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Abstract

Object recognition in images is a popular research field with many ap-
plications including medicine, robotics and face recognition. The task of
automatically finding and identifying objects in an image is challenging
in the extreme. By looking at the problem from a new angle and includ-
ing additional information beside the visual, the problem becomes less ill
posed.

In this thesis we investigate how the addition of text annotations to
images affects the classification process. Classifications of different sets of
labels as well as clusters of labels were carried out. A comparison between
the results from using only visual information and from also including in-
formation from an image description is given. In most cases the additional
information improved the accuracy of the classification.

The obtained results were then used to design an algorithm that could,
given an image with a description, find relevant words from the text and
mark their presence in the image. A large set of overlapping segments
is generated and each segment is classified into a set of categories. The
image descriptions are parsed by an algorithm (a so called chunker) and
visually relevant words (key-nouns) are extracted from the text. These
key-nouns are then connected to the categories by metrics from WordNet.
To create an optimal assignment of the visual segments to the key-nouns
combinatorial optimization was used. The resulting system was compared
to manually segmented and classified images.

The results are promising and have given rise to several new ideas for
continued research.

3



.

4



Contents

1 Introduction 7

2 Process 9
2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Multinomial Logistic Regression . . . . . . . . . . . . . . 9
2.1.2 Bag-of-words model . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 The assignment problem and the Hungarian method . . . 11

2.2 Tools and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 The segmented and annotated IAPR TC-12 dataset . . . 12
2.2.2 LIBLINEAR . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Constrained Parametic Min-Cuts for Automatic Object

Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Chunker . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Method: Exploring text-aided classification of images . . 15
2.3.2 Method: Detection of objects through text . . . . . . . . 17

3 Results 20
3.1 Results: Exploring text-aided classification of images . . . . . . . 20
3.2 Results: Detection of objects through text . . . . . . . . . . . . . 24

4 Discussion 27

5 Conclusions 30

A Appendix: Labels and clusters 31
A.1 List of 100 labels . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A.2 List of labels in the 13 clusters . . . . . . . . . . . . . . . . . . . 31

B Appendix: Classifiers 34

C Appendix: Standard deviations for Section 3.1 36

5



.

6



1 Introduction

Recognizing objects in images and in real life is something many of us do ev-
eryday. Most of the time we do it at an instant and without thinking about
it. Since humans perform this task with such ease one might easily overlook
the complexity of it. Yet today it is not fully known how the brain recognizes
objects, even though there are a number of theories that suggest models for this
process [1]. Considering this, it is easy to see why teaching a computer, or more
specifically designing an algorithm, to perform this task to the full extent is still
a challenge.

Roughly, object recognition can be said to consist of two parts: segmenta-
tion and classification. Segmentation is the process of dividing an image into
sections, e.g. finding where one object ends and another begins or separating
foreground from background. Classification is the identification of what these
sections represent.

Even though object recognition is a complex problem, huge strides have
been made in the last decades. It is a popular research field with many applica-
tions. Because of the complexity of the task, it can be approached with different
methodologies. Felzenszwalb et al [2] used a method where they divided the
image into certain regions and utilized dynamic programming to optimize the
segmentation and labeling. The method was used both on scenery and images
depicting specific objects. A restriction was that the division into regions was
done following a certain scheme of five labels (top/sky, bottom/ground, facing
left, facing right and front facing) and the objects had to have a shape prior.
Thus this method worked very well on a particular type of images but was less
satisfying on others.

Another approach was made by Taylor et al [3]. They used video instead
of single images and could thus utilize the information from all the sequential
images. By comparing consecutive images, objects moving in front of a back-
ground could be detected. Areas occluded by an object in one image were visible
in others, which helped with the otherwise often encountered problem that only
a part of an object or area is perceptible.

Chum et al [4] used a method that is usually utilized in text retrieval contexts
called query expansion. They focused on a particular object and wanted to
retrieve all occurrences of this object from a large database of images. Starting
with one query image, the visual information about the object increased as more
instances were found which aided the detection of the specified object in even
more images.

These examples illustrate the importance of limiting the research to a sub-
problem. Beside this, one must usually make assumptions about the images to
be analyzed (e.g. Felzenszwalb et al [2]) and/or take in extra information from
somewhere else (e.g. Taylor et al [3]). One method to acquire more information
than just the visual information from an image is to explore images with asso-
ciated text or annotations. This was the starting point for this master thesis.
This approach is relatively new, but there has already been progress. Moscato
et al [5] used images from the image hosting website Flickr as their database.
This system contains, besides images, also tags, keywords, annotations etc. To
classify the images they were particularly interested in visually similar images,
but where the annotations made by humans differed.

Medved et al [6] also combined images with accompanying text to improve
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classification. The focus was on human beings and horses. Images and associ-
ated articles were collected from Wikipedia. The goal was to classify the relation
between the person(s) and horse(s) in the image (e.g. ride or lead).

This thesis explores how the addition of image descriptions alters object
recognition, compared to just using information found in the image. The prob-
lem of object recognition becomes more well defined when an image description
is added, not only for an algorithm, but also for humans manually segmenting
the image. With a busy picture some might argue that each and every one of the
objects should be segmented, while others might think differently. For exam-
ple, if the picture depicts a city and is taken from an air plane, each individual
house might be barely noticeable, but to everyone looking at the picture it is
clear that it is a city, which contains a lot of buildings. With the added descrip-
tion "View of city from an airplane" it is clear that "city" is the important word
and the segment of interest would be all the buildings combined. With another
description, like "Aerial view of Paris, where Tour Montparnasse and the Eiffel
Tower can be seen", one might rather want to specify the regions where the two
buildings are located in the image respectively.

In this master thesis both text and image properties are used to find certain
objects of interest in the image. The focus was slightly different from the ex-
amples mentioned earlier. The number of different types of objects/scenery to
be classified started out quite small, at five, but was successively increased up
to 100. The larger amount of labels was also divided into a set of clusters and
these clusters were used for classification as well. The aim was to examine how
the classification changed when adding information found in an accompanying
description.

In addition to exploring the changes in classification, the results found were
also utilized. With a model trained for classification, an algorithm was con-
structed. This started with the image description and from this it sought the
relevant words in the image.

The task of identifying and classifying objects is important in a variety of
fields including medicine, robotics, face recognition and video surveillance. With
the constant advances in research, the possible fields of application expand as
well. With the added information from descriptions and keywords, classification
can be a useful tool when searching large databases of multimedia like the ever
increasing internet.

This thesis is structured in the following way. The second chapter in this
thesis goes through the actual process of the work that was done. It explains
important background concepts and theory a bit more thoroughly. It also intro-
duces the data and tools utilized. Both these parts can be seen as preparation
for the final part of the chapter, which explains the methods in action. Chapter
3 presents the results obtained using the methods and data described in chap-
ter 2. In chapter 4 a discussion about the results obtained is presented. The
used methods, improvements of these and what could be done in the future are
discussed as well. Finally, conclusions are drawn in chapter 5.
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2 Process

The work of this master thesis can be divided into two parts. In the first
section the question of how the extra information from descriptions affects object
recognition compared to just information found in the image, is investigated.
The aim was to see if the added information improved or impaired the results or
maybe did not alter them at all. The focus was especially on how the changes
in result differed among different types of objects. Different types of classifiers
were also examined and compared.

The goal of the second part was to find objects corresponding to specific
nouns in a picture. Given an image with a corresponding description, the task
was to find which words in the description were relevant and locate the corre-
sponding objects in the image.

This section presents the process of attempting to reach these goals. Firstly,
the theory behind some important concepts used is explained. Secondly, the
tools and the data used will be presented, along with explanations of their part
in the method. Lastly, section 2.3 describes how the theory was implemented
along with how the tools and data were used.

2.1 Theory

Techniques and tools used in this thesis are based on mathematical models and
models found in natural language processing. The most important ones are
introduced and explained in more detail in the following section.

2.1.1 Multinomial Logistic Regression

Logistic regression is a probabilistic statistical model used for classification.
Statistical classification is the task of labeling new observations: given a group
of different possible labels and a set of instances, each with a known label, the
goal is to correctly classify new unknown examples. Usually the term logistic
regression is employed in the case of binary classification, while multinomial
logistic regression is a generalization of logistic regression which allows more
than two possible outcomes. When using the model an assumption is made
that the features of an instance and a set of parameters linearly combined can
be used to model the probabilities that this particular instance belongs to each
of the possible labels.

The sought after value is the probability of instance i belonging to category
k, denoted p

k

= Pr(Y

i

= k). Beginning with the binary case as an example,
there are the two options, either Y

i

= 0 or Y

i

= 1, both cases have a certain
probability.

To predict the probability, a linear predictor function, here denoted f(k, i),
is used. It is defined as

f(k, i) = �0,k + �1,kx1,i + �2,kx2,i + . . .+ �

M,k

x

M,i

= �

k

· x
i

,

where �

m,k

is the regression coefficient connected to category k and feature m

and x

m,i

is the observed value of feature m for instance i. �
k

· x
i

is a more com-
pact way of writing this, using vector multiplication with �

k

= [�0,k �1,k . . . �

M,k

]

and x

i

= [1 x1,i . . . x

M,i

]. The features are numerical representations of infor-
mation for instance i. They can be both continuous or discrete variables.
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The linear probability function is also used in linear regression. The dif-
ference between these two is that while in linear regression the outcome is a
continuous variable it is not so in logistic regression, where the result is a prob-
ability. Probabilities are between 0 and 1, but the linear predictor function
f(k, i) can be any real number however, which is why the natural logarithm is
applied to the probabilities. The probabilities must sum to one, since they form
a probability distribution, which is why they are multiplied with a normalizing
constant C.

This gives
ln(C · Pr(Y

i

= 0)) = �

0

· x
i

,

ln(C · Pr(Y

i

= 1)) = �

1

· x
i

,

which, when solving for the probabilities gives

Pr(Y

i

= 0) =

e

�0·xi

C

,

Pr(Y

i

= 1) =

e

�1·xi

C

.

The normalizing constant is the sum of all the un-normalized probabilities,
C = e

�0·xi
+ e

�1·xi . With this, the sought after probabilities become

Pr(Y

i

= 0) =

e

�0·xi

e

�0·xi
+ e

�1·xi
,

P r(Y

i

= 1) =

e

�1·xi

e

�0·xi
+ e

�1·xi
.

In general the probability of instance i belonging to category k is

Pr(Y

i

= k) =

e

�k·xi

P
K

j=1 e
�j ·xi

,

when there are K categories.
The set of parameters, �

k

, are calculated from the so called training set
of instances with known labels using maximum a posteriori (MAP) estimation.
MAP utilizes the observed data to generate a probability density over the value
that is to be estimated and uses the maximum of this density for the estimation.
To read more about logistic regression, see [7].

2.1.2 Bag-of-words model

The bag-of-words model is a representation of text commonly used in natural
language processing. The occurrence of each word in the text is used as a
feature, which makes the entire collection of words in the text a feature vector
for that particular document and can be used in classification. This model does
not take grammar or word order into account, only which words are present and
how often they appear in the text. To illustrate this model an example is shown
below.
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If we start with the three sentences "Smaug is a cat", "Coffee is a delicious
beverage" and "I like coffee and I like cats", there is a total of eleven different
words. Each of these words will be given a number, which will represent their po-
sition in the feature vector. One way is to arrange them in order of appearance:
"Smaug": 1, "is": 2, "a": 3, "cat": 4, "Coffee": 5, "delicious": 6, "beverage":
7, "I": 8, "like": 9, "and": 10, "cats": 11. Using the bag-of-words model the
second sentence will correspond to the vector (0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0) and the
third to (0, 0, 0, 0, 1, 0, 0, 2, 2, 1, 1). These are the vectors that can be used for
classification. Note that "cat" and "cats" are not counted as the same feature
in this case. It is possible to apply stemming on all the words prior to creating
the feature vector. By stemming it is meant that the word is reduced to its
stem or root form. This would for instance count "cats" to the label "cat" as
well. Stemming was not practiced in this master thesis however, why the exam-
ple feature vector has eleven features instead of ten. To learn more about the
bag-of-words model see [8].

2.1.3 The assignment problem and the Hungarian method

The assignment problem is a combinatorial optimization problem. Assume there
are two sets, one which represents a number of tasks to be done and the other
represents a number of agents who can perform each task. The assignment
problem consists of assigning agents to do the tasks so that each task gets done.
However, the agents don’t do all tasks at the same cost. This is what makes it
an optimization problem. It can be mathematically formulated as follows.

Given two sets A, the agents, and T , the tasks, and a weight function C :

A⇥ T ! R, find a bijection f : A ! T such that the cost function
X

a2A

C(a, f(a))

is minimized. Thus, the problem can be formulated as
nX

i=1

nX

j=1

c

ij

x

ij

subject to the constraints
nX

j=1

x

ij

= 1, i 2 A, x

ij

2 {0, 1},

nX

i=1

x

ij

= 1, j 2 T, x

ij

2 {0, 1},

where c

ij

is the cost for agent i to do task j and x

ij

is the assignment of task j

to agent i. This is 1 if it is assigned, 0 otherwise.
A common solution to the assignment problem is the Hungarian method.

This method starts by finding the agents with the lowest cost for each task. If
some task gets more than one agent assigned to it the "next cheapest" alterna-
tive is tried out for one of the agents. This step is repeated until an optimal
assignment where all the constraints hold is reached. To read more in depth
about the Hungarian method see [9].
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In the linear assignment problem the number of agents and number of tasks
are equal, but this was not the case for the problem in this thesis as will be
shown in Section 2.3.2. The modifications done to this standard problem will
be explained there.

2.2 Tools and data

2.2.1 The segmented and annotated IAPR TC-12 dataset

The SAIAPR TC-12 dataset is a large dataset containing approximately
20 000 images and is available for download, see [10]. Besides the actual im-
ages, the dataset also contains a lot of other useful information. Probably most
important is that every image in the dataset has been manually segmented into
regions and each region has been given an appropriate label, taken from a pre-
defined vocabulary. Aside from these collection of regions, called segmentation
masks, each image also has a corresponding image description, manually writ-
ten as well. These descriptions are part of the IAPR TC-12 benchmark, which
contains the same set of images as the SAIAPR TC-12 dataset but without
the segmentations and with the added descriptions. This set is also available
for download, see [11]. A chosen set of visual properties have been calculated
for every region. These features include area, the ratio boundary/area, the
width and height of the region, the average and standard deviation in x- and y-
coordinates, convexity, average value, standard deviation and skewness in both
the RGB and CIE-lab colour space. This results in a feature vector containing
27 visual features for each segment.

This collection of images was the data used for classification. The provided
segmentation, annotation and feature vectors was used for the purpose of both
training and testing models. A new, automatic segmentation (see Section 2.2.3)
were also applied to the images and along with new calculated feature vectors
used to test the classification model.

2.2.2 LIBLINEAR

LIBLINEAR, see [12], is an open source package containing different methods
used for machine learning (statistical methods that are trained on instances and
used for classification or regression). It is written in C++, but has interfaces
in other languages as well (MATLAB among others, which was the one used
in this master thesis). Linear classification is a fast classification method when
dealing with a large number of features and data where each instance is sparse.

LIBLINEAR supports different types of support vector classification and
logistic regression for multi-class classification. Which of the classifiers that
performs the best depends on the problem and setup at hand. While all of them
were tried out in this thesis, only the one found generating the best results in
this case will be explained in more detail.

Different classifiers result in different versions of the problem formulation,
but regardless of which classifier is used, it is the unconstrained optimization
problem

min

!

1

2

!

T

! + C

lX

i=1

z(!;x

i

; y

i

)
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Figure 1: An example of an image from the dataset with the segmentation
masks and the description "A yellow parrot with light blue wings is sitting on a
branch" .
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that is solved. Here (x

i

, y

i

), i = 1, ..., l are instance label pairs. x

i

2 Rn is the
feature vector of instance i and y

i

2 K states its category belonging, were K is
the space of possible categories. ! 2 Rn are the weights to be optimized, given
the set of instance pairs. C > 0 is a penalty parameter. It is by default set to
1, but can be altered manually. z(!, x

i

, y

i

) is called the loss function and this
is what differentiate the classifiers. The first part of the problem formulation is
also switched to the 1-norm when the the classifier is L1-regularized instead of
L2-regularized.

Except for the initial testing part, mainly one classifier was used: the L1-
regularized logistic regression. When the L1-regularized logistic regression is
used, the problem to be solved is

min

!

k ! k1 +C

lX

i=1

log(1 + e

�xi!
T
yi
),

where k · k1 denotes the 1-norm. This was the classifier that was found to be
best suited for this situation.

2.2.3 Constrained Parametic Min-Cuts for Automatic Object Seg-
mentation

The Constrained Parametic Min-Cuts (CPMC) package is used for segmentation
and is free for academic use. It can be found at [13]. The algorithms contained
in the CPMC package produce a list of possible segments, given an image. The
segmentation is done without prior knowledge about what the image might
contain. All segments are given a score of how plausible they are. By plausible
is meant how reasonable it is that the specified segment represents the boundary
for e.g. an object or part of the scenery, like the sky, in the image. The score is
based on a continuous model trained to rank object hypotheses.(6)

The CPMC package was used to segment the original images from the SA-
IAPR TC-12 dataset automatically (compared to manually). The segmentation
masks were then used for classification of the targeted objects in the image.

2.2.4 Chunker

Chunking is a technique commonly used in natural language processing (NLP).
It is a lighter form of parsing, also called Shallow parsing, where a string from
either a natural or computer language is analyzed. A chunker is an algorithm
that identifies the different parts of a sentence (e.g. nouns and verbs), but does
not specify their internal relations. For instance, the output from a chunker
given the image description in Figure 1 "A yellow parrot with light blue wings
is sitting on a branch", would be "parrot", "wings" and "branch".

In this thesis the texts accompanying each image were analyzed by a chunker.
From the chunking, nouns were extracted for all the images. These nouns were
later used as a base of what objects was desirable to find in the images. This
part of the thesis was done in cooperation with a project in NLP, Computer
Sciences, LTH. To read about the chunking process in detail see Hammarlund
and Weegar [14].
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2.3 Method

As mentioned earlier, the thesis can be divided into two parts. In this section the
method for exploring text-aided classification of images, where the classification
was examined with the addition of information of descriptions, is described
first. After this the method for detection of objects through text, where given
an image and an accompanying description relevant words from the text were
found in the image, is described.

2.3.1 Method: Exploring text-aided classification of images

There are 255 different labels in the SAIAPR TC-12 dataset connected to the
segmented images. The frequency of their occurrence differs a lot, which is
illustrated in Figure 2. While the most common label in the dataset, "sky-
blue", has 5717 entries, some labels like "dragonfly" and "viola" occur only
once. Slightly more than half of the labels had less than 100 occurrences. This
put restrictions on which labels that could be used or not, since a certain amount
of examples are needed for training and testing a classifier (the exact amount is
difficult to specify, since it differs).

Figure 2: An image illustrating the number of occurrences of all the labels in
the SAIAPR TC-12 dataset. Note the log-scale on the y-axis.

First, five labels were chosen as a starting point for the model. The labels
"grass", "man", "rock", "sky-blue" and "trees" are among the most common
in the data set and were also considered different enough to avoid mix-ups or
overlapping meaning in an image (which, for example, the words "man" and
"group-of-persons" might induce). All eight classifiers included in LIBLINEAR
were tested ten times. For each label, in each classification, 1000 segments
representing this label with their accompanying 27 image features were randomly
chosen from the dataset. If more than one segment with the same label were
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chosen from the same image one of them was dismissed and replaced by a new
one. Only one instance of a specific label per image was allowed since some
pictures had a lot of the same objects.

The chosen instances were divided so that 90 % from each label were used
to train the model and the remaining 10 % were saved for testing it. The
accuracy of each classification was calculated simply as the percentage correctly
classified in the testing set. The result of the trials and how the classifiers
compared respectively can be seen in Appendix B, Figure 10. L1-regularized
logistic regression gave the highest accuracy in most of the trails, with L1-
regularized L2-loss support vector classification as a close second.

The next step was to involve the image descriptions in the classification
process. All words from all descriptions in the dataset were extracted to form a
bag-of-words model. This gave each segment in the database 6865 new features,
resulting in a total of 6892 features. The same method was applied again to
compare the different classifiers. The result can also be viewed in Appendix B,
Figure 10. Even in this test L1-regularized logistic regression gave the best
results, with L2-regularized L2-loss support vector classification (primal) and
L2-regularized logistic regression (primal) not far behind.

When the best-performing classifiers for each case had been found the result
of the classification could be examined in more detail. The classification was
done again, but this time only with the most high performing classifier. The
results were, beside the total accuracy, displayed in a confusion matrix. A
confusion matrix is a matrix were each column represents the instances classified
as a certain category, while the rows represents the instances actually belonging
to the category. Element a

ij

in the matrix represents how many instances from
category i were classified as j. The matrix is usually normalized along the rows,
making it easier to quickly see how many of a certain category were correctly
classified. By using confusion matrices the classification results for individual
labels could be studied.

The same procedure was then applied to a set of ten labels. Added to the
five ones mentioned earlier were "cloud", "ground", "group-of-persons", "vege-
tation" and "wall". In this case there were labels which could be overlapping,
e.g. "ground" and "grass", but this was partly why they were chosen: to see if
the classifier could differ between them. The result from the testing of classi-
fiers can be seen in Appendix B, Figure 11. In both cases L1-regularized logistic
regression gave the highest accuracy overall, even though other classifiers were
close.

In the third round the number of labels was increased to 100. These were
the 100 most common labels in the dataset and can be viewed in Appendix A.
Since most of these labels didn’t have 1000 occurrences among the segments,
the number of instances representing each label had to be lowered to 60. Aside
from this, the procedure carried out was the same as before and the results
are displayed in Appendix B, Figure 12. Again, both with and without bag-of-
words, L1-regularized logistic regression produced the best accuracy.

In the group of 100 labels there was a lot of similarity and overlapping
meaning among the words. For example, among the most common labels were
"sky", "sky-blue" and "sky-light". When looking at the pictures it became clear
that what was labeled "sky-blue" in one image, was labeled "sky" in another.
The fact that these unclear lines obstruct the classification process gave birth to
the idea that the labels could be divided into clusters before classification took
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place.
A few different set of clusters were tried out, with varying results. The

clustering found most successful were based on the accompanying hierarchy of
all labels in the SAIAPR TC-12 dataset. This resulted in clusters with similar
labels and would by a human be considered as "natural" groups. The size of
the groups was also taken into account, with the aim to make them as equally
sized as possible. In some cases there was a trade off between equal size and
natural groups. Four out of the 100 labels did not fit into any of the clusters
naturally and were therefore discarded. This gave in total 96 labels divided into
13 clusters. The resulting division can be seen in Appendix A.

The classifiers were tried out on the 13 clusters as well and the outcome of
this can be found in Appendix B, Figure 13. As these figures show, even here
L1-regularized logistic regression performed the best.

When the best performing classifier had been chosen it was used to create a
confusion matrix for each case. The classification was done using 10-fold cross
validation, where the confusion matrix shows the mean value from these classifi-
cations. With these matrices showing how accurate each label was classified the
results could be studied in more detail. The matrices can be found in Section 3.

2.3.2 Method: Detection of objects through text

The aim in the second part of the project was to construct an algorithm that
given text and an automatically segmented image could find the relevant words
in the image with a classifier pretrained on the 13 clusters. As mentioned earlier,
given an image, the number of relevant objects to find is a matter of subjectivity.
However, with a fixed text describing the image the number of relevant objects
can be decided objectively, by using the text as a starting point.

The relevant words, or key-nouns, were extracted from the text with a chun-
ker. Figure 3 shows an image from the database with its accompanying text.
Even though there are backpacks on the shelf in the background, they are not
present in the text and therefore impossible to choose as key-nouns. The pro-
cess of classification was made with the 13 clusters to choose from. The relevant
words from the text are often not one of these. This required a connection
between the key-nouns and the clusters. WordNet is an online lexical database
for the English language where for instance different metrics between words can
be calculated. This was done between each of the extracted key-nouns and each
of the cluster names, resulting in a similarity matrix containing all the metrics.
To read more about WordNet and the metrics see [15].
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Figure 3: An image from the SAIAPR TC-12 dataset with the accompanying
text "a woman with a red cloth on her head on a train". The words "woman"
and "cloth" can be found both in the text and in the image, but the backpacks
on the shelves are not mentioned in the text and are therefore not chosen as
key-nouns.

Since the goal was to make the whole process as automatic as possible algo-
rithms from the CPMC package were used to find segments in the images. At
this stage, there was no information about what was to be found in the picture.
The result was 500-1000 overlapping segments that the algorithm found more
or less plausible as segments. All of the segments were classified using logistic
regression. For each segment, the probabilities that it represented each of the
different clutsers could hence be retrieved. Again, the information was stored in
a matrix, called the segment matrix, which had the size the number of extracted
segments for the given image times number of clusters.

The next step was to combine the similarity matrix with the segment matrix
by multiplying them. The result, called the probability matrix, gives the prob-
ability that a certain segment represents a certain key-noun, for all segments
and all key-nouns. The logarithm of the values in the probability matrix was
used, since we can use addition instead of multiplication for the probabilities.
This simplifies calculation, but the optimized result is the same. From all these
probabilities, the segments best suited for each of the key-nouns in the current
image was to be found. To do this, an optimization algorithm that solves an
altered version of the assignment problem was used. The number of key-nouns
to be found was between 2 and 17, thus much lower than the number of seg-
ments. This was the reason for an altered version of the assignment problem.
All of the key-nouns need to be assigned to one segment, but all segments do
not correspond to a word. An extra category was introduced which could hold
all segments without an assigned word. Also, each segment was only allowed to
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be assigned to one word.
Some of the relevant words were often not possible to find in the image either,

e.g. ’view’. Therefore an extra category was introduced among the segments as
well, where words that were by the chunker considered relevant, but to abstract
to be visually relevant. Assume there are X segments and Y key-nouns. The
number of agents is X+1, with all agents having the supply 1 except one which
has supply Y . The number of tasks is Y + 1, with all tasks having the demand
1, except one which has demand X � Y .

For validation of the classification a number of images were manually an-
notated with respect to the key-nouns. These were used as ground truth to
compare with the system’s annotated segments. In total there were 466 rele-
vant words, where both the system and the human annotator found a segment.
The evaluation was then done using a Jaccard index. The Jaccard index is
defined by

J(A,B) =

| A \B |
| A [B | ,

where A is the set of pixels for the ground truth mask and B is the set of pixels
in the mask produced by the system.

Another approach was also carried out where WordNet was not used to con-
nect the relevant words with the clusters, but instead each word was manually
assigned a cluster. Again the extra category for words not possible to find was
present. With this approach it was possible to get a better understanding of
how the classification process worked, without being compromised by possible
errors from the generated connections. This however came at the cost of making
the process less automated.

While the set of automatically generated segmentations was used for the
classification task, the process of generating the possible segments automatically
was not altered in this project. With this in mind, it was also of interest to try
the classification without interference from potential faults in the segments. If,
for instance, there is no exact match between the manual and the automated
segmentation the result can never be 100% correct, even though the best segment
of the ones available is chosen. Thus, in this approach the segment from the
CPMC pool most resembling the manually annotated ground truth segment
was chosen as the new ground truth. Since the classification was the work of
this project, this approach gave a better insight to how well it worked, given
"optimal" segments.
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3 Results

3.1 Results: Exploring text-aided classification of images

Below are the confusion matrices for 5, 10 and 100 labels as well as 13 clusters.
Both when only image features were used and when they were used together
with bag-of-words are displayed. In each case the classifier that performed the
best in the test of all classifiers was used to produce the matrix. In the case of
100 labels the results are presented in a colored surface plot instead, to give a
better overview. Appendix C contains the standard deviations for the 10-fold
cross validation in each case.

grass man rock sky-blue trees

grass 69 6 12 2 11

man 3 80 10 3 5

rock 7 10 72 2 8

sky-blue 2 3 3 90 2

trees 12 7 10 3 68

Table 1: Confusion matrix for the recognition of 5 labels with image features,
estimated with 10-fold cross validation. Accuracy: 75.8.

grass man rock sky-blue trees

grass 73 6 9 3 10

man 4 85 6 3 3

rock 8 8 77 2 5

sky-blue 3 3 2 90 2

trees 12 4 4 3 78

Table 2: Confusion matrix for the recognition of 5 labels with image features
and bag-of-words, estimated with 10-fold cross validation. Accuracy: 80.5.

cloud grass ground g.o.p.* man rock sky-blue trees vegetation wall

cloud 77 1 2 2 2 2 8 2 1 3

grass 2 54 13 4 4 4 1 6 6 6

ground 3 6 63 4 2 13 1 1 1 6

g.o.p.* 1 2 4 67 14 5 1 2 0 4

man 2 2 2 13 66 5 1 2 1 5

rock 3 3 25 6 7 38 1 5 3 10

sky-blue 11 1 1 1 2 2 79 2 0 2

trees 2 9 4 5 6 4 1 45 20 5

vegetation 1 15 4 2 4 4 1 22 42 5

wall 7 4 6 5 10 8 3 5 3 49

Table 3: Confusion matrix for the recognition of 10 labels with image features,
estimated with 10-fold cross validation. Accuracy: 58.5 . *group-of-persons
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cloud grass ground g.o.p.* man rock sky-blue trees vegetation wall

cloud 75 3 2 2 2 1 11 2 1 1

grass 3 56 12 3 4 4 2 6 10 3

ground 3 9 62 3 3 12 1 2 3 3

g.o.p.* 1 2 2 70 11 3 1 2 1 7

man 2 2 2 12 65 5 1 2 1 8

rock 3 4 18 3 6 53 1 2 5 4

sky-blue 11 2 1 1 1 1 79 2 0 1

trees 2 7 2 4 2 2 1 64 16 1

vegetation 2 14 4 2 3 5 1 15 53 2

wall 2 2 3 7 9 3 1 1 2 68

Table 4: Confusion matrix for the recognition of 10 labels with image fea-
tures and bag-of-words, estimated with 10-fold cross validation. Accuracy: 64.3.
*group-of-persons

Figure 4: The results from 10-fold cross validation for 100 labels with image
features. The mean confusion matrix is illustrated with a plot. Note that over
half of the values in the confusion matrix are strictly below 15 %. Accuracy:
19.5%.
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Figure 5: The results from 10-fold cross validation for 100 labels with image
features and bag-of-words. The mean confusion matrix is illustrated with a
plot. Note that half of the values in the confusion matrix are strictly below 25
%. Accuracy: 31.5 %.

water sky veget. constr. human h.o.* ground animal vehicle mount. road floor fabrics

water 38 6 8 17 2 22 4 0 0 0 1 0 0

sky 4 56 4 12 1 17 2 0 0 2 1 0 0

veget. 3 3 46 12 5 29 2 0 0 0 0 0 0

constr. 3 6 14 37 6 31 2 0 0 0 1 0 0

human 2 3 9 10 24 50 1 0 0 1 0 1 1

h.o.* 3 3 10 12 6 64 1 0 0 0 0 1 0

ground 15 5 11 19 1 22 23 0 0 0 3 1 0

animal 3 5 13 25 5 43 3 0 0 0 1 0 0

vehicle 5 5 11 14 12 48 3 0 1 1 0 0 0

mount. 16 7 10 18 3 22 1 0 1 23 0 0 0

road 20 5 9 12 6 30 11 0 1 2 3 1 0

floor 16 1 6 12 3 35 9 0 0 0 2 18 0

fabrics 5 3 10 14 15 50 1 0 1 0 0 1 1

Table 5: Confusion matrix for the recognition of the 13 visual categories with
image features, estimated with 10-fold cross validation. Accuracy: 36.3. *house
object
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water sky veget. constr. human h.o.* ground animal vehicle mount. road floor fabrics

water 59 6 7 3 3 4 5 1 5 5 2 0 1

sky 7 53 7 12 2 6 3 2 1 3 1 1 1

veget. 4 3 54 13 6 11 2 1 2 1 2 0 0

constr. 2 3 12 50 5 19 1 1 2 0 2 1 2

human 3 2 6 8 47 24 1 2 3 1 1 1 3

h.o.* 1 2 5 11 9 65 0 1 1 0 2 2 2

ground 16 5 13 7 1 3 40 1 2 4 7 1 0

animal 5 5 10 13 3 9 1 48 2 0 3 0 2

vehicle 10 3 9 9 9 11 1 1 37 1 8 0 2

mount. 23 7 10 5 3 0 9 3 2 33 5 0 0

road 5 2 9 22 5 10 10 1 5 2 26 1 1

floor 2 1 5 16 6 46 1 0 2 0 2 17 2

fabrics 1 2 5 12 19 46 0 1 1 0 0 1 12

Table 6: Confusion matrix for the recognition of the 13 visual categories with
image features and bag-of-words, estimated with 10-fold cross validation. Ac-
curacy: 49.2. *house object

23



3.2 Results: Detection of objects through text

The Jaccard indices were 0.09 (automatically connected words and clusters),
0.15 (manually connected words and clusters) and 0.53 (optimal CPMC segment
choice).

Figure 6 shows the Jaccard indices for the classification, both when the
connections between words and clusters were done manually and when they
were done automatically. It also displays the approach were segments from the
CPMC pool were chosen as ground truth instead of the manually annotated
ones.

Figure 7 shows an image where segmentation was done and which regions
that were chosen by the system as the representation of the words. Figure 8 also
displays some of the classified segments. In some cases the algorithm produced
segments that were more correct than the manually annotated ground truth.
This can for example be seen with the second segment ("sky") in Figure 8.
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Figure 6: Jaccard index for each of 466 segmented key-noun regions and cor-
responding ground truth segmentation. System 1 is the result for manual cor-
respondence between words and visual categories. System 2 is the result using
calculated distances between words and visual categories using WordNet. The
blue dash-dotted line is the result if one could, for each key-noun, select the
optimal segment among the pool of segments from the CPMC segmentation.
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Figure 7: Results of segmentation and recognition of the words waterfall, jungle,
pool and water from the annotation A cascading waterfall in the middle of the
jungle; front view with pool of dirty water in the foreground. To the left is shown
ground truth segmentation with corresponding key-noun. To the right is shown
the system output with the matching score according to the Jaccard index.
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Figure 8: Results of segmentation and recognition of the words ’Houses’, ’Sky’,
’Jungle’, ’Pullover’, ’Pool’. Left column shows the manually segmented ground
truth segmentations together with the corresponding key-noun. Right column
shows the response from the system described in the paper, together with the
matching score of the Jaccard index.
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4 Discussion

In all of the trials with different numbers of labels or clusters, the total accuracy
improved with the addition of a bag-of-words model. If the confusion matrices
are studied in detail it becomes clear that some labels improved more than
others. Certain labels’ accuracy actually decreased with the addition.

In the case of five labels the classification process gave decent results even
when only image features were used. The low number of categories and each
category’s distinctive visual features compared to one another, decreased po-
tential overlapping of concepts. The large number of instances, which resulted
in a larger training set, of each category probably also helped the classification.
The only category that did not improve by adding the information from text
was "sky-blue". When looking at manually written descriptions of images it
becomes clear that concepts like "sky" tend to not be mentioned, unless some-
thing out of the ordinary is happening with it, like a beautiful sunset. The word
"sky" is something that is part of the background in most images and a human
annotator focuses more on mentioning e.g. a "man". If, for instance, it becomes
clear from the description that the setting is outdoors, the mentioning of "sky"
might seem redundant to a human. The categories that had a tendency to be
wrongly classified were "grass" as "trees" and vice versa. Both being a type of
vegetation this is understandable.

When adding five labels, the distinction between the labels became a little
less clear. Most of the labels did not change significantly when the extra features
were added. The features that did however were "rock", "trees", "vegetation"
and "wall", which all improved with the additional features. Meaning that the
ones that did not change significantly were "cloud", "grass", "ground", "group-
of-persons", "man" and "sky-blue". The labels "cloud", "grass", "ground" and
"sky-blue" could all be considered as often belonging to the background and
with the idea presented when discussing the five labels case, their unaltered
accuracy seems reasonable. More surprising is the fact that "group-of-persons"
and "man" did not improve much. These two categories had a tendency to be
classified as each other though, which might have complicated the classification.
A man can obviously be a part of a group of persons, which raises the question if
it even should be considered completely wrong to classify a group of persons as
"man". Along the same line it is worth mentioning the high number of instances
labeled "rock" that were classified as "ground", both with and without the bag-
of-words model. If a small rock lies on the ground, should it be classified as
"rock" or "ground"? This is a matter of subjectivity. It became clear already
at ten labels that distinguishing categories visually enters philosophical territory
and can be difficult even for a human.

With 100 labels the number of labels with a similar meaning increased a
lot, along with difficulties in distinguishing them. In most cases the probability
of a label being correctly classified was low. There were a few labels that got
high scores though. Interestingly the labels with high scores when only image
features were used were not the same as the ones with high scores when they were
used in combination with a bag-of-words model. In the first case, when image
features were used, "seal", "sky-light", "sky-night" and "sky-red-sunset-dusk"
were the four labels with over 65% of their instances correctly classified. In the
second case with the bigger feature vector the labels with highest accuracy were
"horse", "llama", "seal", "snow" and "waterfall", all of which had an accuracy
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higher than 75%. The only one of the labels in the first case with an accuracy
higher than 75% was "sky-night".

For some labels adding the bag-of-words model really changed their accu-
racy. The biggest improvement could be seen with the labels "bicycle", "bird",
"horse" and "llama". All of them had an increase of more than 50 percentage
points. As a contrast to this, "cloud", "curtain", "face-of-person", "mountain"
and "painting" decreased with more than 15 percentage points. The labels with
a high increase are words that are specific: if the word "llama" is mentioned in
the text the probability of the word meaning something else than the animal
llama is low. Also, if an image contains a llama (or another animal for that
matter) it will probably be mentioned in the description, since it is the type of
thing humans tend to focus on.

The overall lower accuracy obtained with 100 labels is probably not only due
to the overlapping concepts, but also to the fact that only 60 instances of each
label were used, compared to 1000 instances for five and ten labels.

When classifying the 13 clusters, the variation among the instances in each
category was bigger than before, since each category contained a set of different
labels. This resulted in very low accuracy for some categories when only image
features were used. All of them had a high tendency to be classified as "house
objects". This category contains a high number of labels compared to some
of the others, which probably trained the classifier to assume a lot of different
segments were a part of this cluster. With the added bag-of-words model almost
everyone of the categories improved significantly. Most improvement could be
seen in the clusters "vehicle" (which went from 1% to 37%) and animal (which
went from 0% to 48%).

What can be said about the confusion matrices for 13 clusters is that the
labels in some clusters probably not were that similar visually, but more so
conceptually. The, in most cases, much improved result when adding a bag-of-
words model would support this.

The aim of the second part of the thesis, to design an algorithm that could,
given an image with a description, find key-nouns from the text and mark their
presence in the image, was fulfilled. An automatic version was constructed, but
to test the actual classification process some manual adjustments were made as
well. Considering all the steps taken in the algorithm the final result of the Jac-
card indices are not bad. When constructing the algorithm many questions were
raised and decisions concerning design had to be made. One of the paramount
decisions being the clustering of the labels. Even though different types of clus-
tering were tested, there are obviously a lot more to try out! It is important
to mention that when constructing the clusters the accuracy from classification
trials was not what they were based on. It would be possible to do "optimal
clusters" and only look at the accuracy rates. However, that would adapt the
algorithm a little too well to this particular data set. If other images were to be
included the results might not be valid at all.

Another problem with clustering labels together arises when we for instance
have a picture with a bear and a dog, both mentioned in the description. Both
belong to the category "animals" and if the classification process works alright
that is what they will be classified as. There is no distinction made in the
algorithm between the two words "bear" and "dog", meaning that the two
animal segments and the two animal words will be randomly assigned. Still,
the human annotator, and thus the ground truth, do distinguish between the
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Figure 9: Two segmented images from the SAIAPR TC-12 data set. The right-
most one has been manually segmented with more detail.

two. Thus, the result might be wrong, even though the classifier did everything
right. This problem would be something to look into in the future if the work
was continued.

A drawback when it comes to the training process of the classifier is the
quality of the manually segmented images in the data set. The problem is that
the details of the segmentations are not consistent. In Figure 9 two different
segmented images from the data set are shown. The leftmost one only have
three regions: two "trunk" and one "vegetation" describing the bottom half of
the image. The sky and the remaining trees do not have a segment. In the
right image all parts have been assigned a segment, even the clouds each get an
individual segment.

Deciding what is ground truth in an image is also a matter of subjectivity.
In the introduction the example of the view of a city was made. Regardless
of how one decides to do the segmentation (e.g. seen as a "city" or separating
the regions between the individual houses), it is important to be consistent to
obtain optimal results from the classification.

In Hammarlund and Weegar [14] connections between words were extracted.
If the description was "A hole in the ground" the preposition "in" links the two
key-nouns "hole" and "ground". This could give a lot of extra useful informa-
tion in the classification process. Instead of just stating that there is a hole
somewhere in the picture, it is established that this object is also connected to
the other key-noun "ground". With this information extra restrictions are put
on the segments that should represent "hole" as well as "ground".

Another opportunity for future work would be to look into the visual features
used. These were predefined in the SAIAPR TC-12 dataset and had already
been calculated for all the images. If given time they could be tested individually
to see if it was possible to discard some and/or find new visual features to add
to the feature vector.
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5 Conclusions

Classification of objects with only access to visual information was compared to
classification when information found in an accompanying text made by a human
annotator also was available. In general the information found in image descrip-
tions improved object classification. Labels that did not improve significantly
were typically the type of objects traditionally included in the background.

An algorithm that classifies objects in an image with starting point in an
image description was developed. When the process was less automated the
results improved. However, with further research it is possible the results will
improve, while still keeping the system automatic.

The results presented in this thesis have given rise to several new ideas for
continued research.
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A Appendix: Labels and clusters

A.1 List of 100 labels

A list of the 100 labels:
sky-blue, man, group-of-persons, ground, grass, cloud, rock, vegetation, sky,
trees, wall, woman, mountain, ocean, sky-light, window, building, tree, per-
son, couple-of-persons, floor, house, car, face-of-person, street, fabric, plant,
hat, hill, sand-beach, lamp, sidewalk, floor-other, city, river, door, chair, bush,
bed, public-sign, bottle, child-boy, table, palm, water, wooden-furniture, lake,
child-girl, painting, snow, cloth, trunk, highway, glass, fence, ruin-archeological,
church, bicycle, sand-dessert, wood, curtain, head-of-person, roof, branch, dish,
flag, boat, road, stairs, column, floor-wood, non-wooden-furniture, edifice, hut,
sky-night, kitchen-pot, cactus, horse, water-reflection, hand-of-person, paper,
generic-objects, sky-red-sunset-dusk, statue, waterfall, plant-pot, leaf, bird, seal,
handcraft, llama, construction-other, flower, fruit, castle, flowerbed, fountain,
ship, umbrella, monument

A.2 List of labels in the 13 clusters

The division of 96 labels into 13 clusters and the four discarded labels:

water
water
water-reflection
lake
ocean
river
waterfall
snow

sky
cloud
sky
sky-blue
sky-light
sky-night
sky-red-sunset-dusk

vegetation
fruit
vegetation
cactus
flowerbed
flower
plant
leaf
trees
branch
trunk
bush
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palm
tree

construction
construction-other
edifice
column
roof
stairs
wall
ruin-archeological
building
castle
church
house
hut
monument
fountain
statue

human
couple-of-persons
group-of-persons
person
face-of-person
hand-of-person
head-of-person
child-boy
child-girl
man
woman

house objects
bed
chair
door
fence
non-wooden-furniture
wooden-furniture
table
window
handcraft
painting
generic-objects
lamp
paper
plant-pot
public-sign
bottle
glass
hat
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kitchen-pot
umbrella

ground
ground
sand-beach
sand-dessert
grass

animal
bird
horse
llama
seal

vehicle
bicycle
car
boat
ship

mountain
mountain
hill

road
road
highway
sidewalk
street

floor
floor
floor-other
floor-wood

fabrics
fabric
cloth
curtain
flag

discarded:
rock
dish
wood
city
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B Appendix: Classifiers

The classifiers used in the testing were:
classifier 1: L2-regularized L2-loss support vector classification (dual)
classifier 2: L2-regularized L2-loss support vector classification (primal)
classifier 3: L2-regularized L1-loss support vector classification (dual)
classifier 4: support vector classification by Crammer and Singer
classifier 5: L1-regularized L2-loss support vector classification
classifier 6: L1-regularized logistic regression
classifier 7: L2-regularized logistic regression (dual)
classifier 8: L2-regularized logistic regression (primal)

Figure 10: The eight classifiers included in LIBLINEAR were tested ten times
each on five labels from the data set. The picture to the left depicts when only
image features were used, while the image to the right shows when both image
features and bag-of-words were used. Classifier 6 was found to give the highest
accuracy.

Figure 11: The eight classifiers included in LIBLINEAR were tested ten times
each on ten labels from the data set. The picture to the left depicts when only
image features were used, while the image to the right shows when both image
features and bag-of-words were used. Classifier 6 was found to give the highest
accuracy.
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Figure 12: The eight classifiers included in LIBLINEAR were tested ten times
each on 100 labels from the data set. The picture to the left depicts when only
image features were used, while the image to the right shows when both image
features and bag-of-words were used. Classifier 6 was found to give the highest
accuracy.

Figure 13: The eight classifiers included in LIBLINEAR were tested ten times
each on 13 clusters constructed from labels from the data set. The picture to
the left depicts when only image features were used, while the image to the right
shows when both image features and bag-of-words were used. Classifier 6 was
found to give the highest accuracy.
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C Appendix: Standard deviations for Section 3.1

grass man rock sky-blue trees

grass 3 2 3 1 3

man 2 2 3 1 2

rock 3 3 4 2 3

sky-blue 1 2 1 3 2

trees 2 2 4 1 4

Table 7: Standard deviation for the 10-fold cross validation with image features
of the 5 labels.

grass man rock sky-blue trees

grass 4 2 3 1 4

man 2 3 3 1 2

rock 2 3 4 1 2

sky-blue 2 1 1 4 2

trees 3 1 3 2 3

Table 8: Standard deviation for the 10-fold cross validation with image features
and bag-of-words of the 5 labels.

cloud grass ground g.o.p.* man rock sky-blue trees vegetation wall

cloud 4 1 1 2 1 1 2 1 1 1

grass 1 5 3 2 2 2 1 2 2 3

ground 2 2 4 2 2 4 1 1 1 3

g.o.p.* 1 2 2 5 3 3 1 1 1 2

man 1 1 2 2 4 1 1 1 1 2

rock 1 1 4 2 3 5 1 2 2 3

sky-blue 3 1 1 1 1 2 5 2 0 2

trees 1 3 2 2 2 3 1 5 4 2

vegetation 1 2 2 2 1 2 1 2 2 2

wall 3 2 2 2 2 3 2 1 1 5

Table 9: Standard deviation for the 10-fold cross validation with image features
of the 10 labels. *group-of-persons

cloud grass ground g.o.p.* man rock sky-blue trees vegetation wall

cloud 6 2 1 1 1 1 4 1 1 1

grass 2 5 4 1 2 2 1 3 3 2

ground 2 2 5 1 2 4 1 1 2 2

g.o.p.* 1 1 1 7 3 1 1 2 1 3

man 1 1 1 4 5 2 1 1 1 2

rock 2 2 4 2 4 7 0 1 3 3

sky-blue 2 1 1 1 1 1 4 2 1 1

trees 1 3 1 1 1 1 1 4 4 1

vegetation 1 3 2 1 2 2 1 4 3 1

wall 1 2 2 3 3 2 1 1 1 6

Table 10: Standard deviation for the 10-fold cross validation with image features
and bag-of-words of the 10 labels. *group-of-persons
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Figure 14: The standard deviation from 10-fold cross validation for 100 labels
with image features, illustrated with a plot.

Figure 15: The standard deviation from 10-fold cross validation for 100 labels
with image features and bag-of-words, illustrated with a plot.

37



water sky veget. constr. human h.o.* ground animal vehicle mount. road floor fabrics

water 2 1 2 2 1 4 1 0 0 0 1 0 0

sky 1 2 1 2 1 2 1 0 0 1 0 0 0

veget. 2 1 4 3 3 2 1 0 0 0 0 0 0

constr. 1 1 5 3 3 3 1 0 0 1 1 1 0

human 1 1 2 2 3 4 0 0 0 1 0 0 0

h.o.* 2 2 3 5 2 6 1 0 0 0 1 1 0

ground 1 1 2 3 0 2 2 0 0 0 1 1 0

animal 1 1 1 2 1 2 1 0 0 0 0 0 0

vehicle 1 1 1 2 2 2 1 0 1 0 0 0 0

mount. 1 1 1 1 0 1 0 0 0 1 0 0 0

road 3 1 1 1 1 2 2 0 0 1 1 0 0

floor 2 0 1 1 1 2 2 0 0 0 1 2 0

fabrics 1 1 1 1 1 2 0 0 0 0 0 0 0

Table 11: Standard deviation for the 10-fold cross validation with image features
of the 13 visual categories. *house object

water sky veg. constr. human h.o.* ground animal vehicle mount. road floor fabrics

water 4 1 2 1 2 1 1 1 2 1 1 0 0

sky 1 2 1 2 1 1 1 1 1 1 1 0 1

veg. 2 1 5 3 3 3 1 1 1 1 1 0 0

constr. 1 2 4 3 2 3 1 1 1 0 2 1 1

human 1 1 2 2 4 3 0 1 2 1 1 0 1

h.o.* 1 1 2 4 3 5 1 1 1 0 1 1 2

ground 2 1 1 1 0 1 2 0 1 1 1 0 0

animal 1 1 2 2 1 1 0 3 1 0 1 0 1

vehicle 2 1 1 1 1 1 1 1 2 1 1 0 1

mount. 2 1 0 1 0 0 1 1 1 2 1 0 0

road 1 1 1 3 1 1 2 0 1 1 2 0 1

floor 1 1 1 1 1 3 0 0 0 0 0 2 0

fabrics 0 1 1 1 2 1 0 0 0 0 0 0 1

Table 12: Standard deviation for the 10-fold cross validation with image features
and bag-of-words of the 13 visual categories. *house object
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