), the semi-implicit method and the MATLAB
built-in solvers ode45, ode23 and ode15s. For the semi-implicit method it is investi-
gated whether it is more efficient to use the backslash command in MATLAB or the
Thomas algorithm to solve the linear system of equations involved in the method.
The backslash command in MATLAB uses Gaussian elimination to solve the sys-
tem. All the different methods are tested with the number of internal layers being
N = 10 · 3p for p = 0, 1, 2, 3, 4. The reference solution is obtained by solving (4.18)
with N = 10 ·35 = 2430 or N = 10 ·34 = 810 layers using the explicit Euler method.
It is assumed that this solution is very close to the exact one since investigations in
Bürger et al. (2012a) indicated that the Euler method produces numerical solutions
that converge to the exact solution as the grid size tends to zero.

The relative error used by Bürger et al. (2012a) is

eX :=

T∫

0

H∫

−B

|XN(x, t)−Xref(x, t)| dx dt

T∫

0

H∫

−B

Xref(x, t) dx dt

(5.1)

Here XN is a piecewise constant representation of the approximate solution using
N internal layers. Xref are the reference solution obtained with the explicit Euler
method using 2430 internal layers and restricted to the same grid as XN by taking
averages over the layers.

Figure 10 shows an efficiency plot for Scenario 1 with values found in Table 6. The
Euler- RK2- and RK4-methods all use a time step length equal to the one given by
the CFL condition (4.20), this will also be the case in all other simulations. Both the
RK2- and RK4-methods will thus be slower since they perform more computations
at every time step than the Euler method. Since these solvers are of higher orders

45

N Maximum time step
10 1.60 · (∆t)CFL

30 1.60 · (∆t)CFL

90 1.60 · (∆t)CFL

270 1.60 · (∆t)CFL

810 1.60 · (∆t)CFL

Table 5: Maximum time steps that RK4 may take in Scenario 1 without causing
instability.

than Euler one may expect that they would converge faster to the reference solution
but this is not the case. Both RK2 and RK4 may take time steps exceeding the
CFL condition while maintaining stability but not large enough time steps to be as
fast as the Euler method, see Table 5. As seen in Table 6 the RK4 method takes
around 4 times longer than the Euler method to execute the simulation and since the
method only manages a factor of 1.6 times the Euler step length, it will be slower.
Moreover the RK methods seem to produce a slightly larger error than the Euler
method. The MATLAB built-in solvers all perform worse than the Euler method.
Since no second order derivative terms are present in this scenario there is no use
for the semi-implicit method.

10
−4

10
−2

10
0

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

CPU time (s)

re
la

tiv
e

er
ro

r

Relative error as function of CPU time for the different solvers

Euler
RK2
RK4
ode45
ode23
ode15s

Figure 10: The relative errors for the different methods as function of the CPU time
for Scenario 1.

Figure 11 shows an efficiency plot for Scenario 2. The results are similar to those for
Scenario 1 with all solvers being rather equal in terms of accuracy but Euler being
the fastest of them. The semi-implicit method makes uses of the larger allowed

46

Method N eX CPU time [s]
Euler 10 0.0765 0.0074

30 0.0228 0.0150
90 0.0068 0.0582
270 0.0017 0.3161
810 0.00002 2.0537

RK2 10 0.0843 0.0146
30 0.0251 0.0317
90 0.0076 0.1178
270 0.0019 0.5946
810 0.0001 4.4307

RK4 10 0.0842 0.0295
30 0.0251 0.0657
90 0.0076 0.2365
270 0.0019 1.1563
810 0.0001 7.9928

ode45 10 0.0842 0.0500
30 0.0251 0.0943
90 0.0076 0.2934
270 0.0019 0.9829
810 0.0001 4.9690

ode23 10 0.0842 0.0306
30 0.0251 0.0370
90 0.0077 0.0856
270 0.0020 0.2220
810 0.0001 0.9465

ode15s 10 0.0844 0.0626
30 0.0251 0.0985
90 0.0076 0.2677
270 0.0019 1.6927
810 0.0001 38.9931

Table 6: Errors and CPU times in Scenario 1 for the different methods.

47

N Maximum time step
10 1.35 · (∆t)CFL

30 1.50 · (∆t)CFL

90 1.45 · (∆t)CFL

270 1.40 · (∆t)CFL

810 1.40 · (∆t)CFL

Table 7: Maximum time steps that RK4 may take in Scenario 2 without causing
instability.

time step (4.27). In this simulation MATLAB’s backslash command is used in the
semi-implicit algorithm. Figure 12 contains a simulation of Scenario 2 with different
tolerances in the Thomas algorithm. This shows that there is no gain in having have
a very small tolerance. However a too large tolerance does not allow the Newton-
Rhapson method to converge causing an increase in the relative error. For Scenario
2 it seems as a tolerance of ε = 10−4 is the appropriate choice and this tolerance
will be used in other scenarios as well. Figure 13 shows an efficiency plot now using
the Thomas algorithm in the semi-implicit method with this tolerance. The method
clearly improves in speed when using the Thomas algorithm, that makes use of the
tridiagonal structure of the Jacobian matrix. It even performs better than the Euler
method for 810 internal layers. Table 8 contains values from the simulations. Table
7 contains the maximum possible time steps for the RK4 method without causing
instability. They are well below 4 · (∆t)CFL needed to achieve similar simulation
speed as the Euler method.

10
−4

10
−2

10
0

10
2

10
4

10
−2

10
−1

10
0

CPU time (s)

re
la

tiv
e

er
ro

r

Relative error as function of CPU time for the different solvers

Euler
RK2
RK4
Semi−implicit
ode45
ode23
ode15s

Figure 11: The relative errors for the different methods as function of the CPU time
for Scenario 2 with the backslash command in MATLAB used in the semi-implicit
method.

48

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

CPU time (s)

re
la

tiv
e

er
ro

r

Relative error as function of CPU time for different tolerances

tol 10−10,

tol 10−8,

tol 10−6,

tol 10−4,

tol 10−2

tol 10−1

Figure 12: The relative errors for different tolerances in the Thomas algorithm as
function of the CPU time for Scenario 2.

10
−4

10
−2

10
0

10
2

10
4

10
−2

10
−1

10
0

CPU time (s)

re
la

tiv
e

er
ro

r

Relative error as function of CPU time for the different solvers

Euler
RK2
RK4
Semi−implicit
ode45
ode23
ode15s

Figure 13: The relative errors for the different methods as function of the CPU
time for Scenario 2 with the Thomas algorithm used in the semi-implicit method,
tolerance in Newton step 10−4.

49

Method N eX CPU time [s]
Euler 10 0.6026 0.0051

30 0.3608 0.0110
90 0.1650 0.0514
270 0.0642 0.5760
810 0.0192 9.4675

RK2 10 0.6179 0.0107
30 0.3775 0.0215
90 0.1687 0.1090
270 0.0648 1.1616
810 0.0193 18.8785

RK4 10 0.6177 0.0204
30 0.3776 0.0428
90 0.1687 0.2074
270 0.0648 2.3235
810 0.0193 38.0906

ode45 10 0.6178 0.0260
30 0.3775 0.0443
90 0.1687 0.2689
270 0.0648 3.0819
810 0.0193 46.7806

ode23 10 0.6178 0.0204
30 0.3776 0.0375
90 0.1687 0.1839
270 0.0648 2.0669
810 0.0193 32.1065

ode15s 10 0.6177 0.0355
30 0.3775 0.0674
90 0.1687 0.4939
270 0.0648 9.0495
810 0.0193 208.2970

Semi-implicit (backslash) 10 0.7740 0.0312
30 0.4268 0.0214
90 0.1797 0.1064
270 0.0769 1.4936
810 0.0177 48.5172

Semi-implicit (Thomas) 10 0.7740 0.0306
30 0.4268 0.0196
90 0.1797 0.0576
270 0.0769 0.3419
810 0.0177 5.4920

Table 8: Errors and CPU times in Scenario 2 for the different methods.

50

N Maximum time step
10 2.45 · (∆t)CFL

30 1.60 · (∆t)CFL

90 1.45 · (∆t)CFL

Table 9: Maximum time steps that RK4 may take in Scenario 3 without causing
instability.

Figure 14 shows the efficiency plot for Scenario 3 with values in Table 10. In this
scenario the CFL condition is highly dominated by the dispersion term. Since the
CFL condition for the semi-implicit method is unaffected by the the dispersion and
compression it may take much larger time steps than the Euler- RK2- and RK4-
methods. It is evident that the semi-implicit method is far superior to the other
solvers in this scenario. Table 9 contains the maximum possible time steps for the
RK4-method while maintaining stability and they are to short for the method to be
as fast as the Euler method which is a factor 4 times faster when the methods use
the same step size.

10
−2

10
0

10
2

10
4

10
−3

10
−2

10
−1

10
0

CPU time (s)

re
la

tiv
e

er
ro

r

Relative error as function of CPU time for the different solvers

Euler
RK2
RK4
Semi−implicit
ode45
ode23
ode15s

Figure 14: The relative errors for the different methods as function of the CPU
time for Scenario 3 with the Thomas algorithm used in the semi-implicit method,
tolerance in Newton step 10−4.

51

Method N eX CPU time [s]
Euler 10 0.2523 0.4045

30 0.1021 4.9697
90 0.0274 89.5946
270 0.0069 2.01E+3

RK2 10 0.2523 0.8119
30 0.1020 10.0253
90 0.0274 179.9050
270 0.0069 4.03E+3

RK4 10 0.2523 1.6178
30 0.1020 20.5211
90 0.0274 359.3240
270 0.0069 8.07E+3

ode45 10 0.2523 0.9370
30 0.1020 15.1285
90 0.0274 268.9525
270 0.0069 5.75E+3

ode23 10 0.2523 0.6522
30 0.1020 9.9725
90 0.0274 171.5899
270 0.0069 3.60E+3

ode15s 10 0.2522 0.1215
30 0.1020 0.3284
90 0.0274 2.6345
270 0.0069 45.5111

Semi-implicit (Thomas) 10 0.2520 0.1497
30 0.1019 0.3689
90 0.0274 1.2032
270 0.0069 7.5478

Table 10: Errors and CPU times in Scenario 3 for the different methods.

52

5.1.5 Smearing of shock-waves

As is seen in Figures 10, 11, 13 and 14 the RK methods are both slower and some-
times slightly more inaccurate than the simpler Euler method. A trouble with the
RK methods is that they tend to smoothen out shock waves, i.e. they add more nu-
merical viscosity. Consider a situation with a settler tank with no bulk flows, disper-
sion or compression, i.e. similar to Scenario 1 but with the Kynch batch flux density
function (3.11). Let the initial concentration be 0 for layers j = −1, 0 . . . , p − 1,
and 1 kg/m3 for layers j = p, p+ 1, . . . , N + 2. Note that fbk > 0, so there will be a
shock wave moving downwards. Hence the concentration in layer p should tend to
zero as fast as possible. For the the layer p, (4.18) reduces to

dZp
dt

(tn) =
Gn
p−1 −Gn

p

∆x
=: F1.

Now take an Euler step in this layer,

Z1
p = Z0

p︸︷︷︸
=1

+
∆t

∆x
(G0

p−1︸ ︷︷ ︸
=0

− G0
p︸︷︷︸

=fbk(1)

) = 1− ∆t

∆x
fbk(1).

Now using the midpoint method (RK2), one notes that F2 = f(tn + ∆t/2, Zn
j +

∆tF1/2). Here the function f is given by the right hand side in (4.18). Now

Z1
p = Z0

p︸︷︷︸
=1

+∆tf(t0︸︷︷︸
=0

+∆t/2, Z0
p︸︷︷︸

=1

+ ∆tF1/2︸ ︷︷ ︸
=−∆tfbk(1)

2∆x

) = 1 + ∆tf

(
∆t/2, 1− ∆tfbk(1)

2∆x

)
=

= 1− ∆t

∆x
fbk

(
1− ∆tfbk(1)

2∆x︸ ︷︷ ︸
<1

)

︸ ︷︷ ︸
<fbk(1)

> 1− ∆t

∆x
fbk(1).

Thus it is clear that a step with the midpoint method yields a larger concentration
than if one uses the Euler method. The concentration will go slower to zero using the
midpoint method than the Euler method and thus the shock wave will be smeared
out more since the solution should go quickly to zero. The situation is similar with
the RK4 method. The reason for trusting Euler is that, as mentioned before, simu-
lations have indicated that it does converge to the exact solution. Figure 15 shows a
simulation of a scenario with no bulk flows, no dispersion and no compression. The
Kynch batch flux density function is the one given by Equation (3.11). The solution
is obtained with the Euler method using 270 internal layers. Figures 16 and 17 show
how the shock wave looks for the three different solvers at two fixed time points.
The two RK methods are very similar to each other and smoothen out the shock
wave more than the Euler method.

53

−1
0

1
2

3

0

500

1000
0

5

10

15

depth (m)

Concentration of biomass in settler tank

time (s)

co
nc

en
tr

at
io

n
(k

g/
m

3)

Figure 15: Traveling shock wave using an Euler solver with N = 270 plotted for
100× 100 points.

2.1 2.2 2.3 2.4

0

0.5

1

1.5

2

2.5

depth (m)

co
nc

en
tr

at
io

n
(k

g/
m

3)

Concentration of biomass in settler tank at time 16 s

Euler
RK2
RK4

Figure 16: The shock wave is smeared out more with the RK2- and RK4-methods
than with Euler.

54

State variable Influent concentration
SI 0.030 g/l
XB,A 0 g/l
SO 0 g/l
XP 0 g/l
SNO 0 g/l
SI 7 mol/m3

Table 11: Additional storm weather influent data.

2.2 2.22 2.24 2.26 2.28 2.3 2.32
−0.5

0

0.5

1

1.5

2

2.5

depth (m)

co
nc

en
tr

at
io

n
(k

g/
m

3)

Concentration of biomass in settler tank at time 970.67 s

Euler
RK2
RK4

Figure 17: The shock wave is smeared out more with the RK2- and RK4-methods
than with Euler.

5.2 Extended model

5.2.1 Storm weather influent data

Figures 18, 19 and 20 show storm weather influent data that is provided by Alex
et al. (2008). Table 11 contains additional influent data. The influent data are given
in intervals of fifteen minutes during two weeks. To get data at arbitrary time points
linear interpolation has been used.

55

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

x 10
4 Volumetric inflow

In
flu

en
t f

lo
w

 (
m

3 /d
)

time (d)

Figure 18: Storm weather influent data.

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

Variable substrate concentrations inflow

In
flu

en
t c

on
ce

nt
ra

tio
ns

 (
g/

l)

time (d)

S
S

S
NH

S
ND

Figure 19: Storm weather influent data.

56

Parameter Value
a 0.5 m2/s2

Xc 6 kg/m3

r 0.35
w 0.0155
α1 0.0023 m−1

α2 0.8533 s/m2

rV 0.45 m3/kg

Table 12: List of additional parameter values used in the storm weather scenario.

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

Variable biomass concentrations inflow

In
flu

en
t c

on
ce

nt
ra

tio
ns

 (
g/

l)

time (d)

X
BH

X
S

X
I

X
ND

Figure 20: Storm weather influent data.

5.2.2 Storm weather scenario

The storm weather influent data will be used in the simulation. Relevant parameter
values are given in Tables 3 and 12. The simulation will take the entire system, with
all reactor tanks and all substrate and biomass components, into account.

The system is initialized in a steady state that has been obtained through a simu-
lation with constant influent. Figure 21 shows the simulation of the scenario using
the Euler method on a space grid with 810 internal layers. The storm weather event
occurs around a simulation time of some 10 days which can clearly be seen as the

57

settler becomes more overloaded during the event.

−1
0

1
2

3

0

5

10

0

5

10

depth (m)

Concentration of biomass in settler tank

time (d)

co
nc

en
tr

at
io

n
(k

g/
m

3)

Figure 21: Storm weather scenario. Reference solution obtained using the Euler
method with 810 internal layers plotted for 100× 100 points.

5.2.3 Efficiency of different solvers

To measure the efficiency of the different solvers using the extended model another
error measure is also introduced. This relative error will measure the deviations
of the seven substrate component concentrations in the effluent layer, that is layer
j = 0. This relative error is defined as

eS :=

7∑

k=1

T∫

0

|SN0,k(t)− Sref
0,k(t)| dt

7∑

k=1

T∫

0

Sref
0,k(t) dt

. (5.2)

The efficiency plots using the two different error measures are shown in Figures 22
and 23 respectively, values are found in Table 13. The results clearly shows that the
semi-implicit method performs best with the RK4 method being the worst.

58

10
0

10
1

10
2

10
3

10
4

10
5

10
−5

10
−4

10
−3

CPU time (s)

re
la

tiv
e

er
ro

r

Relative error e
S
 as function of CPU time for the different solvers

Euler
RK2
RK4
Semi−implicit
ode45
ode23
ode15s

Figure 22: The relative errors, for the different solvers for the substrate effluent
concentrations, eS in the sedimentation tank.

10
0

10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

CPU time (s)

re
la

tiv
e

er
ro

r

Relative error e
X
 as function of CPU time for the different solvers

Euler
RK2
RK4
Semi−implicit
ode45
ode23
ode15s

Figure 23: The relative errors, for the different solvers for the biomass concentration,
eX in the sedimentation tank.

59

Method N eX eS CPU time [s]
Euler 10 0.1360 0.4754E-3 8.6221

30 0.0368 0.2083E-3 67.3952
90 0.0147 0.0768E-3 648.7921
270 0.0039 0.0208E-3 7.95E+3

RK2 10 0.1360 0.4775E-3 17.5132
30 0.0368 0.2088E-3 135.4051
90 0.0147 0.0768E-3 1.30E+3
270 0.0039 0.0208E-3 1.60E+4

RK4 10 0.1360 0.4775E-3 34.2078
30 0.0368 0.2088E-3 270.8111
90 0.0147 0.0768E-3 2.61E+3
270 0.0039 0.0208E-3 3.215E+4

ode45 10 0.1360 0.4775E-3 12.2417
30 0.0368 0.2088E-3 74.8202
90 0.0147 0.0768E-3 1.00E+3
270 0.0039 0.0208E-3 1.32E+4

ode23 10 0.1360 0.4775E-3 5.4927
30 0.0368 0.2088E-3 48.1658
90 0.0147 0.0768E-3 586.8117
270 0.0039 0.0208E-3 7.12E+3

ode15s 10 0.1359 0.4781E-3 9.9340
30 0.0368 0.2095E-3 46.4258
90 0.0147 0.0775E-3 565.9028
270 0.0039 0.0212E-3 9.73E+3

Semi-implicit (Thomas) 10 0.1362 0.4816E-3 3.1209
30 0.0368 0.2090E-3 9.3616
90 0.0147 0.0765E-3 33.3418
270 0.0039 0.0206E-3 188.2093

Table 13: Errors and CPU times in the storm weather scenario for the different
methods.

60

6 Conclusions and summary

The aim of the thesis was to implement two different models of a wastewater treat-
ment plant and investigate which time discretization schemes are most efficient when
running simulations. The speed of the simulations is limited by a CFL condition,
which if violated may cause numerical instability. It has been investigated how
effective different methods have performed during simulations of some different sce-
narios.

The results show that there is no point in using higher order methods with fixed time
step size such as RK2 and RK4. These methods are slower since they can cannot
take large enough time steps to make up for the extra computations needed at every
time step. They are also slightly more inaccurate since they tend to smoothen out
shock waves more than the Euler method. The efficiency of the built-in solvers in
MATLAB, ode45, ode23 and ode15s, is scenario dependent. One solver may perform
very well for a scenario but far worse for another one. The simplest method of them
all, the explicit Euler method performs surprisingly well and is always a better
choice than the RK2- and RK4-methods. In many simulations it was also better
than all the MATLAB built-in solvers. The best method of them all seems to be
the semi-implicit method. Since the CFL condition of this method does not contain
any second-order derivative terms it is allowed to take much larger time steps. The
cost is that on each time step one has to solve a nonlinear system of equations. This
is done with the Newton-Rhapson method which converges very fast and thus this
cost is rather small in comparison to the gain.

For the wastewater treatment sector these results may be of interest. The results
indicate that simulations are preferably performed using the semi-implicit method
described in this thesis. For simulations where dispersion and compression effects
are absent and the semi-implicit method is of no use, the Euler method is probably
the best choice. The RK2- and RK4-methods are always worse than these two and
can be rejected while the adaptive methods in MATLAB may be a good choice
depending on the scenario.

61

62

References

Alex, J., Benedetti, L., Copp, J., Gernaey, K. V., Jeppsson, U., Nopens, I., Pons,
M.-N., Steyer, J.-P., and Vanrolleghem, P. (2008). Benchmark simulation model
no. 1 (BSM1). Technical report, Dept. of Industrial Electrical Engineering and
Automation Lund University.

Bürger, R., Coronel, A., and Sepulveda, M. (2005). A semi-implicit monotone
difference scheme for an initial-boundary value problem of a strongly degenerate
parabolic equation modeling sedimentation-consolidation processes. Mathematics
of Computation, 75(253):91–112.

Bürger, R., Diehl, S., Far̊as, S., and Nopens, I. (2012a). On reliable and unreliable
numerical methods for the simulation of secondary setlling tanks in wastewater
treatment. Computers Chem. Eng., 41.

Bürger, R., Diehl, S., Far̊as, S., Nopens, I., and Torfs, E. (2012b). A consistent
modelling methodology for secondary setlling tanks: A reliable numerical method.

Conte, S. D. and de Boor, C. (1972). Elementary Numerical Analysis: An Algorith-
mic Approach. McGraw-Hill.

Copp, J. (2002). The COST Simulation Benchmark: Description and Simulator
Manual. Directorate-General for Research.

Diehl, S. (1996). Introduction to the scalar non-linear conservation law. Technical
report, Department of Mathematics Lund Institute of Technology.

Diehl, S. (2012). Shock-wave behaviour of sedimentation in wastewater treatment:
A rich problem. In Analysis for Science, Engineering and Beyond, Springer Pro-
ceedings in Mathematics 6, chapter 7, pages 175–214. Springer-Verlag Berlin Hei-
delberg.

DuChateau, P. and Zachmann, D. W. (1989). Applied Partial Differential Equations.
Harper & Row.

Edsberg, L. (2008). Introduction to Computation and Modelling for Differential
Equations. John Wiley & Sons, Inc. Hoboken, New Jersey.

Thomas, L. H. (1949). Elliptic problems in linear differential equations over a net-
work. Technical report, Watson Sci. Comput.

Vesilind, P. A. (1968). Theoretical considerations: Design of prototype thickeners
from batch settling tests.

63

Master’s Theses in Mathematical Sciences 2013:E62

ISSN 1404-6342

LUTFMA-3255-2013

Mathematics

Centre for Mathematical Sciences

Lund University

Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

