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Abstract

The world wide shortage of helium-3 is forcing the develop-
ment of new detectors for neutron spectroscopy. A candidate for
new detector design that consists of multiple detection volumes in
depth, in contrast to the traditional single volume helium-3 de-
tector, is being developed at ESS in Lund. One advantage of the
new design is the possibility of utilising the additional depth di-
mension to extract information about the beams used in neutron
spectroscopy, more exactly their wavelength compositions.

The work done in this thesis aim to describe the beamline
compound with a prarametric probabilistic model. Parameter es-
timates are obtained using a non-linear least squares regression
approach on both experimental and simulated data. The distri-
butions and confidence intervals for the estimated parameters are
constructed using the parametric bootstrap.
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1 Introduction

The traditional neutron detector used today is a helium-3 filled gas de-
tector with a single detection volume. Since the supply of this gas is
scarce scientists are investigating alternative materials and designs to
construct new detectors. At the European Spallation Source (ESS),
located in Lund, a candidate for this new detector designs is being de-
veloped. In contrast to the single detection volume of todays detectors
the new detector design consisting of a grid on detection cells placed in
depth.

The new detector design has an advantage over the traditional as
it gives information about the penetration depth of the neutron in the
detector. This gives hope that the additional information about the
penetration depth could be utilised to obtain information about the
wavelength composition of the neutron beams used in neutron scatter-
ing experiments. The aim of this thesis is to make an initial attempt to
model the wavelength composition of such beams, more exactly beams
where monochromatic crystals are applied, as well as shine a light on
difficulties combined with this problem. The work done in this thesis is
part of a greater collaboration between ESS and the Centre for Math-
ematical Sciences at Lund University.

1.1 ESS

The European Spallation Source is a massive science and technology in-
frastructure projects being built today in Lund, Sweden. Planned to be
operational in 2019, and the world’s leading material research centre us-
ing neutrons by 2025, cf. [1]. The purpose with the facility is to provide
neutrons for the study of materials on an atomic, or even deeper, level.
It will be used in numerous fields from plastics and pharmaceuticals, to
engines, and molecules. The facility will be used by around two to three
thousand guest researchers each year from all over the world. Most of
these will be based at universities and institutes, others within industry,
cf. [1]. A conceptual picture over the ESS facility is presented in Figure
1.

The reason why yet another neutron facility is required is that most
of the current ones are built with nuclear reactors as the neutron source.
This technology has reached its maximum capacity and the development
has stopped. ESS instead utilises spallation as neutron source. This is
done by accelerating protons and colliding them with a heavy metal
target. On impact the target expels a number of nucleons, among them
neutrons at various velocities. They are then moderated, or slowed
down, to a desirable energy range. Neutrons traveling along a specific
direction then forms a beam or beamline that can be used to probe
materials. When ESS is operational the beams will be around 30 times
brighter than current facilities, cf. [1].
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Figure 1: Conceptual picture over the ESS facility.

1.2 New detector design

Older facilities traditionally uses helium-3 (3He) gas filled detectors be-
cause of its high neutron capture capacity, but due to the world wide
3He shortage, cf. [2], other elements are being investigated to find a
replacement.

One of the strongest candidates to replace 3He is boron-10 (10B) be-
cause of its similarities with 3He in terms of neutron capture capacity,
cf. [3]. In these detector designs thin layers of 10B are coated onto a
substrate blade, e.g. aluminium (Al). One alternative detector design,
being developed at ESS, uses a number of 10B, or rather B4C, coated
Al blades placed in depth, see Figure 2. This results in a number of
detection volumes, or cells, in depth unlike 3He detectors which only
have one detection volume. In this thesis the additional depth dimen-
sion of the detector will be utilised in an attempt to obtain additional
information about the beamline, more exactly its wavelength composi-
tion. A technique that reliably could extract this information would be
of great help in the analysis of experimental data and thus contribute
to the numerous fields where neutron spectroscopy is a useful tool, cf.
[4], [5], [6] and [7].
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Figure 2: Prototype of the new detector design being developed at ESS.
Relative the picture the neutron beam is incident form above. The
detector can be made to cover a wide angle deviation of the scattered
neutrons. Since each cell registers detections individually both the angle
deviation and penetration depth of the scattered neutron is measured.

2 Physics background

This section covers some basic physics background in the conceptual un-
derstanding of neutron spectroscopy. For a more thorough introduction
to the subject the reader is referred to Neutron scattering - A primer by
Roger Pynn, cf. [8].

2.1 Why neutrons?

Light and x-rays together with electrons have proven to be quite success-
ful as a tool to study surface properties and deeper structures of matter.
However these techniques have some natural limitations when it comes
to the study of the inner structures of bulk materials. One downside is
that the wavelength of the radiation have to be of the same magnitude
as the structure of interest, cf. [8].

When studying the interatomic distances of a bulk material with
light, the limiting factor is its wavelength, about 10−6 m. It is several
orders greater than a typical interatomic distance, in magnitude about
10−10 m. Instead x-rays can be used for this purpose. The interaction of
interest is mainly scattering which, in this case, is an interaction between
the x-rays and the electrons of the material. Heavy atoms, with a lot
of electrons, scatter x-rays more efficiently than lighter atoms, with less
electrons. This could make lighter atoms in a compound bulk material
more or less invisible if heavier atoms dominate the interaction, making
it very hard to say anything about the positioning of the lighter atoms.
Electrons also have their drawbacks since they are electrically charged
particles and interact strongly with electrons of the bulk itself. This
makes them unsuitable for the study of the inner properties of such
matter.
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The neutron however is electrically uncharged and its electrical di-
pole moment, if it even exists, is too small to measure. This makes the
neutron much more penetrative to matter than charged particles, since
the neutron’s electric interaction with matter is weak. Instead the main
interaction will be with the nucleus via the strong nuclear force that has
a range of a few fermi, 10−15 m. Compared to a typical inter-nuclei dis-
tance the spacing between centres of interaction is typically 100000 times
greater than the centre itself, cf. [8]. As a consequence neutrons can
penetrate deep into most bulk materials before any interaction occurs.
A conceptual view over the scattering process for different projectiles is
presented in Figure 3.

Figure 3: A schematic picture over scattering describing the interactions
of the different projectiles. Yellow is the electron scattering, blue X-ray
and red neutrons.

2.2 Scattering

Scattering is the interaction of interest in neutron spectroscopy. This can
either be due to interaction between neutron and nucleus or neutron and
the dipole moment of an unpaired neutron in matter. Here the concepts
of scattered by nuclei will be addressed.

Neutrons used in scattering experiments have wavelengths, λ, around
a few ångström, Å (10−10 m). Compared to the range of the strong
nuclear force, in the region of 10−15 m, the wavelength that give rise
to the scattering its huge. As seen by the neutron the nucleus is just a
point, thus it can be viewed as a point scatterer, giving rise to isotropic
scattering. This means that a neutron has equal probability to scatter
at any angle from the target nucleus. Describing the neutron by its wave
function this can be seen as a plane wave incident on the target nucleus
that scatters the wave spherically.

As a beam of neutrons hits a sample they will interact with the nuclei
of the matter and scatter, thus spherical wavefronts will spread from
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the nuclei. The waves from each nucleus will interact with each other
as they overlap. At some points they will reinforce one another and at
others cancel out. This is the concept of interference. The constructive
interference will not be possible for all directions but is dependent on the
inner structure of the material itself. It is in these directions scattered
neutrons will be observed.

Scattering of this type is called diffraction and the angle deviation
between incident and scattered neutron is called the scattering angle,
2φ. Here φ is chosen as symbol instead of θ since θ is traditionally
used as the unknown parameter vector in estimation problems. Possible
scattering angles for neutrons with λ incident on a sample with parallel
planes of planes of atoms at distance d is governed by Bragg’s law, (1).
Here n is an integer value.

nλ = 2d sinφ (1)

Another way to characterise the scattering is by the scattering vector
Q. This is defined as the change in the wave vector between the incident
and scattered neutron, Q = k − k′. The wave vector is collinear with
the velocity v and defined as (2).

hk

2π
= mv. (2)

Here h is the Planck constant and m the neutron mass. The product
mv is the momentum of the neutron. The change in momentum in the
scattering process would then be,

h

2π
Q =

h

2π
(k− k′). (3)

If the scattering is elastic, i.e. no energy is exchanged between the
neutron and nucleus the magnitude of the scattering vector is,

Q = 2k sinφ =
4π sinφ

λ
, (4)

where k is the magnitude of the wave vector.
It is primarily the vector Q that is used in the analysis of experi-

mental data to deduce the inner structure of the sample matter. For
a compound sample this is not an easy task and can take considerable
amount of time. This motivates the need of good knowledge of the
beamline’s wavelength composition which is focus of this thesis.

2.3 Cross section

An important parameter to describe neutron nuclei interaction is the
cross section, c, which is measured in the unit barns (10−28 m2). Here c
is used to label the cross-section parameter instead of σ since σ is tradi-
tionally used as the symbol for standard deviation. It can be described
as the effective area, of the nucleus, as seen by the neutron. If the neut-
ron hits this area an interaction occurs with probability 1, otherwise 0.
Each type of interaction has its own cross section, e.g. scattering, cs,
and absorption, ca. They can be added up to obtain the total c of any
of these interactions to occur, c = ca + cs, or be treated individually if
only one of the possible interactions is of interest.
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Since an interaction occurs if the neutron hits the effective area,
the probability of a neutron nucleus interaction as a beam of incident
neutrons fall upon a layer of atoms, can be described as, cf. [9],

p =
n · c
A

. (5)

Here p is the probability of an interaction, A is the area of the geometric
cross section illuminated by the beam n the number of atoms in the this
area.

In the estimation problem to come ca, or the parametrisation ca(λ),
is the relevant cross-section. The cross-section cs is important in the
understanding of the scattering experiment itself.

2.4 Crystal monochromators

One technique to make a selection of wavelength from a white neutron
beam is to make use of monochromatic crystals. These crystals util-
ise diffraction to reflect neutrons of a given wavelength in the desired
direction, depending on its orientation. As a beam, with a continuous
distribution of wavelengths, falls upon parallel layers, or planes, of a
crystal with an incident angle φ a wavelength λ will be diffracted at the
same angle φ. Besides the crystal orientation, the wavelength diffrac-
ted also depends on the spacing of planes d of the crystal according to
Bragg’s law (1), as discussed in the section concerning scattering.

If there, for a given crystal orientation, exists a set of parallel planes
with spacing d, and a beam, with a continuous distribution of wavelengths,
falls upon the crystal with incident angle φ, a given wavelength λ will
be reflected, according to Bragg’s law. If the spacing of planes at this
orientation is even denser, say d/2, d/3, d/4, . . . the crystal monochro-
mator will also be able to reflect wavelengths λ/2, λ/3, λ/4, . . . at the
same crystal orientation, cf. [10]. These wavelength contributions are
regarded as contaminations and are referred to as second-order, third-
order, forth-order, . . . reflections, cf. [11]
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2.5 Data collection

The data to analyse is produced at two different facilities as well as one
simulated dataset. The first set of measurements comes from Helmholtz-
Zentrum Berlin für Materialien und Energie (HZB), this dataset will
be referred to as HZB. The second dataset is obtained from a new,
ESS dedicated, beamline at the Norwegian Institutt for energiteknikk’s
(IFE).This dataset will be referred to as IFE. The last dataset is a
simulated set of four measurement series.

The data collection is made with 3He-gas filled detectors. The beam-
line is turned on and an initial measurement of the detection rate is
made, i.e. the number of detected neutrons per second is measured.
Then a B4C coated Al blade is put in the path of the beamline, which
is turned on, and another measurement is made. This is done for a set
of B4C coated blades to obtain a measurement series consisting of pairs
(di, ni), i = 1, . . . k. Here di is the total depth of B4C at point i, ni the
registered detection rate and k the total number of measured pairs in
the series. Each layer of B4C has a thickness of 1 µm and the Al blades
are 0.3 mm thick. The Al blades generally have a coating on each side.
The number of B4C layers used at each facility and for simulations are:

(i) 0 to 30 in even steps for the IFE measurements,

(ii) 0, 1, 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20 for the HZB measurement,

(iii) 0 to 19 for the simulated data.

Before a measurement series is acquired a selection of wavelength is
made. This is done either by a monochromator or a velocity filter con-
sisting of a set of chopper discs. The five series of the IFE dataset and
the first of HZB are made with a crystal monochromator as wavelength
selector while the remaining measurements of HZB are acquired with a
velocity filter. The simulated data is made to resemble monochromator
filtered data. In Tables 1 and 2 the selected wavelength for each meas-
urement series, of the experimental data, can be seen. Figure 4 shows
the schematics of the experiment lineup after a wavelength selection has
been made.

Table 1: Monochromator set λ, in Ångström, for the IFE dataset.

λ 0.88 0.94 1.12 1.54 2.41

Table 2: Selected λ, in Ångström, for the HZB dataset. All λ are selected
via a velocity filter, except the first which is a monochromator set λ.

λ 3.35 4.5 4.6 5.27 6.48 6.8 7.92 9 10.97

In the analysis to come, focus will be on the experimental data that
uses a crystal as monochromator. That is the IFE data in Figure 5 and
the first, and only, HZB measurement series of this kind, displayed in
Figure 6. These measurement series will be referred to as the crystal
data or dataset. Finally Figure 7 is a plot over the simulated data.
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Figure 4: Schematics over experiment lineup after λ selection has been
made.

As described in the section concerning crystal monochromators, the
beam reflected by the crystal may contain contaminations to some ex-
tent. An account for possible wavelength content of the reflected beams
is stated in Table 3.
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Figure 5: Experimental data of the IFE measurements. The legend
displays the wavelength, in Ångström, that the crystal monochromator
was set to reflect. From the plot it can be seen that measurement series
with shorter wavelengths have flatter profiles.

Table 3: Wavelengths allowed by the crystal monochromator for each
measurement series. The first column contains the wavelengths the crys-
tal is set to reflect for each series.

0.88 λ λ/3
0.94 λ λ/2 λ/3
1.12 λ λ/3
1.54 λ λ/3
2.41 λ λ/3
3.35 λ λ/2 λ/3
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Figure 6: The only measurement series of the HZB dataset made with a
crystal monochromator. Since the plot contains a single series it is easier
to see the behaviour of the data. The measurements seems to follow an
exponential decay with some points being slightly pushed up or down.
The other series displays the same qualitative behaviour.
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Figure 7: Simulated dataset consisting of four series produced to re-
semble data from a beam reflected by a crystal monochromator.

As mentioned earlier, the detectors used in the experiments are 3He-
gas filled detectors. The efficiency of such a detector depends on both
the wavelength and the detectors gas pressure. At IFE a high pressure
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detector is used while a low pressure detector is used at HZB, though no
exact pressure for either of them can be confirmed hence their efficiencies
are unknown. Figure 8 displays efficiency profiles for ideal detectors,
only containing 3He, for different pressures. The parametrisation of the
efficiency for the ideal detector is provided by Kalliopi Kanaki at the
detector department at ESS.
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Figure 8: Detector efficiency as a function of λ for 2.5, 5 and 10 atm
pressure. The profile of the IFE detector would resemble that of a high
pressure detector while HZB would be more similar to the profile of a
low pressure detector.
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3 Problem formulation

In this section the physical understanding of neutron absorption will be
transformed into a statistical regression model used to obtain estimates
of the beamline composition. Details of how the models are constructed
as well as parameters constraints of physical origin is discussed. Finally
properties of the estimator and the parametric bootstrap, used to obtain
confidence intervals, for the estimates are presented.

3.1 Mathematical modelling of absorption

For a flux of neutrons J , i.e. the intensity of incident neutrons given in
Hertz per area unit, passing through an absorbing matter the remaining
flux after depth x can be modelled by the absorption law, cf. [4],

J = J0e
−c(λ)natx. (6)

Here J0 denotes the initial flux, c the cross-section for absorption in
the matter, λ the neutron wavelength and n the atomic density of the
matter. Mathematically this is a deterministic model and can only be
assumed correct when all relevant parameters are known.

If instead an initial rate of incident neutrons, N0, is regarded the
remaining rate of neutrons, n, after passing a depth x of absorbing
matter can be modelled as,

n = N0e
−c(λ)natx + ε. (7)

Here an additive error term, ε, has been added to the model. The
error term ε can be considered as a stochastic variable with expected
value 0 and error variance σ. The variance σ could be depth dependent,
i.e. σ = σ(x), or both depth and λ dependent, σ = σ(x, λ). Allowing
for both depth and λ dependence of the error variance (7) could then be
written as,

n = N0e
−c(λ)natx + ε(x, λ). (8)

The above equations hold for a beam of incident neutrons with
one wavelength. It can be generalised to a discrete composition of
wavelengths {λ1, λ2, . . .} with respective proportions {p1, p2, . . .} as fol-
lows,

n =
∑
j

pj

(
N0e

−c(λj)natx + ε(x, λj)

)
=
∑
j

pjN0e
−c(λj)natx +

∑
j

ε(x, λj)pj

=
∑
j

pjN0e
−c(λj)natx + ε̃(x),

(9)

with
ε̃(x) =

∑
j

ε(x, λj)pj .

An even more general description is to allow for any continuos com-
position of wavelengths as,
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n =

∫
Λ
f(λ)

(
N0e

−c(λ)natx + ε(x, λ)
)
dλ

=

∫
Λ
f(λ)N0e

−c(λ)natxdλ+ ε̌(x),

(10)

with

ε̌(x, λ) =

∫
Λ
f(λ)ε(x, λ)

)
dλ.

The composition of wavelengths is described by the non negative func-
tion f(λ) defined on the space Λ with property∫

Λ
f(λ)dλ = 1.

To take the model one step closer to what is actually observed the
detector efficiency, ε, need to be included. This is a wavelength depend-
ent parameter, thus ε = ε(λ). This results in the following corrections
to (8) - (10).

n = N0ε(λ)e−c(λ)natx + ε(x, λ), (11)

n =
∑
j

pjN0ε(λj)e
−c(λj)natx + ε̃(x), (12)

n =

∫
Λ
f(λ)N0ε(λ)e−c(λ)natxdλ+ ε̌(x). (13)

As a final modification to the model a possible background contribu-
tion can be added if there are reasons to assume that the environment
in an experimental setup contributes to the detection rates. This will
be assumed to be a constant offset term independent of the other para-
meters in the model. Thus (11) - (13) receive the final modification
as,

n = N0ε(λ)e−c(λ)natx +B + ε(x, λ), (14)

n =
∑
j

pjN0ε(λj)e
−c(λj)natx +B + ε̃(x), (15)

n =

∫
Λ
f(λ)N0ε(λ)e−c(λ)natxdλ+B + ε̌(x). (16)

Up to this point no assumptions is made on the distributions of the
errors.

3.2 Parameterisation of c

Looking at experimentally determined cross-sections the relation between
c and λ in the region of interest shows a strong linear behaviour. There-
fore a linear model, see (17), is fitted to 42 cross- section data points by
simple linear regression.

c(λ) = α+ β · λ (17)
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The data is acquired from the National Nuclear Data Centre, NNDC,
cf. [12], and is displayed, together with the linear fitted model, in Figure
9. Parameter estimates with corresponding 99% confidence interval is
presented in Table 4. The fit is made to c in barn and λ in Ångström.
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Figure 9: Linear model of c(λ), in barn and λ in Ångström. A linear
assumption on λ dependent c seem to be a reasonable assumption in
this region.

Table 4: Parameter estimates of the linear fit of λ to c(λ).
Parameter estimate 99% confidence interval

α̂ -0.852 (-1.386, -0.319)

β̂ 1679.295 (1679.155, 1679.436)
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3.3 Parameters and constraints

Given measurements,

(di, ni), i = 1, . . . , k

of a model of the type described in (12) the aim is to estimate its un-
known parameters. For j = 1 . . . , r, the first set of unknowns would be
the wavelength proportions, {p1, . . . , pr}, with

pj ∈ [0, 1]

such that ∑
j

pj = 1.

Since no parameterisation of ε can be made, the efficiency will also
have to be treated as unknown, with restriction ε(λj) > 0, as well as
N0. The wavelength proportions pj can therefore not be estimated dir-
ectly since it will be impossible to separate it from the other unknown
components of the exponential coefficients. This means that they will
be estimated together as,

aj = pjN0ε(λj). (18)

Replacing the cross-section in (12) with its linear wavelength dependence
gives the wavelengths, {λ1, . . . , λr}, as the second set of unknowns.

Consequently, the unknown parameters to estimate are {a1, . . . , ar},
where

aj > 0,

and {λ1, . . . , λr}, where
λj > 0.

Thus the unknown parameter vector is,

θ =
(
(a1, . . . , ar), (λ1, . . . , λr)

)
= (θ(1), θ(2)) ∈ Θ = Θ(1) ×Θ(2)

with parameter space,

Θ(1) = {a ∈ Rr : aj > 0}
Θ(2) = {λ ∈ Rr : λj > 0}.

(19)

Including a background term, as in (15), the unknown parameter vector
is extended to

θ = (θ(1), θ(2), θ(3)) ∈ Θ = Θ(1) ×Θ(2) ×Θ(3) (20)

where,
θ(3) = b

Θ(3) = {b ∈ R : b > 0}.

Here, the constraints of the parameters are merely natural restrictions
and no additional physical properties or assumptions of the experimental
line-up have been included.
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For a model described in (11) or (14) the unknown parameter vec-
tor has a slightly different composition. Instead of estimating λ, it is
replaced with c, thus the unknown parameter vector for (14) becomes,

θ = (a, c, b) = (θ(1), θ(2), θ(3)) ∈ Θ = Θ(1) ×Θ(2) ×Θ(3) (21)

with,
Θ(1) = {a ∈ R : a > 0}
Θ(2) = {c ∈ R : c > 0}
Θ(3) = {b ∈ R : b > 0}.

For a model of the type described by (11), θ(3) and Θ(3) are excluded.
A possible assumption to make is that the wavelength proportions of

the beamline after reflection by a crystal monochromator are ascending
with wavelength, i.e.

pr > . . . > p1 > 0,

λr > . . . > λ1 > 0.

Looking at the detector efficiency profiles, in Figure 8, the probability
of detecting a neutron increases with its wavelength, e.g. ε(λ) > ε(λ/2).
This implies that the parameters aj , in (18), can be constrained as,

ar > . . . > a1 > 0.

Imposing these constraints modifies (19) to the following parameter
spaces,

Θ̃(1) = {a ∈ Rr : ar > . . . > a1 > 0, ∀aj}
Θ̃(2) = {λ ∈ Rr : λr > . . . > λ1 > 0, ∀λj}.

(22)

This gives the resulting unknown parameter vector, including possible
background term,

θ̃ =
(
(a1, . . . , ar), (λ1, . . . , λr), b

)
= (θ̃(1), θ̃(2), θ(3)) ∈ Θ̃ = Θ̃(1) × Θ̃(2) ×Θ(3)

(23)

These constraints are mainly made to resemble properties of the crystal
monochromator.

3.4 The estimation problem

A set of six models in total are formed and named M1 up to M6 re-
spectively. All models, except M6, are used in the analysis of the crystal
data.

M1 and M2 are both formed as single wavelength models according
to (24) and (25) respectively,

f1(xi|θ1) = a · e−c·xi + εi, (24)

f2(xi|θ2) = a · e−c·xi + b+ εi. (25)

Model M1 are based on (11) and M2 on (14). The known parameters
are grouped into a covariate vector as,

xi = nat · di · 10−24.
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Here, nat = 1.02·1023 cm−3 is the atomic density of 10B the B4C coating.
The factor 10−24 comes from the fact that nat is given in cm−3 and 1
barn = 10−24 cm2, which is the unit of the c estimate. The factor di is
total depth, in cm, of the B4C layers up to point i.

The following models are constructed in an attempt to capture the
behaviour of a beam reflected by a monochromatic crystal. These are
models M3 and M4, in (26) and (27) based on (12) and M5, in (28) is
based on (15),

f3(xi|θ3) = a1e
−c(λ)·xi + a2e

−c(λ/2)·xi + a3e
−c(λ/3)·xi + εi, (26)

f4(xi|θ4) = a1e
−c(λ)·xi + a2e

−c(λ/3)·xi + εi, (27)

f5(xi|θ5) = a1e
−c(λ)·xi + a2e

−c(λ/3)·xi + b+ εi. (28)

A beam reflected from these crystals may contain contaminations of
the form, λ, λ/2, λ/3 . . .. Depending on the crystal and its orientation
it is also possible that a λ/3 term is present while a λ/2 is not. Table 3
gives an account of the λ content allowed by the crystal for each series of
the crystal dataset. As a consequence, these models only need to include
one unknown λ, and fractions of the same.

In addition to the estimation based on the real data a simulation
study is made to evaluate the methods. The simulated data is made to
resemble that of a beam filtered by a crystal monochromator. Therefore
the last model, M6 in (29), based on (15), is

f6(xi|θ6) = a1e
−c(λ)·xi + a2e

−c(λ/2)·xi + a3e
−c(λ/3)·xi + b+ εi. (29)

For this data models M1, M3, M4, M5 and M6 are used.
The resulting estimation problem will be exemplified through M4.

Given data (di, ni), i = 1 . . . k, the parameter estimator is defined as,

θ̂4 = (â1, â2, λ̂) = argmin
θ∈Θ(1)×Θ(2)

k∑
i=1

(
ni − µ4(di|θ4)

)2
(30)

Here µ4(xi|θ4) is the expectation of M4 according to (31),

E(M4|xi, θ4) = µ4(xi|θ4) = a1 · e−c(λ)·xi + a2 · e−c(λ/3)·xi (31)

The estimator θ̂4 in (30) is called the non-linear least squares es-
timator. In general, the parameter vector that minimises the function is
denoted by θ̂est. If possible, the sum of squares can be differentiated and
the minimum obtained analytically that way. However, even though the
sum is differentiable, no analytical solution to the minimisation of the
sum of squares can be found in this case. Instead a numerical minim-
iser is used to calculate θ̂est. The minimiser used utilises an Active-set
method. Details of an algorithm of this kind is well described in optim-
isation literature, for instance in cf. [13].

Since θ̂est cannot be found explicitly the possibility of convexity of
the minimisation problem becomes an important property to investigate.
When the target function, i.e. the function to be minimised, is convex
any minimum found will be the only minimum and thus global. If the
target function would be convex with a minimum in the parameter space
this minimum would be global and therefore the optimal point. If the
global minimum is located outside the parameter space the optimal point
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for the minimisation problem will be found on the border. Alternatively,
if the target function is convex on the parameter space any minimum
found therein will be optimal within this space. First convexity of a
single term is studied, (

ni − µ4(di|θ4)
)2
.

For a general case applicable to the models described above this can
be written as (32). This function will be convex if its Hessian, (33), is
positive semi-definite, cf. [13]. The function to be analysed is,

gi(a, c) =
(
ni − a · e−c

)2
, (32)

with Hessian,

H =

 ∂2gi
∂a2

∂2gi
∂a∂c

∂2gi
∂a∂c

∂2gi
∂c2

 (33)

If the determinant of the Hessian is greater than or equal to zero it
is a positive semi-definite matrix hence the function g(a, c) is convex.
The value of xi can therefore be fixed to 1 in (32) since it is a positive
constant and will not effect the sign of the determinant. The partial
derivatives in the Hessian and its determinant are given by (34) - (37),

∂2gi
∂a2

= 2e−2c, (34)

∂2gi
∂a∂c

= −2e−2ca+ 2(ni − ae−c)e−c, (35)

∂2gi
∂c2

= 2e−2ca2 − 2(ni − ae−c)ae−c, (36)

detH = −4e−2c(−ni + 2ae−c)(−ni + ae−c). (37)

Since the parameters a and c are positive constants the determinant
of (37) cannot be guaranteed to be non-negative. Thus the individual
terms gi(a, c) in the sum (30) cannot be assumed convex in a and c.
Therefore there is no guarantee that the sum is convex. This means
that the minimisation problem is not convex on the parameter space
and convergence to an optimal minimum cannot be ensured. As a con-
sequence the solution obtained may be a local minimum and thus not
the optimal point.

Conditions for asymptotic consistency of the non-linear least squares
estimator is covered in [14]. These conditions have not been studied in
detail for the specific estimation problem in this thesis. Therefore no
guarantee for asymptotic consistency of the estimator can be made.

3.5 Bootstrap

Since no assumptions on the distribution of the errors can be made
the distributions of the estimates are unknown. Therefore confidence
intervals for the parameter estimates have to be created in an alternative
manner. Here a parametric bootstrap scheme will be utilised to obtain
distributions of the estimates and thereby confidence intervals.

Generally knowledge about the distribution of the data is needed in
order to say anything about the distribution of θ̂ − θ, where θ̂ is the
estimator and θ the true parameter value. This distribution contains all
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information needed to analyse the accuracy of the estimator, e.g. values
of quantiles in order to construct confidence intervals, and depends on
the distribution of the original data sample.

In this case the distribution connected with the observations is the
distribution of the errors, F . This is unknown but can be estimated as
F̂ , given original data. If it can be assumed that θ̂ depends on F̂ in the
same manner as θ depends on F , both θ̂∗ − θ̂ and θ̂ − θ converges to
the same distribution hence θ̂∗ − θ̂ can be used as an estimator of the
latter. θ̂∗ is calculated in the same way as θ̂ but with observations from
F̂ instead of F as θ̂, cf. [15].

To describe the above statements more exactly
√
k(θ̂k− θ), where θ̂k

are the parameter estimates obtained from k observations, is assumed
to converge to a stochastic variable ZF as,

√
k(θ̂k − θ)

L→ ZF .

Here, ZF is dependent on the distribution F linked to the observations
and L means that the convergence is in distribution. The expression√
k(θ̂∗k − θ̂), where θ̂ now is a non-stochastic vector conditioned on the

observations, then also converges to ZF as,

√
k(θ̂∗k − θ̂)

L∗
→ ZF .

Here L∗ mean that the the above expression converges in distribution
conditioned on the observations almost surely, cf. [15].

An estimator for the ξα quantile of θ̂ − θ is seen below in (38). The
quantile estimate ξ̂α is obtained as the smallest value of x that fulfils
the inequality.

P
(
θ̂∗ − θ̂ ≤ x|F̂

)
≥ 1− α (38)

When F̂ is a good estimate of the true distribution F the bootstrap
estimates of the quantile should be close to the true value, e.g. (39)
should hold.

P
(
θ̂ − θ ≤ ξ̂α|F̂

)
≈ 1− α (39)

Intervals with asymptotic confidence level 1−α−β can thus be obtained
as,

[θ̂ − ξ̂α, θ̂ − ξ̂1−β], (40)

since,

P
(
ξ̂1−β ≤ θ̂ − θ ≤ ξ̂α

)
= P

(
θ̂ − ξ̂α ≤ θ ≤ θ̂ − ξ̂1−β

)
= 1−α−β. (41)

As used in the work done in this thesis θ̂ is bootstrapped rather than
θ̂− θ and the estimated quantiles, ζ̂α, are obtained as the smallest value
of x that fulfils the inequality of (42)

P
(
θ̂∗ ≤ x|F̂

)
≥ 1− α (42)

This is referred to as Efron’s percentile method and the corresponding
confidence interval is, se also (39) and (40),

[ζ̂1−β, ζ̂α] = [θ̂ + ξ̂1−β, θ̂ + ξ̂α]. (43)
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In this case the bootstrap for a regression model is used. Given the
model,

yi = mθ(xi) + εi, θ ∈ Θ,

the observations yi are used to estimate parameters θ as θ̂. This gives
the estimated points as,

ŷi = m̂θ̂(xi),

and the residuals are formed,

ei = ε̂i = yi − m̂θ̂(xi).

The bootstrap sample is now sampled from these residuals.
The bootstrap algorithm used in this case is described in full detail

below, cf. [16].

1. Form parameter estimates, θ̂est, on the original data sample, (xi, ni)
i = 1, . . . , k. Calculate the fitted data points µ(xi|θ̂est). Use the
reconstructed points to calculate the residuals,

ei = ni − µ(xi|θ̂est), i = 1, . . . , k.

2. Draw k points with replacement from the residuals, (e∗1, . . . , e
∗
k).

This is a bootstrapped residual sample. Add the bootstrapped
residuals to the fitted function values to form a bootstrapped data
sample,

n∗i = µ(xi|θ̂est) + e∗i , i = 1, . . . , k.

3. Form new parameter estimates, θ̂∗b , on the bootstrapped data sample
and store the results.

4. Repeat step 2. and 3. for b = 1, . . . , B, for a large B.

The algorithm gives a large set of bootstrapped parameter estimates
(θ̂∗1, . . . , θ̂

∗
B). By sorting the individual parameter estimates in ascending

order, e.g. (λ̂∗(1), . . . , λ̂
∗
(B)), a bootstrap estimate of the distribution of the

estimate is obtained. Quantiles can be acquired from this distribution
to construct confidence intervals.

Using this technique imposes some implicit assumptions on the errors
and data described below:

(i) In step 2 a bootstrapped residual sample is randomly drawn, with
replacement, from the original residuals and then added to the fit-
ted data points. This means that any residual value can be added
to any fitted point. The implication of this procedure is that the
errors are assumed to be independent and identically distributed.
In particular this means that their variance is constant.

(ii) The way of obtaining the residuals in step 1 assumes that the given
parametric model is correct for the data, cf. [16].

An important remark to make here is that the properties of the
bootstrap estimator discussed above are asymptotic. As used on the
data at hand, where the IFE data consists of 16 data points for each
series and the HZB data of only 12 points, these asymptotic properties
cannot be guaranteed. However, since no assumption on the distribution
of the errors is made the distribution of the estimator remains unknown
and thus the bootstrap provides some useful information.
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4 Results

Here the resulting parameter estimates and model fits will be presen-
ted. Firstly, parameter estimates and model fits on the simulated data
are displayed. Then results for the single λ models, M1 and M2, on
experimental data are presented. Lastly, resulting estimates for models
adapted to crystal monochromator data, M3, M4 and M5, on corres-
ponding experimental data are visualised.

4.1 Simulated data

For the simulated data the models M1 and M3 − M6 were evaluated
without any prior knowledge of λ composition. The fitted models are
then analysed and the best fit is selected as the most probable model
for the data. Since this is a simulated dataset ε is fixed to one for all λ.
Another important remark is that the data is generated without errors.
Therefore a perfect fit is theoretically possible.

The data consists of four series. For these simulations the models
M6, M2, M5 and M4 where deemed to give the best fit, respectively.
Table 5 gives an overview of the parameter estimates for the respective
model and series. Table 6 displays the parameters used to produce the
data

Table 5: Parameter estimates for the model that produced the best fit
for each series of the simulated data. The parameters estimated are
those of respective model described in (29), (25), (28) and (27) except
for (29) where c has been replaced with c(λ).

â1 â2 â3 b̂ â1 + â2 + â3 + b̂ λ̂

M1 0.9997 0.0000 0.0000 0.0000 0.9997 12.0010
M4 0.9994 0.3005 0.0000 0.0000 1.2999 12.0065
M5 1.0031 0.2959 0.0000 0.8006 2.0996 11.9651
M6 0.9665 0.4667 0.9838 3.3330 5.7500 2.5225

Table 6: Parameters used to simulate the data. The parameter notation
corresponds to that of M6, M2, M5 and M4.

a1 a2 a3 b a1 + a2 + a3 + b λ

Data 1 1 - - - 1 12
Data 2 1 0.3 - - 1.3 12
Data 3 1 0.3 - 0.8 2.1 12
Data 4 0.4 1.7 0.1 3.55 5.75 3
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Figure 10: Simulated data along with the best fit for each series.

4.2 Single λ models

In this section results for the single wavelength models on the meas-
urement series acquired with crystal monochromators will be presen-
ted. The estimations are made with the constraints in (21). Since the
cross-section, c, is estimated instead of the wavelength Table 7 gives the
relation between c and λ for each series.

Table 7: Wavelength with corresponding cross-section, column wise.
λ 0.88 0.94 1.12 1.54 2.41 3.35
c(λ) 1477 1578 1880 2585 4044 5625

In Figure 11 the cross-section estimates of M1 and M2, on the crystal
dataset, are displayed. The M2 estimates has a lot wider and skewer
confidence bounds than those of M1. The relative deviation of the point
estimates and the expected cross-sections, as determined by the crystal
orientation, is visible in Figure 12. Bootstrap distributions of estimated
cross-sections for the third measurement series of IFE is displayed in
Figure 13. Remaining distributions have similar shapes.

Figure 14 contains a plot of the a parameter estimates of M1 and M2

with 95% confidence bounds as well as a similar plot for the b estimates
of M2. Bootstrap distributions for these parameter estimates for the
third measurement series of IFE is given in Figure 15.
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Figure 11: Estimated cross-sections of model M1 and M2 for all IFE and
the first HZB measurement series, together with cross-sections corres-
ponding the crystal selected λ of each series. The estimates are plotted
with a 95% bootstrap confidence interval with 10000 bootstrap samples.
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Figure 12: Relative deviation of c estimates to c corresponding the crys-
tal selected λ of each series.
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(a) Bootstrap distribution for ĉ of M1
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(b) Bootstrap distribution for ĉ of M2

Figure 13: The bootstrap distributions of ĉ of M1 and M2 for the third
series of IFE. The estimates are marked as green vertical lines in the
plots.

From Figure 13 it can be seen that the distributions of ĉ for M1 and
M2 seem quite symmetric. The distributions of the estimates for the
other measurement series show the same behaviour.

In Figure 14 a estimates of M1 has a lot narrower confidence bounds
than those of M2. The right plot displays the b estimates with relatively
large bounds.

Table 8: Parameter estimates of M1 on crystal data.

â λ̂

1274.267 747.926
1844.675 1057.311
2170.578 1192.588
4129.226 1983.924
1387.436 1282.938
44.122 5230.547
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(a) Estimates of a parameters of M1

and M2 with 95% bootstrap confidence
bounds.
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Figure 14: The left plot shows the a estimates of M1 and M2 on all
crystal series with 95% confidence interval.
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(a) Bootstrap distribution for â of M2
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(b) Bootstrap distribution for b̂ of M2
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(c) Bootstrap distribution for â of M1

Figure 15: Bootstrap distributions of â and b̂ of M2 and â of M1, for
the third series of IFE.

In the figure above it can be seen that the distributions of the M2

a and b estimates are slightly skew while the distribution of â of M1

is almost symmetric. The distributions of the estimates for the other
measurement series show the same behaviour.

Table 9: Parameter estimates of M2 on crystal data..

â b̂ λ̂

419.439 870.616 3204.843
1237.701 615.113 1734.993
1333.984 853.152 2249.389
3276.261 887.228 2781.851
673.848 739.165 3634.287
42.365 1.900 5625.016
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4.3 Models for crystal data

Parameter estimations of models M3 - M5 where performed on the crys-
tal data with the constraints of both (20) and (23). Results for estima-
tions with the lesser constraints, (20), are presented under this section
followed by an overview of the more restricted estimates in next section.
Table 10 gives an overview of the crystal selected wavelengths and the
detection rate of each measurement series with no blades in the beam.

Figure 16 gives the λ estimates along with 95% bootstrap confidence
intervals for M3-M5 on the crystal data, while Figure 17 gives the point
estimates relative deviation to crystal selected λ.

Tables 11, 12 and 13 shows all parameter estimates for M3, M4 and
M5 respectively.

Table 10: Count rate with no blades in the beamline and crystal mono-
chromator set wavelength.

λ 0.88 0.94 1.12 1.54 2.41 3.35
0 layer rate 1292 1844 2175 4162 1409 43.7

1 2 3 4 5 6
0

2

4

6

8

10

12

Dataset

W
av

el
en

gt
h,

 Ã
�

Bootstraped confidence intervals for λ estimates.

 

 
M

3

M
4

M
5

Expected

Figure 16: λ estimates of model M3 −M5 for the crystal data, together
with corresponding 95% bootstrap confidence bounds produced with
10000 bootstrap samples.
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(a) First IFE measurement series.
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(b) Second IFE measurement series.
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(c) Third IFE measurement series.

1 1.5 2 2.5 3 3.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Bootstraped distribution of parameter 4. Dataset 4.

Parameter value

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y

 

 

bootstrap param. est.

est

(d) Fourth IFE measurement series.
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(e) Fifth IFE measurement series.
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(f) First HZB measurement series.

Figure 18: Distribution of λ estimates of M3 for crystal data. Some
plots displays more than one peak.

Looking at the plots of Figure 18 the peaks are being quite symmet-
ric. This look resembles a sum of normal or at least unimodal distribu-
tions.

Table 11: Parameter estimates of M3 for the crystal data.

â1 â2 â3 â1 + â2 + â3 λ̂

352.123 0.000 923.971 1276.094 0.896
523.535 0.000 1325.608 1849.143 1.272
662.381 0.000 1514.889 2177.269 1.406
1399.996 0.000 2759.398 4159.394 2.325
419.739 0.000 973.069 1392.808 1.527
0.000 44.123 0.000 44.123 6.231
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(a) First IFE measurement series.
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(c) Third IFE measurement series.
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Figure 19: Distribution of λ estimates of M4 for crystal data.

In Figure 19 some plots displays more than one peak and similar to
Figure 18 these plots have a look of a sum of unimodal densities.

Table 12: Parameter estimates of M4 for the crystal data.

â1 â2 â1 + â2 λ̂

352.111 923.984 1276.094 0.896
523.528 1325.615 1849.143 1.272
662.366 1514.903 2177.269 1.406
1400.031 2759.363 4159.394 2.325
419.737 973.070 1392.808 1.527
44.122 0.000 44.122 3.115
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(b) Second IFE measurement series.
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(c) Third IFE measurement series.
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Figure 20: Distribution of λ estimates of M5 for crystal data.

Figure 20 displays plots with wider peaks in the distributions of λ̂
than those of Figure 18 and 19 . The tendencies of a mix of unimodal
densities are present here as well.

Table 13: Parameter estimates of M5 for the crystal data.

â1 â2 b̂ â1 + â2 + b̂ λ̂

79.938 398.823 812.327 1291.088 3.897
207.920 1268.950 376.398 1853.268 2.048
1333.982 0.000 853.154 2187.136 1.340
3276.261 0.000 887.227 4163.489 1.657

0.000 673.847 739.165 1413.012 6.494
0.000 44.025 0.104 44.129 9.381
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4.4 Models for crystal data with order constraints

Hereunder the results for parameter estimations of models M3 - M5, on
the crystal data, with order constraints (23) follows.

Figure 21 gives the λ estimates along with 95% bootstrap confidence
intervals for M3-M5 on the crystal data, while Figure 22 gives the point
estimates relative deviation to crystal selected λ.

Figures 23 - 25 displays the bootstrap distributions of λ̂ for M3 -
M5. In general their appearance resemble that of corresponding plots in
Figures 18 - 20.

Tables 14, 15 and 16 shows all parameter estimates for M3, M4 and
M5 respectively.
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Figure 21: Estimates of λ for model M3−M5 for the crystal data, with
order constraints according to (23), together with corresponding 95%
bootstrap confidence bounds produced with 10000 bootstrap samples.

30



1 2 3 4 5 6
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Measurement series

R
e
la

ti
v
e
 d

e
v
ia

ti
o
n

Relative deviation of estimate to crystal selected λ, with order constraints.

 

 

M
3

M
4

M
5

Figure 22: Relative deviation of λ estimates to crystal selected λ of each
series. These estimates are formed according to the order constraints of
(23).

31



0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06
Bootstraped distribution of parameter 4. Dataset 1.

Parameter value

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y

 

 

bootstrap param. est.

est

(a) First IFE measurement series.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0

0.01

0.02

0.03

0.04

0.05

0.06
Bootstraped distribution of parameter 4. Dataset 2.

Parameter value

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y

 

 

bootstrap param. est.

est

(b) Second IFE measurement series.
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(c) Third IFE measurement series.
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(d) Fourth IFE measurement series.
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Figure 23: Distribution of λ estimates of M3 for crystal data with the
order constraints of (23).

Table 14: Parameter estimates of M3 for the crystal data with the order
constraints of (23).

â1 â2 â3 â1 + â2 + â3 λ̂

425.155 425.155 425.155 1275.466 0.748
615.876 615.876 615.876 1847.628 1.067
725.009 725.009 725.009 2175.026 1.209
1384.685 1382.468 1382.468 4149.622 2.057
463.670 463.670 463.670 1391.009 1.306
44.123 -0.000 -0.000 44.123 3.115
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(b) Second IFE measurement series.
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(e) Fifth IFE measurement series.
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Figure 24: Distribution of λ estimates of M4 for crystal data with the
order constraints of (23).

Table 15: Parameter estimates of M4 for the crystal data with the order
constraints of (23).

â1 â2 â1 + â2 λ̂

637.854 637.854 1275.708 0.689
924.129 924.129 1848.258 0.985
1088.007 1088.007 2176.013 1.117
2077.417 2077.417 4154.834 1.914
695.917 695.917 1391.835 1.208
44.123 0.000 44.123 3.115
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(b) Second IFE measurement series.
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(d) Fourth IFE measurement series.
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Figure 25: Distribution of λ estimates of M5 for crystal data with the
order constraints of (23).

Table 16: Parameter estimates of M5 for the crystal data with the order
constraints of (23).

â1 â2 b̂ â1 + â2 + b̂ λ̂

246.559 246.559 797.463 1290.582 2.477
748.833 748.833 355.349 1853.014 1.287
1333.982 0.000 853.154 2187.136 1.340
3276.261 0.000 887.228 4163.489 1.657
673.848 0.000 739.164 1413.012 2.165
44.025 0.000 0.104 44.129 3.127
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5 Conclusions

The results of the estimation stage is evaluated in terms of how well
the wavelength estimate resembles the expected wavelength, i.e. the
wavelength reflected according to the crystal orientation.

General and specific limitations of the estimators, experimental setups
and physical knowledge thereof are also addressed.

5.1 Simulated data

When constructing the simulated data no noise were added. Consequently
a perfect fit to the data should be possible. The parameter estimates
for the three first series succeed well in this aspect but the last fails,
see Tables 5 and 6. This indicates that the minimisation problem is
indeed multimodal and thus not convex. As a consequence the choice
of initial point becomes more important. A better understanding of the
minimisation problem itself is also needed. When a different set of ini-
tial values are applied the parameter estimates for M6 on the last series
of the simulated data converges differently. Another important factor
would be to utilise physical constraints to the parameters when such as-
sumptions could be made with high certainty. This would narrow down
the search region and could thus give better estimates.

5.2 Single λ models

Looking at the results for the single wavelength model M1, in Figure 11,
its c estimates sits below the crystal set cross-section, indicating that a
single wavelength model is not a good enough description of the data.
The confidence bounds of M2 however covers the expected value of c, for
all but the first series of IFE, but are very wide. These wider confidence
bounds are also seen for M5 in Figures16 and 21. The conclusion drawn
from this is that the addition of a background term does not contribute
to the model but rather increaser the variance of the estimator.

5.3 Models for crystal data

Studying the bootstrapped distribution of M3 - M5, in Figures 18 - 20,
with the natural parameter constraints of (20) some plots has multiple
peaks, as if the λ estimates is a mix of unimodal distributions. This
could indicate that the models cannot adequately capture the behaviour
of the data and the possibility of additional λ contribution might need
be investigated for these measurement series.

From Tables 11 - 13 it is clear that the estimates indicates a higher
presence of λ/3 than λ itself. Furthermore, a λ/2 contamination is
totally neglected by M3, except for the HZB series. Though the latter is
probably an artefact of the multi modality of the minimisation problem
since the λ estimate is roughly twice that of M4 which instead indicates
a pure λ composition. The fact that the λ/2 term is neglected by the
M4 is interesting since both the second and last measurement series of
the crystal data could have this contribution, according to Table 3.
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5.4 Models for crystal data with order constraints

The bootstrapped distribution of M3 - M5, estimated with the order
constraints of (23), in Figures 23 - 25 also displays the behaviour of
a mixed distribution though somewhat less present for M5. Looking
at the point estimates of Tables 14 - 16 the aj estimates are generally
found at the border. Since the estimates converges to a point at the
border of the parameter space this could indicate that an assumption
of falling wavelength proportions does not hold. Though the confidence
intervals of these estimates are narrower than for the estimates with only
natural constraints on the parameters. Statistical tests could be used
to test if the order restriction can be rejected, cf. [17]. However, the
HZB estimates all indicate a pure λ beamline thus the question whether
the order restrictions is valid or not is mainly of interest for the IFE
data. This could also be taken as an indication of problems with the
IFE beamline itself.

The order constraint has its origin in the current understanding of the
crystal monochromators applied, as well as properties of the experiment
setup itself. Investigating these properties further would be beneficial in
both evaluation and construction of models and constraints.

5.5 General comments for all models

In Figures 16 and 21 it can be seen that both M3 and M4 performs well
and its confidence bounds cover the expected wavelength for most series.
However the aj estimates for λ/3 are larger than those of λ indicating
a beam clearly dominated by the higher order contaminations. This
is not in line with the current understanding of the properties of the
crystal used. It is unclear whether this contradicting results is due to
convergence to a local minimum or if the properties the setup in fact
support these results. For the estimations with order constraints on the
aj parameters the estimates converges to a point at the border of the
parameter space. This also indicates that an order restriction could be
invalid, though this could be statistically tested.

Perhaps a predefined search region for the λ estimates governed by
the orientation of the crystal monochromator could be used in order
to constrain the wavelength estimates. A more thorough analysis of
how the choice of initial point in the minimisation algorithm effects the
results could be carried out to possibly improve the performance of the
minimisation step.

5.6 Limiting factors and possible improvements

A general limitation for the estimation problem is the small number of
data points in the measurement series. Therefore asymptotic properties
of the estimator cannot be assured to hold. Longer measurement series,
i.e. more data points, would increase the accuracy of the estimator.
However the number of data points in the series are similar to the number
of detection cells, in the detector design being developed at ESS. It is
methods for characterising beams with this design that is desired, thus
it might be wise to develop such methods under the conditions it will
operate and therefore the addition of more data points is unwanted.
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Another important assumption is that the intensity of the beam is
constant during the time a complete measurement series is obtained and
that its wavelength distribution is constant. A low efficiency detector,
similar to that of the HZB setup, could be used as beam monitor, before
the crystal, to ensure that the first assumption is fulfilled as a meas-
urement series is obtained. This is a technique already used at other
facilities.

Better knowledge of the detectors used in the experiment setups is
required to be able to eliminate the possibility that the detector satur-
ates. This means that some neutrons will create a pulse in the detector
that will not be detected. This effect will have a greater impact as the
incident rate of neutrons is higher, e.g. for points with few blades in the
beam, or for wavelengths where the detector efficiency is higher. The
possible impact of this effect is unknown for the current data but could
be a possible source of systematical error for some early points of the
measurement series with higher rates.

A well characterised detector could also make it possible to estimate
wavelength proportions pj . This would allow for more accurate con-
straints on the exponential coefficients, when backed up by the physics
of the experimental line-up.

For the IFE data a possible source of error where discovered. The
crystal monochromator was not properly fixed as the measurements
where obtained. Instead it had some possibility to move which would
change its angle relative the incident beam and thus also the expected
wavelength reflected from the crystal. It is unclear how big this impact
could be in the measurements, if any.

A summary of the above suggested improvements is made below.

(i) Analyse of the intensity profile of the IFE beamline, and pos-
sibly the crystal properties, to verify that the assumption of falling
wavelength proportions is valid.

(ii) Include a low efficiency detector as beam monitor at the IFE setup.

(iii) Eliminate or control possibility of saturation in the detector.

(iv) Find a satisfying parametrisation of detector efficiency in order
obtain estimates of pj and the possibility of applying more accurate
parameter constraints where this is supported by physics.

(v) Obtain new measurements as the above improvements has been
made.

In general the analysis of the results are made in the light of the cur-
rent physical understanding of the experimental line-up. To some extent
this is based on assumptions that has not been verified for the specific
setup. A better understanding of the physics of the individual experi-
mental setups would be of great help when it comes to whether it is the
model, estimator or the physical assumptions of the setup that should
be questioned but also help in the general evaluation and constructions
of models for the given data.

Even if a lot of work remains to be done, this approach has already
proven to be useful as it has helped in the work to assure the quality of
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the IFE beamline. When a more accurate understanding of the phys-
ical properties of the experimental line-up is achieved these cloud be
used to impose more precise restrictions of the parameters. Together
with deeper mathematical understanding of the optimisation process
this would really help achieving satisfying techniques for neutron beam
modelling.
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