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Thesis Abstract

Distributed Model Predictive Control of Load Frequency for

Power Networks

In recent years, there has been an increase of interest in smart grid concept, to adapt the

power grid to improve the reliability, efficiency and economics of the electricity production

and distribution. One of the generator side problem in this is to meet the power requirement

while not wasting unnecessary power, thus keeping the cost down, which must be done while

the frequency is kept in a suitable range that will not damage any equipment connected to

the power grid. It would theoretically be most logical to have a centralized controller that

gathers the full networks data, calculates the control signals and adjusts the generators.

However in practice this is not practical, mostly due to distance. The transmission of sensor

data to the controller and the transmission of control signals to the generators would have

to travel far, thus taking up to much time before the generators could act.

This paper presents a distributed model predictive control based method to control the

frequency of the power network. First, an augmented matrix model predictive controller is

introduced and implemented on a two homogeneous subsystems network. Later the control

method is changed to a state space model predictive controller and is then utilized on a

four heterogeneous subsystems network. This controller implementation also includes state

observers by Kalman filtering, constraints handler utilizing quadratic programming, and

different connection topology setups to observe how the connectivity affects the outcome

of the system.

The effectiveness of the proposed distributed control method was compared against the

corresponding centralized and decentralized controller implementation results. It is also

compared to other control algorithms, specifically, an iterative gradient method, and a

model predictive controller generated by the MATLAB MPC Toolbox. The results show

that the usage of a distributed setup improves the outcome compared to the decentralized

case, whilst keeping a more convenient setup than the centralized case. It it also shown

that the level of connectivity for a chosen network topology matters for the outcome of the

system, the results are improved when more connections exists.





Contents

Chapter 1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2 Problem formulation 5

Chapter 3 Augmented matrix model predictive control 7

3.1 Model predictive controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 System setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 4 Distributed state space model predictive control 17

4.1 Model predictive controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 State estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Connection topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.5 Controller implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.6 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.7 System setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.7.1 Two heterogeneous subsystems . . . . . . . . . . . . . . . . . . . . 29

4.7.2 Four heterogeneous subsystems . . . . . . . . . . . . . . . . . . . . 31

4.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.8.1 Two homogeneous subsystems . . . . . . . . . . . . . . . . . . . . . 37

4.8.2 Two heterogeneous subsystems . . . . . . . . . . . . . . . . . . . . 41

4.8.3 Four heterogeneous subsystems . . . . . . . . . . . . . . . . . . . . 42



ii

Chapter 5 Conclusion 49

Appendix A Matlab files 51

A.1 m-files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.1.1 Parameter setup file . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.1.2 Create controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.1.3 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.2 mdl-files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Appendix B Experimental setup 79

B.1 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

B.2 Control by dSPACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

B.3 PI control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Acknowledgment 89

Bibliography 93



List of Figures

1.1 Smart grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Linear connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Receding Horizon Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Model of small homogeneous power network . . . . . . . . . . . . . . . . . 12

3.3 Zoomed system cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Zoomed frequency deviation . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 System cost comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6 Frequency deviation comparison . . . . . . . . . . . . . . . . . . . . . . . . 15

3.7 Matrix MPC controller output . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Hard constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Soft constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Linear connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Square connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.5 Full connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.6 Model of power network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.7 Model of linear connected power network . . . . . . . . . . . . . . . . . . . 34

4.8 Model of square connected power network . . . . . . . . . . . . . . . . . . 35

4.9 Model of full connected power network . . . . . . . . . . . . . . . . . . . . 36

4.10 Zoomed system cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.11 Zoomed frequency deviation . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.12 System cost comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.13 Frequency deviation comparison . . . . . . . . . . . . . . . . . . . . . . . . 38

4.14 System cost for different Np . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.15 Frequency deviation for different Np . . . . . . . . . . . . . . . . . . . . . . 38



iv

4.16 System cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.17 Zoomed system cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.18 Zoomed frequency deviation . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.19 Controller output for decentralized . . . . . . . . . . . . . . . . . . . . . . 39

4.20 Cost with constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.21 Frequency deviation with constraints . . . . . . . . . . . . . . . . . . . . . 40

4.22 Controller output with constraints . . . . . . . . . . . . . . . . . . . . . . . 40

4.23 Controller output with constraints and Kalman filter . . . . . . . . . . . . 40

4.24 MPC system cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.25 MPC cost zoomed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.26 Centralized cost for different Np . . . . . . . . . . . . . . . . . . . . . . . . 42

4.27 Centralized frequency deviation for different Np . . . . . . . . . . . . . . . 42

4.28 Distributed cost for different horizons . . . . . . . . . . . . . . . . . . . . . 42

4.29 Distributed frequency deviation for different horizons . . . . . . . . . . . . 42

4.30 MPC Toolbox distributed cost . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.31 MPC Toolbox distributed frequency deviation . . . . . . . . . . . . . . . . 43

4.32 Centralized cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.33 Centralized frequency deviation . . . . . . . . . . . . . . . . . . . . . . . . 43

4.34 Decentralized cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.35 Decentralized frequency deviation . . . . . . . . . . . . . . . . . . . . . . . 44

4.36 Distributed cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.37 Distributed frequency deviation . . . . . . . . . . . . . . . . . . . . . . . . 44

4.38 Linear cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.39 Linear frequency deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.40 Square cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.41 Square frequency deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.42 Full cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.43 Full frequency deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A.1 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.2 Plant1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.3 WP AREA1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



v

A.4 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.5 Cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.6 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.7 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.8 Controller input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.9 Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B.1 Appearance of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

B.2 Appearance of the control board . . . . . . . . . . . . . . . . . . . . . . . . 80

B.3 Schematic view of the system . . . . . . . . . . . . . . . . . . . . . . . . . 80

B.4 Simulation block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B.5 Control Desk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.6 Frequency deviation (Slow load fluctuation) . . . . . . . . . . . . . . . . . 86

B.7 Frequency deviation (Rapid load fluctuation) . . . . . . . . . . . . . . . . . 86

B.8 Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

B.9 Step response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B.10 Disturbance response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B.11 Appearance of the bigger system . . . . . . . . . . . . . . . . . . . . . . . 87





List of Tables

3.1 Power network parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Runtime for a 60 seconds simulation . . . . . . . . . . . . . . . . . . . . . 16

4.1 Power network parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Runtime for a two subsystem 60 seconds simulation . . . . . . . . . . . . . 41

4.3 Frequency deviation RMS [HZ] (0-600s) . . . . . . . . . . . . . . . . . . . . 46

4.4 Runtime for a four subsystem 60 seconds simulation . . . . . . . . . . . . . 47

B.1 Generator parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

B.2 Definition of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

B.3 Experimental parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85





Chapter 1

Introduction

1.1 Background

In recent years, there has been an increase of interest in smart grid concept, depicted in

Fig. 1.1, to adapt the power grid to improve the reliability, efficiency and economics of the

electricity production and distribution, and the many ways this can be achieved [1]. One

of the generator side problem in this is to meet the power requirement while not wasting

unnecessary power, thus keeping the cost down, which must be done while the frequency

is kept in a suitable range that will not damage any equipment connected to the power

grid. To get a result as good as possible the generators needs to be controlled with a fast

and reliable control method. Since it is essential that the frequency does not deviate to far

from the standard frequency of the network, since a too big difference might even cause a

blackout, the control need to be as precise as possible. To get the control as accurate as

possible, the more that the controller can take into account of the full network the higher

the degree of accuracy will be.

In a small isolated grid, for example the one presented in [3], it is very easy to see the

influence on the frequency due to renewable energy sources like wind power. The grid in

that particular example has been confirmed to have an upper limit of about 15% on the

amount of wind power that it can support before the frequency warps to far from normality.

One of the implemented control methods in this grid is load control [2], temporarily shutting

down less important power consuming equipment such as store refrigerators to alter the

power load in such a way that the frequency stabilizes. The problems that wind power

introduces to the grid, some which can even be due to faulty wind turbines [6], can be

dealt with in many ways, especially since the systems can be very different by them selfs
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and how they are set up [5]. One example of available options is to do what Germany is

considering doing, to help stabilize their power grid with the help of high-voltage direct

current (HVDC) [4]. By introducing HVDC power corridors through the country they can

direct power to where it is needed without overtaxing the existing grid, and at the same

time use the power converters to stabilize the frequency of the connected AC grid.

It would theoretically be most logical to have a centralized controller that gathers the

full networks data, calculates the control signals and adjusts the generators. However in

practice this is not practical, mostly due to distance. The transmission of sensor data to

the controller and the transmission of control signals to the generators would have to travel

far, thus taking up to much time before the generators could act.

Therefore in this paper, a distributed model predictive control (MPC) approach to control

each power plant output frequency as to not deviate from the predefined output is proposed.

The advantage of MPC is that it generalizes directly to plants being multiple-input and

multiple-output (MIMO), which can be non-square, and can take process constraints into

account, which eliminates the possibility of variables exceeding their predetermined limits.

Lately, there has been a lot of research about implementing MPC methods to different

kinds of systems [20, 28] and a lot of books covering the basics [29, 31], proving that it

is a very versatile control algorithm that often can engender a distinct result relative to

the preferred outcome to the problem at hand. Although, the setup procedure of a model

predictive controller might be seen as fraught with peril for the uninitiated, due to being

slightly more complex than some more frequently used methods.

The main controller implementation in this paper is a distributed controller. The dis-

tributed controller gathers data from its connected neighboring subsystems so to calculate

a control signal for its own generators with regards to a bit bigger part of the whole network

than just its own. This should produce a better outcome than a decentralized controller

that only calculates from its own data, but not quite as good as a centralized controller

that takes the whole system into consideration. The advantage a distributed control im-

plementation has over a centralized control implementation is that it is more local, thus

long signal transmission times should not present itself, which thus leads to a faster control

response.
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Fig. 1.1 : Smart grid

1.2 Thesis Objectives and Contributions

The objective of this paper is to investigate the benefits of using a distributed controller

on a power network as an alternative to the more common centralized controller and decen-

tralized controllers. The overall generator control cost as well as the frequency deviation

output will be taken into consideration in the final evaluation.

One further matter that this paper also investigates is the implications different connec-

tion topologies has on the overall generator control cost and frequency deviation output.

In this case, three different connection topologies has been considered, a linear connected

topology, a square connected topology, and a fully connected topology, and their respective

advantages are discussed.

The susceptibility to delay in measurement signal delivery are also studied, since the

distributed controller relies on data from the neighboring subsystems as well. A simple

solution to deal with long transmission delays and transmission loss of measurement data

in a real system are also proposed.
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1.3 Thesis Overview

Firstly, the problem formulation is presented and discussed together with the objective

of the controller.

Then the first control method is presented together with a small two subsystems homo-

geneous network that is to be controlled. The obtained results are presented and compared

with an iterative gradient control method discussed in [12,15].

Next chapter introduces another slightly different model predictive control method and

a bigger four subsystems heterogeneous network. This chapter also introduces a state

observer, the constraints handler, the different connection topologies, and some discussions

about data acquisition. The state observer used in this paper is a standard Kalman filter,

but some alternatives are also discussed [16, 19], and the constraint handler used utilizes

quadratic programming [10,11]. This new control method is also compared to the previous

method on the smaller network setup, and on the big system it is compared to another

MPC method, one generated by the MATLAB MPC Toolbox [7, 9].

Finally the conclusion is presented with the discussions about the results acquired from

the different inspected setups.
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Problem formulation

The problem that is considered is an electric power network that consist of N(≥ 2)

connected subsystems, as for example the linear connected network shown in Fig. 2.1.

Fig. 2.1 : Linear connection

The normal state space formulation for the whole system, which is assumed to be

x(k + 1) = Ax(k) +Bu(k) + w(k)

y(k) = Cx(k) + v(k)
(2.1)

can be separated into smaller subsystem equations. Assuming that each subsystem can use

information of neighboring subsystems, then the i-th subsystem is given by

xi(k + 1) =
N∑
j=1

Aijxj(k) +Biui(k) + w(k) i = 1, . . . , N (2.2)

where k is the time, xi(k) ∈ R
nxi is the states of system i, Aij ∈ R

nxj×nxj , if j = i then

Aii ∈ R
nxi×nxi , ui(k) ∈ R

nui is the control signals of system i and B = diag[B1, · · · , BN ] ∈
R

nu×nu . The process noise and the measurement noise, w(t) and v(t) is assumed to be

uncorrelated zero-mean Gaussian white noise.

The set Ni includes the subsystems that subsystem i is connected to, so when the i-th

subsystem is connected to the j-th subsystem it can be written as j ∈ Ni. If they are not

connected it will give that

Aij = 0 if j /∈ Ni. (2.3)
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This means that the system equation (2.2) also can be expressed as

xi(k + 1) = Aiixi(k) +
∑
j∈Ni

Aijxj(k) +Biui(k) + w(k). (2.4)

The different controllers to be implemented are a centralized controller, decentralized

controllers, and distributed controllers.

The centralized controller uses the information of the whole system, while the decen-

tralized controllers only uses the information of their own subsystem. The distributed

controller uses its own information and the neighboring subsystems information.

The output of the system that is to be controlled is the deviation of the frequency from the

normal frequency of the whole system. To accomplish this all controllable power generator

in the system are used and are actively trying to minimize the frequency deviation, since

to high deviation can cause permanently damage to connected equipment and may lead to

blackouts.

The system will be modeled such that the zero states and zero outputs will represent the

optimal value. Thus all deviation from zero will raise some cost in the network. Changing

the control signal will lead to changed state values, and changes in states can be seen as

changes in energy output from the generators. A fluctuating generator output is harder to

sustain and control than a stable energy output. Therefore the calculation of the system

cost will depend on all or some of the states, and the control signal or the change in control

signal.



Chapter 3

Augmented matrix model predictive

control

3.1 Model predictive controller

First define the change in control signal as

Δu(k) = u(k)− u(k − 1). (3.1)

Inserting this into the normal state space model gives

x(k + 1) = Ax(k) +B(u(k − 1) + Δu(k)) + w(k)

y(k) = Cx(k) + v(k).
(3.2)

Rearranging (3.1) and (3.2) we can write the system as⎡
⎣x(k + 1)

u(k)

⎤
⎦ =

⎡
⎣A B

0 I

⎤
⎦

︸ ︷︷ ︸
Â

⎡
⎣ x(k)

u(k − 1)

⎤
⎦

︸ ︷︷ ︸
x̂(k)

+

⎡
⎣B
I

⎤
⎦

︸ ︷︷ ︸
B̂

Δu(k) + w(k)

y(k) =
[
C D

]
︸ ︷︷ ︸

Ĉ

⎡
⎣ x(k)

u(k − 1)

⎤
⎦+ v(k)

(3.3)

thus, simplified written as

x̂(k + 1) = Âx̂(k) + B̂Δu(k) + w(k)

y(k) = Ĉx̂(k) + v(k).
(3.4)

The eigenvalues of the augmented model will then be calculated as

ρ(λ) = det

⎡
⎣λI − A B

0 (λ− 1)I

⎤
⎦ = (λ− 1)q det(λI − A) = 0 (3.5)
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which are the eigenvalues of the original model, det(λI − A), and q eigenvalues at λ = 1.

To specify how many steps ahead the controller should take into account, the prediction

horizon and control horizon are defined.

�

�

�

�

Definition 1.

We denote the prediction horizon as Np and the control horizon as Nc.

The prediction horizon defines how many steps ahead the controller should try to predict

the states.

The control horizon dictates the number of steps the controller should try to complete the

control objective in.

Also, the control horizon needs to be limited as to not cause problems in the calculations.

�

�

�

�

Assumption 1.

It is assumed that the control horizon Nc is chosen to be less than or equal to the prediction

horizon Np

Nc ≤ Np

since it is not possible to predict a control trajectory without having predicted the states

at that time instant.

At time k we denote the future control trajectory as

Δu−→ = [Δu(k) Δu(k + 1) · · · Δu(k +Nc − 1)].

The prediction horizon dictates how many samples ahead the future states are predicted,

denoted as

x̂−→ = [x̂(k + 1|k) x̂(k + 2|k) · · · x̂(k +Np|k)]

where x̂(k + t|k) is the predicted state variables at k + t given current information x̂(k).

Based on the state space model (3.4), the future state variables are calculated sequentially

using the future control parameters.
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x̂(k + 1|k) = Âx̂(k) + B̂Δu(k)

x̂(k + 2|k) = Âx̂(k + 1) + B̂Δu(k + 1)

= Â2x̂(k) + ÂB̂Δu(k) + B̂Δu(k + 1)

...

x̂(k +Np|k) = ÂNpx̂(k) + ÂNp−1B̂Δu(k) + ÂNp−2B̂Δu(k + 1)

+ · · ·+ ÂNp−NcB̂Δu(k +Nc − 1)

(3.6)

From the above equation we can get the predicted output variables, by substitution, so

all predicted variables are formulated in terms of current state variables information x̂(k)

and the future control movement Δu(k + t), where t = 0, 1, . . . , Nc − 1.

y(k + 1|k) = ĈÂx̂(k) + ĈB̂Δu(k)

y(k + 2|k) = ĈÂ2x̂(k) + ĈÂB̂Δu(k) + ĈB̂Δu(k + 1)

y(k + 3|k) = ĈÂ3x̂(k) + ĈÂ2B̂Δu(k) + ĈÂB̂Δu(k + 1) + ĈB̂Δu(k + 2)

...

y(k +Np|k) = ĈÂNp x̂(k) + ĈÂNp−1B̂Δu(k) + ĈÂNp−2B̂Δu(k + 1)

+ · · ·+ ĈÂNp−NcB̂Δu(k +Nc − 1)

(3.7)

Define the vectors Δu and y as

Δu =
[
Δu(k)T Δu(k + 1)T . . . Δu(k +Nc − 1)T

]T
y =

[
y(k + 1|k)T y(k + 2|k)T y(k + 3|k)T . . . y(k +Np|k)T

]T

and with these, rewrite (3.7) into a compact matrix form as

y = F x̂(k) + ΦΔu (3.8)

where

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ĈÂ

ĈÂ2

ĈÂ3

...

ĈÂNp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ĈB̂ 0 0 . . . 0

ĈÂB̂ ĈB̂ 0 . . . 0

ĈÂ2B̂ ĈÂB̂ ĈB̂ . . . 0
...

...
...

. . .
...

ĈÂNp−1B̂ ĈÂNp−2B̂ ĈÂNp−3B̂ . . . ĈÂNp−NcB̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.



10 3 Augmented matrix model predictive control

For a given set-point signal r(k) at time k, within a prediction horizon the objective

of the predictive control system is to bring the predicted output as close as possible to

the set-point signal, where we assume that the set-point signal remains constant in the

optimization window. Thus the objective is to find the best control parameters vector Δu

such that an error function between the set-point and the predicted output is minimized.

With the control output weight z, and the reference r, the cost of the system can be

written as

J = ||r − y||22 + z||Δu||22, (3.9)

which gives the control objective

min
Δu

J = ||r − y||22 + z||Δu||22. (3.10)

Combined with future prediction model (3.8) we get

min
Δu

J = ||r − F x̂− ΦΔu||22 + z||Δu||22 (3.11)

and from the minimization

dJ

dΔu
= 0 ⇒ (ΦTΦ + zI)Δu = ΦT r − ΦTF x̂, (3.12)

it is given that

Δu = (ΦTΦ + zI)−1ΦT (r − F x̂) (3.13)

which can be separated into

Δu = Pr −Kx̂ (3.14)

where P = (ΦTΦ + zI)−1ΦT and K = (ΦTΦ + zI)−1ΦTF . From (3.13) it is also seen

that (ΦTΦ+ zI)−1ΦT and (ΦTΦ+ zI)−1ΦTF both depends only on the system parameters,

hence are constant matrices.

�

�

�

	

Assumption 2.

It is assumed that the Hessian matrix (ΦTΦ + zI)−1 exists.

Even though Δu contains the predicted control signals for Nc steps ahead, since the

calculation is made in every sample only the first Δu(k) is used, which is called Receding

Horizon Control since the horizon is always moving away. This ensures that the most recent
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Fig. 3.1 : Receding Horizon Control

data is used, which gives a more precise control calculation and a faster response to new

changes that might occur, depicted in Fig. 3.1.

Since we only take the first element of Δu, the state equation (3.4) can be written as

x̂(k + 1) = Âx̂(k)− B̂e1Kx̂(k) + B̂e1Pr(k)

= (Â− B̂e1K)x̂(k) + B̂e1Pr(k)
(3.15)

where e1 = [I 0 0 . . . 0] eliminates all elements in K and P except for the first control

sequence.

The control signal equation (3.14) will thus be implemented as

Δu = e1Pr − e1Kx̂. (3.16)

3.2 System setup

The following system equations are acquired from the system shown in Fig. 3.2. The

states x are the tie-line power flow deviation, ΔPtiei , frequency deviation, Δfi, output of

the gas turbine generator, ΔPgi , governor input of the gas turbine generator, Δxgi , output

of the Battery Energy Storage System, ΔPEi
, output of the thermal system, ΔPHi

, and

the demand, UARi
.
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xi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔPtiei

Δfi

ΔPgi

Δxgi

ΔPEi

ΔPHi

UARi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Aii =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −Tij 0 0 0 0 0

1
Mi

− D
Mi

1
Mi

0 1
Mi

− 1
Mi

0

0 0 − 1
Tdi

1
Tdi

0 0 0

0 − 1
TgiRgi

0 − 1
Tgi

0 0 ag
Tg

0 0 0 0 − 1
TEi

0 aE
TE

0 0 0 0 0 − 1
THi

aH
TH

Ki −BiKi 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Aij = Aji =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Tij 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Bii =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1
Tgi

0 0 0

0 0 0 0 1
TEi

0 0

0 0 0 0 0 1
THi

0

0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Cii =
[
0 1 0 0 0 0 0

]

The off-diagonal matrices of B and C are zero.

Fig. 3.2 : Model of small homogeneous power network
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The setup shown in Fig. 3.2 shows two identical subsystems connected into a system.

This model includes transfer functions for the different generators, and the frequency output

is generated from the ”Generator Model” transfer function. This system is based on the

system in [14, 15]. Parameters used can be seen in Table 3.1 and below.

Table 3.1 : Power network parameters

Parameter Symbol Value Unit

Inertia constant M 0.2 puMW · s/Hz
Damping constant D 0.26 puMW/Hz

Governor time constant Tg 0.2 s

Gas turbine constant Td 5.0 s

BESS time constant TE 0.2 s

HP time constant TH 4.5 s

Regulation constant Rg 2.5 Hz/puMW

Synchronizing coefficient Tij 0.50 puMW

Sampling time Ts 0.1 s

The system capacity distribution for the gas turbine, BESS and thermal system are set

to

ag = 0.80, aH = 0.15, aE = 0.05,

and since the output of the systems are Δf , which we want to have as close to zero as

possible, the control reference is set to

r = 0.

The MPC is implemented as a centralized and decentralized controller with the model

specific parameters

Np = 100, Nc = 10, z = 108.

Also included as a reference value is an iterative distributed controller, which was imple-

mented with the controller specific parameters

n = 5, Q = 0.5 · I, R = [1 1 1 4 0.02 0.01 1].
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3.3 Results

The results show the response to a load frequency change of 0.1 Hz at the time 0.1s. The

results from the different simulation setups can be seen below in Fig. 3.3 - 3.7.
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Fig. 3.3 : Zoomed system cost
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Fig. 3.4 : Zoomed frequency deviation

In Fig. 3.3 - 3.4 it can be seen that while the iterative method has a better final cost, it

does have a bigger initial cost and a lot higher frequency deviation than the MPC method.

It can also be seen that the centralized controller is slightly better than the decentralized

one.

Fig. 3.5 - 3.6 shows these same result in a different way, showing the summarization of

the first 30 seconds of the simulations.
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Fig. 3.5 : System cost comparison Fig. 3.6 : Frequency deviation comparison

Fig. 3.7 shows the reason why the centralized controller passes the decentralized con-

troller in the last few seconds in Fig. 3.3. The controller is slightly out of tune, so the

control signal for the battery system in area 1 starts to drift.

0 5 10 15 20 25 30
−1

0

1

2

x 10−4

Time [s]

u

A1 Gas turbine governor
A1 BESS
A1 Heat pump
A2 Gas turbine governor
A2 BESS
A2 Heat pump

Fig. 3.7 : Matrix MPC controller output

One of the big downsides of the iterative method is that it requires extensive online

calculations, thus slowing it down, whereas the MPC can make all calculations offline. The

runtime for the two different methods are shown in Table 3.2.

As can be seen, the MPC only takes around one second, whereas the iterative method

takes a few minutes.
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Table 3.2 : Runtime for a 60 seconds simulation

MPC Iterative

1.05s 17.65m

The reason why these results were never improved was because a homogeneous system is

very unlikely to appear in a real situation. Also, the controller was changed to a different

MPC method.

The reason why there was no distributed implementation was also due to the system

setup. With only two subsystems the distributed controllers would simply be two central-

ized controllers only controlling their own subsystem.



Chapter 4

Distributed state space model

predictive control

4.1 Model predictive controller

To specify how many steps ahead the controller should take into account, the prediction

horizon and control horizon are defined the same as in the previous control method.

�

�

�

�

Definition 2.

We denote the prediction horizon as Np and the control horizon as Nc.

The prediction horizon defines how many steps ahead the controller should predict the

states.

The control horizon dictates the number of steps the controller should try to complete the

control objective in.

Also, the control horizon to be limited such that problems won’t occur in the calculations.

�

�

�

�

Assumption 3.

It is assumed that the control horizon Nc is chosen to be less than or equal to the prediction

horizon Np

Nc ≤ Np

since it is not possible to predict a control trajectory without having predicted the states

at that time instant.

Based on the state space model (2.1), the future state variables are calculated sequentially

using the future control parameters. By substituting the previous row into the next one,
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we can get a predicted state estimate at a certain time with calculations only depending

on the current states x(k) and the control input u.

x(k + 1) = Ax(k) + Bu(k)

x(k + 2) = Ax(k + 1) + Bu(k + 1)

= A2x(k) + ABu(k) +Bu(k + 1)

...

x(k +Np) = ANpx(k) + ANp−1Bu(k) + ANp−2Bu(k + 1)

+ · · ·+ ANp−NcBu(k +Nc − 1)

(4.1)

From the above equation and the original state space model (2.1) we can get the predicted

output variables, by substitution, so all predicted variables are formulated in terms of

current state variable information x(k) and the future control movement u(k + t), where

t = 0, 1, . . . , Nc − 1.

y(k + 1) = CAx(k) + CBu(k)

y(k + 2) = CA2x(k) + CABu(k) + CBu(k + 1)

y(k + 3) = CA3x(k) + CA2Bu(k) + CABu(k + 1) + CBu(k + 2)

...

y(k +Np) = CANpx(k) + CANp−1Bu(k) + CANp−2Bu(k + 1)

+ · · ·+ CANp−NcBu(k +Nc − 1)

(4.2)

Rearranging these into matrices thus gives the system as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(k + 1)

x(k + 2)

x(k + 3)
...

x(k +Np)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x−→

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A

A2

A3

...

ANp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Px

x(k) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B 0 0 . . . 0

AB B 0 . . . 0

A2B AB B . . . 0
...

...
...

. . . 0

ANp−1B ANp−2B ANp−3B . . . ANp−NcB

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Hx

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(k)

u(k + 1)

u(k + 2)
...

u(k +Nc − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
u−→
(4.3)
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and⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(k + 1)

y(k + 2)

y(k + 3)
...

y(k +Np)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
y−→

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CA

CA2

CA3

...

CANp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Py

x(k) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CB 0 0 . . . 0

CAB CB 0 . . . 0

CA2B CAB CB . . . 0
...

...
...

. . . 0

CANp−1B CANp−2B CANp−3B . . . CANp−NcB

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Hy

u−→

(4.4)

giving the prediction system

x−→ = Pxx(k) +Hx u−→
y−→ = Pyx(k) +Hy u−→.

(4.5)

Using the cost function

J = x−→
TQ x−→+ u−→

TR u−→ (4.6)

where Q ≥ 0 and R > 0 are the weighting matrices, the minimization in regards to u−→
using the prediction system from (4.5) becomes

min
u−→

J = (Pxx(k) +Hx u−→)TQ(Pxx(k) +Hx u−→) + u−→
TR u−→, (4.7)

and from the minimization that the derivative should be zero, we get that

dJ

d u−→
= 0 ⇒ −(HT

x QHx +R) u−→ = HT
x QPxx(k). (4.8)

From this it is given that the optimal control law is

u−→ = −(HT
x QHx +R)−1HT

x QPxx(k) = −Kx(k) (4.9)

where K = (HT
x QHx + R)−1HT

x QPx. From (4.3) and (4.9) it can also be seen that K

only depends on the system parameters, hence is a constant matrix that can be calculated

offline.

�

�

�

	

Assumption 4.

It is assumed that the inverse Hessian matrix (HT
x QHx +R)−1 exists.

Assumption 4 is in theory always fulfilled, due to the condition that R > 0 makes it

impossible for the Hessian matrix to be zero, since the first term can not be negative to
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take out the second term due to Q ≥ 0 and Hx is squared. But in reality it is possible to

get a non existent inverse, since the tools used to calculate the inverse has limitations. If

the values of the Hessian matrix are too big, the inverse will be so small the calculation

software might truncate the values to zero or simply give an error.

To ensure that the most recent data is used, which gives a more precise control calcula-

tion and a faster response to new changes that might occur, even though u−→ contains the

predicted control signals for Nc steps ahead, the calculation is made in every sample so

only the first u(k) is used, as shown in Fig. 3.1.

So from the complete set of predicted control signals

u−→ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(k)

u(k + 1)

u(k + 2)
...

u(k +Nc)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.10)

we only want the most relevant control signals for the next control correction

u(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

u1

u2

...

unu

⎤
⎥⎥⎥⎥⎥⎥⎦
, (4.11)

nu being the number of control signals to the plant.

Since we only take the first element of u−→, we can write the control signal as

u(k) = eI u−→ = −eIKx(k), (4.12)

where eI = [1 1 . . . 1︸ ︷︷ ︸
nu

0 0 . . . 0] eliminates all elements in K except for the first control

sequence.

Thus the state equation can be written as

x(k + 1) = Ax(k)− BeIKx(k)

= (A− BeIK)x(k).
(4.13)
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4.2 Constraints

Due to the presence of constraints, there is a need for an algorithm to recalculate the

control action if it conflicts with the constraints.

For this purpose a Quadratic Programming solver is used to recalculate the control signal

in case of conflicts with constraints, which optimizes the problem on the form

min
u

(fTu+
1

2
uTHu) (4.14)

under the constraints such that

AQPu ≤ b, (4.15)

where in this case u is the control signal u−→, and H and f are from the optimal control law

(4.9),

H = HT
x QHx +R, f = HT

x QPxx(k), (4.16)

where f depends on the current state values, thus is time-varying.

The constraints are formulated into AQP , which is a matrix of linear constraint coeffi-

cients, and b, which is a time-varying vector. Constraints on the control signal, for example

−0.5 ≤ u−→ ≤ 0.5 (4.17)

would be rearranged into ⎡
⎣−1

1

⎤
⎦ u−→ ≤

⎡
⎣0.5
0.5

⎤
⎦ . (4.18)

Constraints on the output signal, such as

−0.2 ≤ y−→ ≤ 0.2 (4.19)

needs to be rewritten in terms of u, which by using (4.5),

y−→ = Pyx(k) +Hy u−→, (4.20)

becomes

−0.2 ≤ Pyx(k) +Hy u−→ ≤ 0.2. (4.21)

Then by splitting (4.21) into two parts

−0.2 ≤ Pyx(k) +Hy u−→
Pyx(k) +Hy u−→ ≤ 0.2

(4.22)
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and then rearranging, gives the boundaries as⎡
⎣−Hy

Hy

⎤
⎦ u−→ ≤

⎡
⎣0.2 + Pyx(k)

0.2− Pyx(k)

⎤
⎦ . (4.23)

Constraints on the states would be rewritten the same way as constraints on the output

signal, but using x−→ from (4.5) instead of y−→.

By combining the constrains on the control signal (4.18) and the constraints on the

output signal (4.23), we get the complete constraints matrix (4.15) as

⎡
⎢⎢⎢⎢⎢⎢⎣

−1

1

−Hy

Hy

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
AQP

u−→ ≤

⎡
⎢⎢⎢⎢⎢⎢⎣

0.5

0.5

0.2 + Pyx(k)

0.2− Pyx(k)

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
b

. (4.24)

From this we can use the Quadratic Programming solver to get the new optimized control

signal u from (4.14) under the constraints from (4.24).

This will implement the constraints as hard constraints, Fig. 4.1, where as a lower

constraint value and soft constraints, Fig. 4.2, might also be an reasonable alternative.

Hard constraints are an absolute block, not letting anything pass beyond its boundary.

Whereas the soft constraints has a buffer zone where it can pass into as long as it does

not pass the outer boundary and it recovers into the neutral zone as fast as possible, not

staying in the danger zone too long.
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Fig. 4.1 : Hard constraints

0 5 10 15 20
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Fig. 4.2 : Soft constraints
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4.3 State estimator

Since the plants only output is the frequency deviation, and the above described state

space MPC uses all the states, a state observer is needed.

Currently the simulation operates with a Kalman Filter to estimate the states from the

output and the tie-line values, using a model of the system linearized around the operating

point.

For this a state estimate with Kalman filter is implemented as

x̂(k + 1) = Ax̂(k) + Bu(k) +Kf (y(k)− Cx̂(k)), (4.25)

where Kf is given by

Kf = (APCT )(CPCT +Rf )
−1 (4.26)

in which Rf contains the weights and P is the symmetric positive semidefinite solution of

the algebraic Riccati equation

AP + PAT − (PCT )R−1
f (PCT )T = 0. (4.27)

The Kalman filters that is implemented is slightly of tune currently and the state esti-

mation diverts from the real value in some cases, with the possibility that the system then

goes out of control. One of the few positive aspects of this is that it is possible to see how

big error the controller can deal with and still keep a stable output from the plant.

Since there now are more subsystems, consequently there are more Kalman filters, and

thus more parameters to try to tune. The decentralized controller has one Kalman filter

for each subsystem, the centralized controller uses these to build up a complete estimate of

the system, and each of the distributed controller uses the ones they needs for the region it

controls. Since all these are of different sizes with different inputs and outputs, they needs

to be tuned differently, which is an inconvenient and tedious task thats needs to be done

every time the layout of the system changes shape.

Alternatively a Moving Horizon Estimator could be used, using a similar technique as

the Model Predictive Control.

The downside with Moving Horizon Estimation is that it requires online optimization,

thus slowing down the overall performance of the controller and using up computation

resources. Another reason why Moving Horizon Estimation is not as used in industry as
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Kalman Filter is because it requires more user experience to set up properly. Some of the

benefits are that it can incorporate state constraints and by increasing the horizon length

the performance of the estimation can be improved.

4.4 Connection topology

The first subsystem connection topology that was implemented was a linear one, which

can be seen in Fig. 4.3.

Fig. 4.3 : Linear connection

This was later extended on, and two new implemented connection topology can be seen

below in Fig. 4.4 and Fig. 4.5.

Fig. 4.4 : Square connection Fig. 4.5 : Full connection

The topology in Fig. 4.3 would mostly correlate with longer connections, like the con-

nection between cities, while the topology in Fig. 4.4 and Fig. 4.5 more correlate to

connections with less distance between, like major power distributor inside a city, where it

is easier to install more connections.
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4.5 Controller implementation

The controllers was here implemented both as separate decentralized controllers, as a

centralized controller, and as distributed controllers.

The distributed control model were split into sections that encompass data that each

subsystem have access to. The matrices for each distributed control section can then be

taken from the complete power network system model, as shown below on the A matrix

(4.28) for the linear connection topology.

(4.28)

Due to the changes in topology, the A matrix need to be changed to include the new

connections. In the system with full connected topology, all subsystem is connected to each

other, thus changing the A matrix to

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

⎤
⎥⎥⎥⎥⎥⎥⎦
. (4.29)

This results in that each distributed controller essentially is a centralized controller that

only outputs its control signal to one subsystem.

For the square connected system topology, only one connection between subsystem 1 and

subsystem 4 has been introduced, thus changing the A matrix to

. (4.30)
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The distributed controllers A matrices being

AD1 =

⎡
⎢⎢⎢⎣
A11 A12 A14

A21 A22 0

A41 0 A44

⎤
⎥⎥⎥⎦ , AD2 =

⎡
⎢⎢⎢⎣
A11 A12 0

A21 A22 A23

0 A32 A33

⎤
⎥⎥⎥⎦ ,

AD3 =

⎡
⎢⎢⎢⎣
A22 A23 0

A32 A33 A34

0 A43 A44

⎤
⎥⎥⎥⎦ , AD4 =

⎡
⎢⎢⎢⎣
A11 0 A14

0 A33 A34

A41 A43 A44

⎤
⎥⎥⎥⎦ .

(4.31)

4.6 Data acquisition

The distributed controllers for the two subsystems implementation assumes that the

tie-line power flow deviation ΔPtiei is known. From this and the plants own frequency

deviation Δfi, the connected subsystem frequency deviation Δfj is calculated, as shown in

(4.32), and then all states of the connected subsystem are estimated with a Kalman filter.

Δfj =
Ptiei

Tij

−Δfi (4.32)

This method still works good when connected to one other subsystem, like Area1 and

Area4 in the linear topology, but the two other, Area2 and Area3, have connections to

two other subsystems. And since each subsystems contribution is not known, it can be

assumed that both contributes equally, changing (4.32) into (4.33).

Δfj = Δfk =

Ptiei

Tij
−Δfi

2
(4.33)

This does not give a satisfactory result, since the subsystems are of different setup and

subsequently would not contribute equally.

Since the contribution from each subsystem is needed to make a Kalman estimation to

then calculate a correct control action, a different method is needed.

The alternative method that the distributed controller implementation currently uses is

a slightly time delayed value of the real value, as if the power plants shares its information

with the other plants over for example an internet connection. So instead of calculating

with a probably wrong estimate, the controller now has a correct, although slightly old,

estimate of the states from the connected subsystems. As long as the time delay is not
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too long, or some big changes happens to the connected subsystems, the calculated control

signal is accurate enough to give a good result.

In cases with long distances or slow information transfer, where the time delay might

become too great, it would be reasonable to time stamp the information when sending it,

so that the receiving controller can check if it is relevant. If the information is too old, it

can instead use a previous calculated control signal from u−→ that used relevant information,

or ignore the connected subsystem altogether and calculate a decentralized control signal

instead.

4.7 System setup

The setup shown in Fig. 4.7 - Fig. 4.9 shows the four subsystems connected into a

system, each having different connection topologies, and the following system equations

are acquired from it. The x, B and C matrices are the same for the different connection

topology, whereas the A matrix differs. The states x are the tie-line power flow deviation

ΔPtiei , frequency deviation Δfi, output of the gas turbine generator ΔPgi , governor input

of the gas turbine generator Δxgi , output of the Battery Energy Storage System ΔPEi
,

output of the thermal system ΔPHi
and the demand UARi

.

Area 1 is set up with all generators present. Area 2 only has the battery system and

thermal system. Area 3 has gas and thermal system. Area 4 has gas and battery system.

Since wind power is a non-controllable generator source it is not included in the system

model, but instead is modeled as an added noise source in the simulation model.

Parameters used can be seen in Table 4.1 and below.

x1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔPtie1

Δf1

ΔPg1

Δxg1

ΔPE1

ΔPH1

UAR1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, x2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔPtie2

Δf2

ΔPE2

ΔPH2

UAR2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, x3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔPtie3

Δf3

ΔPg3

Δxg3

ΔPH3

UAR3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, x4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔPtie4

Δf4

ΔPg4

Δxg4

ΔPE4

UAR4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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A11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −T12 0 0 0 0 0

1
M1

− D
M1

1
M1

0 1
M1

− 1
M1

0

0 0 − 1
Td1

1
Td1

0 0 0

0 − 1
Tg1Rg1

0 − 1
Tg1

0 0 ag
Tg

0 0 0 0 − 1
TE1

0 aE
TE

0 0 0 0 0 − 1
TH1

aH
TH

K1 −B1K1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 T21 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

1
Tg1

0 0

0 1
TE1

0

0 0 1
TH1

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B22 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

1
TE2

0

0 1
TH2

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B33 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

1
Tg3

0

0 1
TH3

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B44 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

1
Tg4

0

0 1
TE4

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C11 =
[
0 1 0 0 0 0 0

]
, C22 =

[
0 1 0 0 0

]
,

C33 =
[
0 1 0 0 0 0

]
, C44 =

[
0 1 0 0 0 0

]

The off-diagonal matrices of B and C are zero.

The system capacity distribution for the gas turbine, BESS and thermal system are set

to

ag = 0.80, aH = 0.15, aE = 0.05.

The SS-MPC controller uses the parameters

rw = [︸ ︷︷ ︸
AD1

AD2︷ ︸︸ ︷
8 0.83 8 ︸ ︷︷ ︸

AD3

0.83 8

AD4︷ ︸︸ ︷
8 8 8 0.83], Nc = 10,

Np = 100, R = rw ∗ I, Q = I.

While the MATLAB MPC Toolbox reference uses

rw = [︸ ︷︷ ︸
AD1

AD2︷ ︸︸ ︷
8 0.083 0.000008 ︸ ︷︷ ︸

AD3

0.0083 0.8

AD4︷ ︸︸ ︷
10 0.0000001 8 0.83], Nc = 10,

Np = 100, controlWeights = rw ∗ I, outputWeight = I.
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The Kalman filter uses the weights

R = 0.008, Q1 = [5 10 5] ∗ I, Q2 = [5 1] ∗ I, Q3 = [5 5] ∗ I, Q4 = [5 10] ∗ I,

which are also split similarly to the weights for the subsystems depending on which gener-

ator the subsystem uses.

The implementations are set to fulfill the constraints as

−0.2 ≤ y ≤ 0.2.

Table 4.1 : Power network parameters

Parameter Symbol Value Unit

Inertia constant M 0.2 puMW · s/Hz
Damping constant D 0.26 puMW/Hz

Governor time constant Tg 0.2 s

Gas turbine constant Td 5.0 s

BESS time constant TE 0.2 s

HP time constant TH 4.5 s

Regulation constant Rg 2.5 Hz/puMW

Synchronizing coefficient Tij 0.50 puMW

Sampling time Ts 0.1 s

4.7.1 Two heterogeneous subsystems

Due to the high amount of tunable variables, a system with two subsystems have also

been used. The smaller system makes it easier to make changes in the system and to

implement other controller structures to use as a reference.

The system is shown in Fig. 4.6 and is based on the previous system shown in 3.2, the

difference being that it is comprised of one subsystem with all generators and one subsystem

without the gas generator.
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Fig. 4.6 : Model of power network

The system setup is similar to that of the system with four subsystems above. See above

for the structure of x1, x2, B11, B22, C11, C22 and the parameter table Table 4.1. The

structure of A, which is a part of the one presented above, is shown below.

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −T12 0 0 0 0 0 0 T21 0 0 0

1
M1

− D
M1

1
M1

0 1
M1

− 1
M1

0 0 0 0 0 0

0 0 − 1
Td1

1
Td1

0 0 0 0 0 0 0 0

0 − 1
Tg1Rg1

0 − 1
Tg1

0 0 ag
Tg

0 0 0 0 0

0 0 0 0 − 1
TE1

0 aE
TE

0 0 0 0 0

0 0 0 0 0 − 1
TH1

aH
TH

0 0 0 0 0

K1 −B1K1 0 0 0 0 0 0 0 0 0 0

0 T12 0 0 0 0 0 0 −T21 0 0 0

0 0 0 0 0 0 0 1
M2

− D
M2

1
M2

− 1
M2

0

0 0 0 0 0 0 0 0 0 − 1
TE2

0 aE
TE

0 0 0 0 0 0 0 0 0 0 − 1
TH2

aH
TH

0 0 0 0 0 0 0 K2 −B2K2 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The system capacity distribution for the gas turbine, BESS and thermal system are set

to

ag = 0.80, aH = 0.15, aE = 0.05.

The controller is implemented similar to the system above with the parameters as

R = [

AD1︷ ︸︸ ︷
8 0.83 8

AD2︷ ︸︸ ︷
0.83 8 ] ∗ I, Q = I, Nc = 10, Np = 30.

The Kalman filter uses the weights

Q = [1 1 1 5 10 5 1] ∗ I, R = 1.
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The implementations are set to fulfill the constraints as

−0.2 ≤ y ≤ 0.2.

Since the distributed controllers in this case are essentially two centralized controllers

that only sends signals to their own subsystem, they will therefore give the same result as

the centralized controller.

The result can be seen below in Fig. 4.24 - 4.25 in the result section.

4.7.2 Four heterogeneous subsystems

Below, the full A matrices and system setups are shown for the three different four sub-

systems topologies, the linear topology AL, the square topology AS, and the fully connected

topology AF .

The system models are shown in Fig. 4.7 - 4.9. These extends the previous model in

Fig. 4.6 with two more subsystems. The only difference between these three models are

the way the subsystems connects to each others, which in the A matrices are indicated as

the difference on the off diagonal.

In the linear system in Fig. 4.7, the two subsystems in the middle has two neighbors

each, thus they also has two incoming connections, hence the difference in input for only

those two subsystems.

In the square connected system in Fig. 4.8, all subsystems connects to two neighbors, so

the change in input that was shown for the two middle subsystems in the linear connected

case will now be present at all inputs.

The connections for the fully connected system in Fig. 4.9 looks a bit different than

the others, but is essentially the same as for the square connected, extended with the new

connections, but the addition is made at a central place and then corrected at the input

for each subsystem.
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AL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −T12 0 0 0 0 0 0 T21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
M1

− D
M1

1
M1

0 1
M1

− 1
M1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 − 1
Td1

1
Td1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 − 1
Tg1Rg1

0 − 1
Tg1

0 0 ag
Tg

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 − 1
TE1

0 aE
TE

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 − 1
TH1

aH
TH

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

K1 −B1K1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 T12 0 0 0 0 0 0 −∑
j∈Ni

Tij 0 0 0 0 T32 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
M2

− D
M2

1
M2

− 1
M2

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 − 1
TE2

0 aE
TE

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 − 1
TH2

aH
TH

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 K2 −B2K2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 T23 0 0 0 0 −∑
j∈Ni

Tij 0 0 0 0 0 T43 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
M3

− D
M3

1
M3

0 − 1
M3

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1
Td3

1
Td3

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 − 1
Tg3Rg3

0 − 1
Tg3

0 ag
Tg

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1
TH3

aH
TH

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 K3 −B3K3 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 T34 0 0 0 0 0 −T43 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
M4

− D
M4

1
M4

0 1
M4

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1
Td4

1
Td4

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1
Tg4Rg4

0 − 1
Tg4

0 ag
Tg

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1
TE4

aE
TE

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 K4 −B4K4 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

AS =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −∑
j∈Ni

Tij 0 0 0 0 0 0 T21 0 0 0 0 0 0 0 0 0 0 T41 0 0 0 0

1
M1

− D
M1

1
M1

0 1
M1

− 1
M1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 − 1
Td1

1
Td1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 − 1
Tg1Rg1

0 − 1
Tg1

0 0 ag
Tg

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 − 1
TE1

0 aE
TE

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 − 1
TH1

aH
TH

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

K1 −B1K1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 T12 0 0 0 0 0 0 −∑
j∈Ni

Tij 0 0 0 0 T32 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
M2

− D
M2

1
M2

− 1
M2

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 − 1
TE2

0 aE
TE

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 − 1
TH2

aH
TH

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 K2 −B2K2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 T23 0 0 0 0 −∑
j∈Ni

Tij 0 0 0 0 0 T43 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
M3

− D
M3

1
M3

0 − 1
M3

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1
Td3

1
Td3

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 − 1
Tg3Rg3

0 − 1
Tg3

0 ag
Tg

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1
TH3

aH
TH

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 K3 −B3K3 0 0 0 0 0 0 0 0 0 0

0 T14 0 0 0 0 0 0 0 0 0 0 0 T34 0 0 0 0 0 −∑
j∈Ni

Tij 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
M4

− D
M4

1
M4

0 1
M4

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1
Td4

1
Td4

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1
Tg4Rg4

0 − 1
Tg4

0 ag
Tg

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1
TE4

aE
TE

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 K4 −B4K4 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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AF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −∑
j∈Ni

Tij 0 0 0 0 0 0 T21 0 0 0 0 T31 0 0 0 0 0 T41 0 0 0 0

1
M1

− D
M1

1
M1

0 1
M1

− 1
M1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 − 1
Td1

1
Td1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 − 1
Tg1Rg1

0 − 1
Tg1

0 0 ag
Tg

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 − 1
TE1

0 aE
TE

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 − 1
TH1

aH
TH

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

K1 −B1K1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 T12 0 0 0 0 0 0 −∑
j∈Ni

Tij 0 0 0 0 T32 0 0 0 0 0 T42 0 0 0 0

0 0 0 0 0 0 0 1
M2

− D
M2

1
M2

− 1
M2

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 − 1
TE2

0 aE
TE

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 − 1
TH2

aH
TH

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 K2 −B2K2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 T13 0 0 0 0 0 0 T23 0 0 0 0 −∑
j∈Ni

Tij 0 0 0 0 0 T43 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
M3

− D
M3

1
M3

0 − 1
M3

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1
Td3

1
Td3

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 − 1
Tg3Rg3

0 − 1
Tg3

0 ag
Tg

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1
TH3

aH
TH

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 K3 −B3K3 0 0 0 0 0 0 0 0 0 0
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Fig. 4.7 : Model of linear connected power network
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Fig. 4.8 : Model of square connected power network
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Fig. 4.9 : Model of full connected power network
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4.8 Results

The results show the response to a load frequency change of 0.1 Hz at the time 0.1s.

The new control method was first compared on the previous two homogeneous subsystems

setup as a centralized and a decentralized controller. The comparison to the previous

control method can be seen in Fig. 4.10 - 4.23. The result from the heterogeneous two

subsystems setup is shown in Fig. 4.24 - 4.25. The results from the different simulation on

the new four subsystems setups can be seen below in Fig. 4.26 - 4.42, and the result for

the frequency deviation in more detail in Table 4.3.

4.8.1 Two homogeneous subsystems
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Fig. 4.10 : Zoomed system cost
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Fig. 4.11 : Zoomed frequency deviation

As can be seen in Fig. 4.10 - 4.13, the new MPC method is greatly superior to the

previous one, giving both lower results in cost and in frequency deviation.
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Fig. 4.12 : System cost comparison Fig. 4.13 : Frequency deviation comparison
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Fig. 4.14 - 4.15 shows that although an increased prediction horizon Np only has a slight

impact on the frequency deviation, it has a large impact on the system cost to a certain

point. In these cases the simulations with Np at 50, 100 and 200 gives the same outcome.

The trade-off being that the longer prediction horizon increases of size of the equation

matrices, which in turn increases the calculation time.
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Fig. 4.16 : System cost
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Fig. 4.17 : Zoomed system cost
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Fig. 4.18 : Zoomed frequency deviation
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Fig. 4.16 - 4.18 shows that when the Kalman estimator is used instead of the real value,

the result improves. This is due to the slight error that the estimator introduces, which in

this case helps to improve the result.
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Fig. 4.19 shows an example of the output from a controller in the case of a decentralized

control structure.
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Fig. 4.20 : Cost with constraints

0 2 4 6 8 10
−0.05

0

0.05

0.1

0.15
Area1

Time [s]

Fr
eq

ue
nc

y 
de

vi
at

io
n 

[H
z]

Centralized
Centralized +kalman
Centralized +constraints
Centralized +kalman +constraints

Fig. 4.21 : Frequency deviation with con-

straints
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Fig. 4.23 : Controller output with constraints

and Kalman filter

In Fig. 4.20 - 4.23 a constraint on the frequency deviation was introduced, set to keep

the frequency deviation inside the range −0.12 ≤ y ≤ 0.12. Fig. 4.21 shows that this has

been achieved, and the other three figures shows what implications this has on the cost

and control signals of the system. Fig. 4.22 - 4.23 shows the cost for all of the generators,

similar to Fig. 4.19.
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When comparing the runtime for the state space MPC to the previous results, we can

see from Table 4.2 that it takes slightly longer than the previous matrix MPC method, this

is mostly due to the fact that if a constraint is met, a small online recalculation is needed.

Table 4.2 : Runtime for a two subsystem 60 seconds simulation

SS-MPC M-MPC Iterative

1.62s 1.05s 17.65m

4.8.2 Two heterogeneous subsystems
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Fig. 4.24 : MPC system cost
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Fig. 4.25 : MPC cost zoomed

Fig. 4.24 - 4.25 shows that the controller performs very well even with a delayed signal,

the delayed signal only slightly increases the cost while the frequency deviation stays almost

the same as the direct signal controller.
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4.8.3 Four heterogeneous subsystems
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Fig. 4.27 : Centralized frequency deviation

for different Np

Fig. 4.26 - 4.27 shows, similar to the two subsystems setup, that although an increased

prediction horizon Np has almost no visible impact on the frequency deviation, it has a

large impact on the system cost to a certain point. The trade-off being increased calculation

time.
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Fig. 4.29 : Distributed frequency deviation

for different horizons

Fig. 4.28 - 4.29 shows that, while a change in Np has a visible impact on the cost as

shown in Fig. 4.26 - 4.27, a change in control horizon Nc gives no visible alteration to the
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results. Thus a short control horizon can be chosen to improve the calculation time.
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Fig. 4.30 : MPC Toolbox distributed cost
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Fig. 4.31 : MPC Toolbox distributed fre-

quency deviation

Fig. 4.30 - 4.31 shows the result of the MATLAB MPC Toolbox generated controller.

While it has lower system cost, it has a more unstable frequency output. It also has a

longer runtime due to the more complex algorithm used, finishing in 17.04s.

The simulations resulting in the results shown in Fig. 4.26 - 4.31 were done on a linear

connected system.
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Fig. 4.32 : Centralized cost
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Fig. 4.33 : Centralized frequency deviation



44 4 Distributed state space model predictive control

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time [s]

C
os

t o
f S

ys
te

m

Linear
Square
Full

Fig. 4.34 : Decentralized cost
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Fig. 4.35 : Decentralized frequency deviation
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Fig. 4.36 : Distributed cost
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Fig. 4.37 : Distributed frequency deviation

Fig. 4.32 - 4.37 shows the effects that the topology has on the outcome for each controller

type, while Fig. 4.38 - 4.43 shows the same results, but organized to show the results of

the different controller on each topology.

The results showing the effect of the different topology, Fig. 4.32 - 4.37, shows that

the system with fully connected topology has the highest cost, while the linear connected

topology has the lowest cost.
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Fig. 4.39 : Linear frequency deviation
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Fig. 4.40 : Square cost
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Fig. 4.41 : Square frequency deviation

The result of the different controllers on each topology, Fig. 4.38 - 4.43, shows the same

outcome for each topology, the centralized controller has the lowest cost, the decentralized

controller has the highest cost, and the distributed controller is in between the two others.
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Fig. 4.42 : Full cost
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Fig. 4.43 : Full frequency deviation

Due to the fact that it is hard to see anything conclusive for the frequency deviation

for the different setups since the difference is so small, except the fact that it never goes

outside the predefined constraints, Table 4.3 shows the root mean square (RMS) values for

the first 600 seconds.

The RMS is calculated as

RMS =

√
1

n
(Δf 2

1 +Δf 2
2 + · · ·+Δf 2

n).

From the table we can see that the effectiveness of the controller type holds true, that

the centralized controller is the most effective and the decentralized is the least effective.

In the regards of topology it shows that the higher the grade of connectivity there are,

which leads to the controllers taking into account more of the full network, the better the

outcome will be.

Table 4.3 : Frequency deviation RMS [HZ] (0-600s)

RMS Linear Square Full

Centralized 4.361 ∗ 10−3 3.640 ∗ 10−3 3.193 ∗ 10−3

Distributed 4.593 ∗ 10−3 3.901 ∗ 10−3 3.303 ∗ 10−3

Decentralized 4.917 ∗ 10−3 4.128 ∗ 10−3 3.646 ∗ 10−3

The runtime for the four subsystems linear topology setup can be seen in Table 4.4, with

the previous mentioned runtime for the MATLAB MPC Toolbox generated controller as

comparison.
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Table 4.4 : Runtime for a four subsystem 60 seconds simulation

SS-MPC MPC Toolbox

2.31s 17.04s

The state space MPC does not include as many advanced subroutines and optimization

calculations as the Toolbox generated one, thus the much faster runtime.





Chapter 5

Conclusion

In this paper, a distributed model predictive controller has been proposed for a network

control architecture. The main feature of this concept is the possibility of implementing

constraints and to include as much information as possible about the network without

adding extra time delays due to long transmission distances. For solving these calcula-

tions the online complexity only consists of simple matrix multiplications, except in close

encounters with a constraint, in which case the quadratic programming temporarily takes

over to calculate a new control signal to avoid crossing the threshold. Also investigated

were various connection topologies and their implications on the outcome of the control.

One of the big advantages of the proposed method is the calculation speed while the

system is running. Although the proposed control algorithm might not be as versatile as

the MATLAB MPC Toolbox generated controller, it is much faster due to its simplicity.

The MPC Toolbox include features such as the ability to set constraints on almost any

value, and the constraint can be configured as soft constraint with user set boundaries, and

Kalman filter state estimator is also built in as standard. Similarly, the iterative gradient

method also takes a lot longer time to calculate the control signal, since it will search for the

most optimal value for each time instance, thus having almost all of the control calculation

done online. This makes it a very adaptive method, that can take new factors into account

easily without major configuration updates.

The main results of this research includes the following confirmed conclusions.

The distributed control setup is invariably more effective than the decentralized one,

although it is less effective than the centralized alternative. The different control imple-

mentation have their own strong side. The decentralized controller is easy to implement

and does not need to take into account any of the other parts of the system. The cen-
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tralized is effective since it can take everything into account when calculating the control.

But they also have downsides, the decentralized controller lacks overall efficiency since it

only includes a small part of the network, and the centralized controller is impractical to

implement in a real system due to the distances involved. The distributed controller can

be seen as a compromise between the two other, taking some of the ease of implementation

and efficiency while trying to keep the downsides as small as possible.

Another of the main results of this research is that a higher connectivity in the topol-

ogy setup results in an increased performance. This is not only true for the distributed

controllers that with higher connectivity takes more of the network into account in their

control calculation, but also for the two other control implementations, where the central-

ized controller always takes everything into account and the decentralized controller only

takes its own part into account and disregards everything else. Thus it stands to reason that

a higher connectivity helps to stabilize the system and cancel out the unwanted frequency

deviation.

It is also shown that a delayed measurement signal to the distributed controller only

gives a slightly worse result than the direct signal. And in a real life implementation where

measurements data would be time stamped for relevancy check when longer transfer times

occurs, at its extreme it can be no worse than a decentralized controller since it would

disregard irrelevant data.

The theoretical investigation of these claims are up to further research.
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Matlab files

A.1 m-files

These files shows the system setup, controller creation and the online control algorithm.

A.1.1 Parameter setup file

setup mpc.m

clc

clear

%-------------------------------------------------

%topology type (1=linear, 2=square, 3=full)

toptype = 1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

H1=5;

H2=5;

H3=5;

H4=5;

D=0.26;
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Td=5;

Tg=0.2;

TH=4.5;

TE=0.2;

Rg=2.5;

RE=2.5;

RH=2.5;

f=50;

M1=2*H1/f;

M2=2*H2/f;

M3=2*H3/f;

M4=2*H4/f;

T12=0.50;

a1=0.80;

a2=0.05;

a3=0.15;

K1=1.1;

B1=1/Rg+D;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Horizons %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Nc=10;

Np=100;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% weights %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

rw1=[8 0.83 8];

rw2=[0.83 8];

rw3=[8 8];

rw4=[8 0.83];
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rw0=[rw1 rw2 rw3 rw4];

R=diag(rw0);

Q=eye(24);

kalmanR = .008;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Area 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%all generators

if toptype == 1

a11=[ 0 -T12 0 0 0 0 0

1/M1 -D/M1 1/M1 0 1/M1 -1/M1 0

0 0 -1/Td 1/Td 0 0 0

0 -1/(Tg*Rg) 0 -1/Tg 0 0 a1*K1/Tg

0 0 0 0 -1/TE 0 a2*K1/TE

0 0 0 0 0 -1/TH a3*K1/TH

1 -B1 0 0 0 0 0];

elseif toptype == 2

a11=[ 0 -2*T12 0 0 0 0 0

1/M1 -D/M1 1/M1 0 1/M1 -1/M1 0

0 0 -1/Td 1/Td 0 0 0

0 -1/(Tg*Rg) 0 -1/Tg 0 0 a1*K1/Tg

0 0 0 0 -1/TE 0 a2*K1/TE

0 0 0 0 0 -1/TH a3*K1/TH

1 -B1 0 0 0 0 0];

elseif toptype == 3

a11=[ 0 -3*T12 0 0 0 0 0

1/M1 -D/M1 1/M1 0 1/M1 -1/M1 0

0 0 -1/Td 1/Td 0 0 0
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0 -1/(Tg*Rg) 0 -1/Tg 0 0 a1*K1/Tg

0 0 0 0 -1/TE 0 a2*K1/TE

0 0 0 0 0 -1/TH a3*K1/TH

1 -B1 0 0 0 0 0];

end

b11=[0 0 0;0 0 0;0 0 0;1/Tg 0 0; 0 1/TE 0;0 0 1/TH; 0 0 0];

c11=[0 1 0 0 0 0 0];

d11=zeros(1,size(b11,2));

kalmanQ1 = [5 10 5];

[kmpc1,kest1,H1,f1,Pyy1,Hy1]=createcontrol(a11,b11,c11,d11,rw1,kalmanQ1,kalmanR);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Area 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%without gas / gov

if toptype == 3

a22=[ 0 -3*T12 0 0 0

1/M2 -D/M2 1/M2 -1/M2 0

0 0 -1/TE 0 a2*K1/TE

0 0 0 -1/TH a3*K1/TH

1 -B1 0 0 0];

else

a22=[ 0 -2*T12 0 0 0

1/M2 -D/M2 1/M2 -1/M2 0

0 0 -1/TE 0 a2*K1/TE

0 0 0 -1/TH a3*K1/TH

1 -B1 0 0 0];
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end

b22=[0 0;0 0; 1/TE 0;0 1/TH; 0 0];

c22=[0 1 0 0 0];

d22=zeros(1,size(b22,2));

kalmanQ2 = [5 1];

[kmpc2,kest2,H2,f2,Pyy2,Hy2]=createcontrol(a22,b22,c22,d22,rw2,kalmanQ2,kalmanR);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Area 3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%without battery

if toptype == 3

a33=[ 0 -3*T12 0 0 0 0

1/M2 -D/M2 1/M2 0 -1/M2 0

0 0 -1/Td 1/Td 0 0

0 -1/(Tg*Rg) 0 -1/Tg 0 a1*K1/Tg

0 0 0 0 -1/TH a3*K1/TH

1 -B1 0 0 0 0];

else

a33=[ 0 -2*T12 0 0 0 0

1/M2 -D/M2 1/M2 0 -1/M2 0

0 0 -1/Td 1/Td 0 0

0 -1/(Tg*Rg) 0 -1/Tg 0 a1*K1/Tg

0 0 0 0 -1/TH a3*K1/TH

1 -B1 0 0 0 0];

end
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b33=[0 0;0 0;0 0;1/Tg 0;0 1/TH; 0 0];

c33=[0 1 0 0 0 0];

d33=zeros(1,size(b33,2));

kalmanQ3 = [5 5];

[kmpc3,kest3,H3,f3,Pyy3,Hy3]=createcontrol(a33,b33,c33,d33,rw3,kalmanQ3,kalmanR);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Area 4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%without HP

if toptype == 1

a44=[ 0 -T12 0 0 0 0

1/M2 -D/M2 1/M2 0 1/M2 0

0 0 -1/Td 1/Td 0 0

0 -1/(Tg*Rg) 0 -1/Tg 0 a1*K1/Tg

0 0 0 0 -1/TE a2*K1/TE

1 -B1 0 0 0 0];

elseif toptype == 2

a44=[ 0 -2*T12 0 0 0 0

1/M2 -D/M2 1/M2 0 1/M2 0

0 0 -1/Td 1/Td 0 0

0 -1/(Tg*Rg) 0 -1/Tg 0 a1*K1/Tg

0 0 0 0 -1/TE a2*K1/TE

1 -B1 0 0 0 0];

elseif toptype == 3

a44=[ 0 -3*T12 0 0 0 0

1/M2 -D/M2 1/M2 0 1/M2 0

0 0 -1/Td 1/Td 0 0
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0 -1/(Tg*Rg) 0 -1/Tg 0 a1*K1/Tg

0 0 0 0 -1/TE a2*K1/TE

1 -B1 0 0 0 0];

end

b44=[0 0;0 0;0 0;1/Tg 0 ; 0 1/TE ; 0 0];

c44=[0 1 0 0 0 0];

d44=zeros(1,size(b44,2));

kalmanQ4 = [5 10];

[kmpc4,kest4,H4,f4,Pyy4,Hy4]=createcontrol(a44,b44,c44,d44,rw4,kalmanQ4,kalmanR);

%%%%%%%%%%%%%%%%%%%%%%%%%%%% Cent / Cross %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

a12=zeros(size(a11,1),size(a22,2));

a21=a12’;

a12(1,2)=T12;

a21(1,2)=T12;

a23=zeros(size(a22,1),size(a33,2));

a32=a23’;

a23(1,2)=T12;

a32(1,2)=T12;

a34=zeros(size(a33,1),size(a44,2));

a43=a34’;

a34(1,2)=T12;

a43(1,2)=T12;

a13=zeros(size(a11,1),size(a33,2));
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a14=zeros(size(a11,1),size(a44,2));

a24=zeros(size(a22,1),size(a44,2));

a31=zeros(size(a33,1),size(a11,2));

a41=zeros(size(a44,1),size(a11,2));

a42=zeros(size(a44,1),size(a22,2));

if toptype == 2

a14(1,2)=T12;

a41(1,2)=T12;

elseif toptype == 3

a14(1,2)=T12;

a41(1,2)=T12;

a13(1,2)=T12;

a31(1,2)=T12;

a24(1,2)=T12;

a42(1,2)=T12;

end

a=[a11 a12 a13 a14;

a21 a22 a23 a24;

a31 a32 a33 a34;

a41 a42 a43 a44];

b=zeros(24,9);

b(1:7,1:3)=b11;

b(8:12,4:5)=b22;

b(13:18,6:7)=b33;

b(19:24,8:9)=b44;

c=zeros(4,24);

c(1,1:7)=c11;



A.1 m-files 59

c(2,8:12)=c22;

c(3,13:18)=c33;

c(4,19:24)=c44;

d=zeros(4,9);

%linear

[kmpcdl1,kestdl1,Hdl1,fdl1,Pyydl1,Hydl1]=createcontrol([a11 a12; a21 a22],

b(1:12,1:5),c(1:2,1:12),zeros(2,5),[rw1 rw2],[kalmanQ1 kalmanQ2],

diag([kalmanR kalmanR]));

[kmpcdl2,kestdl2,Hdl2,fdl2,Pyydl2,Hydl2]=createcontrol([a11 a12 a13;

a21 a22 a23;a31 a32 a33],b(1:18,1:7),c(1:3,1:18),zeros(3,7),

[rw1 rw2 rw3],[kalmanQ1 kalmanQ2 kalmanQ3],

diag([kalmanR kalmanR kalmanR]));

[kmpcdl3,kestdl3,Hdl3,fdl3,Pyydl3,Hydl3]=createcontrol([a22 a23 a24;

a32 a33 a34; a42 a43 a44],b(8:24,4:9),c(2:4,8:24),zeros(3,6),

[rw2 rw3 rw4],[kalmanQ2 kalmanQ3 kalmanQ4],

diag([kalmanR kalmanR kalmanR]));

[kmpcdl4,kestdl4,Hdl4,fdl4,Pyydl4,Hydl4]=createcontrol([a33 a34; a43 a44],

b(13:24,6:9),c(3:4,13:24),zeros(2,4),[rw3 rw4],[kalmanQ3 kalmanQ4],

diag([kalmanR kalmanR]));

%square

[kmpcds1,kestds1,Hds1,fds1,Pyyds1,Hyds1]=createcontrol([a11 a12 a14;

a21 a22 a24; a41 a42 a44],b([1:12,19:24],[1:5,8:9]),

c([1:2,4],[1:12,19:24]),zeros(3,7),[rw1 rw2 rw4],

[kalmanQ1 kalmanQ2 kalmanQ4],diag([kalmanR kalmanR kalmanR]));

[kmpcds2,kestds2,Hds2,fds2,Pyyds2,Hyds2]=createcontrol([a11 a12 a13;

a21 a22 a23; a31 a32 a33],b(1:18,1:7),c(1:3,1:18),zeros(3,7),

[rw1 rw2 rw3],[kalmanQ1 kalmanQ2 kalmanQ3],

diag([kalmanR kalmanR kalmanR]));
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[kmpcds3,kestds3,Hds3,fds3,Pyyds3,Hyds3]=createcontrol([a22 a23 a24;

a32 a33 a34; a42 a43 a44],b(8:24,4:9),c(2:4,8:24),zeros(3,6),

[rw2 rw3 rw4],[kalmanQ2 kalmanQ3 kalmanQ4],

diag([kalmanR kalmanR kalmanR]));

[kmpcds4,kestds4,Hds4,fds4,Pyyds4,Hyds4]=createcontrol([a11 a13 a14;

a31 a33 a34; a41 a43 a44],b([1:7,13:24],[1:3,6:9]),

c([1,3:4],[1:7,13:24]),zeros(3,7),[rw1 rw3 rw4],

[kalmanQ1 kalmanQ3 kalmanQ4],diag([kalmanR kalmanR kalmanR]));

[kmpc0,kest0,H0,f0,Pyy0,Hy0]=createcontrol(a,b,c,d,rw0,

[kalmanQ1 kalmanQ2 kalmanQ3 kalmanQ4],

diag([kalmanR kalmanR kalmanR kalmanR]));

[A,B,C,Dd]=c2dm(a,b,c,d,.1);

A.1.2 Create controller

createcontrol.m

function [ Kmpc,kest,H,f,Pyy,Hy] = createcontrol( a,b,c,d,rw,kalmanQ,kalmanR)

%%%% ss-mpc

Np=evalin(’base’,’Np’); %take Np from workspace

Nc=evalin(’base’,’Nc’); %take Nc from workspace

[A,B,C,Dd]=c2dm(a,b,c,d,.1);

ma=size(A,1);

n1=size(C,2);

nb1=size(B,2);

Pxx = A;

R=rw;
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for rr=1:size(rw,2):Np*nb1-size(rw,2)

R=[R rw];

end

R=diag(R);

Q=eye(Np*n1);

for kk=ma+1:ma:ma*Np-1

Pxx(kk:kk+ma-1,:)=Pxx(kk-ma:kk-1,:)*A;

end

v=[B; Pxx(1:size(Pxx)-n1,:)*B];

Hx=zeros(n1*Np,nb1*Np);

Hx(:,1:nb1)=v;

iv = 1;

for i=nb1+1:nb1:nb1*Np-nb1+1

Hx(:,i:i+nb1-1)=[zeros(n1*iv,nb1);v(1:size(v,1)-n1*iv,:)];

iv=iv+1;

end

Kmpc= ((Hx’*Hx+R)\Hx’*Q*Pxx);

Kmpc=Kmpc(1:nb1,:);

H= Hx’*Hx+R;

f= Hx’*Q*Pxx;

Pyy= C.*Pxx;

Hy= C.*Hx;

%%%% Kalman filter

[kest,kL,kP]=kalman(ss(a,b,c,d),diag(kalmanQ),kalmanR,zeros(size(b,2),

size(kalmanR,1)));

end
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A.1.3 Controller

control.m

function control(block)

setup(block);

function setup(block)

block.NumInputPorts = 5;

block.NumOutputPorts = 1;

block.InputPort(1).Dimensions =[24 1];

block.InputPort(2).Dimensions =[24 1];

block.InputPort(3).Dimensions =[24 1];

block.InputPort(4).Dimensions =[24 1];

block.InputPort(5).Dimensions =[1 1];

block.OutputPort(1).Dimensions =[9 1];

block.InputPort(1).DirectFeedthrough=false;

block.InputPort(2).DirectFeedthrough=false;

block.InputPort(3).DirectFeedthrough=false;

block.InputPort(4).DirectFeedthrough=false;

block.InputPort(5).DirectFeedthrough=false;

block.InputPort(1).SamplingMode = ’Sample’;

block.InputPort(2).SamplingMode = ’Sample’;

block.InputPort(3).SamplingMode = ’Sample’;

block.InputPort(4).SamplingMode = ’Sample’;

block.InputPort(5).SamplingMode = ’Sample’;

block.OutputPort(1).SamplingMode = ’Sample’;



A.1 m-files 63

% Override input port properties

block.InputPort(1).DatatypeID = 0; % double

block.InputPort(1).Complexity = ’Real’;

block.InputPort(2).DatatypeID = 0; % double

block.InputPort(2).Complexity = ’Real’;

block.InputPort(3).DatatypeID = 0; % double

block.InputPort(3).Complexity = ’Real’;

block.InputPort(4).DatatypeID = 0; % double

block.InputPort(4).Complexity = ’Real’;

block.InputPort(5).DatatypeID = 0; % double

block.InputPort(5).Complexity = ’Real’;

% Override output port properties

block.OutputPort(1).DatatypeID = 0; % double

block.OutputPort(1).Complexity = ’Real’;

block.NumDialogPrms = 4;

block.SampleTimes = [-1 0];

block.RegBlockMethod(’Outputs’, @Outputs);

block.RegBlockMethod(’PostPropagationSetup’, @DoPostPropSetup);

block.RegBlockMethod(’InitializeConditions’, @InitializeConditions);

block.RegBlockMethod(’Start’, @Start);

function DoPostPropSetup(block)

block.NumDworks=2;

names = {’x’,’w’,};

for n=1:2

block.Dwork(n).Complexity=’Real’;

block.Dwork(n).DatatypeID=0;
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block.Dwork(n).Dimensions=4;

block.Dwork(n).Name=names{n};

block.Dwork(n).UsedAsDiscState=true;

end

function InitializeConditions(block)

block.Dwork(1).Data=[1;1;1;1];

function Start(block)

global A B C toptype

A=block.DialogPrm(1).Data;

B=block.DialogPrm(2).Data;

C=block.DialogPrm(3).Data;

toptype=block.DialogPrm(4).Data;

function Outputs(block)

global A B C toptype

x1=block.InputPort(1).Data;

x2=block.InputPort(2).Data;

x3=block.InputPort(3).Data;

x4=block.InputPort(4).Data;

p=block.InputPort(5).Data;

if p==1 %Centralized

%take values from workspace

kmpc0=evalin(’base’,’kmpc0’);

u=-kmpc0*x1;
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yabs=abs(C*A*x1+C*B*u);

if yabs>0.2

H=evalin(’base’,’H0’); %take H from workspace

f=evalin(’base’,’f0’); %take f from workspace

Pyy=evalin(’base’,’Pyy0’); %take Pyy from workspace

Hy=evalin(’base’,’Hy0’); %take Hy from workspace

u=quadprog(H,f*x1,[-Hy Hy]’,[0.2+Pyy*x1 0.2-Pyy*x1]);

end

end

if p==2 %Decentralized

%take values from workspace

kmpc1=evalin(’base’,’kmpc1’);

kmpc2=evalin(’base’,’kmpc2’);

kmpc3=evalin(’base’,’kmpc3’);

kmpc4=evalin(’base’,’kmpc4’);

u(1:3)=-kmpc1*x1(1:7);

u(4:5)=-kmpc2*x2(8:12);

u(6:7)=-kmpc3*x3(13:18);

u(8:9)=-kmpc4*x4(19:24);

u=u’;

yabs=abs(C*A*x1+C*B*u);

if yabs(1)>0.2

H=evalin(’base’,’H1’); %take H from workspace

f=evalin(’base’,’f1’); %take f from workspace

Pyy=evalin(’base’,’Pyy1’); %take Pyy from workspace

Hy=evalin(’base’,’Hy1’); %take Hy from workspace

u(1:3)=quadprog(H,f*x1,[-Hy Hy]’,[0.2+Pyy*x1 0.2-Pyy*x1]);

end
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if yabs(2)>0.2

H=evalin(’base’,’H2’); %take H from workspace

f=evalin(’base’,’f2’); %take f from workspace

Pyy=evalin(’base’,’Pyy2’); %take Pyy from workspace

Hy=evalin(’base’,’Hy2’); %take Hy from workspace

u(4:5)=quadprog(H,f*x2,[-Hy Hy]’,[0.2+Pyy*x2 0.2-Pyy*x2]);

end

if yabs(3)>0.2

H=evalin(’base’,’H3’); %take H from workspace

f=evalin(’base’,’f3’); %take f from workspace

Pyy=evalin(’base’,’Pyy3’); %take Pyy from workspace

Hy=evalin(’base’,’Hy3’); %take Hy from workspace

u(6:7)=quadprog(H,f*x3,[-Hy Hy]’,[0.2+Pyy*x3 0.2-Pyy*x3]);

end

if yabs(4)>0.2

H=evalin(’base’,’H4’); %take H from workspace

f=evalin(’base’,’f4’); %take f from workspace

Pyy=evalin(’base’,’Pyy4’); %take Pyy from workspace

Hy=evalin(’base’,’Hy4’); %take Hy from workspace

u(8:9)=quadprog(H,f*x4,[-Hy Hy]’,[0.2+Pyy*x4 0.2-Pyy*x4]);

end

end

if p==3 %Distributed

if toptype == 1 %linear

%take values from workspace

kmpcdl1=evalin(’base’,’kmpcdl1’);

kmpcdl2=evalin(’base’,’kmpcdl2’);

kmpcdl3=evalin(’base’,’kmpcdl3’);

kmpcdl4=evalin(’base’,’kmpcdl4’);
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u1=-kmpcdl1*x1(1:12);

u2=-kmpcdl2*x2(1:18);

u3=-kmpcdl3*x3(8:24);

u4=-kmpcdl4*x4(13:24);

u(1:3)=u1(1:3);

u(4:5)=u2(4:5);

u(6:7)=u3(3:4);

u(8:9)=u4(3:4);

u=u’;

yabs=abs(C*A*x1+C*B*u);

if yabs(1)>0.2

H=evalin(’base’,’H1’); %take H from workspace

f=evalin(’base’,’f1’); %take f from workspace

Pyy=evalin(’base’,’Pyy1’); %take Pyy from workspace

Hy=evalin(’base’,’Hy1’); %take Hy from workspace

u(1:3)=quadprog(H,f*x1,[-Hy Hy]’,[0.2+Pyy*x1 0.2-Pyy*x1]);

end

if yabs(2)>0.2

H=evalin(’base’,’H2’); %take H from workspace

f=evalin(’base’,’f2’); %take f from workspace

Pyy=evalin(’base’,’Pyy2’); %take Pyy from workspace

Hy=evalin(’base’,’Hy2’); %take Hy from workspace

u(4:5)=quadprog(H,f*x2,[-Hy Hy]’,[0.2+Pyy*x2 0.2-Pyy*x2]);

end

if yabs(3)>0.2

H=evalin(’base’,’H3’); %take H from workspace

f=evalin(’base’,’f3’); %take f from workspace

Pyy=evalin(’base’,’Pyy3’); %take Pyy from workspace

Hy=evalin(’base’,’Hy3’); %take Hy from workspace
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u(6:7)=quadprog(H,f*x3,[-Hy Hy]’,[0.2+Pyy*x3 0.2-Pyy*x3]);

end

if yabs(4)>0.2

H=evalin(’base’,’H4’); %take H from workspace

f=evalin(’base’,’f4’); %take f from workspace

Pyy=evalin(’base’,’Pyy4’); %take Pyy from workspace

Hy=evalin(’base’,’Hy4’); %take Hy from workspace

u(8:9)=quadprog(H,f*x4,[-Hy Hy]’,[0.2+Pyy*x4 0.2-Pyy*x4]);

end

elseif toptype==2 %square

%take values from workspace

kmpcds1=evalin(’base’,’kmpcds1’);

kmpcds2=evalin(’base’,’kmpcds2’);

kmpcds3=evalin(’base’,’kmpcds3’);

kmpcds4=evalin(’base’,’kmpcds4’);

u1=-kmpcds1*x1([1:12,19:24]);

u2=-kmpcds2*x2(1:18);

u3=-kmpcds3*x3(8:24);

u4=-kmpcds4*x4([1:7,13:24]);

u(1:3)=u1(1:3);

u(4:5)=u2(4:5);

u(6:7)=u3(3:4);

u(8:9)=u4(6:7);

u=u’;

yabs=abs(C*A*x1+C*B*u);

if yabs(1)>0.2

H=evalin(’base’,’H1’); %take H from workspace

f=evalin(’base’,’f1’); %take f from workspace
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Pyy=evalin(’base’,’Pyy1’); %take Pyy from workspace

Hy=evalin(’base’,’Hy1’); %take Hy from workspace

u(1:3)=quadprog(H,f*x1,[-Hy Hy]’,[0.2+Pyy*x1 0.2-Pyy*x1]);

end

if yabs(2)>0.2

H=evalin(’base’,’H2’); %take H from workspace

f=evalin(’base’,’f2’); %take f from workspace

Pyy=evalin(’base’,’Pyy2’); %take Pyy from workspace

Hy=evalin(’base’,’Hy2’); %take Hy from workspace

u(4:5)=quadprog(H,f*x2,[-Hy Hy]’,[0.2+Pyy*x2 0.2-Pyy*x2]);

end

if yabs(3)>0.2

H=evalin(’base’,’H3’); %take H from workspace

f=evalin(’base’,’f3’); %take f from workspace

Pyy=evalin(’base’,’Pyy3’); %take Pyy from workspace

Hy=evalin(’base’,’Hy3’); %take Hy from workspace

u(6:7)=quadprog(H,f*x3,[-Hy Hy]’,[0.2+Pyy*x3 0.2-Pyy*x3]);

end

if yabs(4)>0.2

H=evalin(’base’,’H4’); %take H from workspace

f=evalin(’base’,’f4’); %take f from workspace

Pyy=evalin(’base’,’Pyy4’); %take Pyy from workspace

Hy=evalin(’base’,’Hy4’); %take Hy from workspace

u(8:9)=quadprog(H,f*x4,[-Hy Hy]’,[0.2+Pyy*x4 0.2-Pyy*x4]);

end

elseif toptype==3 %full

%take values from workspace

kmpc0=evalin(’base’,’kmpc0’);

u1=-kmpc0*x1;

u2=-kmpc0*x2;
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u3=-kmpc0*x3;

u4=-kmpc0*x4;

u(1:3)=u1(1:3);

u(4:5)=u2(4:5);

u(6:7)=u3(3:4);

u(8:9)=u4(6:7);

u=u’;

yabs=abs(C*A*x1+C*B*u);

if yabs(1)>0.2

H=evalin(’base’,’H1’); %take H from workspace

f=evalin(’base’,’f1’); %take f from workspace

Pyy=evalin(’base’,’Pyy1’); %take Pyy from workspace

Hy=evalin(’base’,’Hy1’); %take Hy from workspace

u(1:3)=quadprog(H,f*x1,[-Hy Hy]’,[0.2+Pyy*x1 0.2-Pyy*x1]);

end

if yabs(2)>0.2

H=evalin(’base’,’H2’); %take H from workspace

f=evalin(’base’,’f2’); %take f from workspace

Pyy=evalin(’base’,’Pyy2’); %take Pyy from workspace

Hy=evalin(’base’,’Hy2’); %take Hy from workspace

u(4:5)=quadprog(H,f*x2,[-Hy Hy]’,[0.2+Pyy*x2 0.2-Pyy*x2]);

end

if yabs(3)>0.2

H=evalin(’base’,’H3’); %take H from workspace

f=evalin(’base’,’f3’); %take f from workspace

Pyy=evalin(’base’,’Pyy3’); %take Pyy from workspace

Hy=evalin(’base’,’Hy3’); %take Hy from workspace

u(6:7)=quadprog(H,f*x3,[-Hy Hy]’,[0.2+Pyy*x3 0.2-Pyy*x3]);

end
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if yabs(4)>0.2

H=evalin(’base’,’H4’); %take H from workspace

f=evalin(’base’,’f4’); %take f from workspace

Pyy=evalin(’base’,’Pyy4’); %take Pyy from workspace

Hy=evalin(’base’,’Hy4’); %take Hy from workspace

u(8:9)=quadprog(H,f*x4,[-Hy Hy]’,[0.2+Pyy*x4 0.2-Pyy*x4]);

end

end

end

block.OutputPort(1).Data =u;
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A.2 mdl-files

These figures shows the model created for the four subsystem network.

The top level depicted in Fig. A.1 includes: the sub level for the subsystems with plants,

Fig. A.2, sub level for the controller, Fig. A.4, sub level for the cost function, Fig. A.5,

sub level for the topology, Fig. A.6, sub level for the states, Fig. A.7, sub level for the

controller input, Fig. A.8, and the controls for changing control method, topology and

controller input signal. Also included in the top level are the scopes for the most relevant

output signals, the frequency and the cost.

Fig. A.1 : Network

Fig. A.2 shows the contents of the first subsystem, containing the transfer functions

for the gas generator and governor, thermal system and battery storage system. It also

includes a sub level for the wind turbine, Fig A.3.

Fig. A.3 shows the contents of the wind turbine sub level, which basic function is to

generate a fluctuating output to simulate the unstable frequency output of a wind turbine.
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Fig. A.2 : Plant1

Fig. A.3 : WP AREA1

The controller sub level depicted in Fig. A.4 gets the measurement signals and current

controller type and sends them to the controller file, which calculates the new control

signals, and then sends the received new control signals to the appropriate generator and

to the cost calculator, Fig A.5.

The cost calculator in Fig. A.5 takes the states and the control signals and calculates

the cost according to the defined cost function.

The topology sub level in Fig. A.6 takes care of the connections between the subsystems,

and changes according to what topology is chosen at the top level switch.

The states sub level depicted in Fig. A.7 collects all the different states into a state

vector. It also includes scopes for each group of states for inspection purposes.

The sub level depicted in Fig. A.8 takes care of what signal the controller gets as input,

depending on the switch choice at the top level. Either it gets the original true values,

Kalman estimated values, or delayed true values from the delay sub level, Fig. A.9.

The delay sub level in Fig. A.9 takes the original true values and delay them for ten

time samples.
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Fig. A.4 : Controller

Fig. A.5 : Cost function
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Fig. A.6 : Topology

Fig. A.7 : States



76 A Matlab files

Fig. A.8 : Controller input
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Fig. A.9 : Delay





Appendix B

Experimental setup

A power system using synchronous generators could be used for experimental verification.

This chapter describes the system architecture and specification of the experiment devices,

discussing the environments, and the result in the case of regular PI control.

B.1 System architecture

Fig. B.1 - B.2 shows the appearance of the current system setup.

Fig. B.1 : Appearance of the system
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Fig. B.2 : Appearance of the control board

Fig. B.3 shows the system architecture, how the generator is connected to the variable

load resistance. The rotation speed of the generator is measure from the encoder and three-

phase AC voltage through dSPACE, that will send the input voltage to the servo amplifier

to control the rotation speed.

Fig. B.3 : Schematic view of the system
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The detail of each system component is stated below.

1. Switching power supply AVR1

Model number : PBA10F-12-N

Specification : Peak power output 10.8W, DC output 12V/0.9A

2. Switching power supply AVR2

Model number : PBA10F-24-N

Specification : Peak power output 12W, DC output 24V/0.5A

3. Servo amplifier

Model number : GPA-12

Specification : Analog command, Rated current 2.4A/rms, Peak current 8.5A/rms

The servo amplifier act as a controller for the servo motor, where the connections are

as follows.

TB1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

RSTE → NFB

rt → NFB

UVWE → Motor

CN1 → Controller

CN2 → Encoder

CN3 → PC

4. AC servo motor

Model number : LNEII040C

Specification : Rated output 400W, Rated rotation speed 3000rpm, Rated current

2.4A

5. Transformer

Model number : RTC-5

Specification : Output current 5A, Output capacity 1.7KVA

6. Load

Rectifier diode : 600V, 60A

Smoothing capacitor : 200V, 820μF

Fixed load resistor : 10Ω, 50W

Variable load resistor : 0-200Ω, 300W
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Parameters about the generator is stated below.

Table B.1 : Generator parameters

Parameter Value Unit Value Unit

Rated capacity 400 W

Rated torque 1.27 N·m 13 kgf · cm
Peak torque 3.8 N·m 39 kgf · cm

Rated rotation speed 3000 rpm 50 /s

Peak rotation speed 3500 rpm 175/3 /s

Rated current 2.4 A

Peak current 7.2 A

Rated voltage 168 V

Torque constant 0.58 N·m/A 5.96 kgf · cm/A

Rotor inertia 1.16× 10−4 kg·m2 1.18 gf · cms2

Power rate 14 kW/s

Mechanical time constant 7.7 ms

Electrical time constant 1.6 ms

General weight 3.0 kg·f 29.4 N

Motor pole number 8 pole

Reverse voltage constant 20.4 V/krpm 1.224 V·s
Armature inductance 4.0 mH

Armature resistance 2530 mΩ

Phase correction angle 0 deg

Encoder density 2000 pulse

Encoder pole number 8 pole
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B.2 Control by dSPACE

The frequency is calculated from the revolution speed of the encoder by the following

equations.

Table B.2 : Definition of symbols

Symbol Meaning Value Unit

p Encoder pole number 8

ne Encoder resolution 2000 [pulse/Rev]

n Motor rotation speed [rpm]

f Frequency [Hz]

V Input voltage [V]

kv Velocity input coefficient 3000 [rpm]

From the encoder resolution, the angle per 1[pulse] is

360

ne

= 0.18[deg/pulse] (B.1)

2π

ne

=
π

1000
[rad/pulse]. (B.2)

From the angle rate of the encoder, the motor rotation speed n[rpm] is

n =
dθ

dt
× 1

2π
× 60. (B.3)

The frequency f [Hz] is

f =
np

120
. (B.4)

The velocity input coefficient kv is set as a motor rotation speed when a velocity input

of 10[V] is added. The motor rotation speed n[rpm] for the input voltage is

n = V × kv
10

. (B.5)

From equations (B.4) and (B.5), the relation between the frequency and the input voltage

is as follows.

V = f × 120

8
× 10

3000
(B.6)
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B.3 PI control

The Simulink model for the control is shown in Fig. B.4.

Fig. B.4 : Simulation block

In Fig. B.5 the display of Control Desk in the experiment is shown. The upper part

shows the frequency deviation, and in the lower part changes to the proportional gain KP

and integral gain KI, step input and disturbance input can be done.
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Fig. B.5 : Control Desk

Table B.3 shows the experimental parameters. The load fluctuation is the manual change

of the value on the variable load resistor.

Table B.3 : Experimental parameters

Parameters Value Unit

Sampling time 0.01 s

Standard frequency 50 Hz

Threshold value 100 -

Upper and lower limit of saturation ±10 V

Velocity loop compensation gain 1 -

Proportional gain KP 1 -

Integration gain KI 100 -

Size of step input 3 Hz

Size of disturbance input 10 Hz

The result is as follows. Fig. B.6 shows the frequency deviation when the variable load
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resistor is changed slowly, and Fig. B.7 shows the frequency deviation when the variable

load resistor is changed rapidly.
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Fig. B.6 : Frequency deviation

(Slow load fluctuation)
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Fig. B.7 : Frequency deviation

(Rapid load fluctuation)

In Fig. B.6, the frequency deviation is suppressed by PI control. On the other hand in

Fig. B.7, the frequency deviation is bigger than ±0.2[Hz] when a rapid load fluctuation is

added.

Fig. B.8 shows the voltage change when no control input is added.
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Fig. B.8 : Voltage

Fig. B.9 - B.10 shows the step response and disturbance response without any control

activated.
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Fig. B.9 : Step response
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Fig. B.10 : Disturbance response

In these figures, the step input is added and the disturbance input changes the frequency,

both exceeding ±0.2[Hz] safety limit.

In the future, the next step is to extend the system with another motor-generator setup

and a board to represent the network, as shown in Fig. B.11. This will move it another

step toward representing a real system, and from this more complex control methods can

be implemented.

Fig. B.11 : Appearance of the bigger system
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