
On the performance of edge coloring
algorithms for cubic graphs

Edvin Berglin
edvinberglin@gmail.com

March 16, 2014

Master’s thesis work carried out at
the Department of Computer Science, Lund University.

Supervisor: Thore Husfeldt, thore.husfeldt@cs.lth.se

Examiner: Jonas Skeppstedt, jonas.skeppstedt@cs.lth.se

mailto:edvinberglin@gmail.com
mailto:thore.husfeldt@cs.lth.se
mailto:jonas.skeppstedt@cs.lth.se

Abstract

This thesis visits the forefront of algorithmic research on edge coloring of
cubic graphs. We select a set of algorithms that are among the asymptotically
fastest known today. Each algorithm has exponential time complexity, owing
to the NP-completeness of edge coloring, but their space complexities differ
greatly. They are implemented in a popular high-level programming language
to compare their performance on a set of real instances. We also explore ways
to parallelize each of the algorithms and discuss what benefits and detriments
those implementations hold.

Keywords: edge coloring, graph algorithm, cubic graph, performance test, perfor-
mance comparison

2

Acknowledgements

We would like to thank the makers of Gephi Graph Visualization and Manipulation soft-
ware, which has been a pain and a blessing when debugging our own software.

Much gratitude is owed to Carl Fagerlin and Paul Rizescu for their support and encourage-
ment, when morale was faltering and in need of a good kick in the pants.

We also extend our deep appreciation to Marcus Klang, for graciously lending all of his
gigabytes.

Finally, we thank the international community of video game composers for all their won-
derful work. Can’t program without some good music!

3

4

Contents

1 Introduction 7
1.1 Necessary graph terms and expressions 7
1.2 Edge coloring . 8
1.3 Path decomposition . 9

2 Approach 13
2.1 EnumColors . 13
2.2 CountColors . 14
2.3 Kowalik . 15
2.4 Related research . 17

3 Software specifics 19
3.1 Graph . 19
3.2 Pathdecomp . 20
3.3 EnumColors . 21

3.3.1 Parallelization . 21
3.4 Kowalik . 21

3.4.1 Parallelization . 22
3.4.2 Finding an edge coloring . 23

3.5 CountColors . 23
3.5.1 Setting epsilon . 24
3.5.2 Parallelization . 25

4 Testing 27
4.1 Computer hardware . 27
4.2 Preliminary testing . 27

4.2.1 Hash seeds . 28
4.2.2 Aggressive epsilon . 30
4.2.3 Number of threads . 31

4.3 Results . 32

5

CONTENTS

4.3.1 EnumColors . 32
4.3.2 Kowalik . 33
4.3.3 CountColors . 37
4.3.4 Detecting class 2 . 55
4.3.5 Coping with greater sizes . 58

5 Discussion 63
5.1 Determining class . 63
5.2 Finding an edge coloring . 64
5.3 Counting edge colorings . 64
5.4 Finding all edge colorings . 65
5.5 CountColors time complexity . 65
5.6 Choice of programming language . 66
5.7 Further research . 66

Bibliography 69

List of Figures 71

6

Chapter 1
Introduction

In the area of graph theory, the edge coloring problem asks whether it is possible, using
only a given number of colors, to assign colors to all the edges of a graph so that for every
vertex, none of its adjacent edges share a color. The “colors” are purely abstract entities
and do not necessarily translate to any chromatic phenomena.

The problem is related to and inspired by the four color map theorem, which is an
instance of vertex coloring and one of the first studied problems of graph theory, dating
back to at least 1852. It is also one of its most famous results after having been finally
proven in 1976. In 1880 — long before any valid proof was discovered for the theorem
itself— Tait showed that it could be equivalently phrased as a statement about the coloring
of the edges of different but related graphs [Tait]. Thus began research into the topic of
edge coloring, which continues to see a high amount of scholarly attention today.

The problem has applications to optimal scheduling in several real-life areas, such
as round-robin tournaments and fiber optic communication. The case of fiber optics is
noteworthy as an instance where our abstract “colors” represent the actual colors of light
passing through a physical cable. Perhaps more importantly, edge coloring has implica-
tions towards both the ever-famous P vs NP problem, as well as the broader area of graph
theory.

In this thesis we implement and examine the running times of three existing algorithms
for optimal edge coloring of cubic graphs, measured in seconds rather than asymptotic
notation. Before delving into the workings of these algorithms, we give a formal problem
statement and definitions of graph theoretical terms that will be used throughout the paper.

1.1 Necessary graph terms and expressions
A graph is k-regular if every vertex has degree k. As a special case, 3-regular graphs are
called cubic graphs.
A 2-partition of a graph is two disjoint sets V1 and V2 where V1 ∪ V2 = V (G). The set

7

1. Introduction

of edges crossing from V1 to V2 are known as the cut. A graph is bipartite if it has a 2-
partition where every edge is in the cut.
A bisection is a 2-partition where ||V1| − |V2|| ≤ 1.
An edge is called a bridge, if its removal will cause a connected component to split into
two connected components. A graph is bridgeless if it has no bridges, or equivalently, if
it has no 2-partition where the cut is of size 1.
A graph is planar if it can be drawn in a plane without any of the edges crossing each other
except in common vertex endpoints.
Given a graphG and a set of edges F, G \F is the result of removing every edge in F from
E(G).
A matching for a graph G is a set of edges M ⊆ E(G), such that every vertex in V (G) is
adjacent to at most one edge in M. A vertex is matched if M contains one of its adjacent
edges. M is perfect if every vertex is matched.
Given a graph G1 and a set of vertices S ⊆ V (G1), graph G2 is induced by S on G1 if
V (G2) = S and E(G2) = {{u, v} | {u, v} ∈ E(G1), u ∈ S, v ∈ S}.

1

3

4

6

2

5

3

4 2

5

Figure 1.1: Graph G1 and graph G2 induced by {2, 3, 4, 5} on G1

1.2 Edge coloring
Given a graph G without self-loops, and a positive integer k, the edge coloring problem
asks whether there exists a function F : E(G)→ {1 . . . k} such that

∃{v, u}, {v,w} ∈ E(G) =⇒ (u = w or F({v, u}) 6= F({v,w})) (1.1)

Assuming its existence, the function F is then called a k-edge-coloring of the graphG,
or simply an edge coloring when G and k are implicit. A graph may have several k-edge-
colorings for any given k. Related problems that we will deal with are:

• to count how many edge colorings exist (count).
• to find an edge coloring (find).
• to find all edge colorings (find-all).

8

1.3 Path decomposition

1

3

4

6

2

5 1

3

4

6

2

5

Figure 1.2: Graph G and a 3-edge-coloring for G

Note that the problems are hierarchically ordered; solving find-all implies a solution to
both find and count, either of which imply a solution to edge coloring.

In this paper we consider colorings F1 and F2 to be equal if there exists a bijection
B : {1 . . . k} → {1 . . . k} such that ∀e : B(F1(e)) = F2(e). That is to say, we do not consider
the actual value of a color to carry any meaning.

A function P : S → {1 . . . k} is a partial edge coloring of G if S ⊆ E(G) and P satisfies
the condition in (1.1). P is a partial edge coloring even if there exists no (proper) edge
coloring F such that ∀e ∈ S : P(e) = F(e). However, if no such F exists, P may become
invalidated as more edges are added to S and the necessary condition (1.1) is forced to be
broken.

The smallest k for which an edge coloring exists is called the chromatic index of G,
χ′(G). Let 4(G) = maxv∈V deg(v). We may then trivially observe that 4(G) ≤ χ′(G); there
exists a vertex with 4(G) adjacent edges and these edges must be assigned 4(G) different
colors. In his hallmark 1964 paper, Vizing [Viz64] proved that χ′(G) ≤ 4(G)+ 1. Graphs
with χ′(G) = 4(G) are said to be of class 1 while graphs with χ′(G) = 4(G) + 1 are of
class 2. Therefore, determining the class of a graph is the same thing as solving the edge
coloring problem for k = 4(G).

The function F is called an edge coloring simply because in a drawing of a graph, it is
natural to illustrate the range {1 . . . k} as k different physical colors and to draw the edges
using the color associated with their respective function value, as seen in figure 1.2.

The edge coloring problem is NP-complete for arbitrary graphs [Holy] but trivial for
graphs with 4(G) = 2. Such graphs are merely a collection of paths and cycles. Paths and
even cycles may always be colored using 2 alternating colors, while odd cycles require
3. In this thesis we will mainly concern ourselves with cubic graphs, and it remains NP-
complete to determine the class of an arbitrary cubic graph [Holy]. We also consider only
simple and undirected graphs except when otherwise stated.

1.3 Path decomposition
Given a graph G, a path decomposition is a list (or path) of sets X1 . . . Xl, called bags,
where every X ⊆ V (G), the length l is a positive integer, and the following conditions are
met:

9

1. Introduction

1. Every node v ∈ V (G) belongs to some bag.
2. If two bags Xi and X j both contain a specific vertex for some i < j, then so does Xk

for all i < k < j.
3. For every edge {v, u} ∈ E(G), there exists a bag that contains both v and u.

The width of a path decomposition is defined as maxi |Xi | − 1. The smallest width for
all legal path decompositions of a graph is known as the pathwidth of that graph, and path
decompositions of this width are optimal. It is NP-complete to determine the pathwidth
of a graph [Leng][Kinn].

A path decomposition is nice if X1 = {} and for i > 1:

∃v ∈ V : (Xi = Xi−1 ∪ {v} or Xi = Xi−1 \ {v}) (1.2)

That is, every bag from X2 starts with the previous bag and either adds one new vertex
(“introduce bag”), or removes one vertex (“forget bag”). It is straightforward to transform
any path decomposition into a nice path decomposition of length 2n without increasing
its width, in linear time [BR]. In the remainder of this paper we will consider only path
decompositions that are nice and have length 2n. Figures 1.3, 1.4 and 1.5 show an example
graph and two different nice path decompositions of it, the first of which is optimal.

Path decompositions are a special case of tree decompositions, which are defined by
similar rules but connecting the bags as a tree rather than a list.

10

1.3 Path decomposition

1

2 4

3

Figure 1.3: Graph G

X1 X2 X3 X4 X5 X6 X7 X8

1 1

2

1

2 3

1

3

1

4

3 1

4

4

Figure 1.4: Nice path decomposition of G, with width 2

X1 X2 X3 X4 X5 X6 X7 X8

1 1

2

1

2 3

1

2

3

4

1

4

2 1

4

4

Figure 1.5: Nice path decomposition of G, with width 3

11

1. Introduction

12

Chapter 2
Approach

The goal of this thesis is to implement and test some existing algorithms for edge coloring
and the related problems outlined above. We hope this may provide the insight to make
an informed decision for a reader who wishes to practically solve this problem in a real
setting.

We will examine three different algorithms for cubic graphs and k = 3. One is due to
Kowalik [Kow], while the other two stem from the same paper by Golovach, Kratsch and
Couturier [GKC]. Two of them exploit certain properties of cubic graphs and therefore do
not work on graphs of higher degree. The last one is applicable to graphs of any degree, but
not considered competitive against other generalized algorithms except when k is small.

Both papers employ a special asymptotic notation: for a super-polynomial f (n),O∗(f (n))
is the same asO(f (n) · p(n)) where p(n) is a polynomial. These polynomials are hidden be-
cause they may be implementation-specific, and because the growth of p may be dwarfed
by that of f for sufficiently large n. We adopt that notation here.

Following are brief descriptions of the workings of each algorithm; their full details
may be found in their respective original papers. Details specific to our implementations
are found in chapter 3.

2.1 EnumColors
The first algorithm of Golovach et al. [GKC] is a branching algorithm that enumerates all
edge colorings. It is very uncomplicated and the only one to attack the problem by actually
trying to assign colors to the edges, backtracking when it runs into a dead end as well as
after finding and printing a valid edge coloring.

Consider the graphG and a partial edge coloringC where S is the set of colored edges.
As long as there are vertices with only one uncolored edge, those edges are colored with
the only available color. When no such vertex exists, construct the graph H = G \ S; if H
contains only cycles it is straightforward to color the edges not in S, otherwise try to reduce

13

2. Approach

its connected components down to cycles. Choose an edge e1 /∈ S adjacent to e2 ∈ S, and
create two new partial edge colorings C1 and C2 by coloring e1 with the two colors not
assigned to e2. Recurse on the mutually exclusive C1 and C2.

The algorithm runs in O∗(25n/8) = O∗(1.542n) time and O(n2) space, discounting any
space used for remembering any found colorings since there may be exponentially many.
The quadratic space is because of the new graph H that is constructed at every recursive
call; there may be up to O(n) different H graphs alive at any time. The time complexity is
not competitive with those of the other two algorithms for solving the edge coloring prob-
lem. We include EnumColors in spite of this fact, because of its simplicity to implement
and due to it being presented in the same paper as CountColors.

2.2 CountColors
The second algorithm by Golovach et al. is a dynamic programming algorithm to count
the number of edge colorings in O∗(1.201n) time, which is the asymptotically fastest out
of all three. At the time of this writing, it is also the fastest publicly known algorithm for
the cubic edge coloring problem. The space complexity of CountColors is O∗(1.201n) as
well, which makes it the only algorithm to require more than polynomial space. To run,
it requires a nice path decomposition of the graph, and builds upon the work of Fomin
and Høie [FH] which in time linear to n produces a path decomposition of upper bounded
width p:

p + 1 ≤ (1/6 + ε)n, ε > 0 (2.1)

After a path decomposition is constructed, the graph is torn down and rebuilt piece-
by-piece according to the order that vertices appear in the decomposition. That is, let Gi
be the graph induced by

⋃
1≤n≤i Xn on G. Define a characteristic as a pair (S, σ) where

S is a function S : Xi → P{1 . . . k}, and σ is an integer corresponding to the number of
edge colorings F of Gi (which are partial edge colorings of G) that exist under the two
constraints:

∀v ∈ V (Gi) : ∀{v, u} ∈ E(Gi) : F({v, u}) ∈ S(v) (2.2)

∀v ∈ V (Gi) : |S(v)| = degGi
v (2.3)

S therefore contains information about which colors are “taken” for the vertices in Xi.
As vertices are forgotten, characteristics may be merged into each other and have their σ
values summed.

Then, update a table containing every characteristic where σ > 0. On introducing a
vertex v, a new characteristic is quickly formed from one in the previous table by creating a
partial edge coloring for the set of the edges {v, u}, and then making sure that the assigned
color is not already in S(u).

These tables are the cause of the space complexity; each of the 2n tables may reach
a size exponential to the graph’s current size. A table may contain up to k! = 6 times as
many entries as the previous table, if none of the partial edge colorings are invalidated
by the insertion of the new vertex and none of them merge into the same characteristic
with increased σ. The total number of edge colorings is then the sum of the σ over all
characteristics in the table for G2n = G. Once the counting algorithm finishes, if the tables

14

2.3 Kowalik

for each intermediary step are kept, it is straightforward to produce an edge coloring by
backtracking through the tables.

In itself the CountColors algorithm is correct for any valid nice path decomposition,
but the bound on the width p due to Fomin and Høie (2.1) is necessary to derive the bound
on its running time. We store functions S mapping from Xi to P{1 . . . k} of which there are
at most (2k)|Xi |, and p+1 is defined to be themaximum cardinality of any bag. Furthermore,
the rules we have placed on these functions will lower the base from 2k; e.g. placing a color
in the set S(v) must also place that color in S(u) for some neighbor u of v. The actual base
is

(
k

k/2

)
, which for k = 3 is 3. Due to this binomial coefficient base, the algorithm is only

considered competitive when k is very small. With the width bound (2.1), we achieve the
bound on the size of a single table, O(3(1/6+ε)n)). There are 2n tables and the time to test
if partial edge colorings are invalidated depends only on k. Thus we arrive at the time
complexity:

O(3(1/6+ε)n · 2n)→ O∗(1.201n) as ε → 0 (2.4)

Every choice of ε is tied to an integer nε , and graphs of size n < nε are not guaranteed
to be path decomposable using this method. The value of nε is not known exactly, but is
bounded by:

nε ≤
4
ε
· ln(

1
ε

) · (1 +
1
ε2) (2.5)

Future advances to finding path decompositions of smaller width (in sub-exponential
time) would automatically improve the time complexity of CountColors. The width (1/6+
ε)n → 0.167n is an upper bound on the pathwidth for all cubic graphs, and there exists
types of cubic graphs with pathwidth at least 0.082n as noted in [FH]. Hence, the upper-
bound time complexity for this approach cannot be improved pastO∗(30.082n) =O∗(1.094n).

2.3 Kowalik
The method described by Kowalik in [Kow], referred to herein simply as Kowalik, in its
original form only answers the yes/no edge coloring problem, but its author remarks that
it is straightforward to extend it to yield an edge coloring. It works on a simple principle:
if we can find a perfect matching M forG,G \M is then a graph of maximum degree 2, for
which it is easy to determine the class as noted above. A perfect matching M that leaves
no odd cycles in G \M is called a fitting matching. The algorithm begins by reducing the
graph to so-called semicubic graphs, which are graphs where most vertices have degree 3
but degree 2 vertices are allowed to exist according to some rules. For an overview of the
reduction rules, we refer to Kowalik’s original paper.

The graph reduction includes three cases where the algorithm is forced to branch; G
is 3-edge-colorable if at least one of G1 and G2 is 3-edge-colorable, where G1 and G2 are
the result of removing some vertices and edges from G plus possibly adding some new
edges. This has the implication that both G1 and G2 may at some point further reduce into
the same graph G3, which is in contrast to the branching behavior of EnumColors. Not
every reduction rule removes a vertex, but every reduced graph is smaller than G in terms
of n + m.

15

2. Approach

To find a fitting matching, keep two graphs G0,G and a matching M on G0. G0 is a
semicubic graph, G is a graph where V (G) is the set of vertices not matched in M, and
E(G) ∈ E(G0) \ M. The graph G0 is not modified in this stage, while G progressively
shrinks, reaching the empty graph when M is perfect. At this point we require two more
definitions:

• A switch is a 4-path xvuy, such that xvuy is a connected component in G and x, y
have degree 2 in G0 while v, u have degree 3.

• Matching M is semi-perfect if all the connected components in G are switches.

The search is done in two stages; generate a semi-perfect matching through a method that
has exponential-time complexity in itself, in the second stage that matching is manipulated
into a fitting one. The structure of the switches allows the second part to be performed
through iterative improvements. If the second stage is successful, it means we have de-
termined that the graph G0 is class 1. If we cannot find a fitting matching for G0, report
the failure to the graph reduction algorithm which then continues the search for a different
semicubic graph.

To produce an edge coloring once a fitting matching M is found, first color all edges
in M with color 1 and use colors 2 and 3 as necessary for the paths and cycles in G \ M.
Then apply the reverse graph reductions and update the edge coloring along the way. Some
reverse reductions require a specific transformation of the edge coloring, while others al-
low a the re-added edges to be colored greedily. Regardless, every update is performed
in constant time and the entire process to produce an edge coloring takes only O(m) extra
time.

Kowalik may be applied to graphs that have edges of multiplicity higher than 1, and
some of its reductions may cause edges to increase in multiplicity. Graphs also do not
need to be cubic; there may be any number of vertices v in the starting graph with deg v ∈
{0, 1, 2}. This makes Kowalik more general than the other two algorithms. It is however
no easy task to modify it to count or list all edge colorings, because some reductions hide
necessary information and because the branching reduction rules to not create mutually
exclusive sub-problems.

It runs in O∗(1.344n) time, which was the previous record until CountColors was dis-
covered. The analysis for the time complexity is very complicated and will not be re-
produced here. The space complexity is linear if graph reductions are reversible; store
only a single graph plus an O(n) size stack containing information on how to reverse the
reductions, which are all constant-time operations.

Algorithm synopsis
All three algorithms may be used to solve more than just the edge coloring problem itself.
EnumColors is able to enumerate all edge colorings, and is therefore trivially able to count
them or produce just one of the edge colorings. Kowalik, after minor modification, is able
to return an edge coloring, but not able to count them all. CountColors may, through exten-
sive backtracking, enumerate all edge colorings, although that in itself has an exponential
time complexity. To produce a single edge coloring would require only Θ(n) extra time,
provided that one can find specific characteristics in O(1) time. This is achievable if the

16

2.4 Related research

tables have constant-time access operations, or if the characteristics store a pointer to any
of their “predecessors”. It is however important to note that CountColors has to finish
counting all colorings before finding one of them. See table 2.1 for a summary of what
algorithm solves which problems.

edge coloring find count find-all
EnumColors Yes Yes Yes Yes
Kowalik Yes Yes No No
CountColors Yes Yes (backtracking) Yes Yes (backtracking)

Figure 2.1: Problems solvable by algorithm

CountColors currently has the best time complexity of any cubic edge coloring algo-
rithm. However, as stated it is attached to a smallest graph size nε , determined by the choice
of ε . Hence, to achieve a time complexity equal to or better than Kowalik’s O∗(1.344n),
we must use ε ≤ 0.102446, and can thereby only guarantee that the algorithm works for
graphs of size

n ≥ 8565 (2.6)
The algorithm descriptions of both EnumColors and Kowalik use language of the form

“find an X in the graph”, where X may be e.g. a cycle, a vertex of a certain degree, or
some other local substructure. As the graph may contain several X at any time, this makes
them both Las Vegas algorithms; they make randomized choices over the input, but always
terminate and always give the correct result. The graph bisection algorithm uses similar
language, and often there are several different bisections of equal cut size which can lead to
different path decompositions of equal width. The running time of CountColors depends
on how early we are able to invalidate dead-end partial colorings, which is determined
by the order that vertices are introduced in the path decomposition. Hence, CountColors
is a Las Vegas algorithm as well when using the graph bisection algorithm. That is not
necessarily true for different methods of finding path decompositions.

2.4 Related research
Despite the NP-completeness for graphs with 4(G) ≥ 3, some types of graphs are known
to be of class 1. Bridgeless planar cubic graphs are always 4(G)-edge-colorable [Tait],
as are bipartite graphs of any degree [Konig] as well as graphs where at most two ver-
tices have degree 4(G) [Viz64]. A cubic bridgeless graph of class 2 is known as a snark.
Bridgelessness, planarity, bipartiteness and number of max-degree vertices are all prop-
erties that may be tested for in O(n) time [Tarj][HT][KT], so in a realistic setting these
tests should be performed before any exponential-time algorithm is attempted. But as we
are primarily interested in the efficiency of the tested algorithms and less so in any actual
output, we forego performing these tests.

Furthermore, planar graphs of maximum degree ≥ 7 are of class 1, as shown by
Sanders and Zhao [SZ]. Planar graphs of class 2 are known for maximum degrees 2
through 5; for degree 2 any odd cycle is class 2, and for degrees 3, 4, 5 class 2 graphs
may be constructed from the platonic solids, as demonstrated by Vizing [Viz65]. It re-
mains an open problem whether there are any class 2 planar graphs of maximum degree

17

2. Approach

6. It is also known that k-regular graphs of odd size n must be of class 2 for any k [Hara].
However, since by the handshaking lemma

∑
v∈V deg v = nk must be even, it cannot be the

case that both n and k are odd. Hence this result has no bearing on the case that k = 3.
A polynomial-time algorithms is known for finding edge coloringswith4(G)+1 colors,

by Misra and Gries [MG]. It may be employed if the graph is known to be of class 2, or
if using more than the minimum amount of colors is not a concern. But if the colors are
considered to be a scarce resource, the case that 4(G) = 3 is of special interest; coloring
class 1 graphs with 4 colors is a 33% waste. For class 1 graphs of higher degree, the ratio
of waste 4(G)+1

4(G) diminishes.
For optimal coloring of graphs already known to be of class 1, Cole, Ost and Schirra

showed in 2001 [COS] how bipartite graphs may be optimally colored in near-linear time.
In 2008 Cole and Kowalik [CK] discovered a linear-time algorithm for planar graphs of
4(G) ≥ 9.

The fastest known algorithm for optimally coloring arbitrary graphs is due to Björklund
et al. [BHK] and runs in O(2mmO(1)) = O∗(2m) time and exponential space, where m is the
number of edges in the graph. For the cubic case, m = 3n/2, giving the complexity of
O∗(23n/2) = O∗(2.828n) which is not expected to be competitive with the three chosen
algorithms for anything but trivially small graphs.

18

Chapter 3
Software specifics

For this project Java was chosen as programming language, mostly for its ease of devel-
opment and familiarity to the author. The conscious decision was made to rely as little as
possible on third party software, in order to be able to release the code in full without any
software license hassle. Not counting basic elements from the Java SE Class Library, all
code was therefore written from the ground up.

The result is five different software packages: one for representing and manipulat-
ing graphs, one to find path decompositions, and finally one each for every main algo-
rithm. Parallelized versions were created for each algorithm, mostly as proofs of concept
to demonstrate that speed-up via parallelization is viable. It is an interesting challenge in
itself to load-balance these multi-threaded implementations.

The code will be available as-is at the Lund University Publications website, released
under the BSD-3 license.

3.1 Graph
As we are working with graph algorithms, the graph package is the natural central tool
for the rest of our software. Apart from being a holder class for sets of Vertex and
Edge, Graph provides methods for various graph manipulations and searches such as
finding connected components that are cycles, and creating G \ E∗ from set of edges E∗.
Algorithms Kowalik and EnumColors both require the ability to find cycles.

A Vertex is defined only by its unique integer id number and contains its own Edge
set of all adjacent edges. An Edge is defined only by its two vertex endpoints; multiple
edges between the same pair of vertices is represented as a single Edge with an increased
multiplicity.

An important feature of this package is that it allows removed vertices to be easily
reinserted with all their old edges intact, provided that they are reinserted in the reverse
order of their removal. This is important for the iterative reconstruction ofG in CountCol-

19

http://lup.lub.lu.se

3. Software specifics

ors. It is also a crucial feature in order to achieve the O(n) space complexity of Kowalik;
if the reductions were not possible to undo, the graph would have to be copied for every
branching, potentially resulting in exponential memory use.

This package features a class Generator for generating Graph instances. It can
recreate a graph from the output of its toString() method, and it may be used to create
randomized graphs. The randomization is more powerful than is needed for this project;
multigraphs, non-regular graphs and graphs of higher maximum degree than 3 are able
to be created. When generating k-regular, simple graphs of size n, the returned graph
is randomly chosen from all such graphs with equal probability. The graph generation
is a Las Vegas algorithm running in O(ek2/2nk) expected time, which is linear in n for
any constant k [MKW]. This algorithm is not guaranteed to terminate, but that is of no
practical concern since it is not the algorithm being investigated.

Since one of our most heavily employed data structures is the hash set, the Genera-
tor class has the ability to set a universal “hash seed” affecting the hash value of every
Vertex and Edge. When iterating through the elements of a Java HashSet, the or-
der in which they appear are determined by the element hashes. Consequently, this helps
demonstrate that the success of our implementations do not hinge on vertices or edges
being accessed in a specific order.

Hash seeds also help us de-randomize our algorithms, because in our implementation
the random choices depend on the order that elements are returned from hash set. If we
control the hash values, we control the order and achieve a deterministic running time.

Finallywe include a non-essential classSnark, which holds some pre-generated snarks
of up to 50 vertices. As snarks are of class 2 by definition, they may be of value for testing
or demonstrative purposes.

The essential parts of graph make up a total of 739 lines of code.

3.2 Pathdecomp
The package pathdecomp takes a Graph and a double epsilon to create a path
decomposition, required by CountColors, according to themethod described by Fomin and
Høie [FH]. Its main classPathdecomp is a very simple data structure, essentially being a
wrapper class for ArrayList<Set<graph.Vertex>> from the standard library and
the graph package. Since path decompositions have width< (1/6+ε)n and length 2n, this
yields an O(n2) space complexity which could have been improved to O(n) by exploiting
the fact that every bag differs from the previous one by only one vertex. However, as wewill
see in a later chapter, neither the time consumption to generate a path decomposition, nor
its internal memory structure, act as any form of bottleneck for the CountColors algorithm.
Consequently no effort was dedicated to optimize this package.

Fomin’s andHøie’s method starts out by referencing the algorithm byMonien and Preis
[MP] to bisect a graph such that the size of the cut is no larger than (1/6+ ε)n. This is con-
tained in the class Bisection and two auxiliary classes RBGraph and RBVertex (for
red-black graphs, a special structure employed in their algorithm). Preis provides a soft-
ware library called PARTY [PARTY] which can be used to find this bisection. Due to our
stated goal not to depend on any third party software, the algorithm was re-implemented
from scratch. Our implementation has not been as thoroughly tested as one would like,

20

3.3 EnumColors

but is believed to be correct as it has not failed to bisect any of our randomly generated
graphs that fulfil the size condition n > nε . It should be fairly straightforward to substitute
our Bisection implementation for PARTY, if one desires more well-tested and robust
code.

Themain path decomposition algorithm further references papers byKinnersley [Kinn]
and Ellis et al. [EST], demonstrating how to create a path decomposition of a tree graph,
of width log3 n. This is implemented as class Layout.

3.3 EnumColors
As we consider permutated colorings equal, we start off by selecting a random vertex v,
and coloring any two of its adjacent edges with colors 1 and 2. This cuts down every
k! = 6 permutations of valid edge colorings into 1. When used to count all colorings, this
speeds up the program by factor six. When used to enumerate all colorings, if the goal
is to enumerate every permutation, the equivalent permutations of a coloring are trivially
implied by that coloring itself and do not need to be computed separately.

EnumColors was the easiest algorithm to implement. In itself its code is straight-
forward, as most of its programmatical difficulty lies in the graph search methods,
part of the graph package. It also requires no special data structures other than a
Map<Edge,Color> to represent the partial edge coloring; Edge is provided by the
graph package and Color may be represented as an integer. The EnumColors class
encompasses 210 lines of code.

3.3.1 Parallelization
The parallel version gains a central object through which all threads communicate. A
working thread follows same code as in the serial version, but on a branching it sends
one of the branches C2 to the communication object where it is picked up by any idle
thread. After branch C1 is computed, we await the result of C2 from another thread, or
start computing C2 ourselves if no other thread has done so.

As we create a copy of the partial coloring on every branch, this version uses more
memory than the single-threaded one. Every map is of size O(m). But every thread may
branch at most m times before going back to calculate or await the result of the other path
in the branch. There are not more than t active threads where t is set at the start of the
program and does not depend on the graph. Thus our memory use is O(tm3), m = 3n/2,
which is still polynomial in n for any constant t.

This version uses 126 additional lines of code.

3.4 Kowalik
Themain kowalik package contains three classes; the main program Kowalik plus two
support classesMatching and Switch. Matching is essentially a HashSet<Edge>
extended with some basic convenience methods, while a Switch holds only four vertices
and a static method to find them.

21

3. Software specifics

Since branching graph reductions create subproblems that are not mutually exclusive,
it is tempting to use memoization to avoid repeat work. We experimented with some
approaches to this idea, but ultimately did not find a solution that was helpful. The mem-
ory usage increased severely as old graphs needed to be stored, and running time did not
seem to improve but actually increased for many large graphs. We hypothesize the time
increase is in no small part because of the constant re-hashing of graphs; the standard
hashCode() method for Java Set is an O(n) operation. While it could certainly have
been overridden with a constant-time hash method, we still did not experience any benefits
from memoization and the idea was therefore abandoned.

The necessary classes of kowalik use 492 lines of code.

3.4.1 Parallelization
Kowalik has branches in two different parts of the algorithm, both in the graph reductions
and in the search for a semi-perfect matching. We create two parallel versions of Kowalik,
one for each of these two branch types. Both of them use the same simple architecture
as the parallel EnumColors, which keeps a central communication object and asks any
sleeping thread for help when the code branches. Refer to the version that off-loads work
on graph reductions as KowalikParallel, and the other as KowalikParallel2.

It is an important point that both versions parallelize only a single aspect of the origi-
nal algorithm. In KowalikParallel several threads search for semicubic graphs, but
when one is found that thread will individually handle the search for a fitting matching
for that graph. Conversely, KowalikParallel2 has a single thread performing all
graph reductions, and employs its multi-thread capacities only when searching for a fitting
matching. All of its threads therefore operate on the same G0, which simplifies the im-
plementation as there is no risk for concurrency errors when the main thread performs its
graph reductions.

This design dichotomy provides an obvious observation: KowalikParallel2
should be best suited when the semicubic graphs are few but large, while the reverse
should hold for KowalikParallel. It should be possible, but architecturally more
complex, to write a third parallel version that inherits the strength of both. We do not
create such a program, as our stated intention is to write architecturally simple paralleliza-
tions to demonstrate that speed-ups are possible. Still, we hope our parallel test results can
help the optimization efforts of such an implementation.

Like parallel EnumColors, the copies of the working instance must be created at every
branch. For KowalikParallel this is the graph G. There are up to O(n) graph reduc-
tion branches before a graph is reduced to semi-cubic form, and each copy is of size O(n).
This gives the same O(tn2) space complexity.

For KowalikParallel2, the data that must be copied is the current matching M
of G0 plus the unmatched graph G = G0 \ M. That yields the same space complexity, as
the matching and the unmatched graph together are not larger than G0.

KowalikParallel and KowalikParallel2 use an extra 161 and 126 lines of
code, respectively.

22

3.5 CountColors

3.4.2 Finding an edge coloring
The single-threaded Kowalik was extended to produce an edge coloring. This class is
called KowalikPrint. As touched briefly on earlier, our graph package represents mul-
tiple edges between the same pair of vertices as a single Edge object with a multiplicity
attribute. This is a sensible solution when existence is their only relevant property and
they do not need to be told apart. As only the reductions in the Kowalik algorithm can
lead to these edges, it makes no difference for EnumColors or CountColors.

In the coloring-finding version of Kowalik, this design becomes an issue; double and
triple edges will now have multiple colors, and as the graph reductions are reversed those
color sets need to be carefully split apart to adhere to the rules of edge coloring. This
caused a high amount of code clutter, so it was decided to leave it incompatible with the
multi-threaded versions. The clutter should be avoidable with a differently designed graph
package that allows multiple Edge objects between the same vertices.

Unlike what we do for our parallel implementations, the original Kowalik class was
not modified to easily let KowalikPrint inherit it as a super-class. Instead the entire
Kowalik class was copied andmodified. KowalikPrint uses 526 lines of code, which
should be able to be drastically reduced with better forethought in the design of the graph
package.

3.5 CountColors
While we work with a cubic starting graph G, the degree of a freshly introduced vertex in
Gi may range from 0 to 3 depending on how many of its neighbours in G have previously
been introduced. When introducing a vertex of degree 1, there are three ways to color its
single edge. Degree 2 vertices have 3 · 2 = 6 such possibilities and degree 3 vertices have
3! = 6. Each possibility needs to be tested against every characteristic in the previous
table. Since permutations of a coloring are of no interest, they are eliminated early by
a method that we call forcing: the first time a vertex of degree 2 or 3 is introduced, we
consider only one of its six possibilities. This is the same idea as the preparatory work
for EnumColors which speeds up the program by factor six. In this case it also cuts the
table size by factor six, which is a simple but important strategy to combat the exponential
memory use.

Because the tables will still grow extremely large, we keep only the most recent table.
Characteristics are removed from the previous table as soon as possible, further limiting
the amount of memory used at any given time. This decision prevents our implementation
from being used to find an edge coloring.

We represent the table as a TreeMap<Characteristic,Characteristic>,
with every key mapping to itself. Fundamentally, the table implements a set of Charac-
teristic objects, but in case of duplicate insertions we require access to the already
included element in order to modify its σ value. Java TreeSet does not provide that
functionality. Furthermore, as a TreeSet is itself backed by a TreeMap where every
value is null, this choice does not increase our memory usage.

A static TreeMap uses slightly more overhead data and has slower element access
than does a HashMap, but the former was favored because HashMap is backed by an

23

3. Software specifics

array that may neither grow nor shrink. This structure causes problems when the tables
contain very many elements, in three ways:

• When a HashMap grows past its current capacity, it needs to allocate a new, larger
array and copy its contents from the old one. Hence a HashMap may peak at higher
memory usage, when two very large arrays are held in memory simultaneously.

• Upon a vertex introduction to create Gi, the table ti may grow up to six times the
size of the previous ti−1 or shrink to a fraction of it. If ti is allocated too large it may
prevent the allocation of ti+1 and cause the program to crash. On the other hand, if
the new table ti is too small it may cause a high amount of re-hashing, leading to a
worse time performance than a TreeMap.

• Because a TreeMap is able to dynamically shrink, if table ti is close to the max-
imum size our memory can hold, we may still be able to create table ti+1 of equal
size. This only works if ti is depopulated at the same pace that ti+1 is filled, however.

While the choice of TreeMap may negatively impact the average running times, it should
enable us to run the algorithm for graphs with a somewhat thicker path decomposition.
However, as TreeMap is implemented as a red-black tree, it will automatically perform
tree rotations to stay balanced between every element removal. Our program will always
iteratively remove every element, wherefore the balanced structure is not interesting to us
once the removing process has started. These balancing operations are a waste of time for
our purposes.

An attempt was made to reduce the memory footprint of CountColors by having
the Characteristic class implement the Serializable interface. A serialized
object is transformed into a byte array, which under the right circumstances can be sig-
nificantly smaller than the original object. Our Characteristic objects may reach a
few hundred kilobytes in size and are thus a prime candidate for serialization. The table
of characteristics would then store these byte arrays instead, with automatic serialization
and deserialization to maintain the outward appearance of storing Characteristic
objects as normal. Unfortunately our serialization efforts ultimately failed, for reasons
that not fully understood but appear to be rooted in the design of the graph package.

The CountColors class and its necessary help classes (including the whole
pathdecomp package) use an approximate 2619 lines of code in total, and was the most
complex to write out of all the three. However, the heaviest class Bisection in itself
makes up 976 lines and its two supplementary classes 404 lines – work which could have
been avoided by using the existing software PARTY.

3.5.1 Setting epsilon
As the time complexity of CountColors is exponential to the width of the path decompo-
sition, it is important not to let the width grow too large. We start out by finding a “good”
ε through the bisection method, starting from end points 0 and 1. Define n̂ε ,

n̂ε =
4
ε
· ln(

1
ε

) · (1 +
1
ε2) (3.1)

24

3.5 CountColors

as the highest value nε can take (2.5). ε is good if n̂ε ≤ n ≤ 1.05n̂ε . We thereby guarantee
an ε for which a path decomposition can be found and, because we desire a small ε and n̂ε
grows as ε shrinks, we also ensure that n is not greatly larger than n̂ε .

The bound nε provides a smallest graph size for which a path decomposition is guar-
anteed to be found. This does not imply failure for graphs smaller than nε . Therefore the
program includes a flag aggressive which, if set, will cause the program to attempt to
find a “better” ε2. After a good ε1 has been found, simply bisect for ε2 between 0 and ε1
and try to produce a new path decomposition at every step of the bisection. We stop after
five consecutive values of ε2 that did not amount to a valid path decomposition, and return
the composition of smallest width.

3.5.2 Parallelization
Because CountColors lacks code branching, it is parallelized by a different principle than
EnumColors and Kowalik. When a forced table of characteristics reaches a certain size, it
is broken up into several smaller tables of equal size which are assigned to one thread each.
These threads behave as if they are all individually solving the whole problem, unaware
of each other. Apart from synchronizing to always work on the same induced graph Gi,
they are all running the serial version of the code (where the force has already occured)
on their respective tables. The final result for the whole graph is simply the sum of their
individual results.

Because tables are broken up and no longer representing the whole problem, it may
happen that two edge colorings F1 and F2, which are both compatible with some charac-
teristic, end up in tables belonging to different threads. As any pair of threads are unaware
of each other, both will need to store equivalent characteristics in their respective table,
whereas the serial version would store a single characteristic with a higherσ value. Hence,
the parallel version may be more memory-expensive.

At the time of the initial splitting into several tables, it is not possible to know which
partial colorings for Gi will end up being invalid for graph G j , j > i; if it were, just set
j = 2n to purge all invalid colorings of G immediately. Hence threads may end up with
greatly differing table sizes. Because the threads run without any regard to each other,
the tables are never rebalanced and some threads may perform disproportionately large
amount of work. This is an obvious area where the code may be improved. Rebalancing
the tables could have the beneficial side-effect of merging equivalent characteristics from
different tables.

The parallelized version uses around 170 extra lines of code.

Implementation synopsis
The implementation details above give us an updated table 3.1 of which problem is solved
by which algorithms.

25

3. Software specifics

edge coloring find count find-all
EnumColors Yes Yes Yes Yes
Kowalik Yes Yes No No
CountColors Yes No Yes No

Figure 3.1: Problems solvable by algorithm implementation

26

Chapter 4
Testing

4.1 Computer hardware
We employ four physical machines for our tests.

Machine 1 has an Intel Core i7 2930MHz Quad-core CPU, with 16 GiB RAM. Due to
hyper-threading, the four physical cores make for eight logical ones.

Machine 2 has equal hardware specs to Machine 1.

Machine 3 uses two Intel Xeon CPUs E5-2620 0 at 2.00Ghz with 256 GiB RAM. Each
CPU has six physical cores, which are hyper-threaded to a total of 24 logical cores.

Machine 4 has an Intel Core2Quad Q9400 2666MHz CPU with eight logical cores and
64 GiB RAM.

Ideally all tests would have been performed on the same machine, to make results directly
comparable. Machine 3 is the most powerful set-up, but access to its CPU time has been
limited. For this reason, our tests had to be split up across several machines.

Machine 1 runs OpenJDK 1.6.0.24 on a 64-bit Mandriva 2011. The other three run
OpenJDK version 1.7.0.45 on 64-bit Mageia 3. Despite the different software, we will
consider machines 1 and 2 to be equivalent. Each machine has a relatively small swap
partition, and we do not write any data to file system. We are thereby limited to using
physical RAM.

4.2 Preliminary testing
This section details some preliminary results on small graphs, which will guide the choices
about the testing of larger graphs. As these tests are small in scope and not very taxing on
our hardware, every preliminary test was performed on machine 1.

27

4. Testing

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

Different runs, sorted by time

R
u
n
n
in

g
 t
im

e
 (

s
)

Hash seed effect on counting algorithms

CountColors

EnumColors

Figure 4.1: Counting EnumColors and CountColors hash seed
dependency

4.2.1 Hash seeds
We begin by testing what effect the choice of hash seed has on the performance our algo-
rithms. We use a graph of 50 vertices and apply the single-threaded versions of Enum-
Colors and CountColors to count the number of edge colorings. CountColors does not
use the aggressive flag and EnumColors is not set to print. Their running times are
shown in figure 4.1.

From these figures it is apparent that a bad hash seed can have a very negative conse-
quences for our running times. We opt to use a number of different hash seeds for every
graph in our primary tests.

For the determining of the graph’s class, we perform similar tests using single-threaded
EnumColors and Kowalik. EnumColors is again set not to print. We use graphs of
size 70 because the non-counting running times on size 50 graphs are very short. Results
are seen in figure 4.2.

As seen here the hash seed does not appear to be noticeably impactful for ourKowalik
program, while it still makes a difference for EnumColors. Note the two different y-
scales for the two plots; EnumColors takes up to 35 seconds to run, while every run of
Kowalik finished in 10 milliseconds or less.

28

4.2 Preliminary testing

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

R
u
n
n
in

g
 t
im

e
,
E

n
u
m

C
o
lo

rs
 (

s
)

EnumColors

Kowalik

0 5 10 15 20 25 30 35 40 45 50
2

4

6

8

10

Different runs, sorted by time

R
u
n
n
in

g
 t
im

e
,
K

o
w

a
lik

 (
m

s
)

Hash seed effect on class determining algorithms

Figure 4.2: EnumColors and Kowalik hash seed dependency

29

4. Testing

4.2.2 Aggressive epsilon
To test the significance of choice of ε , we run the path decomposition generator twice on
several graphs of 50 vertices and with 10 hash seeds; first with aggressive off, and
then with it on. Widths and times are averages over the 10 seeded runs in figure 4.3. We
do the same for size 100 graphs, shown in 4.4. The high average aggressive time for
size 100 graph 8 is due to one run that needed 29 seconds to finish; the other runs ranged
between 200 and 440 milliseconds.

Non-aggressive Aggressive
Width Time (ms) Width Time (ms)

Graph 1 21 4.1 12 208
Graph 2 21 1.5 16 111
Graph 3 19 2.8 14 347
Graph 4 21 1.4 14 108
Graph 5 21 1.5 15 100
Graph 6 22 2.1 14 196
Graph 7 21 1.3 15 110
Graph 8 21 1.7 15 130
Graph 9 22 1.4 14 101
Graph 10 20 1.6 15 104
Average 21 1.94 14 153

Figure 4.3: Efficiency of aggressive flag on size 50 graphs

Non-aggressive Aggressive
Width Time (ms) Width Time (ms)

Graph 1 40 4.3 23 376
Graph 2 40 4.1 23 350
Graph 3 39 3.9 23 351
Graph 4 39 4.1 30 358
Graph 5 39 4.2 24 374
Graph 6 41 4.3 21 384
Graph 7 40 3.9 24 395
Graph 8 40 4.4 22 3220
Graph 9 40 3.8 24 319
Graph 10 40 3.8 22 395
Average 40 4.1 24 652

Figure 4.4: Efficiency of aggressive flag on size 100 graphs

Clearly, using the aggressive flag is well worth the investment. For the smaller graphs
we spend only some 150 milliseconds to decrease the width by 33%. For the larger graphs,
we spend 650 milliseconds more to decrease the width by 40%. Thus we opt to use the
aggressive flag in all tests of CountColors; the cost-to-gain ratio is simply too good to
ignore.

30

4.2 Preliminary testing

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

R
u
n
n
in

g
 t
im

e
 (

s
)

Number of threads

Figure 4.5: EnumColorsParallel efficiency by thread count

4.2.3 Number of threads
We know how many concurrently active threads each CPU can handle – 24 for machine
3, 8 for the others. Due to the parallel architecture of CountColors, it is immediately clear
that we gain the greatest speed-up factor from using one thread per core. For EnumColors
and Kowalik, things are not as clear; threads ask for help when the code branches, and
one branch may finish sooner than the other. If the assisting thread finishes first, it goes
back to the pool of available threads, but if the original thread finishes first it will simply
await the other, which could imply a waste of CPU time. Furthermore, as the threads
need to communicate, there is necessarily some amount of synchronization between them.
Excessive synchronization can cause the program to slow down.

We run EnumColorsParallel in counting mode on five different graphs of size
50, using between 2 and 20 threads and no hash seeding. The results, shown in figure 4.5,
seem to dip at 4 or 8 threads for different graphs. As we possess two equal machines, we
opt to run parallelized EnumColors with 4 threads on machine 1 and 8 threads on machine
2.

Because single-threaded Kowalik is already so fast on these graph sizes, we would
not be able to draw any conclusions from running either of the parallel versions on them.
Instead we suppose that 8 is a good thread number as with EnumColors, as their paral-
lelization architectures are similar.

31

4. Testing

4.3 Results
Taking into account our preliminary results, we conduct our main tests the following way.
We randomly generate cubic graphs of even sizes in [50, 150); ten graphs of every size. To
account for the impact of hash seeds, we choose 10 random hash seeds for every graph. The
hash seeds are generated using Java’s standard random generator, Random.nextInt().
This creates a total of 5000 seeded graphs to use in every test. The seeds are stored with
the graph file, so we can easily repeat a test and get the same running time. We expect that
not every test will be able finish on all the 5000 graphs, but each will be allowed to run for
at least 96 hours in total.

Additionally, we generate a smaller set of graphs of the same size range, which are all
known to be of class 2. There are five graphs per size and 10 hash seeds per graph, for a
total of 2500 runs. This lets us compare the “time to fail” between the different algorithms,
which may be an important property in itself as it reveals the waiting time before applying
one of the polynomial-time algorithms for finding an (4(G) + 1)-edge-coloring. The set
was generated by the regular randomization method, and using Kowalik to reject those of
class 1.

Despite being randomly generated, it turns out that every graph in the first set is class
1. We may therefore refer to the two sets as the class 1 set and the class 2 set.

For determining graph classes and finding a single edge coloring, we employ Kowalik,
parallel Kowalik, EnumColors and parallel EnumColors. CountColors is not expected
to be competitive for any of the graphs, since it must first solve the counting problem.
However, as the counting algorithm may discard all characteristics as invalid at an early
step when the graph is not 3-edge-colorable, we include CountColors for the set of class
2 graphs.

For counting edge colorings, we use single-threaded and multi-threaded versions of
both CountColors and EnumColors.

We do not perform tests to enumerate all edge colorings. EnumColors is the only
package even able to solve the problem, as the CountColors package does not save
intermediary tables. Additionally, as the number of colorings may be very large, we may
experience performance bottlenecks from I/O or memory consumption, depending on how
we choose to print the discovered edge colorings, and those may render our measurements
meaningless.

4.3.1 EnumColors
4.3.1.1 Finding an edge coloring
We begin by running EnumColors on the class 1 set graphs. As noted earlier, by finding
an edge coloring we automatically also determine that the graph is class 1. The results
may be found in figure 4.6. We get up to size 100 before having to break to perform other
tests. EnumColorsParallel with 8 threads runs on the same set and also manages to
get to size 100, as shown in 4.7.

The figures look very similar to each other, and it is not obvious which program was
faster. Therefore we plot the running times for every individual seeded graph, as a divi-
sion EnumColors/EnumColorsParallel, in figure 4.8. Values above 1 mean that

32

4.3 Results

EnumColorsParallel was faster, and vice versa. This figure is clear only in the mes-
sage that the results vary greatly – no implementation can be said to be faster than the other.
However, it appears that the time quotient is below 1 more often than not. We therefore
choose not to run the 4-threaded EnumColorsParallel for this problem; it appears
to be a waste of CPU time that can be spent on other tests.

4.3.1.2 Counting all edge colorings
For the counting problem, we run EnumColors (4.9) and EnumColorsParallel
with 4 (4.10) and 8 (4.11) threads. The two parallel programs were both started and halted
at the same time as each other, and therefore had the same total running time. One can
note that the 8-threaded version got up to size 76, while the 4-threaded version did not
make it past 74. We can therefore immediately state that the 8-threaded version turned out
to be somewhat faster. We also plot the averages of each test together in 4.12. Here we see
again that the 8-threaded version is a bit faster than the 4-threaded one. We also see that
EnumColors starts to lag behind significantly for about 62 vertices.

4.3.2 Kowalik
4.3.2.1 Determining class of a graph
The figure 4.13 shows the results of the standard Kowalik running on the class 1 set of
graphs. As shown in these tables, Kowalik performs exceptionally well, finishing on the
largest graphs in a matter of milliseconds. Even the slowest runs all finish in less than a
second. The performance is so strong that we cannot even perform any meaningful curve
fitting to these data points. We therefore generate a set of new graphs; starting from size
150 and incrementing in steps of 10 up to 1500, ten graphs per size, and only three different
hash seeds. Call this the large set. Kowalik’s running times on the large set are shown in
figure 4.14.

The parallel versions are applied to the same high degree graphs. KowalikParal-
lel1 is shown in figure 4.15 and KowalikParallel2 in 4.16.

The figures for both parallel versions are very similar to that of the single-threaded
Kowalik. We compare their average times in 4.17. Regular Kowalik was given more
time to run, which is why it has values for larger graphs. A zoomed plot of all times
exceeding 10 seconds may be found in figure 4.18, showing that their averages are very
similar and that no implementation can be categorically stated to be faster than the others,
although Kowalik may have the edge in the majority of cases.

4.3.2.2 Finding an edge coloring
We run KowalikPrint on the class 1 set and compare them with regular Kowalik,
shown in 4.19. These running times are indistinguishable from one another, so we see how
KowalikPrint fares with the large set. This is shown in figure 4.20.

As seen here, Kowalik requires virtually no extra time to find an edge coloring for any
of the graphs. This is expected, since the halting condition for the original version is that a

33

4. Testing

50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

R
u

n
n

in
g

 t
im

e
 (

s
)

Graph by size

EnumColors

Average

Maximum

Minimum

Figure 4.6: EnumColors on the class 1 set

50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

R
u

n
n

in
g

 t
im

e
 (

s
)

Graph by size

EnumColorsParallel

Average

Maximum

Minimum

Figure 4.7: EnumColorsParallel on the class 1 set

34

4.3 Results

1
0

−
4

1
0

−
3

1
0

−
2

1
0

−
1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

In
d
iv

id
u
a
l ru

n

Time ratio EnumColors/EnumColorsParallel

Figure 4.8: EnumColors and EnumColorsParallel

35

4. Testing

50 52 54 56 58 60 62 64 66 68 70
10

0

10
1

10
2

10
3

10
4

10
5

Graph by size

R
u

n
n

in
g

 t
im

e
 (

s
)

1 minute

1 hour

Average

Maximum

Minimum

Figure 4.9: EnumColors counting

50 52 54 56 58 60 62 64 66 68 70 72 74
10

0

10
1

10
2

10
3

10
4

10
5

Graph by size

R
u

n
n

in
g

 t
im

e
 (

s
)

1 minute

1 hour

Average

Maximum

Minimum

Figure 4.10: EnumColorsParallel counting with 4 threads

36

4.3 Results

50 52 54 56 58 60 62 64 66 68 70 72 74 76
10

0

10
1

10
2

10
3

10
4

10
5

Graph by size

R
u

n
n

in
g

 t
im

e
 (

s
)

1 minute

1 hour

Average

Maximum

Minimum

Figure 4.11: EnumColorsParallel counting with 8 threads

fitting matching has been found, and the creation of an edge coloring is an O(m) operation
if a fitting matching is known.

4.3.3 CountColors
4.3.3.1 Single-thread version
We test the first set of graphs on machine 3, with 256 GiB of RAM. 245 GiB was dedi-
cated to the Java heap, to ensure that the operating system and the garbage collector could
still run smoothly. The peak memory usages reported in this section are approximations
reported by Java’s Runtime.totalMemory() − Runtime.freeMemory(). They
were also sampled between each of the 2n steps, when there is only one table of charac-
teristics alive on the heap but old tables may linger as garbage. Maximal simultaneous
memory usage may therefore be up to twice the numbers presented here, in case of two
consecutive tables of equal size. A more in-depth view of memory use is given in section
4.3.3.3.

We begin by examining the running time and peak memory use of the graphs in the
class 1 set. Because we had limited access to machine 3, we cut out some graphs starting
from size 82. We kept 7 different graphs, and 7 hash seeds for each for a total of 49 runs per
size between 82 to 90 nodes. Even then, only a few of the size 90 graphs had enough time
to be tested, as we moved on to some size 100 graphs in order to see some higher failure
rates. We detail running time average and ranges for every individual graph in 4.21. They
are color coded by graph size for easier viewing.

37

4. Testing

5
0

5
2

5
4

5
6

5
8

6
0

6
2

6
4

6
6

6
8

7
0

7
2

7
4

7
6

0

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

4
0
0
0

Average time (s)

G
ra

p
h
 b

y
 s

iz
e

E
n
u
m

C
o
lo

rs
P

a
ra

lle
l (8

)

E
n
u
m

C
o
lo

rs
P

a
ra

lle
l (4

)

E
n
u
m

C
o
lo

rs

Figure 4.12: EnumColorsParallel counting, 4 and 8 threads

38

4.3 Results

5
0

5
4

5
8

6
2

6
6

7
0

7
4

7
8

8
2

8
6

9
0

9
4

9
8

1
0

2
1

0
6

1
1

0
1

1
4

1
1

8
1

2
2

1
2

6
1

3
0

1
3

4
1

3
8

1
4

2
1

4
6

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

Running time (ms)

G
ra

p
h

 b
y
 s

iz
e

K
o

w
a

lik

A
v
e

ra
g

e

M
a

x
im

u
m

M
in

im
u

m

Figure 4.13: Kowalik on class 1 set

39

4. Testing

1
5
0

1
8
0

2
1
0

2
4
0

2
7
0

3
0
0

3
3
0

3
6
0

3
9
0

4
2
0

4
5
0

4
8
0

5
1
0

5
4
0

1
0

−
1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

1
0

5

1
0

6

G
ra

p
h
 b

y
 s

iz
e

Running time (s)

K
o
w

a
lik

1
 s

e
c
o
n
d

1
 m

in
u
te

1
 h

o
u
r

2
4
 h

o
u
rs

A
v
e
ra

g
e

M
in

im
u
m

M
a
x
im

u
m

Figure 4.14: Kowalik on large set

40

4.3 Results

1
5

0
1

8
0

2
1

0
2

4
0

2
7

0
3

0
0

3
3

0
3

6
0

3
9

0
4

2
0

4
5

0
4

8
0

5
1

0
1

0
−

1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

1
0

5

1
0

6

1
0

7

G
ra

p
h

 b
y
 s

iz
e

Running time (s)

K
o

w
a

lik
P

a
ra

lle
l1

1
 s

e
c
o

n
d

1
 m

in
u

te

1
 h

o
u

r

2
4

 h
o

u
rs

A
v
e

ra
g

e

M
in

im
u

m

M
a

x
im

u
m

Figure 4.15: KowalikParallel1 on class 1 set

41

4. Testing

1
5

0
1

8
0

2
1

0
2

4
0

2
7

0
3

0
0

3
3

0
3

6
0

3
9

0
4

2
0

4
5

0
4

8
0

5
1

0
1

0
−

1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

1
0

5

1
0

6

1
0

7

G
ra

p
h

 b
y
 s

iz
e

Running time (s)

K
o

w
a

lik
P

a
ra

lle
l2

1
 s

e
c
o

n
d

1
 m

in
u

te

1
 h

o
u

r

2
4

 h
o

u
rs

A
v
e

ra
g

e

M
in

im
u

m

M
a

x
im

u
m

Figure 4.16: KowalikParallel2 on large set

42

4.3 Results

1
8

0
2

1
0

2
4

0
2

7
0

3
0

0
3

3
0

3
6

0
3

9
0

4
2

0
4

5
0

4
8

0
5

1
0

5
4

0
1

0
−

1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

1
0

5

1
0

6

1
 s

e
c
o

n
d

1
 m

in
u

te

1
 h

o
u

r

2
4

 h
o

u
rs

G
ra

p
h

 b
y
 s

iz
e

Average run (s)

K
o

w
a

lik

K
o

w
a

lik
P

a
ra

lle
l1

K
o

w
a

lik
P

a
ra

lle
l2

Figure 4.17: Single-threaded and parallel Kowalik versions

43

4. Testing

3
6

0
3

9
0

4
2

0
4

5
0

4
8

0
5

1
0

1
0

1

1
0

2

1
0

3

1
0

4

1
0

5

1
 m

in
u

te

1
 h

o
u

r

G
ra

p
h

 b
y
 s

iz
e

Average run (s)

K
o

w
a

lik

K
o

w
a

lik
P

a
ra

lle
l1

K
o

w
a

lik
P

a
ra

lle
l2

Figure 4.18: Single-threaded and parallel Kowalik versions,
zoomed

44

4.3 Results

5
0

5
4

5
8

6
2

6
6

7
0

7
4

7
8

8
2

8
6

9
0

9
4

9
8

1
0

2
1

0
6

1
1

0
1

1
4

1
1

8
1

2
2

1
2

6
1

3
0

1
3

4
1

3
8

1
4

2
1

4
6

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

Average running time (ms)

G
ra

p
h

 b
y
 s

iz
e

K
o

w
a

lik

K
o

w
a

lik
P

rin
t

Figure 4.19: Kowalik and KowalikPrint on class 1 set

45

4. Testing

1
5

0
1

8
0

2
1

0
2

4
0

2
7

0
3

0
0

3
3

0
3

6
0

3
9

0
4

2
0

4
5

0
4

8
0

5
1

0
5

4
0

1
0

−
1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

1
0

5

G
ra

p
h

 b
y
 s

iz
e

Average run (s)

K
o

w
a

lik

K
o

w
a

lik
P

rin
t

Figure 4.20: Kowalik and KowalikPrint on large set

46

4.3 Results

5
0

5
2

5
4

5
6

5
8

6
0

6
2

6
4

6
6

6
8

7
0

7
2

7
4

7
6

7
8

8
0

8
2

8
4

8
6

8
8

9
01

0
0

1
0

−
1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

1
0

5

1
 s

e
c
o

n
d

1
 m

in
u

te

1
 h

o
u

r

G
ra

p
h

 b
y
 s

iz
e

Time to run (s)

1
 s

e
c
o

n
d

1
 m

in
u

te

1
 h

o
u

r

1
 s

e
c
o

n
d

1
 m

in
u

te

1
 h

o
u

r

Figure 4.21: CountColors running time by graph

47

4. Testing

50 55 60 65 70 75 80 85 90 95 100
0

100

200

A
p

p
ro

x
im

a
te

d
 m

a
x
im

u
m

 m
e

m
o

ry
 u

s
e

 (
G

iB
)

50 55 60 65 70 75 80 85 90 95 100
0

50

100

R
u

n
s

Graph size

Successful runs

Worst run

Average run

Figure 4.22: CountColors peak memory by graph size

Peakmemory use by graph size is given by figure 4.22. The plot also details the number
of successful runs for that size. Note the small dip at size 62, which demonstrates that we
can run out of memory already for those relatively small graph sizes.

Strictly speaking, this algorithm is not exponential in the size of the graph, but in the
width of the path decomposition. It is very relevant to see the efficiency of our aggressive
path decomposition search. We plot the values of ε2 per graph size (seen in figure 4.23),
and the width (average and range) of the path decompositions found for each graph (figure
4.24).

We are also interested in knowing the memory usages and success rates by path de-
composition width. Success rate is shown in 4.26, and memory usage is in 4.25. We
see a clear growing memory use (declining success rate) until width 28, where it suddenly
drops (shoots back up). We attribute this peculiarity to having too few runs of those higher
widths, rather than any general trend that widths greater than 30 are preferable to smaller
ones. There were no runs on path decompositions of width 31.

The running times by width exhibit a very interesting phenomenon: one minute run-
ning time very nearly corresponds to one GiB peak memory use. This is of course highly
dependent on the particular hardware. Average running times is shown in 4.27, and max-
imum running times in 4.28.

48

4.3 Results

50 55 60 65 70 75 80 85 90 95 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

e
2
 v

a
lu

e

Graph size

Maximum e
2

Average e
2

Minimun e
2

e
1

Figure 4.23: ε1 and ε2

4.3.3.2 Parallel version
As we predicted that the Parallel CountColors may require more memory to solve the
same problem, we put this to the test using the 64 GiB RAMmachine with 8 logical cores
(machine 4). The expectation is that the speedup and increased memory use will be visible
regardless of which machine performs the tests. By using a computer with less memory
available, we illustrate the expected behavior while avoiding the running times of up to
several hours observed on the 256 GiB machine. In return, this allows the single-threaded
program more time to work on the larger graphs using 256 GiB of memory. Out of our 64
GiB RAM, we dedicate 58 GiB to the JVM heap. We only include the speedups (4.29) and
memory increases (4.30) here, as previous tests detailed running times and peak memory
usages in absolute terms.

We see that peak memory consumption of CountColorsParallel grows to about
140% of that of CountColors for the largest graphs, with a hint of a continuing up-
ward trend. There was only a single seeded graph where CountColors finished and
CountColorsParallel crashed: a size 80 graph which used 32 GiB peak memory
in its successful run. The gain was that most runs finished 2-3 times faster.

4.3.3.3 Total memory use
We include a plot 4.31 to illustrate memory use for every individual table, and not just
the largest one. We tested three different graphs of size 70, and chose the run with the
highest peak memory for each of them. The JVM garbage collector is forcibly started
between every step. The steep left-most cliff for graph 3 serves well to demonstrate how
the memory grows exponentially. Graph 2 peaks at about 22.5 GiB, but the sum over all
its steps is 370 GiB, far above what we are able to store.

49

4. Testing

5
0

5
2

5
4

5
6

5
8

6
0

6
2

6
4

6
6

6
8

7
0

7
2

7
4

7
6

7
8

8
0

8
2

8
4

8
6

8
8

9
01

0
0

0 5

1
0

1
5

2
0

2
5

3
0

3
5

G
ra

p
h

 s
iz

e

Width of path decompositions

Figure 4.24: Width of path decomposition by graph

50

4.3 Results

5 10 15 20 25 30 35
0

20

40

60

80

100

120

140

160

180

Width of path decomposition

P
e

a
k
 m

e
m

o
ry

 u
s
e

 (
G

iB
)

Average run

Worst run

Figure 4.25: Peak memory use by path decomposition width

51

4. Testing

5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 r

a
te

5 10 15 20 25 30 35
0

50

100

150

200

S
a
m

p
le

 c
o
u
n
t

Width of path decomposition

Sample count

Success rate

Figure 4.26: Success rate by path decomposition width

52

4.3 Results

10 15 20 25 30 35
10

−2

10
0

10
2

10
4

T
im

e
 (

m
in

)

1 minute

1 hour

10 15 20 25 30 35
10

−2

10
0

10
2

10
4

M
e

m
o

ry
 (

G
iB

)

Width of path decomposition

Peak memory

Running time

Figure 4.27: Average running time (and peak memory) by path
decomposition width

10 15 20 25 30 35

10
−1

10
0

10
1

10
2

10
3

T
im

e
 (

m
in

)

1 minute

1 hour

10 15 20 25 30 35

10
−1

10
0

10
1

10
2

10
3

M
e

m
o

ry
 (

G
iB

)

Width of path decomposition

Peak memory

Running time

Figure 4.28: Maximum running time (and peak memory) by path
decomposition width

53

4. Testing

50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82
0

1

2

3

4

5

6

Graph by size

S
p

e
e

d
−

u
p

 f
a

c
to

r
(C

C
/C

C
P

)

Average

Maximum

Minimum

Figure 4.29: Speedup for CountColorsParallel

50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82
0

1

2

3

4

5

6

7

8

Size of individual graphs

R
a

ti
o

 o
f

a
p

p
ro

x
im

a
te

d
 p

e
a

k
 m

e
m

o
ry

 u
s
a

g
e

 (
C

C
P

/C
C

)

Average

Maximum

Minimum

Figure 4.30: Peak memory increase for CountColorsParallel

54

4.3 Results

1 21 41 61 81 101 121

0

5

10

15

20

25

Step

A
p

p
ro

x
im

a
te

d
 m

e
m

o
ry

 u
s
a

g
e

 (
G

iB
)

Graph 1

Graph 2

Graph 3

Figure 4.31: Step-wise memory usage for CountColors

4.3.4 Detecting class 2
We now turn to the class 2 set of graphs. Since determining class 2 is equivalent to count-
ing the number of edge colorings and finding that there are none, we run both EnumCol-
ors and EnumColorsParallel (8 threads) since the latter was shown to be somewhat
faster in the counting case above. Their test results may be found in figures 4.32 and 4.33
respectively. We also run Kowalik, shown in figure 4.34. Finally we run CountCol-
ors on machine 3; its results are detailed in 4.35.

Kowalik exhibits a remarkable behavior for these graphs. Almost all runs finish in
less than a second. But two graphs, one of size 98 and the other of size 110, are notable
exceptions which required around 16 minutes and a bit over 2 hours, respectively. A third
exception, not visible in the plot, is a size 64 graph which needed 3 seconds. Additionally,
Kowalik was very reliably slow for these graphs, getting similar results for every hash seed.
For the size 98 graph, it varied between 935,061ms and 1,031,154ms (10% difference),
and for the size 110 graph the slowest and fastest runs took 7,363,398ms and 7,972,772ms
(8% difference).

At the time this was noticed, we no longer had access to machine 3, but we could still
run EnumColors on these two graphs. It did not finish within 10 hours for any of the
hash seeds for the 110 vertex graph, nor for six of the hash seeds for the 98 vertex graph.
We show the running times for the remaining 4 hash seeds in 4.36. We see in two cases,
that EnumColors was tremendously faster than Kowalik.

We also include two figures detailing the best 4.37 and worst 4.38 runs of Count-
Colors, EnumColors and EnumColorsParallel for the lower-size graphs. While
Kowalik was by far the fastest of all these, it is still pertinent to know how the others

55

4. Testing

50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

R
u
n
n
in

g
 t
im

e
 (

s
)

Graph by size

Average

Maximum

Minimum

Figure 4.32: EnumColors on class 2 set

50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

R
u
n
n
in

g
 t
im

e
 (

s
)

Graph by size

Average

Maximum

Minimum

Figure 4.33: EnumColorsParallel on class 2 set

56

4.3 Results

50 60 70 80 90 100 110 120 130 140 150
0

1000

2000

3000

4000

5000

6000

7000

8000

R
u
n
n
in

g
 t
im

e
 (

s
)

Graph by size

Average

Maximum

Minimum

Figure 4.34: Kowalik on class 2 set

50 52 54 56 58 60 62 64 66 68 70 72 74 76 78
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

R
u
n
n
in

g
 t
im

e
 (

s
)

Graph by size

Average

Maximum

Minimum

Figure 4.35: CountColors on class 2 set

57

4. Testing

Time Approx. time
Hash seed 2 25092817ms 7 hours
Hash seed 5 44754ms 45 seconds
Hash seed 7 560ms < 1 second
Hash seed 9 2860259ms 48 minutes

Figure 4.36: Successful runs of EnumColors on size 98 class 2
graph

50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Graph by size

R
u
n
n
in

g
 t
im

e
 (

s
)

CountColors

EnumColorsParallel

EnumColors

Figure 4.37: EnumColors, EnumColorsParallel and CountColors
best class 2 runs

stack up. It appears that CountColors typically has the shortest times in the best runs,
but not the shortest-time worst runs. That honor is shared between CountColors and
EnumColorsParallel, with EnumColorsParallel winning out on sizes 74 and
above.

4.3.5 Coping with greater sizes
In light of the fact that parallel versions of Kowalik and EnumColors did not provide much
benefit for determining class, and the fact that both of them in their single-threaded forms
had a low fastest time for most graphs, we devise a different (and simpler) way to utilize
the parallel computing power we have access to: run several single-threaded instances
concurrently, on the same graph but with different hash seeds. Since they are all calculating
the same result, we only need to wait for the first thread to finish. We call these versions

58

4.3 Results

50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Graph by size

R
u
n
n
in

g
 t
im

e
 (

s
)

CountColors

EnumColorsParallel

EnumColors

Figure 4.38: EnumColors, EnumColorsParallel and CountColors
worst class 2 runs

ManyKowalik and ManyEnumColors.
In these tests, we run 7 concurrent threads. We do not use the hash values that have

been pre-generated, but instead randomize new hash seeds for every thread. Due to time
constraints and machine 1 and 2 being busy, these tests were run on machine 4 and given
10 hours to complete and may be found in figure 4.39. They are therefore not directly
comparable to the previous Kowalik and EnumColors tests, but we include the averages
of those runs anyway for ease of viewing. Re-running them will not necessarily yield the
same results as the hash seeds were randomized at runtime and not saved.

Kowalik is slightly faster than ManyKowalik for small graphs. This is ex-
pected, since the times for ManyKowalik includes the time to start seven Java threads.
Kowalik is soon beaten as the time to start threads becomes negligible to the total time.

The runs of ManyKowalik revealed another notable fact: every tested graph in the
randomly generated large set was of class 1. The test did not finish on the whole large set,
but ran on all graphs up to size 1290 and some of size 1300. This may be a hint that most
cubic graphs are of class 1.

To see a better time complexity bound than that of Kowalik, CountColors required
a small ε ≤ 0.102446 and was only guaranteed to work for graphs of size n ≥ 8565
(2.6). We cannot expect to successfully run CountColors for graphs that large, but we
can try to generate path decompositions of them and determine the effectiveness of the
aggressive flag on very large graphs. We tried 10 different size 8000 graphs, which
are not large enough to meet the bound but large enough to demonstrate the effect. The
values seen in the table 4.40 are averages of 10 runs per graph.

59

4. Testing

5
0

2
5
0

4
5
0

6
5
0

8
5
0

1
0
5
0

1
2
5
0

1
0

−
1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

Average running time (s)

G
ra

p
h
 s

iz
e

1
 s

e
c
o
n
d

1
 m

in
u
te

1
 h

o
u
r

M
a
n
y
K

o
w

a
lik

M
a
n
y
E

n
u
m

C
o
lo

rs

A
v
e
ra

g
e
 ru

n
 o

f K
o
w

a
lik

A
v
e
ra

g
e
 ru

n
 o

f E
n
u
m

C
o
lo

rs

Figure 4.39: ManyKowalik and ManyEnumColors

60

4.3 Results

Non-aggressive Aggressive
Width Time (s) Width Time (s)

Graph 1 2168 23.13 1185 3142
Graph 2 2168 24.00 1180 3225
Graph 3 2168 23.05 1178 2935
Graph 4 2168 23.86 1181 3605
Graph 5 2168 24.20 1188 3099
Graph 6 2169 22.94 1178 3076
Graph 7 2169 23.40 1176 3190
Graph 8 2168 24.16 1165 3259
Graph 9 2167 23.32 1165 3415
Graph 10 2168 23.76 1185 3061
Average 2168 23.5 1178 3201

Figure 4.40: Efficiency of aggressive flag on very large graphs

We see that our aggressive search was able to almost halve the width of the path de-
compositions. The process took a little less than an hour on average.

61

4. Testing

62

Chapter 5
Discussion

5.1 Determining class
In our tests of small class 1 graphs, Kowalik far outperformed both versions of Enum-
Colors; using the same hardware, EnumColors begins experiencing minute-long average
running times at graphs 92 vertices, while even the worst run of Kowalik required less
than a second for these and all other graphs up to 150. The standard version of Enum-
Colors did not get past the graphs of size 100 in the original tests. Additionally, while
the code modifications made to find an edge coloring took a toll on code readability in
KowalikPrint, they do not impact running times to any noticeable degree.

Contrary to our expectations, the two parallelized versions of Kowalik do not appear
to provide any substantial benefit of the single-threaded version; indeed, they were often
noticeably slower. As this fact held for both, we assume that an implementation which
combines the parallelization choices of both versions will fare no better. Instead, the best
usage of concurrent processing power was to run several instances of Kowalik with dif-
ferent hash seeds and stop when either of them finishes. With seven concurrent instances,
the program finished in less than a minute on average for all sizes up to 1170, and peaked
at 10 minutes average for size 1260 graphs.

For the class 2 set, Kowalik again strongly outperformed both EnumColors and Count-
Colors for every graph on which more than one algorithm ran, except for one hash seed
of a size 98 graph. It determined the class of almost all these graphs in under a second,
including every graph on which either of the other algorithms finished.

CountColors experienced a greater failure rate for the class 2 graphs than for those of
class 1, because it was not as successful in finding a “better” ε2 for the former set. While it
finished on almost all graphs up to size 88 and about half the size 100 graphs in the class
1 set, it started to fail at a significant rate for size 74 graphs in the class 2 set. This may
seem somewhat counter-intuitive; class 2 have no 3-edge-colorings and therefore should
require less memory to store them. However, having no proper edge coloring does not

63

5. Discussion

imply anything about the number of partial edge colorings. Evidently the number was
typically larger for the class 2 graphs.

Therefore we expect it would have run out of memory for the mentioned 98 and 110
vertex graphs. Unfortunately, we had no time to verify this, due to the limited access to
machine 3. However, one thing to note is that almost all graphs with successful runs had
shortest run under 10 seconds. This is in line with our conjecturing that it is often possible
to invalidate all partial colorings early, given a path decomposition with fortunate vertex
order. As we used only five runs per graph, these path decompositions may be common.
If this trend holds, we may also have succeeded on the size 98 and 110 graphs.

Overall, EnumColors performed the worst by far for the class 2 graphs. This is some-
what expected; determining a graph is class 2 with EnumColors is the same as counting
all colorings, but unlike CountColors, it lacks a way to “finish early” other than by running
into every dead end. It is therefore remarkable that it could finish so quickly on the size 98
graph for some seeds, for which Kowalik was so consistently slow. We do not know what
caused this phenomenon.

Therefore, we strongly recommend Kowalik’s algorithm for determining the class of a
graph, and for finding a single 3-edge-coloring. The aberration that it was slower on the
size 98 graph (and possibly the size 110 graph) seems to occur only rarely.

5.2 Finding an edge coloring
While the code modifications made to find an edge coloring took a toll on code read-
ability in KowalikPrint, they do not impact running times to any noticeable degree.
KowalikPrint finished graphs from the up-to-1500 size set at virtually the same speed
as regular Kowalik. While we did not try to use several simultaneous KowalikPrint
instances – a “ManyKowalikPrint” program – the same trend should hold for the
larger graphs. EnumColors already solves the edge coloring problem by attempting to
find a coloring. Hence, solving the find problem in practice is no different than determin-
ing the class for either of these two algorithms, so Kowalik is the recommended choice
here as well.

5.3 Counting edge colorings
The first time that CountColors ran out of memory was when working on a size 62
graph, but afterwards it was mostly fine up to and including size 90 when working on
the class 1 graphs. It had greater difficulty for the class 2 graphs, seeing troubling failure
rates from size 74. When it did finish, CountColors typically outperformed both the
EnumColors and EnumColorsParallel in its best runs. EnumColors started
seeing average runs at the hour mark for size 70 graphs (size 76 for the fastest parallel
version) while CountColors would make it past size 80.

Our recommendation for the count problem on larger graphs is to use the following
strategy. First, ensure that the graph is class 1. Then form path decompositions, using the
aggressive flag, for very many hash seeds. The time to form a single path decomposi-
tion for a size 100 graph grows from 5ms to about 600ms when the aggressive flag is

64

5.4 Finding all edge colorings

set. In our tests, a fortunate path decomposition of small width had the potential to lower
running times from hours to minutes. That makes it an easy choice to spend time in this
phase; we not only drastically lower the total running time, but also decrease the risk to
run out of memory.

When a suitable path decomposition is found, the peak memory usage of CountColors
can be estimated from the width to a reasonable degree. If we expect to have memory to
spare, consider using the parallel version; in our tests it could speed up the running time
by factor 2-3, at the cost of about 40% extra memory usage. If memory is expected to be
scarce, use the single-threaded version.

If our strategy does not yield any path decompositions of usable width, opt to use
EnumColors instead. While offering no benefit when finding a single edge coloring,
EnumColorsParallel did outperform EnumColors in the counting case.

5.4 Finding all edge colorings
While we performed no tests specifically for the find-all problem, our observations from
count make us consider it infeasible to use CountColors. A typical run has several tables
in a row with near-peak memory usage, of which we currently only store one. Technically
we do not need to remember the old tables; we can let every characteristic keep a list of
pointers to all the immediate predecessors with an S-function that is a subset of their own.
This may save somememory in those crucial steps. Still, the memory requirement is going
to be tremendous. Furthermore, backtracking every possible path through the surviving
chains of characteristics has its own exponential time complexity.

EnumColors therefore seems the only viable option. As the algorithm reports colorings
in the rate they are found, I/O capabilities matter for this problem and the trick of running
multiple concurrent instances seems counter-productive; we do not want to flood the print
stream with duplicated colorings. We may, however, derive a speed-up from using the
parallel version.

5.5 CountColors time complexity
Despite having 245 GiB of memory at its disposal — a significant amount by modern
standards — CountColors experienced about a 50% failure rate for graphs of size 100.
This is a far cry from the minimum size of 8565 (2.6) that is required to achieve a better
time complexity than Kowalik. Without any modifications, running our implementation
on graphs of that size could increase memory usage of up to a factor of 1.2018565−100 ≈

2.14 · 10673 – a huge number to say the least. The Cray Titan, rated as one of the most
powerful super computers in 2013 [TOP500], has 710 TiB of memory [ORNL] which is
only approximately 2,800 times the amount we possess.

Our aggressive flag for path decompositions was efficient for graphs of that mag-
nitude, sacrificing approximately half an hour on average to shrink the path decomposi-
tions from widths of about 2170 to about 1150 for size 8000 graphs. As mentioned in
section 3.2 we spent no time optimizing this package; the data structure is wasteful and
the algorithm actually constructs an entirely new path decomposition for every ε2 rather

65

5. Discussion

than re-using the previous one. With better code and an even more aggressive approach
to ε2 (such as bisecting between −1/6 and ε1, rather than 0 and ε1), one may potentially
be able to efficiently compute path decompositions of even smaller width. Even so, the
width is still very large in real terms, so regardless of code optimizations we do not expect
to see an implementation of CountColors running with time complexity bounded below
that of Kowalik in the foreseeable future unless theoretic improvements are made to the
generation of path decompositions.

5.6 Choice of programming language
The decision to use Java was made without fully considering the implications of the ex-
ponential space complexity of CountColors. The algorithm fills a table of a large amount
of fairly small objects, only to copy them up to six times and modify the copies slightly
before their insertion in the next table. The originals are then thrown away. While our code
was improved slightly by creating only five copies and reusing the original object as the
sixth one, there is still a very large amount of objects discarded soon after their creation.

When memory usage is close to the max heap size, the JVM automatically starts the
garbage collector (gc). As described earlier, we may have cases where a table is so large
that the memory use is close to that limit, but still successfully create the next table of
equal size by quickly removing elements from the former. However, such situations will
cause very bad gc behavior: we are constantly at dangerous memory levels, and there
are incredibly many objects to inspect, yet very few of these objects are actually able to
be reclaimed. A language with explicit memory management, such as C++, could have
eliminated this behavior, and at the same time freed up the couple of gigabytes of RAM
that was reserved for the gc.

Furthermore, objects in Java carry some overhead that may be avoidable through the
use of a different language. That would have allowed us to work with larger graphs, or
more accurately, graphs with wider path decompositions. But this can only improve the
memory footprint by a constant factor, which in the long run is a poor defense against the
exponential space complexity. Realistically, we could probably only have increased the
maximum graph size by a small additive constant.

5.7 Further research
Throughout the paper we have identified several topics for further research. We summarize
them here for easy reference.

• The random choices, determined by hash seeds in our implementation, greatly im-
pacted running times for Kowalik and EnumColors. Are there rules or heuristics
that allow us to predict which choice will be best?

• Kowalik was quick to determine class 2, except for two graphs of size 98 and 110.
What in their internal structures made Kowalik fare so poorly regardless of hash
seed? Why was EnumColors able to beat Kowalik on the size 98 graph, and can we
modify the Kowalik implementation to include this behavior?

66

5.7 Further research

• Almost every randomized graphs turned out to be class 1. Is this coincidence or are
class 2 cubic graphs rare? We did not test for the properties that always form class
1 graphs (bipartiteness, or planarity plus bridgelessness). Is the perceived rarity of
class 2 graphs an artefact of generating mostly graphs with these properties?

• The simple parallel architecture of CountColors is faster but sacrifices memory.
How to re-balance the tables to evenly distribute workload across processors and
keep memory waste to a minimum?

67

5. Discussion

68

Bibliography

[BHK] A. Björklund, T. Husfeldt, M. Koivisto
Set Partitioning via Inclusion-Exlusion
SIAM Journal of Computing 39(2), p546-563 (2009)
doi:10.1137/070683933

[BR] H. L. Bodlaender, J. M. M. van Rooij
Exact algorithms for Intervalizing Colored Graphs
Lecture Notes in Computer Science 6595, p45-56 (2011)
doi:10.1007/978-3-642-19754-3_7

[CK] R. Cole, Ł. Kowalik
New Linear-Time Algorithms for Edge-Coloring Planar Graphs
Algorithmica 50(3), p351-368 (2008)
doi:10.1007/s00453-007-9044-3

[COS] R. Cole, K. Ost, S. Schirra
Edge-Coloring Bipartite Multigraphs in O(ElogD) Time
Combinatorica 21, p5-12 (2001)
doi:10.1007/s004930170002

[EST] J. A. Ellis, I. H. Sudburough, J. S. Turner
The Vertex Separation and Search Number of a Graph
Information and computation 113, p50-79 (1994)
doi:10.1006/inco.1994.1064

[FH] F. V. Fomin, K. Høie
Pathwidth of cubic graphs and exact algorithms
Information Processing Letters 97, p191-196 (2006)
doi:10.1016/j.ipl.2005.10.012

69

http://dx.doi.org/10.1137/070683933
http://dx.doi.org/10.1007/978-3-642-19754-3_7
http://dx.doi.org/10.1007/s00453-007-9044-3
http://dx.doi.org/10.1007/s004930170002
http://dx.doi.org/10.1006/inco.1994.1064
http://dx.doi.org/10.1016/j.ipl.2005.10.012

BIBLIOGRAPHY

[GKC] P. A. Golovach, D. Kratsch, J.-F. Couturier
Colorings with Few Colors: Counting, Enumeration and Combinatorial Bounds
Graph Theoretic Concepts in Computer Science: 36th International Workshop, p39-
50 (2010) doi:10.1007/978-3-642-16926-7_6

[Hara] F. Harary
Graph Theory, p85
Addison-Wesley
ISBN:0-201-02787-9

[Holy] I. Holyer
The NP-Completeness of Edge-Colouring
SIAM Journal of Computing 10(4), p718-720 (1981)
doi:10.1137/0210055

[HT] J. Hopcroft, R. E. Tarjan
Efficient Planarity Testing
Journal of the ACM 21(4), p549-568 (1974)
doi:10.1145%2F321850.321852

[Kinn] N. G. Kinnersley
The vertex separation number of a graph equals its path-width
Information Processing Letters 42, p345-350 (1992)
doi:10.1016/0020-0190(92)90234-M

[Konig] D. Kőnig
Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre
Mathematische Annalen 77(4), p453-465 (1916)
doi:10.1007/BF01456961

[Kow] Ł. Kowalik
Improved Edge-Coloring with Three Colors
Graph Theoretic Concepts in Computer Science: 32nd InternationalWorkshop, p90-
101 (2006)
doi:10.1007/11917496_9

[KT] J. Kleinberg, É. Tardos
Algorithm Design, p94-97
Pearson Addison-Wesley
ISBN: 0-321-37291-3

[Leng] T. Lengauer
Black-white pebbles and graph separation
Acta Informatica 16(4), pp 465-475
doi:10.1007/FBF00264496

[MG] J. Misra, D. Gries
A constructive proof of Vizing’s theorem
Information Processing Letters, Volume 41(3), p131-133 (1992)
doi:10.1016/0020-0190(92)90041-S

70

http://dx.doi.org/10.1007/978-3-642-16926-7_6
http://dx.doi.org/10.1137/0210055
http://dx.doi.org/10.1145%2F321850.321852
http://dx.doi.org/10.1016/0020-0190(92)90234-M
http://dx.doi.org/10.1007/BF01456961
http://dx.doi.org/10.1007/11917496_9
http://dx.doi.org/10.1007/FBF00264496
http://dx.doi.org/10.1016/0020-0190(92)90041-S

BIBLIOGRAPHY

[MKW] B. D. McKay, N. C. Wormald
Uniform Generation of Random Regular Graphs of Moderate Degree
Journal of Algorithms 11, p52-67 (1990)
doi:10.1016/0196-6774(90)90029-E

[MP] B. Monien, R. Preis
Upper bounds on the bisection width of 3- and 4-regular graphs
Journal of Discrete Algorithms 4, p475-498 (2006)
doi:10.1016/j.jda.2005.12.009

[ORNL] Introducing Titan
Oak Ridge National Laboratory
http://www.olcf.ornl.gov/titan/
Accessed on Jan. 9, 2014

[PARTY] PARTY Partitioning Library
R. Preis
http://www2.cs.uni-paderborn.de/cs/robsy/party.html
Accessed Jan. 9, 2014

[SZ] D. P. Sanders, Y. Zhao
Planar Graphs of Maximum Degree Seven are Class 1
Journal of Combinatorial Theory, Series B 83, 201-212 (2001)
doi:10.1006/jctb.2001.2047

[Tait] P. G. Tait
Remarks on the colourings of maps
Proc. R. Soc. Edinburgh 10, p729 (1880)

[Tarj] R. E. Tarjan
A note on finding the bridges of a graph
Information Processing Letters 2(6), p160-161 (1974)
doi:10.1016/0020-0190(74)90003-9

[TOP500] November 2013
TOP500 Supercomputing Sites
http://www.top500.org/lists/2013/11/
Accessed on Jan. 9, 2014

[Viz64] V. G. Vizing
On an estimate of the chromatic class of a p-graph
Metody Diskret. Analiza 3, p25–30 (1964)

[Viz65] V. G. Vizing
Critical graphs with given chromatic class
Metody Diskret. Analiza 5, p9-17 (1965)

71

http://dx.doi.org/10.1016/0196-6774(90)90029-E
http://dx.doi.org/10.1016/j.jda.2005.12.009
http://www.olcf.ornl.gov/titan/
http://www2.cs.uni-paderborn.de/cs/robsy/party.html
http://dx.doi.org/10.1006/jctb.2001.2047
http://dx.doi.org/10.1016/0020-0190(74)90003-9
http://www.top500.org/lists/2013/11/

BIBLIOGRAPHY

72

List of Figures

1.1 Graph G1 and graph G2 induced by {2, 3, 4, 5} on G1 8
1.2 Graph G and a 3-edge-coloring for G . 9
1.3 Graph G . 11
1.4 Nice path decomposition of G, with width 2 11
1.5 Nice path decomposition of G, with width 3 11

2.1 Problems solvable by algorithm . 17

3.1 Problems solvable by algorithm implementation 26

4.1 Counting EnumColors and CountColors hash seed dependency 28
4.2 EnumColors and Kowalik hash seed dependency 29
4.3 Efficiency of aggressive flag on size 50 graphs 30
4.4 Efficiency of aggressive flag on size 100 graphs 30
4.5 EnumColorsParallel efficiency by thread count 31
4.6 EnumColors on the class 1 set . 34
4.7 EnumColorsParallel on the class 1 set 34
4.8 EnumColors and EnumColorsParallel 35
4.9 EnumColors counting . 36
4.10 EnumColorsParallel counting with 4 threads 36
4.11 EnumColorsParallel counting with 8 threads 37
4.12 EnumColorsParallel counting, 4 and 8 threads 38
4.13 Kowalik on class 1 set . 39
4.14 Kowalik on large set . 40
4.15 KowalikParallel1 on class 1 set . 41
4.16 KowalikParallel2 on large set . 42
4.17 Single-threaded and parallel Kowalik versions 43
4.18 Single-threaded and parallel Kowalik versions, zoomed 44
4.19 Kowalik and KowalikPrint on class 1 set 45
4.20 Kowalik and KowalikPrint on large set 46
4.21 CountColors running time by graph . 47

73

LIST OF FIGURES

4.22 CountColors peak memory by graph size 48
4.23 ε1 and ε2 . 49
4.24 Width of path decomposition by graph 50
4.25 Peak memory use by path decomposition width 51
4.26 Success rate by path decomposition width 52
4.27 Average running time (and peak memory) by path decomposition width . 53
4.28 Maximum running time (and peak memory) by path decomposition width 53
4.29 Speedup for CountColorsParallel . 54
4.30 Peak memory increase for CountColorsParallel 54
4.31 Step-wise memory usage for CountColors 55
4.32 EnumColors on class 2 set . 56
4.33 EnumColorsParallel on class 2 set . 56
4.34 Kowalik on class 2 set . 57
4.35 CountColors on class 2 set . 57
4.36 Successful runs of EnumColors on size 98 class 2 graph 58
4.37 EnumColors, EnumColorsParallel and CountColors best class 2 runs . . . 58
4.38 EnumColors, EnumColorsParallel and CountColors worst class 2 runs . . 59
4.39 ManyKowalik and ManyEnumColors 60
4.40 Efficiency of aggressive flag on very large graphs 61

74

	Introduction
	Necessary graph terms and expressions
	Edge coloring
	Path decomposition

	Approach
	EnumColors
	CountColors
	Kowalik
	Related research

	Software specifics
	Graph
	Pathdecomp
	EnumColors
	Parallelization

	Kowalik
	Parallelization
	Finding an edge coloring

	CountColors
	Setting epsilon
	Parallelization

	Testing
	Computer hardware
	Preliminary testing
	Hash seeds
	Aggressive epsilon
	Number of threads

	Results
	EnumColors
	Kowalik
	CountColors
	Detecting class 2
	Coping with greater sizes

	Discussion
	Determining class
	Finding an edge coloring
	Counting edge colorings
	Finding all edge colorings
	CountColors time complexity
	Choice of programming language
	Further research

	Bibliography
	List of Figures

