

A CasADi Based Toolchain
For JModelica.org

Björn Lennernäs

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lund University Publications - Student Papers

https://core.ac.uk/display/289951601?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MASTER THESIS in Automatic Control 2013

Supervisors:

Toivo Henningsson - Modelon AB
Fredrik Magnusson - Department of Automatic Control, Lund University
Johan Åkesson - Modelon AB/Department of Automatic Control, Lund University

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

ISSN 0280-5316
ISRN LUTFD2/TFRT--5919--SE

© 2013 by Björn Lennernäs. All rights reserved.
Printed in Sweden by Media-Tryck.
Lund 2013

Abstract

Computer-aided modeling for simulation, optimization and analysis is in-
creasingly used for product development in industry today, resulting in high
demands on the tools used. A tool chain for transferring interpreted code of
the modeling languages Modelica and Optimica from the simulation and opti-
mization tool JModelica.org to CasADi has been implemented. CasADi pro-
vides several desirable features, most importantly an integrated and efficient
automatic differentiation engine and the ability to interactively work with the
systems expressed using it. The biggest problems solved to enable this were the
creation of a representation of the mathematical systems described by Model-
ica and Optimica code that is integrated with CasADi, and the construction of
a transfer scheme for moving information from the Java-based JModelica.org
compiler to C++ in which CasADi resides. This was successfully achieved for
a continuous subset of Modelica and Optimica that may contain functions.

Acknowledgements

I thank my advisors Toivo Henningsson, Fredrik Magnusson and Johan Åkesson.

• Toivo has provided mathematical and programming expertise, and has
provided a lot of very useful feedback on wide variety of topics throughout
the whole thesis.

• Fredrik has provided mathematical expertise and has also been the key
person for providing the users perspective, as he has worked with CasADi
before and aims to use the developed system.

• Johan has provided deep knowledge and expertise and has helped make
important design decisions.

I thank Gustaf Söderlind and the staff at the department of numerical
analysis at Lund University. They provided much help and encouragement
for me, as a computer engineering student, when I wanted to learn numerical
analysis, without which this thesis would not have been possible.

I thank Joel Andersson, one of the developers of CasADi, for providing quick
and extensive help to questions and reflections posed.

I thank my fellow thesis colleagues at Modelon and the staff there, for friendly
banter and miscellaneous help.

Lastly, I thank Erika.

i

Contents

1 Introduction 1
1.1 Modelica . 1
1.2 Thesis goal . 1

1.2.1 Current state . 2
1.2.2 Goal . 2

1.3 Outline . 2

2 Background 4
2.1 Mathematical formulation . 4

2.1.1 Differential equations . 4
2.1.2 Dynamic optimization problems 5

2.2 Modelica and Optimica . 6
2.2.1 Declarative . 6
2.2.2 Syntax and semantics . 6
2.2.3 Translation process . 9

2.3 JModelica.org . 10
2.3.1 Compiler . 11

2.4 CasADi . 12
2.4.1 Automatic Differentiation 13
2.4.2 Syntax and semantics . 14

2.5 Usage of the flat model . 15
2.5.1 Code creation . 15
2.5.2 XML . 17

3 Goals and motivation 18
3.1 General goals . 19
3.2 Specific goals . 19

4 Implementation 20
4.1 Implementation overview . 20
4.2 C++ model . 21

4.2.1 Model class . 22
4.2.2 Equations . 25
4.2.3 Functions . 26

ii

4.2.4 Variables . 26
4.2.5 Optimization . 29

4.3 Transfer design . 31
4.3.1 Connection between Java and C++ 31
4.3.2 Extending JModelica.org compiler 32
4.3.3 Filling model . 36

4.4 Testing . 38

5 Benchmarks 39
5.1 Solution comparison . 39
5.2 Timing . 41
5.3 Printing . 42
5.4 Stability . 43

6 Discussion 45
6.1 Goal evaluation . 45

6.1.1 Specific goals . 45
6.1.2 General goals . 46

6.2 Future work . 47
6.3 Other considerations . 47

iii

Chapter 1

Introduction

Computer-aided modeling of large and complex systems with the purpose of
simulation, optimization and analysis is increasingly used in industry today.
This puts high demands on the software tools and languages used to handle and
express the models. The tools may need to handle more than 100 000 variables
and equations, and the languages need to enable a clear and convenient modeling
environment for the engineer.

1.1 Modelica

Modelica is a non-proprietary and domain-neutral modeling language that has
gained popularity in the industry since its introduction in 1997. Users include
automotive companies such as Audi, BMW and Ford, companies involved with
power plants such as Siemens and ABB, and many more [1].

Modelica is an equation based, object-oriented and declarative language that
lets the engineer work at a conveniently high level. In doing so, several respon-
sibilities are given to the tools that handle the models. These often need to
perform several manipulations on the models, e.g. index reduction, solving the
initialization system and determining the order of execution for the equations,
in order to obtain objects on which mathematical algorithms may operate. Ex-
amples of Modelica tools are AMESim, Dymola and JModelica.org [2].

1.2 Thesis goal

This thesis aims to implement a tool chain that connects the JModelica.org
environment with CasADi. JModelica.org is an open source platform providing,
among other things, a Modelica compiler and a computation environment. It
also provides the Modelica extension Optimica, which allows for the formulation
of Modelica based dynamic optimization problems [3].

CasADi is a minimalistic, general purpose, computer algebra system de-
signed for nonlinear optimization. CasADi provides integrated support for

1

automatic differentiation (AD) and high-level interfaces to state-of-the-art solvers.
CasADi is fast and efficient and comes with interfaces to Python and Octave,
offering interactivity and convenience [4].

1.2.1 Current state

Currently JModelica.org can interpret Modelica and Optimica code and:

• Create code units that contains methods and other information that math-
ematical algorithms can use to simulate/solve them.

• Create XML-files that represents Optimica optimization problems. These
files can be imported by other tools that can solve them.

The two different approaches offer different advantages and drawbacks. The
code units have good coverage of the Modelica language but can be computa-
tionally slow, and once they are created they can not be changed. The XML
format on the other hand offers incomplete coverage of the Modelica language
(no hybrid systems), but the files retain their mathematical structure in such
a way that they can be altered, and the tools that imports them may offer
other advantages. CasADi offers such an import today, which can not represent
Modelica functions but comes with the interactiveness, precision and speed that
CasADi provides.

1.2.2 Goal

The goal is to lay the foundation for software that has the advantages of the
XML-based transfer from JModelica.org to CasADi, as outlined above, but not
the disadvantages. The performance of the implementation is important because
it should be able to handle very large models. It should also be extendable so
that more coverage of Modelica and Optimica (than this thesis provides), and
other functionality, can be easily added.

These goals will be achieved by creating general representations of Modelica
models and Optimica optimization problems that are integrated with CasADi,
and by creating tools to populate them with data from the JModelica.org com-
piler. A large part of the difficulty of this task stems from the fact that the
JModelica.org compiler is written in Java while CasADi is written in C++.

1.3 Outline

The report is organized as follows: Presented first, in Chapter 2, is a descrip-
tion of the mathematical formalism used, followed by a description of the tools
involved, including how they can be used currently. Then the goals and motiva-
tions for this thesis are presented in Chapter 3. Thereafter the implementation
is presented in Chapter 4: described first is the development of the CasADi inte-
grated model representation, followed by the implementation of the information

2

transfer from JModelica.org to the model representation, then the description is
concluded by a presentation of developed test methods. Thereafter some bench-
marks that measure the correctness and performance of the implementation are
presented in chapter 5. Presented last, in Chapter 6, is a discussion over how
well the implementation realizes the goals as well as future perspectives.

3

Chapter 2

Background

An overview of the mathematical formulation that forms the basis for the lan-
guages Modelica and the extension Optimica is provided below. Then the
languages Modelica and Optimica are described, followed by a description of
JModelica.org and CasADi. The chapter is concluded by a description of how
JModelica.org can use the interpreted models today.

2.1 Mathematical formulation

2.1.1 Differential equations

A common mathematical formulation used to describe the behavior of dynamic
systems is ordinary differential equations (ODEs), i.e. equations on the form:

ẋ = f(x, t)

The use of ODEs in modeling has been popular for several decades, using e.g.
block modeling with Matlab/Simulink. There exists a rich theory describing
how different types of ODEs can be numerically solved as well as robust solvers.

But using ODEs for modeling is limiting. Commonly modeling of physical
systems, and connections between them, are hard to express using only ODEs,
e.g. physical modeling may give rise to algebraic loops that can not be expressed
using ODEs. Even if the models can be expressed with ODEs, much work
may be required by the modeler if the models are changed, e.g. by adding
or removing components, resulting in a tedious modeling process. Differential
algebraic equations (DAEs) do not require such extra work and they can describe
algebraic loops, and they are therefore more suitable as a mathematical basis
for convenient and powerful modeling. As such the mathematical foundation of
Modelica models is DAEs, making it possible to use many powerful modeling
concepts such as object orientation and connections between models [5].

More precisely Modelica allows the formulation of hybrid DAEs, which means
that they may contain discrete parts. However this thesis restricts the under-

4

lying mathematical model to non-hybrid DAE systems, which are generally de-
scribed by:

f(t, ẋ(t), x(t), w(t)) = 0

Where w denotes algebraic variables. This form is called the fully implicit form,
and it is the one used throughout this thesis.

An important concept for DAEs is that of index, which relates to the number
of times the equations in the DAE have to be differentiated in order to solve
for the differentiated variables. By differentiating the DAE this way an ODE
can be obtained, enabling the use of ODE solvers. Note however that numerical
solutions of DAEs usually involve other techniques.

2.1.2 Dynamic optimization problems

The Modelica extension Optimica, that is provided by JModelica.org, allows for
the formulation of dynamic optimization problems (DOP) based on Modelica
models. DOPs represent a large class of problems, in this thesis however the
DOPs considered are real valued optimal control problems (OCP). These prob-
lems consist of the dynamic system from the underlying Modelica model, some
cost function that is to be minimized, the start and final time over which the
problem is defined, constraints on the variables that make up the problem and
some free variable. This may be expressed as:
Minimize the cost function:

f(x(t), w(t), u(t), p) t ∈ [t0, tf]

Subject to:

f(t, ẋ(t), x(t), w(t)) = 0 t ∈ [t0, tf]

cineq(x(t), w(t), u(t), p) ≤ 0 t ∈ [t0, tf]

ceq(x(t), w(t), u(t), p) = 0 t ∈ [t0, tf]

where u is the free control variable, cineq and ceq are the inequality and equality
constraints respectively, and p is the parameters.

The cost functions considered are of two different forms, and they are called
the Lagrange and Mayer term. The Mayer form is expressed as a function at
the final time point:

fMayer = M(x(tf), w(tf), u(tf), p), M ∈ C2

The Lagrange form consists of a function that is integrated over the whole
interval:

fLagrange =

∫ tf

t0

L(x(t), w(t), u(t), p), L ∈ C2

where C2 denotes twice continuously differentiable functions.

5

2.2 Modelica and Optimica

Modelica is an object-oriented declarative language designed for convenient
modeling of the dynamic behavior (i.e. over time) of complex heterogeneous
systems. It is an equation-based language, and models are described using con-
tinuous DAEs and discrete equations.

The design of the language began in 1996 and it has been used in industry
since 2000. It is provided for free and developed and maintained by the non-
profit Modelica Association, which also freely provides the Modelica Standard
Library containing generic model components from different domains. Motivat-
ing the effort was the need to construct a language that was not limited to a
specific commercial tool, as was the case with most tools at the time, and that
was domain neutral [6].

2.2.1 Declarative

Modelica models primarily consist of equations as opposed to assignments that
are typically found in conventional imperative programming languages. This
has important implications since these equations describe equality and it is
generally not possible to execute the equations in the order that they are listed
(no pre-defined causality). Instead the compiler will have to figure out in which
order the equations should be exercised and what variables are set using them.
Consider the following equation, which may occur in a Modelica model:

x+ sin(y) = z · a
There are several variables on each side of the equation and it is not given how
this equation should be used in a model. Depending on the manipulation in the
compiler, the equation above could e.g. be used to calculate either one of x, y, z
and a [7] [2].

2.2.2 Syntax and semantics

The basic Modelica program is a model, akin to a class in an object oriented
programming language. The blueprint for models is very straightforward, and in
its simplest form there is a list of variable declarations followed by an equation
section. For example, the simple differential equation ẋ = λ · x can be modeled
as:

model MyModelName

parameter Real lambda = -1.0;

Real x (start = 5.0);

equation

der(x) = lambda * x;

end MyModelName;

Below follows a brief walkthrough of the Modelica language, and what Optimica
allows for on top of it.

6

Variables

A variable in Modelica may be given a wide variety of properties. They may
have attributes such as start values, they can represent different types, and they
can occur in different ways in the model (e.g. as inputs or as constants).

There are four primitive variable types; Real, Integer, Boolean and
String. These are allowed to vary in different ways, which is called their vari-
ability. For example, they may be continuous like a differential variable, they
may be discrete and only allowed to change values in certain situations, or they
may be declared as constant or parameter and not be allowed to vary at all
over time. Furthermore the variables may be declared as input, output or
neither, which is called their causality.

A wide variety of attributes may be specified for a variable. Important ex-
amples are min, max, nominal, start and unit, or they may simply be given
a value. There are a couple of important observations: some attributes may be
declared as expressions, e.g max = sin(p). This gives the second important ob-
servation: variables may have values that depend on other variables. A notable
example of this is parameters whose values are given by an expressions of other
parameters.

Other variable constructions that may occur in a model are instances of other
classes and the structured forms arrays and records, where record is akin to a
struct in C++ that may hold fields of arbitrary types. Custom variable types
may also be built from the primitive types and these typically have a certain
name and attributes, such as unit, preset.

Functions

An important part of Modelica is functions, and they follow a syntax similar
to that of a model. A function definition consists of a variable field part and
an algorithm section. The variable field part declares the inputs and outputs of
the model as well as any internal variables. The algorithm section is somewhat
similar to the equation section of a model, but an important difference is that it
consists of assignments (see Section 2.2.1). A simple example, with functionality
equivalent to the model above is:

model MyModelName

parameter Real lambda = -1.0;

Real x (start = 5.0);

function f

input Real in1;

input Real in2;

output Real out1;

algorithm

out1 := in1*in2;

end f;

equation

der(x) = f(lambda, x);

7

end MyModelName;

The allowed syntax is very expressive:

• Regular variables, array and records may be used.

• Flow control is allowed.

• Other functions may be called.

• Variables that have been assigned may be reassigned.

A special class of functions consists of those functions that have several
outputs. These are only allowed to occur in assignments, in contrast to normal
functions that may occur in equations. An example of such a function is:

function f

input Real in1;

input Real in2;

output Real out1;

output Real out2;

algorithm

out1 := in1*0.5;

out2 := in2+out1;

end f;

Which can occur in the equation section as:

(a,b) = f(x,y)

Other features

In addition to the elementary expressions and functions Modelica supports var-
ious types of control flow, including if-then-else statements, for statements and
when statements.

Other important aspects of Modelica are the support for inheritance, pack-
aging and connections between different models. These will not be described
in detail here, as they are not visible after the compiler has interpreted and
flattened the model (see Section 2.2.3).

Optimica

The Optimica extension provides a few new concepts that are needed to rep-
resent DOPs. Optimica is provided on top of Modelica; the dynamic system
provided by Modelica is one of the conditions in the DOP (see Section 2.1.2).
To reflect this, Optimica code that describes a DOP is called a class, as com-
pared to a model for Modelica.

To create an Optimica class the keyword model is replaced by optimization.
At the top the objective or objectiveIntegrand, corresponding to the Mayer

8

and Lagrange term respectively, are defined. The start and final times for the
problem are also defined.

Optimica allows constraint to be placed on variables. There are two kinds
of constraint, path and point constraints. Path constraints have to be fulfilled
during the entire simulation, whereas point constraints have to be fulfilled at
certain time points. These are declared in a new section, called constraint.

Optimica defines new unit attributes: free and initialGuess. The free

flag determines whether the variable is free in the optimization, and initialGuess

is used to provide an initial guess for a variables value, which may sometimes
enhance solver performance.

An optimal control problem based on the Van der Pol (VDP) oscillator,
with a Lagrange term as the cost function and constraints placed on the control
signal u, can be represented as:

optimization vdp (objectiveIntegrand = cost,

startTime = 0,

finalTime = 1)

// The states

Real x1(start=0,fixed=true);

Real x2(start=1,fixed=true);

// The control signal

input Real u;

Real cost(start=0,fixed=true);

equation

der(x1) = (1 - x2^2) * x1 - x2 + u;

der(x2) = x1;

der(cost) = x1^2 + x2^2 + u^2;

constraint

u<=0.75;

end vdp;

The keyword fixed used above is not the opposite of free. It is a Modelica
keyword and it determines how the value is handled during the solution of the
initialization system (see Section 2.2.3 below). The free keyword is assumed to
be true for the input variable and false for the other variables.

2.2.3 Translation process

It is the responsibility of the compiler to interpret and error check the Modelica
code, and to transform it into something that can be used for computation.
An important part of this process is called flattening, which transforms the
code into a set of variable declarations and equations (replacing inheritance and
component structures with appropriate variables and equations). The result
of this process is called a flat model and it is generally manipulated further,

9

in order to make it possible to use with solvers. Examples of manipulations
include index reduction (since many solvers require that the system is on ODE-
form), block lower triangular (BLT) transformation (to sort the equations and
make it more efficient to use with solvers) and tearing (to further enhance the
performance).

The output from this process is a hybrid DAE, representing the mathemat-
ical structure of the original Modelica code. The next step is to connect this
information with solvers; generally this is done by compiling it into c-code which
is linked to solvers.

To be able to simulate the system the variables must be assigned start values.
This is the responsibility of the initialization phase. This process generally gives
rise to a set of initial equations, which are used to assign values to the variables
[8].

2.3 JModelica.org

JModelica.org is an open source platform for simulation, optimization and
analysis of complex Modelica based systems. JModelica.org allows for transla-
tion of Modelica and Optimica code and it provides a simulation and optimiza-
tion environment. JModelica.org grew out of research at Lund University, and
is now maintained and developed by Modelon AB in collaboration with Lund
University.

Overview

Figure 2.1: Overview of the JModelica.org environment.

An overview of the JModelica.org platform is shown in Figure 2.1. For the user
of JModelica.org the integration with Python is very handy, offering convenient

10

ways to interact with the models, solvers and their result.
The compiler consists of three different parts: the front-end, middle-end and

back-end. The front end is where the functionality for parsing and error checking
models is located, and it is where the model is first flattened. The output from
the initial flattening is used in the middle end where all manipulations, e.g index
reduction and BLT transformation, are performed. The final flat model, that is
the output from the middle end, is then used in the back-end. For a discussion
of how the final flat models may be used the reader is referred to Section 2.2.5.

2.3.1 Compiler

JastAdd

The JModelica.org compiler is implemented using JastAdd, which is a tool
designed for modular and extensible compiler construction. JastAdd uses an
abstract grammar specification for describing and generating a Java class hier-
archy, represented as an abstract syntax tree (AST). An AST is a common way
to represent the data created by compilers, and the nodes in the AST typically
maps to an element in the language [9] [10].

An example of an AST is shown in Figure 2.2, representing the expression
1 + 2.

FAddExp

FRealLitExp ’1’ FRealLitExp ’2’

Figure 2.2: An AST for the expression 1 + 2.

The specification that produces some of the Java classes needed for the above
AST may look like:

FBinExp : FExp ::= Left:FExp Right:FExp;

FAddExp : FBinExp;

FLitExp : FExp;

FRealLitExp : FLitExp ::= <Value:double>;

Working through the statements:

• FBinExp : FExp ::= Left:FExp Right:FExp; Creates the class FBinExp
that is a subclass of FExp, and that has two expression as children (called
Left and Right).

11

• FAddExp : FBinExp; Creates the class FAddExp that is a subclass of
FBinExp

• FLitExp : FExp; Creates the class FLitExp that is a subclass of FExp

• FRealLitExp : FLitExp ::= <Value:double>; Creates the class FRealLitExp
that is a subclass of FLitExp, and that holds a double called value

JastAdd also provides an easily extendable and modular way to fill the pro-
duced classes with functionality, using aspects. The syntax is rather straight-
forward, and the developer may declare aspects and in them define behavior of
classes that are related to the aspect. Continuing with the above example, a
method that returns the value of the FAddExp might be implemented as follows:

aspect Arithmetic {

public double FAddExp.calculate() {

return Left.value() + Right.value();

}

public double FRealLitExp.value() {

return value;

}

}

This will add the calculate method to FAddExp, and the value method to
FRealLitExp. Note that this is a simplified example and it would need more
methods to make the resulting Java classes compile.

The observant reader might wonder why the methods and classes in the
examples above are prefixed with an ”F”. This is because they are inspired by
the Java classes that make up the AST for the Flat model in the JModelica.org
compiler.

Flat model class

There are actually two different compilers in JModelica.org, one for handling
Modelica models and the other for handling Optimica models. The flat model
is represented by the classes FClass and FOptClass respectively. These contain
the model, and they keep such information as variables, equations and function
declarations.

2.4 CasADi

CasADi is an open source minimalistic computer algebra system that offers eight
different flavors of automatic differentiation (AD). Written in C++, but offering
full featured front ends to Python and Octave, it is designed to be a low level,
fast and efficient tool for the developer and user of algorithms for numerical
optimization. It offers back ends to state of the of art solvers such as Sundials,
IPOPT, WORHP and KNITRO [11] [12].

12

2.4.1 Automatic Differentiation

In simulation and optimization there often arises a need to use iterative methods
such as Newton’s method to handle non-linear problems. These methods often
require knowledge of the derivatives of the problems expressions; hence it is of
great importance to efficiently and accurately construct them. The classical way
of constructing them is either through numeric or symbolic differentiation, i.e.
constructing a full expression for the analytical derivative. These methods have
significant drawbacks though. Numerical differentiation is often inaccurate and
symbolic differentiation is slow and faces many difficulties when dealing with
large expressions. Automatic differentiation solves those problems.

By taking advantage of the fact that expressions consist of a sequence of ele-
mentary operations and functions (e.g plus/minus and sin/cos), and by utilizing
the chain rule, derivatives can be constructed fast and with the same accuracy
as symbolic derivatives. There are different approaches, depending on e.g the
order in which the expression graphs are traversed. In Figure 2.3 the use of
forward AD to find the derivative of the function f(x1, x2) = x1x2 + sin(x1) is
illustrated.

Figure 2.3: Illustration of forward AD.

To find the derivative with regards to a variable, e.g x2, the derivative of the
AD variable corresponding to it, ẇ2, is set to one and the variable corresponding
to the derivative of x1 to zero. These seeds are then used to calculate the value
of the AD variable corresponding to the derivative of the full function, ẇ5. In
tabular form:

Node Derivative expression Resulting variable value
w1 = x1 ẇ1 0 (seed)
w2 = x2 ẇ2 1 (seed)
w3 = x1 · x2 w1 · ẇ2 + ẇ1 · w2 w1

w4 = sin(x1) cos(w1) · ẇ1 0
w5 = x1 · x2 + sin(x1) ẇ3 + ẇ4 w1

13

Thus the derivative of f with regards to x2 is given by the variable w1, corrspond-
ing to x1 [13].

2.4.2 Syntax and semantics

CasADi is a symbolic framework that lets the user define and use expressions
and variables in an intuitive way. The syntax, and inner workings, of CasADi
centers around the two types SX and MX and their dependent classes, and the FX

class for handling functions. Consider a simple example, how to construct the
expression a · b. In the Python terminal this may be achieved by writing:

a = SX("a")

b = SX("b")

exp = a*b

print exp

=> (a*b)

There are several built in operations that can be used, e.g. the jacobian of
the expression above with regards to the variable a may be found using:

jacobian(exp, a)

=> Matrix<SX>(b)

Here the type SXMatrix is shown, which is just a matrix with elements of type
SX. The variables that occur in an expression may be substituted for others:

sub = substitute(exp, a, SX("new"))

print sub

=> Matrix<SX>((new*b))

Functions can also be easily constructed, e.g the function f(a, b) = a · b:

f = SXFunction([a,b], [exp]) # Make an SXFunction instance

f.init() # Initialize, f can now be called

f.input(0).set(1) # set a = 1

f.input(1).set(2) # set b = 2

f.evalute()

print f.output()

=> 2

An important difference between SX and MX lie in what types of expressions
that they allow. The SX type is used to build up scalar unary or binary expres-
sion (R → R or R × R → R), while MX expressions are allowed to be ”general
multiple sparse-matrix valued input, multiple sparse-matrix valued output func-
tions: Rn1×m1 × . . . × RnN×mN → Rp1×q1 × . . . × RpM×qN ” [14]. Importantly
MX allows for building expressions where function calls are a part. However, SX
is as a rule faster and more intuitive to work with.

For example, to create an MX expression where a function call is a part in
the Python terminal:

14

Construct function

funcVar = MX("fv") # Variable occurring in function equation

funcExp = funcVar**2 # Function expression

f = MXFunction([funcVar], [funcExp])

f.setOption("name", "myFunction") # Gives the function a name

f # prints function

=> function("myFunction")

Construct call

f.init() # Need to initialize it before it is called

funcArg = MX("arg") # The call argument

call = f.call([funcArg])[0] # Make the call and extract MX

call # Prints it

=> MX(function("myFunction").call([arg]){0}) # The call is an MX object

Construct expression with a call

var = MX("var")

eq = var * call # Construct the expression

eq # prints it

=> MX((var*function("myFunction").call([arg]){0}))

2.5 Usage of the flat model

This thesis concerns the use of the final flat model, after compilation and ma-
nipulation (see Section 2.2.3 and 2.3 for an overview of these concepts). The
ways in which this model is used today in JModelica.org is described below. In
short it is used either to create and compile code, which is linked with solvers,
or too create an XML-file containing a representation of the model which can
later be imported into other tools (e.g. CasADi).

2.5.1 Code creation

The standard way of dealing with Modelica and Optimica code in JModelica.org
is through the generation of code-units, described below. These code-units offer
very good coverage of Modelica and Optimica. The drawbacks are that it can
take a long time to compile and then run the code, and importantly that it is
a static process; the code units supports very little post compilation tinkering.
Advantages are that the units can be saved for later and that they are not
necessarily bound to the JModelica.org environment, and that both the solver
and compiler do not have to be activated at the same time (thus reducing the
burden on working memory).

FMI

JModelica.org implements the Functional Mock-up Interface (FMI) for gener-
ating code-units for Modelica models. FMI defines an open and standardized

15

interface for accessing the properties of a model, e.g. the variables and methods
to evaluate them. Thus code-units that implement FMI that were generated by
one tool may later be simulated using another FMI compliant tool. Another
important aspect of FMI is the intention that units may be connected, allowing
co-simulation and virtual product assembly.

Practically code-units that implement this interface are called Functional
Mock-up Units (FMU). The FMU is a zip file (with .fmu file ending) and it
contains an XML-file, mainly containing variable definitions, and C- and dll-
files containing the rest of the information, such as functions to evaluate the
model equations [15].

JMI

JModelica.org defines the JModelica.org Model Interface (JMI) for generating
code-units, called JModelica.org Model Unints (JMU), for Modelica and Opti-
mica. JMI handles optimization information and dynamic systems on a form
similar to what is used in this thesis, therefore some internal aspects of JMI are
described in more detail here.

JMI consists of mainly two parts, the DAE system of the model, includ-
ing the initilization system, and the optimization information, containing e.g.
constraints and cost functions. Accesses to these are offered as a collection of
functions, where the input arguments are of a set of different variable kinds.
These variable kinds consist of:

• Dependent and independent parameters for all primitive types. As ex-
plained in Section 2.2.2, parameters may be defined by expressions, and
these expressions may depend on other variables, thus making the param-
eter defined in this way a dependent parameter.

• Dependent and independent constants for all primitive Modelica types.

• Real derivative ẋ and state variables x.

• Real algebraic variables

• Real, Integer and Boolean inputs

• Time

• Discrete real variables

• Integer and Boolean variables

For more information see [16].

16

2.5.2 XML

There is an XML format for representing continuous time DAE based models
from equation based modeling languages, including Modelica. JModelica.org
allows for creation of XML-files based on this format, and CasADi has function-
ality to import these XML-files.

Advantages of this format are that, like for code creation, the files may be
saved for later, that they are not necessarily bound to a specific tool, and that
the tool that uses the XML-files does not need to be activated at the same time
as the tool that creates them. Additional advantages are achieved since the
XML-format saves the model on a form that may allow further manipulation.
The disadvantages come from the limitations of the format itself, and the tools
currently supporting it.

XML format

The XML framework was proposed in [17]. Important goals for the project was
to provide a framework that was neutral with respect to model usage, easy to
use, maintain and understand.

To achieve this, the format has a representation as close to a set of equations
and variables as possible. Information about inheritance, complex data struc-
tures and so forth are therefore not part a of the format. The starting point
was the XML-format provided by FMI (Section 2.5.1), which was extended with
new modules for expressions, equations, functions and algorithms. An impor-
tant limitation for the format is that it only handles continuous time models,
i.e. no hybrid models are allowed.

The referenced paper also describes a test implementation in JModelica.org.
This implementation supports the export of models via an extended version of
this framework, for handling Optimica models. The authors noted that it was
quite easy to construct the implementation since the AST in the JModelica.org
compiler, see Section 2.3.1, is easily mapped to the format.

CasADi import and SymbolicOCP

CasADi offers a module for importing and representing models described on the
format above called SymbolicOCP. The support for the format is not complete;
importantly it does not support functions. The model representation is also
fairly basic. Despite these limitations numerical algorithms using this function-
ality have been successfully implemented [18].

17

Chapter 3

Goals and motivation

As stated in the introduction, the goal of this thesis is to develop software to
represent Modelica and Optimica models using CasADi, and to transfer models
from the JModelica.org compiler to this new representation. The idea is to
start building a new way for JModelica.org to handle compilation and handling
of models, which is to be used extensively in the future. The future use might
not only be limited to transferring the final flat model, but some parts of the
manipulation capacities of JModelica.org, such as index reduction and BLT-
transformation, may also be moved here (see Section 2.2.3 for a presentation of
these concepts). Furthermore numerical algorithms will be developed to utilize
the implementation.

Motivating this effort is the desire to use the many advantages offered by
CasADi, such as symbolic representation, AD and interactivity. Listing these
advantages:

• CasADi has an integrated and highly efficient AD-engine, which provides
a great advantage for many simulation and optimization tasks.

• CasADi, and its solver interfaces, provide a speed increase over the tradi-
tional code based approach.

• CasADi provides a comprehensive environment for developing numerical
algorithms.

• CasADi is interfaced with Python, which means that the interactivity pro-
vided by many Python prompts such as IPython, can be utilized together
with CasADi. Thus the user may interactively work with CasADi data
structures, manipulating them as they please.

• Overcome limitations of current schemes, as presented in Section 2.5.

Given these long term goals and motivations, and the need to comply with
the limited scope of this thesis, a list with general design goals for the developed
software as well as a list with specific functionality goals for this thesis, are
presented below.

18

3.1 General goals

To enable the long term goals, it is important that care is taken when con-
structing the system. For the part of the system that consists of the model, the
systems should be designed such that it is:

• Easy to understand, hopefully many will try to understand, work with
and maintain the system.

• Extensible, so that algorithms may be developed for it, and so that support
for current and future versions of Modelica and Optimica can be added.

• Efficient, extremely large models, with more than 100 000 variables and
equations, should be possible to handle.

In short, the model should be as minimalistic as possible without locking out
future additions to it. Similarly for the design of the transfer software, it is
important that it is as efficient, general and extensible as possible.

3.2 Specific goals

The implementation should be able to transfer and represent a real and con-
tinuous subset of Modelica and Optimica that may include functions. Tests
should also be implemented to make it possible to measure the correctness and
performance of the implementation.

The biggest feature that will not be supported is hybrid systems. Other
important Modelica construct that will not be supported are arrays and records,
other variables types than real and handling of dependent parameters.

19

Chapter 4

Implementation

With the background and goals established, it is time to describe the implemen-
tation. An overview of the system is provided below, followed by a walkthrough
of what this implies about the structure of the system. Thereafter that struc-
ture is described in more detail, with sections describing the C++ model, the
transfer functionality and the test functionality.

4.1 Implementation overview

User Transfer tool (C++) JModelica.org compiler (Java)

Transfer model

Translate and flatten Model, return flat class instance

Model (C++)

Get empty model

Empty model

1

Parse
Flatten

Create flat class instance
Return flat class instance

2

Fill the model by asking the flat
class instance for:
Variables and their attributes
Equations
Optimization information (if present)

3

4
Filled model

Figure 4.1: Overview of the transfer

Figure 4.1 presents an overview of the model transfer, four main parts are dis-
played:

1. The user decides what model to transfer. The transfer tool is written in
C++, but it may be called from any language that may be interfaced with
it (e.g. Python).

20

2. The transfer tool calls the JModelica.org compiler and asks it to return
an instance of the flat class, representing the final flat model (see Section
2.2.3 and 2.3).

3. The transfer tool creates a new empty instance of the C++ model repre-
sentation. The main work of the transfer tool then follows, i.e. to use the
information in the flat class instance to fill the C++ model.

4. The filled C++ model is returned to the user, who may e.g. connect it to
solvers or manipulate it.

The scheme above requires the construction of three main components.
Firstly the C++ model must be constructed, which can represent Modelica
and Optimica. Secondly a way to transfer the model from JModelica.org to
C++ must be implemented. This task can also be dividided into subtasks:

• Enable the transfer of information between C++ and Java.

• Extend the JModelica.org compiler to make use of these transfer mechan-
ics.

• Use the extended JModelica.org compiler and the transfer mechanics to
fill an instance of the C++ model.

Lastly, tests should be implemented that solves problem represented by the
transferred models.

Below the implementation of these different systems are described, in the
same order as presented here.

4.2 C++ model

In Chapter 3 the goals for this thesis, and this model, were presented. The
task is to create a model that is capable of representing the DAE system for
Modelica models, that may include functions and the optimization information
provided on top of that system by Optimica. Importantly, CasADi should be
used to represent and manipulate mathematical expressions and functions.

Recalling the mathematical formulation described in Section 2.1, we know
that the model should be able to keep initial and model equations, variables with
differing properties and attributes (see Section 2.2) and optimization informa-
tion such as constraints and Lagrange and Mayer terms. In order to have an
understandable and extendable system, the choice was made to make it object
oriented. Thus the natural skeleton of the system is to construct a main class,
the Model class, which keeps all information about the DAE system. This means
that it will have to keep variables, equations and functions which are naturally
represented with their own classes. Lastly, since the optimization information
is provided on top of the DAE system, it is natural that another package that
keeps the optimization information is constructed, and that this system then
keeps an instance of the model.

21

Having decided on a skeleton for the model the next important problem is
how it should be integrated with CasADi. The elements that can be expressed
are variables and the expressions in which these variables occur. Two important
considerations here are:

1. The expressions must be made up of the same variables as are present in
the model (compare this to the CasADi expression example presented in
Section 2.4.2).

2. It must be decided on which CasADi expression type, SX or MX, that should
be used.

For the first question, the choice is that this is not really the responsibility of the
model, rather it is the responsibility of the transfer mechanics to make sure that
the model it creates fulfills this. Thus the model should be constructed so that
it can be filled in a manner that does not hinder the transfer mechanics in this
regard. The answer for the second question is given by the fact, as presented in
Section 2.4.2, expressions made using MX are much more general, and that they
may contain function calls, thus MX will be used.

All the classes that make up the model also overrides the stream insertion
operator << for easy pretty printing.

4.2.1 Model class

The responsibility of the model class is to provide a way to store and access
initial equations, model equations, functions and variables. It is through the
model class that most of the interactions will occur, i.e. interactions from the
user, the transfer mechanics, solvers etc., so it is important that care is taken
to provide a sensible and efficient API.

The internal handling and the API for handling the variables and equations
in the model class are described below. A simplified UML diagram (that does
not show the complete class hierarchy for variables) is provided in Figure 4.2.

22

Model

-z: vector<Variable*>

-offsets: vector<int>

-nVariable: vector<int>

-daeEquations: vector<Equation*>

-initialEquations: vector<Equation*>

-modelFunctionMap: functionMap

-varsSorted: bool

+Model()

+addVariable(var:Variable*): void

+addInitialEquation(eq:Equation*): void

+addDaeEquation(eq:Equation*): boid

+addModelFunction(mf:ModelFunction*): void

+getVariableByKind(kind:VariableKind): boost::sub_range<vector<Variable*> >

+getIntialResidual(): MX

+getDaeResidual(): MX

+getModelFunctionByName(name:string): ModelFunction*

+variablesSorted(): bool

+sortVariables(): void

+operator<<(os:ostream&,m:Model&): ostream&

-classifyVariable(var:Variable*): VariableKind

-isDifferentiated(var:RealVariable*): bool

-calculateNumDependencies(var:MX): int

Variable

#var: MX

#attributes: std::map<AttributeKey, AttributeValue>

-causality: VariableConstants::Causality

-variability: VariableConstants::Variability

+Variable(var:MX,causality:Causality,variability:Variability)

+getVar(): MX

+getType(): Type

+getCausality(): Causality

+getVariability(): Variability

+getAttribute(key:AttributeKey): AttributeValue*

+hasAttribute(key:AttributeKey): bool

+setAttribute(key:AttributeKey,val:AttributeValue): void

+operator<<(os:ostream&,var:Variable&): ostream&

+print(os:ostream&): void

Equation

-lhs: MX

-rhs: MX

+Equation(lhs:MX,rhs:MX)

+getLhs(): MX

+getRhs(): MX

+getResidual(): MX

+operator<<(os:ostream&,eq:Equation*): ostream&

<<Enumeration>>

VariableKind

+REAL_CONSTANT

+REAL_PARAMETER_INDEPENDENT

+REAL_PARAMETER_DEPENDENT

+INTEGER_CONSTANT

+INTEGER_PARAMETER_INDEPENDENT

+INTEGER_PARAMETER_DEPENDENT

+BOOLEAN_CONSTANT

+BOOLEAN_PARAMETER_INDEPENDENT

+BOOLEAN_PARAMETER_DEPENDENT

+STRING_CONSTANT

+STRING_PARAMETER_INDEPENDENT

+STRING_PARAMETER_DEPENDENT

+DERIVATIVE

+DIFFERENTIATED

+REAL_INPUT

+REAL_ALGEBRAIC

+REAL_DISCRETE

+INTEGER_DISCRETE

+INTEGER_INPUT

+BOOLEAN_DISCRETE

+BOOLEAN_INPUT

+STRING_DISCRETE

+STRING_INPUT

+OUTPUT

<<typedef>>

+functionMap: map<string,ModelFunction*>

ModelFunction

-myFunction: MXFunction

-statements: vector<Equation*>

-ins: vector<MX>

-internal: vector<MX>

-outs: vector<MX>

+ModelFunction(myFunction:MXFunction,statements:vector<Equation*>,

 ins:vector<MX>,internal:vector<MX>,

 outs:vector<MX>)

+call(arg:MX): MX

+call(arg:vector<MX>): MX

+getName(): string

+operator<<(os:ostream&,mf:ModelFunction&): ostream&

Figure 4.2: Simplified UML diagram showing model class and dependent classes.
Does not show variable class hierarchy or optimization.

Variable classification

There are several different types of variables, e.g. derivative, state and algebraic
variables but also parameters, constants and variables that occur as input and
output. Naturally these variables need to be handled differently, and numerical
algorithms often need to have the variables categorized to some extent. Thus
it is natural that the model class provides these variables sorted into sensible
categories.

In Section 2.5 a walkthrough of the current ways in which JModelica.org
handles models were presented, and here the JMI specification provided a set of
variable categories based on the variable attributes type, variability and causal-
ity introduced in Section 2.2.2. A similar approach will be used here. The
provided variable categories are:

• Real, Integer, Boolean and String constants

• Real, Integer, Boolean and String parameters which are either dependent
or independent

• Derivative

• Differentiated (state variables, that has derivative variable tied to them)

• Algebraic

• Real, Integer, Boolean and String inputs

• Real, Integer, Boolean and String discrete variables.

• Output

For internal and external use an enum with these categories is provided.
A variable will belong to only one category, which is uniquely determined

by its type, causality and variability except for derivative, algebraic and dif-
ferentiated variables. These all have the same type Real, the same variability
Continuous and the same causality Internal. Thus the variable class needs to
provide some information that can be used to discriminate among them.

Variable handling and API

The variables need to be stored in some way, they need to be classified according
to the categories above and the model should provide methods to add and access
variables.

Starting with storage, for efficiency reasons the variables are kept as pointers
in a vector, in order to avoid them being copied as they are moved around. For
simplicity the variables are kept in a single vector, making it easy to e.g. perform
manipulations on all variables. This vector can then be sorted according to the
variable categories. To make it easy to work with, e.g. to extract variables of
certain categories, two additional vectors are provided: the first with offsets,

24

that points to where the first element of a certain variable category resides in
the vector, and the second with the number of variables in each category.

As for the API, two main methods are offered: addVariable, that takes
an instance of a Variable (see below), and getVariableByKind, that takes
as an argument a value of the variable category enum. For efficiency reasons
the decision to use lazy classification was made, which means that as variables
are added to the model they are not categorized right away. Otherwise the
whole variable vector might need to be manipulated every time a variable is
added, creating a very unattractive time complexity for filling the model. To
sort the vector a function sortVariables is added, along with the method
variablesSorted to check whether the variable vector is currently sorted.

When asking for variables of a certain kind it would be inefficient to create a
new list by probing the variable list. It would be preferable if a subrange of the
list could be provided instead, i.e. some construct that would provide access only
to certain elements in the list. The BOOST library provides such functionality as
part of the range collection, see [19] for more details. When a variable category
is asked for a special kind of iterator that can be used to access a subrange of the
variable vector, containing the relevant variables, is returned. The advantage of
using this approach is that it is much cheaper to construct this iterator than it
is to construct a new vector and fill it with the desired variables.

Equation handling

The handling of equations is much simpler than that for variables, as there are
basically only two kinds: initial and model equations. These are kept in two
vectors, one for each kind, containing equation pointers.

Two methods for adding equations are provided, one for each kind. They
can be retrieved on their residual form, i.e. for an equation with a left hand and
right hand side the residual is the right hand side minus the left hand side. The
residual form is provided as an MX object, containing all the residuals for the
specified equation type.

Function handling

Functions are kept in a map in the model, with their name as the key used to
access them. Two methods are provided, one to add a function, and one to
retrieve a function using its name.

4.2.2 Equations

Equations are simple to represent. The model class keeps a list of model equa-
tions and initial equations; however both of these equations types are easily
represented by the same equation class. This class should keep MX objects that
represent the equation. A straightforward and useful approach is to keep an MX

object each for the left and right hand side of the equation. Access methods for
the left and right hand side and the residual are provided. The MX objects are

25

capable of representing functions with several outputs, as described in Section
2.2.2. See Figure 4.2 for an UML of the class.

4.2.3 Functions

A major problem for this thesis was how to represent functions and function
calls that can occur in Modelica models. Not only does this need to work with
the mathematical representation that is used in the thesis, but it should be
efficient, simple and possible to extend in the future. Luckily it was found that
the CasADi class MXFunction would probably suffice.

MXFunction is convenient and easy to use, and it will probably be possible
to extend it in the future to account for discrete elements and flow control. To
create an MXFunction a list of input variables and equations for the outputs are
needed, one equation for every output variable. This object can be called, using
other MX variables as arguments, yielding a new MX object that can be a part of
other MX expressions.

As will be made clear below in the transfer section, all of the function calls
that occur in the model’s equations are transferred automatically as part of MX
expressions constructed in the JModelica.org compiler. So there is no need to
transfer the MXFunction objects to have a complete mathematical representation
of the model equations.

However, in order to make it possible to construct new function calls us-
ing the MXFunction generated in the JModelica.org compiler, these need to be
transferred and stored. As one of the goals is to provide interactivity for the
user, this is a needed feature.

Functions should also be printable, to present the user with information
about the statements and variables that occur in them. Recalling the structure
of Modelica functions presented in Section 2.2.2, functions have a list of state-
ments, a name and variables that occur as input, output or that are internal to
the function.

To accommodate these requirements the class ModelFunction is introduced.
This class has a name, corresponding to the name of the MXFunction, the
MXFunction itself and the list of statements (represented by the Equation class)
and variables. To create a new function call the class provides methods where
MX objects are passed in as arguments, returning a new MX object that represents
the function call. See Figure 4.2 for an UML of the class.

4.2.4 Variables

The variable class, or class hierarchy, should provide a way to represent the
various types of properties and attributes that variables in Modelica might have.
Furthermore it should keep a CasADi object that represents the variable. For
this thesis, the goal is to provide coverage for real variables, however the design
should make it easy to add support for integer, boolean and string variables.

26

Requirements and API

In Section 2.2.2., the variable properties type, variability and causality were pre-
sented. These properties are used by the Model class to categorize the variables,
thus they should store these properties and they should provide methods for ac-
cessing them. However, it was noted above that these types are not sufficient
to uniquely classify all variables into one of the provided categories, the prob-
lem is that state, derivative and algebraic variables share the same properties.
Thus real variables need to provide additional information, which can be used
to distinguish them.

Variables may also have attributes, and the variable class needs to provide
methods to both set and retrieve them.

Solution

A main Variable class is introduced. This class provides access to methods
for the three variable properties above, and keeps an MX object as the needed
CasADi variable representation. The properties are encoded in three enums.

To represent the additional information needed for classification of real vari-
ables two additional classes, RealVariable and DerivativeVariable, are in-
troduced. The DerivativeVariable class keeps a reference to its state variable.
To determine whether a RealVariable is an algebraic or state variable the vari-
ables need to be checked against the references that the derivative variables
keep. These classes also implement a method isDerivative, needed to find the
derivatives in the first place.

The variable class keeps a map with strings as key and MX objects to handle
attributes. This approach is simple, and attributes may be easily added and
retrieved from the model. The approach offers the additional advantage that
this variable class can be used for both Modelica and Optimica, as Optimica
defines additional attributes over those found in Modelica (see Section 2.2.2).

An UML diagram for the resulting scheme is presented in Figure 4.3.

27

Variable

#var: MX

#attributes: std::map<AttributeKey, AttributeValue>

-causality: VariableConstants::Causality

-variability: VariableConstants::Variability

+Variable(var:MX,causality:Causality,variability:Variability)

+getVar(): MX

+getType(): Type

+getCausality(): Causality

+getVariability(): Variability

+getAttribute(key:AttributeKey): AttributeValue*

+hasAttribute(key:AttributeKey): bool

+setAttribute(key:AttributeKey,val:AttributeValue): void

+operator<<(os:ostream&,var:Variable&): ostream&

+print(os:ostream&): void

<<Enumeration>>

Causality
Inside namespace
VariableConstants

+INPUT

+OUTPUT

+INTERNAL

RealVariable

-myDerivativeVariable: Variable*

+RealVariable(var:MX,causality:Causality,

 variability:Variability)

+<<VariableConstants::REAL>> getType(): Type

+<<false>> isDerivative(): bool

+setMyDerivativeVariable(derVar:Variable*): void

+getMyDerivativeVariable(): Variable*

DerivativeVariable

+myDifferentiatedVariable: MX

+DerivativeVariable(var:MX,diffVar:MX)

+getMeDifferentiated(): Variable*

+<<true>> isDerivative(): bool

<<Enumeration>>

Variability
Inside namespace
VariableConstants

+CONTINUOUS

+DISCRETE

+PARAMETER

+CONSTANT

<<Enumeration>>

Type
Inside namespace
VariableConstants

+REAL

+INTEGER

+BOOLEAN

+STRING

<<typedef>>

+AttributeKey: std::string

+AttributeValue: MX

Figure 4.3: UML diagram for Variable class hierarchy.
28

4.2.5 Optimization

Optimica is an extension of Modelica, and adds optimization information on
top of Modelica models. It is therefore natural to separate them; the idea is
that the model is independent of the optimization problem, and all the opti-
mization information should be independent of the model formulation. A new
class OptimizationProblem, which holds a pointer to a model, is therefore in-
troduced.

Optimica adds constraints, cost function, new variable attributes and start-
and finaltime. All of these additions, except constraints, are simply represented
as a single MX field in the OptimizationProblem class, with standard getters and
setters. The constraints however are modeled with their own class. Optimica
defines path and point constraints; however the decision was made to limit the
representation to path constraints.

Constraints are very similar to equations, with a left hand and right hand
side, typically a variable on the left hand side and some expression on the right
hand side. There are three types of constraints, less than, greater than and equal
to. The Constraint class thus holds a left and right hand side, and an enum
value that describes which constraints type it is. The OptimizationProblem

class keeps a list with all the constraints.
An UML diagram is presented for this part of the representation in Figure

4.4.

29

Model

-z: vector<Variable*>

-offsets: vector<int>

-nVariable: vector<int>

-daeEquations: vector<Equation*>

-initialEquations: vector<Equation*>

-modelFunctionMap: functionMap

-varsSorted: bool

+Model()

+addVariable(var:Variable*): void

+addInitialEquation(eq:Equation*): void

+addDaeEquation(eq:Equation*): boid

+addModelFunction(mf:ModelFunction*): void

+getVariableByKind(kind:VariableKind): boost::sub_range<vector<Variable*> >

+getIntialResidual(): MX

+getDaeResidual(): MX

+getModelFunctionByName(name:string): ModelFunction*

+variablesSorted(): bool

+sortVariables(): void

+operator<<(os:ostream&,m:Model&): ostream&

-classifyVariable(var:Variable*): VariableKind

-isDifferentiated(var:RealVariable*): bool

-calculateNumDependencies(var:MX): int

Constraint

-lhs: MX

-rhs: MX

-ct: Type

+Constraint(lhs:MX,rhs:MX,ct:Type)

+getLhs(): MX

+getRhs(): MX

+getResidual(): MX

+getType(): Type

+operator<<(os:ostream& ,c:Constraint&): ostream&

<<Enumeration>>

Type
Inside namespace
ConstraintConstan

ts

+EQ

+LEQ

+GEQ

OptimizationProblem

-model: Model*

-startTime: MX

-finalTime: MX

-lagrangeTerm: MX

-mayerTerm: MX

-vector<Constraint> pathConstraints

+OptimizationProblem(model:Model*,pathConstraints:vector<Constraint>,

 startTime:MX,finalTime:MX,

 lagrangeTerm:MX=MX(0),

 mayerTerm:MX=MX(0))

+getModel(): Model*

+getStartTime(): MX

+getFinalTime(): MX

+getPathConstraints(): vector<Constraint>

+getLagrangeTerm(): MX

+getMayerTerm(): MX

+setStartTime(startTime:MX): void

+setFinalTime(endTime:MX): void

+setPathConstraints(pathConstraints:vector<Constraint>): void

+setLagrangeTerm(lagrangeTerm:MX): void

+setMayerTerm(mayerTerm:MX): void

+operator<<(os:ostream&,op:OptimizationProblem&): ostream&

Figure 4.4: UML for Optimization extension
30

4.3 Transfer design

The second important task is to transfer the final flat model data from the
JModelica.org compiler to the model described above. There are three major
points that need to be addressed in order to accomplish this:

1. Building infrastructure for transferring information between Java and C++.

2. Extend the JModelica.org compiler to make use of these mechanics, so
that it may be asked for data.

3. Build a transfer scheme, which calls on the JModelica.org compiler to
obtain an instance of a flat class, representing the final flat model, which
is then used to fill the model above.

Other considerations are, as described in Section 3.1, that we need it to be
efficient and general.

4.3.1 Connection between Java and C++

Transfer scheme

The model representation resides in C++ along with CasADi, while the JMod-
elica.org compiler resides in Java. The goal is to mirror the information repre-
sented by the JModelica.org compiler in an instance of the model representation.
To do this, the AST (see Section 2.3.1) that represents the model in JModel-
ica.org has to be traversed, and the information needed to create variables,
functions, equations and so on has to be extracted. Two different approaches
to extracting this information were considered:

The first approach is to traverse the AST and extract all information, such
as names, values and attributes from Java to C++ and then use this informa-
tion to create the CasADi objects needed for the model. The other approach is
that JModelica.org itself is connected with CasADi, and that methods are im-
plemented inside the JModelica.org compiler that creates the necessary CasADi
objects. These CasADi objects can then be transferred to the model represen-
tation.

To determine which way was best investigations were performed by my ad-
visor Toivo. Toivo determined that the best way to transfer information was
by creating the CasADi objects directly inside the JModelica.org compiler. It
was faster to call C++ from Java, and this constitutes a compromise where the
fast transfer is used to create CasADi objects that can then be extracted in a
convenient manner in C++. The transfer scheme is illustrated in Figure 4.5.

Transfer mechanics

The basis of the transfer is the utilization of the Java Native Interface (JNI)
that allows calls between programs running in a Java Virtual Machine (JVM)
and other applications in the operating system, e.g. C++ and C. For more

31

JModelica.org CasADiC++ Model

Ask for CasADi object

Invoke CasADi constructor

Return CasADi object

Return CasADi object

Ask for
CasADi
objects
for
Variables,
equations
etc.
until
C++Model
is filled

Figure 4.5: Overview of transfer scheme. C++ Model and CasADi resides in
C++, JModelica.org resides in Java.

information see the Oracle JNI documentation [20]. To make it easier to use
two other tools are utilized, which create easy to use interfaces that may be
used in inter-language communications.

JCC is a tool that generates C++ code that wraps Java libraries, using JNI,
in a way that resembles the original Java code. This allows Java to be called
from C++. Similarly SWIG is a tool that can be used to generate Java code
that wraps C++ libraries in the same way, allowing calls from Java to C++.
For more information see the JCC homepage [21] and the SWIG homepage [22].

The foundation for this transfer was laid by my advisor Toivo. It was ex-
tended in several places as part of this thesis.

4.3.2 Extending JModelica.org compiler

As described above, the fastest way to do the transfer is to let the JModelica.org
compiler construct CasADi objects, thus the goal is to create all CasADi objects
here.

Aspects

As mentioned in Section 2.3, much of the functionality in the JModelica.org
compiler is declared in aspects. JastAdd uses functionality described in different
aspects to fill Java classes with methods and fields. The functionality aimed for
here will not introduce new classes, only new methods and fields to existing
classes. To this end, a new aspect is introduced, called FExpToCasADi.jrag

(.jrag is the file ending used for aspects), wherein the methods needed in this
thesis are declared.

The allowed syntax in aspects is quite expressive, however only a few con-
cepts are needed here. The syn keyword is used to declare a new attribute for a
class (synthesized attribute), e.g. the following declares that the class A should
keep an attribute x and that its value is given by a certain Java expression:

32

syn T A.x() = Java-expr;

where T is the type of x.
If a function that is subclass of A, class B, wants to override the expression

used to calculate the value x the following may be used:

eq B.x() = Java-expr;

Finally, if the intent is that the class stores the attribute, so that it is not
recalculated each time it is accessed, the lazy attribute may be used:

syn lazy T A.x() = Java-expr;

Now A will store the attribute x as a field in the class, and it will only be
computed once.

AST traversal

An AST that shows how the expression a+ b · c is represented in JModelica.org
is displayed in Figure 4.6. There are binary and unary expressions representing
all the primitive operations and functions. The expressions keep references to
their children. Thus expression graphs like these may be traversed by asking for
the children of the nodes, until leafs are reached.

FAddExp

FIdUseExp FMulExp

FIdUseExp FIdUseExp

FVariable ’a’

FVariable ’b’ FVariable ’c’

Figure 4.6: JModelica.org AST of the equation a+ b · c.

Variables

To create MX objects for variables a lazy synthesized attribute MX_variable_CasADi,
with type MX, is introduced to the abstract variable class FAbstractVariable,
from which the other variable classes inherit. The expression that determines

33

the value of this attribute is then overriden in the subclasses, e.g the expression
that determines the MX value of the FVariable class is computed like:

eq FVariable.MX_variable_CasADi() = new MX(getFQName().toString());

Equations

Equations consist of expression like the one above in JModelica. To construct
MX objects for these the AST has to be traversed. As shown above, this can be
simply done by asking for the children of the expression. Thus, to construct an
MX for an expression all that is needed is:

• For a unary expression, e.g. minus, apply the CasADi negation operation
to the MX value of the held expression.

• For a binary expression, e.g. addition, apply the CasADi addition operator
to the MX value of the held left and right expressions.

A new synthesized attribute toMX is therefore introduced for FExp, from
which all other expressions inherit. Note that this attribute is not lazy, it is not
necessary that the MX of the expressions are stored since their constituents, the
MX for variables, are stored. The other expressions will then override the Java
code that computes the value. So, to construct the code needed to be able to
call FAddExp.toMX() on the expression in Figure 4.6 the following methods are
declared in the aspect:

eq FIdUseExp.toMX() = myFV().MX_variable_CasADi();

eq FAddExp.toMX() = getLeft().toMX().__add__(getRight().toMX());

eq FMulExp.toMX() = getLeft().toMX().__mul__(getRight().toMX());

Here the methods prefaced with double underscores are calls to CasADi. The
FIdUseExp retrieves the MX object that represents the variable it holds.

Functions

Functions pose an additional challenge since MXFunction objects have to be
constructed, and they require a single MX expression for every output variable.
But since functions may have an arbitrary list of statements, generally there
does not exist a single expression for each output variable. For example, in the
following function there is no single statement for the output variable out1.

function f

input Real in1;

input Real in2;

output Real out1;

Real internal;

algorithm

internal := in1;

34

out1 := in2;

out1 := out1*internal;

end f;

Instead the variables are recalculated over and over in the algorithm section.
The transfer of functions problem is twofold, first MXFunction must be

created for the class that represents functions in the JModelica.org compiler,
FFunctionDecl. Then these must be called and transformed into function calls
for the expressions in which they occur.

Constructing functions

Looking at the function above it is obvious that there exists a single expression
for every output variable. All that needs to be done is to make sure that all
statements are reflected in the final expression, in this case the final expression
for out1 is obviously in2*in1.

The solution was to handle the statements sequentially as they appear in
the algorithm section. Each assignment represents an update of a variable,
and these updated variables should be reused or reassigned. To handle these
updates the idea was to save the updated variables in a list, so that they could
be used in new statements. To be able to determine which updated variable
that corresponds to the left hand side in the assignments the original variables
are saved in another list.

To handle a statement, the variable that corresponds to the left hand side
is found in the list with the original variables. The right hand side is then
calculated using the updated variables, and the result is saved in the updated
variable list. Central to this scheme is the use of the CasADi substitute

method, as described in Section 2.4.2, which is used to replace the variable
occurring in the expressions with their updated values.

As an illustration, to calculate the output expression for the function above
we begin by creating the two lists. The current expression list is populated with
the variables themselves, since those are the variables current expressions.

Variables Current expression
in1 in1
in2 in2
out1 out1
internal internal

The first assignment is internal:= in1:

Variables Current expression
in1 in1
in2 in2
out1 out1
internal in1

35

The second assignment is out1 := in2:

Variables Current expression
in1 in1
in2 in2
out1 in2
internal in1

The third and final assignment is out1 := out1*internal, note how this as-
signment reuses the values in the current expression list:

Variables Current expression
in1 in1
in2 in2
out1 in2*in1
internal in1

Thus the function is given by the expression f(in1,in2) = in2*in1.
Some additional challenges are posed by the existence of function calls in the

statement list. Normal function calls are automatically transferred (as a result
of this code), but the function calls with several outputs (see Section 2.2.2,
functions) have to be handled separately. The task is to construct the function
call for the right hand side, and identify the variables occurring on the left hand
side. By choosing the correct output from the function call, these variables may
then be updated in the same manner as above.

Transferring function calls

The MXFunction constructed above must then be used to construct function
calls. In the JModelica.org compiler function calls are a subclass of FExp, and
for these we implement the toMX method. As outlined in Section 2.4.2, the MX

object representing the call is simply constructed by calling the function with
the right arguments.

4.3.3 Filling model

The next step is to use the functionality above to create and fill an instance of
the C++ model. This will be achieved by creating a C++ program that creates
a JVM, wherein the JModelica.org compiler may reside. The compiler is then
asked to flatten a model and produce the final flat class representing it, which
is then used to transfer the relevant CasADi objects and other information. As
mentioned in Section 2.3, there are actually different compilers for Modelica and
Optimica, thus a transfer program for each compiler is created.

The transfer of the different parts of the models is described below. As the
Optimica compiler is basically an extended Modelica compiler, no difference
between them is made in the presentation of their shared functionality.

36

Variables

In accordance with the goals presented in chapter 3, we are interested in transfer-
ring real variables, i.e. real state, derivative, algebraic, parameter and constant
variables. Thus to create variables for the C++ model, the variable’s causality
and variability has to be determined as well as the attributes that belong to the
variable. Another complexity that has to be taken into account is the fact that
instances of the class DerivativeVariable are required to keep a reference to
their state variable.

The flat class conveniently keeps all variables in a single list, and these are
looped through. The class that represents variables in JModelica.org provides
methods to determine the variability and causality. The class also has methods
to access the attributes, and these are of FExp type and they implement the
toMX method, which are simply transferred and added to the attribute map in
the Variable class.

Derivative and state variables have to be handled specially though. When
looping through the list of variables, derivative variables are ignored. When a
state variable is encountered, it is asked for its derivative variable, and both
variables are constructed at the same time.

Equations

The flat class keeps the initial and model equations in separate lists. These lists
contain instances of the FAbstractEquation class. Two subclasses have to be
considered, FEquation and FFunctionCallEquation.

FEquation basically holds expressions for its left and right hand side, and MX

expressions for these may be automatically transferred (even those containing
function calls).

FFunctionCallEquation, as described in Section 4.3.2 under functions, keeps
a list with objects that contain FExp for its left hand side, and a function call in
its right hand side. The function call is automatically transferred using toMX,
and an MX object is created for the list of left hand side objects.

Functions

In Section 4.2.4 the function representation, ModelFunction, for the C++ model
was described. It keeps the MXFunction, and a list of statements and variables.

The flat class saves all of the function declarations in a list, and these are
looped through. Every function declaration keeps a list of statements, and these
can be transferred in the same way as equations.

ModelFunction keeps the variables sorted into the categories ins, internal
and outs. These may be retrieved from the function declarations.

Optimica

To transfer Optimica classes, some extra steps beyond the transfer of Modelica
models are required. The Lagrange and Mayer terms are kept as expressions in

37

the flat class, and are thus easily transferred and stored in OptimizationProblem.
Similarly for the start and final time attributes. To transfer the new variable
attributes, the list of attributes to transfer is extended.

Next path constraints are transferred. The flat class keeps lists with the
different path constraints, i.e. greater than, less than and equal to constraints.
These constraints keep, similar to equation, FExp for the left and right hand
side, and MX can be transferred for them. Instances of the Constraint class are
created for each constraint, and stored in a list in OptimizationProblem

4.4 Testing

A collocation method for solving OCPs in Python using CasADi, using implicit
Euler integration, was provided by my advisor Fredrik. It was translated to
C++ and extended to solve OCPs represented by the OptimizationProblem

class. The method uses the IPOPT solver. To visualize the solutions, a method
that creates Python scripts for plotting the output from the solver was created.
A method that saves the solution trajectories to a text file was also implemented.

A test that compares solution trajectories from the optimization method
above to trajectories obtained from a similar optimization method built into
JModelica.org, using the root mean square norm, was implemented.

38

Chapter 5

Benchmarks

Below some benchmarks are described. First a Van der Pol based optimiza-
tion problem is solved using JModelica.org and the implementation, and the
results are compared graphically and numerically. Then the different ways to
solve OCPs in JModelica.org are timed, i.e. using JMUs or XML export/import
with SymbolicOCP, and compared to the implementation. Provided is also an
example of a printout of a model, and a result showing that the implemented
function handling can be more stable than code-unit compilation.

5.1 Solution comparison

A Van der Pol based optimization problem is solved. This problem is described
by:

Minimize: ∫ 1

0

(x1(t)2 + x1(t)2 + u(t)2)

10
dt

Subject to:

ẋ1(t) = (1− x2(t)2) · x1(t)− x2(t) + u(t)

ẋ2(t) = x1(t)

u(t) ≤ 0.75, ∀t ∈ [0, 1]

39

The corresponding Optimica class can be written as:

optimization vdp (objectiveIntegrand = cost,

startTime = 0,

finalTime = 1)

// The states

Real x1(start=0,fixed=true);

Real x2(start=1,fixed=true);

// The control signal

input Real u;

function cost_function

input Real in1;

input Real in2;

input Real in3;

output Real out;

algorithm

out := in1^2 + in2^2 + in3^2;

out := out/10.0;

end cost_function;

Real cost(start=0,fixed=true);

equation

der(x1) = (1 - x2^2) * x1 - x2 + u;

der(x2) = x1;

der(cost) = cost_function(x1,x2,u);

constraint

u<=0.75;

end vdp;

This problem was solved using the Optimica compiler, which creates a JMU
code-unit. Options were given to the solver so that the algorithm used was
similar to the one implemented in this thesis. The problem was also solved using
the implemented scheme. Both optimization methods use the solver IPOPT.
The resulting trajectories are shown in Figure 5.1.

40

0.0 0.2 0.4 0.6 0.8 1.0−1.5

−1.0

−0.5

0.0

0.5

1.0
x1
x2
cost
der(x1)
der(x2)
der(cost)
u

(a) JModelica.org solution to Van der Pol op-
timization problem, using JMU.

0.0 0.2 0.4 0.6 0.8 1.0
t

−1.5

−1.0

−0.5

0.0

0.5

1.0
x0
x1
x2
dx0
dx1
dx2
u0

(b) Solution to transferred and then solved Van
der Pol optimization problem.

Figure 5.1: Comparison of solutions to a Van der Pol optimization problem
using JModelica.org and the implementation.

The root-mean-square norm of the difference between the trajectories was
computed, and it had a magnitude of 10−5.

5.2 Timing

The time it took to use the two different ways to solve an Optimica class in
JModelica.org were compared to the implemented scheme. The following Opti-
mica class was solved:

optimization SimpleDAEOpt (objectiveIntegrand=a^2 + abs(b) + u, finalTime=10)

Real a(start=5.0);

Real b(start=1.0,fixed=true);

input Real u;

equation

der(a) = -u*b^4;

b = 1.0+u^2;

constraint

a <= 0.00;

end SimpleDAEOpt;

The results tabulated:

Solution scheme time [s]
JMU code-units 20.8
XML export / import 7.2
Implemented scheme 9.3

41

For JMUs the measured time starts when JModelica.org is ordered to com-
pile a JMU for the Optimica class, and ends when it has used solvers to solve the
resulting JMU. For XML export/import the measured time starts when JMod-
elica.org is ordered to construct an XML-file for the Optimica class, and ends
when it has been imported and solved with the CasADi import module. For
the implemented scheme the measured time starts when the transfer program
is ordered to transfer the Optimica class, and ends when it has been transferred
and solved.

5.3 Printing

The result of printing the Van der Pol Optimica class listed in Section 5.1 is
shown below. Here line breaks were manually added in the statements list for the
function, since the lines would be too long to view in this document otherwise.

Model contained in OptimizationProblem:

------------------------------- Variables -------------------------------

MX(startTime), attributes:

bindingExpression = MX(Const<0>(scalar))

MX(finalTime), attributes:

bindingExpression = MX(Const<1>(scalar))

MX(der_x1)

MX(der_x2)

MX(der_cost)

MX(x1), attributes:

fixed = MX(Const<1>(scalar))

start = MX(Const<0>(scalar))

MX(x2), attributes:

fixed = MX(Const<1>(scalar))

start = MX(Const<1>(scalar))

MX(cost), attributes:

fixed = MX(Const<1>(scalar))

start = MX(Const<0>(scalar))

MX(u)

------------------------------- Functions -------------------------------

ModelFunction : function("vdp.cost_function")

Ins:

42

MX(funcVar_in1)

MX(funcVar_in2)

MX(funcVar_in3)

Internal:

Outs:

MX(funcVar_out)

Statements:

MX(funcVar_out) = MX(((pow(funcVar_in1,Const<2>(scalar))+

pow(funcVar_in2,Const<2>(scalar)))+

pow(funcVar_in3,Const<2>(scalar))))

MX(funcVar_out) = MX((funcVar_out/Const<10>(scalar)))

------------------------------- Equations -------------------------------

-- Initial equations --

MX(x1) = MX(Const<0>(scalar))

MX(x2) = MX(Const<1>(scalar))

MX(cost) = MX(Const<0>(scalar))

-- DAE equations --

MX(der_x1) = MX(((((Const<1>(scalar)-pow(x2,Const<2>(scalar)))*x1)-x2)+u))

MX(der_x2) = MX(x1)

MX(der_cost) = MX(function("vdp.cost_function").call([vertcat(x1,x2,u)]){0})

-- Optimization information --

Start time = MX(Const<0>(scalar))

End time = MX(Const<1>(scalar))

-- Constraints --

MX(u) <= MX(Const<0.75>(scalar))

-- Lagrange term --

MX(cost)

-- Mayer term --

MX(Const<0>(scalar))

5.4 Stability

The following Optimica class, which is mathematically equivalent to the class
SimpleDAEOpt listed in Section 5.2, caused the solver to crash when JMU was
used to solve it. It does not cause the implemented scheme to crash however.

optimization Rewrites (objectiveIntegrand=a^2 + abs(b) + u, finalTime=10)

Real a(start=5.0);

Real b(start=1.0,fixed=true);

input Real u;

function f

input Real a;

43

output Real b;

algorithm

b := a^2;

end f;

function f2

input Real a1;

input Real a2;

output Real b;

Real c;

algorithm

c := a1;

c := c*a1;

b := c+a2*f(1.0);

c := c*2.0;

c := c /2.0;

b := b - c;

b := b + c;

b := b+2;

end f2;

equation

der(a) = -u*b^4;

b*f(1.0) = f(1.0)+f2(u,a)-a-2;

constraint

a <= 0.00;

end Rewrites;

44

Chapter 6

Discussion

The goal for this thesis was to a lay a foundation for a new way for JModelica.org
to handle models, using CasADi. There were some specific goals, to transfer and
represent translated Modelica and Optimica code that may contain functions,
and there were some general goals, that the resulting software is efficient, easy to
understand and extensible. How well these goals have been achieved is discussed
below, and also future work and other considerations.

6.1 Goal evaluation

6.1.1 Specific goals

The developed model is able to represent the implicit DAE system from Modelica
models by using CasADi. To do this, it holds variables and equations. Functions
may be part of these equations. We note that the function representation, using
CasADi’s built in function class, is more stable than the code-based one found
in JMUs in at least a few cases. The model also allows for the formulation of
optimization problems. This is done in a separate class that holds an instance
of the DAE system, as well as other information such as cost functions and
constraints that are associated with Optimica classes.

Functionality has been implemented to use the JModelica.org compiler to
translate Modelica and Optimica code and transfer this information to the model
representation. This was achieved by extending the Java based JModelica.org
compiler so that it is able to create the required CasADi objects, and by con-
necting the JModelica.org compiler with C++ so that this information could be
transferred and used to create an instance of the C++ based model representa-
tion.

All developed classes support printing functionality. To make the printing of
functions as understandable as possible the decision was made to transfer a more
complete representation of the function, its internal variables and statements,
than was needed to obtain a correct mathematical representation.

45

That the model representation and transfer were constructed in a correct
manner was verified by implementing test methods that solved the transferred
optimization problems. The output from these solvers showed results that were
very similar to those obtained using the corresponding optimization algorithm
found in JModelica.org.

The time it takes to solve an optimization problem compares well to the
existing ways, using JMUs and XML export/import. The implemented scheme
was about twice as fast as using JMU code-units, for simple classes at least.
A large part of the difference was observed to be due to the creation of the
code units themselves. Compared to using XML export/import the scheme
was a bit slower, and here the difference was observed to be mostly due faster
solver performance, which is probably because the XML export/import (with
the CasADi based SymbolicOCP) uses SX instead of MX.

6.1.2 General goals

Great care has been taken to make the model representation as efficient as
possible. For example, to access variables the BOOST library has been used
to utilize methods with lower time complexity than traditional ones. Other
examples are the use of lazy classification, which allows the variables to be sorted
a single time after the model has been filled, and not moving objects by value,
instead opting to use pointers. Lessons from what works well in JModelica.org
have also been utilized; an example here is the use of a single variable vector.
The model is simple and has a representation that is close to the mathematical
description, which makes it understandable and extendable.

Before building the transfer mechanics tests were performed to determine
the fastest way to populate the model with the right CasADi objects, which
was to let JModelica.org create them. This approach has been used to transfer
all CasADi objects. For efficiency, the use of lazy attributes has been avoided
where possible. We note that many parts of the transfer were easy to imple-
ment since the JModelica.org AST has a structure with many similarities to the
implemented model.

As for the integration with CasADi the use of MX was chosen over SX. The
reason is that this is more general and allows for a convenient handling of func-
tions, on the other hand SX is faster and more intuitive. Before we choose
this approach it was investigated whether this approach could work with the
extended hybrid scheme that we aim to support in the future. A scheme was
developed by my advisor Toivo and proposed to the CasADi developers who
deemed it realistic.

Thus we argue that the general goals are fulfilled. It would have been good
if the efficiency goals were tested more though, using e.g. some resource con-
sumption test, but there was not enough time to implement any.

46

6.2 Future work

It should be easy to add support for many parts of Modelica and Optimica,
e.g. point constraints and arrays, but other additions will probably prove more
difficult. To provide support for hybrid DAEs it will probably be necessary to
extend CasADi.

To make use of the interactivity provided by CasADi, interfaces to Python
will need to be implemented.

An attractive possibility is integration with XML-based transfer. By imple-
menting XML import JModelica.org will not need to be activated at the same
time as model, reducing the burden on working memory.

6.3 Other considerations

CasADi is a tool under active development, and its inner workings, interfaces
and supported functionality will probably change over time. As such this imple-
mentation might need to be updated to comply with new versions of CasADi.

47

Bibliography

[1] “Modelica home page.” https://www.modelica.org/. Accessed: 2013-04-
29.

[2] P. Fritzson, Principles of Object-Oriented Modeling and Simulation with
Modelica 2.1. Wiley, 2004.

[3] “Jmodelica.org homepage.”http://www.jmodelica.org/. Accessed: 2013-
06-12.

[4] J. Andersson, J. Åkesson, and M. Diehl, “Dynamic optimization with
CasADi,” in 51st IEEE Conference on Decision and Control, (Maui, Hawaii,
USA), Dec. 2012. Accepted for publication.

[5] J. Åkesson, Languages and Tools for Optimization of Large-Scale Systems.
PhD thesis, Regler, Nov. 2007.

[6] M. M. Tiller, Introduction to Physical Modeling with Modelica. Dordrecht,
The Netherlands: Kluwer Academic Publishers Group, 2001.

[7] P. Fritzson and P. Bunus, “Modelica-a general object-oriented language for
continuous and discrete-event system modeling and simulation,” in Sim-
ulation Symposium, 2002. Proceedings. 35th Annual, pp. 365–380, IEEE,
2002.

[8] “Modelica specification 3.2.” https://www.modelica.org/documents. Ac-
cessed: 2013-06-14.

[9] “Jastadd homepage.” http://jastadd.org/web/. Accessed: 2013-06-12.

[10] “Abstract syntax tree, wikipedia.” http://en.wikipedia.org/wiki/

Abstract_syntax_tree. Accessed: 2013-06-12.

[11] J. Andersson, J. Åkesson, and M. Diehl, “CasADi – A symbolic package for
automatic differentiation and optimal control,” in Recent Advances in Algo-
rithmic Differentiation, vol. 87 of Lecture Notes in Computational Science
and Engineering, pp. 297–307, Springer Berlin Heidelberg, 2012.

[12] “Casadi home on github.” https://github.com/casadi/casadi/wiki.
Accessed: 2013-04-23.

48

[13] “Automatic differentiation, wikipedia.” http://en.wikipedia.org/wiki/
Automatic_differentiation. Accessed: 2013-04-23.

[14] “Casadi user guide.” https://github.com/casadi/casadi/wiki/users_

guide. Accessed: 2013-06-12.

[15] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauß, H. Elmqvist,
A. Junghanns, J. Mauss, M. Monteiro, T. Neidhold, et al., “The functional
mockup interface for tool independent exchange of simulation models,” in
Modelica’2011 Conference, March, pp. 20–22, 2011.

[16] “Jmi model interface.” http://www.jmodelica.org/api-docs/jmi/

group__Jmi.html. Accessed: 2013-06-13.

[17] R. Parrotto, J. Åkesson, and F. Casella, “An xml representation of dae
systems obtained from continuous-time modelica models,” in 3rd Interna-
tional Workshop on Equation-Based Object-Oriented Modeling Languages
and Tools,(Oslo, Norway), pp. 91–98, Citeseer, 2010.

[18] F. Magnusson, “Collocation methods in JModelica.org,” Master’s The-
sis ISRN LUTFD2/TFRT--5892--SE, Department of Automatic Control,
Lund University, Sweden, Feb. 2012.

[19] “Boost homepage.” http://www.boost.org/. Accessed: 2013-06-08.

[20] “Oracle jni documentation.” http://docs.oracle.com/javase/6/docs/

technotes/guides/. Accessed: 2013-06-06.

[21] “Jcc homepage.” http://lucene.apache.org/pylucene/jcc/features.

html. Accessed: 2013-06-06.

[22] “Swig homepage.” http://www.swig.org/. Accessed: 2013-06-06.

49

