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AbstratIn this survey, we onsider the trivial perfet odes whih are the binary repetitionodes of odd length and all odes that only ontain one ode word. We also takeinto aount, the Hamming odes as well as the two perfet Golay odes. We thenprove that there do not exist any perfet odes over �nite �elds others than theones above, using Lloyd's theorem.
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71 IntrodutionWhen transferring information there is a risk that errors our, that a message gets distortedon its way to the reeiver. Coding theory is about oding your information aording todi�erent spei� appliations suh as disovering and orreting possible errors with the goalof designing e�ient and reliable data transmission.In this bahelor's thesis, the fous is on the existene of perfet blok odes, or rather thenonexistene. Perfet odes are e�ient when it omes to orreting errors beause they arein a sense as small as possible. Herein, I give an aount for the results in this area, mainlyahieved by Jaobus Hendrius van Lint and Aimo Tietäväinen during the 1970's. A lot ofthe material is taken from artiles written by these two mathematiians to whom I express mygratitude. Some rearrangements of their work have been made and also e�orts to make thisthesis more self-ontained. A omplete list of the artiles and books utilised, an be found inthe referene list. I would also like to thank my supervisor Kjell Elfström.2 CodesAn alphabet is a �nite set F . The elements of an alphabet are alled letters. A ode word isa �nite sequene of letters and a ode a �nite set of ode words. If all ode words of a odehave equal length n, we all the ode a blok ode of length n.From now on we shall assume that all odes are blok odes and that the set F is a �nite�eld with q elements where the number q is a power of a prime number p. We an then regardthe ode words as vetors in the vetor spae Fn and odes as subsets of Fn.De�nition 2.1 Two odes C and C′ belonging to Fn are said to be equivalent if there existsa permutation π of the set {1, . . . , n}, suh that
C′ = {(xπ(1), . . . , xπ(n)); x ∈ C}.De�nition 2.2 The weight w(x) of a ode word x = (x1, . . . , xn) in Fn is the number ofoordinates in x that are not equal to zero. The weight w(C) of a ode C in Fn is de�ned as
w(C) = min{w(x); x ∈ C, x 6= 0}.De�nition 2.3 The Hamming distane d(x, y) between two vetors x = (x1, . . . , xn) and

y = (y1, . . . , yn) in a vetor spae Fn is de�ned as the number of oordinates where xi 6= yi.Sometimes it is not ertain that any other letter will do as a replaement if we �nd an errorin a word and therefore the Hamming distane may not always be the most appropriatemeasurement. It is, nevertheless, the measurement we will use.De�nition 2.4 The separation d(C) for a ode C in a vetor spae is de�ned as the minimalHamming distane between two di�erent words in the ode.
d(C) = min{d(x, y); x, y ∈ C, x 6= y}.We observe that equivalent odes have equal weight and equal separation.De�nition 2.5 Let us also give the de�nition of the distane d(x,C) between a vetor x andthe ode C as

d(x,C) = min{d(x, y) | y ∈ C}



8 2. Codesalong with letting Ci denote the set
Ci = {x ∈ Fn | d(x,C) = i}where i = 0, 1, 2, . . . .De�nition 2.6 For any vetor x in Fn, we de�ne the ball B(x, e) of radius e entered at xto be the set

B(x, e) = {y ∈ Fn; d(x, y) ≤ e}.Theorem 2.71. A ode C an detet a maximum of e errors in eah word if d(C) ≥ e+ 1.2. A ode C an orret a maximum of e errors in eah word if d(C) ≥ 2e+ 1.Proof1. d(C) ≥ e + 1 indiates that two di�erent ode words always di�er in at least e + 1loations. A reeived word with a minimum of one and a maximum of e letters thereforeannot be a ode word and will be deteted as faulty.2. Suppose x is a reeived word that di�ers from a ode word y in a maximum of e loations.If d(C) ≥ 2e+1, there annot be any other ode word z that di�ers from x in a maximumof e loations. That would mean that d(y, z) ≤ 2e. One may therefore orret x to y.2.1 Perfet CodesLemma 2.8 Let us assume we have a ball B(x, e) entered in x ∈ Fn with radius e. If Fthen has q elements, the number of words ontained in the ball B(x, e) is exatly
(

n

0

)

+

(

n

1

)

(q − 1) + · · ·+
(

n

e

)

(q − 1)e.Proof The number of words that di�er from x in i positions where 0 ≤ i ≤ e, is (ni)(q−1)i.Theorem 2.9 (The ball-paking or Hamming bound) Suppose F has q elements and that theode C in Fn ontains M words with the separation 2e+ 1. Then we have
M

[(

n

0

)

+

(

n

1

)

(q − 1) + · · ·+
(

n

e

)

(q − 1)e
]

≤ qn. (1)If we have equality in (1) we get what is alled a perfet ode aording to the followingde�nition.De�nition 2.10 Let e be a positive integer. A ode C is alled a perfet e-(Hamming-)error-orreting ode if1. Fn = ∪x∈CB(x, e)2. min{d(x, y); x ∈ C, y ∈ C, x 6= y} ≥ 2e+ 1



2.2 Linear Codes 9A perfet ode entails the existene of exatly one ode word for eah word x in Fn with amaximum distane e from x. By interpreting the equality in (1), we realize that the M ballsof radius e entered on the di�erent ode words x1, . . . , xn will over the whole spae withoutoverlapping eah other. One may also desribe the equality in (1) as every vetor being atmost at a distane e from exatly one ode word.Example 2.11 Consider the binary repetition ode, onsisting of the two vetors (0, 0, . . . , 0)and (1, 1, . . . , 1) of length n. If n = 2e+ 1 is odd, then this is a perfet ode with parameters
n = 2e+ 1 and q = 2.This kind of odes are alled trivial perfet odes, as well as odes whih ontain only oneode word. The latter have parameters n = e and q where q is a prime power.2.2 Linear CodesDe�nition 2.12 A ode C in Fn is alled linear if it is a subspae of Fn. If we assume that
C has dimension k, then it is alled an [n, k]-ode.We observe that for a linear ode C the separation equals the weight.De�nition 2.13 The dual ode C⊥ of a linear [n, k]-ode C is de�ned to be the set of vetorsof Fn whih are perpendiular to every ode word of C, i.e. where the salar produt betweenthese is zero.

C⊥ = {y ∈ Fn; 〈x, y〉 = 0 ∀x ∈ C}.De�nition 2.14 A generator matrix for a linear ode C is a matrix, the rows of whih are abasis for C. A ontrol matrix for C is a generator matrix for C⊥.2.3 Hamming CodesDe�nition 2.15 Let C be a linear [n, k]-ode in Fn with separation 2e + 1 = 3. If C hasa ontrol matrix H , suh that every vetor in Fn−k an be obtained by multiplying someolumn of H by an element in F , then the ode is alled a Hamming ode.Theorem 2.16 Hamming odes are perfet.Proof If two olumns of H are linearly dependent, there must be a ode word, the weightof whih is 2 or less. Sine this ontradits the assumptions, every two olumns in H mustbe linearly independent. The produts ay where a 6= 0 is an element of F and y a olumnof H must therefore be distint. This means that Fn−k ontains (q − 1)n non-zero vetorsand sine Fn−k ontains qn−k vetors we onlude that (q − 1)n + 1 = qn−k. Aording totheorem 2.9 the ode is perfet.The equality (q − 1)n+ 1 = qn−k an be written as n = 1+ q + q2 + · · ·+ qn−k−1 and now itis not hard to see that there always exists a Hamming ode with the parameters e = 1, and
n and q satisfying the equality.



10 3. Krawthouk Polynomials and Lloyd's Theorem2.4 Golay CodesLet C be the [12, 6]-ode over Z3 with generator matrix
G =

















1 0 0 0 0 0 0 1 1 1 1 1
0 1 0 0 0 0 1 0 1 2 2 1
0 0 1 0 0 0 1 1 0 1 2 2
0 0 0 1 0 0 1 2 1 0 1 2
0 0 0 0 1 0 1 2 2 1 0 1
0 0 0 0 0 1 1 1 2 2 1 0

















.We observe that 〈x, y〉 = 0, if x and y are two rows of G. Therefore 〈x, x〉 = 0 for every
x ∈ C. Sine the elements of Z3 an be written 0 or ±1, this implies that the weight w(x) ofeah ode word x is divisible by 3. We will show that there is no ode word with weight equalto 3. Suh a word must be of type (3 | 0), (2 | 1), (1 | 2) or (0 | 3) where the �rst numberis the number of non-zero letters among the �rst six letters of the ode word and the seondnumber the number of non-zero letters among the last six letters of the ode word. Sineeah ode word is orthogonal to all the rows of G the types (3 | 0), (2 | 1) an be ruled out.On the other hand, a ode word must be a linear ombination of the rows of G, and this isimpossible for words of the types (1 | 2) or (0 | 3). The weight of the ode therefore equals 6.If we remove the seventh olumn from G, we get a generator matrix for an [11, 6]-ode over
Z3 with separation 2e + 1 = 5. This ode is alled the Golay ode G11. The parameters are
e = 2, q = 3 and n = 11, and sine the number of ode words is 36, a simple omputationtogether with theorem 2.9 will reveal that G11 is perfet.Golay also onstruted a perfet binary [23, 12]-ode G23 with separation 7. This ode hasthe parameters e = 3, q = 2 and n = 23.2.5 NonexisteneThe remainder of this work is dediated to show that there are no perfet odes over �eldswith parameters other than those of1. the trivial perfet odes with n = e, or q = 2, n = 2e+ 1,2. perfet single error-orreting odes with the parameters of Hamming odes,3. odes with the parameters of the two perfet Golay odes G11 and G23.3 Krawthouk Polynomials and Lloyd's TheoremLet us begin this hapter by de�ning the tridiagonal matrix Qe = Qe(a, b, s) by

Qe(a, b, s) =



















a b 0 . . . 0 0
1 a+ (s− 1) b− s . . . 0 0
0 2 a+ 2(s− 1) . . . 0 0... ... ... ... ...
0 0 0 . . . a+ (e− 1)(s− 1) b− (e− 1)s
0 0 0 . . . e a+ e(s− 1)





















3.1 Krawthouk Polynomials 11and
Pe = Pe(a, b, s) =



















1
1

Qe−1(a, b, s)
...
1
1

0 0 · · · 0 e 1



















.Let us also denote the determinants of Qe and Pe by Q̃e and P̃e, respetively. By developingby the last row, we will �nd that
Q̃e = (a+ e(s− 1))Q̃e−1 − e(b− (e− 1)s)Q̃e−2.By adding all olumns to the last one and developing by the last row, we �nd

Q̃e = (a+ es)Q̃e−1 − e(a+ b)P̃e−1. (2)Developing Pe by the last row, yields̃
Pe = Q̃e−1 − eP̃e−1. (3)Now apply (3) with e+1 instead of e, ombine with (3) and eliminate the Q̃-terms by using (2).Then we get

P̃e+1 = (a+ es− e− 1)P̃e − e(b− es)P̃e−1. (4)This reurrene relation relates the determinants to well-known polynomials.3.1 Krawthouk PolynomialsDe�nition 3.1 The Krawthouk polynomial Kk is de�ned by
Kk(n, u) =

k
∑

j=0

(−1)j(q − 1)k−j

(

u

j

)(

n− u

k − j

)

.Lemma 3.2 The generating funtion for Krawthouk polynomials is
∞
∑

k=0

Kk(n, u)z
k = (1− z)u(1 + (q − 1)z)n−u. (5)Proof The right-hand side is equal to





∞
∑

j=0

(

u

j

)

(−1)jzj





(

∞
∑

i=0

(

n− u

i

)

(q − 1)izi

)

,and we see that the oe�ient for zk is
k
∑

j=0

(

u

j

)

(−1)j
(

n− u

k − j

)

(q − 1)k−j .



12 3. Krawthouk Polynomials and Lloyd's TheoremLemma 3.3 It is true, that
(k + 1)Kk+1(n, u) = (k + (q − 1)(n− k)− qu)Kk(n, u)− (q − 1)(n+ 1− k)Kk−1(n, u),when k ≥ 1.Proof If we di�erentiate the left-hand side of (5) and multiply by (1− z)(1 + (q − 1)z), weget
(1− z)(1 + (q − 1)z)

∞
∑

k=1

kKk(n, u)z
k−1 = (1 − z)(1 + (q − 1)z)

∞
∑

k=0

(k + 1)Kk+1(n, u)z
k

=
∞
∑

k=0

(k + 1)Kk+1(n, u)z
k + (q − 2)

∞
∑

k=1

kKk(n, u)z
k − (q − 1)

∞
∑

k=1

(k − 1)Kk−1(n, u)z
k. (6)If we do the same with the right-hand side, we get

(1−z)(1+(q−1)z)(−u(1−z)u−1(1+(q−1)z)n−u+(q−1)(n−u)(1−z)u(1+(q−1)z)n−u−1)

= −u(1+ (q− 1)z)(1− z)u(1 + (q− 1)z)n−u + (q− 1)(n− u)(1− z)(1− z)u(1 + (q− 1)z)n−u

= (−u(1 + (q − 1)z) + (q − 1)(n− u)(1− z))

∞
∑

k=0

Kk(n, u)z
k

= (n(q − 1)− qu))
∞
∑

k=0

Kk(n, u)z
k − n(q − 1)

∞
∑

k=1

Kk−1(n, u)z
k. (7)Identi�ation of oe�ients in (6) and (7) gives

(k + 1)Kk+1(n, u)

= (n(q − 1)− qu− (q − 2)k)Kk(n, u)− (n(q − 1)− (q − 1)(k − 1))Kk−1(n, u)

= (k + (q − 1)(n− k)− qu)Kk(n, u)− (q − 1)(n+ 1− k)Kk−1(n, u)when k ≥ 1.3.2 Lloyd's TheoremDe�nition 3.4 Lloyd's polynomial ψe of degree e is de�ned by
ψe(n, x) = Ke(n− 1, x− 1).Using lemma 3.3 along with this de�nition of Lloyd polynomials, we �nd that

(e+ 1)ψe+1(n, x) = (e+ (q − 1)(n− e)− qx+ 1)ψe(n, x)− (q − 1)(n− e)ψe−1(n, x). (8)Lemma 3.5 Let s = q − 1. Then we have
P̃e(qy − ns, ns, s) = (−1)ee!ψe(n, y). (9)Proof For e = 1 and e = 2, it is easy to hek the assertion using the de�nitions. Bysubstitutions of the appropriate values of a and b in (4) and using (8), we see that thepolynomials on both sides of (9) satisfy the same reurrene relation.



3.2 Lloyd's Theorem 13De�nition 3.6 The square matrix Ak of size qk is de�ned as follows. Number the rows andolumns by the q-ary system from 0 to qk − 1. The entry Ak(i, j) is 1 if the representationsof i and j di�er in exatly one digit, otherwise Ak(i, j) = 0.From this de�nition of Ak, it is lear that
Ak+1 = Iq × (Ak − Iqk) + Jq × Iqk (10)where Im denotes the identity matrix of size m, Jm denotes the �all-one�-matrix of size m and

× indiates the Kroneker produt.Lemma 3.7 The matrix Ak has the eigenvalues −k + jq with multipliities
(

k

j

)

(q − 1)k−jwhere j = 0, 1, . . . , k.Proof (Indution) First, look at the ase k = 1. We have A1 = Jq − Iq. By adding all ofthe rows to the last one in det (A1 − λIq) and thereafter subtrating the last olumn from theremaining olumns, we get a triangular determinant. The produt of the diagonal elementsin this determinant is (−1−λ)q−1(q− 1−λ). Now, let the olumn vetor x be an eigenvetorof Ak, belonging to the eigenvalue λ. Then by (10), we have
Ak+1(x

t, xt, . . . , xt)t = (λ+ q − 1)(xt, xt, . . . , xt)t (11)where xt is repeated q times on both sides. If (c1, . . . , cq)t is eigenvetor of Jq with eigenvalue 0(whih has multipliity q − 1), then
Ak+1(c1x

t, . . . , cqx
t)t = (λ− 1)(c1x

t, . . . , cqx
t) (12)sine∑ ci = 0. The indution step now follows from (11) and (12) and well-known propertiesof binomial oe�ients.Lemma 3.8 Let A be an (m×m)-matrix of the form

A =











A11 A12 . . . A1k

A21 A22 . . . A2k... ... . . . ...
Ak1 Ak2 . . . Akk











.Let eah element Aij in A be an (mi ×mj)-matrix where i = 1, 2, . . . , k and j = 1, 2, . . . , k.Suppose, for eah i and j, that the matrix Aij has onstant row sums bij and let these beentries in another matrix B. Then eah eigenvalue of B is also an eigenvalue of A.Proof Let Bx = λx where x = (x1, x2, . . . , xk)
t and de�ne y by

yt = (x1, x1, . . . , x1, x2, x2, . . . , x2, . . . , xk, xk, . . . , xk)where eah xi is repeated mi times. By de�nition of B, it is obvious that Ay = λy.Theorem 3.9 (Lloyd's theorem) If a perfet e-error-orreting ode of blok length n over
GF (q) exists, then the polynomial ψe(n, x) has e distint integral zeros among the integers
1, 2, . . . , n.



14 4. Nonexistene Theorems for Perfet CodesProof It is a well-known fat that the zeros of the Krawthouk polynomials are sim-ple. Assume C to be a perfet e-error-orreting ode of blok length n over an alphabet
{0, 1, . . . , q − 1} of q symbols. Consider the matrix An, de�ned as in de�nition 3.6. Let's re-order the rows and olumns of An as follows. First, take the rows and olumns with a numberorresponding to an element of C. Then take, suessively, those with numbers orrespondingto elements of Ci as in de�nition 2.5 where i = 1, 2, . . . , e. Sine C is a perfet ode, thematrix An now has the form of a tridiagonal matrix A as in lemma 3.8 with
B =



















0 ns 0 0 0 . . . 0 0 0 0
1 q − 2 (n− 1)s 0 0 . . . 0 0 0 0
0 2 2(q − 2) (n− 2)s 0 . . . 0 0 0 0... ... ... ... ... ... ... ... ...
0 0 0 0 0 . . . 0 e− 1 (e− 1)(q − 2) (n− e+ 1)s
0 0 0 0 0 . . . 0 0 e ns− e

















where s = q−1. Now, apply lemma 3.8. The eigenvalues of An were determined in lemma 3.7.In det (B − xIe+1), we substitute x = ns − yq whih leads to the problem of determining
P̃e(qy − ns, ns, s). Then Lloyd's theorem follows from lemma 3.5.4 Nonexistene Theorems for Perfet CodesThroughout this hapter, we will let GF (q) denote a �nite �eld with q elements where q isa prime power, as always. We will also let the n-dimensional vetor spae over GF (q) bedenoted by V (n, q).4.1 Preeding LemmasLemma 4.1 If there exists a perfet e-error-orreting ode of blok length n over GF (q),then there exists an integer k suh that

e
∑

i=0

(

n

i

)

(q − 1)i = qn−k. (13)The ardinality of the ode equals qk.Proof The number of vetors in the ball B(x, e) is ∑e
i=0

(

n
i

)

(q − 1)i. If the ode is perfet,this number must be a divisor of the ardinality qn of V (n, q). Hene, for some integer m, wehave
e
∑

i=0

(

n

i

)

(q − 1)i = pm.Sine ∑n
i=0

(

n
i

)

(q − 1)i = qn we get, by subtration,
qn − pm ≡ 0 (mod (q − 1))whih implies that pm is a power of q, i.e. pm = qn−k. Therefore a neessary ondition forthe existene of a perfet e-error-orreting ode over GF (q) with blok length n is

e
∑

i=0

(

n

i

)

(q − 1)i = qn−kwhih is (13). We also see that qk is the ardinality of the ode.



4.1 Preeding Lemmas 15Lemma 4.2 If there exists a perfet e-error-orreting ode of blok length n over GF (q),with e < n, there are positive integers x1, . . . , xe suh that 1 ≤ x1 < x2 < · · · < xe ≤ n− 1,
x1 + · · ·+ xe =

e(n− e)(q − 1)

q
+
e(e+ 1)

2
, (14)

x1 · · ·xe = e!qn−k−e, (15)and
x1 ≥ (n− e+ 1)(q − 1) + e

(q − 1) + e
. (16)Proof Aording to Lloyd's theorem, the distint zeros x1, . . . , xe of ψe(n, x) are integers.By lemma 4.1 and de�nition 3.4, we have

ψe(n, 0) =

e
∑

i=0

(−1)i
(

n

e− i

)(−1

i

)

(q − 1)e−i =

e
∑

i=0

(

n

i

)

(q − 1)i = qn−k.The oe�ient of xe in ψe(n, x) is
e
∑

i=0

(−1)i
(−1)e−i

(e − i)!

1

i!
(q − 1)e−i =

(−1)e

e!

e
∑

i=0

(

e

i

)

(q − 1)i =
(−1)eqe

e!
.Analogously, we �nd the oe�ient of xe−1 to be

e
∑

i=0

(−1)e(q − 1)e−i

(e− i)!i!



−
e−i−1
∑

j=0

(n− j)−
i
∑

j=1

j



 =
(−1)e−1

e!
qe−1

[

e(n− e)(q − 1) +
e(e+ 1)q

2

]

.From the oe�ients of xe, xe−1 and x0 in ψe(n, x), the sum and produt of the zeros arefound.To prove (16), we �rst remark that if a is a positive integer, then (ai) ≥ 0 beause anegative fator in the numerator of
(

a

i

)

=
a(a− 1) · · · (a− i+ 1)

i!only ours if some other fator is 0. Next, we remark that if all terms in the sum de�ning
ψe(n, x) are zero for some value of x, then n = e whih ontradits the assumptions. Assuming
x to be an integer, this sum is therefore an alternating sum with non-negative terms whihderease in absolute value if

x <
(n− e+ 1)(q − 1) + e

(q − 1) + e
.Lemma 4.3 Given a ode of blok length n and ardinality qk, there exists a ritial ball ofintegral radius t whih inludes K ode words where

K ≥ qk−n
t
∑

i=0

(

n

i

)

(q − 1)i.By a suitable translation of the ode, this ritial ball may be entered at (0, 0, . . . , 0). Aritial ball is a ball ontaining a maximum number of ode words.



16 4. Nonexistene Theorems for Perfet CodesProof There are qn balls of radius t entered at the points in the spae. Let Ki be thenumber of ode words in the ith ball where i = 1, . . . , qn, let and K = maxKi. Eah of theode words appears in
V =

t
∑

i=0

(

n

i

)

(q − 1)iof the balls. The number of pairs (c, B) where c is a ode word and B a ball ontaining c,an be ounted in two di�erent ways,
qn
∑

i=1

Ki = qkV.Sine
qn
∑

i=1

Ki ≤ qnK,this yields
K ≥ qk−nV = qk−n

t
∑

i=0

(

n

i

)

(q − 1)i.If the word at the enter of the ritial ball is subtrated from eah of the ode words, theenter of the ritial ball is translated into the null vetor 0, and the minimum distane ofthe ode is unhanged.Lemma 4.4 The eigenvalues of the (q × q)-matrix
A =















0 1 1 1
1 0 1 1
1 1 0 1. . .
1 1 1 0













are q − 1 and −1 where the latter has the multipliity q − 1.Proof This follows diretly from lemma 3.7.Lemma 4.5 The funtion f : Rq → R de�ned by f(x) = xAxt is onave on the set
M = {x ∈ R

q;

q−1
∑

k=0

xk = 1}.Proof Let e0, . . . , eq−1 be an orthonormal basis of eigenvetors for the matrix A where thevetor ek belongs to the eigenvalue λk. Choose λ0 = q − 1 and e0 = (1, . . . , 1)/
√
q. We anwrite x and y in M as x =

∑q−1
k=0 ukek and y =

∑q−1
k=0 vkek. Suppose a ≥ 0, b ≥ 0 and

a+ b = 1. Then we have
f(ax+ by) =

q−1
∑

k=0

λk(auk + bvk)
2and

af(x) + bf(y) = a

q−1
∑

k=0

λku
2
k + b

q−1
∑

k=0

λkv
2
k.



4.1 Preeding Lemmas 17It is true, that x, y and ax+ by belong to M . If x =
∑q−1

k=0 ukek is in M , then it is also true,that u0 = 〈e0, x〉 = 1/
√
q. This implies that

u0 = v0 = au0 + bv0 = 1/
√
q,whene

λ0(au0 + bv0)
2 = aλ0u

2
0 + bλ0v

2
0 .Beause of this, we get

af(x) + bf(y)− f(ax+ by) =

q−1
∑

k=1

λk(au
2
k + bv2k − (auk + bvk)

2) ≤ 0,sine t2 is a onvex funtion of t and λk ≤ 0, k = 1, . . . , q − 1.Let C be a ode onsisting of K ode words c(1), . . . , c(K). With the total distane betweenpairs of ode words, we mean
dtot = K

∑

i=1

K
∑

j=1

d(c(i), c(j)) =

K
∑

i=1

K
∑

j=1

n
∑

k=1

d(c
(i)
k , c

(j)
k ) =

n
∑

k=1

K
∑

i=1

K
∑

j=1

d(c
(i)
k , c

(j)
k ).For a �x k, let p(k)m denote the number of ourrenes of the m:th letter in the alphabetamongst the letters c(1)k , . . . , c

(K)
k . The vetor

p(k) = (p
(k)
0 , . . . , p

(k)
q−1)/K (17)will then be a probability vetor and

K
∑

i=1

K
∑

j=1

d(c
(i)
k , c

(j)
k ) =

q−1
∑

i=0

q−1
∑

j=0

p
(k)
i p

(k)
j Aij = K2p(k)A(p(k))t,where A is the said matrix above. We get

dtot = K2
n
∑

k=1

p(k)A(p(k))t.Now, let p be a probability vetor whih maximises pApt. Sine there are K(K − 1) pairs ofdi�erent ode words, it is true for the average distane between these ode words, that
dav =

K2

K(K − 1)

n
∑

k=1

p(k)A(p(k))t ≤ nK2

K(K − 1)
pApt.Consequently, regarding the minimal distane between di�erent ode words, we get

dmin ≤ nK2

K(K − 1)
pApt.This inequality is alled �the Plotkin bound on minimum distane�.We now use lemma 4.5 to determine the maximum of pApt. Aording to this lemma,

f(p) = pApt − 2
q − 1

q

(

q−1
∑

i=0

pi − 1

)



18 4. Nonexistene Theorems for Perfet Codesis a onave funtion of p ∈ M = {p ∈ R
q;
∑q−1

i=0 pi = 1}. We see that p = (1, . . . , 1)/qis a ritial point of f . Sine the funtion f is onave on M , it will assume its maximumvalue when p = (1, . . . , 1)/q. Therefore, also pApt will assume its maximum value when
p = (1, . . . , 1)/q and then we get

pApt =
q − 1

q
.By de�ning Ā = (q − 1)/q, the following lemma emerges.Lemma 4.6

dmin ≤ dav ≤ Ān

1−K−1
.Lemma 4.7 If eah of K ode words has a weight that is no greater than (q− 1)xn/q where

0 ≤ x ≤ 1, then the distane between some pair of these K ode words must be no greaterthan
(q − 1)(2− x)xn

q(1−K−1)
.Proof With p(k) de�ned as in (17), we get

dtot = K2
n
∑

k=1

p(k)A(p(k))t,and
dmin ≤ dtot

K2 −K
.The total weight of ode words is ∑n

k=1KA
(0)(p(k))t where A(0) is the �rst row in the ma-trix A. Aording to the assumptions, the total weight is at most

K(q − 1)xn

q
= KĀxn,and we get

n
∑

k=1

A(0)(p(k))t ≤ Āxn.Now, we want probability vetors p(1), . . . , p(n) that maximise ∑n
k=1 p

(k)A(p(k))t under theondition ∑n
k=1A

(0)(p(k))t ≤ Āxn. We will perform this onstrution in two steps. First,we maximise p(k)A(p(k))t under the ondition A(0)(p(k))t = Āxk and thereafter we hoosemaximising xk, k = 1, . . . , n, under the ondition ∑n
k=1 xk ≤ nx. When

q−1
∑

i=0

p
(k)
i = 1, A(0)(p(k))t = Āxk (18)it is true, that

p(k)A(p(k))t =

q−1
∑

i=0

q−1
∑

j=0

p
(k)
i p

(k)
j Aij = f(p(k))where

f(p(k)) =

q−1
∑

i=0

q−1
∑

j=0

p
(k)
i p

(k)
j Aij + λ

(

Āxk −
q−1
∑

i=0

A0ip
(k)
i

)

+ µ

(

1−
q−1
∑

i=0

p
(k)
i

)

.



4.1 Preeding Lemmas 19Here, the Lagrange multipliers, λ and µ, are any onstants. Now, we di�erentiate with respetto p(k)m , m = 0, . . . , q− 1 and set the partial derivatives equal to zero. Sine Amm = 0, we getfor eah m,
q−1
∑

i=0

p
(k)
i Aim +

q−1
∑

j=0

p
(k)
j Amj − λA0m − µ = 0,whih is equivalent to

2

q−1
∑

i=0

p
(k)
i Aim = λA0m + µ.If we let λ = 2(1− xk) and µ = 2xkĀ, we see that

p(k) =
xk
q
(1, . . . , 1) + (1− xk)(1, 0, . . . , 0)is a ritial point whih satis�es (18). Sine f is a onave funtion on the set M where

M = {p ∈ R
q;
∑q−1

i=0 pi = 1}, we know that p(k) has to maximise p(k)A(p(k))t under theondition (18). The maximum value is
p(k)A(p(k))t = xk(2− xk)Ā.What is left, is to hoose x1, . . . , xn suh that ∑n

k=1 Āxk(2 − xk) is maximised under theondition ∑n
k=1 xk ≤ nx. If we now set xk = x, k = 1, . . . , n, we get a ritial point andsine x(2 − x) is a onave funtion of x, the sum will assume its maximum value under theondition in this point. The total distane will then beK2x(2−x)Ān and the average distanefor a pair of di�erent ode words is

K2x(2− x)Ān

K(K − 1)
=
x(2 − x)(q − 1)n

q(1−K−1)
.Lemma 4.8 If e < n, then ψe(n, n) 6= 0.Proof It is true, that

ψe(n, n) = (−1)e
(

n− 1

e

)

6= 0, if n > e ≥ 1.Lemma 4.9
e−j
∑

i=0

(

n− x− j

e− i− j

)(

x− 1

i

)

=

(

n− j − 1

e− j

)

. (19)Proof Taylor expansion gives
(1 + z)n−j−1 =

∞
∑

k=0

(

n− j − 1

k

)

zk = (1 + z)n−x−j(1 + z)x−1

=

(

∞
∑

k=0

(

n− x− j

k

)

zk

)(

∞
∑

i=0

(

x− 1

i

)

zi

)

=

∞
∑

k=0

k
∑

i=0

(

n− x− j

k − i

)(

x− 1

i

)

zk.Identifying oe�ients of ze−j ompletes the proof.



20 4. Nonexistene Theorems for Perfet CodesLemma 4.10 It is true, that
ψe(n, x) = (−1)e

e
∑

j=0

(−1)jqj
(

n− x

j

)(

n− j − 1

e− j

)

. (20)Proof
ψe(n, x) =

e
∑

i=0

(−1)i
(

n− x

e− i

)(

x− 1

i

) e−i
∑

j=0

(

e − i

j

)

qj(−1)e−i−j

= (−1)e
e
∑

j=0

(−1)jqj
e−j
∑

i=0

(

n− x

e− i

)(

e− i

j

)(

x− 1

i

)

= (−1)e
e
∑

j=0

(−1)jqj
(

n− x

j

) e−j
∑

i=0

(

n− x− j

e− i − j

)(

x− 1

i

)

= (−1)e
e
∑

j=0

(−1)jqj
(

n− x

j

)(

n− j − 1

e− j

)

.Lemma 4.11 If there exists a perfet e-error-orreting ode of blok length n over GF (q)when e < n, then
q ≤ n− 1

e
.Proof Sine there exists a perfet e-error-orreting ode and sine e < n, Lloyd's theorem,along with lemma 4.8, tells us that ψe(n, x) has its zeros in the set {1, . . . , n−1} and aordingto lemma 4.8, we have

ψe(n, n) = (−1)e
(

n− 1

e

)

6= 0.Lemma 4.10 gives
ψe(n, n− 1) = (−1)e

e
∑

j=0

(−1)jqj
(

1

j

)(

n− j − 1

e− j

)

= (−1)e
((

n− 1

e

)

− q

(

n− 2

e− 1

))

= (−1)e
(

n− 1

e

)(

1− qe

n− 1

)

= ψe(n, n)

(

1− qe

n− 1

)and sine either ψe(n, n − 1) = 0 or ψe(n, n − 1) and ψe(n, n) have the same sign, we knowthat
1− qe

n− 1
≥ 0.Extensive omputer searhes have been made to be able to exlude some ases of our pa-rameters. We present the way to over these ases in an appendix. The ranges overed arepresented in the following lemma.Lemma 4.12 If there exists an unknown perfet e-error-orreting ode of blok length nover GF (q), then

q > 100 or n > 10000 or e > 1000.



4.2 Cases e ≤ 7 214.2 Cases e ≤ 7Theorem 4.13 For q ≥ 2 where q is a prime power, there are no unknown perfet 2-error-orreting odes over the alphabet GF (q) with blok length n > 2.Proof Assume q = e = 2. By replaing n− k by k in (13), we get
n2 + n+ 2 = 2k+1where k > 2. The right-hand side, and onsequently the left-hand side, is divisible by 8. Thisshows that n ≡ 2 (mod 8) or n ≡ 5 (mod 8). Now (14) yields x1 + x2 = n+ 1 6≡ 0 (mod 8).Therefore at least one of x1 and x2 is not divisible by 8 and aording to (15), x1x2 = 2k−1.Hene x1 ≤ 4 and aording to (16), x1 ≥ (n + 1)/3 whih results in n ≤ 11. Aording tolemma 4.12 there are no unknown perfet odes in this ase.Now assume q ≥ 3 and suppose that there does exist a perfet 2-error-orreting ode ofblok length n overGF (q) where q = pα is a prime power. By Lloyd's theorem, the polynomial

2ψ2(n, x) = (qx)2 − [(2n− 1)q − (2n− 4)](qx) + 2ψ2(n, 0)has two integral zeros x1 and x2 where 1 ≤ xi ≤ n− 1, i = 1, 2. Aording to lemma 4.1, wehave ψ2(n, 0) = qk for some integer k. Hene the equation
(qx)2 − [2n(q − 1)− q + 4](qx) + 2qk = 0 (21)has two integral roots x1 and x2. If we onsider (13) as a quadrati equation in n, we �nd
2(q − 1)n = q − 3 +

√

8qk + q2 − 6q + 1. (22)With this, (21) implies that
x1x2 = 2qk−2and

q(x1 + x2) = 1 +
√

8qk + q2 − 6q + 1. (23)By substitution, we see that x = 1 is a zero of ψ2 only if n = 1 or n = 2. If x = 2 is a zero of
ψ2, then n = 2 or (n− 3)(q− 1) = 2, i.e., n = 5, q = 2 orresponding to the repetition ode ofblok length 5 or n = 4, q = 3 in whih ase (13) is not satis�ed. We may therefore assumethat x1 and x2 are both divisible by the prime p. Let us write

x1 = pλ, x2 = 2pµ (24)where λ > 0, µ > 0 and λ + µ = (k − 2)α where q = pα. We also remark that k ≥ 3 sineotherwise (22) would yield n ≤ 2. We now substitute (24) in (23) and eliminate the squareroot whih results in
8qk−1 + q − 6 = q(pλ + 2pµ)2 − 2(pλ + 2pµ). (25)Considering the highest power of p whih divides both the right-hand side and the left-handside of this equation makes it obvious that p must be 2 or 3. If p = 2, the right-hand sideis divisible by 4 while the left-hand side is only divisible by 4 if q = 2. If p = 3 and q > 3,redution of both sides modulo 9 yields

3 ≡ 3λ + 2 · 3µ (mod 9)



22 4. Nonexistene Theorems for Perfet Codesand this implies that λ = 1 and µ > 1. Then we an redue (25) to the form
qk−1 = 2q + q · 32µ − 3µwhih is impossible sine the left-hand side is divisible by a higher power of 3 than the right-hand side. If p = q = 3, then α = 1 and λ + µ = k − 2. Now (25) yields λ = 2 and µ = 1.The roots of ψ2(n, x) are then x1 = 9 and x2 = 6. An easy omputation shows that in thisase n = 11. The only non-trivial perfet 2-error-orreting ode when q ≥ 3 therefore hasthe parameters of G11.Theorem 4.14 The only perfet 3-error-orreting odes over GF (q) when n > 3 are thosewith parameters q = 2 and either n = 7 or n = 23.Proof Assume �rst that q = 2. Then (13) yields (n + 1)(n2 − n + 6) = 3 · 2k+1 for someinteger k. This may also be written (n + 1)((n + 1)2 − 3(n + 1) + 8) = 3 · 2k+1. If n + 1 isdivisible by 16, then the highest power of 2 whih divides n2 − n + 6 is 23, i.e. n2 − n + 6divides 24, and then n+1 < 16. Therefore n+1 is not divisible by 16 and hene n+1 divides

24. This leaves only the following possible values for n: n = 7, orresponding to the repetitionode and n = 23 orresponding to the binary Golay ode.Now, let us assume that q ≥ 3 and n > 3. From Lloyd's theorem, we look at ψ3(n, x) anduse the notations
(q − 1)n = t, qx = t+ θ.Then we have

−6ψ3(n, x) = θ3 + 3(q − 3)θ2 + (2q2 − 9q + 18− 3t)θ − [(2q − 7)t+ 6]

= θ3 + 3(q − 3)θ2 + (2q2 − 9q + 18)θ − 6− (3θ + 2q − 7)t (26)
= Γ(θ).Note that by (13), we have

1 +

(

n

1

)

(q − 1) +

(

n

2

)

(q − 1)2 +

(

n

3

)

(q − 1)3 = qk.Using elementary algebra, it then follows that
1

6
(n− 1)(n− 2)(n− 3) ≡ 0 (mod q).If we write n = qv + r where r = 1, 2 or 3, then

n− v − 1 ≤ n− v − 1 +
3− r

q
< n− v − r − 1

q
≤ n− v,i.e., there are no integers x, satisfying

t+ 3− q < qx < t+ 1. (27)By (26), we have
Γ(3− q) = (q − 1)(q − 2)(n− 3) > 0and
Γ(1) = 2(q − 1)(q − 2)(1− n) < 0.Hene Γ has a zero in the interval (3− q, 1), i.e., ψ3(n, x) has a zero in the interval (27), andthis zero is not an integer. Sine the ondition of Lloyd's theorem is not satis�ed, there areno perfet 3-error-orreting odes for q ≥ 3 when n > 3.



4.3 Finalising 23Using equality in (1) it follows at one, that all non-trivial 1-error-orreting odes must havethe parameters of a Hamming ode. Therefore we have now overed the ases e = 1, e = 2and e = 3, and ontinue with the ase e ≥ 4. We also exlude the trivial ase n = e. Then,replaing n− k in lemma 4.1 by k, it follows that k < n and that k > e sine (ni) > (ei) when
i 6= 0. Summarizing: from now on, we have

n > k > e ≥ 4. (28)From (14) it also follows that
e(n− e) ≡ 0 (mod q). (29)Theorem 4.15 If e ≥ 4 and q = pα where p > e, then there are no non-trivial perfet

e-error-orreting odes over GF (q).Proof By using lemma 4.10 with x = 0 and replaing n− k by k in lemma 4.1, we �nd
e
∑

j=0

(−1)jqj
(

n

j

)(

n− j − 1

e − j

)

= (−1)eqk (30)where k > e. Sine p > e, we �nd from (29), that q | (n − e). Furthermore, in the binomialoe�ients in (30), the fator p does not our in the denominator but for every j < e, thefator (n− e) ours in the numerator of (n−j−1
e−j

). Sine q | (n− e) and p > e, it follows that
p ∤ (n − i) where 0 ≤ i < e. Now assume q = pα. If pγ is the highest power of p dividing
n− e, then pαj+γ is the highest power of p dividing the jth term on the left-hand side of (30)when j = 0, 1, . . . , e − 1 whereas pαe is the highest power of p dividing the last term. Sine
k > e, we must have γ = αe. This implies that the �rst term on the right-hand side of (14) isdivisible by qe−1 whereas the seond term ontains a fator p only if e+1 = p. It is thereforenot possible that all the zeros of ψe(n, x) are divisible by p2 and if p 6= e+ 1, then it is evenimpossible that all the zeros are divisible by p. Hene, aording to (15), at least one of thezeros is a divisor of (e + 1)!. It follows that x1 ≤ (e + 1)! and sine qe | (n − e), we have
n− e ≥ (e+1)e. Substituting these inequalities in (16), we �nd (e+1)! ≥ 1+ 1

2 (e+1)e whihis false for e ≥ 3.Van Lint proved, partly by means of omputer programs overing a �nite number of ases,that there are no perfet odes when e = 4 and p ≤ e [5℄ and that there are no perfet odeswhen 5 ≤ e ≤ 7 [10℄. Combining these results with lemma 4.12 and theorems 4.13, 4.14 and4.15 gives us the following orollary.Corollary 4.16 If there exists an unknown perfet e-error-orreting ode of blok length nover GF (q), the two following onditions must hold.1. e ≥ 8.2. q > 100 or n > 10000 or e > 1000.4.3 FinalisingLemma 4.17 (Re�nement of the arithmeti-mean�geometri-mean inequality) Let y1, . . . , ysand p be positive integers suh that yi+1/yi ≥ p where i = 1, . . . , s− 1. Then
y1y2 · · · ys ≤ Rs−1

(

y1 + y2 + · · ·+ ys
s

)s (31)where R = 4p/(p+ 1)2.



24 4. Nonexistene Theorems for Perfet CodesProof (Indution) The assertion (31) is trivial for s = 1. Suppose now, that h ≥ 1,
y1 ≤ y2 ≤ · · · ≤ yh,

y1y2 · · · yh ≤ Rh−1

(

y1 + y2 + · · ·+ yh
h

)hand that yh+1/yh ≥ p. Let (y1 + y2 + · · ·+ yh)/h = Y and yh+1 = zY where z ≥ p. Then
y1y2 · · · yh+1 ≤ Rh−1zY h+1. (32)Let

f(x) = xY h+1

(

hY + xY

h+ 1

)−h−1

= x(h+ 1)h+1(h+ x)−h−1.Then f dereases on [1,∞) and hene
f(z) ≤ f(p) = p

(

1 +
p− 1

h+ 1

)−h−1

≤ 4p(p+ 1)−2 = R.Consequently,
zY h+1 ≤ R

(

hY + yh+1

h+ 1

)h+1

= R

(

y1 + y2 + · · ·+ yh+1

h+ 1

)h+1

.Combining this with (32), we get the assertion (31) in ase s = h+ 1.For a positive integer m, de�ne A(m) = p−um, where pu is the highest power of p dividing m.Let x1, . . . , xe be positive integers. Write xj ∼ xh if A(xj) = A(xh). This relation ∼ de�nesa partition of the set {x1, . . . , xe} into disjoint subsets X1, . . . , Xr.Lemma 4.18 If a perfet e-error-orreting ode of blok length n exists over GF (q), then
e− r ≥ [e/p]

log p

log e
(33)where [a] denotes the largest integer not exeeding a. If p = 2 and e ≥ 8, we also have

r < e+ 1− 5e log 2

4 log e
. (34)Proof It follows from (15), that

A(x1x2 · · ·xe) = A(e!). (35)For a real number a, let Q(a) be the produt of the positive integers not exeeding a and notdivisible by p. Then
A(e!) ≤ Q(e) · [e/p]!

≤ Q(e)

(

e

p

)[e/p] (36)
= Q(e) · e[e/p](1−

log p

log e
).On the other hand, A(x1x2 · · ·xe) is greater than or equal to the produt of those r leastpositive integers whih are not divisible by p. Hene

A(x1x2 · · ·xe) ≥ Q(e) · er−e+[e/p]. (37)



4.3 Finalising 25Colleting the results (35), (36) and (37), we get the assertion (33).In the ase p = 2 we use (35) and, learly,
A(e!) = Q(e)[e/2]! · 2−[e/4]−[e/8]−··· < Q(e)[e/2]! · 2−e/4 (38)sine e ≥ 8. Furthermore,
2−e/4[e/2]! < 2−5e/4e[e/2]+1 = e[e/2]+1−(5e log 2)/(4 log e)and ombining this with (35) and (38), we get

A(x1x2 · · ·xe) < Q(e)e[e/2]+1−(5e log 2)/(4 log e).On the other hand, we know that
A(x1x2 · · ·xe) ≥ 1 · 3 · 5 · · · (2r − 1) = Q(2r)and therefore, ounting the numbers of fators, we get

r <

[

e + 1

2

]

+
[ e

2

]

+ 1− 5e log 2

4 log e
= e+ 1− 5e log 2

4 log e
.Lemma 4.19 Let R be de�ned as in lemma 4.17 and

b = e− q(e + 1)

2(q − 1)
.If a perfet e-error-orreting ode of blok length n exists over GF (q), then

Re−r > (n− b)−ee!

(

n

e

)

=

e−1
∏

j=0

(

1 +
b− j

n− b

)

.Proof Let Xi be any one of the sets X1, . . . Xr and let s(i) be the ardinality of Xi. Letalso Ri be de�ned as
Ri =

(

∏

x∈Xi

x

)/(

∑

x∈Xi

x

s(i)

)s(i)

.Now we may apply lemma 4.17 whih results in
Ri ≤ Rs(i)−1.From this, it follows that

R1R2 · · ·Rr ≤
r
∏

i=1

Rs(i)−1 = Re−ror
x1x2 · · ·xe ≤ Re−r

r
∏

i=1

(

∑

x∈Xi

x

s(i)

)s(i)whih, by the arithmeti-mean�geometri-mean inequality, implies that
x1x2 · · ·xe ≤ Re−r

(

x1 + x2 + · · ·+ xe
e

)e

.



26 4. Nonexistene Theorems for Perfet CodesUsing lemmas 4.1 and 4.2, we �nd
q−ee!

e
∑

i=0

(

n

i

)

(q − 1)i ≤ Re−r

(

(n− e)(q − 1)

q
+
e + 1

2

)eand, onsequently,
Re−r > (n− b)−ee!

(

n

e

)

=

e−1
∏

j=0

(

1 +
b− j

n− b

)where
b = e− q(e+ 1)

2(q − 1)
.Theorem 4.20 There are no unknown perfet binary odes.Proof In the ase n ≥ 2

3
(e2 + e): Assume, towards a ontradition, that there does existan unknown perfet binary ode of length n ≥ 2

3 (e
2 + e). By orollary 4.16, we may restritourselves to e ≥ 8 and by lemma 4.19, it then follows diretly that

(8/9)e−r > (n+ 1)−ee!

(

n

e

)

=

e
∏

i=1

(

1− i

n+ 1

)

> 1− e2 + e

2(n+ 1)
. (39)Combining (39), (34) and our assumptions n ≥ 2

3 (e
2 + e) and e ≥ 8, we get

(8/9)(5e log 2)/(4 log e)−1 > 1/4.This implies that
e log 2

log e
<

4

5

(

log 4

log(9/8)
+ 1

)

<
41

4and hene, we have e < 64. It then follows, from lemma 4.12, that n > 10000 whih, alongwith the fat that e < 64, implies
1− e2 + e

2(n+ 1)
> 3/4 > (8/9)3. (40)Sine e ≥ 8, (34) gives us the inequality e − r ≥ 3 and using this inequality along with (40)in (39) will result in the impossible inequality (8/9)3 > (8/9)3.In the ase n < 2

3
(e2 + e): Suppose, again towards a ontradition, that there does existan unknown ode of ardinality 2k and length n < 2

3 (e
2 + e). Sine the trivial odes areexluded, we know that k ≥ 2 and onsequently, by lemma 4.6 with the insertion q = 2,

dmin ≤ n

2(1− 1/4)
=

2n

3
. (41)On the other hand, by the de�nition of e-error-orreting odes, dmin ≥ 2e+1 whih, togetherwith the inequality (41), implies

n ≥ 3e+ 2. (42)



4.3 Finalising 27Let t = e+ 2 in lemma 4.3. If we then use the insertion q = 2 in lemma 4.1, we will get
K ≥ 2k−n

(

e
∑

i=0

(

n

i

)

+

(

n

e+ 1

)

+

(

n

e + 2

)

)

= 1 +

((

n

e+ 1

)

+

(

n

e + 2

))/ e
∑

i=0

(

n

i

)

> 1 +

(

n+ 1

e+ 2

)

/(

(

n

e

)

(

1 +
e

n− e + 1
+

(

e

n− e+ 1

)2

+ · · ·
))

= 1 +
(n+ 1)(n− e)(n− 2e+ 1)

(e + 1)(e+ 2)(n− e+ 1)

> 1 +
n(n− 2e)

(e+ 1)(e+ 2)and hene
1

1−K−1
= 1 +

1

K − 1
< 1 +

(e + 1)(e+ 2)

n(n− 2e)
.Using the insertion q = 2 in lemma 4.7 and hoosing x = 2(e+ 2)/n, we thereby get

dmin <
2(e+ 2)(n− e− 2)

n

(

1 +
(e + 1)(e+ 2)

n(n− 2e)

)and by ombining this with dmin ≥ 2e+ 1, we obtain
3n3 − (2e2 +14e+8)n2 + (6e3 +26e2 +32e+8)n− (2e4 +14e3 +36e2 +40e+16) > 0. (43)If e ≤ 100, our assumption n < 2

3 (e
2 + e) tells us that n < 10000 and we have the aseonsidered by lemma 4.12. Therefore, we may restrit ourselves to the ase e > 100. Hene

(2e+ 8)n2 +

(

2e3

3
− 49e2

3
− 32e− 8

)

n+ 12e3 + 36e2 + 40e+ 16 > 0and ombining this inequality with the inequality (43), we �nd
F (n) = 3n3 − (2e2 + 12e)n2 +

(

20e3

3
+

29e2

3

)

n− (2e4 + 2e3) > 0.Sine the zeros of F are e/3, 3e and 2
3 (e

2 + e) and also sine n > 3e by (42), it must be true,that n > 2
3 (e

2 + e).Theorem 4.21 There are no unknown perfet odes over �nite �elds.Proof In the ase n ≥ 1

2
e
2 + e: Assume, towards a ontradition, that there does exist anunknown perfet ode with parameters e, n ≥ 1

2e
2 + e and q where q = pα is a prime power.By theorems 4.20 and 4.15 and orollary 4.16, we may restrit ourselves to

q ≥ 3, e ≥ p, e ≥ 8.Sine e ≥ p and e− r is an integer, (33) implies
e− r ≥ 1. (44)



28 4. Nonexistene Theorems for Perfet CodesLet c = [b] + 1 where b is de�ned as in lemma 4.19. Then
e−1
∏

j=0

(

1 +
b− j

n− b

)

=

c−1
∏

j=0

(

1 +
b − j

n− b

) e−1
∏

j=c

(

1 +
b− j

n− b

)

>



1 +
c−1
∑

j=0

b− j

n− b







1 +
e−1
∑

j=c

b− j

n− b





= 1− e(e− 2b− 1)

2(n− b)
− c(2b− c+ 1)(e− c)(c+ e− 2b− 1)

4(n− b)2

≥ 1− e(e− 2b− 1)

2(n− b)
− (2b+ 1)2(2e− 2b− 1)2

4 · 16(n− b)2using the arithmeti-mean�geometri-mean inequality. Further using lemma 4.19 and reallingthe assumption n ≥ 1
2e

2 + e, we obtain
Re−r > 1− e2 + e

2(q − 1)n− (q − 2)e+ q
− e2(q − 2)(e+ 1)2q

16(2(q − 1)n− (q − 2)e+ q)2

> 1− 1

q − 1
− (q − 2)q

16(q − 1)2
(45)

>
15

16
− 1

q − 1
.If p ≥ 5, then this inequality, together with (44), implies that

5

9
≥ Re−r >

11

16whih is a ontradition. Suppose now that p = 3. In the ase that q ≥ 9, (45) implies that
3

4
>

13

16whih is also a ontradition. Therefore, we look at the ase when q = 3. Then aording tolemma 4.18, (45) takes the form
[e/3]

log 3

log e
<

log(64/29)

log(4/3)
.Hene e ≤ 26 and it follows, by lemma 4.12, that n > 1000. These two inequalities imply that

1− e2 + e

2(q − 1)n− (q − 2)e+ q
− e2(q − 2)(e + 1)2q

16(2(q − 1)n− (q − 2)e+ q)2
>

3

4in the ase when q = 3. Substituting this and the equality R = 3/4 in (45) and also reallingthat e− r ≥ 1, we get an impossibility.Suppose �nally that p = 2, whene q ≥ 4. Aording to (34)
e− r >

5e log 2

4 log e
− 1when p = 2. Beause of the assumption e ≥ 8, we therefore know that e − r ≥ 3 and usingsimilar arguments as in the ase p = 3, we see that q = 4. Thus, we may write the inequality(45) in the form

e
log 2

log e
<

4 log(18/11)

5 log(9/8)
+ 1 < 5.



4.3 Finalising 29Hene e < 32 and, aording to lemma 4.12, n > 1000. Consequently by (45), we get theimpossibility
(

8

9

)3

> 1− e2 + e

6n− 2e+ 4
− e2(e + 1)2

2(6n− 2e+ 4)2
> 1− 1

5
− 1

50
.In the ase n < 1

2
e
2 + e: Suppose, again towards a ontradition, that there does existan unknown ode with parameters e, n < 1

2e
2 + e and q suh that q ≥ 3 and e ≥ 8. Then, bythe de�nition of e-error-orreting odes, we know that

n ≥ dmin ≥ 2e+ 1. (46)Let t = e+ 1 in lemma 4.3. Then lemma 4.1 tells us that
K ≥ qk−n

(

e
∑

i=0

(

n

i

)

(q − 1)i +

(

n

e+ 1

)

(q − 1)e+1

)

= 1 +

(

n

e+ 1

)

(q − 1)e+1

(

e
∑

i=0

(

n

i

)

(q − 1)i

)−1 (47)
= 1 +

(

n

e+ 1

)

(q − 1)e+1

(

n

e

)−1

(q − 1)−e

(

1 +
e

(n− e+ 1)(q − 1)
+ · · ·

)−1

> 1 +
(n− e)((n− e+ 1)(q − 1)− e)

(e + 1)(n− e+ 1)and (46) tells us that
K > 1 +

(q − 2)(n− e)

e+ 1
.Consequently,

1

1−K−1
= 1 +

1

K − 1
< 1 +

e+ 1

(q − 2)(n− e)
.By hoosing

x =
(e+ 1)q

(q − 1)nin lemma 4.7, we therefore get
dmin < (e+ 1)(2(q − 1)n− (e+ 1)q)

(q − 1)n

(

1 +
e + 1

(q − 2)(n− e)

)

. (48)By repeating the method above, but instead hoosing t = e+ 2, q = 3 and
x =

3(e+ 2)

2n
,we get

dmin < (e + 2)(4n− 3e− 6)

2n

(

1 +
(e+ 2)2

(2n− e)(2n− 3e+ 2)

) (49)when q = 3. Consider �rst the ase q ≥ 5. We want to show that the inequalities (46) and(48) imply
F (n) = n2 −

(

1

2
e2 + 3e

)

n+ e3 + 2e2 > 0. (50)



30 4. Nonexistene Theorems for Perfet CodesSine the zeros of F are 2e and 1
2e

2 + e and sine (46) tells us that n > 2e, n must be greaterthan 1
2e

2 + e whih ontradits the assumption n < 1
2e

2 + e when q ≥ 5.So, if q ≥ 7, then
1 +

e+ 1

(q − 2)(n− e)
≤ 5n− 4e+ 1

5(n− e)
. (51)Furthermore, for all q, we have

2(q − 1)n− (e+ 1)q

(q − 1)n
<

2n− e− 1

n
.Combining this inequality with the inequalities (46), (48) and (51), we get

(e+ 1)(2n− e− 1)(5n− 4e+ 1) > 5(n− e)n(2e+ 1)or
5n2 − (3e2 + 11e+ 3)n+ 4e3 + 7e2 + 2e− 1 > 0.Sine
(

1

2
e2 − 4e+ 3

)

n+ e3 + 3e2 − 2e+ 1 > 0,this implies (50).If q = 5, the inequalities (46) and (48) imply
12n2 − (7e2 + 26e+ 7)n+ 10e3 + 15e2 − 5 > 0. (52)If e ≤ 40, then the assumption n < 1

2e
2 + e implies that n < 1000 and we have the aseonsidered by lemma 4.12. Therefore, e > 40 and hene

(e2 − 10e+ 7)n+ 2e3 + 9e2 + 5 > 0whih in turn, together with (52), implies (50).Suppose now, that q = 4. Aording to lemma 4.11, we then have n > 4e and it followsthat we may replae the assertion (50) with
F1(n) = 2n2 − (e2 + 10e)n+ 4e3 + 8e2 > 0 (53)sine the zeros of F1 are 4e and 1

2e
2 + e. To prove (53), we use (47) and get

(1−K−1)−1 < 1 +
(e + 1)(n− e+ 1)

(n− e)(3n− 4e+ 3)
≤ 3n− 3e+ 5

3n− 4e+ 3
.Therefore,

2e+ 1 <
(e + 1)(6n− 4e− 4)(3n− 3e+ 5)

3n(3n− 4e+ 3)or
9n2 − (6e2 + 18e− 9)n+ 12e3 + 4e2 − 28e− 20 > 0. (54)Sine we may suppose, as in ase q = 5, that e > 40 we have
(

3e2

2
− 27e− 9

)

n+ 6e3 + 32e2 + 28e+ 20 > 0whih in turn, together with (54), implies (53).



31Suppose �nally that q = 3. Combining the inequalities (46) and (49), we get
12n3− (6e2+48e+12)n2+(14e3+63e2+42e−8)n− (6e4+27e3+42e2+36e+24) > 0. (55)Sine we may suppose, as in ase q = 5, that e > 40, we have

(6e+ 12)n2 + (e3 − 21e2 − 42e+ 8)n+ 15e3 + 42e2 + 36e+ 24 > 0and if we ombine this inequality with (55), we obtain
F2(n) = 12n3 − (6e2 + 42e)n2 + (15e3 + 42e2)n− (6e4 + 12e3) > 0.Now, sine the zeros of F2 are 1

2e, 2e and 1
2e

2 + e and sine (46) says that n > 2e, n must begreater than 1
2e

2 + e whih ontradits the assumption n < 1
2e

2 + e.AppendixThe following program is testing when the parameters q, e and n satisfy the equation (13)regarding prime powers q ≤ 100, n ≤ 10000 and e ≤ min (1000, n− 1). This program will notprint the parameters for the trivial perfet odes nor for any Hamming odes.#inlude <stdio.h>#inlude <stdlib.h>#inlude <gmp.h>#define n_MAX 10000#define e_MAX 1000#define q_MAX 100int isprime(long int p){ ldiv_t result;long int a;a=3;result = ldiv(p,a);while (a <= result.quot){ if (result.rem == 0)return 0;a += 2;result = ldiv(p,a);}return 1;}unsigned long int prime(){ stati long int p = 1;if (p == 1)return ((unsigned long int) (p = 2));



32 Appendixif (p == 2)return ((unsigned long int) (p = 3));while (1){ p += 2;if (isprime(p))return (unsigned long int) p;}}int main(){ mpz_t q_pow;mpz_t s_term;mpz_t sum;unsigned long int e_max, e, n, p, q, q_1, tmp;int sgn;mpz_init(q_pow);mpz_init(s_term);mpz_init(sum);while ((p=prime()) <= q_MAX){ for(q = p; q <= q_MAX; q *= p){ q_1 = q - 1;for (n = 2; n <= n_MAX; n++){ mpz_set_ui(q_pow,(unsigned long int) 1);mpz_set_ui(sum,(unsigned long int) 1);mpz_set_ui(s_term,(unsigned long int) 1);e_max = e_MAX;if (e_max >= n)e_max = n - 1;for (e = 1; e <= e_max; e++){ tmp = q_1*(n - e + 1);mpz_mul_ui(s_term,s_term,tmp);mpz_divexat_ui(s_term,s_term,e);mpz_add(sum,sum,s_term);while((sgn = mpz_mp(q_pow,sum)) < 0)mpz_mul_ui(q_pow,q_pow,q);if((sgn == 0)&& (e > 1)&& !((q == 2) && (n == e + e + 1)))printf("e=%lu, n=%lu, q=%lu\n",e,n,q);}}}



33}return 0;} A running of the program above, will give the outpute=3, n=23, q=2e=2, n=90, q=2e=2, n=11, q=3where we an see that e = 3, n = 23, q = 2 and e = 2, n = 11, q = 3 represent the knownGolay odes whilst e = 2, n = 90, q = 2 does not represent any perfet ode, whih is revealedin Lloyd's theorem.
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