
In
d

u
st

ri
a
l
 E

le
c
tr

ic
a
l
E
n

g
in

e
e
ri
n

g
 a

n
d

A

u
to

m
a
ti
o

n

 CODEN:LUTEDX/(TEIE-5290)/1-194(2011)

Modeling and Simulation of a Vertical Wind
Power Plant in Dymola/Simulink

Joel Petersson
Pär Isaksson

Division of Industrial Electrical Engineering and Automation
Faculty of Engineering, Lund University

Modeling and Simulation of a Vertical Wind
Power Plant in Dymola/Modelica

J. Petersson & P. Isaksson

December 22, 2011

Abstract

A small wind power plant connected to the grid has been modeled in Mod-
elica/Dymola and controlled using external controllers written in C++. The
small wind power plant consists of three wind power units with a nominal
power of 3kW and one grid connection interconnected with an internal DC-
grid. All the controls needed for control and optimization for the operation of
the individual parts in the plant was developed and implemented. Apart from
this a managing control for the entire plant was developed and implemented.

The control developed in this project was implemented using an external
static library interconnected with Dymola, the External Object approach of im-
plementing objects in Modelica was also tested. The optimization algorithms
developed for the wind turbine was done in a way so that no measurements of
the wind speed is needed. The controls was developed so that they can achieve
a number of different tasks such as Reactive Power Compensation and Island
Control.

The modeling was done in Modelica using Dymola. In order to model the
power electronics involved in the system the Spot library has been utilized.
Models for the wind turbine was developed and tested.

The models and control algorithms were tested by running different test
cases. The test cases involves both normal operation and island operation.
The results was compared with grid codes from Denmark and Sweden.

Acknowledgements

We would like to thank all the nice people working at Modelon AB and all
the other students who made their master thesis at Modelon AB for their
encouragement, good input and nice company. Without all of you our master
thesis would been much harder to do.

We would especially like to thank our mentors at Modelon AB Jens Pålsson
and Hubertus Tummescheit, and our supervisor at Lund University Faculty of
Engineering Jörgen Svensson for their continuous input and comments. With-
out them this project would not been possible to finalize.

I

Contents

Nomenclature 1

1 Introduction 4
1.1 Background . 5
1.2 Motivation . 5

1.2.1 Project Limitations . 6

2 Wind Power 8
2.1 Technology . 9

2.1.1 Vertical Axis Wind Turbine 9
2.1.2 Horizontal Axes Wind Power 10
2.1.3 Components in a Wind Turbine 10

2.2 Theory . 11
2.2.1 Wind Characteristic . 11
2.2.2 Wind Variations in Time 11
2.2.3 Wind Gradient . 12
2.2.4 Wind Power Production 13

2.3 Losses . 14
2.3.1 Mechanical Losses . 14
2.3.2 Electrical Losses . 14

3 Wind Power Unit 22
3.1 Objectives . 23

3.1.1 Test Cases . 24
3.2 Modeling . 24

3.2.1 Dymola . 24
3.2.2 Wind Turbine . 25
3.2.3 Wind Model . 28
3.2.4 Power Electronics . 28

3.3 Optimizing Algorithms . 34
3.3.1 Known Wind Speed and Cp-Curve 34
3.3.2 Sensorless . 34
3.3.3 Rotational Speed Known 36

3.4 Control Design . 36
3.4.1 Turbine Control . 37
3.4.2 Power Controller . 38
3.4.3 Speed Control . 44

II

3.5 Implementation . 46
3.5.1 Modelica . 46
3.5.2 C/C++ . 49
3.5.3 Control . 55

3.6 Simulations and Results . 63
3.6.1 The Speed Controller . 63
3.6.2 Optimizing Algorithms 66
3.6.3 Turbine Control . 69
3.6.4 Losses . 76

3.7 Discussion . 77

4 Grid Connection 79
4.1 Objectives . 80

4.1.1 Test Cases . 81
4.2 Grid Codes . 81

4.2.1 Terminology and Definitions 82
4.2.2 Tolerance of frequency and voltage deviations 84
4.2.3 Active Power Control . 87
4.2.4 Reactive Power and Voltage Control 88
4.2.5 Frequency Control . 88

4.3 Modeling . 89
4.3.1 Strong Grid . 89
4.3.2 Islanding Grid . 89
4.3.3 RX-line . 90
4.3.4 Transformer . 90

4.4 Control Design . 91
4.4.1 Grid Side Controller . 91

4.5 Implementation . 95
4.5.1 Modelica . 95
4.5.2 C/C++ . 96
4.5.3 Control . 97

4.6 Simulations and Results . 99
4.6.1 Grid Side Controller . 100
4.6.2 Losses . 107

4.7 Discussion . 108

5 Wind Power Plant 110
5.1 Objectives . 111

5.1.1 Test Cases . 112
5.2 Modeling . 113

5.2.1 DC-Grid . 113
5.3 Control Design . 113

5.3.1 Plant Control . 114
5.3.2 DC-Control . 115

5.4 Implementation . 116
5.4.1 Modelica . 116
5.4.2 Control . 116

III

5.5 Simulations and Results . 120
5.5.1 One Wind Power Unit 120
5.5.2 Three Wind Power Units 125
5.5.3 Losses . 133

5.6 Discussion . 134

6 Conclusion 136
6.1 Evaluation of the Project . 137

6.1.1 Improvements . 138
6.2 Real-time . 139
6.3 Future Work . 140

Bibliography 142

A Equations 144
A.1 Derivation abc⇒ αβ ⇒dq . 144

B Source code 146
B.1 Turbine Control . 146
B.2 Generator Side Control . 150
B.3 Power Control . 154
B.4 Mean Filter . 160
B.5 PI-Controller . 162
B.6 PID-Controller . 165
B.7 Current Controller . 167
B.8 Id/Iq-Controller . 169
B.9 GridSideControllerOuter . 172
B.10 GridVoltageController . 177
B.11 GridCurrentController . 182
B.12 Plant Control . 184

IV

Nomenclature

β Blade pitch angle.
λ Tip speed ratio.
λi Used to calculate Cp.
µ(ω) Velocity dependent friction coefficient.
ω Rotational speed.
ωe Electrical rotational speed.
ωm Mechanical rotational speed.
ωr Rotational speed of the rotor.
ωT Rotational speed of the turbine.
Ψ Turbine angle.
ψd Magnetic flux in d-axes.
ψq Magnetic flux in q-axes.
ΨT Half the angle for when rotor blade is considered to be behind the tower.
ρ Air density.
τ Torque.
τ ref Torque reference.
τMaxStat Maximum static friction torque before flange becomes “unstuck”.
τSliding Sliding friction.
θ Electrical angle.
A Area swept by the rotor.
a Acceleration.
c Gain used in the optimizing algorithms.
Cp Efficiency of the wind turbine.
c1−6 Used to calculate Cp.
cgeo Geometrical constant.
DS Duty cycle.
e Error, used in control algorithms.
ES Total energy loss.
ES,cond Conduction loss.
ES,off Turn off loss.
ES,on Turn on loss.
f Frequency.
fn Normal force.
fsw Switching frequency.
hs Height of wind obstacle.
i Current.
I0 Conduction current.

1

2

ID Current through diode.
id Direct current.
iq Quadrature current.
idi Iron loss current d-axes.
idm Magnetizing direct current.
iqi Iron loss current q-axes.
iqm Magnetizing quadrature current.
J Inertia.
k Gain, used in control.
Ke Permanent magnetic flux linkage.
L Inductance.
Ni Anti windup time constant, used by PI- and PID-controllers.
P Power, if electrical active power
P Proportional gains used by PI- and PID-controllers.
Pc Copper losses in the generator.
Pi Iron losses in the generator.
Pm Mechanical losses in the generator.
Ps Stray losses in the generator.
PD,cond Conduction loss in diode.
PD,rr Power loss in diode due to reverse recovery.
Pin Input power.
Pout Output power.
PS,cond Power loss due to conduction.
PS,off Power loss due to turn off.
PS,on Power loss due to turn on.
PS,sw Switching losses in transistor.
pp Number of pole pairs in the generator.
Qrr Reverse recovery charge.
R Resistance.
r Radius of the turbine.
RD Diode resistance.
Ri Iron loss resistance.
Rs Resistance.
S Apparent power.
Ti Integration time constant, used by PI- and PID-controllers
Tω Mechanical torque.
tcond Conduction time.
toff Turn off time.
ton Turn on time.
Tsw Time for one switching period.
Tts Torque component caused by tower shadowing.
tts Design parameter for tower shadow effect.
v Voltage.
vd Direct voltage.
vq Quadrature voltage.
VAC AC-Voltage level.

3

VD(on) Voltage drop over the diode.
VD0 Voltage drop over diode at zero current.
VDC DC-Voltage level.
VS0 Forward voltage at zero current.
w Wind speed.
wbase Base wind component.
wgust Wind gust component.
wnoise Wind noise component.

Chapter 1

Introduction

4

CHAPTER 1. INTRODUCTION 5

1.1 Background
Wind power is at the moment in a globally expansive phase were many dif-
ferent kinds of technical wind power solutions from different suppliers exists.
In most solutions power electronics is incorporated in different degrees. Most
wind power plants currently operates with a horizontal axes turbine, however
vertical axes turbines is an interesting future alternative. Some Swedish com-
panies are interested in testing vertical plants, and some have already been
built. One of these companies in Skåne has the ambition of supplying its own
commercial vertical wind power plant. They have already tested a first proto-
type using a five-bladed turbine at 2 meters diameter with a nominal power of
2kW. The company is mainly interested in the small scale market consisting
of plants connected to, for example, houses and boats, with a nominal power
of 0.2-30kW. The pros of using a vertical axes turbine is a simple and robust
construction with a minimal amount of moving parts, which allows for a cost
efficient wind power plant with an aspect both to investment, operation and
maintenance. Other pros are independence of wind direction, less sensitivity
to turbulence, simple blade profiles and lower noise levels.

There are also some rules and guidelines related to wind power where the
ability to contribute with active/reactive power-, voltage- and frequency- con-
trol is becoming increasingly important.

1.2 Motivation
The Purpose of this project is to design a model of a wind power plant using
the Modelica based tool Dymola which contains many different model libraries,
including Spot which is well suited for modeling of both the power-electronics
and the generator. The task consists of modeling the wind turbine, generator,
power electronics and grid. It also consists of constructing all the different
controllers needed to run the power plant at both maximum efficiency and at
a specific power level. The control algorithms should preferably be written in
C/C++ and interconnected with Dymola. The system should be modeled as
one or several wind power units connected to the grid through back to back
full inverters as shown in figure 1.1. The models should, if possible, also be
compared and validated against real measurement-data obtained from a wind
power plant that is planned to be constructed on the roof of LTH during the
spring.

Apart from modeling a single wind power unit a small wind power plant
consisting of three separate units should also be modeled and a simple control
algorithm for managing the plant should be developed and tested. The impact
from the power plant on the grid should also be studied and compared to
wiring and grid codes from both Sweden and Denmark. This since Denmark
has higher demands on the controllability of their wind power plants. The
plant is supposed to do general decisions of how both the grid side inverter and

CHAPTER 1. INTRODUCTION 6

Figure 1.1: Schematic picture of how the wind power system is set up.

the different wind power units should operate, depending on the customers1
demands.

1.2.1 Project Limitations

The project tasks are limited to the tasks listed below.

• Develop a simple model for a wind turbine unit.

• Develop and test models for simulation of a small wind power plant
connected to the grid.

1The customer in our case is the grid owner to which we sell the generated power.

CHAPTER 1. INTRODUCTION 7

• Develop control strategies for optimization and control of the plant in
C/C++.

• Interconnect the control strategies developed in C/C++ with the power
plant model in Dymola.

• Evaluate different methods for control of power, frequency and voltage
level.

• Develop some simple control strategies for running a wind power plant.

• If possible verifies the models against real measurement-data.

Optional tasks that should be done, if time permits, is listed below.

• Evaluate the wind power plant’s impact on the grid in comparison to the
Swedish and Danish grid’s wiring requirements.

• Consider the possibility of running the models in real-time.

Chapter 2

Wind Power

Wind is an abundant source of renewable free energy and has been used for
thousands of years by mankind. In the beginning wind power was used to
propel small sailing boats over short distances [1]. Ashore wind power has
been used as windmills to run machines such as flour mills. Over the years
wind power has developed, and in 1887-1888 the first wind power plant was
built by Charles F. Brusch [2]. Wind power today is considered to be one of
the world’s renewable energy sources and the wind power industry has been
growing rapidly the past years. One reason to this is that once a wind power
plant is installed the cost of running the plant is small in comparison to other
energy sources, only some regular maintenance is needed. The wind power in
Sweden increased with 78 percent between 2008 and 2010, and in 2010 there
were 1’665 wind power plants in operation in Sweden with a total of 2’019 MW
installed power [3].

8

CHAPTER 2. WIND POWER 9

(a) Giromill design of a VAWT placed in
Falkenberg, Sweden [5]

(b) Darrieus design of a VAWT [6]

Figure 2.1

2.1 Technology
In general there are two different types of wind power turbines, vertical axis
wind turbine, VAWT, and horizontal axis wind turbine, HAWT. The end result
from the two types is the same, they both produce electrical energy from kinetic
energy captured from the wind. The typical differences are the power efficiency,
the production cost, aesthetic form and the noise factor.

2.1.1 Vertical Axis Wind Turbine

The first type of the wind turbine is the VAWT. Two models, the giromill
design and the Darrieus design, of a VAWT can be seen in figure 2.1. The
only difference between the two models is the design of the blade shape. A
VAWT has the main rotor arranged vertically. The key advantages are that a
VAWT can operate and start to generate power at a lower wind speed which
means that the wind turbine can be mounted at a lower place, this feature
makes it possible to mount a VAWT on top of buildings [4]. The VAWT is
independent of the wind direction which means that it does not have to turn
into the wind as the HAWT needs to. All the heavy parts of a VAWT, such as
generator, gearbox etc., can be placed at the base of the plant connected by
a shaft, which provides easy access for maintenance work. The VAWT has a
smaller amount of movable parts which can break, and the noise factor are also
lower compared to a HAWT due to that a VAWT is spinning more quietly.

CHAPTER 2. WIND POWER 10

(a) Components in a HAWT [8] (b) Components in a VAWT [8]

Figure 2.2

2.1.2 Horizontal Axes Wind Power

The second type of wind turbine is the HAWT. A HAWT has the generator
and the main rotor shaft placed in the top of the tower. Most of the HAWT
has gearboxes to gear up the slow rotation of the blades to quicker rotation
for the generator. The key advantages are the higher efficiency for a HAWT
compared to the VAWT. Further on large HAWT has less material expenditure
per square meter of surface covered compared to large VAWT, which means
less material will be used to construct larger HAWT and the weight will be
less.

The dominating type in commercial use is by far the HAWT due to its
higher efficiency and lighter weight relative the area swept by the rotor [7].

2.1.3 Components in a Wind Turbine

The basic parts of a HAWT and a VAWT can be seen in 2.2. The both wind
turbine types uses essentially the same components.

The basic parts of a wind turbine are:

• Rotor blades - The Rotor blades are used to capture the energy of the
wind. The wind makes the blades rotate which creates rotational energy.
The larger area swept by the rotor blades the more kinetic energy in the
wind has a potential of being converted into rotational energy. Larger
blades means a larger tower which also means access to faster winds but

CHAPTER 2. WIND POWER 11

it will in turn increase the difficulties in maintenance work for plants
with the generator mounted at top, typically HAWT.

• Shaft - The Shaft is connected to the rotor in one end and a generator in
the other. The shaft’s purpose is to transfer the rotational energy from
the rotor to the generator.

• Generator - The generator is the component that will transform the
mechanical energy into electrical energy. A generator uses the property of
electromagnetic induction to produce electrical voltage. There exist a lot
of different types of generator, all of which performs the transformation
in a slightly different way. One example of a simple generator consists
of a permanently magnetized rotor and a stator with electrical windings.
The shaft is connected to the magnetized rotor in the generator, when
the shaft rotates the rotor in the generator also rotates which will induce
a voltage in the windings.

• Gearbox - A gearbox may be used to gear up the speed of the shaft
connected to the generator. However a gearbox means higher losses,
more components with a possibility to break and more costs, which has
lead to that more and more manufactures has started to construct wind
turbines without it.

• Anemometer - The anemometer is used to measure the current wind
speed. The wind speed is crucial to know in order to decide whether the
wind turbine should be active or not.

2.2 Theory

2.2.1 Wind Characteristic

The wind speed and turbulence is directly tied to the amount and the quality
of the produced power in a wind power plant. The wind varies over time and
place, the variations are dependent of the temperature, local topography and
ground cover variations. The wind fluctuates over both the long and short
time scope stochastically, which make it hard to predict the wind speed. The
mean wind speed over a year is called the annual mean wind speed, which is
a crucial parameter when planning and optimizing a wind power plant.

The wind speed is lower near ground since it is heavily affected by buildings,
trees, hills and other obstacles, this property is called wind gradient. The wind
gradient is a quantity which indicates the change of the wind speed relative to
the height over the ground.

2.2.2 Wind Variations in Time

The wind varies over both the short and long time scope, both variations affects
the power production of a wind power plant. The wind speed variations can
according to [9] be divided into the following categories:

CHAPTER 2. WIND POWER 12

Figure 2.3: How the wind gradient changes when wind passes an area with obstacles
[9]

• Inter-annual - the variations of the wind speed which affect the power
production in wind power plant on a time scale greater than a year.

• Annual - the variations of the wind speed are season based. For example
in Sweden the mean wind speed is higher during the winter months than
during the summer months [10]. This is an advantage since the energy
consumption is higher during the winter.

• Diurnal - this type of wind speed variations is most due to the different
temperatures during the day. A typical diurnal variation is a low wind
speed at sunrise, an increase during the morning with a peak during
the day and a decrease during the evening, with a low wind speed at
midnight. During the summer diurnal variations are greater due to higher
temperature differences.

• Short-term - the short term wind speed variations includes gusts and
turbulence. A gust is a discrete event and can be described by the rise
time, amplitude and fall time. Turbulence on the other hand can be seen
as noise of the wind, it occurs when the wind passes an obstacle. The
short-term variation affects the power quality produced by a wind power
plant. This makes it important to consider the short-term variations in
order to design a proper control system of a wind power plant. However
a larger turbine is less affected by gusts than smaller turbines, due to its
size.

2.2.3 Wind Gradient

The wind speed is affected of local topographical, in most natural terrain the
surface changes significantly from place to place. This affects the local wind
profile. Figure 2.3 illustrates this effect, the wind gradient varies with height
when the wind is passing a forest. The wind gradient is smoother higher above
ground. This means that a tall wind power plant will have a smoother and
higher wind speed than shorter one.

The turbulence will be higher close to the ground level or right after an
obstacle, see figure 2.4. When the wind is passing a building with the height

CHAPTER 2. WIND POWER 13

Figure 2.4: Illustration of turbulence in the wind when passing a building [9]

hs. The wind speed, turbulence level and the wind power are heavily affected
by the building and their values are not back to normal until after >15 hs.

2.2.4 Wind Power Production

A wind turbine’s power production depends on the interactions between the
wind and the rotor. When the wind blows against the wind turbine it is
resulting in a pressure difference between the rotors’ leaf front and back. This
difference in pressure results in a force which drives the rotor blade. The power
extracted from the wind by the rotor can be described as the kinetic energy
of the wind times an efficiency coefficient. The efficiency coefficient is varying
with the pitch angle of the blades and tip speed ratio. The tip speed ratio is
the wind speed relative the speed of the tip of the turbine’s blades.

The mechanical power P in a vertical wind power unit can be described
by equation 2.1. Where ρ is the density of the air, A is the area swept by
the rotor blades, w the wind speed and Cp the efficiency coefficient which can
be described according to equation 2.2, according to [11] and [12], where ci is
system dependent constants, β is the pitch angle of the blades and λ the tip
speed ratio which can be calculated according to equation 2.4 where wT is the
turbine rotational speed and w is the wind speed.

P =
1

2
· ρ · A · w3 · Cp (2.1)

Cp(λ, β) = c1 · (
c2
λi
− c3 · β − c4) · e

−c5
λi + c6 · λ (2.2)

1

λi
=

1

λ+ 0.08 · β
− 0.035

β3 + 1
(2.3)

λ =
ωT · r
w

(2.4)

CHAPTER 2. WIND POWER 14

2.3 Losses
As with all systems a wind power plant is subject to losses. Some losses occurs
in the mechanical system and is mainly caused by friction and some occurs
in the electrical system and is mainly caused by heat generation in resistive
components.1 The goal of our models is to represent the real world as good as
possible which means that these losses need to be incorporated by our models.
The losses have been divided into two main types, mechanical and electrical.

2.3.1 Mechanical Losses

The mechanical losses in the power plant are mainly due to friction. Usually
the largest contribution to the mechanical losses is from the gearbox, since the
wind power unit modeled in this project is not using a gearbox this will not
be considered. The main mechanical losses of the power plant instead occur
in the shaft or drive train. A common, and acceptable, way to model a drive
train is as a number of discrete masses connected with springs that is defined
by damping and stiffness coefficients [13]. The complexity of the model can,
and should, be varied depending on the simulation purposes, when studying
effects such as torsional fatigue, a more advanced drive train model needs to
be taken into consideration. In our case the goal of the simulation is to study
the electrical and overall general behavior of the system, the drive train is
therefore modeled as a single inertia connected to the generator. The losses in
the shaft were modeled as friction between the shaft and its housing using a
Coulomb friction model.

Bearing Friction

The model chosen to model the losses in the shaft was the bearingFriction2
model in Modelica’s standard library. When the rotational speed not is zero
the model uses a table of rotational speeds and breaking torques in order to
do linear interpolations of the current breaking torque. When the rotational
speed is zero the shaft gets “stuck” and will not move until enough torque is
applied in order to make it rotate.

2.3.2 Electrical Losses

The electrical losses in this system are present in all the electrical components.
The two major loss components that need to be taken into consideration are
the generator and inverters.

1Note that the efficiency with which we absorb the wind energy is not considered as a
loss in such, see section 2.2.4 for more information about the efficiency coefficient, Cp.

2See bearingFriction model in Modelica Standard Library (Version 3.2)

CHAPTER 2. WIND POWER 15

Figure 2.5: Power flow in the generator, [14]

(a) Equivalent circuit in d-axes (b) Equivalent circuit in q-axes

Figure 2.6: Equivalent circuits for the generator in d-q axes, [14]

Generator Losses

The losses in the generator can be considered to consist of four different parts
[14], copper losses, Pc, iron losses, Pi, stray losses, Ps, and mechanical losses,
Pm, as depicted in figure 2.5. Equivalent circuits for the generator in the dq-
reference frame is shown in figure 2.6, the currents, id and iq, in the figure is
divided into a magnetizing part, idm and iqm, and an iron loss part, idi and
iqi. The total magnetic flux can then be calculated according to equation 2.5
where Ke denotes the emf constant, or permanent magnet flux linkage.

ψd = Lidm +Ke

ψq = Liqm

(2.5)

By using the equivalent circuits, see figure 2.6 expressions for the magne-
tizing currents according to equation 2.6 is obtained [14]. Also the equation for
the steady state voltages can be obtained according to equation 2.7, assuming
steady state conditions [14].

idm = id +
ωeL

Ri

(
iq −

ωeKe

Ri

)

iqm = iq −
ωeL

Ri

(
id +

Ke

L

) (2.6)


vd = Rid − ωeψq

vq = Riq + ωeψd

(2.7)

CHAPTER 2. WIND POWER 16

By using equation 2.5 to 2.7 an expression for the electrical input power can
be calculated according to equation 2.8, where the first term can be identified
as the copper losses, Pc, the second term as the iron losses, Pi, and the third
term consists of the stray losses, Ps, and mechanical losses, Pm, and the output
power, Pout. [14]

Pin =

Pc︷ ︸︸ ︷
R
(
i2d + i2q

)
+

Pi︷ ︸︸ ︷
ω2
e

(
ψ2
d + ψ2

q

)
Ri

+

Ps+Pm+Pout︷ ︸︸ ︷
ωeKeiqm (2.8)

The output torque can then be described as the output power divided by
the mechanical rotational speed according to equation 2.9.

τ =
Pout
ωm

=
ωeKeiqm − Pm − Ps

ωm
=


ωe
ωm

= pp

Pm + Ps
ωm

= τms

 = pp ·Keiqm − τms

(2.9)

Inverter Losses

The most important loss to include in the models is most likely the loss from
the power electronics, such as the inverters, this since the cooling system of
the inverter needs to be designed[15]. In order to do a good thermal design a
good estimation of the losses in the different parts of the inverter is needed. A
three-phase inverter generally consists of six transistors, two per phase, each
with one anti parallel diode, or freewheeling diode, see figure 2.7.

The power loss in the transistor can be described as the instantaneous
voltage times the instantaneous current through the transistor, S(t) = v(t) ·
i(t). However ideally the transistor is in one of two modes, either it is not
conducting any current, resulting in a large voltage drop over the transistor, or
it is conducting a large current, without any voltage drop over the transistor.
Both these modes produce zero losses since either the voltage drop or the
current is zero. In reality however there are two separate main types of losses,
the switching losses and the conductance losses[15]. The switching losses occurs
every time a switch is made, the conductance loss occurs when the transistor
is conducting, see figure 2.8. The total loss for one switching period can be
divided into three parts, one conduction loss and two switching losses. To get
the total energy loss over one switching period the instantaneous power loss is
integrated over one switching period, Tsw, see equation 2.10.

ES(Tsw) =

∫
Tsw

PS(τ)dτ = ES,on(Tsw) + ES,cond(Tsw) + ES,off (Tsw) (2.10)

As can be seen in figure 2.8 the highest instantaneous loss occurs at the
switching instants, the reason for this, as can be seen in the top of the two

CHAPTER 2. WIND POWER 17

Figure 2.7: Schematic picture of a three phase Inverter.

Figure 2.8: Top diagram: Voltage drop over the transistor and current flowing
through the transistor.
Bottom Diagram: Instantaneous power loss. [15]

CHAPTER 2. WIND POWER 18

diagrams, is that for a short time instant there exists both a large voltage
drop and a large current flowing through the transistor. By integrating over
the on/off switching time the total energy loss during that time is obtained,
see equation 2.11 and 2.12.

ES,on(Tsw) =

∫
ton

PS(τ)dτ = VDC · I0 ·
ton
2

(2.11)

ES,off (Tsw) =

∫
toff

PS(τ)dτ = VDC · I0 ·
toff
2

(2.12)

The conduction losses on the other hand are due to the fact that the tran-
sistor is resistive when conducting. This results in a small voltage drop over
the transistor at the same time as there is a large current flowing through the
device. By integrating over the conduction time the total conduction energy
loss is obtained, see equation 2.13, where VS(on) can be calculated as a forward
voltage at zero current, VS0, times the resistance Rs, see equation 2.14.

ES,cond(Tsw) =

∫
tcond

PS(τ)dτ = VS(on) · Io · tcond (2.13)

VS(on) = VS0 +Rs · I0 (2.14)

When the total energy loss during one switching period is known the aver-
age power loss can be calculated by dividing the total energy loss during one
switching period with the time for one switching period, according to equation
2.15. The average power loss caused by the switching instant is calculated
as the total energy loss when switching on/off times the switching frequency,
fsw, see equation 2.16 and 2.17. The average power loss due to conduction of
current is calculated according to equation 2.18. The voltage drop over the
transistor, Vs(on), times the current flowing through the transistor, I0, times the
duty cycle, DS, of the transistor, note that the duty cycle of a single transistor
not is the same as the duty cycle for the whole inverter [15].

PS(Tsw) =
ES(Tsw)

Tsw
= PS,on(Tsw) + PS,off (Tsw) + PS,cond(Tsw) (2.15)

PS,on(Tsw) =
ES,on(Tsw)

Tsw
= ES,on(Tsw) · fsw =

VDC · I0 · ton
2

· fsw (2.16)

PS,off (Tsw) =
ES,on(Tsw)

Tsw
= ES,off (Tsw) · fsw =

Vdc · I0 · toff
2

ḟsw (2.17)

Ps,cond(Tsw) =
ES,cond(Tsw)

Tsw
= VS(on) · I0 ·

tcond
Tsw

= VS(on) · I0 ·DS (2.18)

CHAPTER 2. WIND POWER 19

By combining the turn on- and off- losses an expression for the total switch-
ing losses can be obtained according to equation 2.19.

PS,sw(Tsw) = PS,on(Tsw) + PS,off (Tsw) (2.19)

However in order to perform this calculation the turn-on, ton, and turn-off,
toff , times are needed. The turn-on/off times usually varies with the DC-link
voltage and are therefore in most cases not directly given in the data sheets,
instead the turn-on and turn-off energies, Eon,n and Eoff,n, are specified at a
specific DC-link voltage, VDC,n, and load condition, I0,n. Therefore in order to
get a good estimation of the switching losses the turn-on/off energies should
be used and scaled according to equation 2.20 and 2.21.[15]

ES,on(Tsw) =
Eon,n

VDC,n · I0,n
· VDC · I0 (2.20)

ES,off (Tsw) =
Eoff,n

VDC,n · I0,n
· VDC · I0 (2.21)

Apart from the transistor losses the inverter losses also include the losses
from the freewheeling diodes. The losses in the diode can be divided into two
separate parts, the conduction losses, PD,cond, and the reverse recovery loss,
PD,rr [15]. The conduction losses of the diode is calculated in the same way
as the conduction losses of the transistor, see equation 2.22, where the voltage
drop over the diode, VD(on), can be calculated according to equation 2.23, and
the duty-cycle of the diode can be estimated according to equation 2.24.

PD,cond(Tsw) = VD(on) · I0 ·DD (2.22)

VD(on) = VD0 +RD · ID (2.23)

DD ≈ 1−DS (2.24)

The reverse recovery loss, however, is a bit more complex to calculate. The
source of the reverse recovery loss can be seen in figure 2.9. According to the
figure when the polarity changes there will be a high current spike flowing
into the diode at the same time as there also exists a large voltage drop. This
results in very high losses during a short time period. The cause for this reverse
recovery is that there are a large amount of excess carriers stored inside the
diode, mainly in the drift region of the diode, which needs to be swept away
before the diode starts blocking current [15]. To calculate the losses the charge
Qf needs to be estimated, the manufacturer does not usually provide this,
instead they provide the total reverse recovery charge, Qrr. The charge Qf

can then be estimated according to equation 2.25 [15]. The reverse recovery
takes place once every switching period and can be calculated according to
equation 2.26.

Qf ≈
1

S + 1
·Qrr where S =

Trr1
Trr2

(2.25)

PD,rr = VDC ·Qf · fsw (2.26)

CHAPTER 2. WIND POWER 20

Figure 2.9: Diagram displaying voltage drop over and current through a diode at
turn off. [15]

CHAPTER 2. WIND POWER 21

However sometimes the manufacturer does provide the turn-off energy not
only for the transistor but for the diode as well, in this case the turn-off losses,
which includes the reverse recovery losses, can be calculated in the same way
as for the transistor, see equation 2.27 [15].

PD,off = ED,off (Tsw) · fsw , ED,off (Tsw) =
Eoff,n

VDC,n · I0,n
· VDC · I0 (2.27)

Chapter 3

Wind Power Unit

The following chapter will describe how the model of the wind turbine was
developed and modeled, it will also briefly describe how the generator and
inverter model from the Spot library is modeled. It will also describe both how
the wind power theory, see section 2.2, can be used in order to obtain maximum
efficiency from the wind power units and how the overall wind turbine control
is designed and implemented. Also the control of the generator and inverter is
described. An overview of the system can be seen in figure 3.1. Finally some
simulation cases are run in order to test how the system performs in different
control tasks and situations.

22

CHAPTER 3. WIND POWER UNIT 23

Figure 3.1: Schematic overview of a wind power unit.

3.1 Objectives
One of the objectives in this project is to model and control one wind power
unit, a wind power unit is here defined according to figure 1.1, as one wind
power turbine with an internal or external inverter connected to a DC-grid. A
more detailed figure with a proposed control structure is presented in figure
3.1. The DC-grid can either be a shared DC-grid for several units or directly
connecting the wind power unit with the grid connection, see chapter 4. The
objective in this chapter is to model and control the wind power unit. The
control system which is to be designed should be able to achieve a number of
different control tasks listed below.

• Maximize the output power.

• Output a desired power, or if the wind is too low for achieving the desired
power the control should maximize the power output.

• Performing a control where a specific percent of the maximum power is
actuated, so called delta control.

• Control the DC-level.

• Shut down when ordered to.

• Automatically shut down when the wind speed is too high or low.

The wind power unit which is to be modeled and controlled is configured
as a turbine connected via a shaft to a brake and generator. The generator is
in turn connected to an inverter which connects the wind power unit to the
DC-grid, as proposed in figure 3.1. In the figure a potential control structure
is also proposed.

CHAPTER 3. WIND POWER UNIT 24

3.1.1 Test Cases

In order to test the models and control algorithms which will be developed
in this chapter a number of simulation cases should be evaluated. The test
cases are constructed in such a way so that they test different realistic control
scenarios and/or a specific control algorithm. Since the DC-level control re-
quires the whole system to be in operation the tests of the DC-control will be
performed in chapter 5. The different test cases are listed below.

1. Test operating at max power from the wind power unit using the sensor-
less MPPT, see section 3.3.2.

2. Test operating at max power from the wind power unit using the MPPT,
see section 3.3.3.

3. Try to operate at nominal power from the wind power unit using the
power controller, see section 3.4.2, with too low wind speed for nominal
power.

4. Test operating at nominal power from the wind power unit using the
power controller with sufficient wind speed.

5. Test tracking a power output reference with a varying wind speed, in the
end order shut down of the unit.

6. Test operating in delta control.

7. Test a “total case” where the unit should operate at nominal power while
the wind speed varies between too low to allow operation, to high to
allow operation, to low for reaching nominal power and high enough for
reaching nominal power.

3.2 Modeling
The main tool used for the modeling in this project was the Modelica tool
Dymola.

3.2.1 Dymola

Dymola is developed by Dassault Systèmes and is a powerful Modelica tool
which supports visual animation and a drag and drop graphical modeling inter-
face. With Dymola it is possible to build and simulate advanced multi domain
models using different model libraries and/or to create your own equation
based models.

CHAPTER 3. WIND POWER UNIT 25

3.2.1.1 Modelica

Modelica is a multi domain modeling language that is developed by the non-
profit organization Modelica Association since 1996 which consists of mem-
bers from Europe, U.S.A and Canada [16]. Modelica is an object-oriented
equation-based modeling language developed specifically for modeling of phys-
ical systems containing mechanical, electrical, hydraulic, thermal, control or
process-oriented subparts. The models in Modelica can be described by differ-
ential, algebraic and discrete equations. Modelica is a free language for which
there exist many different simulation tools, both free and commercial, such as
Dymola.

3.2.2 Wind Turbine

The model of the wind turbine was chosen to be done according to the equa-
tions presented in section 2.2. The idea is that the power extracted from the
wind can be described according to equation 3.1 where ρ is the air’s density, A
the area swept by the rotor, v the wind speed and Cp an efficiency coefficient.

P =
1

2
· ρ · A · w3 · Cp (3.1)

The area swept by a vertical wind power turbine is expressed as the rotor di-
ameter times the rotor length. The efficiency coefficient, Cp, can be calculated
according to equation 2.2 to 2.4. The mechanical torque Tω can be obtained
by dividing the power absorbed, P , with the rotational speed of the turbine,
ωT . However, phenomena such as tower shadow may interfere and may cause
oscillation to the produced torque. Every time a rotor blade passes behind
the tower a shadowing effect occurs, briefly reducing the produced torque, see
figure 3.2. This since the blade shadowed not will be able to catch the same
amount of wind. The tower shadow effect can be included in the wind turbine
model by adding a negative torque component every time a blade passes be-
hind the tower, as described in [7]. The torque component Tts is described by
equation 3.3. Where Ψ is the angle of the blades relative to the tower, ΨT is
half of the circle sector when the blade is considered to be behind the tower
and tts is considered to be a design parameter.

Tω =
P

ωT
(3.2)

Tts = −tts · cos(Ψ),−ΨT ≤ Ψ ≤ ΨT (3.3)

Apart from modeling the wind turbine as an energy producing unit, catch-
ing wind and producing torque, modeling of the actual mechanical properties
also needs to be done in order to get a good overall model. The wind turbine
was modeled to be directly coupled to a shaft and via a brake to the permanent
magnet generator. The shaft was modeled as an inertia, containing both the
rotor’s inertia and the actual shaft’s inertia, coupled via a model of coulomb
friction in bearings, in order to simulate losses in the shaft, to the brake. For

CHAPTER 3. WIND POWER UNIT 26

Figure 3.2: The phenomena of tower shadow.[7]

modeling of the inertia, bearing friction and brake components from Modelica’s
standard library was used.

Inertia

Figure 3.3: Icon for Modelica’s standard library inertia.

The model for an inertia is very simple, the force-equation of an inertia is
described by equation 3.4. Where J is the inertia, a the inertia’s acceleration
and τ the total rotational torque acting on the inertia.

τ = J · a (3.4)

CHAPTER 3. WIND POWER UNIT 27

ω τ
0 0
1 2
2 5
3 8

Table 3.1: Example of input table to Modelica’s bearing friction model.

Bearing Friction

Figure 3.4: Icon for Modelica’s standard library bearing friction.

The Modelica standard library model for bearing friction model the Coulomb
friction in bearings. When the rotational speed is not zero a frictional torque is
acting on the flange based upon a table provided by the user, see example table
3.1. The magnitude of the frictional torque is linearly extrapolated from the
table provided. If the rotational speed is higher than the highest one provided
by the table, the frictional torque is calculated by a linear interpolation of the
last two table values. The frictional torque is assumed to be the same in both
rotational directions. If the rotational speed is zero, the flange become stuck,
the frictional torque is then calculated from a torque balance in order to keep
the absolute acceleration to zero. The flange does not begin to rotate again
until the driving torque is higher than a certain threshold value, the maximum
static friction torque, calculated by equation 3.5.

τMaxStat = peak · τSliding(ω = 0), (peak ≥ 1) (3.5)

Brake

Figure 3.5: Icon for Modelica’s standard library brake.

CHAPTER 3. WIND POWER UNIT 28

The Modelica standard library model of a brake, model a component where
a frictional torque is acting between the housing and flange and a controlled
normal force is pressing the flange to the housing in order to increase fric-
tional torque. When the absolute rotational speed is not zero the frictional
torque is calculated according to equation 3.6, depending on the normal force,
fn, (0 ≤ fn ≤ 1), a velocity dependent friction coefficient, µ(ω), and a ge-
ometry constant, cgeo, which takes into account the geometry of the device.

τfrictional = cgeo · µ(ω) · fn (3.6)

When the absolute velocity of the flange is zero the component behaves in
the same way as the bearing friction model, and gets stuck. The frictional
torque is then calculated according to a torque balance in order to achieve
an absolute acceleration of zero. The flange is stuck until the driving torque
exceeds a threshold value calculated as the frictional torque at zero velocity
times a constant, peak, see equation 3.7.

τFrictionalMax = peak · cgeo · µ(ω = 0) · fn, (peak ≥ 1) (3.7)

3.2.3 Wind Model

Wind is moving air and the wind turbine uses the kinetic energy of the wind to
produce electrical power. The produced power is tightly linked to the current
wind speed. The wind changes both during the day and the seasons. In order
capture these changes and to simulate the real wind conditions, a wind model
consisting of three components is used in this project. The three components
are:

• A base component, wbase

• A gust component, wgust

• A noise component, wnoise

The three components are summarized to w = wbase + wgust + wnoise. The
base component is always present, it may be constant, a ramp signal or have
any other form. The gust component appears randomly during time and the
noise component is modeled as white noise.

3.2.4 Power Electronics

Since the system is designed using back to back full inverters the modeling of
the power electronics becomes essential. Spot was chosen to be the main tool
used for modeling the power electronics since it was well suited for the task.

3.2.4.1 Spot

The SPOT package is a Modelica library used for modeling of power electronics
and can be used in both steady state and transient mode for the simulations

CHAPTER 3. WIND POWER UNIT 29

and initializations. SPOT provides components for modeling in AC three phase
systems, AC one phase systems and DC systems. The AC three phase systems
can be represented in the abc-, dqo- and rst-frame. Especially modeling in the
dqo-/rst- reference frame provides relatively quick simulations, compared to
simulations in the abc-reference frame. SPOT was originally written by H.J.
Wiesmann and is currently under development by Modelon AB.

Reference Frames

One of Spot’s key strength comes from the fact that it can utilize different
reference frames when modeling power electronics. When dealing with a sym-
metrical three phase system there will always be a redundancy which is not
necessary to simulate. By instead transferring the system to another refer-
ence plane the redundancy can be removed and the simulation time drasti-
cally decreased. The reference frame mainly used during this project was the
dq0-reference frame which can be obtained either directly through a transfor-
mation from the abc1-reference frame to the dq0-reference frame, or via the
αβγ-reference frame, which is more pedagogical.

When transferring the system from the abc-frame to the αβγ-frame phase
b and c are phase shifted by 120 and 240 degrees and then summarized in a
complex reference frame where the complex axis represents the β-component
and the real axes represents the α-component, see figure 3.6, and appendix A.1
for mathematical calculations. As can be seen in figure 3.6 the symmetrical
three phase system in the abc-reference frame is transferred into a rotating
vector with a constant amplitude and rotational speed in the αβγ-reference
frame. Only by doing this transformation analysis, as well as simulation, of
the system is greatly simplified. However the system can be simplified even
further. Since the system always rotates with a constant rotational speed in
the αβγ-frame proportional to the system frequency, ω = 2π · f , the system
can be further simplified by multiplying the αβγ-frame with a vector rotating
with the same speed. This results in a rotating reference frame in which the
three phase symmetrical system is described as a point, the new reference
frame is called the dq0-reference frame. A comparison between the simulated
voltage levels in the two different reference frames is shown in figure 3.7. Both
analysis and simulation in the dq0-reference frame is much simpler than in
the physical abc-reference frame. Instead of describing three sinusoidal signals
with a rotational speed of ω = 2π ·f the three signals which makes a relatively
small change is generated.

The change in reference frame from abc- to dq0- in Spot is done using
the Park transform which transfers the system directly from the abc- to the
dq0-reference frame. When transferring from the abc- to the dq0-reference
frame the voltage or current vector in the abc-reference frame is multiplied
with the transformation matrix P , see equation 3.8, and when going from the
dq0-frame back to the abc-frame the voltage or current vector is multiplied

1The abc-reference frame is the actual physical system.

CHAPTER 3. WIND POWER UNIT 30

Figure 3.6: Geometrical representation for transformation from the abc-reference
frame to the αβγ-reference frame.

(a) Voltage levels in the abc-frame (b) The same voltage levels in the dq0-frame

Figure 3.7: Comparison of voltage levels in the abc- and dq0-reference frames.

CHAPTER 3. WIND POWER UNIT 31

with the inverse transformation matrix P−1 = P T , see equation 3.9.

P =

√
2

3

 cos(θ) cos(θ − 2π
3

) cos(θ + 2π
3

)
sin(θ) sin(θ − 2π

3
) sin(θ + 2π

3
)√

2
2

√
2
2

√
2
2

 (3.8)

P−1 =

√
2

3

 cos(θ) sin(θ)
√
2
2

cos(θ − 2π
3

) sin(θ − 2π
3

)
√
2
2

cos(θ + 2π
3

) sin(θ + 2π
3

)
√
2
2

 (3.9)

3.2.4.2 Components

In order to model the power electronics used in the wind power unit two
components from the Spot library was used, the Inverter and the Generator.

Inverter

Figure 3.8: Icon for Spot’s inverter model.

The Inverter model in Spot exists in two different versions. One version which
incorporates switching and one which neglects the effects of switching. The
model which incorporates switching is much closer to the reality, but is slowed
down a great deal by the switching. The average inverter on the other hand
neglects the effects of switching which makes it relatively fast. The main
difference between the outputs from the two inverter models is that the output
from the non switching model is a continuous signal, while the output from the
switched model is a PWM signal, if not filtered. However the average output
from the two models is the same. When incorporating switching in the models
ripple effects in currents is introduced, which could affect the system, however
these effects are generally quite small and can thus also often be neglected.
They could however be interesting in some cases. The two models are easily
exchangeable in Dymola so that long simulations can be run using the average
model while short simulations, for example in order to study a special case,
can be run using the switched model.

The average model of the inverter is in reality based upon a voltage source
model with some key differences. The first, and most important, difference is
that the u_phasor-input signal defines the AC-voltage output level in terms of
the V_DC voltage. The actual mapping from AC- to DC-voltage is slightly dif-
ferent depending on which type of modulation is used. When sine modulation
is chosen the relation between the AC- and DC-side is calculated according to

CHAPTER 3. WIND POWER UNIT 32

3.10, and when space-vector modulation is used the relationship is calculated
according to equation 3.11.

|V_AC| = u_phasor
√

3

2
· V_DC

2
(3.10)

|V_AC| = u_phasor
√

2

3
· V_DC (3.11)

The second difference is that the average inverter implements a loss model
using data which can either be found directly in or derived from the data
sheets of the inverter/transistors, see section 2.3.2.

The switched model, while it takes the exact same input signals as the av-
erage model, the relationship between the average AC- and DC- voltage is also
essentially the same. However the actual contents of the model are completely
exchanged. The switched inverter model consists of two separate parts, the
modulation control and the actual inverter. The modulator model is the part
of the model which controls the inverter transistors, just as done in reality. The
output from the modulator block is a boolean vector of length six, one signal
for each transistor. The modulator block is implemented in a couple of dif-
ferent modes, both synchronous and asynchronous, or variants, both sine and
space-vector modulation. The second part, the inverter block, is implemented
in three different ways, the first variant is a small simplification neglecting the
anti-parallel diodes, which have the effect that the transistors cannot work in
passive mode. The inverter is here modeled by a couple of short equations.
Also the second implementation is an equation based implementation, however
it does not neglect the anti-parallel diodes. The third and last implementation
is a modular version, which utilizes three transistor models with anti-parallel
diodes in order to model the inverter. All three of the models have in common
that they operate in the abc-reference frame which is one of the reasons to
why the switched models are slower than the average model.

In this project the average inverter was used as the main model, this since
it provides much faster simulations. However the system was also tested us-
ing the switched model. Both of the Spot’s models also provide modeling of
the losses. This is done using information usually found in data sheets of
the transistors, such as resistance when ’on’, conductance when ’off’, forward
threshold voltage, switching loss at nominal voltage/current and temperature
coefficients for thermal losses.

Generator

Figure 3.9: Icon for Spot’s Permanent Magnet Synchronous Generator model.

CHAPTER 3. WIND POWER UNIT 33

In order to model the generator Spot’s model of a permanent magnet syn-
chronous motor, PMSM, was used. The Spot model uses an equation based
approach which is quite advantageous since the interaction between electrical
and magnetic energy as well as how voltage, current and electrical fields be-
have is well documented and relatively exact equations for this exists. The
equations describing PMSM’s is usually described in the xy-reference frame,
which is closely related to the dq0- reference frame with the difference that the
rotational speed of the reference frame is not necessarily constant. Instead of
using a reference frame which rotates at a constant rotational speed relative
to 50 or 60Hz, a reference frame which rotates with the same speed as the
electrical speed of the machine is used. This is done in order to achieve a
reference frame which is stationary from the rotor’s perspective. The model in
Spot uses equation 3.12 to describe the voltages and currents in the machine.
In equation 3.12 u and i is the voltages and currents in the dq0/xy-frame, Rs

is the rotor resistance, ψm the permanent magnetization of the rotor, L is the
inductance and ωr is the rotor’s rotational speed.

usd = −Rsisd +
d

dt
(ψm + Lsdisd)− ωrLsqisq

usq = −Rsisq + Lsq
disq
dt

+ ωr(ψm + Lsqisq)

(3.12)

The torque output from the PMSM can then be expressed according to
equation 3.13 where τ is the output torque. As can be seen in the expression
for the torque, as well as in equation 3.12, there are two different inductances
involved, Lsd and Lsq, which can be used in order to obtain torque. These two
inductances reflect the design of the rotor. A completely circular symmetrical
rotor will, magnetically, have Lsd = Lsq which results in that only isq will have
an effect on the output torque. On the other hand an elongated rotor will have
two completely different inductances which will enable control using both isd
and isq. This kind of torque is called reluctance torque and originates from the
fact that a magnet will try to rotate in order to line up with the surrounding
magnetic field, compare with a compass. As described by equation 3.14 an
unbalance in the inductances will invoke a change in the magnetization of
the rotor proportional to the currents which can be used in order to produce
torque.

τ = ψmisq + (Lsd − Lsq)isdisq (3.13)

ψsd = ψm + Lsdisd

ψsq = Lsqisq

(3.14)

The model in Spot uses the same equations in both the abc- and dq0-
reference frame model. The only difference being that the abc-model transfers
the electrical system to the dq0-reference frame before the calculations are
performed.

CHAPTER 3. WIND POWER UNIT 34

Figure 3.10: A diagram showing the general shape of a Cp-curve.

3.3 Optimizing Algorithms
The power extracted from a wind power unit can be described as the total
kinetic effect of the air that passes through the turbine’s wingspan multiplied
with the efficiency coefficient Cp, see section 2.1. An example of the typical
shape of the efficiency coefficient, Cp, described by equation 2.2 is shown in
figure 3.10. In order to run the unit efficiently it is important to always be
operating as close to the peak of the Cp-curve as possible. As can be seen in
figure 3.10 the peek’s position can be moved by changing the pitch angle. The
control strategies proposed below is, however, designed for a system with a
constant pitch angle. When assuming a constant pitch angle three strategies
to achieve the optimal rotational speed of the rotor are presented below.

3.3.1 Known Wind Speed and Cp-Curve

If assuming that the Cp-curve is known it is possible to numerically calculate
the optimal tip speed ratio, λ. When knowing the optimal tip speed ratio the
optimal rotor speed can be calculated as a function depending on the wind
speed using equation 2.4. In this way the optimal rotor speed reference can be
algebraically calculated by measuring the current wind speed accurately.

3.3.2 Sensorless

When assuming that very little is known about the wind power unit and the
power extracted from the unit is the only measured variable the algebraic
strategy is no longer a viable option. Instead of searching for an algebraic
solution the method proposed in [17] uses information about the direction
and magnitude of the change in power extracted is affected by the change of
the demanded rotational speed. The flow chart in figure 3.11 describes the
algorithm, but the general idea is to figure out on which section of the Cp-
curve the system currently is operating and take appropriate action. If the

CHAPTER 3. WIND POWER UNIT 35

Figure 3.11: Flow chart showing the operation of the maximum power point track-
ing algorithm [17]

current operating point is to the left of the maximum point the command
rotational speed should increase, if the current operating point is to the right
of the maximum point the command rotational speed should decrease and if
the current operating point is at the maximum point the speed reference should
be kept constant. The operation is briefly summarized below.

• If the change in power is smaller than a predefined limit no action is
taken.

• If the change in power is positive, ∆P (k) > 0, and the change in rota-
tional speed is positive or zero, ∆ω(k− 1) ≥ 0, then the speed reference
is increased.

• If the change in power is positive, ∆P (k) > 0, and the change in ro-
tational speed is negative, ∆ω(k − 1) < 0, then the speed reference is
decreased.

• If the change in power is negative or zero, ∆P (k) ≤ 0, and the change
in rotational speed is positive or zero, ∆ω(k − 1) ≥ 0, then the speed
reference is increased.

• If the change in power is negative or zero, ∆P (k) ≥ 0, and the change
in rotational speed is negative, ∆ω(k − 1) < 0, then the speed reference
is decreased.

CHAPTER 3. WIND POWER UNIT 36

The change in the rotational speed reference, ∆ω(k), is always calculated as the
change in power, ∆P (k), times a constant c. When tuned correctly the algo-
rithm should increase the rotational speed reference with increasingly smaller
steps until the optimal operational point is achieved.

3.3.3 Rotational Speed Known

The algorithm described in 3.3.2 can be improved by also measuring the rota-
tional speed of the rotor. By doing this the risk that is imposed by assuming
that the rotor speed is the same as the demanded speed is removed. What
differs this algorithm from 3.3.2 is that the change in rotational speed is cal-
culated using the measurements of the actual rotational speed of the rotor.
This is done in order to achieve a more robust optimization of the rotational
speed.

3.4 Control Design

Figure 3.12: Overview of control structure for the wind power unit.

To effectively run a wind power unit there is a lot of different controls needed,
both for controlling the rotor speed and for controlling the power electronics.
The power unit is apart from this also required to be able to operate in a
number of different control modes with different control goals. In order to
achieve these goals a control structure for the wind power unit was designed
according to figure 3.12. Some of the possible tasks that should be handled by
the controller are listed below.

• DC-voltage level controller, needed for operation in island mode where
the DC-voltage level is controlled by the wind power units.

• Power optimization/power tracking of the output from the wind power
unit, this is needed in order to optimize the wind power unit’s operation
point and in order to control the unit’s power output to a specific level
in order to operate at nominal power, output a specific power or control
the DC-voltage level.

CHAPTER 3. WIND POWER UNIT 37

• Speed control of the generator, needed in order to make the rotor follow
the reference speed given from the power control.

• Current control for the generator, needed in order to control the gener-
ator.

• Automatically make decision of when it is desirable or safe to operate.

3.4.1 Turbine Control

The Turbine Control’s task is to manage the wind power unit, which is to
decide when the unit should start and stop as well as giving instruction as to
in which mode the unit currently should be working in. The Turbine Control
should communicate with both the Plant Control and the Power Controller,
see section 3.4.2. The communication should be kept to a minimum and no
actual control should be done by the Turbine Control and Plant Control. The
controller’s main task is to make decisions about when the unit could be in
operation and provide information about the unit’s current capacity to the
Plant Control. In order to do this the Turbine Control needs information about
the current wind speed as well as orders from the Plant Control. Apart from
this the control also needs information about how fast the rotor is spinning in
order to avoid using the brake at high speeds and instead do a soft deceleration
using the generator.

In order for the Turbine Control to decide when the wind speed conditions
are good enough for operation limits for high and low wind speeds are needed.
A usual problem dealing with wind measurement data is the existence of tur-
bulence and gusts. In order for an effective control the Turbine Control cannot,
and should not, halt operation due to an erroneous measurement value or small
gust. To avoid this the wind speed measurements needs to be filtered before
evaluated. Care also needs to be taken when resuming operation after bad
wind condition so that the operation is not halted immediately after resuming
operation.

By using the current wind speed the wind power unit’s maximum potential
power output can be calculated, according to equation 3.15, where Cp,max
is an estimation of the unit’s maximum efficiency, ρ is the air’s density, A
the area swept by the rotor and v the current wind speed. The information
about the unit’s current maximum potential power output should then be
communicated to the Plant Control. The maximum potential power output is
also used when operating in delta-control. The delta-control mode is a mode
which is commonly used when the wind power unit should be operating at as
high power output as possible and at the same time be ready to quickly change
mode, see section 4.2.1. When in delta-control the power output should be a
constant percentage below its maximum potential power output.

Pmax =
1

2
ρAv3 · Cp,max (3.15)

CHAPTER 3. WIND POWER UNIT 38

3.4.2 Power Controller

In order to control the power output from the wind power unit the Power
Controller was developed. By controlling the power output from the wind
power unit a number of different control modes can be achieved. The Power
Controller is designed in two different parts. The first part, here named Power
Reference, is to set an appropriate power reference to achieve the requested
control goal and the second part, here named Power Control, is to control the
power output by controlling the rotational speed of the rotor.

3.4.2.1 Power Reference

The power reference for the Power Controller is set in order to achieve one
of the different control modes supported by the system. The different control
modes are listed below.

• SHTDWN - Shut Down Mode, the controller shall bring the rotor to a
stop.

• NOMEFF - Nominal Power Mode, the controller shall operate the wind
power unit at nominal power.

• DCCONTR - DC-Level Control Mode, the controller shall control the
DC-Voltage level to its nominal value.

• POWTRAC - Power Tracking Mode, the controller shall operate the
wind power unit at a specific power, this control mode can also be used
for delta-control.

Shut Down

When the shut down order is received the controller should bring the rotor to
a stop in a safe and controlled way. The controller could potentially do this by
simply applying the break, however in order to avoid unnecessary use of the
break. The main deceleration should be performed by the generator. In order
to achieve this the power reference is set to zero which will force the Power
Control to decelerate the rotor to a minimum speed. When the rotor speed is
low, i.e. below a predefined threshold, the brake should be applied stopping
the rotor in a controlled fashion.

Nominal Power

When the wind power unit is ordered to operate at nominal power the power
reference is simply set to the nominal power of the wind power unit. Nominal
power is in practice equal to maximum power since operating at a power level
over the rated power of the equipment will cause the generator and power
electronics to operate at a higher power level than it was designed for, which
will expose the system to a high risk of failure.

CHAPTER 3. WIND POWER UNIT 39

DC-Level Control

When the DC-level control mode is ordered the wind power unit’s control task
is to control the DC-voltage level to its nominal value. In order to achieve this
a desired power is passed down from the Plant Control through the Turbine
Control. This desired power is related to the power currently consumed by the
grid, see section 5.3.2. The desired power received from the Plant Control is an
approximation of the power output the wind power unit shall output in order
for the DC-level to be inert, i.e. for the power generation to be equal to the
power consumption. The desired power is used as an offset in the DC-control,
and depending on the error in the DC-voltage level the power reference is set
to be higher or lower than the desired power. When the error in the DC-level
is low, the power reference is controlled by a simple P-controller, see equation
3.16. When the DC-level error is a bit larger the power reference is set to be
significantly higher or lower than the desired power and when the DC-level
error is big the power reference is set to nominal power or zero.

Pref = Pdesired + k · VDC,error (3.16)

Power Tracking

The power tracking mode is used to achieve two different control goals, both
the power tracking control and the delta-control. In both cases the Power
Controller receives a desired power reference from the Turbine Control, and in
both cases the power reference should be set to the desired power reference.

3.4.2.2 Power Control

The Power Control part of the Power Controller’s task is to set a rotational
speed that outputs the power reference set by the power reference part of the
Power Controller. As long as the wind speed is high enough for achieving the
desired power output the task is quite trivial and easily achieved by a simple
PI-controller. However when the wind speed is to low and the desired power
output cannot be achieved the controller should do as good as possible. In this
case the controller should maximize the power output from the unit. In order
to achieve this a control algorithm was developed based on the optimizing
algorithms described in section 3.3. The algorithm was developed in two main
stages the first using mechanical power measurements and the second using
electrical power measurements.

Using Mechanical Power Measurements

When using mechanical measurements the designed algorithm is very similar to
the maximum power point algorithm described in section 3.3.3. The algorithm
is described by the flow chart in figure 3.13.

The control algorithm starts by setting initial conditions and reads new
measurements. It then tries to figure out whether the current operating point
is on the left or right side of the optimal operating point. If the current

CHAPTER 3. WIND POWER UNIT 40

Figure 3.13: Flow chart over the power controller using mechanical power mea-
surements.

operating point is considered to be on the left side of the optimal point the
control output is calculated by a PI-controller with a simple anti-windup. If it
is considered to be on the right side of the optimal point the control output is
calculated as ωout(t) = ωout(t− 1)− |c ·∆P | where c is a control constant and
∆P is the change in power. Also the integral for the PI-controller is updated
in order to achieve a bumpless control switch.

Using Electrical Power Measurements

If the power measurements is not taken from the rotating shaft but instead is
calculated from the electrical voltages and currents as P = udid+uqiq the algo-
rithm developed is more advanced. The electrical power output is zero unless
the generator is generating any current, i.e. unless the generator is applying
a negative torque on the rotor. This makes the previous control structure in-
effective, unless modifications are done. This since the power readings when
accelerating and decelerating the rotor will be misleading due to the fact that
the power output is greater during deceleration, and lower during acceleration.
To cope with this the control algorithm was modified so that after a control
output is set the control waits for the inner control algorithms to achieve the
desired rotational speed. When the desired rotational speed has been achieved
the algorithm performs a new power reading and, if necessary, calculates a new
output reference.

A flow chart over the modified control algorithm, along with a couple of
other improvements, is shown in figures 3.14 and 3.15. Apart from this the
modified control algorithm works roughly the same as the one using mechan-
ical power measurements. It starts by making some initializations and reads

CHAPTER 3. WIND POWER UNIT 41

the new measurements, it then checks whether the previous control output
has been achieved, if so it updates the reference, if necessary. Below follows
a detailed description of the modified control algorithm. The list numbers
references the circled numbers in figure 3.14.

1. The algorithm starts by setting some initial values.

2. The algorithm reads new values for the electrical power, pe, rotational
speed, ω, and the reference power level p_ref .

3. The algorithm checks whether the reference power has changed or not,
if so a flag signaling that the next update should be done by the PI-
controller is set to True.

4. Since it is the electrical power that is measured the generator has to
hold the rotor at a specific speed in order to make a power measurement.
If the rotor speed has not yet reached its last set point the controller
continues to the middle.

5. If the flag indicating that the reference power has changed is set to True
the algorithm will set it to False and continue to the PI-controller, left.

6. If the flag is not set a check is made to see if the power output is
larger than the reference value, if so the algorithm continues to the PI-
controller, left.

7. If the current power output is smaller than the reference value a check
is made to see whether the change in power is smaller or bigger than a
predefined limit, if not the algorithm continues to the middle.

8. If the power change is larger than the predefined limit a check whether
the change in rotational speed is larger than a predefined limit is done,
if not the controller continues to the middle.

9. If both the change in power and change in rotational speed was big
enough the algorithm continues to either left or right.

Left2

By continuing to “the left” the controller is signaling that it either considers
the current operating point to be on the left side of the optimal point on
the Cp-curve or that the current state has changed in a way that makes it
favorable to use a PI-controller to set the new reference. The PI-controller
first checks whether the control-signal is saturated or not, if the control signal
is saturated the integrator is not updated. The controller then continues by
calculating the new output and stores it in a temporary variable which is used
in order to calculate how large the control step is. The step is then limited

2See figure 3.15

CHAPTER 3. WIND POWER UNIT 42

Figure 3.14: Flow chart over the power controller.

CHAPTER 3. WIND POWER UNIT 43

Figure 3.15: Flow chart over the power controller, continued.

by a predefined limit and added to the previous control signal. This is done
so that a sudden spike in the measurement signal not should drive the rotor
speed to standstill or maximum speed. When the step has been added w_old
and p_old is updated.

Middle3

By continuing to “the middle” the controller is signaling that it either considers
the current operating point to be at its optimal value or that the current
state has not changed enough to make a new control output valid. In short
the controller does nothing except making sure that ω_old and p_old not is
updated.

Right4

By continuing to “the right” the controller is signaling that it considers the
current operating point to be on the right side of the optimal operating point.
When the controller continues to the right the new output value is calculated.
This is done by first calculating the new output as foo = ω − |dp · c| where
ω is the current rotational speed of the rotor, dp is the change in power, c
a control constant and foo a temporary variable. foo is used in order to
calculate the change, step, from the last output that should be done, the step
is then limited to the maximum allowed step size of the controller and then

3See figure 3.15
4See figure 3.15

CHAPTER 3. WIND POWER UNIT 44

Figure 3.16: Block diagram over the control of the generator

added to the previous control signal to generate the new reference. After this
is done the integral of the PI-controller needs to be updated in order to achieve
a bumpless control switch. The new integral value is calculated so that the
output of the PI-controller would be the same as the current output. After
this ω_old and p_old is also updated.

3.4.3 Speed Control

The overall control structure for controlling the generator, as can be seen in
figure 3.16, consist of the Power Controller followed by a cluster of controllers
called the Speed Controller. The Speed Controller consists of in total two
PI-controllers and one PID-controller. The PID-controller is controlling the
rotational speed of the rotor and the two PI-controllers are controlling the
currents into the generator.

The Speed Controller gets its reference value from the Power Controller
and uses a PID-controller in order to control the rotational speed. The PID-
controller outputs a torque reference which is passed to the Torque Control
which calculates the appropriate current references in order to achieve the
desired torque.

3.4.3.1 Torque Control

The task of the torque control is to calculate the currents needed for achieving
the desired torque. There exist a couple of different torque control strategies,
for example Constant Torque Angle Control and Maximum Torque per Ampere
Control, in the later of the two the isd and isq currents are optimized in order to
get as high torque as possible while keeping |I| as low as possible, see equation
3.17. In Constant Torque Angle Control the torque angle is kept constant,
usually at 90 ◦. This allows for a relatively simple control where isd is kept
at zero at all times which reduces the torque equation to a linear dependency
between the torque and isq current, see equation 3.18. Which control strategy
to choose partly depends on the design of the rotor, whether if there is a big
difference in Lsd and Lsq or if they are approximately the same, and partly the

CHAPTER 3. WIND POWER UNIT 45

Figure 3.17: Structure of the control loops for the d- and q-currents

control goal. For this project the Constant Torque Angle Control was chosen,
mainly due to its simplicity.

τ
pp

= ψmisq + (Lsd − Lsq)isdisq

|I| = 1
2

√
i2sd + i2sq

(3.17)

τ

pp
= ψmisq (3.18)

Since the Constant Torque Angle Control algorithm was chosen the current-
calculations is done according to equation 3.19. The isd current is kept at a
constant zero and isq is linearly proportional to the demanded torque.

irefsd = 0

irefsq =
τ ref

ψm · pp

(3.19)

3.4.3.2 Current Control

The current control loop is the inner most control of the Speed Control, and
its overall structure can be seen in figure 3.17. The current controller get its
reference values from the torque→ current conversion and outputs voltage ref-
erences for the inverter. The current controllers are essentially PI-controllers
with compensation for the back emf, or so called PIE-controllers. The param-
eters used for the control is derived in [15], the parameters are derived in a
way so that the controller will achieve its control goal in one sampling instant.
However caution must be taken when using the controller, general practice is
that half the proportional gain and double the integral time constant is a good
starting point for tuning the controllers. The reason to this is that the actual
machine parameters deviates a bit from what they should be, and in order to
not make the control unstable it is suitable to tune down the controller, and, if
necessary, increase them later. The control expression for the current control
can be seen in equation 3.20.

CHAPTER 3. WIND POWER UNIT 46

urefsd (k) =

(
Lsd

Ts
+
Rs

2

)(
(irefd (k)− id(k)) +

Ts

(Lsd

Rs
+ Ts

2)
)

n=k−1∑
n=0

((irefd (n)− id(n)

)
−ωrLsqisq(k)

urefsq (k) =

(
Lsq

Ts
+
Rs

2

)(
(irefq (k)− iq(k)) +

Ts

(
Lsq

Rs
+ Ts

2)
)

n=k−1∑
n=0

((irefq (n)− iq(n)

)
+ωr(ψm + Lsqisd(k))

(3.20)

3.5 Implementation
The implementation was decided to be done using two different programming
languages, Modelica and C/C++, this since the Modelica language is very well
suited for modeling of the wind power unit and power electronics and C/C++
is widely used when programming control units. The controllers could have
been written in Modelica, however the aim of this project was partly to write
the control structure in a way so that the same code could be used both in
simulation as well as on the real plant.

3.5.1 Modelica

Figure 3.18: Overview of the Modelica model of a wind power unit with controllers.

The Modelica implementation was done using the Modelica tool Dymola, see
section 3.2.1. Most of the implementation was done using Modelica’s standard

CHAPTER 3. WIND POWER UNIT 47

library and Modelon’s Spot library, however some models for the wind turbine
was developed as well as a wind model.

An overview of the Modelica model over a wind power unit can be seen in
figure 3.18, to the right is the top view, with inverter and controllers, and to
the left is the contents of the actual unit, with generator, shaft and turbine
model. The unit model consists of a model of the turbine connected to a
shaft, modeled as inertia and a bearing friction. The shaft is connected via a
brake to the permanent magnet synchronous generator, PMSG, the electrical
output from the PMSG is connected to an inverter which performs an AC to
DC conversion. Additionally a wind model was developed in order to model
the wind in a realistic way. The inverter is controlled by the control-blocks on
top of it, and by performing the AC/DC conversion the inverter controls the
generator. As can be seen most models incorporated in our wind power unit
model is from either Modelica’s standard library or Modelon’s Spot library.
The models implemented in this project are the turbine model, wind model,
the controllers and an interface between our control and the inverter.

3.5.1.1 Inverter Interface

Figure 3.19: Icon for the interface between the control and inverter.

An interface between our control and the inverter in Spot is needed since
the output from our control is the desired dq-voltages while the input to the
inverter is the percentage of the DC-voltage desired on the AC-side, which
can be calculated according to equation 3.21, and a phase angle which can be
calculated according to equation 3.22.

|VAC | =
√
u2d + u2q = u ·

√
3

2
· VDC

2
(3.21)

Phase = arctan(
uq
ud

) (3.22)

In order for the interface to do this conversion a measurement of the current
DC-voltage level is done, and in order to avoid division by zero a limit for the
minimum allowed |VDC | is set.

CHAPTER 3. WIND POWER UNIT 48

3.5.1.2 Wind Model

Figure 3.20: Overview of the wind model implemented in Modelica, with the icon
to the left and the implementation to the right.

The wind model is implemented as a gust component plus a small noise, as
described in section 3.2.3. In order to decide when the gust component should
occur a random value is compared with a threshold value every ten seconds.
If a random value is higher than the threshold a positive or negative gust
component is added to the base wind speed in form of a trapezoid. The rand-
block used to calculate the random value is generating a uniformly distributed
value between 0 and 100. After the gust component a uniformly distributed
noise is added to the base signal in the form of a random value scaled to
±0.15m/s.

3.5.1.3 Wind Turbine

Figure 3.21: Overview of the Wind turbine model in Modelica, with the icon to
the left and the implementation to the right.

The Implementation of the wind turbine was done in three different blocks.
One calculating the tip speed ratio, TSR, according to equation 2.4, one calcu-
lating the Cp-value using equation 2.2 and 2.3 and one calculating the output
torque according to equation 2.1, 3.2 and adjusted with the tower shadow effect
described in equation 3.3.

All the three models were implemented according to the equations with
some small variations in order to avoid numerical instability. In the model for
the tip speed ratio a limit for the minimum allowed wind speed, windspeedswitch,
in order to avoid division with very small values and/or by zero. When the

CHAPTER 3. WIND POWER UNIT 49

wind speed is below the allowed limit the tip speed ratio is instead calculated
according to equation 3.23. In the model of the Cp-curve a lower limit for the
Cp value was set to zero so that the efficiency never is below zero. In the model
which calculates the generated torque acting on the shaft a lower limit for the
rotational speed of the rotor was set, ωswitch, this in order to avoid division by
zero. When the rotational speed is below the allowed limit the output torque
is instead calculated according to equation 3.24.

λ =
ωtR

windspeedswitch
(3.23)

T =
P

ωswitch
(3.24)

3.5.2 C/C++

There are two possibilities when trying to implement C/C++ objects into
Dymola/Modelica. The first is using an External Static Library and the second
is using the External Object function in Modelica. Both of the methods have its
pros and cons. The External Static Library is disconnected from the modeling
tool to a greater extent while the External Object is more interconnected with
Modelica. In the end the decision was made to mainly use the External Static
Library for implementation of the control structure. This mainly due to two
different reasons. Reason one being that the goal was to be able to run the
exact same code both in simulations and on the actual plant and for this reason
we like to separate the control code and the models as much as possible. The
second reason is that the External Object currently only supports code in
FORTRAN 77 and C [18], while the static external library supports both C
and C++. However the External Object approach was also investigated and
tested.

3.5.2.1 External Static Library

The general idea with using an external static library is that Dymola will
be using a compiled library containing all the different controls. In this way
Dymola is completely disconnected from the control algorithms. This also
allows for the control to be designed in a way that just as well could be compiled
and downloaded to a control unit as it could be compiled to a static library
and used for simulation purposes. In this way the exact same code that would
be run on a real plant will be tested in a simulation environment. In order for
this to work Dymola needs to know which functions that exists and how to
invoke them. Also some tricks needs to be done in Dymola in order to “force”
the optimization code for the equations not to remove the function-calls to the
library.

In order to enable Dymola to use the external library an interface was writ-
ten for every class which was needed to interact with Modelica. The interface
was written using a header file and a source file, see listing 3.1 and 3.2. The
header file is then put in Dymola’s Source directory which enables Dymola to

CHAPTER 3. WIND POWER UNIT 50

use the functions. The Interface classes use an array with a certain size in or-
der to allow multiple instances of the same object to be used at the same time.
When a new instance of the object is created the init-function is called which
initiates the object, if there is room in the array for one more, and returns the
id for the newly created object. When using the object the other functions are
then called using the id. If anything would go wrong in a function, or initia-
tion, call the interface will return -1. Since Modelica currently only supports
external functions defined in FORTRAN 77 and C [18] the interface classes is
defined to be compiled as external C-code, see row five and thirteen in listing
3.1.

Listing 3.1: modelicaInter_ pi.h
1 #ifndef MODELICAINTER_PI_H
2 #define MODELICAINTER_PI_H
3
4 #ifde f __cplusplus
5 extern "C" {
6 #endif
7
8 extern int p i_ in i t (double k , double Ti , double Ni , double yMax , double yMin , double

samplePeriod , double i S ta r t , double yStart) ;
9 extern int pi_update (int id , double e r r o r) ;
10 extern double pi_get (int id) ;
11
12 #ifde f __cplusplus
13 }
14 #endif
15 #endif

Listing 3.2: modelicaInter_pi.cpp
1
2 #include "model icaInter_pi . h"
3 #include " pi . h"
4
5
6 const int max = 6 ;
7
8 stat ic int id = 0 ;
9 stat ic Pi vec [max] ;
10
11 int p i_ in i t (double k , double Ti , double Ni , double yMax , double yMin , double samplePeriod ,

double i S ta r t , double yStart) {
12 i f (id< max) { // check so that array i s not f u l l
13 vec [id++] = Pi () ;
14 vec [id −1] . i n i t (k , Ti , Ni , yMax , yMin , samplePeriod , i S ta r t , yStart) ;
15 return id ;
16 } else
17 return −1;
18 }
19
20 int pi_update (int idIn , double e r r o r) {
21 i f (id In > 0 && idIn <=id) { //check so that idIn i s va l id
22 vec [idIn −1] . update (e r r o r) ;
23 return i d In ;
24 } else
25 return −1;
26 }
27
28 double pi_get (int i d In) {
29 i f (id In > 0 && idIn <= id) { // check so that idIn i s va l id
30 return vec [idIn −1] . get () ;
31 } else
32 return −1;
33 }

The interface classes can then be used as external functions in Dymola.
This is done by creating a function with the same name as the interface function
and list all the inputs followed by the outputs. It should also be declared that
the function is implemented using external C-code. Apart from this the header
file-name containing the function declaration and the library-name containing
the executables should also be provided, see listing 3.3

Listing 3.3: pi_init.mo

CHAPTER 3. WIND POWER UNIT 51

1 within Vert ica lWindPark.Components .Contro l .ExternalLib .Funct ions ;
2 function p i_ in i t
3 input Real k ;
4 input Real Ti ;
5 input Real Ni ;
6 input Real yMax ;
7 input Real yMin ;
8 input Real samplePeriod ;
9 input Real i S t a r t ;
10 input Real yStart ;
11 output Integer id ;
12 external "C" ;
13 annotation (Inc lude="#inc lude ␣<model icaInter_pi .h>" , Library=" con t r o l ") ;
14
15 end p i_ in i t ;

When all the interface functions has been implemented a model using the
external code can be written, see listing 3.4. The model starts by importing the
functions needed and then continues by as normal defining parameters, inputs
and outputs. Since all our control algorithms is sampled/discrete in nature the
models are declared to extend the DiscreteBlock Interface in Modelica which
provides some basic variables such as initial(), which returns true if it is the
first sampling instant, and sampleTrigger which is true when a sample instant
occurs.

Since Dymola/Modelica optimizes the system of equation as much as pos-
sible in order to accelerate the simulations it will disregard any functions and
equations which it deems useless. This means that a function call without
any return value such as pi_update(...) will be disregarded, since it does
not affect the system. Dymola is completely unaware that this function call
changes any states. In order to “force” Dymola to include the equation or func-
tion call some state needs to be effected by a return value, which is the reason
to why both id1 and id2 is used in the code. When calling id2 = pi_update(
...) id2 is changed depending on what is returned by the update-function,
thus the function call cannot be neglected.

There is also a protection implemented in order to stop the simulation if
more than the allowed number of instances of the same object is exceeded or
some other input violation is done. This protection is enabled by the fact that
-1 is returned by the C-function when an input violation is detected.

Listing 3.4: pi_lib.mo
1 within Vert ica lWindPark.Components .Control .ExternalLib ;
2 model pi_l ib
3 extends Mode l i c a .B l o c k s . I n t e r f a c e s .D i s c r e t eB l o c k ;
4
5 import i n i t_p i =
6 Vert ica lWindPark .Components .Contro l .Externa lL ib .Funct ions .
7 p i_ in i t ;
8 import update_pi =
9 Vert ica lWindPark .Components .Contro l .Externa lL ib .Funct ions .
10 pi_update ;
11 import get_pi =
12 Vert ica lWindPark .Components .Contro l .Externa lL ib .Funct ions .
13 pi_get ;
14 import Mode l i c a .U t i l i t i e s . S t r e am s . e r r o r ;
15
16 parameter Real i_s ta r t=0 " I n i t i a l ␣ value ␣ o f ␣ i n t e g r a t o r ␣ value " ;
17 parameter Real y_start=0 " I n i t i a l ␣ value ␣ o f ␣ output␣ s i g n a l " ;
18 parameter Real P = 1 "Propor t i ona l ␣ gain " ;
19 parameter Real Ti = 1 " In t eg r a t o r ␣ time␣ constant " ;
20 parameter Real yMax = 100 "Maximum␣output" ;
21 parameter Real yMin = −yMax "Minimum␣output" ;
22 parameter Real k = 1 "Gain␣ o f ␣ the ␣ c o n t r o l l e r " ;
23 parameter Real Ni = 1 "Ni∗Ti␣ i s ␣ the ␣ time␣ constant ␣ o f ␣ antiwindup␣ compensation" ;
24
25 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t u_s ;
26 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t u_m;
27 Mode l i c a .B lock s . In t e r f a c e s .Rea lOutput y ;
28
29 protected

CHAPTER 3. WIND POWER UNIT 52

30 Integer id1 ;
31 Integer id2 ;
32
33 Real e r r ;
34 Real ySamp ;
35
36 i n i t i a l equation
37 y = y_start ;
38 equation
39 when in i t i a l () then
40 id1 = in i t_p i (P, Ti , Ni , yMax , yMin , samplePeriod , i_start , y_start) ;
41 end when ;
42
43 when sampleTrigger then
44 e r r = u_s−u_m;
45 id2 = update_pi (id1 , e r r) ;
46 ySamp = get_pi (id2) ;
47 end when ;
48
49 i f id2 < 1 or id1 < 1 then
50 e r r o r ("Error ␣ us ing ␣ ’ Pi ’ ␣ in ␣ the ␣ ex t e rna l ␣ ’ c on t r o l ’ ␣ l i b r a ry , ␣ po s s i b l y ␣ the ␣ ’ Pi ’ ␣ array ␣ i s ␣

f u l l ! ") ;
51 end i f ;
52
53 y = pre (ySamp) ;
54 end pi_l ib ;

3.5.2.2 External Object

The External Object-function is Modelica’s way of achieving a function with
an internal memory, that is an object, see [18]. This is done by letting the
Modelica class directly extend from the predefined partial class ExternalObject,
it shall also define exactly two functions, one called “constructor ” and one
called “destructor ”. The constructor will be called exactly once, just before the
first usage of the object, and the destructor will be called exactly once after
the last use of the object. The constructor should have exactly one output
argument in which the ExternalObject is returned, and the destructor shall
have no outputs. The ExternalObject-type is mapped in C as a void-pointer
when used as an input or return value. The constructor and destructor is
called automatically, it is illegal to call any of them explicitly. When created
the ExternalObject ’s internal memory can be operated upon by an external
functions by using the ExternalObject as an input to the function[18], the
general structure of how the ExternalObject is used can be seen in figure 3.22.

The actual implementation in Modelica can be seen in listing 3.5 and 3.6. In
3.5 the ExternalObject is defined with the required constructor and destructor,
and in 3.6 the function which uses the internal memory of the ExternalObject
is defined by using the ExternalObject as one input.

Listing 3.5: PI2.mo
1 within Vert ica lWindPark.Components .Contro l .Externa l .Funct ions .PI2 ;
2 class PI2
3 extends ExternalObject ;
4
5 function cons t ruc to r
6 input Real P;
7 input Real Ti ;
8 input Real Ni ;
9 input Real yMax ;
10 input Real yMin ;
11 input Real samplePeriod ;
12 input Real i_s ta r t ;
13 output PI2 pi ;
14 external "C" pi= in i tP I 2 (P, Ti , Ni , yMax , yMin , samplePeriod , i_s ta r t) ;
15 annotation (Inc lude="#inc lude ␣<PI2.c>" , uses (Modelica (ve r s i on="3 . 2 "))) ;
16
17 end cons t ruc to r ;
18
19 function de s t ruc to r

CHAPTER 3. WIND POWER UNIT 53

Figure 3.22: Schematic picture of how the external object is used.

CHAPTER 3. WIND POWER UNIT 54

20 input PI2 pi ;
21 external "C" c lo s ePI2 (p i) ;
22 end de s t ruc to r ;
23
24 end PI2 ;

Listing 3.6: updatePI2.mo
1 within Vert ica lWindPark.Components .Contro l .Externa l .Funct ions .PI2 ;
2 function updatePI2
3
4 input Vert ica lWindPark .Components .Contro l .Externa l .Funct ions .PI2 .PI2
5 pi ;
6 input Real e r r o r ;
7 output Real y ;
8 external "C" y = updatePI2 (pi , e r r o r) ;
9
10 end updatePI2 ;

The external object can then be used to implement the external PI-controller
according to listing 3.7. As can be seen the initial values for the controller is
entered when the external object is declared on row 16 which will later be
used when the constructor is called. The same problem regarding the op-
timization of the equations done by Dymola that is present when using the
external library, see section 3.5.2.1, is also present here. However this par-
ticular function was implemented to return the control signal directly when
the update-function is called, if the controller where to be implemented as the
example in the external library case, where nothing is returned by the update-
function but instead needs to be fetched by a get()-function, then some kind
of dummy variable would have to been utilized in order to force the update
to be performed. Apart from this the actual model in Modelica looks almost
identical to the External Library implementation, see listing 3.4.

Listing 3.7: PI2_external.mo
1 within Vert ica lWindPark.Components .Control .External ;
2 model PI2_external " d e f i n e ␣a␣new␣PI−c o n t r o l l e r "
3 extends Mode l i c a .B l o c k s . I n t e r f a c e s .D i s c r e t eB l o c k ;
4 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t u_s ;
5 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t u_m;
6 Mode l i c a .B lock s . In t e r f a c e s .Rea lOutput y ;
7
8 parameter Real i_s ta r t=0 " I n i t i a l ␣ value ␣ o f ␣ i n t e g r a t o r ␣ value " ;
9 parameter Real P = 1 "Propor t i ona l ␣ gain " ;
10 parameter Real Ti = 1 " In t eg r a t o r ␣ time␣ constant " ;
11 parameter Real yMax = 100 "Maximum␣output" ;
12 parameter Real yMin = −yMax "Minimum␣output" ;
13 parameter Real Ni = 1 "Ni∗Ti␣ i s ␣ the ␣ time␣ constant ␣ o f ␣ antiwindup␣ compensation" ;
14
15 protected
16 Vert ica lWindPark .Components .Contro l .Externa l .Funct ions .PI2 .PI2 pi =

Vert ica lWindPark .Components .Contro l .Externa l .Funct ions .PI2 .PI2 (P, Ti , Ni , yMax , yMin ,
samplePeriod , i_s ta r t) ;

17
18 Real e r r o r ;
19 Real ySample ;
20
21 equation
22 when sampleTrigger then
23 e r r o r = u_s − u_m;
24 ySample = Vert ica lWindPark.Components .Contro l .External .
25 Funct ions .PI2 .updatePI2 (pi , e r r o r) ;
26 end when ;
27
28 y = pre (ySample) ;
29
30 end PI2_external ;

The implementation of the PI-controller in C can be seen in listing 3.8, the
constructor, initPI2, creates an instance of the PI-controller which is returned
as a void-pointer. Since no structures that requires any specific memory release
is used the destructor only needs to free memory used by the pi-controller using

CHAPTER 3. WIND POWER UNIT 55

free(). The implementation of updatePI2() starts by converting the void-
pointer into a PI2 -pointer and checks so that the conversion was successful.
After this the implementation of the rest of the code is pretty straight forward.

Listing 3.8: PI2.c
1 typedef struct{
2 double I ;
3 double yMax , yMin ;
4 double P, Ti ;
5 double samplePeriod ;
6 double Ni ;
7 } PI2 ;
8
9 void∗ i n i tP I 2 (double P, double Ti , double Ni , double yMax , double yMin , double

samplePeriod , double i S t a r t) {
10 PI2∗ pi = malloc (s izeof (PI2)) ;
11
12 i f (p i == NULL)
13 Model icaError ("Not␣enough␣memory ! ") ;
14
15 pi−>P = P;
16 pi−>Ti = Ti ;
17 pi−>Ni = Ni ;
18 pi−>yMax = yMax ;
19 pi−>yMin = yMin ;
20 pi−>samplePeriod = samplePeriod ;
21 pi−>I = iS t a r t ;
22 return (void∗) p i ;
23 } ;
24
25 void c l o s ePI2 (void∗ obj) {
26 PI2∗ pi = (PI2 ∗) obj ;
27 i f (obj == NULL)
28 return ;
29 f r e e (p i) ;
30 } ;
31
32 double updatePI2 (void∗ obj , double e r r o r) {
33 PI2∗ pi = (PI2 ∗) obj ;
34 double y , temp ;
35
36 i f (p i == NULL)
37 Model icaError ("Not␣enough␣memory ! ") ;
38
39 temp = pi−>P ∗ (e r r o r + (pi−>samplePeriod / pi−>Ti) ∗pi−>I) ;
40
41 i f (temp > pi−>yMax) {
42 y = pi−>yMax ;
43 } else i f (temp < pi−>yMin) {
44 y = pi−>yMin ;
45 } else {
46 y = temp ;
47 }
48
49 pi−>I = pi−>I + e r r o r + (y − temp) / (pi−>P ∗ pi−>Ni) ;
50
51 return y ;
52 } ;

3.5.3 Control

All the controls was implemented in Microsoft Visual C++ 2010 Express and
compiled to an external static library. This way the control code was written
completely independent of the models. The control code was then compiled
and linked to an external static library which was placed inside Dymola’s lib-
folder. As reflected in figure 3.18 the control was divided into two main control
algorithms, one called TurbineControl and one called GeneratorSideController.
The reason to why this was done was that it was desirable to separate the active
control algorithms, such as PI- and current controllers, and the more inactive,
managing control, which makes decisions such as when to start and stop the
wind power unit, from each other. The different control and code parts are
described below.

CHAPTER 3. WIND POWER UNIT 56

3.5.3.1 Turbine Control

Figure 3.23: Class structure of the Turbine Control.

The Turbine Control is the so called top control of the turbine, it decides when
the turbine should start or stop and which mode to operate in, depending on
orders, as well as providing useful information to the plant controller. The full
implementation is presented in appendix B.1. The Turbine Control is initiated
with limits for low and high wind speed, low rotor speed, filter lengths for wind
and rotor speed, the air density, the area swept by the rotor, estimation of the
maximum Cp-value and the nominal power of the turbine. The limits for low
and high wind speed are used in order to be able to decide when the wind
speed is too high or low for operation. The low rotor speed is used to decide
when the brake should be applied. The air density, area swept by the rotor
and the maximum Cp-value is used in order to calculate an estimate of the
available power capability of the turbine.

The Turbine Control is implemented using both one internal state and one
external state command, the inner state is used in order change state due to
too high or low wind speed while the external state command is used in order
to select which state that should be used by the power controller. In order to
not turn of the turbine due to a small wind gust or an erroneous measurement
value the wind speed is filtered using a mean filter, see section 3.5.3.4, the
same goes for the rotor speed. The Turbine Control can order the turbine to
shut down for three different reasons. The first reason is that the external
command tells it to shut down, the second reason is that the wind speed is too
low for operation and the third is that the wind speed is too high for operation.
When the Turbine Control has decided to shut down the turbine a check to
see if the rotor speed is below the low rotor speed limit is performed. If so is
the case the brake is applied, if not, and the reason for shut down was due to
too high wind speed or an external order, and the rotor speed is below twice
that of the low rotor speed limit, the break is applied with 50%.

In order for the Turbine Control to allow operation again the external
control should no longer order shut down and the wind speed must be between
the limit for low wind speed plus the hysteresis and the limit for high wind
speed minus the hysteresis. The hysteresis is there in order to make sure that
the turbine is not constantly turned on and off when the wind speed is on the
limit of too high or too low.

If the wind speed is OK and the external state order is not shut down the
controller allows operation and in all cases except one just passes the control
mode and desired power to the power controller. If the control mode should

CHAPTER 3. WIND POWER UNIT 57

be delta-control the Turbine Control passes on the mode “POWTRAC” with
80% of the maximum potential power.

The maximum potential power output is calculated in the getMaxEff()-
function. In order to do this the controller needs to make a difference between
ordering shut down due to the wind speed being too low or high and ordering
shut down due to the external command. If the turbine has not ordered shut
down due to too high or low wind speed the maximum potential power output
is calculated according to equation 3.25, otherwise it should be zero.

maxEff = 0.5 · ρAw3 · Cp,max (3.25)

3.5.3.2 Generator Side Controller

Figure 3.24: Class structure of the generator side controller.

The “GeneratorSideController”-class is not a controller in its own, but a class
used in order to update all the controls, except the turbine control, on the gen-
erator side. The full C++-code is presented in appendix B.2. The controllers
managed by the class are the Power Controller, Speed Controller and the Cur-
rent Controller. The implementation of the Power Controller is described in
section 3.5.3.3, the implementation of the Current Controller is described in
section 3.5.3.7 and the Speed Controller is implemented as a PID-controller
which is described in section 3.5.3.6. The overall control structure can be seen
in figure 3.12.

The initiation of the class has been divided into three parts, one for each
of the controllers managed by the class, this in order to keep the number of
variables sent to the class in a single function call manageable. The class’s
main task is to manage the different controls’ sampling interval, this since the
different controls do not have the same sampling time. To do this a counter
for each of the controllers was implemented and the sampling time of the class
is set to the same as the lowest of the three controllers. In this case that will
always be the current controller since a cascaded control structure is used.

When the initialization of the class is made the counter limits is calculated
and the counter is initialized to its counter limit. This in order to make all the
controls update during the first sample instant, the counters are then incre-
mented at each sample instant. When the update()-function is called the motor
angle is derived in order to obtain the rotational speed of the rotor. The class

CHAPTER 3. WIND POWER UNIT 58

then starts to check which controllers that should be updated, starting with
the controller that is in the uttermost loop. When a control gets updated the
corresponding counter is reset to zero. Before the speed controller is updated
a filter is implemented in order to filter the speed reference. This is done in
order to remove large step changes in the reference. The effect of this filter is
that the Speed Controller will not request high, or low, torque spikes from the
Torque Controller, which in turn will generate spikes, positive or negative, in
the output power from the generator.

3.5.3.3 Power Controller

The “PowerController”-class is the implementation of the power control algo-
rithm described in section 3.4.2. The full C++-code is presented in appendix
B.3. The Power Controller is initiated by all the different gains and limits
together with the sample period, note that the nominal power, nomEff, is
considered to be the maximum allowed power, the nominal DC-voltage is con-
sidered to be the setpoint for the DC-control and the w_ref is used as an
initial rotational speed reference every time the controller orders a startup of
the turbine.

The operation of the controller is divided into four different parts or func-
tions, the main update(), the updateOutput(), the leftSlope() and the rightS-
lope(). In the main update()-function the first part of the control update is
done, here the controller sets the power reference which later shall be used
by the updateOutput()-function. The power reference is set in different ways
depending on which mode the controller is ordered to work, see section 3.4.2.
An extra feature was implemented in order to allow for a faster deceleration of
the rotor when the control is ordered to a halt, apart from setting the power
reference to zero an extra variable has been implemented indicating that a
complete stop of the rotor is ordered. When the power reference has been set
it is limited by zero and the nominal power of the turbine, then the current
power error is calculated and the updateOutput()-function is called.

The updateOutput()-function is the implementation of the control algorithm
described in section 3.4.2.2 with some modifications. A special algorithm has
been implemented for the shutdown of the unit. When the shutdown of the
unit is started the rotational setpoint is decreased by 30 rad/s every sample in
which the actual rotational speed is below the previous output until the turbine
is at standstill. When the turbine is restarted after a shut down it resets the
parameters associated with the startup. The action taken when a change in
the power reference has been detected was modified so that instead of always
doing an update with the “ leftSlope()” the update is done using the previously
used slope. An exception from the condition that a minimal rotational speed
change has to have happened before an update is made has been added. If
the power error is more than ten times higher than dp_lim, the limit for a
change in power, an update is forced in the same way as if the power reference
has been changed. Apart from this a step has been added in the middle step
where the PI-controller of the left side is updated but never actuated. This in
order for the integral part of the controller to keep track of the error during

CHAPTER 3. WIND POWER UNIT 59

the relative slow process of changing the rotational speed. Note is that since
a maximum step change was desired to be used in the update function the
PI-controller described in section 3.5.3.5 could not be used. Instead a similar
PI-type controller was implemented where both the maximum step size and
the max/min-limits of the output was implemented. The limitation of the step
size was implemented by calculating the desired change in the control signal,
limit it and add to the previous control signal. The PI-control also implements
a simple anti-windup function consisting of calculating the appropriate integral
value for obtaining the desired output and set the integral to this value, see
equation 3.26, where I is the integral value, y the current output, e the control
error and k a control constant. The only change made in the “ leftSlope” and
“rightSlope” is that a variable “ last_state” which keeps track of what “branch”
was last used to update the control was added.

I = y − e · k (3.26)

3.5.3.4 Mean Filter

In order to filter signals and measurements an averaging filter was imple-
mented. The code used for the implementation is presented in appendix B.4.
The mean filter is a simple, yet effective, way to discreetly filter signals. The
mean filter works by averaging the signal over a user defined number of samples.
In our implementation the mean filter is initiated with the desired length and is
then updated using the update function, which also returns the updated aver-
age value. There are two additional functions implemented, the get()-function,
which returns the current average value and the reset()-function which is used
to reset the memory of the filter, the length of the filter is unchanged by this
action, however the average calculations are restarted.

The mean value algorithm is implemented to be working in two different
modes. The first mode is when it has enough values to calculate the average
over the requested number of values and the second mode is when it does not
have enough values to do this. When the algorithm does not have enough
values to calculate the average over the requested number of samples the al-
gorithm instead calculates the average over the values it currently got stored.

3.5.3.5 PI-Controller

The PI-controller is used in a lot of different parts of the control structure. The
PI-control implemented in this project was quite straight forward. The code
used for the implementation is presented in appendix B.5. The PI-controller is
initiated with the controller gains, k, Ti and Ni, output limits, sample period
and start values for the output and integrator. The PI-controller is imple-
menting an anti windup which the Ni-time constant is used for. The update()-
function is called using the error of the control signal. The function starts
by calculate and limit the output before it applies the anti windup algorithm.
The output is calculated according to equation 3.27, where Ts is the sampling
period. The output is saved in a temporary variable before the output is lim-

CHAPTER 3. WIND POWER UNIT 60

ited, this since both the limited and unlimited output is needed by the anti
windup algorithm.

y = k ·
(
e+

Ts
Ti
· I
)

(3.27)

The reason for why an anti windup is implemented is to prevent the integrator
from growing indefinitely when the output value is limited and, if necessary,
force the integral value to track the actual output signal. In our implementa-
tion this is done by comparing the unlimited output with the limited and adds
this to the update of the integral value with a time constant equal to k · Ni,
see equation 3.28.

antiWindup =
y − temp
k ·Ni

I = I + e+ antiWindup

(3.28)

Apart from the init()- and update()-functions the PI-controller also im-
plements a function to directly reset the integral value, setI(), as well as
a function to set and get its parameters through the “PiParam”-class. The
“PiParam”-class is a container-class used to make it easier to store and pass
the PI-parameters to other functions, for the full implementation see appendix
B.5. The setParam()- and getParam()-function sets the gains and other pa-
rameters in the PI-controller to the provided ones, alternatively returns the
current parameters stored in the PiParam-object. The setI()-function is called
with the desired output and current error, based on this the controller sets the
integrator to the appropriate value to achieve the output, see equation 3.29.
The idea with this function is to provide for a bumpless control, or parameter,
change.

I =
Ti
Ts
·
(ydesired

k
− e
)

(3.29)

3.5.3.6 PID-Controller

Figure 3.25: Class structure for the PID-controller class.

Also the PID-Controller is used in a number of places of the control structure.
The PID controller is in essential a PI-Control with the addition of a derivative
part. The difference in the implementation between the PI-Controller and
the PID-controller is quite minor. The full implementation is presented in
appendix B.6. In the initialization a derivative gain has been added as well
as a filter length. Apart from this the setParam() and getParam()-functions
has been removed, and the setI()-function has been replaced by setOutput().
The PI- and anti windup- part of the control is implemented in the same way

CHAPTER 3. WIND POWER UNIT 61

as it was in the PI-Controller, see section 3.5.3.5. The only thing that differs
between the PI- and PID-control is the addition of the derivative gain in the
calculation of the output.

When implementing derivatives in discrete systems it is always recom-
mended to apply some kind of filtering before the derivation is done, this
since all signals are piece wise constant and large step changes are common,
in this case the MeanFilter was used, see section 3.5.3.4. The input of the
update()-function is filtered before it is derived using equation 3.30, where Ts
is the sample period. The old error, eold, is initiated to zero.

de

dt
= der =

e− eold
Ts

(3.30)

Using the derivative of the error the control output is calculated using equation
3.31. The output is then limited, the anti-windup is performed and the current
error is stored as eold before the update()-function is finished.

y = p ·
(
e+

Ts
Ti
· I +Kd · der

)
(3.31)

When the setOutput()-function is used the current output of the controller
is set to the demanded output, the current error provided is stored as eold for
calculation of the next derivative and the derivative filter is reset. Apart from
this the integral value is updated to fit the new output according to equation
3.32, this in order to provide bumpless control switches.

I =
Ti
Ts
·
(
y

p
− e
)

(3.32)

3.5.3.7 Current Controller

Figure 3.26: Class structure of the Current Controller.

The complete Current Controller for the PMSG5 was implemented into one
single class using the Id and Iq classes, see section 3.5.3.8, as shown in fig-
ure 3.26. The code in its whole is presented in appendix B.7. The Current
Controller is initiated with the generator parameters, min/max allowed output
value, start values, sample period and a filter length, which the Current Con-
troller uses to initiate the Id/Iq controller. When the update is performed the

5Permanent Magnet Synchronous Generator

CHAPTER 3. WIND POWER UNIT 62

current measurements, the rotational speed of the generator and the torque
reference is provided. The input torque reference is filtered using the mean
filter in order to make the control calmer, if this would not be desired the filter
length can be set to zero. The Current Controller starts by calculating the
current references based on the desired output torque. There are a number of
different ways to do this see section 3.4.3. The method implemented in this
project was chosen according to equation 3.33, where pp is the number of pole
pairs in the generator. The Current Controller then updates the Id and Iq
controllers.

Idref = 0

Iqef =
τref

pp · ψm

(3.33)

3.5.3.8 Id/Iq-Controller

In order to achieve a good control of the permanent magnet synchronous gen-
erator specialized current controllers was implemented. The full code is pre-
sented in appendix B.8. As described in section 3.4.3.2 the current controllers
are a modification of the normal PI-Controller, the modifications consists of
parametrization of the controller gains and an addition of a compensation for
the back electromagnetic force, because of this the implementation is quite sim-
ilar to that of the PI-controller, see section 3.5.3.5. Because of the parametriza-
tion the init()-function was changed so that instead of the controller gains the
machine parameters are provided as an input, the optimal gains are then cal-
culated according to equation 3.34. In order to make the control more robust
the gains were decreased, the proportional gain halved and the integral time
constant doubled. This is needed in order for the system to not be unstable
because of deviations in the machine parameters.

Pid =
Ld
Ts

+
Rs

2

Tiid =
Ld
Rs

+
Ts
2

Piq =
Lq
Ts

+
Rs

2

Tiiq =
Lq
Rs

+
Ts
2

(3.34)

The update of the control signal is managed in the same way as for the PI-
controller with the difference that the update()-function, apart from needing
the error also needs to know the electrical rotational speed of the generator
as well as the “other” current, the Id controller needs to know the Iq current
and vice versa. The controller output can then be calculated in the same way

CHAPTER 3. WIND POWER UNIT 63

as the done in the “normal” PI-controller with an addition of the back emf-
compensation, see equation 3.35, the control output is then limited and the
anti windup is performed.

yid = Pid ·
(
e+

Ts
Tiid

)
− ωe · LqIq

yiq = Piq ·
(
e+

Ts
Tiiq

)
+ ωe · (ψm + LdId)

(3.35)

3.6 Simulations and Results
In order to test how well our different controls and optimization algorithms
perform a couple of test cases was simulated, see section 3.1. The different test
cases were designed to either test different aspects of the control or how well
the controllers cope with a specific task. The different controllers have been
divided into three different subsections, the Speed Controller, Optimization
Algorithm and Turbine Control.

3.6.1 The Speed Controller

The Speed Controller’s task is to control the speed with which the PMSM
rotate. The control of the PMSM is identical for both the case of regular
operation as a motor and that of a generating operation as a generator, the
only difference between the two modes is the direction of the power flow. For
this reason two tests were performed. One for running the machine as a motor
and one for running the machine as a generator.

3.6.1.1 Used to Run a Motor

The test bench used for this test can be seen in figure 3.27. In this case
we have that an optimal DC-grid was connected to the inverter. The Speed
Controller uses the inverter to control the PMSM. The speed reference is set
to a constant 10 rad/s, and after 30 seconds the load torque is increased from
10 Nm to 60 Nm. The result from the simulation is shown in figure 3.28 and
3.29. In figure 3.29 the Speed Controller was tuned to be quite gentle in order
to not generate any large negative power spikes in the consumed power, while
in figure 3.28 the Speed Controller was tuned in order to obtain as good result
as possible, not taking the power consumed by the motor into consideration.
When the controller was tuned for performance it can be seen that it follows
its reference strictly, while the gentler controller is a bit slower. However when
observing the power consumed by the motors, the motor controlled by the
aggressive control consumes very large spikes of energy, > 20kW , while the
motor controlled by the more gentle controller do not have any large spikes in
the consumed energy at all and in total never exceeds a power consumption of
2kW .

CHAPTER 3. WIND POWER UNIT 64

Figure 3.27: Test-bench used for testing the Speed Controller when used to run a
motor.

Figure 3.28: Results when testing the aggressively tuned Speed Controller used to
run a motor. In the top subplot the rotational speed and its reference
are plotted, in the middle subplot the actuated torque from the motor
is plotted and in the bottom subplot the power flow directed into the
motor is plotted.

CHAPTER 3. WIND POWER UNIT 65

Figure 3.29: Results when testing the more gently tuned Speed Controller used to
run a motor. In the top subplot the rotational speed and its reference
are plotted, in the middle subplot the actuated torque from the motor
is plotted and in the bottom subplot the power flow directed into the
motor is plotted.

3.6.1.2 Used to Run a Generator

The test bench used for this test can be seen in figure 3.30. In this case we have
assumed that an optimal torque source is acting as the power source on the
rotor. The Speed Controller is using the inverter to apply a negative torque
on the shaft in order control the rotational speed of the rotor. By doing this
power is generated to the DC-grid, which consists of a resistive load. In this
test the Speed Controller was tuned the same way as for the gentle control in
the motor test, 3.6.1.1.

As can be seen in the top graph of figure 3.31 the generator follows its
reference value with a bit of an overshoot and some small oscillation to begin
with but settles and follows the reference. During the ramp the controller
successfully tracks the reference, and when the driving torque is increased the
controller reacts and drives the rotational speed back to its reference. The fact
that the machine is running as a generator is shown when observing the power
flow into the generator, this since the power flow is negative. The benefit of
having a gentler controller is more obvious when running as a generator since
it is very desirable to have a constant power output from the generator.

CHAPTER 3. WIND POWER UNIT 66

Figure 3.30: Test-bench used for testing the Speed Controller when used to run a
generator.

Figure 3.31: Results when testing the Speed Controller used to run a generator.
In the top subplot the rotational speed and its reference are plotted,
in the middle subplot the actuated torque from the motor is plotted
and in the bottom subplot the power flow directed into the motor is
plotted.

3.6.2 Optimizing Algorithms

The optimizing algorithms’ task is solely to optimize the power output from
the power unit, this is done by two different algorithms. The first algorithm
only measures the power that is extracted from the wind and converted to
electrical power whilst the other algorithm also measures the rotational speed
of the generator. For both case 1 and 2 the wind speed profile was chosen to
start at 8m/s and increase after 200s to 11m/s over 100s.

CHAPTER 3. WIND POWER UNIT 67

3.6.2.1 Case 1 - MPPT Sensorless

This case is designed in order to test the performance of the Sensorless MPPT
algorithm, see section 3.3.2. The Sensorless MPPT’s task is to maximize the
power output from the wind power unit by maximizing the Cp-curve, see sec-
tion 2.2, without using any other measurements then the power measurements.

In figure 3.32 the result from the simulation is presented. As can be seen
the Sensorless MPPT successfully finds the optimal operation point and keeps
the unit there during most of the simulation. However it takes some time for
the algorithm to find the optimal operation point, as well as recover after a
wind gust. The maximum power output plotted together with the power out-
put is not in any way communicated to the algorithm but is only calculated
by the turbine control in order to visualize the maximum output. The algo-
rithm is quite sensitive to changes in wind speed, such as gusts, which can
be observed after about 100s. When a gust occurs the power measurement is
largely affected which forces the algorithm to wrongfully adjust the rotational
speed reference.

Since the algorithm only measures the power output and assumes the wind
power unit has reached its previous rotational speed reference it requires a
relatively long sampling period6. If the rotational speed reference should not
have been achieved, the assumption might cause the power measurement to
be less than accurate and the algorithm runs a risk of making wrong decision.
In worst case scenario the algorithm gets “lost” and ends up outputting a
completely erroneous value.

6In this simulation the sampling period was chosen to 15s.

CHAPTER 3. WIND POWER UNIT 68

Figure 3.32: Simulation results for case 1, in the first subplot the rotational speed
of the rotor and its reference are plotted, in the second subplot the
power delivered to the DC-grid together with the maximum potential
power output calculated by the Turbine Control are plotted, in the
third subplot the Cp-value is plotted and in the fourth subplot the
wind speed is plotted.

3.6.2.2 Case 2 - MPPT

This case is identical to case 1 with the difference that the component opti-
mizing the power output is the MPPT, see section 3.3.3. The MPPT’s task
is to maximize the power output from the unit by maximizing the Cp-curve.
The difference between this algorithm and the previous one is that this algo-
rithm utilizes both power measurements and measurements of the generator’s
rotational speed.

In figure 3.33 the result from the simulation is presented. When observing
the Cp-value in the diagram it can be seen that the algorithm successfully
controls the wind power unit to its optimal operational point, and maintains
it there during most of the simulation.

When comparing with the results from case 1 it can be seen that the MPPT
requires much less time to recover from changes in wind speed, such as gusts,
than the Sensorless MPPT. In fact the overall disturbances in the Cp-value due
to changes in wind speed is drastically decreased, and the overall performance
of the operation is improved.

By also measuring the rotational speed the sampling period can be reduced
drastically7, and the risk of getting “lost” is removed.

7In this simulation the sampling period was chosen to 2s.

CHAPTER 3. WIND POWER UNIT 69

Figure 3.33: Simulation results for case 2, in the first subplot the rotational speed
of the rotor and its reference are plotted, in the second subplot the
power delivered to the DC-grid together with the maximum potential
power output calculated by the Turbine Control are plotted, in the
third subplot the Cp-value is plotted and in the fourth subplot the
wind speed is plotted.

3.6.3 Turbine Control

The Turbine Control’s task is to manage the wind power unit, deciding when it
should operate and, in combination with the Power Controller, at what speed.
In order to test all operation modes of the control system a number of different
cases have been designed, see section 3.1.

3.6.3.1 Case 3 - To Low for Nominal Power

This test is designed to test how well the Power Controller performs as an
optimizing algorithm. The task in this case is to maximize the power output
from the unit when the wind speed is not high enough to achieve the requested
output power. The unit starts at standstill.

The results from the simulation are shown in figure 3.34. As can be seen
the wind speed starts at 8 m/s and after 200s it increases to 11 m/s over 100s,
which is the same wind profile which was used for testing the optimization
algorithms. When observing the power output from the unit it can be noticed
that the output is zero until the rotational speed reference has been reached,
this since the generator is not applying any negative torque. After this the
power output is approximately 1 kW, and when observing the Cp-value in figure
3.34 it can be seen that the value is very close to its maximum, which for this

CHAPTER 3. WIND POWER UNIT 70

test was ∼ 0.26. When the wind speed is increased the Power Controller reacts
and adjusts the rotational speed of the rotor, after some time the Cp-value
has been returned to its maximum. It takes some time for the algorithm to
recover after the increase in wind speed, however the value is during this time
maintained in the proximity of the maximum. The wind gusts are reflected
both in the output power and the Cp-value. The main reason to why the
effect is so visible in the output power is that the wind power unit which was
simulated is quite small, a larger rotor, with higher inertia, would do a better
job of filtering these “bumps”. The effect of the gusts on the Cp-value is quite
large, however the goal of the optimizing algorithm should not be to maximize
the output power over these gusts, but instead to maximize the power output
during a long period of time. If the algorithm was to try maximizing the output
power of the gusts the control is forced to be very aggressive and “nervous”
which is not desirable.

This case is in fact identical to case 1 and 2. When comparing the result
with case 2 it can be seen that the performance of the two algorithms is quite
similar, which not that surprising considering that the optimization algorithm
is implemented in the power controller is based upon the MPPT.

Figure 3.34: Simulation results for case 3, in the first subplot the rotational speed
of the rotor and its reference are plotted, in the second subplot the
power delivered to the DC-grid together with the power reference
and the maximum potential power output calculated by the Turbine
Control are plotted, in the third subplot the Cp-value is plotted and
in the fourth subplot the wind speed is plotted.

CHAPTER 3. WIND POWER UNIT 71

3.6.3.2 Case 4 - Nominal Power

This test is designed to test the power control part of the Power Controller,
which is to test if the Power Controller can make the wind power unit output
the requested power when there is enough wind to do so. The unit starts at
standstill.

The results from the simulation are shown in figure 3.35. As can be seen
the wind starts at 14 m/s and after 150 seconds the wind speed increases to
18 m/s over 50 seconds and at 400-500 seconds it slowly decreases again to 14
m/s. Just as in case 3, see section 3.6.3.1, the output power from the unit is
zero until that the generator applies a negative torque. The power output from
the rotor is steadily increased until the reference value is reached. After 250
seconds, when the wind speed increases, the power also increases briefly but is
then controlled back to its reference. Also when the wind speed is decreased
slowly the output power is slowly decreased, however the Power Controller
reacts accordingly and the output power is controlled back to its reference
value. During the whole simulation the power is kept, approximately at its
reference value. There are however small deviations from the references which
occurs due to the wind gusts. It can also be noticed that the maximum power
output calculated by the Turbine Control is limited by the nominal power.

In figure 3.36 the torque output from the wind turbine is shown. In the
figure the tower shadowing effect, see section 3.2.2 is clearly visible. It can also
be noticed that when the wind speed decreases at 400-500s the torque output
also is decreased, however the power controller increases the rotational speed
in order to achieve the requested power output.

CHAPTER 3. WIND POWER UNIT 72

Figure 3.35: Simulation results for case 4, in the first subplot the rotational speed
of the rotor and its reference are plotted, in the second subplot the
power delivered to the DC-grid together with the power reference
and the maximum potential power output calculated by the Turbine
Control are plotted, in the third subplot the Cp-value is plotted and
in the fourth subplot finally the wind speed is plotted.

Figure 3.36: Simulation result for case 4, in this plot the torque output from the
wind turbine is plotted in order to show the tower shadow effect.

3.6.3.3 Case 5 - Power Point Tracking

This test is designed in order to further test the power control part of the
Power Controller. In this test the power output from the wind power unit is
supposed to follow the reference value provided. The unit starts at standstill.

The results from the simulation are presented in figure 3.37. The power
reference chosen for this test was 2675W at the start and after 300s the refer-
ence is changed to 2140W. The wind speed is varied between 13 and 18m/s,
after 150s the wind speed is increased from 14 to 18m/s over 50s and after
400s it is decreased from 18 to 13m/s over 100s. The control quickly reaches
the reference value and keeps it there during the simulation. The changes in
wind speed are reflected as a small overshoot when the wind speed increases

CHAPTER 3. WIND POWER UNIT 73

and a small drop when the wind speed decreases. When the change in the
power reference occurs the power output is decreased in a controlled way, by
decreasing the rotational speed of the rotor, to the new reference value. One
observation that can be made when comparing the effects of the wind gusts
in the power delivered from the unit, is that the effect of the gusts is much
smaller when not maximizing the output. The reason for this phenomenon can
be found in the equation for the power absorbed from the wind, see equation
3.1. When maximizing the power output a high Cp-value is obtained, while
in this case a relatively low Cp-value is obtained. Because of this a relatively
lower portion of the wind speed is transformed to rotational energy which in
turn makes the relative wind speed sensibility lower.

Figure 3.37: Simulation results for case 5, in the first subplot the rotational speed
of the rotor and its reference are plotted, in the second subplot the
power delivered to the DC-grid together with the power reference are
plotted, in the third subplot the Cp-value is plotted and in the fourth
subplot the wind speed is plotted.

3.6.3.4 Case 6 - Delta Control

This case has been designed in order to test the delta-control aspect, see section
4.2.1. The unit starts at standstill.

The results from the simulation are presented in figure 3.38. For the sim-
ulation the wind speed varies between 8 and 15m/s in order to test the delta
control both when the wind speed is too low for nominal power and when the
wind speed is sufficient for nominal power. The delta control is achieved by
calculating the potential maximum power output from the unit and set the

CHAPTER 3. WIND POWER UNIT 74

power reference to 20%8 below the current maximum output. In the diagram
it can be seen that the power reference constantly is 20% below the calculated
maximum value. When the wind speed is high enough for allowing operation
at the nominal power the control does a very good job of controlling the out-
put power to 20% below the maximum. When the wind speed is too low for
nominal effect the control has a harder time tracking the power reference. One
of the reasons to this is that the power reference is not changing when the
wind speed is high enough for nominal power, this since the maximum power
is limited by the nominal power. When the rotational speed is too low for
nominal power the maximum power is increased/decreased by the gusts, and
since the wind speed is filtered using an averaging filter the effect of the gusts
in the maximum power is slightly shifted in time, which makes it even harder
for the power control to track the reference.

Figure 3.38: Simulation results for case 6, in the first subplot the rotational speed
of the rotor and its reference are plotted, in the second subplot the
power delivered to the DC-grid together with the power reference are
plotted, in the third subplot the Cp-value is plotted and in the fourth
subplot the wind speed is plotted.

3.6.3.5 Case 7 - Total Case

This case has been designed in order to test as many features of the Power
Controller as possible. To do this the wind speed varies from 0 - 23 m/s during

8In this project it was chosen to set the power reference 20% below the maximum, however
this value is interchangeable and can even be swapped to a control signal from the Plant
Control.

CHAPTER 3. WIND POWER UNIT 75

the simulation, this should cause the power controller to shut down the wind
power unit both for too high and to low wind speeds, it should also optimize
the power output when the wind speed is too low for nominal power and
control the power output when the wind speed is sufficient. More importantly
it should also confirm that the transition between the different control modes
works well. The limits for low and high wind speed were chosen to 6 m/s
respectively 20 m/s.

The simulation has been divided into 7 different zones, depicted in figure
3.39, in zone:

1. The wind speed starts at 0 m/s and increases to 5 m/s. During this
period the rotor’s rotational speed and the power reference are both
zero. This since the wind speed is too low for operation of the unit.

2. In this zone the wind speed is increased from 5 m/s to 10 m/s which
is enough to allow operation of the unit. The power reference is raised
to its nominal value, 3000 W, and the rotor starts to rotate. Since the
wind speed is not enough for nominal power the Power Controller tries
to optimize the unit’s power output, as can be seen in the graph of the
Cp-value in the third subplot of figure 3.39.

3. In this zone the wind increases further and is now high enough to allow
operation at nominal power.

4. In this zone the wind speed increases to 23 m/s, which is more than
the maximum allowed for operation. Hence the power reference is de-
creased to zero and the generator decelerates the rotor speed. When the
rotational speed is low enough the brake is applied and the rotor stops.

5. The wind speed is now reduced to 18 m/s, which is lower than the max-
imum allowed wind speed for operation, and the power reference is in-
creased to its nominal value and the rotor starts to rotate again. Since
the wind speed is high enough for nominal power the Power Controller
controls the power to its nominal value.

6. The wind speed is now reduced to 11 m/s which is too low for nominal
power and the Power Controller tries to optimize the unit’s output power,
which can be seen by looking at the Cp-value in the third subplot of figure
3.39.

7. In this zone the wind speed is decreased to 3 m/s which is well below the
minimum allowed wind speed, this causes the Turbine Control to give
orders to shut down the wind power unit. The power reference is set to
zero and the generator decelerates the rotor. When the rotor’s rotational
speed is low enough the brake is applied.

As can be seen in zone 1, 4 and 7 the Turbine Control successfully makes
the decision to turn off the unit when the wind is either too high or too low
for operation. The transition between the different control modes, which can

CHAPTER 3. WIND POWER UNIT 76

be seen in the transition from zone 2 to 3 and 5 to 6 9, is working correctly. In
the transition from zone 2 and 3 a large power overshoot is present. The main
reason for this is that the increase in wind speed is causing the rotor to rotate
faster, which the Speed Controller is counteracting, however a small error is left
during the increase of the wind speed. This error is larger than the minimum
error in rotational speed allowed for updating the Power Controller’s algorithm.
When observing the Cp-value in zone 7 a large spike can be observed, the
reason for this is that when the rotor decelerates it passes through its optimal
rotational speed, see section 2.2.4.

Figure 3.39: Simulation results for case 7, in the first subplot the rotational speed
and rotational speed reference of the rotor are plotted, in the second
subplot the power out to the DC-grid, the reference value for the
power output and the estimated maximum power output are plotted,
in the third subplot the Cp-value is plotted and in the fourth subplot
the wind speed is plotted.

3.6.4 Losses

As discussed in section 2.3 losses are always present during power transfers and
conversions. In figure 3.40 the power output from the different parts of the
unit is presented. This in order to show the losses modeled into our system.
The powers plotted is kinetic wind energy absorbed by the rotor and converted
to rotational energy, the electrical power delivered from the generator to the

9in zone 2 to 3 the transition between optimization and nominal power can be observed,
and in zone 5 to 6 the transition between nominal power and optimization can be observed.

CHAPTER 3. WIND POWER UNIT 77

inverter and the electrical power delivered from the inverter to the DC-grid.
As expected there exist substantial losses inside the wind power unit. In this
case the transfer loss and generator loss is by far the greater of the two with a
loss of approximately ∼15%, these losses are probably mostly resistive losses
in the generator, see section 2.3.2. The loss from the inverter is approximately
∼5% and overall the losses in the wind power unit sums up to ∼19%.

Figure 3.40: In this plot the losses for the wind power unit are presented. In the
diagram the power outputs from the rotor to the electrical power
output on the DC-grid are plotted.

3.7 Discussion
After some initial issues there were no real problems when implementing our
models. Also the implementation of the control code was done without any
major issues. The biggest problem encountered was that Dymola disregarded
the function calls since they did not alter any states in the models. Overall
the External Static Library implementation proved to be a good way of im-
plementing the controls. The biggest inconvenience with the implementation
was that when an input or output was to be changed the C-code, interface and
Modelica-code needed to be changed.

In the beginning we had some problems to control the generator without
generating large spikes when the rotor was decelerated, and large drops in
the power output when trying to accelerate. This was finally solved by first
trying to use less aggressive parameters for the speed controller, which greatly
improved the results, however not enough to achieve our goals. To further
improve the control a filter was introduced for the speed reference which solved
the problem, which is shown by the current results. Retrospectively it feels
quite obvious that a step-wise constant speed reference will produce the large
power spikes, and drops, observed.

Overall the control algorithms designed in this chapter performed well,
however there is always room for improvement. For example the sensor-less-
MPPT could maybe be improved by filtering the power measurement in a
smart way. One filter-strategy that comes into mind is a median filter which
have the possibility of “removing” a power measurement that probably is caused
by a gust.

In our implementation of the delta-control the delta value was chosen to
20%, retrospectively it probably would have been better to have used a variable
delta value.

CHAPTER 3. WIND POWER UNIT 78

Since we did not have any access to the real wind power unit the parameters
used for the generator, shaft and inverter was not based on real equipment.
Instead parameters from laboratory equipment were used. The effect of this is
that the loss estimation is not accurate, however the overall operation should
not be affected in a significant way. For example the optimization algorithms
are strongly dependent on the shape of the Cp-curve, and even though the
absolute values of the curve is not accurate the general shape is, which in turn
allows testing of the control algorithms.

Chapter 4

Grid Connection

The grid integration part of a wind power plant is an important issue, the
grid transports the electrical energy produced by the wind power plant to the
consumers. In order to connect the wind plant to the grid, the power plant has
to meet the grid codes set up by the grid owner, to ensure the quality of the
produced power and the safety of the grid. Multiple paths between the power
sources and the loads increases the reliability in the system since a failure of
one line will not cause a failure of the whole system. However if a failure of
the system occurs a part of the electrical network might be disconnected from
the grid, in this case a power plant can be ordered to single handedly power
up a part of the grid on its own, in a so called Island operation.

In this chapter the transportation of the power from the DC-grid to the
consumers will be modeled and controlled. The model of the grid and the
control system controlling the grid connection is described. The grid is modeled
in two different variants - Strong and Island. Apart form this the grid codes for
a wind power plant in Denmark will be listed and compared with grid codes
from Sweden.

79

CHAPTER 4. GRID CONNECTION 80

Figure 4.1: Schematic overview over the grid connection.
Note: In the figure an impression that an external control is controlling the power output
to the grid, due to the Desired power and Consumed power signals. This is not the case,
which will later be explained.

4.1 Objectives
One of the objectives in this project is to model the grid connection, including
the grid, the grid connection is defined according to figure 1.1, as one inverter
connected directly to the point of connection. A more detailed figure with a
proposed control structure is presented in figure 4.1. However to accurately
model and control the grid connection the grid also needs to be modeled, as
visualized in figure 1.1 the grid will be modeled as a transformer connected via
a grid to the consumers. Two different grid models will be done, one modeling
a strong grid, used for normal operation and one modeling the case of Island
operation. The objective in this chapter is to model the grid connection, power
transportation and control structure. The control structure designed should
be able to achieve a number of different control tasks listed below.

• Deliver a specific amount of active power from the DC-grid.

• Control the DC-level on the DC-grid by delivering active power to the
grid.

• Simultaneously control the DC-level on the DC-grid and the voltage level
on the AC-side by delivering both active and reactive power to the grid.

• Automatically decide, depending on the DC-level, when delivering power
to the grid is desired.

• Control both the voltage level and frequency on the AC-side, which is
support island operation.

CHAPTER 4. GRID CONNECTION 81

The grid connection which is to be controlled is configured as a DC-grid
connected through an inverter to the point of connection, as proposed in figure
4.1. In the figure a potential control structure is also proposed.

As a part of the project the control designed for the grid connection will
be evaluated and compared with grid codes, mainly from Denmark.

4.1.1 Test Cases

In order to test the models and different control modes that will be developed
in this chapter a number of different test cases should be evaluated. The test
cases are constructed in way so that they will test different realistic control
scenarios and/or a specific control algorithm. The results from the test cases
should be evaluated and compared with appropriate grid codes. Some control
modes, such as the DC-control, requires the whole system to be operational,
these control modes will therefore instead be tested in chapter 5.

1. Test to deliver a specific amount of active power from the DC-grid

2. Test to deliver a specific amount of active power while simultaneously
controlling the voltage level on the AC-side.

3. Test to simultaneously control the AC-voltage level and frequency, island
operation.

4. Test a “total case” where the DC-level is varying and a varying amount
of active power is delivered to the grid with and without control of the
voltage level of the AC-side.

4.2 Grid Codes
In order to connect a power plant to the grid the power produced by the plant
must be of a certain quality and fulfill a number of rules, grid codes. The
purpose of the grid codes is to maintain a secure operation of the grid and
minimize risks of damages and disturbances. There are a number of different
grid codes in Europe, each country has its own, but the general grid codes
for each country are more or less the same. However there are different grid
codes for different sort of power plants. For example in Sweden there are no
requirements for reactive power compensation for a wind power plant. This
is because the total wind power production only makes up 2.4% of the total
power production in Sweden [3]. The grid codes in Sweden for wind power will
in the near future very likely change concurrently with increasing extension of
wind power. In Denmark on the other hand the grid codes for wind power are
stricter. This because a large investment in the wind power production already
has been made. In the following sections follows a selection of grid codes for a
wind power plant in Denmark and a short comparison with the grid codes in
Sweden, the reason to why the grid codes of Denmark are explored to a larger
extent is that they are more developed and thus also more interesting.

CHAPTER 4. GRID CONNECTION 82

4.2.1 Terminology and Definitions

In [19] and in [20], the grid codes for Denmark respectively Sweden are de-
scribed. The grid codes in Denmark are governed by Energinet.dk, the Swedish
counterpart is Svenska Kraftnät. The following definitions are taken from [19].

The Electricity Supply Undertaking

The electricity supply undertaking is the enterprise to whose grid a wind power
plant is connected electrically. For voltage levels up to 100 kV it is the local
distribution network operator, and for voltage levels greater than 100 kV it is
the regional transmission operator.

Wind Power plant

A wind power plant is one or several wind turbine generator systems with a
total rated power greater than 25 kW which has been connected to the public
electricity supply network.

Small Wind Turbine (SWT)

A small wind turbine is one or several wind turbine generator systems with
a total rated power of up to 25 kW which has been connected to the public
electricity supply network.

Point of Connection

The point of connection (POC) is the point in the public electricity supply
network where the wind power plant is or can be connected.

Point of common coupling

The point of common coupling (PCC) is the point in the public electricity
supply network where consumers are or can be connected. Electrically the
point of common coupling and the point of connection may coincide. The
point of common coupling is always placed closest to the public electricity
supply network.

Frequency Control

The control of active power with the goal of stabilizing the grid frequency at
its reference is called frequency control.

Absolute Power Control

An absolute production constraint is used to constrain the active power from
a wind power plant to a predefined power limit in the point of connection. An
absolute production constraint is typically used to protect the public electricity
supply network against overloading. See figure 4.2.

CHAPTER 4. GRID CONNECTION 83

Power Gradient Control

A power gradient constraint is a device controlling active power with a fixed
increase/decrease (gradient) of the active power. See figure 4.2.

Delta Control

A delta production constraint is used to constrain the active power from a
wind power plant to a required constant value in proportion to the possible
active power. A delta production constraint is typically used to establish a
control reserve for control purposes in connection with frequency control. See
figure 4.2.

Figure 4.2: Different control functions, from left: absolute power control, power
gradient control and delta control.

Q-control

Q control is a control function controlling the reactive power independently of
the active power in the point of connection. See figure 4.3.

Power factor control

Power factor control is a control function controlling the reactive power pro-
portional to the active power in the point of connection. The gradient of the
line is known as the power factor. See figure 4.3.

Figure 4.3: Different control functions, from left: power factor control and Q-
control. [19]

CHAPTER 4. GRID CONNECTION 84

Different Plant Size

In both Denmark and Sweden there are different codes depending of the size
of the wind power plant. In Denmark the definitions are described below [19]:

• Wind power plants with a power output range of 11 kW to 25 kW (typi-
cally called “small wind turbines”) - requirements and power limits have
been harmonized with future/existing European and other international
standards.

• Wind power plants with a power output range of 25 kW to 1.5 MW -
requirements and power limits are defined in accordance with Danish
legislation, which requires that local development plans is prepared.

• Wind power plants with a power output range of 1.5 MW to 25 MW -
requirements and power limits have been harmonized with other technical
regulations for electricity-generating plants.

• Wind power plants with a power output greater than 25 MW - require-
ments and power limits have been harmonized with other technical reg-
ulations for electricity-generating plants.

In Sweden the classification is narrower, for example the smallest size is
2.5MW. The definitions for the different plant size in Sweden are [20]:

• small plants: wind power plant with 2.5MW to 25MW installed active
power.

• medium plants: wind power plant with 25MW to 100MW installed active
power.

• large plants: wind power plant with over 100MW installed active power.

4.2.2 Tolerance of frequency and voltage deviations

In Denmark the requirements on tolerance of frequency deviations are:
“A wind power plant must be able to withstand frequency and voltage devi-

ations in the point of connection under normal and abnormal operating condi-
tions while reducing the active power as little as possible.”

In figure 4.4 the active power production requirements for a wind power
plant with an output 11kW - 25kW and for wind power plant with an output
of 25kW - 1.5MW are presented.

CHAPTER 4. GRID CONNECTION 85

Figure 4.4: Active power production requirements at frequency/voltage variations
for a wind power plant with a power output 11 kW to 25 kW (left) and
25 kW to 1.5MW (Right) [19]

As can be seen to the left in figure 4.4, small wind turbines are exempt
from power production if the frequency is lower than 49.5 Hz or higher than
50.20Hz. Larger wind power plant should on the other hand be able to lower
their power production according to the right subplot in figure 4.4.

When it comes to voltage deviation:
“In the point of connection a wind power plant must be able to withstand

a voltage drops down to 20 % of the voltage in POC over a period of 0.5 s
without disconnecting and after 1.5 s voltage in POC should be up to 90 %.”
[19]

This is illustrated in figure 4.5.

Figure 4.5: Requirements for tolerance of voltage drops for a wind power plant
with greater output than 1.5MW [19]

where the different areas are:

• Area A: The wind power plant must stay connected to the network.

CHAPTER 4. GRID CONNECTION 86

• Area B: The wind power plant must stay connected to the network. The
wind power plant must provide maximum voltage support by supplying
reactive power to the network

• Area C: Disconnecting is allowed.

comparison

Wind power plants in Sweden should also be able to keep and maintain active
power production during frequency variations, however the condition is lighter
and easier to achieve.

When it comes to voltage deviations in the point of connection, the require-
ments for different plant size can be seen in figure 4.6. Large plants should
be able to withstand voltage drops down to 0% during 2.5s, follow by a leap
to 25% and after 0.75s the voltage level should be up to 90% without discon-
necting, which is illustrated in the top subplot in figure 4.6. The lower subplot
in figure 4.6 illustrates the requirements for medium and small plants which
should be able to withstand voltage drops down to 25% and after 0.25 s, the
voltage level should then be over 90% without disconnecting.

Figure 4.6: Requirements voltage drops in Sweden, the top subplot shows the re-
quirements for large plants and the lower plot the requirements for
medium and small plants[20]

CHAPTER 4. GRID CONNECTION 87

4.2.3 Active Power Control

A wind power plant in Denmark should be able to control the produced amount
of active power in the point of connection. The control functions listed below
are requirements for wind power plants with an output larger than 1.5MW.

• Absolute Power Control - “If the setpoint for the absolute production
constraint is to be changed, such change must be commenced within two
seconds and completed not later than 30 seconds after receipt of an order
to change the setpoint. The accuracy of the control performed and of
the setpoint must not deviate by more than ±2% of the setpoint value
or by ±0.5% of the rated power, depending on which yields the highest
tolerance.” [19]

• Power Gradient Control - “If a setpoint for the power gradient con-
straint is to be changed, such change must be commenced within two
seconds and completed not later than 30 seconds after receipt of an order
to change the setpoint. The accuracy of the control performed and of
the setpoint must not deviate by more than ±2% of the setpoint value
or by ±0.5% of the rated power, depending on which yields the highest
tolerance.” [19]

This requirement is only for wind power plants with an output larger than
25MW

• Delta control - “If the setpoint for a delta production constraint is to
be changed, such change must be commenced within two seconds and
completed not later than 30 seconds after receipt of an order to change
the setpoint. The accuracy of the control performed and of the setpoint
must not deviate by more than ±2% of the setpoint value or by ±0.5% of
the rated power, depending on which yields the highest tolerance.” [19]

Wind power plants should be able to automatically shutdown if the wind
speed is too high. In order to not disconnect too much power at the same time
and prevent instability in the electricity network, wind power plants should be
equipped with an automatic downward regulation. The downward regulation
band must be agreed by the enterprise who owns the grid where the wind
power plant is connected to.

Comparison

In Sweden the total power from a wind power plant should only be able to
control active power to a fixed reference value. The reference value should be
able to be changed during runtime. The total production in the plant should
be able to be reduced to 20% of the maximum produced power in 5 seconds.

When a wind power plant is disconnected because of to high wind speed, it
is not allowed to disconnect more than 30MW/min, and more than 30MW/min
should not be connected when the wind plant is reconnected to the grid.

CHAPTER 4. GRID CONNECTION 88

4.2.4 Reactive Power and Voltage Control

A wind power plant in Denmark should be equipped with control functions that
are capable of controlling the reactive power and the voltage in the point of
connection. The control functions listed below are requirements which should
be implemented in wind power plants larger than 1.5MW:

• Q-control - “If the Q control setpoint is to be changed, such change
must be commenced within two seconds and completed not later than 30
seconds after receipt of an order to change the setpoint. The accuracy of
the control performed and of the setpoint must not deviate by more than
± 2% of the setpoint value or by ± 0.5% of the rated power, depending
on which yields the highest tolerance.” [19]

• Power factor Control - “If the power factor setpoint is to be changed,
such change must be commenced within two seconds and completed not
later than 30 seconds after receipt of an order to change the setpoint. The
accuracy of the control performed and of the setpoint must not deviate by
more than ± 2 % of the setpoint value or by ± 0.5% of the rated power,
depending on which yields the highest tolerance.”[19]

In terms of voltage control, a wind power plant should be equipped with
voltage control only if there is a specific agreement with the electric network
company and if the power output is greater than 25MW. The condition for
the voltage control is:

“If the voltage setpoint is changed, the change must be commenced within
two seconds and completed not later than 10 seconds after. The accuracy of the
control performed and of the setpoint must not deviate by more than ± 2% of
the setpoint value or by ± 0.5% of the rated power, depending on which yields
the highest tolerance.” [19]

Comparison

Svenska Kraftnät has no requirements of reactive compensation for wind power
plants. However wind power plants should be designed so that the reactive
power should be controlled to zero. In case of controlling the voltage is stated
that large, and medium wind power plants should be equipped with automatic
voltage control. The voltage should be controllable to ± 5% of the plants
nominal voltage level. Small wind plants, except plants with asynchronous
generators connected directly to the grid, should have automatic voltage con-
trol to be able to contribute to stabilize the voltage if any disturbances occur.

4.2.5 Frequency Control

A wind power plant must not perform frequency control without having entered
into a specific agreement with the electricity supply undertaking. If there is an
agreement and if the wind power plant output is greater than 25MW it must
be possible to set the frequency to any value in range of 50.00Hz ± 3.00Hz
with an accuracy of 10 mHz.

CHAPTER 4. GRID CONNECTION 89

Comparison

In Sweden there are no requirements for wind power plants to perform fre-
quency control.

4.3 Modeling
The grid connection will be modeled in two different ways, strong grid and
island grid. The strong grid is supposed to be used during normal operation,
the wind power plant will be connected to a grid where the voltage level and
the frequency are constant. Island operation will occur if there is a fault in the
grid network and the wind power plant is cut off from the rest of the grid, i.e.
the wind power plant is the only plant that generates power to the load which
will lead to that the voltage level and the frequency is not constant. Both of
the grid models will however have some components in common and a base
model can be divided into three parts:

• A line from the inverter to the point of connection

• A transformer

• A transmission line

The line between the inverter and point of connection is modeled as an RX-
line, see next section. After the point of connection a transformer is placed
in order to transform the voltage to the voltage level of the grid, this since
the produced voltage from the generating plant is dependent on its design and
is not necessary the same as the grid voltage level. The transformer is then
connected to the transmission line, modeled as an RX-line, which is connected
to the point of common coupling. The thing that differ the two the lines is the
length, the transmission line is significantly longer.

4.3.1 Strong Grid

The strong grid model is supposed to model the grid during normal conditions.
During normal conditions the grid can be considered to have a constant fre-
quency and voltage level, which is not affected by the output from one single
plant. For this reason the grid can be modeled as a slack-bus, that is an op-
timal voltage source with constant amplitude and frequency, connected to the
transmission line.

4.3.2 Islanding Grid

The Islanding grid model is supposed to model the system during island op-
eration. In this scenario the wind power plant is the only power source in the
system. the grid can the modeled as a load, for instant as a pure resistive
load connected to the transmission line and ground connection. In order to
make the load vary over time a small variable voltage source can be connected

CHAPTER 4. GRID CONNECTION 90

between the resistance and ground in order to change the power consumption
of the resistance.

4.3.3 RX-line

Figure 4.7: Icon for Spot’s RX-line

Both the line to the point of connection and the line to the point of common
coupling are modeled using the component RX-line from the Spot library. The
RX-line is a simple model of a line, the impedance, Z, is described by equation
4.1

Z = R + jX (4.1)

where R is the resistance and X is the reactance of the line. In Dymola the user
can set the resistance and the reactance per kilometer as well as the length of
the line.

4.3.4 Transformer

Figure 4.8: Icon for Spot’s transformer

Spot has a number of complete models of transformers in different advanced
levels. A transformer consists of two windings, one primary and one secondary.
By using a different number of turns on the primary and secondary winding
a voltage increase or decrease can be achieved. The transformer used in this
project was a model which assumes ideal magnetic coupling. The model does
however implement resistances and stray inductances in the windings.

CHAPTER 4. GRID CONNECTION 91

4.4 Control Design

Figure 4.9: Overview of the control structure for the grid

To effectively and safely transfer power, produced by the wind power plant,
to the point of connection a grid side controller was developed. The overall
control scheme for the grid side can be seen in figure 4.9. The tasks of the grid
side controller are listed below

• Be able to control the DC-level of the DC-link

• Be able to control the AC-level

• Be able to do reactive power compensation

• Current control, needed to control the grid side inverter

The grid current and grid voltage are measurements taken from the point of
connection.

4.4.1 Grid Side Controller

An overview of the grid side can be seen in figure 4.10, where R and L are
resistances and inductances of the line to the point of the connection, ea,b,c is
the grid voltage of each phase in the point of connection, vswta,b,c is the voltage of
each phase out from the switched inverter. The voltage equation for all three
phases can be written as: ea

eb
ec

 = R

 ia
ib
ic

+ L
di

dt

 ia
ib
ic

+

 vswta

vswtb

vswtc

 (4.2)

If the grid voltage is assumed to be symmetrical and balanced the zero com-
ponent can be neglected when equation 4.2 is transformed into the rotating
dq-plane, using the transformation presented in appendix A.1. The rotating
plane rotates with the velocity wel, which gives a dynamic model of the grid

CHAPTER 4. GRID CONNECTION 92

Figure 4.10: Overview of the grid side model in the abc-reference frame

connection in the dq-plane described by 4.3.

ud = Rid + L
did
dt
− welLiq + uswtd

uq = Riq + L
diq
dt

+ welLid + uswtq

(4.3)

whereR and L are the grid resistance and inductance, uswtd and uswtq are inverter
voltages components. The active and reactive power of the grid can be written
as:

P = ud · id + uq · iq (4.4)

Q = uq + id − ud · iq (4.5)

The grid side controller is vector controlled in the grid voltage reference
frame according to equation 4.3. The grid side controller consists of a cascaded
control structure, with an outer voltage loop and an inner current loop. The
grid side controller is designed to be able to run in and switch between multiple
modes, the different control modes are listed below.

• INACTVE - Inactive mode, this mode is active if the DC-voltage is to
low or if the wind power plant should be disconnected from the grid.

• DCCONTROL - DC-level control mode, the grid side controller is or-
dered to control voltage level of the DC-link.

• ISLANDING - The wind power plant is not connected to a strong grid.
The grid side controller is ordered to control the phase and amplitude of
the AC-voltage. The wind power plant is controlling the DC-level at the
DC-link.

• RCTVCOMP - Reactive power compensation mode, this mode is active
at the same time as DCCONTROL, which results in that the grid side
controller is controlling both the DC-level and AC-level simultaneously.

CHAPTER 4. GRID CONNECTION 93

The different control modes uses the same control structure, two PI control
loops in cascade, which can be seen in figure 4.11 to 4.13

• A slower outer voltage control loop.

• A faster inner current control loop, see section 4.4.1.4.

The different control modes are presented in the next sections.

4.4.1.1 DC-Level Controller

The aim of the DCCONTROL control mode is to keep the DC-link capacitor
voltage steady at a reference level. The DC-level changes relative the balance
between the power generated by the wind power units and the active power
delivered to the grid. The grid side controller should be able to achieve the
DC reference value regardless of the magnitude and direction of the power
produced by the plant. Unless the reactive power compensation is active the
grid side controller should only deliver active power to the grid, i.e the reactive
power should be controlled to zero, according to grid codes.

Figure 4.11: Block diagram over the control structure in DC-level mode

The outer control loop is used to control the DC-link voltage level to its
reference value U ref

DC . The outer control loop generates reference values for
the direct current irefd . This will in turn make sure that the active power is
transfered from the inverter out to the grid. If the inverter is not ordered to
do reactive compensation, the reactive power will be controlled to zero.

CHAPTER 4. GRID CONNECTION 94

4.4.1.2 Islanding

In this mode the grid side controller’s task is to keep AC-level at its reference
value. The control of the voltage of the DC-link is controlled by the wind power
units. The overall control structure can be seen in figure 4.12. The reference
values for the direct current and the quadrant current, irefq and irefd for the
inner current controller, is achieved from the outputs of the PI-controllers in
the outer loop.

Figure 4.12: Block diagram over the control structure in island mode

4.4.1.3 Reactive Power Compensation

Instead of just controlling the reactive power exchange of the grid to zero,
reactive power compensation in the point of connection can be done. The
overall control structure can be seen in figure 4.13. The reactive power refer-
ence, Qref , is obtained by controlling direct voltage, ud to its reference value.
The difference between Qref and the actual reactive power, Q, is the input
for the next PI-controller, which generates the unscaled reference value for the
quadrant current, irefq . The actual irefq is scaled with 2

(3·ud)
. The rest of the

control is performed in the same way as in DC-control, see section 4.4.1.1

CHAPTER 4. GRID CONNECTION 95

Figure 4.13: Block diagram over the control structure when reactive power com-
pensation is active

4.4.1.4 Current Controller

The current-controller consists of two PI-controls. One controlling the direct
current and one controlling the quadrature current. The current references
are received from the outer loops. The currents are controlled by outputting
a reference voltage to the transistor controls, modulator, which generates the
PWM-signal used for controlling the transistors.

4.5 Implementation

4.5.1 Modelica

The model of the grid is constructed by using components from spot 3.2.4.1.
The grid model was implemented in two ways according to 4.3. The two
implementations have the following components in common:

• A line from the inverter to the point of connection

• A transformer

• A transmission line, from the transformer to point of common coupling

Both the line to the point of connection and the transmission line are imple-
mented using the spot-component RX-line. What differs the two lines is the
length, the transmission line is significantly longer. The transformer trans-
forms the produced voltage of the wind power plant to the grid voltage.

CHAPTER 4. GRID CONNECTION 96

4.5.1.1 Strong Grid

In this case the wind power plant is connected to a strong grid where the voltage
amplitude and the phase are constant. This is implemented by connecting the
grid line to a slack bus, which is a component with constant voltage amplitude
and frequency. The implementation in Dymola can be seen in figure 4.14. The
logic and the switch to the left in figure 4.14 is due to the fact that the average
inverter in the Spot library is modeled as a voltage source. The effect of this
is that when the inverter should be inactive, i.e. disconnected from the grid,
it is instead acting as a ground connection. The inverter will be active when
the DC-level of the DC-link is sufficient and close the switch.

Figure 4.14: Overview of the strong grid model in Modelica, with the icon to the
left and the implementation to the right

4.5.1.2 Island Operation

In Island operation the wind power plant is the only power plant that supplies
the load with power. The implementation in Dymola can be seen in figure
4.15. The transmission line is directly connected to the load. The load will
consume both active and reactive power and be time varying. The amplitude
and frequency of the load is controlled by changing the inputs to the load before
the simulation. As can be seen in the figure, after specific time a capacitance
in serial with a resistance is connected in order to modify the load.

Figure 4.15: Overview of the islanding model in Modelica, with icon to the left
and the implementation to the right

4.5.2 C/C++

The grid side controller is implemented in C/C++ and integrated with Dymola
in the same way as the generator side controller described in section 3.5.2.1.

CHAPTER 4. GRID CONNECTION 97

The grid side controller is completely implemented in the dq-reference plane.

4.5.3 Control

The class structure of the C++-implementation for the control system at the
grid side has been divided into three parts:

• GridSideControllerOuter

• GridVoltageController

• GridCurrentController

The different control parts are described below.

4.5.3.1 GridSideControllerOuter

Figure 4.16: class structure of control system at the grid side

The first part of the grid side controller is called “GridSideControllerOuter”.
The full code is presented in appendix B.9. As can be seen in figure 4.16, the
“GridSideControllerOuter”-class uses four classes, the “GridVoltageController”-
class, the “GridCurrentController”-class, the “PI”-class and the “Meanfilter”-
class. When a simulation starts the GridSideControllerOuter initialize the
voltage controller and the current controller. The class has basically two as-
signments. The first assignment is to perform the overall control of the grid
side. This includes handling the communication link between the grid side
and the Plant Control and to monitor and provide the voltage controller and
the current controller with measurements and control modes during operation.
In order to solve the problem that the different control loop does not have
the same sampling time, two counters was implemented. The first counter is
used to keep track when it’s time to update the slower outer voltage loop and
calculate the mean value of the active power and send it back to the Plant
Control. The second counter is used for reactive power compensation, see the

CHAPTER 4. GRID CONNECTION 98

second assignment below. The class also mediate control modes to the voltage
controller and the current-controller when it is time to switch between the dif-
ferent control modes described in 4.4.1. When there is a control mode switch
to either DCLEVEL or ISLAND, the class gives order to the current-controller
to update the control parameters, this since control parameters for the current
controller in DCLEVEL are more aggressive and unstable in ISLAND mode.
During each update-cycle the class also have the possibility to calculate the
mean value of the active power and send it back to the Plant Control.

The second assignment is to calculate the reference value for the reactive
power, Qref , this is only done if the control mode is the RCTVMODE. If
reactive compensation is ordered the control for the quadrature voltage and
current goes through three PI-controllers, see figure 4.13.

4.5.3.2 GridVoltageController

Figure 4.17: class structure of the voltage controller of the grid side

The second part of the grid side is the voltage controller called “GridVolt-
ageController”. The full C-code of the voltage controller can be seen in ap-
pendix B.10. As can be seen in figure 4.17, the voltage controller is using the
“GridCurrentController”-class, PI-class and the PID-class. The voltage con-
troller is using two PI-controllers, to control both the direct and quadrature
voltage. The PID-controller is used for controlling the DC-level. The volt-
age controller is initialized with parameters for the PI-controllers, the PID-
controller and two limits, the lowest allowed DC-voltage before the inverter
should stop delivering power and what voltage level the DC-link capacitor
must have in order to start delivering power out to the grid. The task for the
voltage controller is to generate current references to the current controller.

When updated the update()-function is provided with a control mode, the
actual DC-voltage, the DC-voltage reference, the grid voltages, the grid volt-
ages references, the grid currents and a power reference of how much power the
inverter should deliver. Note that the power reference is only used when the
Plant Control has ordered the wind power plant to deliver a specific amount
of power. The voltage controller is implemented using an internal state and
the control mode sent by the Plant Control. In every update cycle the voltage

CHAPTER 4. GRID CONNECTION 99

controller always check if the control mode differs from the internal state. If
there is a difference the voltage controller first checks if there is enough DC-
voltage on the DC-link, if so the internal state will transition to the control
mode and the integrator part of the involved controllers are updated in order
to achieve a bumpless control-switch.

The voltage controller uses “GridCurrentController” to get access to the
present direct voltage reference. This is needed in order to scale the quadrature
current reference when the control mode is operating in the RCTVMODE.

4.5.3.3 GridCurrentController

Figure 4.18: class structure of the current controller of the grid side

The current controller of the grid side was implemented into one class called
the “GridCurrentController”. The full C-code can be seen in appendix B.11.
As can be seen in figure 4.18 the current controller is using two classes, the “PI”-
class and the “PiParam”-class. The current controller uses two PI-controllers
one for the direct and one for the quadrature current. The current controller
is initialized with parameters for the two PI-controllers and reference values
for the voltage of the grid. When updated the update()-function receives the
current measurements, current references and what control mode the grid side
controller is currently working in. The procedure is dependent of the control
mode, if the control mode is INACTIVE the current controller will set the
integral-part to zero and return zero in both d- and q-voltage reference. If the
control mode differs from INACTIVE the PI-controllers will be updated with
the present error in the currents and the output will be the output from the PI-
controllers added together with reference voltage in the d- and q-component.
The class has two functions setDcLev() and setIsland(), these functions are
used to change the parameters for the PI-controllers when the control mode is
changed to DCLEVEL respectively ISLAND.

4.6 Simulations and Results
In order to test how well our different control algorithms perform a couple
of test cases was simulated, see section 4.1.1. The different test cases were
designed in order to either test different aspects of the control or how well the
controllers cope with a specific task. For all cases an ideal DC-source was used.

CHAPTER 4. GRID CONNECTION 100

4.6.1 Grid Side Controller

4.6.1.1 Case 1 - Deliver Specific Amount of Active Power

This test was designed in order to test how well the grid side controller can
deliver a specific amount of active power to the point of connection. For this
test the DC-level was kept at 1000V. The power reference for this test was
chosen to be a sinusoidal with a frequency of 0.01Hz, amplitude of 1000W and
offset of 4000W.

The results from the simulation are presented in figure 4.19. Since the
DC-source is ideal the DC-level is unaffected by the power extraction. As can
be seen in the diagram the controller increases the power output until the
reference is reached. When the power reference is reached the controller tries
to track the reference value. The controller requires a couple of seconds to
ramp up the power output before the reference is reached. The controller’s
task is in reality to control the DC-voltage level to its reference, which is set
to 900V, and is limited by the power output reference. This means that the
power reference control in reality is a limited power output. The reason to
why the control is done this way is that even though a specific power output is
desired it is desirable to control the DC-voltage with the inverter and not with
the wind power unit. When the whole system is interconnected the requested
power will be produced by the wind power units, and any overshoots in the
power production, due to for example gusts, will be filtered.

The controller has no problems to track the requested power output. In
order to deliver the active power the direct voltage is increased above its normal
value of 230V to 2̃50V, how to deliver the same active power without increasing
the voltage level is shown in case 2.

CHAPTER 4. GRID CONNECTION 101

Figure 4.19: Simulation results for case 1, in the first subplot the DC-Voltage level
is plotted, in the second subplot the active power reference is plot-
ted together with the active and reactive power output, in the third
subplot the direct voltage is plotted and in the fourth subplot the
quadrature voltage is plotted.

4.6.1.2 Case 2 - Deliver Active Power with Reactive Power Com-
pensation

This test was designed in order to test the reactive power compensation con-
trol. This test is identical to case 1 with the difference that reactive power
compensation is performed and the simulation is extended 100s during which
the power output reference is constant. During the whole simulation the DC-
voltage level is 1000V.

The results from the simulation are presented in figure 4.20. As can be
seen in the diagram the active power reference and output is identical to that
of case 1 during the first 200s. At 200s the power reference is changed to
be constant at 8000W, the controller needs some time to perform the power
output increase that is need to achieve the reference.

The goal of the reactive power compensation is to keep the direct voltage
at a constant 230V. When the load is constantly varying the control is not
quite able to achieve the goal of keeping the direct voltage at 230V. However
when comparing the direct voltage level with the voltage results in case 1 in
figure 4.19 a large improvement has been made. Instead of a direct voltage
level around 250V the direct voltage varies between 228-232V which is below
1% and also well below the grid codes1, see section 4.2.4.

1The limits for the voltage deviation during the reactive power control is in Denmark is
±2% and in Sweden ±5%

CHAPTER 4. GRID CONNECTION 102

Figure 4.20: Simulation results for case 2, in the first subplot the DC-Voltage level
is plotted, in the second subplot the active and reactive power refer-
ence are plotted together with the active and reactive power output,
in the third subplot the direct voltage is plotted and in the fourth
subplot the quadrature voltage is plotted.

4.6.1.3 Case 3 - Test Island Operation

This test was designed in order to test the island operation mode. This test
was divided into three parts. The first part tests the island operation with a
constant load, the second part tests the island operation with a varying load
and the third part tests the island operation with a constant load using a
switched inverter.

Constant Load

This test case was designed in order to test the basics of the island operation.
The results from the simulation are presented in figure 4.21. The constant
load is consisting of a simple resistance directly connected to the ground, this
is generating a load of a constant 2000W. The grid controller successfully
manages to power up the grid and after an initial transient it does not have
any problems to maintain the direct and quadrature voltages. One possible
reason for the small initial transient is explained in the last part of this case.

CHAPTER 4. GRID CONNECTION 103

Figure 4.21: Simulation result for the first test of case 3, in the top subplot the
active and reactive power are plotted, in the middle subplot the direct
voltage is plotted and in the bottom subplot the quadrature voltage
is plotted.

Varying Load

This test case was designed in order to test the performance of the Island
operation by applying a varying load, see section 4.5.1.2. The results from
the simulation are presented in figure 4.22. The load was chosen to vary as
a sinusoidal with a frequency of 0.1Hz, an amplitude of approximately 600W
and an offset of approximately 1600W. Also in this case the grid controller
successfully powers up the grid, and after some initial transients the direct
and quadrature voltage level is kept around their reference values. The power
variations are reflected in the direct and quadrature voltages as a very small
oscillation around their reference. The oscillation is, however, well below the
limits set by the grid codes. One possible reason for the initial transient is
explained in the last part of this case.

CHAPTER 4. GRID CONNECTION 104

Figure 4.22: Simulation result for the second test of case 3, in the top subplot the
active and reactive power are plotted, in the middle subplot the direct
voltage is plotted and in the bottom subplot the quadrature voltage
is plotted.

Constant Load Using a Switched Inverter

This test case was designed in order to assure that the average model is not
deviating largely from the switched model. The general results from the sim-
ulation are shown in figure 4.23, the calculated direct and quadrature voltage
are shown in figure 4.24 and a close-up of the switched voltage output from
the inverter together with the filtered voltage level. In this case the model is
simulated using a switched inverter model powering the same grid as in the
first test of this case for one second. As can be seen in figure 4.24 the con-
trol does a good job in controlling the direct and quadrature voltage to 230V
respectively 0V despite the disturbances introduced by the switching.

As can be seen in figure 4.23 and 4.24 the oscillations both in the active
power and voltage levels are no longer present. The reason for this is most
likely cause of the fact that in this simulation both the active power and voltage
levels are not changed instantly.

CHAPTER 4. GRID CONNECTION 105

Figure 4.23: Simulation result for the third test of case 3, in the top subplot the
active and reactive power is plotted, in the second subplot the filtered
voltage level in phase a is plotted, in the third subplot the filtered
voltage level in phase b is plotted, in the fourth subplot the filtered
voltage level in phase c is plotted.

Figure 4.24: Simulation results for the third test of case 3, in the first subplot
the calculated direct voltage is plotted and in the second subplot the
calculated quadrature voltage is plotted

The model was simulated in the abc-reference frame, and in order to control
the system the currents and voltages had to be converted to the dq0-frame.
In order for the park-transformation to work the switched voltage shown in
figure 4.25 had to be filtered. The filtering of the measurements was in this case
performed by a continues-time low-pass Butterworth filter of the first degree.

CHAPTER 4. GRID CONNECTION 106

Figure 4.25: Simulation result for the third test of case 3, in this plot the actual
voltage level directly after the inverter is shown together with the
filtered voltage level measured.

4.6.1.4 Case 4 - Total Case

This test was designed to both test the transition to reactive power compen-
sation and how the control deals with a varying voltage source. The results
from the simulation are presented in figure 4.26 and 4.27.

During the simulation the DC-voltage level was chosen to vary as a sinu-
soidal with a frequency of 0.01Hz, an amplitude of 150V and an offset of 1200V.
During the first 100s the grid controller is supposed to output the requested
active effect and the last 100s the grid controller should output the requested
active power while at the same time keeping the direct output voltage at 230V.
As can be seen in figure 4.26 the control of the active power output is unaf-
fected by the change in the DC-voltage level. When the transition to reactive
power compensation occurred a small deviation in the active power output
from its reference is present, which is expected since the quadrature current is
used to control the reactive power which in turn increases the active power. As
can be seen in figure 4.27 the control successfully decreases the direct voltage
to around 230V, for the same reason as described in case 2 the voltage level
is varying slightly around 230V. The control decreases the voltage level to be-
low 234.6V in well below 10s which is required by the grid codes, see section
4.2.4. Apart from this the grid codes regarding Q-control states that when the
Q-setpoint is changed the control should be initiated within two seconds and
performed within 30 seconds, and the output power should not deviate more
than ±2%. However a control mode in which a specific reactive output power
could be requested was never implemented, but the controls for performing
this specific task was, and when studying the reactive power reference and
output in figure 4.26 it is quite reasonable to assume that the control would
manage to achieve also these goals.

CHAPTER 4. GRID CONNECTION 107

Figure 4.26: Simulation results for case 4, in the top subplot the DC-Voltage level
is plotted, in the middle subplot the active power reference is plotted
together with the active power output, in the bottom subplot the
reactive power reference together with the reactive power output are
plotted.

Figure 4.27: Simulation results for case 4, in the top plot the direct voltage is
plotted and in the bottom subplot the quadrature voltage is plotted.

4.6.2 Losses

In figure 4.28 the power output in different key parts of the models is plotted in
order to show the losses in the system. As can be seen in the figure the system is

CHAPTER 4. GRID CONNECTION 108

exposed to losses in both the inverter and the grid transferring the power to the
connection point. In the figure it can also be seen that the losses in the grid is
greatly increased by the reactive power compensation, this due to the increase
of the reactive power absorbed by the system. The losses caused by the inverter
is during the whole simulation about ∼3% and the losses caused by the power
transfer to the connection point without the reactive power compensation is
∼12% and with the reactive power compensation ∼30%. In total the overall
losses in the system is ∼14% without the reactive power compensation and
∼31% with the reactive power compensation turned on.

Figure 4.28: This plot is illustrating the losses in the grid connection. In the plot
the power flow on the grid side is shown, the top curve shows the
active power extracted from the DC-grid, the middle curve the active
power delivered to the AC-grid and the bottom curve the active power
at the connection point.

4.7 Discussion
As demonstrated in case 3 and shown in figure 4.23 to 4.25 the switched in-
verter model does not differ a great deal from the averaging inverter model.
The largest difference between the models is the effect caused by the switch-
ing shown in figure 4.25, usually a filter is implemented after the inverter in
order to filter its output to the grid, however due a lack of time this was not
implemented in this project. In order to be able to run the simulations any-
way continues filters from the Modelica standard library was applied directly
on the measurements. The largest modeling error introduced by the averag-
ing model is due to the fact that the implementation of the average inverter
model is based upon a model of an ideal voltage source. The implication of
this is mainly manifested during the initial transients, which can be seen in
the islanding simulations of case 3. Since the model output is based on an
ideal voltage source the voltage level is changed instantly when requested. In
reality, and the switched model, the voltage, and current, is increased rapidly
but not instantly, this is most likely also the cause of the initial transient of
the islanding control.

The biggest concern regarding the grid connection is the modeling of the
different grids. The fact that we could not find any transfer grid data which
we could use to set up the models meant that the parameters of the transfer
grid was made according to a qualified estimate. However the goal of this
project was not to model the grid accurately, but to model and control the

CHAPTER 4. GRID CONNECTION 109

wind power plant as a system. The possible implications of a change in the
grid connection to a more accurate model would most likely only be a retuning
of the grid controller’s parameters.

Overall the performance of the grid control, tested in this chapter, is good,
however the aspect of controlling for instance the active and reactive power
output is not a complicated task since they are easily calculated using equa-
tion 4.6 and 4.7. The control has no problems tracking both the active and
reactive power output simultaneously, however the main operation of the grid
controller, DC-level control, is tested in chapter 5 since the entire wind power
plant needs to be operational for that to work properly.

P = ud · id + uq · iq (4.6)

Q = uq · id − ud · iq (4.7)

Chapter 5

Wind Power Plant

In this chapter a complete wind power plant consisting of one or several wind
power units, back to back inverters and grid connection will be taken into
consideration. The modeling in this chapter is quite minor since all the different
parts of the plant has been modeled and tested in chapter 3 and 4, thus the
modeling essentially consist of connecting the different models. The control
part in this chapter mainly consists of managing control, however the DC-
control done by the wind power units when in island operation will also be
closer examined. The managing control consists of ordering in which mode
the grid connection and individual wind power units shall be operating, all
depending on in which mode the plant is ordered to operate and the current
power output potential from the different units.

In the end the complete system, with control algorithms, will be tested and
evaluated against the grid codes described in section 4.2.

110

CHAPTER 5. WIND POWER PLANT 111

Figure 5.1: Schematic overview of a wind power plant with one wind power unit.

5.1 Objectives
The overall objective of this project is to model and control a small wind
power plant, a wind power plant is here defined according to figure 1.1 as
one or several wind power units connected by a common DC-link to the grid
connection. In this chapter the different parts discussed in chapter 3 and 4
is to be connected and controlled as a whole. Assuming that all individual
control algorithms of the grid connection and wind power units is functioning
properly a control algorithm should be designed with the objective to manage
the wind power plant. The system which is to be modeled, and controlled, is
presented in figure 5.1 as one, alternatively three, wind power units connected
by a common DC-grid to a single grid connection. The control designed in this
chapter should be able to achieve a number of different goals listed below.

• The control should be able to order shut down of the plant at any time.

• The control should not try to turn on a wind power unit when the tur-
bine control, see section 3.4.1, has ordered a shut down due to ill wind
conditions.

• The control should be able to order the plant to operate at maximum
power.

• The control should be able to order the plant to operate in delta mode.

• The control should be able to order the plant to deliver a specific active
power to the grid.

• The control should be able to order the plant to power up a small part
of the grid, i.e. order the plant to operate in island mode.

CHAPTER 5. WIND POWER PLANT 112

• The control should be able to order the grid connection to do reactive
power compensation when in Maximum Power, Delta mode or delivering
a specific amount of active power.

• When ordered to deliver a specific amount of power to the grid the control
should divide the power-load amongst the wind power units controlled.

• When in island mode the control should be able to decide how many wind
power units that should be active depending on the load and potential
power output from the different units.

As a part of the project the simulation results should be evaluated and
compared to grid codes, see 4.2, and the effect of no longer having an optimal
DC-voltage source should be evaluated.

5.1.1 Test Cases

In order to test the control algorithm which will be developed in this chapter
a number of different test cases should be evaluated. The test cases have
been constructed so that they will test a specific part of the control algorithm
and/or different realistic control scenarios. Apart from testing the managing
control algorithm designed in this chapter, the DC-control algorithms for the
wind power unit and grid connection developed in chapter 3 and 4 should also
be tested and evaluated. This since they both require the whole wind power
plant to be operational in order for any significant tests to be done. The tests
have been divided into two different sections, the first section of tests should
be run with a plant using only one wind power unit. This in order to test the
different DC-control algorithms and the second section of tests should be run
with a plant using three wind power units.

One Wind Power Unit

1. Test running a plant at maximum power with varying wind speed.

2. Test running a plant in island operation using a constant load.

3. Test running a plant in island operation using a varying load.

Three Wind Power Units

1. Test running the plant in delta-control mode with varying wind speed.

2. Test running the plant with the objective of delivering a specific amount
of active power to the grid.

3. Test running the plant at maximum power switching between reactive
compensation on and off, and order a complete shut down at the end.

4. Test running the plant in island operation using a varying load and vary-
ing wind speed.

CHAPTER 5. WIND POWER PLANT 113

Figure 5.2: Schematic picture of the DC-link used in the system.

5.2 Modeling
The modeling in this chapter consists of connecting the different models de-
veloped in the previous chapters into two different systems. The first using
one wind power unit and one grid connection and the second using three wind
power units and one grid connection. Both of the models utilize a DC-grid in
order to connect the wind power units with the grid connection.

5.2.1 DC-Grid

In order to interconnect all the wind power units to the grid connection and
decouple the rotational speed of the wind turbines from the frequency of the
grid an intermediate DC-grid was chosen to be used. The DC-grid was modeled
using the Spot-library’s component DC-link. The DC-Link model in Spot is a
simple model of a DC-link equipped with symmetric DC-link-capacitors and a
simple RLC-filter, see figure 5.2.

5.3 Control Design
In order to achieve the goals stated in section 5.1 an overall control algorithm
managing the different components involved in the system is needed. The con-
trol’s goal should be to achieve the control command received by the customer.
The control structure developed for this task consists of one single controller,
the Plant Control.

CHAPTER 5. WIND POWER PLANT 114

5.3.1 Plant Control

Figure 5.3: Schematic control structure of the plant controller.

The Plant Control’s task is to make sure that the wind power plant operate
according to the directives it has received, a schematic figure of the control
structure proposed in this project is shown in figure 5.3. The Plant Control’s
main task is supposed to be managing of the power plant, no actual control is
supposed to be performed here. The managing control should be able to make
the power plant operate in the different modes listed below.

• SHTDWN - Shutdown or inactive mode.

• DESEFF - Desired power.

• MAXEFF - Maximum or nominal power.

• DELTA - Delta mode.

• ISLAND - Island mode.

• RCTVCMP - Reactive Power Compensation.

The management of the plant consists of providing information about in which
mode the different system should operate. In most cases it is just a matter of
passing down the requested mode to the grid connection and the wind power
units.

The shut down mode only requires the controller to order all the system
parts to shut down.

In the desired power mode the controller should compensate for the internal
losses, decide how many wind power plants is needed in order to provide the
power and divide it amongst them. The load should be divided so that a unit
with a higher potential power output should get a proportionally bigger part
of the load.

In the maximum, or nominal, power mode the controller should order all
the units to output nominal power.

In the delta mode the controller should order all the wind power units to
operate in delta mode.

When in the island mode the control should order the grid connection to
operate in island mode, the Plant Control should also make a decision of how
many wind power units that are needed in order to maintain an acceptable
voltage level of the DC-grid.

CHAPTER 5. WIND POWER PLANT 115

There are many different possible ways for the Plant Control to decide how
many wind power units that should operate when in island mode. One of
the methods could be to observe the current DC-level as well as how much
energy that is currently produced. Another method could be to measure the
power consumed by the grid and use this as a basis to decide how many units
that should operate. Apart from deciding how many wind power units that
should be active the controller also has the possibility to order some of the
units to operate at Maximum Power and some to operate in DC-control mode.
The method finally chosen in this project was the latter of the two, to use
information about how much energy that currently is consumed by the grid
as well as the maximum potential energy available from the individual wind
power units. The possibility of using some wind power units in DC-control and
some at Maximum Power was not explored. In order for the system to operate
in this way the grid connection controller is required to provide information
about how much active power that is consumed by the grid at the moment.

5.3.2 DC-Control

When the system is operating in Island mode the responsibility of keeping the
DC-level at an acceptable level is moved from the grid connection to the wind
power units. In order to be able to maintain a good control of the DC-level in
this situation a control algorithm was developed which, not only uses the wind
power units but also, utilizes the entire wind power plant. The main reason
behind why this decision was made was that there was no apparent reason not
to utilize the information about how much energy that is consumed by the
grid. Instead of neglecting this information and control the DC-level with a
PID-controller controlling the output power from the individual units it was
decided to use this information in order to control the DC-level.

The information about how much energy that is consumed by the grid is
obtained by the grid connection controller through equation 5.1. The power
measurement is then filtered in order to remove any medium high to high
frequency changes in the consumed power. This since the process of controlling
the output power from the wind power units is a relatively slow process and
the medium high to high frequency changes in the consumed power only have
a minor effect on the DC-level.

P = id · ud + iq · uq (5.1)

The information about the energy consumed by the grid is then sent to the
Plant Control which first uses the information in order to decide how many
wind power units that should be operating. The Plant Control is also able to
compensate for the internal losses and divide the energy consumed by the grid
to the units in much the same way that is done when operating in the desired
power mode, see section 5.3.1. The desired power which the wind power units
receive when in DC-control mode is then used as an offset in the DC-control
algorithm, see section 3.4.2.

CHAPTER 5. WIND POWER PLANT 116

Figure 5.4: Top view of the implementation of a wind power plant with one wind
power unit.

5.4 Implementation

5.4.1 Modelica

Two different Modelica models was developed, however the only difference
between the two is the number of wind power units that is connected to the
DC-grid, see figure 5.4 and 5.5. The models was constructed by connecting
one or more wind power unit models to a model of a DC-link, the DC-link
was then connected to the grid connection model. In reality it is unrealistic to
assume that the wind acting on the different wind power units is identical, in
order to reflect this in the model the wind model was moved to inside the wind
power unit model. Apart from exposing the different wind power units for a
unique set of wind-noise and gusts the units can also be exposed by different
base wind speeds. By modeling each of the different units with a separate base
wind speed model the different units can be exposed to different wind profiles.
Another approach would be to allow the different units to have the same basic
wind profiles at different intensities, i.e. use one base wind-block and add a
gain in front of each unit.

5.4.2 Control

The Control of the wind power plant was implemented using C++ in a single
class called PlantControl, the overall design of the control is discussed in section
5.3.

CHAPTER 5. WIND POWER PLANT 117

Figure 5.5: Top view of the implementation of a wind power plant with three wind
power units.

CHAPTER 5. WIND POWER PLANT 118

5.4.2.1 Plant Control

The Plant Control was implemented in order to manage the wind power plant.
The C++-code in whole is presented in appendix B.12. The implementation
of the Plant Control is partially quite trivial and consists of forwarding the
control received.

In order to store in which mode the different wind power units should
operate an array structure was utilized, the maximum length is in this case set
to 100 units, but can easily be increased to a much higher value. The Plant
Control is initiated with the number of units in the system, an estimation of
the internal losses in the system, the sampling period and lastly a cool-down
time. The cool-down time is used in the initialization of the island operation
in order to allow the power measurements from the grid connection control to
stabilize before a decision is made regarding the number of units that should
be operating. All the units is initialized in the “ShutDown” mode and the
desired power is set to zero. If the number of units entered at the initiation
would be higher than the maximum allowed units the number of plants is set
to -1, this since this is the only available way to indicate an error. The initial
grid connection mode is set to “Inactive”.

The control is updated by providing the requested mode, the desired effect
(only used if the requested mode is “Power Tracking”), the power consumed
by the grid (only used if the requested mode is “Island”), a flag indicating that
reactive power compensation should be performed and the current maximum
power available at the different units. A switch structure is used in order to
check which mode is requested, and perform the necessary tasks. If the re-
quested mode would be “Shut Down” the controller sets the grid controller’s
mode to “Inactive” and calls the internal function setAllUnitMode(). If the re-
quested mode would be “Max Effect” or “Delta” the grid controller’s mode is set
to “DC-Level” or “Reactive Compensation” depending on if the reactive com-
pensation flag is set, also in this case the internal function setAllUnitMode()
is called.

The setAllUnitMode()-function iterates through all the available wind power
units and sets the appropriate mode and desired power, in the case of the “SHT-
DWN” mode the desired effect is set to zero and the mode to “Shut Down”.
If the mode would be “NOMEFF” the function sets the mode to “Nominal
Power” and the desired power to the maximum power, if the maximum power
is greater than zero. When the maximum power is zero or less the mode is set
to “Shut Down” and the desired power to zero. Finally if the mode entered
would be “DELTA” the function sets the control mode to “Delta” and the de-
sired power to 80% of the maximum power1 if the maximum power is greater
than zero. When the maximum power is zero or less the mode is set to “Shut
Down” and the desired power to zero.

When the requested mode into the update()-function is “DESEFF” the
control sets the mode of the grid connection to “DC-Level” or “Reactive Com-

1This is done for good measure, the actual reference that will be used is set in the Turbine
Control.

CHAPTER 5. WIND POWER PLANT 119

pensation” depending on if the flag for reactive compensation is set or not,
calls the internal function splitDesEff() and sets the variable gridEff to the
desired power. The variable gridEff is then sent to the grid side controller
which uses it in order to deliver the desired power, if possible. When in any
other mode then “Desired Effect” the gridEff -variable is set to -1, this is done
in order to signal to the grid side controller that no particular output power is
desired.

The splitDesEff()-function’s task is to calculate how many wind power
units are needed for the requested power output and to split the desired effect
amongst the wind power units. The function starts by running an algorithm
which calculates the number of units which are needed to be active. The
algorithm starts by defining two new variables, one for keeping track of how
many units that should be activated and one for keeping track of how high
their potential power output is. The algorithm iterates through the available
units and increments the potential power and number of units needed until
either all the units are included or a potential maximum power of 20% higher
than the requested power is obtained. The function is now ready to set the
modes for the different units which are done by iterating through the units
chosen to be active. If the unit’s maximum power output is more than zero its
mode is set to “Power Tracking” and its power reference is set to a fraction of
the requested power relative to the power potential of the unit, see equation
5.2. If the unit’s maximum power output is zero its mode is set to “Shut Down”
and its power reference to zero. The remainder of the wind power units’ modes
are set to “Shut Down” and their desired power are set to zero.

Pref,unit =
Pmax,unit

Pmax,AllSelected
· Pref,plant (5.2)

When in island mode the control’s task is to first power up the DC-grid,
if necessary, and then decide how many wind power units that is needed. The
control starts by setting the grid control’s mode to “Island”, which means that
the grid controller should start to power up the grid if the DC-level is high
enough. After this the controller enters the startup sequence. First a check
is made to see whether there is a power output on the grid or not, if so is
the case another check is made to see if the cool-down time is over. If the
cool-down time is not over the counter is increased by the sampling period and
the function setIslandInit() is called. If the cool-down time is over the function
splitIsland() is called. If there is no power output on the grid the counter is
set to zero and the function setIslandInit() is called.

When the function setIslandInit() is called the system is in the initiation
phase which means that the system should be made ready to take on the
“real” control orders. This means that the wind power units should start
up and start to deliver a relatively small amount of power. This is done by
telling all the units, whose maximum power output is 1000W or more, to
enter “Power Tracking” mode with a power reference of 1000W. All the units
whose maximum power output is above zero but below 1000W to enter “Power
Tracking” mode with a desired power equal to their maximum power. The

CHAPTER 5. WIND POWER PLANT 120

units whose maximum power capability currently is zero is set to operate at
“Shut Down” with a power reference of zero.

When the function splitIsland() is called the system has completed its island
initiation mode and is ready to make decisions regarding how many units that
should be active. This is done in very much the same way that the power load
is split when in the “Desired Effect” mode. The algorithm starts by deciding
how many unit’s that should be active, this is done in the same way as is done
in the splitDesEff()”-function, with the difference that the minimum power
that is to be achieved is 60% more than the currently consumed power of the
grid. The control then sets all the units which should be active to operate
in the “DC-Level”-mode and sets the desired power to a fraction of the loss-
compensated power consumed by the grid , see equation 5.3.

Pref,unit =
Pmax,unit

Pmax,AllSelected
· Pconsumed

1− losses
(5.3)

5.5 Simulations and Results
In order to test the operation of the complete wind power plant some different
test cases was designed, see section 4.1.1. The test cases were divided into
two sections operating on two different sets of the wind power plant. The first
plant setup only contains one wind power unit and the second contains three
wind power units.

5.5.1 One Wind Power Unit

In these test cases a plant setup containing one wind power unit and one grid
connection, all controlled by the Plant Control. The design and testing of the
individual parts can be found in chapter 3 and 4. The purpose of these tests
is mainly to test the operation of the DC-control in both the grid connection,
see section 4.4.1.1, and in the Power Controller, see section 3.4.2.

5.5.1.1 Case 1 - Max Power Varying Wind

This test was designed in order to test the DC-control of the grid controller.
This is done by running the system in the “Maximum Power”-mode while
varying the wind speed between 0-23m/s in the same way that is done in case
7 of chapter 3, see section 3.6.3.5.

The DC-level control results from the simulation are presented in figure 5.6,
the results for the operation of the plant in a similar test case is presented and
discussed in case 7 of chapter 3. The results are divided into seven different
zones described below.

1. The wind speed starts at 0 m/s and increases to 5 m/s, during this period
the rotor’s rotational speed and the power reference are both zero. This
since the wind speed is too low for operation of the plant.

CHAPTER 5. WIND POWER PLANT 121

2. In this zone the wind speed is increased from 5 m/s to 10 m/s which
is enough to allow operation of the unit. The power reference is raised
to its nominal value, 3000 W, and the rotor starts to rotate. Since the
wind speed is not enough for nominal power the Power Controller tries
to optimize the unit’s power output.

3. In this zone the wind increases further and is now high enough to allow
operation at nominal power.

4. In this zone the wind speed increases to 23 m/s, which is more than the
maximum allowed for operation, hence the power production is halted.

5. The wind speed is now reduced to 18 m/s, which is lower than the max-
imum allowed wind speed for operation, and the power production is
resumed.

6. The wind speed is now reduced to 11 m/s which is too low for nominal
power and the Power Controller tries to optimize the unit’s output power.

7. In this zone the wind speed is decreased to 3 m/s which is well below
the minimum allowed wind speed, and the power production is halted.

The results from the simulation are presented in figure 5.6. The grid con-
troller successfully controls the DC-level to its reference with some deviations
when the input power from the wind power unit is changed. The DC-control
is started when the DC-level is above 850V and turned off when the DC-level
is below 600V. The main objective of the controller is to indirectly deliver the
power generated by the wind power units to the grid connection. By control-
ling the DC-level to a constant value the power flow is maintained in balance
so that the power generated by the wind power unit is delivered to the grid.
Apart from decoupling the rotational speed of the wind turbine the DC-grid
also provides a good filter for the power flow as seen in figure 5.6.

CHAPTER 5. WIND POWER PLANT 122

Figure 5.6: Simulation results for case 1, in the top subplot the DC-level and its
reference are plotted, in the middle subplot the power in and out of
the DC-grid are plotted and in the bottom subplot the wind speed is
plotted.

5.5.1.2 Case 2 - Island Constant Load

This test was designed in order to test the DC-control implemented on the
wind power unit when a constant load is connected. During this test the wind
power was chosen to be between 14 and 18m/s in order for the power plant to
be able to operate at its nominal power.

The results from the simulation are presented in figure 5.7 and 5.8. As can
be seen in the results the power controller successfully controls the DC-level
to 900V with some deviations. At the start the Plant Control orders the wind
power unit to output 1000W in order to power up the DC-link capacitor. When
the DC-level reaches 850V the grid controller starts powering up the grid.
When the power flow out from the DC-grid has started the Plant Control waits
until the cool down time has passed before it orders the wind power unit to
control the DC-level. The Power Controller manages to relatively fast control
the DC-voltage to 900V. After 250s the load is increased which causes the
DC-voltage to start decrease, when the DC-voltage drops the power reference
is changed in order to restore the DC-voltage. However it takes some time for
the relatively slow turbine to change its power output which results in a quite
large voltage drop. As depicted in figure 5.8 the grid controller does not have
any trouble to power up the grid, and the drop in the DC-level is not so big
that it has any effect on the inverter output.

CHAPTER 5. WIND POWER PLANT 123

Figure 5.7: Simulation results for case 2, in the first subplot the desired power
from the Plant Control, power reference and power output from the
wind power unit are plotted, in the second subplot the DC-level and
its reference are plotted, in the third subplot the command from the
Plant Control is plotted and in the fourth subplot the wind speed is
plotted.

Figure 5.8: Simulation results for case 2, in the top subplot the power flow in and
out from the DC-grid are plotted, in the middle subplot the direct
voltage is plotted and in the bottom subplot the quadrature voltage is
plotted.

CHAPTER 5. WIND POWER PLANT 124

5.5.1.3 Case 3 - Island Varying Load

This test was designed in order to test the DC-control implemented on the
wind power unit when a varying load is connected. This case is identical to
case 2 with the difference that the load is varying.

The results from the simulation are presented in figure 5.9 and 5.10. As in
case 2 the power controller successfully controls the DC-voltage to 900V. The
effect of the loads oscillation is visible in the DC-voltage which is experiencing
a small oscillation. Except from the oscillation in the DC-level and output
power the result is almost identical to that of case 2 and the DC-control has no
apparent problems controlling the DC-level when a varying load is connected.

Figure 5.9: Simulation results for case 3, in the first subplot the desired power
from the Plant Control, power reference and power output from the
wind power unit are plotted, in the second subplot the DC-level and
its reference are plotted, in the third subplot the command from the
Plant Control is plotted and in the fourth subplot the wind speed is
plotted.

Figure 5.10: Simulation result for case 3, in this plot the power delivered to the
connection point and the power output from the wind power unit are
plotted.

CHAPTER 5. WIND POWER PLANT 125

5.5.2 Three Wind Power Units

In these test cases a plant setup containing three wind power units and one
grid connection, all controlled by the Plant Control, was used. The design and
testing of the individual parts can be found in chapter 3 and 4. The purpose of
these tests is mainly to test how the Plant Control manages the several wind
power units connected to the plant.

5.5.2.1 Case 1 - Delta-Control Varying Wind

This case was designed in order to test the delta control when implemented
on the complete system. In the test all the wind power units starts in the
“Maximum Power”-mode and after 150s, as marked in the figures, the mode is
changed to “Delta Control” and after about 400s the wind speed is decreased.
The change in wind speed is different for the three wind power units.

The results are presented in figure 5.11 and 5.12. According to the grid
codes the delta control mode should be initiated no later than two seconds
after it is ordered, see section 4.2.3. There are two ways to achieve this goal.
The easiest way is to allow the highest sampling time to be a maximum of two
seconds and all other sampling times to be a multiple of this. Another possible,
and more reliable, way is to connect the command change as an interrupt which
forces an immediate sample instant. In this project the first option of these
two was implemented. The grid codes also state that the control command
should be completed within 30 seconds and should not deviate more than ±2%
from the setpoint or ±0.5% of the rated power, whichever yields the highest
tolerance, see section 4.2.3. This constraint is barely achieved, the delta level
is reached after ∼28s, which is below the allowed limit, however when the wind
power units is exposed to a wind gust the power output is increased/decreased
more than ±2%. The delta control, however, is intended for plants with a
rated output power greater than 25MW, and since our plants are very small,
3kW, their rotors are relatively small. Which in turn means that they have
a lower inertia and are therefore affected more by the gusts. When the wind
speed change occurs the power output is decreased faster than the reference,
this since the maximum power output is filtered using an averaging filter which
causes it to have a delay that is very visible during fast changes in the wind
speed.

CHAPTER 5. WIND POWER PLANT 126

Figure 5.11: Simulation results for case 1, in the top subplot the DC-level and its
reference are plotted and in the bottom subplot the total maximum
power is plotted together with the calculated delta power level and
the measured power into the DC-grid.

Figure 5.12: Simulation results for case 1, the three subplots are showing the power
output and power reference from each of the three wind power units.

5.5.2.2 Case 2 - Deliver Specific Amount of Active Power

This case was designed in order to test how well the plant delivers a specific
power to the grid connection. This is done by using both the individual wind
power units and the grid control. The wind speed is here kept constant for all
of the plants, but at different levels in order to show how the Plant Control
divides the load amongst the wind power units. All of the units are started
in the “Maximum Power” mode, after 140s the mode is changed to “Desired
Power” and after 300s the desired power is increased from 3kW to 5.5kW.

The results from the simulation are shown in figure 5.13 and 5.14. When
the mode is changed to “Desired Power” the Plant Control orders one of the
wind power units to shut down since only two of them are needed for operation.

CHAPTER 5. WIND POWER PLANT 127

The other two units decreases their power output to the setpoint received from
the Plant Control, which is the same for the two units since both of them is
able to output their nominal power, 3kW. On the grid side when the mode is
changed the output power from the grid controller is limited by the reference
which causes the power output to rapidly decrease to the desired level. Since
the power output from the DC-grid is decreased much faster than the power
input the DC-level is increased quite heavily during the transition. When the
power input level from the wind power units have achieved their reference the
DC-grid voltage is kept constant.

When the desired power is increased to 5.5kW the power output to the
grid is increased rapidly to its reference, however not as quick as the previous
decrease. This drains some of the energy stored in the DC-link. The increase
in the desired power output causes the Plant Control to turn on one additional
wind power unit. The additional unit’s maximum output power is below its
nominal power, and also below the maximum of the other two wind power
units, this causes the desired output from the additional wind power unit to
be slightly less than the desired output from the other two units. When all of
the wind power units have found their desired reference value the DC-level is
kept constant.

Figure 5.13: Simulation results for case 2, in the top subplot the DC-level and its
reference are plotted and in the bottom subplot the power output on
the grid is plotted together with its reference.

CHAPTER 5. WIND POWER PLANT 128

Figure 5.14: Simulation results for case 2, the three subplots are showing the power
output and power reference from each of the three wind power units.

5.5.2.3 Case 3 - With/Without Reactive Compensation

This case was designed in order to test the operation through all of the possible
changes in wind speed zones possible2. The test is similar to test case 7 in
chapter 3, see section 3.6.3.5. In the test the different wind power units will be
exposed to similar wind profiles to simulate the different conditions in different
physical locations.

The simulation has been divided into 7 different zones, depicted in figure
5.15 to 5.18, in zone:

1. The wind speed starts at ∼0 m/s and increases to ∼5 m/s, during this
period the wind power units have too low winds to allow operation.

2. In this zone the wind speed is increased from ∼5 m/s to ∼10 m/s which
is enough to allow operation of the wind power units.

3. In this zone the wind increases further and is now high enough to allow
operation at nominal power.

4. In this zone the wind speed of wind power unit two and three is increased
to ∼23 m/s, which is more than the maximum allowed for operation,
hence the wind power units shuts down. The wind speed for wind power
unit one is increased to ∼19 m/s, which still allows operation of unit one.

5. The wind speed is now reduced to ∼18 m/s, which is lower than the
maximum allowed wind speed for operation, and the wind power units
resumes operation. In this zone the reactive power compensation has
also been turned on.

2Too low for operation, not high enough for nominal power, high enough for nominal
power and to high for operation.

CHAPTER 5. WIND POWER PLANT 129

6. The wind speed is now reduced to ∼11 m/s which is too low for nominal
power and the wind power units tries to maximize the power output.

The results from the simulation are shown in figure 5.15 to 5.18. The
operation of the wind power units during the simulation is similar to test case
7 in chapter 3, see section 3.6.3.5, for the first 650s. After 650s the Plant
Control orders a complete shut down of the whole plant which causes all of
the wind power units to shut down.

In figure 5.17 and 5.18 the results from the grid side of the plant is pre-
sented. As expected the direct voltage is high above the nominal voltage of
230V during the time the reactive power compensation is inactive, and the re-
active power output during the same time period is zero, according to Swedish
grid codes. When the reactive power compensation is turned on, after 350s,
the direct voltage is reduced from ∼240V to its nominal value 230V in less
than 10 seconds, which is well below the requirements of the grid codes, see
section 4.2.4. The increase in reactive power consumption results in a small
momentary increase of the active power output, which causes the DC-voltage
to decrease.

When the Plant Control orders a shutdown of the plant the Grid side
controller is ordered to the “Inactive”-mode which causes it to immediately
disconnect from the grid. An effect of this is that the DC-level is increased
when the generators of the wind power units are stopping the rotors, and no
energy can be dissipated by the grid controller. Also the active and reactive
power output drops to zero.

Figure 5.15: Simulation results for case 3, the three subplots are showing the power
output and power reference from each of the three wind power units.

CHAPTER 5. WIND POWER PLANT 130

Figure 5.16: Simulation results for case 3, the three subplots are showing the wind
speed profiles for the three wind power units.

Figure 5.17: Simulation results for case 3, in the top subplot the DC-voltage level
is plotted together with its reference, in the middle subplot the direct
voltage is plotted and in the bottom subplot the quadrature voltage
is plotted.

CHAPTER 5. WIND POWER PLANT 131

Figure 5.18: Simulation results for case 3, in the top subplot the active power
output at the point of connection is plotted and in the bottom subplot
the reactive power output at the point of connection is plotted.

5.5.2.4 Case 4 - Island Varying Wind and Load

This case was designed in order to test the island operation when the whole
wind power plant is involved.

The simulation has been divided into 6 different zones, depicted in figure
5.19 to 5.21, in zone:

1. The wind speed starts at ∼0 m/s and increases to ∼5 m/s, during this
period the wind power units have too low winds to allow operation.

2. In this zone the wind speed is increased from ∼5 m/s to ∼10 m/s which
is enough to allow operation of the different wind power units.

3. In this zone the wind increases further and is now high enough to allow
operation at nominal power.

4. In this zone the wind speed of wind power unit two and three is increased
to ∼23 m/s, which is more than the maximum allowed for operation,
hence the wind power units shuts down. The wind speed for wind power
unit one is increased to ∼19 m/s, which still allows operation of unit one.

5. The wind speed is now reduced to ∼18 m/s, which is lower than the
maximum allowed wind speed for operation, and the wind power units
resumes operation.

6. The wind speed is now reduced to ∼11 m/s which is too low for nominal
power and the wind power units tries to maximize the power output.

The results from the simulation are shown in figure 5.19 to 5.21. The
control successfully powers the grid during the simulation. When the system
is started the wind power units are turned on in the “Desired Power” mode
when their individual winds are sufficient for operation. When the DC-grid
has been charged the Plant Control decides to shut down one unit and change

CHAPTER 5. WIND POWER PLANT 132

the mode of the other two to DC-control. This since the two wind power
units with their current maximum power output should suffice for the power
consumed.

When the wind increases in the beginning of zone 3 the Plant Control
decides to shut down one of the wind power units since the one left should
be able to maintain the grid on its own. The increase of the consumed power
in the middle of zone 3 causes the Plant Control once again to turn on wind
power unit two. In zone 4 the wind speed for unit two and three increases to a
level which is higher than what is allowed for operation. This forces the Plant
Control to try to only operate with one wind power unit. In this particular case
it turns out that it was possible to maintain the DC-level with just one wind
power unit. In zone 5 the wind speed for unit two and three is decreased to an
acceptable level and the Plant Control resumes operation for wind power unit
two in order to increase its control margins. The small power increase at ∼380s
is not big enough to effect the number of plants that should be operating. The
wind speed decrease that occurs in the beginning of zone 6 is not big enough
to change the decision about the current number of active wind power units.
The large increase of the load which occurs at ∼650s causes the Plant Control
to increase the number of active plants to all three. The increase of the load
also causes a sudden drop in the DC-level which the DC-control of the wind
power units manages to halt.

The power reference shown in figure 5.19 reflects the power reference sent to
the power control part of the Power Controller, see section 3.4.2. The control
action from the Power Controller is most visible when the DC-level error is
very high. The reference is then changed to either zero or nominal power.
The oscillation of the direct and quadrature voltage in the beginning of the
simulation is a reaction to how the islanding grid model was implemented.

Figure 5.19: Simulation results for case 4, the three subplots are here showing the
power output and power reference from each of the three wind power
units.

CHAPTER 5. WIND POWER PLANT 133

Figure 5.20: Simulation results for case 4, the three subplots are here showing the
commanded modes from the Plant Control to the three wind power
units.

Figure 5.21: Simulation results for case 4, in the first subplot the DC-voltage level
is plotted together with its reference, in the second subplot the power
flow into the DC-grid, out at the grid connection and the power con-
sumption calculated by the grid side controller are plotted, in the
third subplot the direct voltage is plotted and in the fourth subplot
the quadrature voltage is plotted.

5.5.3 Losses

The overall losses of the wind power plant are depicted in figure 5.22. The
losses in the plant can be divided into four different components. The losses in

CHAPTER 5. WIND POWER PLANT 134

the generator and shaft, the losses in the inverter controlling the wind power
unit, the losses in the grid side inverter and losses in the grid which transfers
the power to the point of connection. All of these losses is approximately
a fixed percentage during the different simulations, however the grid losses
is varying depending on the reactive power flow. A higher flow of reactive
power increases the losses in the grid, as can be seen in figure 4.28. In the
system simulated in this project the power loss from the shaft and generator
is ∼15%, the losses from the inverter controlling the generator is ∼5%, the
losses from the grid side inverter is ∼5% and the losses in the transfer grid is
∼8%. Overall the total loss in this case is ∼28%. The Plant Control should
compensate for all losses except the losses in the generator and shaft when
requesting a power output from the wind power units. In this case the Plant
Control should compensate for ∼17% losses.

Figure 5.22: In this plot the different power levels of the plant are plotted in order
to visualize the losses. In the top subplot the power flow out from
the DC-grid, out from the inverter and in the point of connection are
plotted and in the bottom subplot the same power flows as in the top
subplot is zoomed in together with the power flow into the DC-grid,
the power generated by the generator and the power absorbed by the
rotor.

5.6 Discussion
The topic of this chapter has been the complete control of the wind power
plant, mainly focusing on the managing control by the Plant Control. Due to
a lack of time there is room for improvements.

One major improvement is to add functionality in the Plant Control so that
when a desired output power is requested the Plant Control makes sure that
the requested power is delivered. This is needed in case the loss estimation is
wrong due to changes in component, reactive power flow etc. One suggestion
of how to do this is to add a measurement of the current power output from
the wind power units to the Plant Control. The Plant Control can then use
these measurements to see if the wind power units have reached their reference
output and if so are the case adjusts their output so that the power output
reference on the grid is achieved.

CHAPTER 5. WIND POWER PLANT 135

Another improvement that can be made is to add more intelligence in the
Islanding functionality. For example all the wind power units does not need to
be in either DC-control mode or shut down, some could be running at desired
or maximum power. The Plant Control could also be made more intelligent
when choosing which units to turn on and off so that one is not turned off in
order to turn on another unit. In the long time scope the Plant Control should
also try to utilize the different wind power units an equal amount.

There are a lot of work that can be done regarding the Plant Control in
general, there are no real limits for how “intelligent” that it can be made.

The total control also lacks a gradient control that is controlling the amount
of power that is connected/disconnected, which would be needed in order to
achieve some of the grid codes.

Overall we are satisfied with how the Plant Control performs. The Plant
Control is capable of supplying a small part of the grid in Island mode by
choosing which wind power units that should be operating. It also succeeds
in deliver a requested amount of active power to the grid, and while doing so
splits the load proportionally over the wind power units that are chosen to be
active. There is however some modes that needs to be implemented in order
for the plant to pass all the grid codes. However all the grid codes, except
delta control, considered in the simulations was achieved with a comfortable
margin.

Chapter 6

Conclusion

In this final chapter the results of the project is briefly summarized, some
key aspects are brought forward and some future work and improvements are
suggested.

136

CHAPTER 6. CONCLUSION 137

6.1 Evaluation of the Project
The purpose of this project was to model a wind power unit in Dymola/Model-
ica complete with power electronics and to design a control system in C/C++
which should be used to control the model in Dymola. Apart from modeling
the single wind power unit a model of a small wind power plant should also be
done, together with a simple managing control, complete with a grid model,
the project limitations are listed in section 1.2.1.

Overall the project was a success. A simple turbine model was developed
and interconnected with power electronics to a DC-grid and control for this
was developed. A control system, complete with optimization algorithms, was
designed in C/C++, as requested, and interconnected with Dymola in a way
which allows the same code, regarding the control algorithms, to be used on a
“real” wind power plant. A simple grid-connection model was developed and
a control system for power output on the grid was designed. Some simple
control strategies for a wind power plant using one or several wind power units
were designed. The results from the simulations were compared to actual grid
codes. It was chosen to use the grid codes of Denmark instead of Sweden to
evaluate the control performance since the Swedish grid codes have relatively
low demands regarding wind power plants when compared to the grid codes
of Denmark, this since wind power is a relatively large source of power in the
Danish grid.

The implementation of the control system was done using an external static
library turned out to be very convenient. The control code could be written
completely separate from the models. In order to interconnect the control
system with the models some interface classes and declarations of the control
functions needed to be done. The only drawback of this is that it proved to
be a bit inconvenient to change the input to or output from the functions. For
example if an input should be added to a function the code needs to be changed
in six places, the header and C-code of the class, the header and C-code of the
interface class, the function definition in Dymola and the model implementing
the function in Dymola.

The wind turbine model was implemented using a Cp-curve estimation with
a compensation for the tower shadowing effect. The turbine model was then
propelled by a wind model distorting the wind with gusts and turbulence,
which are common components in real wind profiles.

In order to model the inverters two different models were used, one switched
and one averaging. Because of its fast simulation speed the average model was
used for most of the simulations. The switched inverter was tested in the
simulation of the system, however only one of the simulations is presented in
this project. In the results from the simulation using the switched inverter,
see part three of 4.6.1.3, it can be observed that the output from the average
model is accurate.

When the plant is running in island mode the DC-level is controlled by the
wind power units. This control was first implemented using a PID-controller,
however the results using this approach was not satisfactory. The wind power

CHAPTER 6. CONCLUSION 138

units managed to power up the grid and keep the DC-level constant but were
more sensitive to changes of the load than the final controller. This and the fact
that all measurements that is needed for calculating the power consumed by the
load is also needed for controlling the grid side inverter was the reason to why
the DC-control algorithm of the units were changed. The power measurement
is also needed for the Plant Control to decide how many units that should be
operating.

During the implementation of the controllers PID-controllers has been uti-
lized in some parts, for instance in the Speed Controller and GridVoltageCon-
troller. However during the final tuning of the controls it was decided, through
testing, to set the derivative gain to zero. This result in that the controls used
is in essential PI-controllers.

The overall control performance of the controllers designed during the
project has to be considered to be good. The control fulfills most of the grid
codes which was examined, and it feels like it should be possible to fulfill all
of them if there would have been more time available. This also considering
that the wind profiles which were used for the test cases might have been a bit
extreme. For example during the total case the wind is changing from none
at all to strong gale, almost storm1 and back again in about 600 seconds, or
10 minutes. The reason to why the wind profiles were chosen like this was in
order to test and stress the control algorithms to their maximum. One grid
code in particular was never discussed in the result sections. The regulations
about when it is allowed for the control to automatically disconnect from the
grid. In our case the control system only disconnects from the grid when the
DC-level is too low, no specific “intelligence” for when to disconnect from the
grid was developed.

6.1.1 Improvements

There are some distinct improvements that could be made to further improve
the results of the modeling and control done in this project.

Model Verification

Unfortunately no real measurement data was available for model verification,
which meant that the models could not be verified. The main effect of this is
that the loss models and the absolute power and rotational values might not be
accurate. Especially the loss estimation might deviate a great portion from its
actual values. The control and optimization algorithms should not be affected
a great deal by this. For the optimization the most important aspect is the Cp-
curve, however the most important aspect of the Cp-curve is its general shape.
Which in this project was obtained by using general parameters found in [11]
and [12]. Especially the grid model should be reexamined in order to make it
more accurate. At most the parameters of the control algorithms might need
a re-tuning to work on a more accurate system.

1According to the Beaufort Scale, in which strong gale is force nine out of twelve.[21]

CHAPTER 6. CONCLUSION 139

Islanding

The DC-control of the wind power units is currently working and manages
to power up most loads. There are however some distinct improvements that
could be made in the Plant Control in order to improve the control. The main
reason to why the control fails is due to the fact that it makes the mistake
of quickly turning on and off a unit. This could be avoided by for examples
implementing some kind of hysteresis in the decision making algorithm. The
Plant Control is currently always choosing to use the wind power units in the
order they are stored in the array. This means that if unit 1 cannot operate
the Plant Control will choose to activate unit 2, however when unit 1 becomes
available again the Plant Control will choose to turn of unit 2 in order to
turn on unit 1, provided that only one wind power unit is needed. This is
unnecessary and might cause the system to fail. The fact that the wind power
units are prioritized in a specific order also means that unit 1 will be used
much more frequently than unit 3.

Reactive Power Control

In the project an algorithm for controlling the reactive power was implemented.
In the normal case the reactive power is controlled to zero according to the
Swedish grid codes [20]. During reactive power compensation the reactive
power is controlling the direct voltage to its reference. There are two additional
ways of controlling the reactive power output that was not considered. The
first way is called Q-control, see section 4.2.1, which in essential means that the
reactive power should be controlled by a reference value received from the grid
owner. Another way of controlling the reactive power output is called power
factor control, see section 4.2.1. During power factor control the reactive power
should be controlled so that the reactive power output is proportional to the
active power output. What differs the different control strategies are how the
reactive power reference is set. This means that the implementation of these
two additional control modes not would be difficult. As can be seen from
the results of chapter 4 in section 4.6 the reactive power control is capable of
tracking a reference value.

6.2 Real-time
In the project limitations it was stated that the possibility of running the
models in real-time should be considered, if time permits. Some models for
changing the wind speed in real-time were designed and implemented. Some
initial tests of this were done while other parts of the project were stagnant.
The results from these tests were somewhat positive. The current status is
that the models cannot be run at real-time without delay. Currently the
simulation runs at a third of the speed of the process. However in these tests
no optimization what so ever for real-time simulations has been done, and
it is believed that with some optimization it would be possible to run the

CHAPTER 6. CONCLUSION 140

models in real-time as well. One major improvement would be to replace fast-
sampling controllers with equivalent controls in continues-time. For example
the PI/PID-controllers in Modelica’s standard library. This would allow the
solver used by Dymola to take larger step-sizes during its integration.

6.3 Future Work
There is a lot of work left that can be done in and around this project. Some
suggestions are presented below.

Modeling

There is still a lot of work that can be done regarding modeling of the plant,
especially when it comes to the grid models. A part of improving the models
is to do model verification in order to be able to more accurately simulate the
operation of a specific plant.

Switched Modeling and Control

In order to make the models more accurate in the short time scope the models
and control should be more adapted to work on the switched model. More
precisely electrical low pass filters needs to be introduced after the inverters
in order to remove the main harmonics caused by the switching. Apart from
this there are still a bit of work to be done regarding synchronizing with the
grid, which is estimating the current system angle on the grid.

Real-Time

The work on running the models in real-time was begun and the possibility
of the models to work in real-time is assessed to be high. However for this to
actually work some of the models needs to be optimized for real-time. More
importantly the fast sampling controls, sampling periods <1s, could be imple-
mented in Dymola/Modelica as continues time models, this since these controls
are fast and is basically simple PI-/PID-controllers.

Plant Management

There is a lot of work which is left to be done regarding the Plant Control,
there are almost endless possibilities of how much intelligence and logics that
can be implemented into the Plant Control. Some examples are listed below.

• Enable the Plant Control to automatically enter island mode.

• Enable the Plant Control to automatically disconnect from the grid in
order to avoid unintended island operation.

• Enable the Plant Control to automatically compensate for errors in the
loss estimation.

CHAPTER 6. CONCLUSION 141

• Modify so that the Start and Stop of the wind power units, as well as
disconnection form the grid, is done according to the grid codes.

• Improve the DC-control, all units does not need to be in either “Shut
Down” or “DC-Control” some could be in for example “Max Power” or
“Power Track”. The Plant Control should also be made more aware of
which wind power units that has been operating so that the control does
not turn off one unit in order to turn on a different wind power unit.
In the long time scope the Plant Control should also try to utilize the
different wind power units an equal amount.

• More closely study the grid codes to see if any additional control modes
are needed, or if any of the existing modes needs to be modified.

Scaling

Currently most of the system parts, such as turbine, generator, DC-grid, in-
verters and AC-grid, are scalable. However the only control algorithm that
is automatically scaled is the current control of the generator. In order for
the system to be fully scalable all of the controls should be parameterized, for
instance the Speed Control is very dependent of the rotor’s inertia.

Bibliography

[1] T. Dang and M. H. Rashid, “Introduction, history, and theory of wind
power,” North American Power Symposium (NAPS), 2009, pp. 1–6,
2009.

[2] T. Wizelius, Vindkraft i teori och praktik. Lund Studentlitteratur 2002,
2002.

[3] E. Sverige, “Vindstatistik 2010.” Available at
http://www.energimyndigheten.se/Global/Press/
Pressmeddelanden/Vindkraftsstatistik-2010-ny.pdf 2011-09-22.

[4] D. Flan and R. Blom, “Great creations,” Power Engineer (see also Power
Engineering Journal) 2005, pp. 14–17, 2005.

[5] Falkenberg-energi, “Vertikalaxlad-vindkraft.” Available at http:
//www.falkenberg-energi.se/vindkraft/vertikalaxlad-vindkraft
2011-09-22.

[6] D. photo archive, “Darrieus wind turbine.” Available at
http://www.doedigitalarchive.doe.gov/ImageDetailView.cfm?
ImageID=1003145&page=search&pageid=thumb 2011-09-22.

[7] W. Hu, Y. Wang, X. Song, and Z. Wang, “Development of vertical-axis
wind turbine with asynchronus generator interconnected to the electric
network,” Electrical Machines and Systems, 2008. ICEMS 2008.
International Conference on, pp. 2289–2293, 2008.

[8] H. stuff work, “How a wind turbine works.” Available at
http://science.howstuffworks.com/environmental/
green-science/wind-power1.htm 2011-09-22.

[9] J. F. Manwell, J. G. McGowan, and A. L. Rogers, Wind Energy
Explained - Theory, Design and Application second edition. DJohn
Wiley & Sons Ltd, 2009.

[10] Åke Larsson, “Vindkraft i lokala och regionala nät - elektriska
egenskaper och elkvalitet,” Elforsk, rapport 98:20, 1998.

[11] I. Catana, C.-A. Safta, and V. Panduru, “Power optimisation control
system od wind turbines by changing the pitch angle,” U.P.B. Sci. Bull.,
Series D, Vol. 72, Iss. 1, pp. 142–146, 2010.

142

BIBLIOGRAPHY 143

[12] A. Pintea, D.Popescu, and I. Pisica, “Robust model based control
method for wind energy production,” MCPL’2010: 5th Conference on
Management and Control of Production, Coimbra : Portugal (2010),
2010.

[13] A. Rolán, Álvaro Luna, G. Vásquez, D. Aguilar, and G. Azevedo,
“Modeling of a variable speed wind turbine with a permanent magnet
synchronous generator,” IEEE International Symposium on Industrial
Electronics (ISIE 2009), pp. 734–739, 2009.

[14] N. Urasaki, T. Senjyu, and K. Uezato, “Influence of all losses on
permanent magnet synchronus motor drives,” Industrial Electronics
Society, 2000. IECON 2000. 26th Annual Conference of the IEEE,
pp. 1371–1376 vol.2, 2000.

[15] M. Alaküla and P. Karlsson, Power Electronics, Devices, Converters,
Control and Applications. Department of Industrial Electrical
Enginering and Automation, Lund Institute of Technology, 2010.

[16] M. Otter, “Modelica overview.” Available at
https://www.modelica.org/education/educational-material/
lecture-material/english/ModelicaOverview.pdf 2011-08-22.

[17] J. Thongham, P. Bouchard, H. Ezzaidi, and M. Ouhrouche, “Wind speed
sensorless maximum power point tracking control of variable spweed
wind energy conversion systems,” Electric Machines and Drives
Conference, 2009. IEMDC ’09. IEEE International, pp. 1832–1837, 2009.

[18] Modelica-Association, “Modelica R©- a unified object-oriented language
for physical systems modeling.” Available at
https://www.modelica.org/documents/ModelicaSpec32.pdf
2011-08-23.

[19] Energinet.dk, “Technical regulation 3.2.5 for wind power plants with a
power output greater than 11 kw.” Available at
http://www.energinet.dk/SiteCollectionDocuments/
Engelske20dokumenter/El/Grid20Code203.2.
420Power20Unit20above201120kW20and20up20to201,520MW.pdf
2011-10-24.

[20] Svenska-Kraftnät, “Technical regulation 3.2.5 for wind power plants with
a power output greater than 11 kw.” Available at http://www.svk.se/
Global/07_Tekniska_krav/Pdf/Foreskrifter/SvKFS2005_2.pdf
2011-10-24.

[21] Nationalencyklopedin, “Beaufortskalan.” Available at
http://www.ne.se.ludwig.lub.lu.se/enkel/beaufortskalan
2011-11-08.

Appendix A

Equations

A.1 Derivation abc⇒ αβ ⇒dq
Derivation of a perfectly symmetrical three phase voltage from the abc-reference
frame to the dq-reference frame.

ua = Û cos(ωelt)

ub = Û cos(ωelt−
2π

3
)

uc = Û cos(ωelt−
4π

3
) = Û cos(ωelt+

2π

3
)

Uαβ =

√
2

3
(ua + ej

2π
3 ub + e−j

2π
3 uc) =

=

√
2

3
Û

(
cos(ωelt) + ej

2π
3 cos(ωelt−

2π

3
) + e−j

2π
3 cos(ωelt+

2π

3
)

)
=

=

[
cos(ωelt) =

ej·ωelt + e−j·ωelt

2

]
=

=
1

3
√

2
Û
(
ej·ωelt + e−j·ωelt + ej

2π
3 (ej·ωelte−j

2π
3 + e−j·ωeltej

2π
3)+

+e−j
2π
3 (ej·ωeltej

2π
3 + e−j·ωelte−j

2π
3)
)

=

144

APPENDIX A. EQUATIONS 145

=
Û

3
√

2

(
ej·ωelt + e−j·ωelt + ej·ωelt + e−j·ωelte−j

2π
3 + ej·ωelt + e−j·ωeltej

2π
3

)
=

=
Û

3
√

2

(
ej·ωelt (1 + 1 + 1) + e−j·ωelt

(
1 + e−j

2π
3 + ej

2π
3

))
=

=

 ej
2π
3 = −1

2
+ j

√
3

2

e−j
2π
3 = −1

2
− j
√

3

2

 =

=
Û

3
√

2

(
3ej·ωelt + e−j·ωelt

(
1− 1

2
− j
√

3

2
− 1

2
+ j

√
3

2

))
=

=
Û

3
√

2
· 3ej·ωelt =

1√
2
Ûej·ωelt

Udq = Vαβe
−j·ωelt =

1√
2
Û

Appendix B

Source code

B.1 Turbine Control

Listing B.1: TurbineControl.h
1 #ifndef TURBINECONTROL_H
2 #define TURBINECONTROL_H
3
4
5 #include "meanFi l ter . h"
6
7 class TurbineControl {
8 public :
9
10 void i n i t (double lWind , double hWind , double hy s t e r e s i s ,

double lRotor , int windFi lterLength , int
ro to rF i l t e rLength , double rho , double area , double
cp_max , double nomEff) ;

11
12 void update (int cntrlMode , double rotorSpeed , double wind ,

double s e tE f f) ;
13 int getCtrlMode () ;
14 double getBrake () ;
15 double getMaxEff () ;
16 double getDesEf f () ;
17
18
19 //Brake cons tant
20 enum brake_modes { BRAKE_ON = 1 , BRAKE_OFF = 0 } ;
21
22 // con t r o l mode cons tan t s
23 enum control_mode {SHT_DWN = 0 , NOMEFF = 1 , DCCONTR = 2 ,

POWTRAC = 3 , DELTA = 4} ;
24
25 private :
26 double lWind , hWind ;
27 double hy s t e r e s i s ;
28
29 double lRotor ;
30
31 int mode ;

146

APPENDIX B. SOURCE CODE 147

32 int i n t S t a t e ;
33 double brake ;
34
35 MeanFilter w indF i l t e r ;
36 MeanFilter r o t o r F i l t e r ;
37
38 double rho , area , cp_max ;
39 double nomEff ;
40 double desEf f ;
41
42 // In t e rna l s t a t e cons tan t s
43 enum i n t_state {ON = 1 , OFF = 0 , LWIND = −1};
44 } ;
45
46 #endif

Listing B.2: TurbineControl.cpp
1 #include "TurbineControl . h"
2 #include "PowerContro l ler . h"
3 #include <cmath>
4
5 void TurbineControl : : i n i t (double lWind , double hWind , double

hy s t e r e s i s , double lRotor , int windFi lterLength , int
ro to rF i l t e rLength , double rho , double area , double cp_max ,
double nomEff) {

6
7 this−>lWind = lWind ;
8 this−>hWind = hWind ;
9 this−>lRotor = lRotor ;
10 this−>hy s t e r e s i s = hy s t e r e s i s ;
11 this−>rho = rho ;
12 this−>area = area ;
13 this−>cp_max = cp_max ;
14 this−>nomEff = nomEff ;
15
16 mode = PowerContro l ler : :SHT_DWN;
17 brake = BRAKE_ON;
18 i n tS t a t e = OFF;
19 desE f f = 0 ;
20
21 windF i l t e r . i n i t (windFi l terLength) ;
22 r o t o r F i l t e r . i n i t (r o t o rF i l t e rLeng th) ;
23
24 }
25
26 void TurbineControl : : update (int cntrlMode , double rotorSpeed ,

double wind , double s e tE f f) {
27 rotorSpeed = r o t o r F i l t e r . update (rotorSpeed) ;
28 wind = windF i l t e r . update (wind) ;
29
30 i f (cntrlMode == SHT_DWN) {
31 i n tS t a t e = OFF;
32 }
33

APPENDIX B. SOURCE CODE 148

34 i f (i n tS t a t e == OFF | | i n tS t a t e == LWIND) { // system
shou ld go to s t a n d s t i l l , or i s a t s t a n d s t i l l .

35 mode = PowerContro l ler : :SHT_DWN;
36 i f (rotorSpeed <= lRotor) { // brake shou ld be

a c t i v a t e d .
37 brake = BRAKE_ON;
38 } else i f ((wind >= (hWind − hy s t e r e s i s) | |

cntrlMode == SHT_DWN) && rotorSpeed <= 2∗ lRotor
) {

39 brake = (double)BRAKE_ON/5 ;
40 }
41
42 i f (cntrlMode != SHT_DWN && wind >= (lWind +

hy s t e r e s i s) && wind <= (hWind−hy s t e r e s i s)) { //
Check i f system shou ld s t a r t .

43 i n tS t a t e = ON;
44 mode = PowerContro l ler : :NOMEFF;
45 }
46
47 // Check i f system i s in SHT_DWN and why .
48 i f (wind >= (lWind + hy s t e r e s i s) && wind <= (hWind

−hy s t e r e s i s) && cntrlMode == SHT_DWN) {
49 i n tS t a t e = OFF;
50 } else i f (cntrlMode == SHT_DWN) {
51 i n tS t a t e = LWIND;
52 }
53 }
54 i f (i n tS t a t e == ON) {
55 brake = BRAKE_OFF;
56 i f (wind <= (lWind) | | wind >= (hWind)) { // Turn

o f system
57 i n tS t a t e = LWIND;
58 mode = PowerContro l ler : :SHT_DWN;
59 } else i f (cntrlMode == NOMEFF) {
60 mode = PowerContro l ler : :NOMEFF;
61 } else i f (cntrlMode == DCCONTR) {
62 mode = PowerContro l ler : :DCCONTR;
63 desE f f = s e tE f f ;
64 } else i f (cntrlMode == POWTRAC) {
65 mode = PowerContro l ler : :POWTRAC;
66 desE f f = s e tE f f ;
67 } else i f (cntrlMode == DELTA) {
68 mode = PowerContro l ler : :POWTRAC;
69 desE f f = 0 .8 ∗ getMaxEff () ;
70 }
71 }
72 }
73
74
75 int TurbineControl : : getCtrlMode () {
76 return mode ;
77 }
78
79
80 double TurbineControl : : getBrake () {
81 return brake ;

APPENDIX B. SOURCE CODE 149

82 }
83
84 double TurbineControl : : getMaxEff () {
85 i f (i n tS t a t e != LWIND) { // Estimate Maximum a v a i l a b l e

power .
86 double tmp = 0 .5 ∗ rho ∗ area ∗ pow(windF i l t e r . get

() , 3) ∗ cp_max ;
87 i f (tmp <= nomEff) {
88 return tmp ;
89 } else {
90 return nomEff ;
91 }
92 } else {
93 return 0 ;
94 }
95 }
96
97 double TurbineControl : : getDesEf f () {
98 return desEf f ;
99 }

APPENDIX B. SOURCE CODE 150

B.2 Generator Side Control

Listing B.3: GeneratorSideControl.h
1 #ifndef GENERATORSIDECONTROLLER_WITHOUT_PLANTCONTROLLER_H
2 #define GENERATORSIDECONTROLLER_WITHOUT_PLANTCONTROLLER_H
3
4 #include "PowerContro l ler . h"
5 #include "pid . h"
6 #include " currentContr . h"
7 #include "meanFi l ter . h"
8
9
10 class Generato rS ideContro l l e r2 {
11
12 public :
13 // i n i t i a l i z e e f f e c tR e gu l
14 void i n i t_e f f e c tRegu l (double c_init , double k_init

, double Ti_init , double w_ref , double
samplePeriod , double dp_lim , double dw_lim ,
double ref_lim , double max_step , double min ,
double max , double nomEff , double nomDC, double
k_pid , double Ti_pid , double Td_pid , double

Ni_pid , double yMax , double yMin , double i S t a r t ,
double yStart , int f i l t e r L e n g t h) ;

15
16 // i n i t i a l i z e speedCon t ro l l e r
17 void i n i t_speedCont ro l l e r (double p , double Ti ,

double Kd, double Ni , double yMax , double yMin ,
double samplePeriod , double i S t a r t , double

yStart , int e r rF i l t e rLength , int i nF i l t e rLeng th
) ;

18
19 // i n i t i a l i z e cu r r en tCon t r o l l e r
20 void i n i t_cu r r en tCon t r o l l e r (double Ld , double Lq ,

double Rs , double psim , double pp , double Ni ,
double yMax , double yMin , double yStart , double
i S t a r t , double samplePeriod , int f i l t e r L e n g t h) ;

21
22 void update (int cntrlMode , double rotorSpeed ,

double dcLevel , double power , double id_meas ,
double iq_meas , double theta , double desEf f) ;

23
24 double getPRef () ;
25 double getWRef () ;
26 double getTauRef () ;
27 double getUd () ;
28 double getUq () ;
29
30 int ge tSta t e () ;
31
32 private :
33
34 PowerContro l ler e f f e c tCon t r ;
35 PID speedContr ;
36 CurrentContr currentContr ;

APPENDIX B. SOURCE CODE 151

37 MeanFilter f i l t e r ;
38
39 double w_ref , tau_ref , theta_old , samplePeriod ;
40 int countLimitEf f ect , countLimitSpeed ;
41 double tmp ;
42 int counter_e f f ec t , counter_speed ;
43
44
45 } ;
46
47 #endif

Listing B.4: GeneratorSideController.cpp
1 #include " generatorS ideContro l l e r_without_plantContro l l e r . h"
2
3 void Generato rS ideContro l l e r2 : : i n i t_e f f e c tRegu l (double c_init ,

double k_init , double Ti_init , double w_ref , double
samplePeriod , double dp_lim , double dw_lim , double ref_lim ,
double max_step , double min , double max , double nomEff , double
nomDC, double k_pid , double Ti_pid , double Td_pid , double
Ni_pid , double yMax , double yMin , double i S t a r t , double yStart ,
int f i l t e r L e n g t h) {

4 // i n i t i a l i z e e f f e c tR e gu l
5 e f f e c tCon t r . i n i t (c_init , k_init , Ti_init , w_ref ,

samplePeriod , dp_lim , dw_lim , ref_lim , max_step , min ,
max , nomEff , nomDC, k_pid , Ti_pid , Td_pid , Ni_pid , yMax
, yMin , i S ta r t , yStart , f i l t e r L e n g t h) ;

6
7 this−>countL imi tEf f e c t = int (samplePeriod /0 .001) ;
8 this−>counte r_e f f e c t = countL imi tEf f e c t ;
9 this−>w_ref = 0 ;
10 }
11
12 void Generato rS ideContro l l e r2 : : i n i t_speedCont ro l l e r (double p ,

double Ti , double Kd, double Ni , double yMax , double yMin ,
double samplePeriod , double i S t a r t , double yStart , int
e r rF i l t e rLength , int i nF i l t e rLeng th) {

13 // i n i t i a l i z e speedCon t ro l l e r
14 speedContr . i n i t (p , Ti , Kd, Ni , yMax , yMin , samplePeriod ,

i S ta r t , yStart , e r rF i l t e rLeng th) ;
15
16 f i l t e r . i n i t (i nF i l t e rLeng th) ;
17
18 for (int i = 0 ; i < inF i l t e rLeng th ; i++) {
19 f i l t e r . update (0) ;
20 }
21
22 this−>countLimitSpeed = int (samplePeriod /0 .001) ;
23 this−>counter_speed = countLimitSpeed ;
24 this−>tau_ref = yMin ;
25 }
26
27 void Generato rS ideContro l l e r2 : : i n i t_cu r r en tCon t r o l l e r (double Ld ,

double Lq , double Rs , double psim , double pp , double Ni , double
yMax , double yMin , double yStart , double i S t a r t , double

APPENDIX B. SOURCE CODE 152

samplePeriod , int f i l t e r L e n g t h) {
28 // i n i t i a l i z e cu r r en tCon t r o l l e r
29 currentContr . i n i t (Ld , Lq , Rs , psim , pp , Ni , yMax , yMin ,

yStart , i S t a r t , samplePeriod , f i l t e r L e n g t h) ;
30 this−>samplePeriod = samplePeriod ;
31 this−>theta_old = 0 ;
32
33 }
34
35
36 void Generato rS ideContro l l e r2 : : update (int ctrlMode , double

rotorSpeed , double dcLevel , double power , double id_meas ,
double iq_meas , double theta , double desEf f) {

37
38 /∗
39 ∗ ut termos t loop , e f f e c t loop , g e t w_ref
40 ∗/
41 // doub le omega = (t h e t a − the ta_old)/ samplePeriod ;
42
43 i f (counte r_e f f e c t == countL imi tE f f e c t) { // second

ut termos t loop , e f f e c t loop
44 e f f e c tCon t r . update (ctrlMode , power , rotorSpeed ,

dcLevel , de sE f f) ;
45 w_ref = e f f e c tCon t r . get () ;
46 counte r_e f f e c t = 0 ;
47 }
48 /∗
49 ∗ second ut termos t loop , speed loop , g e t tau_ref
50 ∗/
51 i f (counter_speed == countLimitSpeed) { // outer lopp , speed

loop
52 tmp = f i l t e r . update (w_ref) ;
53 speedContr . update (tmp − rotorSpeed) ;
54 tau_ref = speedContr . get () ;
55 counter_speed = 0 ;
56 }
57
58
59 /∗
60 ∗ inner loop , curren t loop , g e t ud_ref and uq_ref
61 ∗/
62 currentContr . update (tau_ref , id_meas , iq_meas , rotorSpeed)

; // inner loop , curren t loop
63
64 theta_old = theta ;
65
66 // increment counters
67 ++counte r_e f f e c t ;
68 ++counter_speed ;
69 }
70
71 double Generato rS ideContro l l e r2 : : getUd () {
72 return currentContr . ge t Id () ;
73 }
74
75 double Generato rS ideContro l l e r2 : : getUq () {

APPENDIX B. SOURCE CODE 153

76 return currentContr . ge t Iq () ;
77 }
78
79 int Generato rS ideContro l l e r2 : : g e tS ta t e () {
80 return e f f e c tCon t r . g e tS ta t e () ;
81 }
82
83 double Generato rS ideContro l l e r2 : : getPRef () {
84 return e f f e c tCon t r . getPRef () ;
85 }
86
87 double Generato rS ideContro l l e r2 : : getWRef () {
88 return tmp ;
89 }
90
91 double Generato rS ideContro l l e r2 : : getTauRef () {
92 return tau_ref ;
93 }

APPENDIX B. SOURCE CODE 154

B.3 Power Control

Listing B.5: EffRegul.h
1 #ifndef POWERCONTROLLER_H
2 #define POWERCONTROLLER_H
3 #include "pid . h"
4 #include " p i . h"
5
6 class PowerContro l ler {
7 public :
8
9 void i n i t (double c_init , double k_init , double Ti_init ,

double w_ref , double samplePeriod , double dp_lim ,
double dw_lim , double ref_lim , double max_step , double
min , double max , double nomEff , double nomDC, double
k_pid , double Ti_pid , double Td_pid , double Ni_pid ,
double yMax , double yMin , double i S t a r t , double yStart ,
int f i l t e r L e n g t h) ;

10 void update (int ctrlMode , double p , double w, double
dcLevel , double desEf f) ;

11 double get () ;
12 int ge tSta t e () ;
13 double getPRef () ;
14
15 enum control_mode {SHT_DWN = 0 , NOMEFF = 1 , DCCONTR = 2 ,

POWTRAC = 3} ;
16
17 private :
18 void l e f t S l o p e (double e) ;
19 void r i gh tS l ope (double dp , double w, double e) ;
20 void updateOutput (double p , double w, double dp , double dw

, double p_ref , double e_ref , double e , int cntrlMode) ;
21 double k , Ti ; // PI con t r o l v a r i a b l e s
22 double I ; // I n t e g r a l
23 double c ; // Contro l v a r i a b l e
24 double min , max ; // Min max va l u e s
25 double dw_lim , dp_lim ; // minimum change l im i t s
26 double w_old , p_old ; // o ld measurements
27 double re f_l im ;
28 double p_ref_old ;
29 double y , yStart ;
30 double max_step ;
31 int l a s t_s t a t e ;
32 bool p_ref_changed ;
33 int stop_pre , stop ;
34 double nomEff , nomDC, p_ref ;
35 double DC_gain ;
36
37 Pi contr ;
38
39 PID dcContr ;
40 } ;
41
42 #endif

APPENDIX B. SOURCE CODE 155

Listing B.6: EffRegul.cpp
1 #include "PowerContro l ler . h"
2 #include <math . h>
3
4 void PowerContro l ler : : i n i t (double c_init , double k_init , double

Ti_init , double w_ref , double samplePeriod , double dp_lim ,
double dw_lim , double ref_lim , double max_step , double min ,
double max , double nomEff , double nomDC, double k_pid , double
Ti_pid , double Td_pid , double Ni_pid , double yMax_pid , double
yMin_pid , double iStart_pid , double yStart_pid , int
f i l t e r L e n g t h) {

5
6
7 dcContr . i n i t (k_pid , Ti_pid , Td_pid , Ni_pid , yMax_pid ,

yMin_pid , samplePeriod , iStart_pid , yStart_pid ,
f i l t e r L e n g t h) ;

8 this−>c = c_in i t ;
9 this−>dp_lim = dp_lim ;
10 this−>dw_lim = dw_lim ;
11 this−>min = min ;
12 this−>max = max ;
13 this−>ref_l im = ref_l im ;
14 this−>max_step = max_step ;
15 l a s t_s ta t e = 0 ;
16 p_old = 0 ;
17 w_old = 0 ;
18 this−>yStart = w_ref ;
19 y = 0 ;
20 p_ref_old = 0 ;
21 I = 0 ;
22 Ti = Ti_init ;
23 k = k_init ;
24 p_ref_changed = fa l se ;
25 stop_pre = 1 ;
26 stop = 1 ;
27 this−>nomEff = nomEff ;
28 this−>nomDC = nomDC;
29 p_ref = 0 ;
30 DC_gain = k_pid ;
31 }
32
33 void PowerContro l ler : : update (int ctrlMode , double p , double w,

double dcLevel , double desEf f) {
34 double dp = p−p_old ;
35 double dw = w−w_old ;
36 double e = 0 ;
37 double e_ref = y − w;
38
39 double e r r o r ;
40 switch (ctrlMode) {
41 case SHT_DWN:
42 stop = 1 ;
43 p_ref = 0 ;
44 break ;
45 case NOMEFF:

APPENDIX B. SOURCE CODE 156

46 p_ref = nomEff ;
47 stop = 0 ;
48 break ;
49 case DCCONTR:
50 stop = 0 ;
51
52 e r r o r = nomDC − dcLevel ;
53
54
55 i f (e r r o r >= 200) {
56 p_ref = nomEff ;
57 } else i f (e r r o r >= 100) {
58 p_ref = desEf f + 400 ;
59 } else i f (e r r o r <= −350) {
60 p_ref = 0 ;
61 } else i f (e r r o r <= −100) {
62 p_ref = desEf f − 400 ;
63 } else {
64 p_ref = desEf f + DC_gain∗ e r r o r ;
65 }
66 break ;
67 case POWTRAC:
68 p_ref = desEf f ;
69 stop = 0 ;
70 break ;
71 default :
72 // Do noth ing
73 break ;
74 }
75
76
77 i f (p_ref < 0) {
78 p_ref = 0 ;
79 } else i f (p_ref > nomEff) {
80 p_ref = nomEff ;
81 }
82
83 e = p_ref − p ;
84
85 updateOutput (p , w, dp , dw, p_ref , e_ref , e , ctrlMode) ;
86 }
87
88 double PowerContro l ler : : get () {
89 return y ;
90 }
91
92 void PowerContro l ler : : l e f t S l o p e (double e) {
93
94 I += e/Ti ;
95 double f oo = k∗e + I ;
96
97 double temp = foo − y ;
98 i f (temp < −max_step) {
99 temp = −max_step ;
100 } else i f (temp > max_step) {
101 temp = max_step ;

APPENDIX B. SOURCE CODE 157

102 }
103 foo = y + temp ;
104
105 i f (foo > max) {
106 y = max ;
107 } else i f (foo < min) {
108 y = min ;
109 } else {
110 y = foo ;
111 }
112
113 I = y − e∗k ;
114
115
116 l a s t_s ta t e = 1 ;
117 }
118
119 void PowerContro l ler : : r i gh tS l ope (double dp , double w, double e) {
120
121 double f oo = w − abs (dp∗c) ;
122 double temp = foo − y ;
123 i f (temp < −max_step) {
124 temp = −max_step ;
125 } else i f (temp > max_step) {
126 temp = max_step ;
127 }
128 y += temp ;
129
130 I = y − e∗k ; // Output l e f t S l o p e = output r i g h t S l o p e
131 l a s t_s ta t e = 2 ;
132 }
133
134 int PowerContro l ler : : g e tS ta t e () {
135 return l a s t_s t a t e ;
136 }
137
138 double PowerContro l ler : : getPRef () {
139 return p_ref ;
140 }
141
142 void PowerContro l ler : : updateOutput (double p , double w, double dp ,

double dw, double p_ref , double e_ref , double e , int cntrlMode)
{

143 i f (stop == 1) { // The Turbine Contro l has ordered
s t a n d s t i l l .

144 i f (−re f_l im < e_ref) {
145 //Decrease y to s t a n d s t i l l
146 y −= 30 ;
147 i f (y < 0) {
148 y = 0 ;
149 }
150 p_old = p ;
151 w_old = w;
152 p_ref_old = p_ref ;
153 }
154 stop_pre = stop ;

APPENDIX B. SOURCE CODE 158

155 return ;
156 } else i f (stop_pre == 1) { // The p l an t c o n t r o l l e r has

dec ided to s t a r t / r e s t a r t the p l an t
157 y = yStart ;
158 stop_pre = stop ;
159 p_old = p ;
160 w_old = w;
161 p_ref_old = p_ref ;
162 return ;
163 }
164 i f (p_ref_old != p_ref) {
165 p_ref_changed = true ;
166 }
167 i f ((− re f_l im < e_ref && e_ref < ref_l im)) {// w has

changed
168 i f (p_ref_changed) {
169 i f (l a s t_s t a t e <= 1) {
170 l e f t S l o p e (e) ;
171 } else {
172 r i gh tS l ope (dp , w, e) ;
173 }
174 p_ref_changed = fa l se ;
175
176 } else i f (e < −dp_lim) {
177 l e f t S l o p e (e) ;
178 } else i f (dp < −dp_lim) {
179 i f (dw > dw_lim) {
180 r i gh tS l ope (dp , w, e) ;
181 } else i f (dw < −dw_lim) {
182 l e f t S l o p e (e) ;
183 } else {
184 i f (dp < −10∗dp_lim && la s t_s ta t e

<= 1) {
185 l e f t S l o p e (e) ;
186 } else i f (dp < −10∗dp_lim) {
187 r i gh tS l ope (dp , w, e) ;
188 }
189 w = w_old ;
190 p = p_old ;
191 }
192 } else i f (dp > dp_lim) {
193 i f (dw < −dw_lim) {
194 r i gh tS l ope (dp , w, e) ;
195 } else i f (dw > dw_lim) {
196 l e f t S l o p e (e) ;
197 } else {
198 i f (dp > 10∗dp_lim && la s t_s ta t e

<= 1) {
199 l e f t S l o p e (e) ;
200 } else i f (dp > 10∗dp_lim) {
201 r i gh tS l ope (dp , w, e) ;
202 }
203 w = w_old ;
204 p = p_old ;
205 }
206 } else {

APPENDIX B. SOURCE CODE 159

207 i f (l a s t_s t a t e <= 1) {
208
209 } else {
210 }
211 // Do not update p_old/w_old
212 w = w_old ;
213 p = p_old ;
214 }
215
216 } else {
217 double f oo = y ;
218 l e f t S l o p e (e) ;
219 y=foo ;
220
221 // Do not update p_old/w_old
222 w = w_old ;
223 p = p_old ;
224 }
225
226
227 // l im i t output to min/max
228 i f (y > max) {
229 y = max ;
230 } else i f (y < min) {
231 y = min ;
232 }
233
234 p_old = p ;
235 w_old = w;
236 stop = stop_pre ;
237
238 p_ref_old = p_ref ;
239 }

APPENDIX B. SOURCE CODE 160

B.4 Mean Filter

Listing B.7: MeanFilter.h
1 #ifndef MEANFILTER_H
2 #define MEANFILTER_H
3
4 class MeanFilter {
5 public :
6
7 void i n i t (int l ength) ;
8 double update (double u) ;
9 double get () ;
10 void r e s e t () ;
11
12 private :
13 stat ic const int max = 10000 ;
14 double vec [max] ;
15 int s tartCounter ;
16 int f i l t e r L e n g t h ;
17 double y ;
18 } ;
19 #endif

Listing B.8: MeanFilter.cpp
1 #include "meanFi l ter . h"
2
3
4 void MeanFilter : : i n i t (int l ength) {
5 star tCounter = 0 ;
6 y = 0 ;
7
8 i f (l ength > max) {
9 f i l t e r L e n g t h = max ;
10 } else i f (l ength < 0) {
11 f i l t e r L e n g t h = 0 ;
12 } else
13 f i l t e r L e n g t h = length ;
14 }
15
16 double MeanFilter : : update (double u) {
17 i f (s tartCounter < f i l t e r L e n g t h) {
18 // Average output over the va l u e s ob ta ined so f a r .
19 vec [f i l t e r L e n g t h − ++startCounter] = u ;
20 i f (s tartCounter > 1) {
21 u = 0 ;
22 for (int i = 1 ; i <= startCounter ; i++) {
23 u += vec [f i l t e r L e n g t h − i] ;
24 }
25 }
26 return u/ startCounter ;
27 }
28
29
30 double tmp1 = 0 ;

APPENDIX B. SOURCE CODE 161

31 double tmp2 = 0 ;
32 double sum = u ;
33
34 // Update array .
35 for (int i = 0 ; i < f i l t e r L e n g t h ; i++) {
36
37 sum += vec [i] ;
38
39 i f (i == 0) {
40 tmp1 = vec [i] ;
41 vec [i] = u ;
42 } else {
43 tmp2 = vec [i] ;
44 vec [i] = tmp1 ;
45 tmp1 = tmp2 ;
46 }
47 }
48
49 y = sum/(f i l t e r L e n g t h + 1) ;
50 return y ;
51 }
52
53 double MeanFilter : : get () {
54 return y ;
55 }
56
57 void MeanFilter : : r e s e t () {
58 star tCounter = 0 ;
59 y = 0 ;
60 }

APPENDIX B. SOURCE CODE 162

B.5 PI-Controller

Listing B.9: PI.h
1 #ifndef PI_H
2 #define PI_H
3 #include "piParam . h"
4
5 class Pi {
6 public :
7
8 void i n i t (double k , double Ti , double Ni , double yMax ,

double yMin , double samplePeriod , double i S t a r t , double
yStart) ;

9 void update (double e r r o r) ;
10 double get () ;
11 void s e t I (double desired_y , double e r r o r) ;
12 void setParam (PiParam param) ;
13 PiParam getParam () ;
14 private :
15 double I ; // in t e g ra t o r−par t
16 double yMax , yMin ; // output l im i t s o f the c o n t r o l l e r
17 double k ; // c on t r o l l e r−gain
18 double Ti ; // t imecons tant f o r the i n t e g r a t o r
19 double samplePeriod ;
20 double Ni ; //Ni∗Ti i s the time cons tant o f antiwindup

compensation
21 double i S t a r t , yStart ;
22 double y ; // output
23 } ;
24 #endif

Listing B.10: PI.cpp
1 #include " p i . h"
2
3
4
5 void Pi : : i n i t (double k , double Ti , double Ni , double yMax , double

yMin , double samplePeriod , double i S t a r t , double yStart) {
6 this−>k = k ;
7 this−>Ti = Ti ;
8 this−>yMax = yMax ;
9 this−>yMin = yMin ;
10 this−>samplePeriod = samplePeriod ;
11 this−>Ni = Ni ;
12 this−>iS t a r t = i S t a r t ;
13 this−>yStart = yStart ;
14 I = i S t a r t ;
15 y = yStart ;
16 }
17
18 void Pi : : update (double e r r o r) {
19 double temp ;
20
21 double antiwindup ;

APPENDIX B. SOURCE CODE 163

22
23 temp = k∗(e r r o r + (samplePeriod /Ti) ∗ I) ;
24
25
26 i f (temp >= yMax) {
27 y = yMax ;
28 } else i f (temp <= yMin) {
29 y = yMin ;
30 } else {
31 y = temp ;
32 }
33
34 antiwindup = (y − temp) /(k∗Ni) ;
35
36 I = I + e r r o r + antiwindup ;
37
38
39 }
40
41 double Pi : : get () {
42 return y ;
43 }
44
45 void Pi : : s e t I (double desired_y , double e r r o r) {
46 I = (desired_y/k − e r r o r) ∗(Ti/ samplePeriod) ;
47 }
48
49 void Pi : : setParam (PiParam param) {
50 this−>k = param . k ;
51 this−>Ti = param . Ti ;
52 this−>yMax = param .yMax ;
53 this−>yMin = param . yMin ;
54 this−>samplePeriod = param . samplePeriod ;
55 this−>Ni = param . Ni ;
56 I = param . i S t a r t ;
57 y = param . yStart ;
58 }
59
60 PiParam Pi : : getParam () {
61 return PiParam () . setParam (k , Ti , Ni , yMax , yMin ,

samplePeriod , i S ta r t , yStart) ;
62 }

Listing B.11: PiParam.h
1 #ifndef PIPARAM_H
2 #define PIPARAM_H
3
4 class PiParam {
5 public :
6 PiParam setParam (double k , double Ti , double Ni , double

yMax , double yMin , double samplePeriod , double i S t a r t ,
double yStart) ;

7 PiParam getParam () ;
8

APPENDIX B. SOURCE CODE 164

9 double k , Ti , Ni , yMax , yMin , samplePeriod , i S ta r t , yStart
;

10 private :
11
12 } ;
13
14 #endif

Listing B.12: PiParam.cpp
1 #include "piParam . h"
2
3 PiParam PiParam : : setParam (double k , double Ti , double Ni , double

yMax , double yMin , double samplePeriod , double i S t a r t , double
yStart) {

4 this−>k = k ;
5 this−>Ti = Ti ;
6 this−>Ni = Ni ;
7 this−>yMax = yMax ;
8 this−>yMin = yMin ;
9 this−>samplePeriod = samplePeriod ;
10 this−>iS t a r t = i S t a r t ;
11 this−>yStart = yStart ;
12 return ∗ this ;
13 }
14
15 PiParam PiParam : : getParam () {
16 return ∗ this ;
17 }

APPENDIX B. SOURCE CODE 165

B.6 PID-Controller

Listing B.13: PID.h
1 #ifndef PID_H
2 #define PID_H
3
4 #include "meanFi l ter . h"
5
6 class PID {
7
8 public :
9 void i n i t (double p , double Ti , double Kd, double Ni ,

double yMax , double yMin , double samplePeriod , double
i S t a r t , double yStart , int f i l t e r L e n g t h) ;

10 void update (double e r r o r) ;
11 void setOutput (double out , double e r r o r) ;
12 double get () ;
13
14 private :
15 double p , Ti , Kd;
16 double Ni ;
17 double yMax , yMin ;
18 double samplePeriod ;
19 double i S t a r t , yStart ;
20 double y , I , e_old ;
21
22 MeanFilter f i l t e r ;
23 } ;
24 #endif

Listing B.14: PID.cpp
1 #include "pid . h"
2
3 void PID : : i n i t (double p , double Ti , double Kd, double Ni , double

yMax , double yMin , double samplePeriod , double i S t a r t , double
yStart , int f i l t e r L e n g t h) {

4 this−>p= p ;
5 this−>Ti = Ti ;
6 this−>Kd = Kd;
7 this−>Ni = Ni ;
8 this−>yMax = yMax ;
9 this−>yMin = yMin ;
10 this−>samplePeriod = samplePeriod ;
11
12 y = yStart ;
13 I = i S t a r t ;
14 e_old = 0 ;
15
16 f i l t e r . i n i t (f i l t e r L e n g t h) ;
17 }
18
19 void PID : : update (double e) {
20
21 e = f i l t e r . update (e) ;

APPENDIX B. SOURCE CODE 166

22
23 double der = (e − e_old) / samplePeriod ;
24 double temp = p∗(e + (samplePeriod /Ti) ∗ I + Kd∗der) ;
25
26 i f (temp >= yMax) {
27 y = yMax ;
28 } else i f (temp <= yMin) {
29 y = yMin ;
30 } else {
31 y = temp ;
32 }
33
34 double antiWindup = (y − temp) /(p∗Ni) ;
35
36 I = I + e + antiWindup ;
37 e_old = e ;
38 }
39
40 double PID : : get () {
41 return y ;
42 }
43
44 void PID : : setOutput (double out , double e r r o r) {
45 y = out ;
46 e_old = e r r o r ;
47 I = (y/p − e r r o r) ∗ (Ti/ samplePeriod) ;
48 f i l t e r . r e s e t () ;
49 }

APPENDIX B. SOURCE CODE 167

B.7 Current Controller

Listing B.15: CurrentControl.h
1 #ifndef CURRENTCONTR_H
2 #define CURRENTCONTR_H
3
4 #include " id . h"
5 #include " iq . h"
6 #include "meanFi l ter . h"
7
8
9
10 class CurrentContr {
11 public :
12
13 void i n i t (double Ld , double Lq , double Rs , double psim ,
14 double pp , double Ni , double yMax , double yMin ,

double yStart ,
15 double i S t a r t , double samplePeriod , int

f i l t e r L e n g t h) ;
16
17 void update (double tauRef , double id_meas , double iq_meas ,

double omega) ;
18 double get Id () ;
19 double get Iq () ;
20
21
22 private :
23 double psim , pp ; // magnet i za t ion and number o f po l e pa i r s

in the genera tor
24 Id id ;
25 Iq iq ;
26
27 MeanFilter f i l t e r ;
28 } ;
29
30 #endif

Listing B.16: CurrentControl.cpp
1 #include " currentContr . h"
2
3 void CurrentContr : : i n i t (double Ld , double Lq , double Rs , double

psim ,
4 double pp , double Ni , double yMax , double yMin , double

yStart , double i S t a r t ,
5 double samplePeriod , int f i l t e r L e n g t h) {
6
7 // Create the curren t c o n t r o l l e r s
8 id = Id () ;
9 i q = Iq () ;
10
11 // I n i t i a l i z e the current c o n t r o l l e r s
12 id . i n i t (yMax , yMin , Ld , Lq , Rs , Ni , samplePeriod , yStart ,

i S t a r t) ;

APPENDIX B. SOURCE CODE 168

13 iq . i n i t (yMax , yMin , Ld , Lq , Rs , psim , Ni , samplePeriod ,
yStart , i S t a r t) ;

14
15 // I n i t i a l i z e magn i t i z a t i on and number o f po l e pa i r s .
16 this−>psim = psim ;
17 this−>pp = pp ;
18
19 f i l t e r . i n i t (f i l t e r L e n g t h) ;
20
21 }
22
23 void CurrentContr : : update (double tauRef , double id_meas , double

iq_meas , double omega) { // omega shou ld be r o t a t i o n a l speed o f
the rotor , not the e l e c t r i c a l r o t a t i o n a l speed

24
25 tauRef = f i l t e r . update (tauRef) ;
26
27 // Ca l cu l a t e id and i q r e f e r enc e s
28 double id_re f = 0 ;
29 double i q_re f = tauRef /(pp∗psim) ;
30
31 double err_id = id_re f − id_meas ;
32 double err_iq = iq_re f − iq_meas ;
33
34 /∗ update the curren t c o n t r o l l e r
35 ∗ s ince the current c o n t r o l l e r uses the e l e c t r i c a l
36 ∗ r o t a t i o n a l speed the p h y s i c a l speed needs to be
37 ∗ mu l t i p l i e d wi th the
38 ∗ number o f po l e pa i r s in the genera tor . ∗/
39 id . update (err_id , iq_meas , pp∗omega) ;
40 iq . update (err_iq , id_meas , pp∗omega) ;
41
42 }
43
44 double CurrentContr : : ge t Id () {
45 return id . get () ;
46 }
47
48
49 double CurrentContr : : g e t Iq () {
50 return i q . get () ;
51 }

APPENDIX B. SOURCE CODE 169

B.8 Id/Iq-Controller

Listing B.17: Id.h
1 #ifndef ID_H
2 #define ID_H
3
4 class Id {
5 public :
6
7 void i n i t (double yMax , double yMin , double Ld , double Lq ,

double Rs , double Ni , double samplePeriod , double yStart ,
double i S t a r t) ;

8 void update (double e r ror , double iqMeas , double omega) ;
9 double get () ;
10
11
12 private :
13 int id ;
14 double yMax , yMin ; // output l im i t s o f the c o n t r o l l e r
15 double k ; // c on t r o l l e r−gain
16 double Ti ; // t imecons tant f o r the i n t e g r a t o r
17 double I ; // I−par t
18 double samplePeriod ;
19 double Lq ; //
20 double Ni ; //Ni∗Ti i s the time cons tant o f antiwindup

compensation
21 double y ; // output
22 } ;
23
24 #endif

Listing B.18: Id.cpp
1 #include " id . h"
2
3 void Id : : i n i t (double yMax , double yMin , double Ld , double Lq ,

double Rs , double Ni , double samplePeriod , double yStart , double
i S t a r t) {

4 this−>yMax = yMax ;
5 this−>yMin = yMin ;
6 this−>samplePeriod = samplePeriod ;
7 this−>Lq = Lq ;
8 this−>Ni = Ni ;
9 I = i S t a r t ;
10 Ti = (Ld/Rs + samplePeriod /2) ∗2 ;
11 k = (Ld/ samplePeriod+Rs/2) /2 ;
12 y = yStart ;
13 }
14
15 void Id : : update (double e r ror , double iqMeas , double omega) {
16 double temp ;
17 double antiwindup ;
18 temp = k∗(e r r o r + samplePeriod /Ti∗ I) − omega∗Lq∗ iqMeas ;
19
20 // check l im i t s

APPENDIX B. SOURCE CODE 170

21 i f (temp > yMax) {
22 y = yMax ;
23 } else i f (temp < yMin) {
24 y = yMin ;
25 } else {
26 y=temp ;
27 }
28 antiwindup = (y − temp) /(k∗Ni) ;
29 I = I + e r r o r + antiwindup ; // update i n t e g r a t o r par t
30
31 }
32
33 double Id : : get () {
34 return y ;
35 }

Listing B.19: Iq.h
1 #ifndef IQ_H
2 #define IQ_H
3
4 class Iq {
5 public :
6
7
8 void i n i t (double yMax , double yMin , double Ld , double Lq ,

double Rs , double psim , double Ni , double samplePeriod ,
double yStart , double i S t a r t) ;

9 void update (double e r ror , double id_meas , double omega) ;
10 double get () ;
11
12 private :
13 int id ;
14 double yMax , yMin ; // output l im i t s o f the c o n t r o l l e r
15 double k ; // c on t r o l l e r−gain
16 double Ti ; // t imecons tant f o r the i n t e g r a t o r
17 double I ; // I−par t
18 double samplePeriod ;
19 double Ld ; //
20 double Ni ; //Ni∗Ti i s the time cons tant o f antiwindup

compensation
21 double psim ;
22 double y ; // output
23 } ;
24 #endif

Listing B.20: Iq.cpp
1 #include " iq . h"
2
3
4 void Iq : : i n i t (double yMax , double yMin , double Ld , double Lq ,

double Rs , double psim , double Ni , double samplePeriod , double
yStart , double i S t a r t)

5 {
6 this−>yMax = yMax ;

APPENDIX B. SOURCE CODE 171

7 this−>yMin = yMin ;
8 this−>Ti = (Lq/Rs + samplePeriod /2) ∗2 ;
9 this−>k = (Lq/ samplePeriod + Rs/2) /2 ;
10 this−>samplePeriod = samplePeriod ;
11
12 this−>Ld = Ld ;
13 this−>Ni = Ni ;
14 this−>psim = psim ;
15 I = i S t a r t ;
16 y = yStart ;
17 }
18
19 void Iq : : update (double e r ror , double idMeas , double omega) {
20 double temp ;
21 double antiwindup ;
22
23 temp = k∗(e r r o r + samplePeriod /Ti∗ I) + omega∗(psim + Ld∗

idMeas) ;
24
25 i f (temp > yMax) {
26 y = yMax ;
27 } else i f (temp < yMin) {
28 y = yMin ;
29 } else {
30 y = temp ;
31 }
32
33 antiwindup = (y − temp) / (k∗Ni) ;
34 I = I + e r r o r + antiwindup ;
35 }
36
37 double Iq : : get () {
38 return y ;
39 }

APPENDIX B. SOURCE CODE 172

B.9 GridSideControllerOuter

Listing B.21: GridSideControllerOuter.h
1 #ifndef GRIDSIDECONTROLLEROUTER_H
2 #define GRIDSIDECONTROLLEROUTER_H
3
4 #include " g r idCur r en tCont ro l l e r . h"
5 #include " g r i dVo l t ag eCont ro l l e r . h"
6 #include " p i . h"
7 #include "meanFi l ter . h"
8
9
10 class GridS ideContro l l e rOuter {
11 public :
12
13 void i n i t (double Vdc_start , double Vdc_stop , double

nomGridVd , double nomGridVq ,
14 double k_ud , double Ti_ud , double Ni_ud , double

yMax_ud, double yMin_ud , double iStart_ud ,
double yStart_ud ,

15 double k_uq , double Ti_uq , double Ni_uq , double
yMax_uq , double yMin_uq , double iStart_uq ,
double yStart_uq ,

16 double k_dc , double Ti_dc , double Td_dc , double
Ni_dc , double yMax_dc , double yMin_dc , double
iStart_dc , double yStart_dc , int f i l t e rL eng th ,

17 double k_ac , double Ti_ac , double Ni_ac , double
yMax_ac , double yMin_ac , double iStart_ac ,
double yStart_ac ,

18 double k_id , double Ti_id , double Ni_id , double
yMax_id , double yMin_id , double iStart_id ,
double yStart_id ,

19 double k_iq , double Ti_iq , double Ni_iq , double
yMax_iq , double yMin_iq , double iStart_iq ,
double yStart_iq ,

20 double k_rctv , double Ti_rctv , double Ni_rctv ,
double yMax_rctv , double yMin_rctv , double
iStart_rctv , double yStart_rctv ,

21 int powf i l t , double sampleperiod_rctv , double
samplePeriod_outer , double samplePeriod_inner) ;

22 void update (int contrMode , double Vdc , double ud , double
uq , double Vdc_ref , double ud_ref , double uq_ref ,
double id , double iq , double g r i dE f f) ;

23 double getUdRef () ;
24 double getUqRef () ;
25 double get IdRef () ;
26 double get IqRef () ;
27 double getP () ;
28 double getQRef () ;
29 int ge tSta t e () ;
30
31 // Contro l mode cons tan t s
32 enum control_mode {INACTIVE = 0 , DCLEVEL = 1 , ISLAND = 2 ,

RCTVCOMP = 3} ;
33

APPENDIX B. SOURCE CODE 173

34 private :
35
36 Gr idCurrentContro l l e r CurrContr ;
37 GridVoltageControl gr idContr ;
38 Pi rctvComp ;
39
40 MeanFilter powerF i l t e r ;
41
42 int counter ;
43 int cntr_rctv ;
44
45 int cntr_rctv_l imit ;
46 int counter_l imit ;
47
48 int preMode ;
49 double Vdc_start , Vdc_stop ;
50 double nomGridVd , nomGridVq ;
51 double id_ref , i q_re f ;
52 double Q_ref ;
53 int int_state_inner ;
54 } ;
55 #endif

Listing B.22: GridSideControllerOuter.cpp
1 #include " g r idS ideCont ro l l e rOute r . h"
2
3 void GridS ideContro l l e rOuter : : i n i t (double Vdc_start , double

Vdc_stop , double nomGridVd , double nomGridVq ,
4 double k_ud , double Ti_ud , double Ni_ud , double

yMax_ud, double yMin_ud , double iStart_ud ,
double yStart_ud ,

5 double k_uq , double Ti_uq , double Ni_uq , double
yMax_uq , double yMin_uq , double iStart_uq ,
double yStart_uq ,

6 double k_dc , double Ti_dc , double Td_dc , double
Ni_dc , double yMax_dc , double yMin_dc , double
iStart_dc , double yStart_dc , int f i l t e rL eng th ,

7 double k_ac , double Ti_ac , double Ni_ac , double
yMax_ac , double yMin_ac , double iStart_ac ,
double yStart_ac ,

8 double k_id , double Ti_id , double Ni_id , double
yMax_id , double yMin_id , double iStart_id ,
double yStart_id ,

9 double k_iq , double Ti_iq , double Ni_iq , double
yMax_iq , double yMin_iq , double iStart_iq ,
double yStart_iq ,

10 double k_rctv , double Ti_rctv , double Ni_rctv ,
double yMax_rctv , double yMin_rctv , double
iStart_rctv , double yStart_rctv ,

11 int powFilt , double sampleperiod_rctv , double
samplePeriod_outer , double samplePeriod_inner)
{

12
13
14 /∗

APPENDIX B. SOURCE CODE 174

15 ∗ I n i t i a l i z e the curren t c o n t r o l l e r .
16 ∗/
17 CurrContr . i n i t (nomGridVd , nomGridVq , k_id ,

Ti_id , Ni_id , yMax_id , yMin_id ,
iStart_id , yStart_id ,

18 k_iq , Ti_iq , Ni_iq , yMax_iq ,
yMin_iq , iStart_iq , yStart_iq ,
samplePeriod_inner) ;

19
20 /∗
21 ∗ I n i t i a l i z e the v o l t a g e c o n t r o l l e r .
22 ∗/
23 gr idContr . i n i t (Vdc_start , Vdc_stop , k_ud ,

Ti_ud , Ni_ud , yMax_ud, yMin_ud ,
iStart_ud , yStart_ud ,

24 k_uq , Ti_uq , Ni_uq , yMax_uq ,
yMin_uq , iStart_uq , yStart_uq ,

25 k_dc , Ti_dc , Td_dc , Ni_dc , yMax_dc
, yMin_dc , iStart_dc , yStart_dc
, f i l t e rL eng th ,

26 k_ac , Ti_ac , Ni_ac , yMax_ac ,
yMin_ac , iStart_ac , yStart_ac ,
samplePeriod_outer , CurrContr) ;

27
28 /∗
29 ∗ I n i t i a l i z e the c o n t r o l l e r f o r r e a c t i v e

compensation .
30 ∗/
31 rctvComp . i n i t (k_rctv , Ti_rctv , Ni_rctv ,

yMax_rctv , yMin_rctv , sampleperiod_rctv
, iStart_rctv , yStart_rctv) ;

32
33 // I n i t i a l i z e the counters and counters

l im i t s .
34 cntr_rctv_l imit = int (sampleper iod_rctv /

samplePeriod_inner) ;
35 counter_l imit = int (samplePeriod_outer /

samplePeriod_inner) ;
36 counter = cntr_rctv_l imit ;
37 cntr_rctv = counter_l imit ;
38
39 this−>Vdc_start = Vdc_start ;
40 this−>Vdc_stop = Vdc_stop ;
41 this−>int_state_inner = DCLEVEL;
42
43 this−>iq_re f = 0 ;
44 this−>id_re f = 0 ;
45 this−>nomGridVd = nomGridVd ;
46 this−>nomGridVq = nomGridVq ;
47 preMode = INACTIVE;
48 powerF i l t e r . i n i t (powFilt) ;
49 Q_ref = 0 ;
50 }
51
52 void GridS ideContro l l e rOuter : : update (int contrMode , double Vdc ,

double ud , double uq , double Vdc_ref , double ud_ref , double

APPENDIX B. SOURCE CODE 175

uq_ref , double id , double iq , double g r i dE f f) {
53 bool s e t IdRe f = fa l se ;
54 i f ((contrMode == ISLAND) && (preMode != ISLAND)) {
55 CurrContr . s e t I s l a nd () ;
56 } else i f (contrMode == RCTVCOMP && preMode !=RCTVCOMP) {
57 CurrContr . setDcLev () ;
58 se t IdRe f = true ;
59 rctvComp . s e t I (uq∗ id − ud∗ iq , 0) ;
60 } else i f (contrMode != ISLAND && preMode != DCLEVEL) {
61 CurrContr . setDcLev () ;
62 }
63 i f (cntr_rctv >= cntr_rctv_l imit) { // time to update the

r e a c t i v e power compensation loop
64 i f (contrMode == RCTVCOMP) {
65 rctvComp . update (nomGridVd − ud) ;
66 Q_ref = rctvComp . get () ;
67 } else {
68 Q_ref = 0 ;
69 }
70 cntr_rctv = 0 ;
71 }
72
73 i f (counter >= counter_l imit) { // time to update v o l t a g e

loop
74 double p = id ∗ud + iq ∗uq ;
75 i f (Vdc > Vdc_stop) {
76 powerF i l t e r . update (p) ;
77 }
78 gr idContr . update (contrMode , Vdc , ud , uq , Vdc_ref ,

ud_ref , Q_ref , id , iq , g r i dE f f) ; // ∗1.05
79 iq_re f = gridContr . get IqRef () ;
80 i f (s e t IdRe f) {
81 id_re f = (p − i q_re f ∗uq) /ud ;
82 gr idContr . s e t I d I (id_ref , Vdc_ref − Vdc) ;
83 se t IdRe f = fa l se ;
84 } else {
85 id_re f = gr idContr . get IdRef () ;
86 }
87
88 int_state_inner = gridContr . g e tS ta t e () ;
89 counter = 0 ;
90 }
91
92 CurrContr . update (int_state_inner , id , iq , id_ref , i q_re f) ;
93 i f (int_state_inner == INACTIVE) {
94 rctvComp . s e t I (0 , 0) ;
95 Q_ref=0;
96 }
97 ++counter ;
98 ++cntr_rctv ;
99 preMode = contrMode ;
100
101 }
102
103 double GridS ideContro l l e rOuter : : getUdRef () {
104 return CurrContr . getUdRef () ;

APPENDIX B. SOURCE CODE 176

105 }
106
107 double GridS ideContro l l e rOuter : : getUqRef () {
108 return CurrContr . getUqRef () ;
109 }
110
111
112 double GridS ideContro l l e rOuter : : get IdRef () {
113 return id_re f ;
114 }
115
116 double GridS ideContro l l e rOuter : : get IqRef () {
117 return i q_re f ;
118 }
119
120
121 int GridS ideContro l l e rOuter : : g e tS ta t e () {
122 return int_state_inner ;
123 }
124
125 double GridS ideContro l l e rOuter : : getP () {
126 return powerF i l t e r . get () ;
127 }
128
129 double GridS ideContro l l e rOuter : : getQRef () {
130 return Q_ref ;
131 }

APPENDIX B. SOURCE CODE 177

B.10 GridVoltageController

Listing B.23: GridVoltageController.h
1 #ifndef GRIDVOLTAGECONTROLLER_H
2 #define GRIDVOLTAGECONTROLLER_H
3
4 #include " p i . h"
5 #include "pid . h"
6 #include " g r idCur r en tCont ro l l e r . h"
7
8 class GridVoltageControl {
9 public :
10
11 void i n i t (double Vdc_start , double Vdc_stop ,
12 double k_ud , double Ti_ud , double Ni_ud , double

yMax_ud, double yMin_ud , double iStart_ud ,
double yStart_ud ,

13 double k_uq , double Ti_uq , double Ni_uq , double
yMax_uq , double yMin_uq , double iStart_uq ,
double yStart_uq ,

14 double k_dc , double Ti_dc , double Td_dc , double
Ni_dc , double yMax_dc , double yMin_dc , double
iStart_dc , double yStart_dc , int f i l t e rL eng th ,

15 double k_ac , double Ti_ac , double Ni_ac , double
yMax_ac , double yMin_ac , double iStart_ac ,
double yStart_ac ,

16 double samplePeriod , Gr idCurrentContro l l e r
currContr) ;

17 void update (int contrMode , double Vdc , double ud , double
uq , double Vdc_ref , double ud_ref , double uq_ref ,
double id , double iq , double e f f) ;

18 double get IdRef () ;
19 double get IqRef () ;
20 int ge tSta t e () ;
21 void s e t I d I (double desired_y , double e r r o r) ;
22
23 // Contro l mode cons tan t s
24 enum control_mode {INACTIVE = 0 , DCLEVEL = 1 , ISLAND = 2 ,

RCTVCOMP = 3} ;
25
26 private :
27 Pi ud_contr ;
28 Pi uq_contr ;
29 PID Vdc_contr ;
30 Pi Vac_contr ;
31 Gr idCurrentContro l l e r currContr ;
32
33 double Vdc_start , Vdc_stop ;
34 int i n t_state ;
35 } ;
36 #endif

Listing B.24: GridVoltageController.cpp
1 #include " g r i dVo l t ag eCont ro l l e r . h"

APPENDIX B. SOURCE CODE 178

2
3 void GridVoltageControl : : i n i t (double Vdc_start , double Vdc_stop ,
4 double k_ud , double Ti_ud , double Ni_ud , double yMax_ud,

double yMin_ud , double iStart_ud , double yStart_ud ,
5 double k_uq , double Ti_uq , double Ni_uq , double yMax_uq ,

double yMin_uq , double iStart_uq , double yStart_uq ,
6 double k_dc , double Ti_dc , double Td_dc , double Ni_dc ,

double yMax_dc , double yMin_dc , double iStart_dc ,
double yStart_dc , int f i l t e rL eng th ,

7 double k_ac , double Ti_ac , double Ni_ac , double yMax_ac ,
double yMin_ac , double iStart_ac , double yStart_ac ,

8 double samplePeriod , Gr idCurrentContro l l e r currContr) {
9
10 // I n i t i a l i z e the v o l t a g e c o n t r o l l e r s .
11 ud_contr . i n i t (k_ud , Ti_ud , Ni_ud , yMax_ud, yMin_ud

, samplePeriod , iStart_ud , yStart_ud) ;
12 uq_contr . i n i t (k_uq , Ti_uq , Ni_uq , yMax_uq , yMin_uq

, samplePeriod , iStart_uq , yStart_uq) ;
13
14 // I n i t i a l i z e the V_dc and V_ac c o n t r o l l e r .
15 Vdc_contr . i n i t (k_dc , Ti_dc , Td_dc , Ni_dc , yMax_dc ,

yMin_dc , samplePeriod , iStart_dc , yStart_dc ,
f i l t e r L e n g t h) ;

16 Vac_contr . i n i t (k_ac , Ti_ac , Ni_ac , yMax_ac ,
yMin_ac , samplePeriod , iStart_ac , yStart_ac) ;

17
18 this−>Vdc_start = Vdc_start ;
19 this−>Vdc_stop = Vdc_stop ;
20 this−>int_state = INACTIVE;
21 this−>currContr = currContr ;
22 }
23
24 void GridVoltageControl : : update (int cntrlMode , double Vdc , double

ud , double uq , double Vdc_ref , double ud_ref , double uq_ref ,
double id , double iq , double e f f) {

25 bool update = true ;
26 i f (e f f != −1) {
27 update = ud ∗ id + uq ∗ i q < e f f ;
28 }
29 i f (cntrlMode == INACTIVE) {
30 int_state = INACTIVE;
31 } else i f (cntrlMode == DCLEVEL) { // Con t ro l l e r shou ld

con t r o l the DC−v o l t a g e l e v e l
32 double q = uq∗ id − ud∗ i q ;
33 i f (in t_state == ISLAND) { // Set i n t e g r a t o r to

avoid unnecesarry bumps in the con t r o l s i g n a l .
34 Vdc_contr . setOutput (ud_contr . get () , Vdc_ref

− Vdc) ;
35 Vac_contr . s e t I (uq_contr . get () , uq_ref − q)

;
36 }
37
38 i f (in t_state != DCLEVEL) {
39 int_state = INACTIVE;
40 i f (Vdc >=Vdc_start) {
41 int_state = DCLEVEL;

APPENDIX B. SOURCE CODE 179

42 }
43 }
44
45 i f (in t_state == DCLEVEL) {
46
47 i f (Vdc <= Vdc_stop) {
48 int_state = INACTIVE;
49 } else {
50 double e r r = Vdc_ref − Vdc ;
51 double errAC = uq_ref − q ;
52 Vac_contr . update (errAC) ;
53 i f (e r r >= 0 | | update) {
54 Vdc_contr . update (e r r) ;
55 } else {
56 Vdc_contr . setOutput ((e f f −

uq∗ i q) /ud , e r r) ;
57 }
58
59 int_state = DCLEVEL;
60 }
61 }
62
63
64 } else i f (cntrlMode == ISLAND) { // Con t ro l l e r shou ld

opera te in ISLAND mode .
65
66 i f (in t_state != ISLAND) { // Check i f the

c o n t r o l l e r i s in ISLAND mode or not
67 i f (in t_state == DCLEVEL | | in t_sta te ==

RCTVCOMP) {
68 ud_contr . s e t I (Vdc_contr . get () ,

ud_ref−ud) ;
69 uq_contr . s e t I (Vac_contr . get () ,

uq_ref−uq) ;
70 }
71
72 int_state = INACTIVE;
73 i f (Vdc >= Vdc_start) { // Check i f DC−

v o l t a g e l e v e l i s s u f f i c i e n t to en ter
ISLAND mode .

74 int_state = ISLAND;
75 }
76
77 }
78 i f (in t_state == ISLAND) { // Con t ro l l e r i s

opera t ing in ISLAND mode .
79 i f (Vdc <= Vdc_stop) { // Con t ro l l e r in

ISLAND mode , check i f DC−v o l t a g e l e v e l
i s s u f f i c i e n t to cont inue running in
ISLAND mode .

80 int_state = INACTIVE;
81 } else {
82 double er rd = ud_ref − ud ;
83 double e r rq = uq_ref − uq ;
84
85 ud_contr . update (e r rd) ;

APPENDIX B. SOURCE CODE 180

86 uq_contr . update (e r rq) ;
87 }
88 }
89 } else i f (cntrlMode == RCTVCOMP) {
90 bool ind = fa l se ;
91 i f (in t_state != RCTVCOMP) { // Check i f the

c o n t r o l l e r i s in ISLAND mode or not
92 i f (in t_state == ISLAND) {
93 Vdc_contr . setOutput (ud_contr . get ()

, Vdc_ref − Vdc) ;
94 Vac_contr . s e t I (uq_contr . get () ,

uq_ref − uq) ;
95 } else i f (in t_state == DCLEVEL) {
96 ind = true ;
97 }
98
99 int_state = INACTIVE;
100 i f (Vdc >= Vdc_start) { // Check i f DC−

v o l t a g e l e v e l i s s u f f i c i e n t to en ter
ACLEVEL con t r o l mode .

101 int_state = RCTVCOMP;
102 }
103
104 }
105
106 i f (in t_state == RCTVCOMP) {
107 double q = uq∗ id − ud∗ i q ;
108 i f (Vdc <= Vdc_stop) { // Con t ro l l e r does

not have enough DC−v o l t a g e to cont inue
in ACLEVEL mode .

109 int_state = INACTIVE;
110 } else {
111 double errDC = Vdc_ref − Vdc ;
112 double errAC = uq_ref − q ;
113 Vac_contr . update (errAC) ;
114 i f (ind) {
115 double id_re f = (ud∗ id +

uq∗ i q − uq∗ get IqRef ()) /
ud ;

116 Vdc_contr . setOutput (id_ref
, errDC) ;

117 } else i f (errDC >= 0 | | update) {
118 Vdc_contr . update (errDC) ;
119 } else {
120 Vdc_contr . setOutput ((e f f −

uq∗ i q) /ud , errDC) ;
121 }
122
123 }
124 }
125 }
126
127 }
128
129 double GridVoltageControl : : get IdRef () {
130 i f (in t_state == DCLEVEL | | in t_sta te == RCTVCOMP) {

APPENDIX B. SOURCE CODE 181

131 return Vdc_contr . get () ;
132 } else i f (in t_state == ISLAND) {
133 return ud_contr . get () ;
134 } else {
135 return 0 ;
136 }
137 }
138
139 double GridVoltageControl : : ge t IqRef () {
140 i f (in t_state == RCTVCOMP | | in t_state == DCLEVEL) {
141 return 2∗Vac_contr . get () /(3∗ currContr . getUdRef ()) ;
142 } else i f (in t_state == ISLAND) {
143 return uq_contr . get () ;
144 } else {
145 return 0 ;
146 }
147 }
148
149 int GridVoltageControl : : g e tS ta t e () {
150 return i n t_state ;
151 }
152
153 void GridVoltageControl : : s e t I d I (double desired_y , double e r r o r) {
154 Vdc_contr . setOutput (desired_y , e r r o r) ;
155 }

APPENDIX B. SOURCE CODE 182

B.11 GridCurrentController

Listing B.25: GridCurrentController.h
1 #ifndef GRIDCURRENTCONTROLLER_H
2 #define GRIDCURRENTCONTROLLER_H
3
4 #include " p i . h"
5
6 class GridCurrentContro l l e r {
7 public :
8
9 void i n i t (double nomGridVd , double nomGridVq , double k_d ,

double Ti_d , double Ni_d , double yMax_d, double yMin_d ,
double iStart_d , double yStart_d ,

10 double k_q , double Ti_q , double Ni_q , double
yMax_q, double yMin_q , double iStart_q , double
yStart_q , double samplePeriod) ;

11 void update (int cntrlMode , double id , double iq , double
id_ref , double i q_re f) ;

12 double getUdRef () ;
13 double getUqRef () ;
14 void setDcLev () ;
15 void s e t I s l a nd () ;
16
17 enum control_mode {INACTIVE = 0 , DCLEVEL = 1 , ISLAND = 2 ,

RCTVCOMP = 3} ;
18 private :
19 Pi id_contr ;
20 Pi iq_contr ;
21
22 PiParam param ;
23 int i n t_state ;
24 double nomGridVd , nomGridVq ;
25 } ;
26
27 #endif

Listing B.26: GridCurrentController.cpp
1 #include " g r idCur r en tCont ro l l e r . h"
2
3 void GridCurrentContro l l e r : : i n i t (double nomGridVd , double

nomGridVq , double k_d , double Ti_d , double Ni_d , double yMax_d,
double yMin_d , double iStart_d , double yStart_d ,

4 double k_q , double Ti_q , double Ni_q , double yMax_q,
double yMin_q , double iStart_q , double yStart_q , double
samplePeriod) {

5
6 id_contr = Pi () ;
7 iq_contr = Pi () ;
8
9 // I n i t i a l i z e curren t c o n t r o l l e r s .
10 id_contr . i n i t (k_d , Ti_d , Ni_d , yMax_d, yMin_d ,

samplePeriod , iStart_d , yStart_d) ;

APPENDIX B. SOURCE CODE 183

11 iq_contr . i n i t (k_q , Ti_q , Ni_q , yMax_q, yMin_q ,
samplePeriod , iStart_q , yStart_q) ;

12 param = iq_contr . getParam () ;
13
14 this−>nomGridVd = nomGridVd ;
15 this−>nomGridVq = nomGridVq ;
16
17 in t_state = DCLEVEL;
18 }
19
20 void GridCurrentContro l l e r : : update (int cntrlMode , double id ,

double iq , double id_ref , double i q_re f) {
21 in t_state = cntrlMode ;
22
23 i f (in t_state == INACTIVE) {
24 id_contr . s e t I (0 , 0) ;
25 iq_contr . s e t I (0 , 0) ;
26 } else {
27 double er rd = id_re f − id ;
28 double e r rq = iq_re f − i q ;
29
30 id_contr . update (e r rd) ;
31 iq_contr . update (e r rq) ;
32 }
33 }
34
35 double GridCurrentContro l l e r : : getUdRef () {
36 i f (in t_state == INACTIVE) {
37 return 0 ;
38 } else {
39 return id_contr . get () + nomGridVd ;
40 }
41 }
42
43 double GridCurrentContro l l e r : : getUqRef () {
44 i f (in t_state == INACTIVE) {
45 return 0 ;
46 } else {
47 return iq_contr . get () + nomGridVq ;
48 }
49 }
50
51 void GridCurrentContro l l e r : : setDcLev () {
52 iq_contr . setParam (param) ;
53 }
54
55 void GridCurrentContro l l e r : : s e t I s l a nd () {
56 iq_contr . setParam (id_contr . getParam ()) ;
57 }

APPENDIX B. SOURCE CODE 184

B.12 Plant Control

Listing B.27: PlantControl.h
1 #ifndef PLANTCONTROL_H
2 #define PLANTCONTROL_H
3
4
5 class PlantContro l {
6
7 public :
8 void i n i t (int nmbrOfUnits , double l o s s e s , double

samplePeriod , double coolDownTime) ;
9
10 // Set the r i g h t mode f o r each powerplant , { d c l e v e l ,

e f f e c t }
11 void update (int mode , double desEf f , double power , bool

rctvComp , const double maxEff []) ;
12 int getGridMode () ;
13 int∗ getPlantMode () ;
14 double∗ getDesEf f () ;
15 double getGr idEf f () ;
16
17
18 enum mode { SHTDWN = 0 , MAXEFF = 1 , ISLAND = 2 , DESEFF =

3 , DELTA = 4 } ;
19
20 private :
21
22 const stat ic int maxCapacity = 100 ;
23 int unitMode [maxCapacity] ;
24 double desEf f [maxCapacity] ;
25 int nmbrOfUnits ;
26 double samplePeriod ;
27
28 double power ;
29 double l o s s e s ;
30
31 double cooldownTime , count ;
32 int controlModeGrid ; // mode to g r i d s i d e .
33
34 double g r i dE f f ;
35
36 void setAllUnitMode (int mode , const double maxEff []) ;
37 void s p l i tDe sE f f (double desEf f , const double maxEff []) ;
38 void s p l i t I s l a n d (const double maxEff []) ;
39 void s e t I s l a n d I n i t (const double maxEff []) ;
40 } ;
41
42 #endif

Listing B.28: PlantControl.cpp
1 #include "PlantContro l . h"
2 #include " g r i dVo l t ag eCont ro l l e r . h"
3 #include "TurbineControl . h"

APPENDIX B. SOURCE CODE 185

4
5 void PlantContro l : : i n i t (int nmbrOfUnits , double l o s s e s , double

samplePeriod , double coolDownTime) {
6 i f (maxCapacity >= nmbrOfUnits) {
7 this−>nmbrOfUnits = nmbrOfUnits ;
8 for (int i = 0 ; i < nmbrOfUnits ; i++) {
9 unitMode [i] = TurbineControl : :SHT_DWN;
10 desE f f [i] = 0 ;
11 }
12 } else {
13 this−>nmbrOfUnits = −1;
14 }
15
16 this−>l o s s e s = l o s s e s ;
17 this−>cooldownTime = coolDownTime ;
18 this−>samplePeriod = samplePeriod ;
19 controlModeGrid = GridVoltageControl : : INACTIVE;
20 count = 0 ;
21 g r i dE f f = −1;
22 }
23
24 void PlantContro l : : update (int mode , double desEf f , double power ,

bool rcvtComp , const double maxEff []) {
25 this−>power = power ;
26 g r i dE f f = −1;
27 switch (mode) {
28 case SHTDWN:
29 controlModeGrid = GridVoltageControl : : INACTIVE;
30 setAllUnitMode (TurbineControl : :SHT_DWN, maxEff) ;
31 break ;
32 case MAXEFF:
33 i f (rcvtComp) {
34 controlModeGrid = GridVoltageControl : :

RCTVCOMP;
35 } else {
36 controlModeGrid = GridVoltageControl : :

DCLEVEL;
37 }
38 setAllUnitMode (TurbineControl : :NOMEFF, maxEff) ;
39 break ;
40 case ISLAND:
41 controlModeGrid = GridVoltageControl : : ISLAND;
42 i f (power > 100) {
43 i f (count >= cooldownTime) {
44 s p l i t I s l a n d (maxEff) ;
45 } else {
46 count += samplePeriod ;
47 s e t I s l a n d I n i t (maxEff) ;
48 }
49 } else {
50 count = 0 ;
51 s e t I s l a n d I n i t (maxEff) ;
52 }
53 controlModeGrid = GridVoltageControl : : ISLAND;
54 break ;
55 case DESEFF:

APPENDIX B. SOURCE CODE 186

56 g r i dE f f = desEf f ;
57 i f (rcvtComp) {
58 controlModeGrid = GridVoltageControl : :

RCTVCOMP;
59 } else {
60 controlModeGrid = GridVoltageControl : :

DCLEVEL;
61 }
62 s p l i tDe sE f f (desEf f , maxEff) ;
63 break ;
64 case DELTA:
65 i f (rcvtComp) {
66 controlModeGrid = GridVoltageControl : :

RCTVCOMP;
67 } else {
68 controlModeGrid = GridVoltageControl : :

DCLEVEL;
69 }
70 setAllUnitMode (TurbineControl : :DELTA, maxEff) ;
71 break ;
72 default :
73 //Do noth ing .
74 break ;
75 }
76 }
77
78 int PlantContro l : : getGridMode () {
79 return controlModeGrid ;
80 }
81
82 int∗ PlantContro l : : getPlantMode () {
83 return unitMode ;
84 }
85
86 double∗ PlantContro l : : getDesEf f () {
87 return desEf f ;
88 }
89
90 void PlantContro l : : setAllUnitMode (int mode , const double maxEff [])

{
91 for (int i = 0 ; i < nmbrOfUnits ; i++) {
92 unitMode [i] = mode ;
93 switch (mode) {
94 case TurbineControl : :NOMEFF:
95 i f (maxEff [i] > 0) {
96 desE f f [i] = maxEff [i] ;
97 } else {
98 desE f f [i] = 0 ;
99 unitMode [i] = TurbineControl : :

SHT_DWN;
100 }
101 break ;
102 case TurbineControl : :SHT_DWN:
103 desE f f [i] = 0 ;
104 break ;
105 case TurbineControl : :DELTA:

APPENDIX B. SOURCE CODE 187

106 i f (maxEff [i] > 0) {
107 desE f f [i] = 0 .8 ∗ maxEff [i] ; //

For good measure .
108 } else {
109 desE f f [i] = 0 ;
110 unitMode [i] = TurbineControl : :

SHT_DWN;
111 }
112 break ;
113 default :
114 //do noth ing .
115 break ;
116 }
117 }
118 }
119
120 void PlantContro l : : s p l i tD e sE f f (double desEf f , const double maxEff

[]) {
121 int ac t i v eUn i t s = 0 ;
122 double potEf f = 0 ;
123 desE f f = desEf f /(1 − l o s s e s) ;
124 while (potEf f < desE f f ∗1 .2 && ac t i v eUn i t s < nmbrOfUnits) {
125 potEf f += maxEff [a c t i v eUn i t s ++];
126 }
127
128 for (int i = 0 ; i < ac t i v eUn i t s ; i++) {
129 i f (maxEff [i] > 0) {
130 unitMode [i] = TurbineControl : :POWTRAC;
131 this−>desEf f [i] = (maxEff [i] / potEf f) ∗

desEf f ;
132 } else {
133 unitMode [i] = TurbineControl : :SHT_DWN;
134 this−>desEf f [i] = 0 ;
135 }
136 }
137
138 for (int i = ac t i v eUn i t s ; i < nmbrOfUnits ; i++) {
139 unitMode [i] = TurbineControl : :SHT_DWN;
140 this−>desEf f [i] = 0 ;
141 }
142 }
143
144 double PlantContro l : : ge tGr idEf f () {
145 return g r i dE f f ;
146 }
147
148 void PlantContro l : : s p l i t I s l a n d (const double maxEff []) {
149 double minEff = power ∗ 1 . 6 ; // Minimum 60% (− l o s s e s) more

than consumed power f o r con t r o l margin .
150
151 int ac t i v eUn i t s = 0 ;
152 double potEf f = 0 ;
153 while (potEf f < minEff && ac t i v eUn i t s < nmbrOfUnits) {
154 potEf f += maxEff [a c t i v eUn i t s] ;
155 i f (maxEff [a c t i v eUn i t s++] > 0) {
156

APPENDIX B. SOURCE CODE 188

157 }
158 }
159
160 for (int i = 0 ; i < ac t i v eUn i t s ; i++) {
161 i f (maxEff [i] > 0) {
162 unitMode [i] = TurbineControl : :DCCONTR;
163 this−>desEf f [i] = (maxEff [i] / potEf f) ∗

power/(1− l o s s e s) ;
164 } else {
165 unitMode [i] = TurbineControl : :SHT_DWN;
166 desE f f [i] = 0 ;
167 }
168 }
169
170 for (int i = ac t i v eUn i t s ; i < nmbrOfUnits ; i++) {
171 unitMode [i] = TurbineControl : :SHT_DWN;
172 this−>desEf f [i] = 0 ;
173 }
174 }
175
176 void PlantContro l : : s e t I s l a n d I n i t (const double maxEff []) {
177 for (int i = 0 ; i < nmbrOfUnits ; i++) {
178 unitMode [i] = TurbineControl : :POWTRAC;
179 i f (maxEff [i] > 1000) {
180 desE f f [i] = 1000 ;
181 } else i f (maxEff [i] > 0) {
182 desE f f [i] = maxEff [i] ;
183 } else {
184 desE f f [i] = 0 ;
185 unitMode [i] = TurbineControl : :

SHT_DWN;
186 }
187 }
188 }

