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Popular Science Article

This  thesis  is  about  the  construction  and  demonstration  of  time  correlated  single 

photon counting (TSCPC) setup. The technique is essentially digital and is based on 

detection and counting of single photon, recognizing quantum nature of light.  The 

time  is  measured  between  excitation  pulse  and  detected  photons  and is  stored  in 

histogram  with  x-axis  corresponding  to  time  interval.  The  sample  is  excited 

repeatedly  and resulting  histogram of  intensity  versus  time  called  as  fluorescence 

decay curve.

Generally speaking, fluorescence or emission spectroscopy is one of the fundamental 

spectroscopic techniques. This is the study of fluorescence phenomenon which is the 

emission of photons from singlet excited state. The emission is red shifted relative to 

absorption maxima due to loss of energy as heat during relaxation process. In the time 

resolved fluorescence  decay experiment,  the sample  is  excited  with pulse of laser 

light, it starts with high intensity and then decays, rapidly. Later on from appropriate 

fitted  functions,  type  of  decay,  lifetime  and amplitudes  are  calculated.  In  case  of 

photon counting, the measured data is in form of discrete time function. But still the 

fitted functions provide the same information. Then question arises about additional 

advantage of our TCSPC technique over other life time measurements. The additional 

benefits  come from simplicity of integrated setup i.e. lack of focussing lenses and 

very low excitation density is required.

The setup has been characterized by measuring the fluorescence decay from organic 

dye  and  polymer  solar  cell  material.  The  data  has  been  fitted  with  exponential 

functions and fluorescence life times are calculated with good accuracy. Other than 

life time measurements, the technique is being successfully used for single molecule 

detection, TCSPC imaging, and fluorescence correlation spectroscopy in combination 

with fluorescence microscopy etc.

2



Abstract

A time  correlated  single  photon  counting  (TCSPC)  setup  is  built  to  measure  the 

fluorescence  decay of samples,  such as solar  cell  materials.  TCSPC is  a sensitive 

technique for measuring fluorescence decays on nanosecond time scale and longer. 

The principle of TCSPC is based on the precise registration of the arrival time of 

fluorescence photons from a sample. A fluorescence decay curve is constructed from 

the TCSPC measurement, this curve is used to extract the fluorescence lifetime. The 

setup is novel with respect to the conventional method of collecting a fluorescence 

signal. It is a simplified setup as there is no need of complex geometry of optics to 

focus the excitation beam or to image the fluorescence on to the detector. Instead, the 

excitation beam is  unfocused and the sample is placed as close to the detector  as 

possible. This approach allows for the usage of low excitation density of photons. 

The low level of light that this setup could detect made it very sensitive for measuring 

samples with low emission. The setup is characterised with two different samples: 

Coumarin-152  (7-N,N-dimethylamino-4-trifluoromethyl-1,2-benzopyrone)  and 

APFO3  (poly[2,7-(9,9-dioctylfluorene)-alt-5,5-(4,7′-di-2-thienyl-2′,1′,3-

benzothiadiazole)]).  Coumarin-152  is  a  commercial  laser  dye  and  APFO3  is  a 

polymer  solar  cell  material.  These  measurements  reveal  that  the  single  and  non 

exponential curves could be obtained using this setup. The verification of the setup is 

further carried out by classifying different errors that can influence the measurements. 
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1. Introduction

The development of new instruments and techniques broadens the understanding of 

matter. Numerous spectroscopic techniques are used to study different properties of a 

sample, for example their chemical composition, and their lifetime etc. Any technique 

is selected based on the information to be extracted from a sample. In spectroscopy a 

common  tool  is  laser.  The  laser  light  interaction  with  matter  is  used  in  photo 

chemistry,  absorption  spectroscopy,  fluorescence  spectroscopy,  time  resolved 

spectroscopy, environment monitoring, material processing, medical applications etc . 

In the field of spectroscopy, laser is used to characterise light induced processes in a 

sample. The processes a laser can probe depend on the absorption and emission of the 

sample . Absorption of light is followed by emission which has a distinct lifetime and 

can be used to characterise a process in a sample. One way to measure this lifetime is 

to  use  the  Time  Correlated  Single  Photon  Counting  (TCSPC)  technique.  It  is  a 

sensitive technique which can detect very low emission from a sample and measure 

the emission lifetime. TCSPC is based on light behaving as quanta (photon). TCSPC 

has many applications other than fluorescence lifetime measurement, such as Ultrafast 

recording  of  optical  waveforms,  Detection  and Identification  of Single  Molecules, 

DNA sequencing, Optical Tomography, and Fluorescence lifetime imaging .

1.1 Motivation

The aim of my diploma project is to design and demonstrate the highly light sensitive, 

time resolved fluorescence setup, based on single photon counting. The key advantage 

of TCSPC over steady state fluorescence measurement is that all the detected photons 

are accumulated in histogram without added instrumental noise, thus providing high 

signal  to  noise  ratio  and  high  sensitivity.  This  instrument  allows  reproducible 

measurements  of  rates  and  mechanism of  light  induced  dynamics,  with  fast  time 

resolution of ns. It is also the objective to avoid the artifacts arising from emissive 

optical  components.  This is  circumvented  by using a  series of interference filters. 

These approaches  are  manifested  in  development  of new instruments  for study of 

fluorescence samples  (Coumarin-152, APFO3), investigation of decay kinetics and 

therefore  model  assessments.  The  later  is  the  subject  of  complementary  diploma 

project.
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2. Theory and Background

The  study of  light  matter  interaction,  as  a  function  of  wavelength  is  called  the 

spectroscopy.  The  most  widely  used  spectroscopic  techniques  are  UV/Visible 

absorption  (electronic) and  fluorescence  spectroscopy.  Absorption  of  UV/Visible 

radiations by a molecule excites it from electronic ground state to any vibrational 

level  of  electronically  excited  state  S1.  Fluorescence  occurs  when  this  excited 

molecule returns back to the ground state with an emission of photon. Fluorescence 

measurements  are  classified  into  two main  types:  1)  steady state  measurements, 

where the sample is excited with continuous beam of light and emission intensity is 

measured  2)  time  resolved  measurements  of  fluorescence  intensity  decay  when 

sample  is  excited  by  a  pulsed  laser.  Time  resolved  measurements  are  used 

extensively  in  fluorescence  spectroscopy,  particularly  investigating  dynamic 

conformational  changes  in  biological  macromolecules,  mechanism  of  energy 

transfer and quenching etc.  Further,  most of the time resolved measurements are 

being carried out by single photon counting .  Single photon counting is a digital 

technique  based on detection  and counts  of  individual  photons  from illuminated 

sample.  Since,  this  technique  is  insensitive  to  instrumental  noise  it  enables  to 

analyze the low intensity fluorescence decays. The decay curves are data collected in 

form of photon counts versus time. In the following theory part, we discuss in detail 

about above mentioned spectroscopy techniques.

2.1. Absorption spectroscopy

Absorption spectroscopy is a technique that measures the absorption of radiation, as a 

function of frequency or wavelength, due to its interaction with a sample. It is a tool 

for investigating molecular structures, atomic physics, astronomical spectroscopy and 

remote sensing etc. . Absorption of radiation by a sample is measured by the ratio of 

the  transmitted  intensity  and  incident  intensity  of  light.  A  common  way  is  to 

illuminate the sample from one side and detect the transmitted intensity of the light on 

the other side. Absorbance of a sample is given by the Beer Lambert law  in Eq.1.
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lNeII σ−= 0 (1)

Incident intensity of light I0, has to be measured. The intensity of the transmitted light, 

I, is determined by the absorption cross section, σ, the path length l, and the number 

of absorbing molecules, N. 

2.2. Fluorescence Spectroscopy

The quantum mechanical  picture  states  that  excitation  to  a  higher  energy state  is 

absorption of a photon and radiatively relaxing down to ground state with emission of 

a photon is fluorescence.  Both absorption and fluorescence are very fast processes 

but the time between them is typically on nanosecond timescale depending on the 

sample . The law of nature states that every system is stable at a lower energy state 

and the radiative relaxation process is spontaneous. 

Fluorescence emission takes place from the lowest vibrational  state  of the excited 

state to the ground state of the molecule. The emission is red shifted compared to the 

absorption. The process of excitation-emission is illustrated by the Jablonski diagram, 

Figure 1. 

Figure 1. Illustration of the absorption and emission.

In Figure 1, k12 is the rate of absorption of light (photon) from ground state S0, to the 

excited state  S1. The rate of emission (fluorescence) is k21, and it is from the lowest 
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vibrational  state  of  the  excited  state,  S1,  to  the  ground  state,  S0.  Eq.  2  and  Eq.3 

describe the transitions between ground state and excited state .

10 ShvS →+ (2)

101 hvSS +→ (3)

The hv in Eq. 2 is the absorbed photon to excite the electron from S0 to S1 state. The 

hv1 in Eq. 3 corresponds to the emitted photon when the electron relaxes to the ground 

state. Eq. 2 and Eq. 3 represent fundamental excited and ground state interaction with 

a photon.

Lifetime of an excited molecule is the time it takes for an ensemble of such molecules 

to decay to 1/e of their initial excited state population. The fluorescence lifetime thus 

refers  to  the  average  time  a  molecule  stays  in  its  excited  state  before  emitting  a 

photon. The decay of fluorescence is usually represented by a first order rate equation 

Eq. 4.

( ) τ
t

eAtA
−

= 0
(4)

kteSS −= 011 ][][ (5)

In  Eq.  4  the  initial  intensity  of  fluorescence,  A0,  decays  with  time,  t.  τ is  the 

fluorescence lifetime. Eq. 6 states that the initial population, [S1]0, of the excited state 

decays with a decay rate k  . The decay rate, k, and the decay lifetime, τ, are related by 

Eq. 6.

τ
1=k (6)

2.3. Steady state fluorescence spectroscopy

Steady state fluorescence spectroscopy is performed by constantly illuminating the 

sample and observing the total fluorescence intensity over a broad electromagnetic 

spectrum. The spectral shape and the peak of emission are the parameters that can be 

obtained to identify a sample or a process in a sample. 
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Figure 2. Steady state normalized fluorescence spectra .

In  Figure 2,  the steady state  fluorescence spectrum has five curves.  These curves 

represent the five different samples. 

2.4. Time Resolved Fluorescence Spectroscopy

Time  resolved  spectroscopy  is  the  study  of  dynamic  processes  in  materials  or 

chemical compounds by means of spectroscopic techniques. Most often, the processes 

studied occur after  illumination of a sample.  Using pulsed lasers,  it  is  possible to 

study processes that occur on time scales as short as femtoseconds . 

The fluorescence of a sample is monitored as a function of time after excitation by a 

laser pulse is called time resolved fluorescence spectroscopy. The time resolution can 

be  obtained  in  a  number  of  ways,  depending  on  the  required  sensitivity  and  the 

sample.  Time  resolved  fluorescence  is  used  to  extract  the  lifetimes  of  different 

samples. The fluorescence from different samples can be spectrally overlapping. Due 

to  the  possibility  of  spectral  overlap  the  steady  state  fluorescence  technique  is 

inadequate. These samples have most probably a distinct fluorescence lifetime which 

can be extracted by doing time resolved fluorescence spectroscopy .
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Figure 3. Time-resolved fluorescence spectrum .

In Figure 3, there are two curves for recorded time resolved fluorescence signal and 

laser excitation pulse. 

2.5. Time Correlated Single Photon Counting

Time correlated single photon counting (TCSPC) is a technique to record low level 

light signal. TCSPC is based on the detection of single photons of a periodical light 

(pulsed  laser)  signal,  the  measurement  of  the  detection  times  of  the  individual 

photons,  and  the  construction  of  the  decay  curves  from  the  individual  time 

measurement  .  The measurement requirement  is that  the probability of detecting a 

single  photon  per  pulse  should  be  less  than  one.  For  higher  counting  rate  the 

histogram is biased to shorter times. This is because with TCSPC only the first photon 

is observed. Therefore, the detection of several photons can be neglected. In fact, the 

detection rate is typically 1 photon per 10000 excitation pulses. The time is measured 

between the excitation pulse and the observed photon, see  Figure 4. This measured 

time is stored in a histogram . 

Figure 4. The time measurement between excitation and emission of the fluorescence photon .

A start and stop signal is needed to initiate and halt a measurement cycle. These two 

signals control the triggering, counting and timing of the measurement cycle. The start 

signal is a pulse generated from the laser driver which is detected and its time of 

arrival  is stored by the fast  electronics.  Secondly,  the stop signal is  another pulse 

generated when the fluorescence photon arrives at the detector. The arrival time of 

this stop pulse is also stored. The time difference between the start and stop pulse 
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arrival is the time of detecting a single photon. This whole cycle is repeated over and 

over to get a good decay curve.

The sample is excited many times i.e. the excited state of a molecule is populated 

continuously.  The  decay  of  the  population  from  the  molecule’s  excited  state  is 

observed. For each photon detected its time after the last excitation pulse is measured. 

After  repeating  this  cycle  over  a  certain  time,  the  accumulated  photons  and their 

arrival times are used to construct the fluorescence decay curve, see Figure 5. 

Figure 5. The histogramming procedure to illustrate the decay obtained .

TCSPC differs from methods with analog signal processing in that time resolution is 

not limited by the width of the detector impulse response. For TCSPC only the timing 

accuracy in the detection channel  is  essential.  This  accuracy is  determined by the 

transit time spread of the single photon pulses in the detector and the trigger accuracy 

in the electronics.  The timing accuracy can be up to 10 times better  than the half 

width of the detector impulse response . For a given number of photons N the signal 

to noise ratio is given by Eq. 7.

NSNR = (7)

If  the  emission  intensity  is  low  enough  to  avoid  pile  up,  all  detected  photons 

contribute  to  the  decay  curve .  In  TCSPC  noise  due  to  leakage  currents,  gain 

instabilities and stochastic gain mechanism of the detector do not appear in the decay 

curve. This yields a very good signal to noise ratio.
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3. Test Samples

The constructed TCSPC setup is verified after implementation so that other samples 

can be measured accurately. For the verification of the technique, two test samples are 

used.  The  purpose  of  these  test  samples  is  to  characterize  the  setup  by  showing 

reproducibility  and  credibility  of  the  measured  data.  In  Figure  6,  the  chemical 

structure  of  Coumarin-152  (7-N,N-dimethylamino-4-trifluoromethyl-1,2-

benzopyrone) is shown . It is dissolved in ethanol and placed in a cuvette of 1mm 

thickness.  Coumarin-152 is  used because it  is  expected to  have a single  exponent 

decay which will be shown in the Results and Analysis chapter.

Figure 6. Coumarin-152 .

The other sample is a conjugated polymer. Figure 7 shows the chemical structure of 

the polymer, APFO3 (poly[2,7-(9,9-dioctylfluorene)-alt-5,5-(4,7′-di-2-thienyl-2′,1′,3-

benzothiadiazole)]) . APFO3 is spin coated on a glass substrate. The thickness of the 

APFO3 after spin coating is approximately 100nm. It is sealed by another glass 

substrate on top.

Figure 7. APFO3 polymer .

This  polymer  is  selected  as  it  is  expected  to  be  inhomogeneous.  Due  to  the 

inhomogeneity the sample has non-exponential fluorescence decay. To check whether 

our TCSPC setup could record non exponential decay this sample is used.

4. Experimental Setup
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4.1 Time Correlated Single Photon Counting Setup Overview

The block diagram in Figure 8 is the optical layout of TCSPC setup. The setup has 

number of components. Each of these components will be discussed in detail in this 

chapter. The setup has a laser driver with three laser heads, the detector APD, the 

photon counter PicoHarp, the sample holder with interference filters, the computer for 

controlling  all  the  instruments,  flipping  mirrors  and  neutral  density  filters.  The 

purpose of the figure is to highlight the setup construction and the instruments used. 

The  operation  and  function  of  these  components  are  described  individually  in 

following sections. 

 

Figure 8. Experimental arrangement of the TCSPC setup built in this work.

4.1.1 Laser Driver and Diode

The laser system used in this setup is SEPIAII; it has a set of diode lasers which are 

driven by the same laser driver . It allows a user to have wavelength, repetition rate 

and intensity control. Triggering control is completely configured via the computer 

through USB. The system has three wavelengths 405nm, 480nm and 640nm. 
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4.1.2 Avalanche Photodiode (APD)

Avalanche photo diodes are semiconductor based detectors. The APD which is used 

in  these  experiments  is  a  Micro  Photon  Device  manufactured  PDM model  . The 

sensitivity of an APD is equivalent to a Photo Multiplier Tube (PMT). In comparison 

to PMT the APD has a much smaller  chip size and it has lower dark counts. The 

typical optical  power detected by the APD is 1pW. The quantum efficiency at the 

efficiency maxima is 45%, see Figure 9. The APD is silicon based and therefore the 

sensitivity is lesser in the longer wavelength region. The two output modes of the 

APD are the TTL OUT and the NIM OUT .

Figure 9. Data sheet specifications of the APD .

TTL OUT has a wider FWHM and does not have a sharp rise of the output stop pulse. 

TTL OUT of the APD is a standard BNC output connector. 

NIM OUT has a shorter FWHM of the output stop pulse. The major advantage of 

NIM OUT over TTL OUT is the sharp rise of the stop pulse. The sharp rise of NIM 

OUT gives better timing resolution than TTL OUT. 

4.1.3 Photon Counter
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PicoHarp 300 is the photon counter that is used in this TCSPC setup. PicoHarp is 

available from PicoQuant. PicoHarp has high counting rate capability of 10 million 

counts/sec and timing resolution approximately of 10ps can be achieved. 

PicoHarp 300 has a built in counter to count the number of photons and their arrival 

time. If the counting rate exceeds the maximum value then pile up occurs due to the 

dead time of the detector.  The pile up is discussed in the errors and uncertainties 

chapter.  In Figure 10, the schematic of the PicoHarp shows the built in electronic 

component called Constant Fraction Discriminator (CFD) which controls the start and 

stop of a photon arrival event. To minimize false readings the signal is restricted to a 

threshold voltage by the CFD, which allows detection of signal pulses in above a 

certain voltage level.

The delay time is calculated by passing the arrival time of both excitation pulse and 

emission pulse to a time-to-amplitude converter  (TAC), which generates a voltage 

ramp  that  is  a  voltage  that  increases  linearly  with  time  on  nanosecond  or  faster 

timescale. Start signal of the voltage ramp comes from the excitation pulse and the 

stop signal  comes  from the detected  photon (emission  pulse).  After  this  the TAC 

contains a voltage proportional to the time delay between the excitation and emission 

signals. If the signal is not within this range the event is not registered. The voltage is 

converted to a digital value that is stored as a single event with the measured time 

delay,  Δt.  A histogram of the decay is constructed by repeating this process many 

times with a pulsed laser .

Figure 10. Electronic Schematic of PicoHarp 300.
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4.1.4 Interference Filters

The geometry of the setup shows the significance of the interference filters. There are 

two types of interference filters used; cut-off or long pass filters. The major use of the 

filters in our geometry is to block out the excitation light. It is important to detect only 

the  fluorescence  signal  from the  sample.  These  cut-offs  are  absorbing  filters  and 

generally any material that absorbs has some emission. It is therefore expected to have 

emission  from the  cut  off  filters,  which  contaminates  the  fluorescence  signal  and 

needs to be filtered out along with the excitation wavelength. 

The  fluorescence  decay  has  two  parameters  of  information  about  the  sample; 

wavelength and lifetime. The emission at particular wavelength is observed with the 

use of band pass filters.  The cut-off  filters  used in the setup are  from CHROMA 

Technologies. The cut off filters block all wavelengths below 572nm and 795nm. The 

band pass filters have a bandwidth of around 5-8nm. The spectral properties further 

characterise a sample.

4.2 Additional Instruments

The  interference  filters  and  the  test  samples  are  characterised  by measuring  their 

absorption and emission spectra.  The instruments used for these measurements are 

described below. 

4.2.1 Absorption Spectrometer-Agilent 8453 UV-Visible

The absorption spectrometer that is used in this set up is as an  Agilent 8453 UV-

Visible spectrophotometer, see Figure 11. It uses a photodiode array (PDA) which has 

a range of diodes measuring from the UV to visible. The advantage of PDA is that the 

measurements are fast as the whole wavelength range is acquired in a single run. The 

PDA  is  wavelength  calibrated,  so  the  transmitted  intensity  of  light  for  each 

wavelength is recorded. Agilent 8453 has a short start up time, as the lamps are stable 

and warm up quickly. Overall the instrument has low electronic noise. 

The output from the spectrometer is the optical density spectrum of the sample over a 

range  of  wavelengths  (190-1100nm).  For  measuring  a  sample  is  illuminated  by a 

beam of broad band light from the two lamps, deuterium and tungsten. The intensity 
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of light reaching the detector after  passing through the sample is measured by the 

Photodiode Array (PDA) .  

The absorption spectrum of the interference filters and the test samples are measured 

to check their optical specifications and characteristics. In constructing the setup we 

needed to find out which interference filters to use for our setup, for blocking the 

excitation light and filtering out the fluorescence emission. Secondly, we have to find 

out where our samples have maximum absorption and also to look for a common 

absorption peak if there is any so that we could use a single excitation wavelength.

Figure 11. Schematic of the Agilent Absorption Spectrometer .

4.2.2 Steady State Fluorescence Spectrometer 

The steady state fluorescence is measured by a SPEX spectrometer, see Figure 12. It 

gives  the  emission  spectrum of  the  sample  over  a  broad  wavelength  range  (200-

1200nm). The major components of the steady state fluorescence spectrometer are the 

Xenon  lamp,  the  excitation  monochromator,  the  sample  holder,  the  emission 

monochromator,  and the detector.  Each component of the SPEX is calibrated. The 

calibration of the excitation monochromator is performed by a reference diode and the 

Xenon lamp. The calibration of the emission monochromator is done by measuring 

the scattered light of known wavelength.   

18



Figure 12. Schematic of SPEX.

The SPEX has two detectors:  an IR and an UV/VISIBLE PMT. These PMTs are 

highly sensitive detectors and need to be cooled down to lower dark current.  The 

incident  photon generates  electrons  which are  amplified  approximately  10 million 

times.  The  steady  state  emission  of  the  cut  off  filters  and  the  test  samples  are 

measured using SPEX. 

5. Results and Data Analysis

For the credibility and reproducibility of the data obtained from the TCSPC setup, it is 

investigated with two test samples mentioned in chapter 3.

5.1 Absorption and Emission Spectra of Coumarin-152

The measured absorption (blue) and steady state emission (red) spectra of Coumarin-

152  are  shown  in  Figure  13.  Coumarin-152  has  a  maximum  absorption  peak  at 

400nm. The excitation wavelength for the steady state and time resolved fluorescence 

measurements is selected to be close to this maximum absorption peak. The emission 

peak  helps  in  determining  the  types  of  filters  to  be  used  in  the  time  resolved 

fluorescence measurements.

Figure 13. Absorption and Emission spectrum of the Coumarin-152 dye.
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5.2  Absorption and Emission Spectra of APFO3

The absorption spectrum of APFO3 has peaks at 380nm and 550nm, see the blue 

curve in Figure 14. The steady state emission spectrum of APFO3, see the red curve 

in  Figure  14,  which  has  a  maximum  at  around  700nm and  indicates  that  it  has 

significant emission after 700nm compared to Coumarin-152 (Figure 13). The other 

distinct differences of the samples are the single absorption peak of Coumarin-152 

and double absorption peaks of APFO3. The polymer is not excited at 550nm as we 

did not have a laser of this wavelength. Excitation wavelength used for the TCSPC 

measurement is 405nm as both Coumarin-152 and APFO3 have absorption peaks in 

this wavelength region.

Figure 14. Absorption and Steady State Emission spectrum of APFO3 polymer

5.3 Interference Filters Absorption and Emission Spectra

In Figure 15, the absorption spectrum indicates that the first cut off filter allows all the 

light with wavelength longer than 572nm. The 572nm filter is suitable for blocking 

the  excitation  wavelength  of  405nm,  but  the  filter  itself  emits,  see  Figure 16.  At 

405nm the optical  density of the filter  is  not very high,  which allows part  of the 

excitation light to pass through the filter. To completely block the excitation light and 

emission from the first filter, another cut off filter have to be used which blocked all 

light below 795nm.
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Figure 15. Absorption Spectra of cut off and band pass filters.

In Figure 15, the absorption spectrum of the 795nm cut off filter is shown. It blocks 

the major part of the emission from the preceding 572nm cut off filter. The 795nm cut 

off  filter  is  expected  to  have  emission  as  well.  A further  check is  performed  by 

measuring the steady state emission spectrum of this filter. Figure 16 shows that the 

emission peak of the 795nm cut off filter is at 750nm. The emission from the 795nm 

filter is very weak as the amount of excitation light, which can excite the 795nm filter, 

is reduced significantly by the first 572nm filter. Emission from the first cut off filter 

has negligible effect in exciting the 795nm filter. 
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Figure 16. Steady state emission of 572nm (blue) and 795nm (red) cut off filters.

Any emission of the 795nm cut off filter is to a large extent blocked by the band pass 

filters that are put in front of the APD. The band-pass filters, see Figure 15, are used 

to spectrally resolve the emission from a sample. The band pass filters also serve as a 

tertiary barrier for blocking out any residual excitation light and the emission from the 

other  long pass  filter.  The  detected  signal  after  the band-pass  filter  is  mainly  the 

sample’s emission.

The drawbacks of our novel geometry are firstly that band-pass filter has to be used 

for  spectrally  resolving  the  emission  from  the  sample.  Secondly,  to  remove  the 

excitation light and emission from the cut-off filters is a challenge.

5.4 Measurement Output Modes

As mentioned earlier, the APD has two output modes: NIM OUT and TTL OUT. The 

output pulse from the APD is used to stop the PicoHarp timing sequence. The major 

gain between these two outputs is the timing resolution of the stop pulse. Difference 

between the two output  modes  is  shown in Figure 17.  NIM OUT gives a  shorter 

FWHM than the TTL OUT. The IRF with the NIM OUT has a FWHM of 250ps and 

the IRF with the TTL OUT is 350ps. According to the specifications NIM OUT has a 

FWHM of 50ps and TTL OUT has a FWHM of 350ps. This indicates that we can 

improve our TCSPC setup timing accuracy further.
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Figure 17. IRF of the system measured by scattering of the 405nm laser. TTL OUT(black) vs. NIM 

OUT(red).

5.5 Avalanche Photodiode Sensitivity Calibration

The  APD  sensitivity,  in  the  wavelength  region  of  our  interest,  is  checked  to 

characterise the overall sensitivity of the TCSPC setup. This is done by illuminating 

the APD and all the filters in place with a lamp. The band pass filters are changed and 

the counts per second are measured for each band pass filter (826nm, 900nm, 950nm 

and 1050nm).

Figure 18. The calculated sensitivity of the APD compared to the data sheet normalised at 826nm.

In Figure 18 the relative sensitivity curves indicate the relation between the calculated 

sensitivity and the manufacturer’s specifications. In Table 1, the data is given for the 

measurement made. The O.D. from the absorption spectrum is used to calculate the 

transmission  of  the  band  pass  filters.  This  transmission,  the  measured  counts  per 

second, and the lamps counts per second for the specific wavelength (calibration data 

of lamp) are used to calculate sensitivity of the APD. The model expression used to 

calculate this sensitivity is given in Eq. 8.

CPS

CPS

L
MT

S
⋅

= (8)
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S is the calculated sensitivity,  T is the transmission, MCPS is the measured counts and 

LCPS is the counts from the calibration data of the lamp.

Table1. Measured data to estimate the sensitivity of APD. Optical density, O.D, and 
transmission, T, of the filters is shown. Measured counts, MCPS, and calibrated lamp 
counts,  LCPS,  are  given  along  with  estimated  sensitivity,  S,  and  the  manufacturer 
specification. 

Filters O.D. T MCPS LCPS S APD Data Sheet
826nm 0.28 0.52 27000 614.70 10.83 10.83
900nm 0.24 0.57 22000 1299.96 2.10 1.57
950nm 0.25 0.55 18000 2055.04 0.69 0.76
1050nm 0.19 0.64 15000 3646.96 0.15 -NA-

5.6 Time Resolved Fluorescence Measurements

In this section the results obtained from the lifetime measurement performed on the 

test sample Coumarin-152 and APFO3 are presented. The excitation wavelength is 

405nm and it is selected based on the common absorption peak of Coumarin-152 and 

APFO3. A band-pass filter at 826nm is used to measure the fluorescence decay curve 

of Coumarine-152 in Figure 19 (blue) fitted with the Instrument Response Function 

(IRF) (red). The fitted curve (black) is overlapping with the decay curve and after the 

deconvolution the lifetime of Coumarin-152 is extracted. The lifetime that is obtained 

from the measurement is 1.69ns and the published lifetime of Coumarin-152 is 1.63ns 

[9]. This result is in good agreement with the published lifetime. The fitting function 

used, Eq. 4, for Coumarin-152 is a single exponent. The lifetime obtained using single 

exponential fitting of Coumarin-152 shows that it is only a single type chromophore 

fluorescing.
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Figure 19. Fluorescence decay curve of Coumarin-152, excited at 405nm. IRF (red) and the residual of 

the fit (blue) are shown in the figure above.

The measured fluorescence decay curves of APF03 at wavelengths 826nm, 900nm, 

950nm and 1050nm, are shown in Figures 20, 21, 22 and 23 respectively. APFO3 has 

a maximum emission at around 700nm, see Figure 14. The intensity of fluorescence is 

found decreasing as the wavelength of the band-pass filters is red shifted. One way to 

have a good signal to noise ratio for different band-pass filter measurement is to vary 

the integration time. The trade off is between low excitation intensity and integration 

time. If the excitation intensity is too low although sample degradation is minimised 

but the integration time is to increase for a good signal to noise ratio.

Besides,  APFO3 is  expected to have a non exponential  decay due to existence of 

different fluorescing moieties. These moieties might have distinct lifetimes. In Figure 

20, the non exponential decay of the APFO3 polymer is shown. The fitting with the 

IRF is done iteratively. Initially, the curve is fitted with a single exponent but the fit 

curve did not follow the decay curve. The decay is then fitted with two exponents, Eq. 

9. The fit is improved as it followed the decay trace quite well. So, the shape and the 

fitting with two components suggest that using the TCSPC setup we can resolve non 

exponential decays.

21
21)( ττ

tt

eAeAtA
−−

+=            (9)

The fluorescence decay curves measured at 900nm and 950 nm are shown in Figure 

21 and 22, respectively. The integration time for both these measurements is same i.e. 

300 seconds and a decrease in amplitude (counts) is clearly seen. For the 1050nm 

band-pass  filter  the  integration  time  has  to  be  increased  as  the  APF03  has  less 
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emission at this wavelength. The setup characterization is then interesting when there 

is almost no emission from APFO3 at 1050nm. It is interesting that APD still registers 

the counts indicating the very high sensitivity of the setup. Although, Figure 23 shows 

that  the  amplitude  (counts)  is  below  a  1000  counts  which  is  comparable  to  the 

amplitudes of the other measurements at 826nm, 900nm and 950nm. The integration 

time for this measurement is 600 seconds to get signal to noise ratio equivalent to 

other measurements. 

Also, the Coumarin-152 is measured using the 1050nm band-pass filter.  And even 

though the dye has no significant emission there counts are still registered. This shows 

the very high sensitivity of the setup as well of the APD.

Figure 20. APFO3 fluorescence decay (non exponential) measured with 826nm band-pass filter. IRF 

(red), Fitted curve (black) and residual of the fit (blue).

Figure 21. APFO3 fluorescence decay curve measured with 900nm band-pass filter.
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Figure 22. APFO3 fluorescence decay curve measured with 950nm band-pass filter.

Figure 23.APFO3 fluorescence decay curve measured with 1050nm band-pass filter

These experiments  have been performed twice to  check the reproducibility  of the 

measurement. In Table 2, the fitted data of these two measurements are given. The 

lifetimes and amplitude components are similar for repeated measurements.

Table 2. The reproducibility of measurements performed on APFO3

Filters 826nm 900nm 950nm 1050nm
Measurement 1st 2nd 1st 2nd 1st 2nd 1st 
Amplitude 0.73 0.70 0.68 0.58 0.88 0.57 0.48
Lifetime(τ/ns) 1.55 1.65 1.34 1.00 1.94 2.00 1.21
Amplitude 0.27 0.30 0.32 0.42 0.12 0.43 0.52
Lifetime(τ/ns) 0.69 0.72 0.50 0.30 0.90 1.30 0.80

6. Errors and Uncertainties
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Error in science is not a mistake. It is the uncertainty related to any measurement. Any 

measurement  done  is  not  an  exact  one.  The  accuracy  and  precision  determine  a 

measurements credibility or certainty.  There are two major categories in which the 

error can be classified: Systematic and Random .

Systematic  error  is  defined  as  an  error,  which  results  from  non  calibration  of 

instrument. On the other hand, a random error is caused by unpredictable variation in 

measurements.  The variations in measurements due to random error are dealt  in a 

statistical manner .

6.1 Errors and Uncertainties in TCSPC

Although the fluorescence experiments are easy to perform with this technique but we 

should be aware of possibility of errors and inaccuracies. Major errors in this TCSPC 

setup are: Pile up, background counts, synchronisation, and noise pattern. All these 

errors lead to an inaccurate measurement. To minimise these errors we need to define 

them.

6.1.1 Pile Up

The detection and consequent loss of a second photon in one signal period is called 

pile up. Detection or loss of a second photon usually occurs in the later part of the 

signal and hence the decay curve is influenced. A decay curve, which is distorted by 

pile up can be noticed if the counting rate is higher than repetition rate .

Figure 24. Effect of pile-up on recorded curves. Curve (a) is the correct one. Curves (b) and (c) are 

distorted by pile up .
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If the detector sees thousands of photons per laser pulse, due to pile up the decay 

curve obtained could give lifetimes shorter than the detector transit time spread. To 

mention that multiphoton detection and pile up are two different effects. Multiphoton 

detection can occur if the CFD threshold amplitude is above a single-photon pulse 

amplitude .

6.1.2 Background Counts

Dark counts influence the measurement of TCSPC because it is the first photon that is 

detected and stored. So, if a thermal photon is detected before the fluorescence photon 

then the detector does not see the fluorescence photon. This distorts the fluorescence 

decay curve. To reduce the dark count rate the APD could be cooled . 

6.1.3 Synchronisation

Accurate  timing  between  the  start  and  stop  pulse  is  important  and  hence  a 

measurement  mode  called  Time-Tagged  Time-Resolved  data  acquisition  (TTTR). 

TTTR tags the timing of excitation pulse to the detection of the photon by the APD. 

Using this mode we still lose photons due to the dead time of the APD. The dead-time 

means the APD is unable to detect another photon or next photon for a certain time. 

Each recorded photon causes a dead-time and another photon can not be detected 

during this time so it is lost .
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Figure 25. Repetition rate and dead-time of APD. Left  the APD is active for longer due to shorter 

processing time. Right the APD is inactive for longer due to increased processing time, so it misses a 

cycle completely .

The dead-time of APD is also related to the repetition rate. Figure 25, shows how the 

dead-time and repetition rate are interlinked. If the dead-time of APD is short higher 

repetition rate can be employed but if its longer then lower repetition rate has to be 

used.

6.1.4 Noise Pattern

TCSPC works by counting photons, so in principle it is a digital technique. Another 

noise source, apart from the dark counts, is the counting noise. The counting noise is 

governed by the Poisson noise distribution.  This  counting noise is  defined by the 

standard deviation of a data point which is the square-root of the data point. The noise 

is of Poisson type has an influence on the dynamic range. The SymPhoTime Software 

used for analysis uses the square root noise model to de-convolute the decay curve 

with IRF to extract the fluorescence lifetime.

6 Conclusion

We presented a home built TCSPC setup that allows fluorescence measurements with 

high time resolution, high life time accuracy with single and multi exponential decay 

functions and high sensitivity. The optimized instrumental response function of our 

system  is  250ps.  The  sensitivity  of  integrated  setup  is  found  decreasing  at  red 

emission relative to 826nm.  The setup is novel in the sense that the geometry to 

collect  fluorescence  is  simple  and  also  the  use  of  very  low density  of  excitation 

photons. The latter is of advantage as it slows down sample photo-degradation. We 

have also demonstrated the setup verification and have been applied to study the solar 

cell  materials.  The measured life times are also in good agreement with published 

data.
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