
Intertemporal Allocation
of Indivisible and Durable Goods

Master Essay II

Jörgen Kratz

May 30, 2013

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lund University Publications - Student Papers

https://core.ac.uk/display/289951926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

This paper presents a futures mechanism, as defined by Kurino (2009), allocating

a set of indivisible and durable goods among a set of agents over multiple time

periods. The mechanism is shown to satisfy individual rationality, Pareto efficiency

and non-bossiness for allocation problems with or without endowments. The paper

also shows that the mechanism does not satisfy strategy-proofness and presents the

conditions under which the mechanism is manipulable.

Keywords: intertemporal allocation; futures mechanism; indivisible goods; en-

dowments

Acknowledgements

I would like to thank Tommy Andersson for his support as a supervisor during

the production of this paper.

1

Contents

1 Introduction 3

1.1 Purpose . 6

1.2 Related literature . 6

1.3 Overview . 7

2 The model: Sets and definitions 7

2.1 Agents and objects . 7

2.2 Matching plans and assignments . 8

2.3 Preferences . 9

2.4 Allocation problems and mechanisms . 9

3 Mechanism design 10

3.1 Classes of mechanisms . 10

3.2 The ϕ mechanism . 13

3.3 The algorithm . 16

3.4 Example . 21

4 Properties 25

4.1 Positive results . 29

4.2 Negative results . 35

5 Concluding remarks 38

6 References 40

2

1 Introduction

Consider two siblings, Yngve and Ingvor. Yngve and Ingvor are playing in their backyard.

In the backyard, there is a short skipping rope and a small trampoline. Only one person

may use the skipping rope or the trampoline at a time and no one may use the skipping

rope while jumping on the trampoline. Dinner is ready in 20 minutes. If Yngve and

Ingvor divide these 20 minutes into two 10 minute periods, they have a number of different

alternatives to consider. Yngve could, for example, jump on the trampoline in both periods,

while Ingvor spends 20 minutes skipping. Another option would be for Yngve to spend

the first period jumping on the trampoline and the second period skipping, while Ingvor

is skipping in the first period and jumping on the trampoline in the second period. Yngve

and Ingvor cannot agree on what to do, so they ask their mother to decide for them. Which

of the many alternatives should she choose, and why? Solutions to this kind of problem

are studied in a field known as mechanism design.

The above is an example of the problem of how to allocate a number of goods, such

as skipping ropes and trampolines, among a group of agents, such as Yngve and Ingvor.

Allocation problems of this kind have been studied extensively and have many different

applications, ranging from school choice and housing to kidney exchange programs. A

mechanism designer, represented by Yngve’s and Ingvor’s mother in the example above, is

interested in solving allocation problems and does so by selecting a mechanism. A matching

mechanism is a rule that, given its inputs, selects a matching between agents and goods.

For allocation problems with indivisible goods, the mechanism selects a matching such

that each good is assigned to at most one agent. Whenever there is more than one time

period, such as in the example above, the mechanism must select one matching for each

period. Such a sequence of matchings is referred to as a matching plan. For instance, a

mechanism could select a matching plan, under which Yngve is assigned the skipping rope

in period one and the trampoline in period two, while Ingvor is assigned the trampoline

in period one and the skipping rope in period two. Imagine that Yngve has called dibs

on the trampoline. Yngve is then already assigned the trampoline when their mother is

making her decision. Whenever some goods start out assigned to agents, the allocation

problem is known as an allocation problem with endowments. This paper will limit its focus

to a class of mechanisms known as direct mechanisms. Under this framework, the agents

are of different types and each agent is asked to reveal his or her type. The mechanism

3

makes use of this information when selecting matchings or matching plans between agents

and goods. Suppose that Yngve is the type that likes to climb trees, while Ingvor is of a

more down-to-earth type. Their mother, who does not know as much about her children

as she probably should, will ask Yngve and Ingvor to reveal their types. She will then

use their responses to select a matching plan under which, for example, Yngve jumps on

the trampoline in both periods and Ingvor is skipping in both periods. An agent’s type

is often synonymous with his or her preferences over the different goods. If this were the

case, Yngve and Ingvor would simply be asked if they prefer skipping to jumping on the

trampoline or vice versa.

Mechanisms are normally evaluated by examining which properties they satisfy. A

mechanism is individually rational if no agent is ever made worse off by the mechanism.

For example, suppose that Yngve has called dibs on the trampoline, because he really likes

to jump on the trampoline. He would then be made worse off if his mother chose not to

respect his dibs and let Ingvor jump on the trampoline in both periods. A matching or

matching plan is Pareto efficient if no agent can be made better off without making some

other agent worse off and a mechanism is Pareto efficient if it always selects Pareto efficient

matchings or matching plans. Suppose that Yngve wants to jump on the trampoline and

that Ingvor prefers skipping. If their mother decides that Yngve will be skipping in both

periods and Ingvor will be jumping on the trampoline in both periods, this clearly does not

represent a Pareto efficient matching plan. Both Yngve and Ingvor would be made better

off if she changed her mind and decided that Yngve should be jumping on the trampoline

in both periods and Ingvor should be skipping in both periods. However, if both Yngve and

Ingvor hate skipping ropes and only want to jump on the trampoline, then anything their

mother decides will represent a Pareto efficient matching plan. A mechanism is non-bossy

if it is impossible for any agent to affect any other agent’s assignment without affecting his

or her own assignment as well. Assume that there are two skipping ropes, one red and one

blue skipping rope. Further assume that Yngve has reported his true type to his mother

and that he was assigned the trampoline in both periods, while Ingvor was assigned the

blue skipping rope in both periods. The mechanism is non-bossy if there is nothing Yngve

could have reported to his mother that would have made her decide to assign Yngve the

trampoline in both periods and Ingvor the red skipping rope in any of the two periods.

A mechanism is strategy-proof if no agent can benefit from reporting a type that is not

his or her true type. In the framework employed in this paper, this is equivalent to no

4

agent being able to benefit by misrepresenting his or her preferences. For example, suppose

Yngve knows that his mother is so mean that she will always choose the activity he likes

the least for him. Yngve could then benefit by lying about his preference for trampoline

jumping and report that he prefers playing with the skipping rope.

Most of the literature focuses on allocation problems where all reallocations take place

at a single point in time. Some authors have introduced time in their models, studying

intertemporal allocation problems such as the one faced by Yngve’s and Ingvor’s mother.

Time is typically discrete, consisting of a finite number of periods. Kurino (2009) defines

two classes of mechanisms solving intertemporal allocation problems. A spot mechanism is

a one-period mechanism that is repeated in each time period. In each period, agents report

their preferences over the goods in the economy and the mechanism selects a matching

between agents and goods for this period. A futures mechanism is a mechanism where

agents report their preferences over the entire time interval during which they participate

in the economy. The futures mechanism uses this information to select a matching plan,

under which each agent is assigned one good for each time period in which he or she

participates in the economy.

While deciding who will jump on the trampoline and who will use the skipping rope

might seem like a trivial problem, there are several important real world applications

that motivate the study of intertemporal allocation problems. Consider, for example, a

company in charge of providing housing for students at a university. Suppose that there

are three types of student housing: dorm rooms, small apartments and large apartments;

and that each student stays at the university for three years. Assuming that the company

is interested in finding an allocation of rooms and apartments that the students are happy

with, it will not want to force students to live in the same room or apartment for three

years. One solution would be to divide the three years into three periods and match each

student with a room or apartment each year. The easiest way to accomplish this would

be to repeat a one-period mechanism once a year. That way, each student would have

the option to change his or her preferences and possibly be assigned a different room or

apartment in the second or third year. Suppose, however, that students know before the

start of the first year how their preferences for different types of housing will change over

the course of the three years. Perhaps some students know that they want to live in a dorm

room the first year to meet new people and that they will want their own apartment in the

second and third years. Other students might have families and children and require large

5

apartments for the full duration of their studies. The company could then implement a

futures mechanism to take such preferences into account. The students would report their

preferences over sequences of rooms and apartments of the form (dorm room in year 1,

small apartment in year 2, large apartment in year 3) or (small apartment in year 1, small

apartment in year 2, dorm room in year 3). The company would finally use these reports

to assign such a sequence of rooms and apartments to each student.

1.1 Purpose

The purpose of this paper is to present a futures mechanism that solves intertemporal allo-

cation problems with endowments. Furthermore, the purpose is to prove that this mecha-

nism satisfies Pareto efficiency, individual rationality and non-bossiness, and to prove that

it does not satisfy strategy-proofness as well as under which conditions it is manipulable.

1.2 Related literature

This paper is related to the literature on intertemporal allocation problems with indivisible

goods. One of the earliest papers dealing with a single-period matching problem is Gale

and Shapley’s (1962) paper on college admissions and the stability of marriage. The use of

trading cycles in section 3 is heavily influenced by the paper by Shapley and Scarf (1974)

introducing the concept of top trading cycles, as well as the top trading cycles mecha-

nism for single-period house allocation problems in Abdulkadiroglu and Sönmez (1999).

The mechanism described in section 3.2 differs from the mechanism introduced by Ab-

dulkadiroglu and Sönmez in the sense that it selects trading cycles, but not necessarily

top trading cycles. Furthermore, the mechanism in section 3.2 assumes that their pref-

erences in subsequent periods are known by the agents in the first period, in contrast to

Abdulkadiroglu and Loertzscher (2007) who study a two-period allocation problem where

the agents’ types in the second period are unknown. Kurino (2009, 2013) and Bloch and

Cantala (2011) study a multi-period house allocation problem in which agents enter and

exit the model over time, as opposed to the fixed set of agents assumed in this paper.

Ünver (2009) considers a dynamic kidney allocation problem where time is introduced as

a factor and Dur (2011) considers a dynamic two-period school choice problem, where it

is considered preferable to assign siblings to the same schools. Zou, Gujar and Parkes

(2010) examine a dynamic intertemporal allocation problem, where agents are ranked in

6

accordance with their point of arrival. In this setting, they examine the efficiency gains of

adopting manipulable mechanisms whenever a sufficiently large share of the agents fail to

act strategically and instead report their preferences truthfully.

All of the papers mentioned above that deal with intertemporal allocation problems

present some type of spot mechanism. One of the benefits of considering futures mech-

anisms, such as the futures mechanism presented in section 3.2, is their ability to take

more advanced preferences into account. If a spot mechanism is used, the mechanism de-

signer only has access to agents’ preferences over objects in the present period. If a futures

mechanism is used, the mechanism designer has access to agents’ preferences over several

periods. As shown in section 3.1, such information could be used to find better matching

plans.

1.3 Overview

Section 2 presents the sets and definitions used throughout the paper. Section 3 begins by

motivating the study of futures mechanisms. It then goes on to define and describe the

mechanism. Finally, an algorithm that finds the matching plan selected by the mechanism

is presented. Section 4 shows that the mechanism satisfies individual rationality, Pareto

efficiency and non-bossiness. Furthermore, it shows that the mechanism does not satisfy

strategy-proofness and presents the conditions under which an agent may benefit from

misrepresenting his or her preferences. Section 5 provides some concluding remarks.

2 The model: Sets and definitions

2.1 Agents and objects

Time consists of an interval of T discrete periods t ∈ [1, T] ⊂ N. There are N t agents

it ∈ I t ⊆ I , where I t is the set of agents existing in period t ∈ [1, T] and I is the agent

space. An agent may exist in several periods. Define the set of agents existing in any period

t ∈ [1, T] as I = {i | it ∈ I t for some t ∈ [1, T]}. Agent it should be interpreted as the

period t representation of agent i, such that it ∈ I t ⇐⇒ i ∈ I t. There are M t indivisible

and durable goods at ∈ At ⊆ A called objects, where At is the set of objects existing in

period t ∈ [1, T] and A is the object space. The durability of objects indicates that objects

may exist in several periods and the indivisibility of objects indicates that an object may

7

be consumed by at most one agent in each period. Define the set of objects existing in

any period t ∈ [1, T] as A = {a | at ∈ At for some t ∈ [1, T]}. As with agents, at should

be interpreted as the period t representation of a, such that at ∈ At ⇐⇒ a ∈ At. An

economy is defined as a three-tuple 〈T, I, A〉 ∈ N ×I × A . In this paper, it is assumed

that for all t, t′ ∈ [1, T], I t = I t
′
= I and At = At

′
= A, and by implication, N t = N t′ = N

and M t = M t′ = M . In other words, no agents enter or exit the model and there is no

production or destruction of objects. In addition, denote the null object by a0. The null

object is interpreted as ”no object.” A sequence of T objects a ∈ A ∪ a0 consisting of one

object in each period t ∈ [1, T] is called a consumption path, defined by the ordered set

x ≡ {x(t) | ∀t ∈ [1, T] x(t) ∈ At ∪ a0}. The consumption path space X is defined by

X ≡
∏T

t=1{At ∪ a0}, where
∏

denotes the Cartesian product. Throughout this paper J(j)

will denote the j’th element in J whenever J is an ordered set.

2.2 Matching plans and assignments

A matching plan is an injective function µ: I → X. It could also be written as µ = {µt |
t ∈ [1, T]}, where the period t matching, µt, is an injective function µt: I

t → At ∪ a0. In

other words, a matching plan maps each agent i ∈ I to some object a ∈ A ∪ a0 in each

period, together constituting a consumption path x ∈ X. The consumption path agent i

is mapped to is referred to as agent i’s assignment and the object agent i is mapped to in

period t is referred to as agent i’s period t assignment. The matching plan space is denoted

by M . The indivisibility of objects implies that an object at ∈ At may be assigned to

at most one agent it ∈ I t, or equivalently that an object a ∈ A may be assigned to at

most one agent i ∈ I in each period t ∈ [1, T]. The null object may, however, be assigned

to any number of agents in each period. The assignment of agent i under µ is denoted

by µ(i) and the period t assignment of i is denoted by µt(i). The sets of assignments of

some I ′ ⊆ I and I ′t ⊆ I t are denoted by µ(I ′) and µt(I
′t) respectively. Even though a

period t matching is not a bijective function and technically not invertible, for notational

ease, the agent assigned object a in period t under µ will be referred to as µ−1t (a). The

endowment of agent i is denoted by λ(i) ∈ X and the endowments of I ′ ⊆ I are denoted

by λ(I ′), where λ ∈M is the original matching plan before any reassignments have been

made. λ(i) always contains the same object a ∈ A ∪ a0 in all periods. This means that

∀t, t′ ∈ [1, T] λt(i) = a ⇐⇒ λt′(i) = a. Let AtA ⊆ At denote the set of objects assigned

8

to some agent i ∈ I t and let AtU ⊆ At denote the set of objects unassigned to any agent in

period t. By construction, AtA ∩ AtU = ∅.

2.3 Preferences

Each agent i ∈ I has a complete and transitive strict preference relation Pi ∈ Ω onX, where

Ω is the preference domain. In other words, Pi is an ordered set containing all elements in

X. xRix
′ means that x is weakly preferred to x′ and xPix

′ means that x is strictly preferred

to x′. A consumption path x ∈ X is said to be acceptable to i if and only if xRiλ(i). Note

that as Pi ∈ Ω is a strict preference relation, xRix
′∧¬(xPix

′) ⇐⇒ x = x′. Ω is restricted

such that, everything else equal, all agents prefer being assigned some at ∈ At to being

assigned a0 in any period. A preference profile is defined by P = {Pi | i ∈ I} ∈
∏N

i=1 Ω. If

µ, µ′ ∈M , then µPiµ
′ ⇐⇒ µ(i)Piµ

′(i).

2.4 Allocation problems and mechanisms

An allocation problem is defined as a five-tuple 〈T, I, A, P, λ〉 ∈ N×I ×A ×
∏N

i=1 Ω×M .

If ∀i ∈ I,∀t ∈ [1, T] λt(i) = a0, it is called an allocation problem without endowments.

Otherwise, it is called an allocation problem with endowments. If T ≥ 2, it is called

an intertemporal allocation problem. There is a mechanism designer who is interested in

finding a solution to some allocation problem. The mechanism designer creates or inherits

a ranking of all agents and agents are allowed to send some message to the mechanism

designer, typically communicating their preferences for different objects or consumption

paths. This information is used to select a solution to the allocation problem, in the form

of a matching plan µ ∈M .

The ranking of the agents is an externally determined strict priority structure given

by the bijective function f : ([1, N] ⊂ N) → I. However, for notational ease, the priority

structure f will be treated as an ordered subset of I, such that f(1) denotes the agent of

highest priority and f(#f) denotes the agent of lowest priority. The # sign denotes the

number of elements in the set it precedes. If i, i′ ∈ f , then ifi′ is interpreted as i being

of higher priority than i′ under f . Let F denote the priority structure space, given some

I ∈ I . Priority structures can be determined in a number of different ways. For example,

the priority structure could reflect the preferences of the owner of the objects, it could

reflect the time an agent has been waiting for an object or it could simply be randomized.

9

A strategy of agent i, which can be thought of as a message sent by agent i to the

mechanism designer, is denoted by Si ∈ Si, where Si is agent i’s strategy space. A strategy

profile S is defined by S ≡ {Si | i ∈ I}. If I ′ ⊆ I, then SI′ ≡ {Si | i ∈ I ′}. In this

multi-period model, a matching mechanism consists of a strategy space Si for each i ∈ I
and an injective function Γ:

∏N
i=1 Si × F →M that selects some matching plan µ ∈M

for each combination of strategy profiles and priority structures (S, f) ∈
∏N

i=1 Si × F .

This is an adaptation of the definition used by Abdulkadiroglu and Sönmez (1999) to

intertemporal allocation problems. A direct matching mechanism is a matching mechanism

where ∀i ∈ I Si = Ω. As preference relations Pi ∈ Ω are ordered sets, element j in Si can

be denoted by Si(j) and the element in Si(j) corresponding to period t can be denoted by

Sti (j) whenever the mechanism is a direct mechanism. All mechanisms discussed in this

paper are direct matching mechanisms. A matching mechanism consisting of the strategy

space Ω and a function Γ will simply be referred to as the Γ mechanism. If Γ(S, f) = µ,

then Γi(S, f) = µ(i).

3 Mechanism design

3.1 Classes of mechanisms

Matching mechanisms are most commonly studied in a static one-period (T = 1) frame-

work. In this framework, X = A and the preferences are defined over A. The mechanism

thus selects a single period 1 matching µ1, rather than a matching plan µ. For intertemporal

allocation problems, Kurino (2009) defines two classes of mechanisms. A spot mechanism

is a mechanism that selects a matching plan by repeating a one-period mechanism in each

period. Spot mechanisms are appealing since static one-period mechanisms can easily be

converted to spot mechanisms for intertemporal allocation problems. A futures mechanism

is a mechanism where agents are asked to report their preferences over the entire period

during which they participate in the economy. A spot mechanism is less demanding of

the agents as they are only asked to report their preferences over objects in A, whereas a

futures mechanism requires agents to report preferences over X, a significantly larger set

whenever T ≥ 2. At the same time, a futures mechanism can take more advanced pref-

erences into account. To understand the difference, consider a simple mechanism known

as serial dictatorship (SD) that will select the same matching plan if implemented as a

10

spot mechanism (SDS) as it would if implemented as a futures mechanism (SDF). In the

one-period case, SD assigns the agent of highest priority his most preferred object in A1

and removes that object from A1. The agent of second highest priority is then assigned his

most preferred object out of those remaining in A1, and so on until all objects have been

assigned to some agent or all agents have been assigned some object. SD has been proven

to be strategy-proof and Pareto efficient (Svensson, 1994). Although it will not be proven

in this paper, the arguments hold for SDS and SDF as well. When implemented as a spot

mechanism, the process is simply repeated for A2, A3, . . . , AT . When implemented as a

futures mechanism, the agent of highest priority is assigned his most preferred consumption

path x ∈ X and all consumption paths involving some at ∈ x are removed from X. The

agent of second highest priority is then assigned his most preferred consumption path out

of those remaining in X, and so on until all agents have been assigned some consumption

path. If T = 3 and (a1, a2, a1) ∈ X is agent f(1)’s most preferred consumption path, this

simply corresponds to f(1) preferring object a1 to all other objects in A1, a2 to all other

objects in A2 and a1 to all other objects in A3. If these preferences are reported, SDS

would assign f(1) the consumption path (a1, a2, a1). The reader can confirm that all other

agents in I would be assigned the same consumption paths under both SDS and SDF as

well. The reason why SDS and SDF select the same matching plan is that there are no

property rights in the serial dictatorship mechanism. To see this, consider a well known

extension of SD known as serial dictatorship with waiting list, (SDWL) which introduces

property rights. SDWL assigns objects to agents in the same way as SD, with the differ-

ence that agents can only be assigned objects that are not already assigned to some other

agent. Whenever an agent is assigned a new object, his previous assignment becomes unas-

signed. SDWL thus ensures the right of each agent to keep his or her current assignment

until some more preferred object is available. The serial dictatorship with waiting list spot

mechanism (SDS
WL) is simply SDWL repeated in each period. The serial dictatorship with

waiting list futures mechanism (SDF
WL) assigns f(1) his or her most preferred consumption

path x ∈ X such that x(t)Pf(1)λt(f(1)) for all t ∈ [1, T] and such that each at ∈ x is either

λt(f(1)) or unassigned. All at ∈ x are assigned to f(1) and all at for which at ∈ λ(f(1))

and at /∈ x become unassigned. The same step is then repeated in order for f(2) through

f(#f). SDS
WL and SDF

WL do not necessarily select the same matching plans. To see this,

consider an allocation problem with endowments 〈T, I, A, P, λ〉, where T = 3, I = {i1, i2},
AA = {a1, a2}, AU = {a3}, λ(i1) = a1, λ(i2) = a2 and P is given by

11

P1 P2

(a1, a3, a1) (a2, a1, a1)
(a1, a1, a1) (a2, a1, a2)

. . . (a2, a2, a2)
. . .

Furthermore, let f = (i1, i2). Under SDF
WL, i1 is guaranteed (a1, a1, a1), but is assigned

(a1, a3, a1), which is strictly preferred to (a1, a1, a1). This results in a1 ∈ A2 being unas-

signed. Next, i2 is guaranteed (a2, a2, a2), but can be assigned (a2, a1, a2), which is strictly

preferred to (a2, a2, a2), as a1 ∈ A2 is now unassigned. This matching plan is, however, not

necessarily selected by SDS
WL. In period 1, i1 and i2 are both assigned their endowments.

In period 2, i1 is guaranteed a1, but would prefer to be assigned a3. Suppose i1 reports

that a3 ∈ A2 is preferred to a1 ∈ A2, then a1 ∈ A2 would become unassigned. As agent i2

prefers to be assigned a1 to a2 and a3 in both period 2 and period 3, i2 would finally be

assigned his or her most preferred consumption path (a2, a1, a1). Agent i1, on the other

hand, would be assigned either (a1, a3, a2) or (a1, a3, a3), to both of which agent i1 prefers

(a1, a1, a1). In this example, i2 gained from i1’s inability to predict i2’s period 3 preferences

correctly. Such uncertainties regarding the future preferences of other agents might induce

agents to report preferences that make all agents worse off. Consider the same allocation

problem as above, with a new preference profile P ′, given by

P ′1 P ′2
(a1, a3, a1) (a2, a1, a2)
(a1, a1, a1) (a2, a2, a2)

.

SDF
WL would assign (a1, a3, a1) to i1, and (a2, a1, a2) to i2. SD

S
WL would also assign a1

to i1 and a2 to i2 in period 1. However, as i1 has no information on i2’s period 3 preferences,

i1 might choose to hold on to a1 out of fear of not being able to get it back in period 3.

As a result, i1 is assigned (a1, a1, a1) and i2 is assigned (a2, a2, a2). In this scenario, SDF
WL

selected a Pareto efficient matching plan, while SDS
WL did not. Since there was no risk of

not being assigned a1 in period 3, i1 had no incentive not to choose to be assigned a3 in

period 2. This made a1 available in period 2, making i2’s most preferred consumption path

attainable to i2 as well. The above example showed a situation in which the SDF
WL selected

a matching plan preferred by all agents to the matching plan selected by SDS
WL. Under

SDF
WL, both the mechanism designer and the agents have access to more information on

12

assignments in subsequent periods than they do under SDS
WL. This information may, as

demonstrated, be used to find better matchings between agents and objects. Such potential

benefits motivate the study of futures mechanisms even when spot mechanisms are easier

to implement. It is easy to see that SDF is not individually rational whenever there are

endowments. Furthermore, SDF
WL is only Pareto efficient for allocation problems without

endowments, in which case it reduces to SDF . That SDF
WL is not Pareto efficient is easily

confirmed by considering an allocation problem with endowments, where AtU = ∅ for each

t ∈ [1, T] and λ(i) is the least preferred consumption path for all agents i ∈ I. The ϕ

mechanism described in section 3.2 is a futures mechanism that satisfies both individual

rationality and Pareto efficiency for allocation problems with endowments.

3.2 The ϕ mechanism

To describe the ϕ mechanism, some additional concepts are needed. A trading cycle, or

simply a cycle, ct, is an ordered set (j1, j2, . . . , jk) of agents and objects j ∈ I t ∪At, where

j1 → j2, j2 → j3, . . . , jk−1 → jk and jk → j1 and “→” is read as “points to”. Further define

“→” such that i → x ⇐⇒ ∀a ∈ x i → a and x → i ⇐⇒ x(1) → i. Which at ∈ At or

x ∈ X each i ∈ I points to is determined by Pi ∈ Ω and which i ∈ I each at ∈ At points

to is determined by some f ∈ F in a manner described in section 3.3. Given some f ∈ F ,

a cycle ct is defined exclusively by which a ∈ At each i ∈ ct points to. A cycle is permitted

to involve only one agent and one object. In the algorithm in section 3.3, |ct| will be used

to denote the number of cycles that have formed in period t at the step in consideration.

Let a cycle set be defined as

C = {ct | i ∈ ct ∈ C =⇒ ∀t′ ∈ [1, T] (∃ct′ ∈ C: i ∈ ct′)}. (1)

In other words, C is a nested set of cycles, where any agent participating in any cycle

in C also participates in some cycle in C in each period t ∈ [1, T]. As each agent i ∈ I
participating in C points to some at ∈ At in each period t, each agent participating in

C also points to at least one consumption path x ∈ X in C. For notational ease, denote

i ∈ ct ∈ C by i ∈ C and a ∈ ct ∈ C by a ∈ C. Furthermore, if i → x in C, then x ∈ C.

Define C as the set of all C for which

∀t ∈ [1, T],∀at ∈ At (at ∈ x ∈ C =⇒ @x′ ∈ C: at ∈ x′), (2)

13

∀t ∈ [1, T],∀i ∈ I (i ∈ ct ∈ C =⇒ @(c′t 6= ct) ∈ C: i ∈ c′t) (3)

and

C ∈ C =⇒ @C ′ ∈ C : C ′ ⊂ C. (4)

The first condition ensures that the constraint that all at ∈ At be indivisible is satisfied

and that no i ∈ I may point to more than one a ∈ A in any period. The second condition

ensures that each agent participating in C will participate in exactly one ct ∈ C in each

period and point to exactly one consumption path x ∈ X. The third condition ensures

that a cycle set cannot be divided into smaller cycle sets. A set

Cµ ≡ {{C ∈ C } | (∀i ∈ I ∃j: (i ∈ Cj ∈ Cµ ∧ i /∈ C¬j ∈ Cµ)) ∧

(at ∈ x ∈ Cj ∈ Cµ =⇒ at /∈ x′ ∈ C¬j ∈ Cµ)} (5)

defines a matching plan µ ∈M , under which each agent is assigned the consumption path

he or she is pointing to in Cµ. The first condition states that an agent may only participate

in one C ∈ Cµ and the second condition states that an object may only participate in one

cycle set in each period. Not all matching plans can be defined by such a set. The ϕ

mechanism always selects a matching plan µ by selecting some Cµ.

Let IC denote the ordered set of all agents participating in C. IC is ordered analogously

with g1 in section 3.3. IC(1) is the agent participating in C that is of highest priority under

f and IC(k ≥ 2) is the agent whose endowment agent IC(k − 1) points to in period 1.

Denote the set of all cycle sets C ∈ C in which each participating agent i ∈ I points to an

acceptable consumption path by CIR ⊆ C . In other words, CIR is the set of all C ∈ C that

satisfy the individual rationality constraint. A cycle set C ∈ C is preferred by an agent to

a cycle set C ′ ∈ C if and only if the agent prefers the consumption path he or she points

to in C to the one he or she points to in C ′. The agent is indifferent between them if he or

she points to the same consumption path in both. The ϕ mechanism selects a matching

plan by finding a set of cycle sets

{C ∈ Cµ | ∀C ∈ Cµ C ∈ CIR}. (6)

By the definition of Cµ, each agent i ∈ I participates in exactly one cycle set in (6). There

may be several sets matching the description of (6). To illustrate how the ϕ mechanism

14

selects a particular set, define Ki as the set containing all C ∈ CIR involving agent i

and KJ as the set containing all C ∈ CIR involving any agent or object j ∈ J ⊆ I ∪
{at ∈ At | t ∈ [1, T]}. Whenever ∀C ∈ Ki,∀i, i′ ∈ C ifi′, Ki is ordered such that

C ∈ Ki is of higher order than C ′ ∈ Ki if CPIC(1)C
′, or CRIC(1)C

′ ∧ CPIC(2)C
′, or

CRIC(1)C
′ ∧ CRIC(2)C

′ ∧ CPIC(3)C
′ and so on. Generally, C ∈ Ki is of higher order

than C ′ ∈ Ki if and only if

CPIC(1)C
′ ∨ (∃j: (CPIC(j)C

′ ∧ ∀j′ < j CRIC(j′)C
′)). (7)

In other words, C ∈ Ki is of higher order than C ′ ∈ Ki if C is strictly preferred to C ′ by

some agent i ∈ IC and all agents of higher order than i in IC are indifferent between C and

C ′. To see that R is equivalent to indifference in statement (7), consider some j for which

(7) holds and for which there exists some j′ < j such that CPIC(j′)C
′, then statement (7)

holds for j′ as well. As all agents in IC who are indifferent between C and C ′ necessarily

participate in C ′ as well, the definition is equivalent if IC is replaced by IC′ . Ki \KJ is the

ordered subset of Ki containing all cycles involving i but not involving any agent or object

j ∈ J ⊆ I ∪ {at ∈ At | t ∈ [1, T]}. Lastly, define the set of all blocked i ∈ I and at ∈ At as

Bj ≡ {b ∈ I ∪ {at ∈ At | t ∈ [1, T]} | b ∈ Bj−1 ∪ {Kj \KBj−1
}(1)}, (8)

where B0 = ∅. B1 is thus the set of agents i ∈ I and objects at ∈ At participating in K1(1).

Definition 1. Given some (P, f) ∈
∏N

i=1 Ω× F , the ϕ mechanism is the mechanism that

selects µ ∈MIR such that

Cµ = {Kj ∈ {{Kj \KBj−1
}(1) |

(i1 ≡ f(1)) ∧ (ij≥2 ≡ (i ∈ I: ∀(i′ 6= i) /∈ Bj−1 ifi′) ∧ (∀(i′ 6= i) ∈ Bj−1 i′fi))}

| ∀i ∈ I ∃j: i ∈ Kj}. (9)

An algorithm that finds this matching plan is described in Section 3.3. To get an

intuitive understanding of Definition 1, it can be thought of as a process in which f(1) first

chooses the set of all C ∈ CIR that are weakly preferred to all other C ′ ∈ CIR. In all such

C, f(1) points to his most preferred consumption path out of all consumption paths he

points to in any C ∈ CIR. As a result, for any such cycle sets C and C ′, IC(2) = IC′(2).

15

Agent IC(2), where C is an arbitrary element in agent f(1)’s choice, then chooses the

subset of agent f(1)’s choice containing all cycle sets that are weakly preferred by IC(2)

to all other cycle sets in f(1)’s choice. Next, agent IC(3), where C is an arbitrary element

in agent IC(2)’s choice, chooses the subset of agent IC(2)’s choice that consists of all cycle

sets that are weakly preferred by IC(3) to all other cycle sets in agent IC(2)’s choice. This

process continues until only Kf(1)(1) remains, at which point the process starts over with

the highest agent not participating in Kf(1)(1), i2, in place of f(1). At this point, i2 is

restricted to all C ∈ CIR that do not involve any agent or object j ∈ I∪{at ∈ At | t ∈ [1, T]}
participating in Kf(1)(1). When, again, only one cycle set remains, the process starts over

with agent i3. i3 is defined as the agent not participating in any of the two selected cycle

sets above that is of highest priority under f , and is restricted to all C ∈ CIR that do not

involve any of the agents or objects j ∈ I ∪ {at ∈ At | t ∈ [1, T]} participating in any of

the two selected cycle sets. The whole process terminates whenever ∀i ∈ I ∃j: i ∈ Cj. At

this point, the selected cycle sets form Cµ, and the ϕ mechanism selects the matching plan

µ. For allocation problems without endowments, the ϕ mechanism reduces to the serial

dictatorship futures mechanism described in Section 3.1.

3.3 The algorithm

In order to describe the algorithm that locates the matching plan selected by the ϕ

mechanism, some further notation is needed. gt is an ordered subset of I t, where gt(j)

denotes the jth agent in gt. At the start of the process, g1 = (f(1)). The set gt

can be partitioned into subsets gtj, where gt is ordered by subset index first, such that

(gt1(1), gt1(2), . . . , gt1(#g
t
1), g

t
2(1), gt2(2), . . .). Let lowercase sg(j) denote the ordered subset

of Sgt(j) consisting of acceptable consumption paths that are not blocked by any agent

gt(j) for whom j′ < j and that are not members of the set SBi . At the start of the

algorithm, ∀i ∈ I SBi = ∅. Let ν be a temporary matching, such that νt(i) is an ob-

ject at ∈ At temporarily assigned to agent i at some step of the algorithm. An agent

points to some x ∈ X. Through x, the agent points to each object in it, in its re-

spective period. If T = 2, si(1) = (a, a′) and i → si(1), then this is equivalent to

((i1 ∈ I1) → (a1 ∈ A1)) ∧ ((i2 ∈ I2) → (a′2 ∈ A2)). Each (at ∈ AtA) → ν−1t (at),

each (at ∈ AtU) → gt|ct|+1(1) and a0 → I, i.e. a0 points at all agents in all periods. Before

the algorithm starts, µ is an empty matching, where no agent is assigned any consumption

16

path. The algorithm starts at step 0.

Step 0

Clear gt for all t ≥ 1. Generate g11 = (f(1)) and set ν1 = λ1(f). Go to step 1.

Step 1

If

s1g1
|c1|+1

(1)(1) = λ1(g
1
|c1|+1(1)), (10)

then go to step 1.1.2.a.

If

s1g1
|c1|+1

(1)(1) ∈ A1
U , (11)

then go to step 1.1.2.b.

Otherwise go to step 1.1.

Step 1.1

g1(#g1)→ sg1(#g1)(1)→ ν−11 (s1g1(#g1)(1)). Place ν−11 (s1g1(#g1)(1)) at the bottom of g1.

If

sg1(#g1)(1) = λ(g1(#g1)), (12)

then go to step 1.1.1.

If

sg1(#g1)(1) 6= λ(g1(#g1)) ∧ s1g1(#g1)(1) /∈ ν1(g1|c1|+1(1)) ∪ A1
U , (13)

then go to step 1.1.

If

sg1(#g1)(1) 6= λ(g1(#g1)) ∧ s1g1(#g1)(1) = ν1(g
1
|c1|+1(1)), (14)

17

then go to step 1.1.2.a.

If

sg1(#g1)(1) 6= λ(g1(#g1)) ∧ s1g1(#g1)(1) ∈ A1
U , (15)

then go to step 1.1.2.b.

Step 1.1.1

Sort sg1(#g1−1)(1) into SBg1(#g1−1), clear SBg1(#g1) and remove g1(#g1) from g1. Go to step 1.

Step 1.1.2.a

A cycle c1|c1|+1 is formed. Modify ν1 such that all agents in g1 are assigned the objects

they point to and generate g21 = (g1(1)). Modify ν2 such that for all i ∈ f , ν2(i) = ν1(i) if

ν1(i) ∈ A2 and ν2(i) = a0 otherwise. Go to step 2.

Step 1.1.2.b

A cycle c1|c1|+1 is formed. Modify ν1 such that all agents in g1 are assigned the objects they

point to and such that ν1(g
1
|c1|(1)) ∈ A1

U if ν1(g
1
|c1|(1)) 6= a0. Generate g21 = (g1(1)) and

modify ν2 such that for all i ∈ f , ν2(i) = ν1(i) if ν1(i) ∈ A2 and ν2(i) = a0 otherwise. Go

to step 2.

Step t ≥ 2

If

stgt|ct|+1
(1)(1) = νt(g

t
|ct|+1(1)), (16)

then go to step t.1.4.a.

If

stgt|ct|+1
(1)(1) ∈ AtU , (17)

then go to step t.1.4.b.

Otherwise go to step t.1.

18

Step t.1

gt(#gt)→ sgt(#gt)(1)→ ν−1t (stgt(#gt)(1)) and place ν−1t (stgt(#gt)(1)) at the bottom of gt.

If

gt(#gt) /∈ g1 ∧ sgt(#gt)(1) = λ(gt(#gt)), (18)

then go to step t.1.1.

If

gt(#gt) /∈ g1 ∧ sgt(#gt)(1) 6= λ(gt(#gt)), (19)

then go to step t.1.2.

If

gt(#gt) ∈ g1 ∧ sgt(#gt)(1) 6= λ(gt(#gt)) ∧ stgt(#gt)(1) /∈ νt(gt|ct|+1(1)) ∪ AtU , (20)

then go to step t.1.

If

gt(#gt) ∈ g1 ∧ sgt(#gt)(1) 6= λ(gt(#gt)) ∧ stgt(#gt)(1) = νt(g
t
|ct|+1(1)), (21)

then go to step t.1.4.a.

If

gt(#gt) ∈ g1 ∧ sgt(#gt)(1) 6= λ(gt(#gt)) ∧ stgt(#gt)(1) ∈ AtU , (22)

then go to step t.1.4.b.

Step t.1.1

Sort sgt(#gt−1)(1) into SBgt(#gt−1) and clear SBgt(#gt). Go to step 0.

Step t.1.2

Generate g1|c1|+1 = (gt(#gt)). Go to step 1.

19

Step t.1.4.a

A cycle ct|ct|+1 is formed. Modify νt such that all agents in gt are assigned the objects they

point to. Go to step t.1.5.

Step t.1.4.b

A cycle ct|ct|+1 is formed. Modify νt such that all agents in gt are assigned the objects they

point to and such that νt(g
t
|ct|(1)) ∈ AtU . Go to step t.1.5.

Step t.1.5

If

#gt < #g1, (23)

then go to step t.1.5.a.

If

#gt = #g1, (24)

then go to step t.1.5.b.

Step t.1.5.a

Generate gt|ct|+1 = ({g1 \ gt}(1)). Go to step t.

Step t.1.5.b

If

t < T, (25)

then modify νt+1 such that for all i ∈ f , νt+1(i) = νt(i) if νt(i) ∈ At+1 and νt+1(i) = a0

otherwise. Go to step t+ 1.

If

t = T, (26)

then go to step T.2.

20

Step T.2

Modify µ such that all agents in g1 are assigned the consumption paths x ∈ X they

are pointing to. Remove all {at ∈ At | ∃i ∈ g1: i → at} from At and sort all strategies

involving at least one such at into SBi for all i ∈ f . Remove all i ∈ g1 from f . Go to step

0.

The process ends when all agents in I have been assigned some x ∈ X under µ. I.e.,

the process ends when µ ∈M .

3.4 Example

Consider an allocation problem 〈T, I, A, P, λ〉 where T = 2, I = {i1, i2, . . . , i6}, A1
A = A2

A =

{a1, a2, . . . , a5}, A1
U = A2

U = {a6}, λ(ij) = aj for j = 1, 2, . . . , 5, λ(i6) = a0 and P is given

by

P1 P2 P3 P4 P5 P6

(a4, a2) (a4, a4) (a4, a4) (a1, a6) (a5, a3) . . .
. . . (a1, a1) (a5, a5) . . . (a3, a5)

(a2, a1) (a5, a4) (a5, a5)
.

Furthermore, let f = (i1, i2, i3, i4, i5, i6).

Step 0

g11 = i1 is generated and ν1 is modified such that ν1 = λ1. Go to step 1.

Step 1

|c1| = 0 and sg1
|c1|+1

(1)(1) = s1(1) = (a4, a2). s
1
g1
|c1|+1

(1)
(1) = a4 6= λ1(i1) = a1 and a4 /∈ A1

U .

Go to step 1.1.

Step 1.1

(g1(1) = a1) → (s11(1) = a4) → (ν−11 (a4) = i4). i4 is placed at the bottom of g1. Now

sg1(#g1)(1) = s4(1) = (a1, a3). ((a1, a3) 6= λ(i4)) ∧ (s14(1) = a1) = (ν1(g
1
1(1)) = ν1(i1) =

a1). Go to step 1.1.2.a.

21

Step 1.1.2.a

A cycle c11 is formed. ν1 is modified such that ν1(i1) = a4 and ν1(i4) = a1. ν2 is set such

that ν2 = ν1 and g21 = (i1) is generated. Go to step 2.

Step 2

sg2
|c2|+1

(1)(1) = s1(1) = (a4, a2). (s21(1) = a2) 6= (ν2(g
2
1(1)) = a4) and a2 /∈ AtU . Go to step

2.1.

Step 2.1

i1 → (a4, a2)→ (ν−12 (a2) = i2) and i2 is placed at the bottom of gt. Note that a14 and a11 are

pointed to by i1 and i4 respectively. Both (a4, a4) and (a1, a1) are thus blocked strategies

for agent i2, giving s2(1) = (a2, a1). As i2 /∈ g1 and s2(1) = (a2, a1) 6= λi2 , go to step 2.1.2.

Step 2.1.2

g12 = (i2) is generated. Go to step 1.

Step 1

s12(1) = a2 = λ1(i2). Go to step 1.1.2.a.

Step 1.1.2.a

A cycle c12 is formed, involving only i2 and a2. ν1 is modified such that ν1(i2) = a2. Then

ν2 is set such that ν2 = ν1 and g21 = (i1) is generated, replacing the existing g21. Go to step

2, which is repeated exactly as above.

Step 2.1

i1 → (a4, a2) → i2 and i2 is placed at the bottom of g2, just like before. However, now

i2 ∈ g1 holds, s2(1) 6= λ(i2) and s22(1) = a1 /∈ (ν2(i1) = a4) ∪ A2
U . Go to step 2.1.

Step 2.1

i2 → (a2, a1) → i4 and i4 is placed at the bottom of g2. As i4 ∈ g1, s4(1) 6= λ(i4) and

s24(1) = a6 ∈ A2
U , go to step 2.1.4.b.

22

Step 2.1.4.b

A cycle c21 is formed. νt is modified such that ν2(i1) = a2, ν2(i2) = a1 and ν2(i4) = a6 and

such that a4 ∈ A2
U . Go to step 2.1.5.

Step 2.1.5

#g2 = #g1 = 3. Go to step 2.1.5.b.

Step 2.1.5.b

T = 2. Go to step T.2.

Step T.2

µ(i1) = (a4, a2), µ(i2) = (a2, a1) and µ(i4) = (a1, a6). {a1, a2, a4} are removed from A1,

{a1, a2, a6} are removed from A2 and {i1, i2, i4} are removed from f . Go to step 0.

The reader can confirm that a cycle set C ∈ CIR has formed at step T.2. At this

point, A1
A = A2

A = {a3, a5}, A1
U = {a6}, A2

U = {a4} and f = (i3, i5, i6).

Step 0

Both g1 and g2 are cleared. g11 = (i3) is generated and ν1 is modified such that ν1 = λ1(f).

This implies that ν1(i3) = a3, ν1(i4) = a4 and ν1(i6) = a0. Go to step 1.

Step 1

As (a4, a4) ∈ SB3 , s3(1) = (a5, a5). s
1
3(1) = a5 6= λ1(i3) = a3 and s13(1) /∈ A1

U . Go to step

1.1.

Step 1.1

i3 → (a5, a5)→ i5 and i5 is placed at the bottom of g1. As i3 → (a5, a5), both (a5, a3) and

(a3, a5) are blocked and s5(1) = (a5, a5) = λ(i5). Go to step 1.1.1.

Step 1.1.1

(a5, a5) is sorted into SB3 and i5 is removed from g1. Go to step 1.

23

Step 1

As (a5, a5) ∈ SB3 , s3(1) = (a5, a4). a5 6= λ1(i3) = a3 and a5 /∈ A1
U . Go to step 1.1.

Step 1.1

i3 → (a5, a4) → i5 and i5 is placed at the bottom of g1. s5(1) = (a3, a5), as (a5, a3) is

blocked by i3. (a3, a5) 6= λ(i5) and a3 = ν1(i3). Go to step 1.1.2.a.

Step 1.1.2.a

A cycle c11 is formed. ν1 is modified such that ν1(i3) = a5 and ν1(i5) = a3 and g21 = (i3) is

generated. ν2 is modified such ν2(i5) = a3 and ν2(i3) = a5. Go to step 2.

Step 2

s3(1) = (a5, a4) and a4 ∈ AtU . Go to step 2.1.4.b.

Step 2.1.4.b

A cycle c21 is formed. ν2 is modified such that ν2(i3) = a4 and such that a5 ∈ A2
U . Go to

step 2.1.5.

Step 2.1.5

#g2 = 1 < #g1 = 2. Go to step 2.1.5.a.

Step 2.1.5.a

g22 = ({g1 \ g2}(1)) = (i5) is generated. Go to step 2.

Step 2

s5(1) = (a3, a5) and a5 ∈ A2
U . Go to step 2.1.4.b

Step 2.1.4.b

A cycle c22 is formed. ν2 is modified such that ν2(i5) = a5 and such that a3 ∈ A2
U . Go to

step 2.1.5.

24

Step 2.1.5

#g2 = #g1 = 2. Go to step 2.1.5.b.

Step 2.1.5.b

T = 2. Go to step T.2.

Step T.2

µ is modified such that µ(i3) = (a5, a4) and µ(i5) = (a3, a5). The remaining a ∈ AtA are

removed such that AtA = ∅ for t = 1, 2 and {i3, i5} are removed from f . Go to step 0.

At this point, f = (i6), A
1
U = a6 and A2

U = a3. It is easy to see that i6 will be assigned

(a6, a3), yielding the final matching plan µ, where µ(i1) = (a4, a2), µ(i2) = (a2, a1),

µ(i3) = (a5, a4), µ(i4) = (a1, a6), µ(i5) = (a3, a5) and µ(i6) = (a6, a3). Note that the

algorithm locates three cycle sets C ∈ Cµ.

4 Properties

As mentioned in the introduction, mechanisms are often evaluated by examining which

properties they satisfy. This section will investigate whether the ϕ mechanism satisfies

individual rationality, Pareto efficiency, non-bossiness and strategy-proofness. Proposition

1 states that the ϕ mechanism is individually rational, Proposition 2 states that it is Pareto

efficient and Proposition 3 states that it is non-bossy. Furthermore, Proposition 4 states

that the ϕ mechanism is not strategy proof and Proposition 5 presents the conditions under

which it is manipulable.

To examine the properties of the ϕ mechanism, some additional concepts are helpful.

Recall the definition of Bj and amend it by adding the underlined ∪i, such that

B′j ≡ {b ∈ I ∪ {at ∈ At | t ∈ [1, T]} | b ∈ B′j−1 ∪ {Kj \KB′j−1∪i}(1)}, (27)

where B′0 = ∅ and consequently KB′0
= ∅. Let the agent i’s consumption set be defined by

25

the ordered set

Xi ≡ {x ∈ C ∈

{ { {Kj \KB′j−1
}(1), {Kj \KB′j−1

}(2), . . . , {Kj \KB′j−1
}(kj) |

({Kj \KB′j−1
}(kj + 1) = {Kj \KB′j−1∪i}(1)) ∧

(i1 ≡ f(1)) ∧ (ij≥2 ≡ (ij ∈ I) /∈ B′j−1: ∀(i′ ∈ I) /∈ B′j−1 ijfi
′) } | ijfi } ∪

{ {Ki \KB′j
}(1), {Ki \KB′j

}(2), . . . , {Ki \KB′j
}(k) |

(∀(i′ ∈ I) /∈ B′j ifi′) ∧ (i→ λ(i) in {Ki \KB′j
}(k)) }

| i→ x in C}. (28)

Any consumption path (x 6= λ(i)) ∈ Xi can be rejected by reporting preferences under

which x is not acceptable. Xi is ordered such that x ∈ {Kj \KB′j−1
}(k) is of higher order

than x′ ∈ {K ′j \ KB′
j′−1
}(k′) if and only if j < j′ or (j = j′) ∧ (k < k′). To phrase it

differently, the consumption path x ∈ Xi is of higher order than x′ ∈ Xi under Xi if

there exists some C ∈ {Cj | (i ∈ Cj) ∧ (i → x)} that the algorithm processes before

all C ∈ {Cj | (i ∈ Cj) ∧ (i → x′)}. Hence, Xi(j) is the jth consumption path that

i has the opportunity of rejecting. It is always true that ϕi(P, f) = Xi(1). Xi will be

deconstructed and explained in the proof of Lemma 1, which states that Xi defines the full

set of consumption paths attainable by i using some strategy Si ∈ Ω.

Lemma 1. ∀i ∈ I,∀(P, f) ∈
∏N

i=1 Ω× F Xi = {ϕi({Si, PI\i}, f) | Si ∈ Ω}.

Proof. For this proof, the reader will have to refer to section 3.3 to confirm the order in

which cycle sets are processed by the algorithm. Consider some priority structure f ∈ F
and some agent i ∈ I who reports some preference relation P ′i ∈ Ω such that ∀x ∈
X λ(i)R′ix and P ′i 6= Pi, where Pi is agent i’s true preference relation and R′i denotes

weak preference under P ′i . The algorithm will start by processing the cycle set Kf(1)(1).

If i ∈ Kf(1)(1), then Kf(1)(1) will be blocked by i and the algorithm will continue by

processing Kf(1)(2), Kf(1)(3) and so on until i /∈ Kf(1)(k+1), as defined in the definition of

Xi. While it does not invalidate this proof, it should be noted that the algorithm technically

does not process cycle sets one by one. Rather, it processes subsets of Kf(1) such that if

i = g1(j) at some step of the algorithm and agent g1(j−1) is assigned the same consumption

path under Kf(1)(1), Kf(1)(2) . . . Kf(1)(k), then all cycle sets in {Kf(1)(1), . . . , Kf(1)(k)} are

26

skipped simultaneously if blocked by i. The algorithm will thus process all elements in

{K1(1), K1(2), . . . , K1(k) | K1(k + 1) = {K1 \Ki}(1) ∧ i1 ≡ f(1) 6= i}. (29)

If K1(1) = {K1 \ Ki}(1), then the above set is empty. At this point, the algorithm will

assign all agents in {K1 \Ki}(1) the consumption paths they point to. All such agents are

removed from the process along with the objects at ∈ At they point to, thereby blocking

all cycle sets involving some agent or object in

B′1 ≡ {b ∈ I ∪ {at ∈ At | t ∈ [1, T]} | b ∈ {K1 \Ki}(1)}}. (30)

As all agents in {K1 \Ki}(1) have been removed from the process, the algorithm continues

by processing {K2 \KB′1
}(1). As this cycle is also blocked by agent i, the algorithm will

continue by processing {K2\KB′1
}(2) and so on until the first cycle set in K2\KB′1

that does

not involve agent i, {K2\KB′1∪i}(1), is reached. At this point, all agents in {K2\KB′1∪i}(1)

are assigned the consumption paths they point to and are removed from the process along

with the objects at ∈ At they point to, thereby blocking all cycle sets involving some agent

or object in

B′2 ≡ {b ∈ I ∪ {at ∈ At | t ∈ [1, T]} | b ∈ B′1 ∪ {K2 \KB′1∪i}(1)}. (31)

Generally, this process continues for the sets K3, K4 and so on. The algorithm has thus

been shown to process all elements in

{ {Kj \KB′j−1
}(1), {Kj \KB′j−1

}(2), . . . , {Kj \KB′j−1
}(kj) |

({Kj \KB′j−1
}(kj + 1) = {Kj \KB′j−1∪i}(1)) ∧

(i1 ≡ f(1)) ∧ (ij≥2 ≡ (ij ∈ I) /∈ B′j−1: ∀(i′ ∈ I) /∈ B′j−1 ijfi
′) } | ijfi }. (32)

When the algorithm arrives at a point when the condition ijfi no longer holds, then

∀i′ /∈ B′j−1 ifi′. In other words, agent i is the agent with highest priority under f who is still

in the process. The algorithm then proceeds by processing {Ki\KBj−1
}(1), {Ki\KBj−1

}(2)

and so on, until it reaches some cycle set in Ki \KBj−1
in which i → λ(i). Note that the

cycle set involving only agent i and his or her endowment is always a member of Ki \KBj−1

as i /∈ Bj−1 and if λt(i) ∈ Bj−1 for any t ∈ [1, T], agent i would also be a member of Bj−1.

27

The endowment λ(i) can never be rejected by agent i, and i is then finally assigned λ(i).

This covers all elements in

{ {Ki \KB′j
}(1), {Ki \KB′j

}(2), . . . , {Ki \KB′j
}(k) |

∀(i′ ∈ I) /∈ B′j ifi′ ∧ (i→ λ(i) in {Ki \KB′j
}(k)) }. (33)

It has thus been shown that if some agent i ∈ I blocks all cycles he or she is able to, the

algorithm will process all elements in Xi. Xi is then defined as the set of consumption

paths agent i points to in each cycle set in the union of the sets (32) and (33). Consider

an arbitrary element in Xi, Xi(j) 6= λ(i), and a strategy P ′′i ∈ Ω, where

∀x′ ∈ X \Xi(j) Xi(j)P
′′
i λ(i)R′′i x

′. (34)

Under this strategy, agent i will be assigned Xi(j). Hence,

∀j ≤ #Xi ∃Si ∈ Ω: ϕi({Si, PI\i}, f) = Xi(j). (35)

Next, consider an arbitrary subset X ′i ⊆ {Xi \ λ(i)} and a strategy P ′′i ∈ Ω, where

∀x′ ∈ X ′i,∀x ∈ X \X ′i x′P ′′i λ(i)R′′i x. (36)

Then,

X ′i 6= ∅ =⇒ ϕi({P ′′i , PI\i}, f) = X ′i(1) (37)

and

X ′i = ∅ =⇒ ϕi({P ′′i , PI\i}, f) = λ(i). (38)

This covers the entire strategy space Ω. Consequently,

∀Si ∈ Ω ϕi({Si, PI\i}, f) ∈ Xi. (39)

Statements (35) and (39) imply Lemma 1.

No x /∈ Xi is attainable using any strategy Si ∈ Ω, and all x ∈ Xi are attainable

using some strategy Si ∈ Ω. Note that whenever i = f(1), (32) is an empty set. While

this implies that Xf(1) can be defined by a shorter expression it does not imply a smaller

28

consumption set for agent f(1). As there are no cycle sets that are blocked by some agent

of higher priority, agent f(1)’s consumption set is given by all consumption paths he or

she points to under any C ∈ CIR.

4.1 Positive results

Definition 2. A matching plan µ ∈ M is individually rational if and only if µ(i) is

acceptable to i, for all i ∈ I.

Define MIR ⊆M as the set of all individually rational matching plans.

Definition 3. A direct mechanism Γ is individually rational if and only if

∀(S, f) ∈
N∏
i=1

Ω× F Γ(S, f) ∈MIR. (40)

In other words, a mechanism is individually rational if it always selects individually

rational matching plans. Individual rationality is considered a desirable property as it

ensures that no agent is ever made worse off by the mechanism. If the mechanism is

individually rational, there is no incentive for any agent not to participate in the economy.

Proposition 1. The ϕ mechanism is individually rational.

Proof. Trivial. Agents are only assigned consumption paths that they point to. By con-

struction, agents only point to acceptable consumption paths.

Definition 4. A matching plan µ is Pareto efficient if and only if

@µ′ ∈M : µ′Riµ ∀i ∈ I and µ′Piµ for some i ∈ I. (41)

That is, a matching plan is Pareto efficient if no agent can be made better off without

making some agent worse off.

Definition 5. A direct mechanism Γ is Pareto efficient if the matching plan Γ(P, f) is

Pareto efficient for all (P, f) ∈
∏N

i=1 Ω× F .

Pareto efficiency is clearly considered a desirable property by mechanism designers

interested in the utility of the agents.

29

Proposition 2. The mechanism ϕ is Pareto efficient.

Proof. Consider some arbitrary (P, f) ∈
∏N

i=1 Ω × F and a new ordered set h, con-

taining all agents in I. h is partitioned into h1, h2, . . . h#Cµ , where #Cµ is the num-

ber of cycle sets in Cµ. h1 is equivalent to g1 at step T.2, when the first C ∈ Cµ

forms in the algorithm. hj is equivalent to g1 at step T.2, when the j’th C ∈ Cµ

forms in the algorithm. The elements in h are ordered by subindex first, such that h =

{h1(1), h1(2), . . . h1(#h1), h2(1), h2(2), . . . h#Cµ(#h#Cµ)}. Under ϕ(P, f), agent h(1) ∈ I

is assigned his or her most preferred consumption path x ∈ X from {x | x ∈ µ ∈ MIR}.
Denote this x by x1. Then for some µ′ ∈M ,

µ′Ph(1)ϕ(P, f) =⇒ µ′ /∈MIR ⇐⇒ ∃i ∈ I: λPiµ
′. (42)

By transitivity and Proposition 1,

∃i ∈ I: λPiµ
′ =⇒ ∃i ∈ I: ϕ(P, f)Piµ

′. (43)

Hence,

µ′Ph(1)ϕ(P, f) =⇒ ∃i ∈ I: ϕ(P, f)Piµ
′ (44)

and

@µ′Ph(1)ϕ(P, f): µ′Riϕ(P, f) ∀i ∈ I. (45)

Agent h(1) can only be made better off by making some other agent worse off.

Under ϕ(P, f), agent h(2) is assigned his or her most preferred consumption path

from

{x | x ∈ µ ∈MIR ∧ µ(h(1)) = x1}. (46)

Denote this x by x2. Then for some µ′ ∈M ,

µ′Ph(2)ϕ(f, P) =⇒ (µ′ /∈MIR ∨ µ′(h(1)) 6= x1). (47)

By statements (42) and (43),

µ′ /∈MIR =⇒ ∃i ∈ I : ϕ(f, P)Piµ
′. (48)

30

Since all preference relations over X are strict,

µ′(h(1)) 6= x1 =⇒ (µ′Ph(1)ϕ(P, f) ∨ ϕ(P, f)Ph(1)µ
′). (49)

By statement (44),

µ′Ph(1)ϕ(P, f) =⇒ ∃i ∈ I : ϕ(f, P)Piµ
′. (50)

As h(1) ∈ I,

ϕ(P, f)Ph(1)µ
′ =⇒ ∃i ∈ I : ϕ(f, P)Piµ

′. (51)

By statements (47) through (51),

µ′Ph(2)ϕ(f, P) =⇒ ∃i ∈ I : ϕ(f, P)Piµ
′ (52)

and

@µ′Ph(2)ϕ(f, P) : µ′Riϕ(f, P) ∀i ∈ I. (53)

Agent h(2) can only be made better off by making some other agent worse off.

Consider some arbitrary j > 2. Agent h(j) is assigned his or her most preferred

consumption path from

{x | (x ∈ µ ∈MIR) ∧ (∀i ∈ [1, j − 1] µ(h(i)) = xi)}. (54)

Denote this consumption path by xj. Note that this recursively defines xi for i > 2 as well.

Then for some µ′ ∈M ,

µ′Ph(j)ϕ(P, f) =⇒ (µ′ /∈MIR ∨ ∃i < j: µ′(h(i)) 6= xi). (55)

As all preference relations on X are strict,

∃i < j : µ′(h(i)) 6= xi =⇒ (µ′Ph(i)ϕ(P, f) ∨ ϕ(P, f)Ph(i)µ
′). (56)

By the general version of statement (51):

ϕ(P, f)Ph(i)µ
′ =⇒ ∃i′ ∈ I : ϕ(P, f)Pi′µ

′ (57)

31

and by statement (48),

(µ′ /∈MIR ∨ ϕ(P, f)Ph(i)µ
′) =⇒ ∃i′ ∈ I : ϕ(P, f)Pi′µ

′. (58)

The only outcome not yet addressed is µ′Ph(i)ϕ(P, f), for which statement (55) can be

reapplied. By statements (55), (56) and (58),

µ′Ph(j)ϕ(P, f) =⇒ ((∃i ∈ I : ϕ(P, f)Piµ
′) ∨ (µ′Ph(j′)ϕ(P, f) for some j′ < j)). (59)

Statement (59) can be reapplied until (∃i ∈ I: ϕ(P, f)Piµ
′) ∨ (j′ = 1) is true. If j′ = 1,

then statement (44) is applicable. Thus, by statements (44) and (59),

∀j ∈ I,∀f ∈ F : µ′Ph(j)ϕ(P, f) =⇒ ∃i′ ∈ I : ϕ(P, f)Pi′µ
′. (60)

No agent can be made better off without making some other agent worse off. Hence, for

any (P, f) ∈
∏N

i=1 Ω× F ,

@µ′ ∈M : µ′Riϕ(P, f) ∀i ∈ I and µ′Piϕ(P, f) for some i ∈ I. (61)

Definition 6. A mechanism Γ is non-bossy if and only if

∀Si ∈ Ω,∀(P, f) ∈
N∏
i=1

Ω× F Γi({Si, PI\i}, f) = Γi(P, f) =⇒ Γ({Si, PI\i}, f) = Γ(P, f).

(62)

In other words, a mechanism is non-bossy if no agent can affect any other agent’s

assignment without affecting his or her own assignment as well. The concept of non-

bossiness is due to Satterthwaite and Sonnenschein (1981).

Proposition 3. The ϕ mechanism is non-bossy.

Proof. Consider some i ∈ I, (P, f) ∈
∏N

i=1 Ω×F and some Cµ, defining µ = ϕ(P, f) ∈MIR.

By definition, ϕi′(P, f) ∈ Cj for some Cj ∈ Cµ for each i′ ∈ I. Under Cµ, ∀i′ ∈ I i′ → µ(i′).

As f is given, C is fully determined by which x ∈ X each i′ ∈ C points to. If i ∈ C ∈ Cµ,

there are three alternatives. Either #{i′ ∈ I | i′ ∈ C} = 1, (#{i′ ∈ I | i′ ∈ C} ≥

32

2) ∧ (∀(i′ 6= i) ∈ C ifi′) or (#{i ∈ I | i ∈ C} ≥ 2) ∧ (∃i′ ∈ C: i′fi). Recall that Ki is

ordered such that

{x ∈ {Ki \KBj}(k) | i→ x}Pi{x′ ∈ {Ki \KBj}(k′) | i→ x′} =⇒ k < k′, (63)

where both sets only have one element each.

Case 1.

If (#{i′ ∈ I | i′ ∈ C} = 1) ∨ (#{i′ ∈ I | i′ ∈ C} ≥ 2 ∧ ∀i′ ∈ C ifi′) under Cµ, then

C = {Ki \KBj}(1) ∈ Cµ, where ∀i′ /∈ Bj ifi
′ and ∀i′ ∈ Bj i

′fi. Thus,

ϕi(P, f) = {x ∈ {Ki \KBj}(1) | ((i′ 6= i) /∈ Bj ⇐⇒ ifi′) ∧ (i→ x)}

=⇒ ∀Si ∈ {Si ∈ Ω | ϕi({Si, PI\i}, f) = ϕi(P, f)}

ϕi({Si, PI\i}, f) = {x ∈ {Ki \KBj}(1) | ((i′ 6= i) /∈ Bj ⇐⇒ ifi′) ∧ (i→ x)}

=⇒ ∀Si ∈ {Si ∈ Ω | ϕi({Si, PI\i}, f) = ϕi(P, f)} i→ µ(i) ∈ {Ki \KBj}(1) ∈ Cµ

=⇒ ∀Si ∈ {Si ∈ Ω | ϕi({Si, PI\i}, f) = ϕi(P, f)} i ∈ C ∈ Cµ

=⇒ ∀Si ∈ {Si ∈ Ω | ϕi({Si, PI\i}, f) = ϕi(P, f)},∀i′ ∈ I i′ ∈ Cj, for some Cj ∈ Cµ.

(64)

The second implication follows from the fact that all agents are assigned the consumption

paths they point to in Cµ. The third implication follows from the fact that for a given

f ∈ F , each C is defined by which x ∈ X each i ∈ C points to. The fourth implication

follows from the fact that if no agent changes which consumption path he or she points to,

the same cycle sets in Cµ will form. By the definition of Cµ and the fact that if all agents

participate in some cycle set in Cµ under S ∈
∏N

i=1 Ω, then ϕ(S, f) = µ,

∀Si ∈ Ω ((ϕi({Si, PI\i}, f) = ϕi(P, f)) =⇒ (ϕ({Si, PI\i}, f) = µ = ϕ(P, f))). (65)

This proves non-bossiness for case 1.

33

Case 2.

If (#{i′ ∈ I | i′ ∈ C} ≥ 2) ∧ (∃i′ ∈ C: i′fi) under Cµ, then i participates in the cycle set

{C = {Kj \KBj−1
}(1) ∈ Cµ | (j ≥ 1) ∧ (i ∈ C)} (66)

whenever it exists. If it does not exist, then #{i ∈ I | i ∈ C} ≥ 2 ∧ ∃i′ ∈ C: i′fi is a

false statement and case 1 applies. Note that

{C = {Kj \KBj−1
}(1) ∈ Cµ | (j ≥ 1) ∧ (i ∈ C)} 6= ∅ =⇒

{C = {Kj′ \KBj′−1
}(1) ∈ Cµ | (j′ > j) ∧ (i ∈ C)} = ∅, (67)

as i ∈ Bj′−1. Whenever a cycle set C ∈ Cµ as defined by statement (66) forms under

ϕ(P, f), it also forms under ϕ({P ′i , PI\i}, f) if and only if µ(i)P ′iλ(i).

∀Si ∈ {P ′i ∈ Ω | µ(i)P ′iλ(i)} i ∈ C ∈ Cµ =⇒ ϕ({Si, PI\i}, f) = µ = ϕ(P, f). (68)

By Proposition 1,

∀Si ∈ {P ′i ∈ Ω | λ(i)P ′iµ(i)} ϕi({Si, PI\i}, f) 6= µ(i)

=⇒ ϕ({Si, PI\i}, f) 6= µ = ϕ(P, f). (69)

This follows from the fact that no cycle sets that are reported as acceptable to an agent

are rejected. Note that the case where µ(i)R′iλ(i) ∧ λ(i)Riµ(i) is case 1. Statements (68)

and (69) thus cover all Si ∈ Ω in case 2. Therefore,

∀Si ∈ {Si ∈ Ω | ϕi({Si, PI\i}, f) = ϕi(P, f)} i ∈ C ∈ Cµ, (70)

where C is defined by (66). From this, it follows that

∀Si ∈ {Si ∈ Ω | ϕi({Si, PI\i}, f) = ϕi(P, f)},∀i′ ∈ I i′ ∈ Cj, for some Cj ∈ Cµ

=⇒ ∀Si ∈ Ω (ϕi({Si, PI\i}, f) = ϕi(P, f) =⇒ ϕ({Si, PI\i}, f) = µ = ϕ(P, f)). (71)

This proves non-bossiness for case 2. Statements (65) and (71) yield the desired result.

34

The intuition is simple. If agent i participates in some C ∈ Cµ, where ϕ(P, f) = µ,

then i can only prevent the mechanism from selecting µ by preventing C from forming. If

agent i is not the agent with highest priority in C, C will form whenever the consumption

path i points to in C is preferred to λ(i). Agent i can thus only block it by reporting

that the consumption path he would be assigned under C is not acceptable, in which case

i would be assigned some other consumption path. If agent i is the agent with highest

priority in C, C only forms when it is preferred by i to all C ′ ∈ CIR that involve no agents

¬i ∈ I or objects at ∈ At participating in any cycle set that has already formed. C can

thus only be blocked by i by reporting that some C ′ ∈ CIR that involves no agent or

object participating in any cycle that has already formed is preferred to C. Recall that

(C ∈ Cµ)Pi(C
′ ∈ Cµ′) ⇐⇒ µ(i)Piµ

′(i), implying that i can only block C by being

assigned some x 6= µ(i). Thus, there is no way for i to affect any other agent’s assignment

and still retain his or her own assignment.

4.2 Negative results

Definition 7. A mechanism Γ is manipulable by a coalition I ′ ⊂ I at some (P, f) ∈∏N
i=1 Ω× F if and only if

∃S ∈
N∏
i=1

Ω: Γ(f, {SI′ , PI�I′})PiΓ(f, P) ∀i ∈ I ′. (72)

In other words, a mechanism is manipulable whenever it is possible for some coalition

of agents to benefit from misrepresenting their preferences. Such a coalition may consist

of a single agent. This definition is an adaptation of the definition used by Andersson and

Svensson (2008).

Definition 8. A mechanism is (coalitionally) strategy-proof if and only if it is not manip-

ulable by any (coalition I ′ ⊂ I) agent i ∈ I at any (P, f) ∈
∏N

i=1 Ω× F .

Proposition 4. The mechanism ϕ is not strategy-proof.

Proof. Consider an allocation problem 〈T, I, A, P, λ〉, where T = 2, I = {i1, i2}, A =

{a1, a2}, λ(1) = (a1, a1), λ(2) = (a2, a2) and P is given by

35

P1 P2

(a2, a2) (a2, a1)
(a2, a1) (a1, a1)
(a1, a2) (a1, a2)
(a1, a1) (a2, a2)

Furthermore, let f = (i1, i2). This yields ϕ1(P, f) = (a2, a2) and ϕ2(P, f) = (a1, a1).

Next, consider strategy S2,

S2

(a2, a1)
(a2, a2)
(a1, a1)
(a1, a2)

and note that ϕ1({P1, S2}, f) = (a1, a2) and ϕ2({P1, S2}, f) = (a2, a1). Consequently,

ϕ2({P1, S2}, f)P2ϕ(P, f) and the mechanism is not strategy-proof.

Corollary 1. The mechanism is not coalitionally strategy-proof.

Proof. An agent is a coalition.

Pareto optimality is conditional on the assumption that all agents report their true

preferences. If there are incentives for agents not to report their true preferences, the

mechanism does not necessarily select a Pareto efficient matching plan. This makes ma-

nipulability a problematic issue. It is therefore relevant to examine precisely why and

when the ϕ mechanism is vulnerable to manipulation. To illustrate the problem, consider

an allocation problem 〈T, I, A, P, λ〉, where T = 2, I = {i1, i2}, A = {a1, a2}, λ(i1) = a1,

λ(i2) = a2 and P is given by

P1 P2

(a2, a2) (a2, a1)
(a2, a1) (a1, a2)
(a1, a2) (a1, a1)
(a1, a1) (a2, a2)

Furthermore, let f = (i1, i2). In this problem, ϕ1(P, f) = (a2, a2) and ϕ2(P, f) = (a1, a1).

A cycle set C is formed such that agent i1 is assigned his or her most preferred consumption

path, while agent i2 is assigned his or her third most preferred consumption path. Agent

36

i2 can improve his or her assignment by blocking C and C can be blocked by reporting

that (a1, a1) is not acceptable, e.g. by reporting

S2

(a2, a1)
(a1, a2)
(a2, a2)
(a1, a1)

A cycle set C ′ would form such that ϕ1({P1, S2}, f) = (a2, a1) and ϕ2({P1, S2}, f) =

(a1, a2). Just like above, C ′ can be blocked by agent i2 by reporting some S ′2 under which

neither (a1, a1) nor (a1, a2) is acceptable. This would produce a new cycle set, where

ϕ1({P1, S
′
2}, f) = (a1, a2) and ϕ2({P1, S

′
2}, f) = (a2, a1). Agent i1 is then assigned his or

her third most preferred consumption path, while agent i2 is assigned his or her most pre-

ferred consumption path. In this manner, an agent can always choose for the other agent

among that agent’s acceptable consumption paths when N = 2.

Whenever N > 2, the assignment of the first agent cannot be selected as freely by the

second agent. If the second agent blocks a number of cycle sets, a cycle set might form, in

which the first agent participates but the second agent does not. For example, consider an

allocation problem 〈T, I, A, P, λ〉, where T = 2, I = {i1, i2, i3}, A = {a1, a2, a3}, λ(i) = ai

for i = 1, 2, 3 and P is given by

P1 P2 P3

(a3, a3) (a2, a1) (a2, a2)
(a1, a2) (a1, a1) (a1, a1)

.

Furthermore, let f = (i1, i2). In this problem, ϕ1(P, f) = (a3, a3), ϕ2(P, f) = (a1, a1) and

ϕ3(P, f) = (a2, a2). There exists a cycle set C ∈ CIR in which i2 would be assigned (a2, a1)

and i1 would be assigned (a1, a2). Agent i2 would clearly prefer this consumption path.

However, suppose i2 blocks the cycle set formed under the strategy profile P by reporting

S2

(a2, a1)
(a2, a2)

. . .

37

Under S = {PI\i2 , S2}, a new cycle set is formed involving only agents i1 and i3, such that

ϕ1(S, f) = (a3, a3), ϕ2(S, f) = (a2, a2) and ϕ3(S, f) = (a1, a1). The consumption path

(a2, a1) is thus unattainable by i2. That is, (a2, a1) /∈ X2. This is true irrespective of the

existence of an individually rational cycle set in which i2 is assigned (a2, a1). Proposition

5 defines precisely when the ϕ mechanism is not manipulable for the general case.

Proposition 5. The mechanism ϕ is not manipulable by any agent i ∈ I at (P, f) ∈∏N
i=1 Ω× F if and only if

∀i ∈ I,∀j ≤ #Xi Xi(1)RiXi(j). (73)

Proof.

∃i ∈ I: ¬(Xi(1)RiXi(j)) for some j ≤ #Xi =⇒ ∃i ∈ I: Xi(j)PiXi(1) for some j ≤ #Xi

=⇒ ∃Si ∈ Ω: ϕ({Si, PI\i}, f)Piϕ(P, f). (74)

The first implication follows from the definition of weak preference. The second implication

follows from Lemma 1 and from the fact that ϕi(P, f) = Xi(1). Furthermore,

∃i ∈ I: ϕ({Si, PI\i}, f)Piϕ(P, f) for some Si ∈ Ω =⇒ ∃j ≤ #Xi: Xi(j)PiXi(1)

=⇒ ∃j ≤ #Xi: ¬(Xi(1)RiXi(j)). (75)

The first implication follows from Lemma 1 and from the fact that ϕ(P, f) = Xi(1). The

second implication follows from the definition of weak preference. By statements (74) and

(75),

∀i ∈ I @Si ∈ Ω: ϕ({Si, PI\i}, f)Piϕ(P, f) ⇐⇒ ∀i ∈ I,∀j ≤ #Xi Xi(1)RiXi(j). (76)

5 Concluding remarks

The purpose of this paper was to present a futures mechanism that solves intertempo-

ral allocation problems, while satisfying individual rationality, Pareto efficiency and non-

38

bossiness. The ϕ futures mechanism was presented, and it was proven to satisfy individual

rationality, Pareto efficiency and non-bossiness. Furthermore, it was proven that the ϕ

mechanism does not satisfy strategy-proofness and the conditions under which the mech-

anism is manipulable were presented and proven. The model could be extended by intro-

ducing dynamics in the form of entry and exit of agents, as in Bloch and Cantala (2011)

and Kurino (2009, 2013), or in the form of production and destruction of objects. It could,

however, not be extended by introducing dynamics in preferences, as in Abdulkadiroglu

and Loertscher (2007), since this would make futures mechanisms inapplicable. The ϕ

mechanism is presented in a general form and custom tailoring for various real world appli-

cations, such as house and office space allocation problems, is possible. Furthermore, the

mechanism could be made more general by allowing objects to be assigned to more than

one agent per period. This might not make it applicable for school choice problems, but it

could make it applicable for e.g. course bidding problems, as studied in a one-period setting

by Sönmez and Ünver (2010). Another extension worth considering is to allow the priority

structure to differ for different objects or groups of objects, as in Ergin (2002). Finally, it

would be possible to devote further studies to providing a complete characterization of the

ϕ mechanism.

39

6 References

Abdulkadiroglu, A., & Loertscher, S. (2007). Dynamic House Allocations. Working paper.

Abdulkadiroglu, A., & Sönmez, T. (1999). House Allocation with Existing Tenants.

Journal of Economic Theory, 88, 233-260.

Andersson, T., & Svensson, L-G. (2008). Weakly fair allocations and strategy-proofness.

Review of Economic Design, 11, 321-338

Bloch, F., & Cantala, D. (2011). Markovian Assignment Rules. Social Choice and Welfare.

Dur, U. (2011). Dynamic School Choice Problem. Working paper.

Ergin, H.I. (2002). Efficient Resource Allocation on the Basis of Priorities. Econo-

metrica, 70, 2489-2497

Gale, D., & L.S. Shapley. (1962). College admissions and the stability of marriage.

American Mathematical Monthly, 69, 9-15.

Kurino, M. House Allocation with Overlapping Agents: A Dynamic Mechanism De-

sign Approach. (2009). Jena Economic Research Papers, 75.

Kurino, M. House Allocation with Overlapping Generations. (2013). Working pa-

per.

Satterthwaite, M., & Sonnenschein, H. (1981). Strategy-proof allocation mecha-

nisms at differential points. The Review of Economic Studies, 48, 587-597.

Shapley, L., & Scarf, H. (1974). On cores and indivisibility. Journal of Mathemati-

cal Economics, 1, 23-37.

Sönmez, T., & Ünver, M.U. (2010). Course bidding at business schools. Interna-

40

tional Economic Review, 51, 99-123.

Svensson, L-G. (1994). Queue allocation of indivisible goods. Social Choice and

Welfare, 11.

Ünver, M.U. (2009). Dynamic Kidney Exchange. The Review of Economic Studies,

77, 372-414.

Zou, J., Gujar, S., & Parkes, D. (2010). Tolerable Manipulability in Dynamic As-

signment without Money. Proceedings of the Twenty-Fourth AAAI Conference on

Artificial Intelligence.

41

