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Abstract

The aim of this study is to analyze whether the presence of weed species resistant to
herbicides is related to spatial-landscape heterogeneity. Additionally, Habitat Suitability
(HS) models are tested to evaluate their presence. Weed species, Chenopodium album,
Conyza canadensis, Amaranthus retroflexus, Papaver rhoeas, Sorghum halepense,
Echinochloa crus-galli and Lolium rigidum, most of them common in two biogeographical
regions of the European area, the Mediterranean, and the Continental, are used for the
study. The corresponding countries selected, fitted in the differing bioclimatic conditions,
are Greece and Germany. Given the difficulties of field-based data collection, and the
availability of satellite-derived data, such as those derived from the Landsat, the use of
remote sensing for estimating spatial heterogeneity is regarded as a powerful tool.
Hence, the Normal Difference Vegetation Index (NDVI) is used as a data source for
comparing species presence and spatial heterogeneity. In order to test relationships of
species presence with NDVI, a number of regression models, such as Ordinary Least
Square (OLS) and Logistic regression are tested. Further, Rank - abundance diagrams
and Variograms of NDVI values are computed to detect spectral and hence spatial
heterogeneity around species. Concerning HS models, since many available datasets do
not provide reliable information about species absences, a model that is used to
evaluate Habitat Suitability, by using presence only data is BIOMAPPER. Finally, so as
to make predictions of species future distribution, based on bioclimatic data,
OpenModeller software and GARP analysis are used. Most of the landscape area
around species observation points is highly heterogeneous. The highest spectral
variability is recorded around P. rhoeas, according to Variograms. Moreover, OLS
regression results were not statistically significant. However, according to Logistic
regression method, most of the species studied are related with low NDVI values, except
from P. rhoeas in Germany related strongly with medium and dense vegetated areas.
Studying species marginality through HS models, almost all weed species neither prefer
to live in a wide range of conditions nor to be specialists in their environment, with the
exception of P. rhoeas that tends to live in less marginal habitats. Additionally, the core
factors affecting species habitat in Greece are mainly mean temperature, and
secondarily annual precipitation, whereas the main factor is altitude for species in
Germany followed by bioclimatic conditions. Concerning, species distribution in future
climatic conditions, there is a general tendency of species moving to higher altitudes,
minimizing their population size. However, in Germany, C3 summer annual weeds, such
as C. album and C. canadensis seem to be tolerant to climatic changes, and expand to
new territories. Commonly in Greece, the distribution of winter annual C3 weeds, such as
L. rigidum and P. rhoeas is promoted by climatic changes. Concluding, the response of
species range due to climatic changes, seems to be species-specific, but also related to
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bioclimatic factors. Further study is needed to come up with prediction models of weed
species future distribution.

Keywords: GIS; NDVI; Regression Analysis; Habitat Suitability-Biomapper; Spectral-
Spatial Heterogeneity models; GARP models; Herbicide Resistant Weeds; Climate
Change
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1. Introduction

1.1 Background
The aim of the study is to exploit methods of relating species presence with landscape
heterogeneity and environmental variables using remote sensing data. For this study,
the Normalized Difference Vegetation Index (NDVI) was used. The novelty of this study
is that this is the first attempt to relate NDVI with species presence.

A few attempts have been made in other studies to relate NDVI with species abundance
or richness. Seto et al. (2004) reported the potential of predicting species richness using
single-date Normalized Difference Vegetation Index (NDVI) derived from Landsat
Thematic Mapper (TM). They used NDVI as an indicator of vegetation productivity, and
examine the relationship of three measures of NDVI—mean, maximum, and standard
deviation—with patterns of bird and butterfly species richness at various spatial scales.
Results of this study, indicate a positive correlation, but with no definitive functional form,
between species richness and productivity. Moreover, Oindo and Skidmore (2002),
examined the relationship between interannual maximum NDVI parameters and species
richness of vascular plants and mammals. Statistical analyses revealed that higher
average NDVI, results in lower species richness. Further studies have also been done to
relate NDVI with plant species richness, and the results were positive (Gillespie 2006;
Levin et al. 2007; Parviainen et al. 2009). Finally, a number of researchers have used
NDVI to model the interdependence of spectral heterogeneity and NDVI (Garrigues et al.
2006; Rocchini and Vannini 2010; Hall et al. 2012). Therefore, part of this study attempts
to create spatial models relating spatial and spectral heterogeneity with species
presence, using NDVI. For this reason, a number of different models, such as Habitat
Suitability (HS) models, Rank - abundance diagrams, Spatial Variograms, Weight of
Evidence (WofE), Ordinary Least Square models and Logistic Regression models were
applied and evaluated.

The species used for this study were weeds resistant to herbicides. Evaluating the effect
of environmental and bioclimatic conditions on these weed species is another novelty of
the study. Their distribution was analyzed into two differing biogeographical areas
Greece and Germany, characterized by Mediterranean and Continental climate,
correspondingly. Despite the fact that these two regions have different bioclimatic
conditions, most of the species studied are found in both countries.

A last attempt of this thesis was to asses weed risk expansion owing to changing climate.
Therefore, projections of the climatic conditions of 2020 and 2050 were applied and the
prediction of species distribution in future conditions was also studied by applying
Genetic Algorithm for Rule-Set Production (GARP) models.
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1.1.1 Weeds resistant to herbicides
The species studied are weeds resistant to herbicides. The evolution of weed
populations resistant to herbicides is an increasing problem in many countries. Herbicide
resistance can be defined as “the inherent ability of a weed to survive a rate of herbicide
which would normally result in effective control” (Moss 2002). Resistance is an
evolutionary process, whereby a population changes from being susceptible to being
resistant. The process does not happen to individuals, but to populations, when the
proportion of resistant individuals within the population increases over time (Moss 2002).
The main factors influencing the resistant are agronomics. More specifically, herbicide
resistance of weeds have occurred in cases where the same herbicides (or herbicides
with the same mode of action) have been used repeatedly over a period of years, usually
associated with intense agricultural or horticultural systems involving crop monoculture
and minimum tillage systems, in which herbicides have been relied upon to achieve high
levels of weed control. Herbicide resistance has been evolved within crops. The most
severe and widespread problems have occurred in maize, cereal and rice crops.
Additionally, herbicide resistance has also evolved in non-cropping situations, such as
roadsides and railways, following intensive use of herbicides (Moss 2002).

1.1.2 C3 and C4 photosynthetic pathways and plants
In all plants CO2 is fixed by the enzyme Rubisco. It catalyzes the carboxylation of
ribulose-1,5-bisphosphate, leading to two molecules of 3-phosphoglycerate. Instead of
CO2, Rubisco can also add oxygen to ribulose-1,5-bisphosphate, resulting in one
molecule each of 3-phosphoglycerate and 2-phosphoglycolate. Phosphoglycolate has no
known metabolic purpose and in higher concentrations it is toxic for the plant (Anderson
1971). It therefore has to be processed in a metabolic pathway called photorespiration.
Photorespiration is not only energy demanding, but furthermore leads to a net loss of
CO2. Thus the efficiency of photosynthesis can be decreased by 40% under unfavorable
conditions including high temperatures and dryness (Ehleringer et al. 1991). Plants
developed different ways to cope with this problem. Perhaps the most successful
solution was C4 photosynthesis (Gowik and Westhoff 2011).

The establishment of C4 photosynthesis includes several biochemical and anatomical
modifications that allow plants with this photosynthetic pathway to concentrate CO2 at
the site of Rubisco. Thereby its oxygenase reaction and the following photorespiratory
pathway are largely repressed in C4 plants. In most C4 plants the CO2 concentration
mechanism is achieved by a division of labor between two distinct, specialized leaf cell
types, the mesophyll and the bundle sheath cells, although in some species C4

photosynthesis functions within individual cells (Edwards et al, 2004). Since Rubisco can
operate under high CO2 concentrations in the bundle sheath cells, it works more
efficiently than in C3 plants (Oaks 1994). Additionally, C4 plants exhibit better water-use
efficiency than C3 plants. Because of the CO2 concentration mechanism they can
acquire enough CO2 even when keeping their stomata more closed. Thus, water loss by
transpiration is reduced (Long 1999). Therefore, the C4 photosynthetic carbon cycle is an
elaborated addition to the C3 photosynthetic pathway. It evolved as an adaptation to high
light intensities, high temperatures, and dryness (Edwards et al. 2010).
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1.2 Problem statement
Weed species resistant to herbicides threaten agricultures, ecosystem and human health.
Resistance to herbicides worries agriculturers, since it has important economic and
environmental consequences to agriculture. Weed herbicide resistance could narrow
agriculture production, since weeds are still growing at the expense of cultivated crops.
Higher volumes of herbicides are dropped on the agricultures, causing nutritional
problems, and also turning more weed species resistant. Effective herbicide weed
management requires an assessment of their distribution, related with the landscape
features, environmental and climatic conditions.

Given the difficulties of field-based data collection, the use of remote sensing for relating
weed species distribution with landscape and environmental conditions could be a
powerful tool for weed risk expansion assessment, regarding the availability of satellite-
derived data. An index that is extensively used to study these relationships is the Normal
Difference Vegetation Index.

Measurements of environmental variables that are key determinants of species
distributions, such as land use, and soil conditions, are also important for defining
species habitats or species spatial range. Moreover, the global climate is changing,
driving also changes in the flora. Many weed species with high phenotypic plasticity and
tolerant to changes, could possibly adapt to climatic pressures, and expand their range,
whereas others could not acclimate and, get extinct. Hence, the assessment of weed
risk expansion owing to changing climate is another task to be examined in this study.

1.3 Objectives
In this study the questions of the work are described as follows:

 Is landscape heterogeneity related to species presence? Does the pattern differ
between the studied regions?

 What about species, environmental and bioclimatic conditions? Is there any
relationship?

 Which main factors are related with species presence and distribution?

 Can we make assumptions of future species distribution?

Finally, comparisons of the Eco-geographical models applied in this study are made.
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2. Background

2.1 Study area and climatic conditions
Two study areas were selected laying in different biogeographic regions, Greece (39.00o
N, 22.00o E), a Mediterranean country, and Germany (51.00o N, 10.00o E) a Continental
country. The Mediterranean climate is characterized by warm and dry summers, mild
and wet winters (fig. 1). Greece is located in South Europe, on the southern end of the
Balkan Peninsula, consisting of a large mainly mountainous area and a large number of
islands (Worldatlas 2014a).

Germany is a west-central European country, stretches from the Alps to the North and
Baltic sea. The climate is temperate (cool and wet winters and summers) at the greater
part of Germany and marine/oceanic in the North and Northwest part with relatively mild
winters, cool summers and rainfall all year round. In the East the climate is Continental,
warm summers and mild cloudy winters (Worldatlas 2014b).

2.2 Climate change in Europe
It is generally accepted that the earth is getting warmer with significant ecological
consequences (Walther et al. 2002; Thuiller et al. 2005). Recently, this century, Central
and Northern Europe have received more rain than in the past. In contrast, Southern and
Southeastern Europe have become drier. There have also been changes in the flora.
During the last thirty years the number of plant species has decreased in parts of Europe,
which is attributed to loss of habitat and climate change (Mannetje 2006).

Mannetje (2006) refers that extreme cold winters will no longer occur in the Northern
Hemisphere towards the end of the present century, whilst extreme warm summers and
heavy showers will occur more frequently. Agriculture in Europe will profit with increased
yields as a result of rises in temperature and atmospheric CO2 and by expansion in a
northerly direction and in central Europe. However, at the same time in parts of Southern
Europe harvests will become more insecure because of water shortages due to reduced
summer rainfall by about 20%. The intensity of rain showers is likely to increase and may
become more tropical in nature. The higher temperatures will lead to increased
evaporation that together with reduced precipitation will lead to more frequent droughts
(Mannetje 2006). The mean surface air temperature is predicted to increase by 1.5 to 5.8
oC by the end of the present century. The temperature in the northern latitudes is
expected to rise more than elsewhere (IPPC 2001).

Concerning the climate of the Mediterranean region, it would become hotter, drier and
more variable. Annual mean temperature would increase by 1-2 oC over present
conditions, but at inland locations, such as in Turkey, northern Italy, at a distance from
the sea, maximum temperatures could rise by up to 5 oC. Annual precipitation would
likely decrease by up to 20% over the southern Mediterranean, while reduction in
summer rainfall over the northern Mediterranean could exceed 30%. Drought periods
would be expected to shift in time and last longer. The hotter and drier climate would
lead to lower agricultural yields, particularly in summer crops that are not irrigated. A
drier climate, accompanied by reduced precipitation and surface runoff, and increasing

http://en.wikipedia.org/wiki/Balkan_Peninsula
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demand from the agricultural sector, would exacerbate the already high level of water
stress in the region. Latest studies show that global warming of more than 2 oC could
lead to a loss of over 50% of plant species in the Northern Mediterranean region
(Mannetje 2006).

2.3 Remote sensing
2.3.1 What is Remote sensing?
Remote sensing is a technique of observing/recording objects from a a distance, by
using sensors based on ships, aircraft, satellites, or other spacecraft, i.e. airborne or
spaceborne platforms. Optical Remote Sensors detect solar radiation, in differing
wavelengths, usually extending from the visible and near infrared (NIR) to the short-
wave infrared (SWIR), scattered or reflected from surfaces from the earth. The radiation
collected by the sensors is used to form images depicting the area or object from which it
was reflected. Different objects, such as water, vegetation, soil, buildings, etc. reflect
visible and NIR light in different ways, resulting in different spectral reflectance
signatures (Sanderson 2012). The graph in figure 1 shows the typical reflectance
spectral of water, bare soil and two types of vegetation.

Moreover, There are two kinds of remote sensors, passive sensors that collect radiation
reflected or emitted from an object, and active sensors that transmit a signal and collect
its reflectance (CRISP 2013). The quality of remote sensing data consists of its spatial,
spectral, and radiometric resolutions (Janssen and Huurneman 2001).

Spatial resolution
The size of a pixel that is recorded in a raster image.

Figure 1. Typical spectral reflectance of water, bare soil and two types of vegetation.

Spectral resolution

http://en.wikipedia.org/wiki/Pixel
http://en.wikipedia.org/wiki/Raster_graphics
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The recorded frequency bands’ wavelength width, usually related to the number of
frequency bands recorded by the platform.

Radiometric resolution
The number of different radiation intensities the sensor is able to distinguish. Typically,
this ranges from 8 to 14 bits, corresponding to 256 levels of the gray scale and up to
16,384 intensities or "shades" of color, in each band. It also depends on the noise of the
instrument.

Radiometric correction
Gives a scale to the pixel values, e. g. the monochromatic scale of 0 to 255 will be
transformed to actual radiance values.

Topographic correction
It eliminates the variations of the illumination depending on the exposure of a pixel. It
recovers true reflectivity or radiance of objects in horizontal conditions.

Atmospheric correction
It eliminates atmospheric haze, rescaling each frequency band so that its minimum value
(usually realized in water bodies) corresponds to a zero pixel value.

Finally, remote sensing map images have to be geo-referenced, since raster image has
no particular size, to a geographic location, by the process of scaling, rotating,
translating and de-skewing the image.

2.3.2 Landsat ETM+
Thematic mappers (TM) and multispectral scanners (MSS) are passive scanning
systems that collect raster data in several bandwidths simultaneously between visible
light and thermal bandwidths (0.4–8.0 µm).

Landsat represents the world's longest continuously acquired collection of space-based
moderate-resolution land remote sensing data. It is a joint initiative between the U.S.
Geological Survey (USGS) and NASA. The Landsat Project and the data it collects
support government, commercial, industrial, civilian, military, and educational
communities throughout the United States and worldwide. Landsat Enhanced Thematic
Mapper Plus (ETM+) images consist of eight spectral bands with a spatial resolution of
30 meters for Bands 1 to 7 (table 1). The resolution for Band 8 (panchromatic) is 15
meters (USGS 2013a).

Finally, the Landsat Enhanced Thematic Mapper Plus (ETM+) sensor onboard the
Landsat 7 satellite has acquired images of the Earth nearly continuously since July 1999,
with a 16-day repeat cycle. Landsat 7 images are referenced to the Worldwide
Reference System-2 (USGS 2013b).

http://en.wikipedia.org/wiki/Atmospheric_correction
http://landsat.usgs.gov/about_mission_history.php
http://landsat.usgs.gov/worldwide_reference_system_WRS.php
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Table 1. Spectral bands, wavelength and resolution of ETM +.

Enhanced
Thematic
Mapper
Plus
(ETM+)

Landsat
7

Wavelength
(micrometers)

Resolution
(meters)

Band 1 0.45-0.52 30

Band 2 0.52-0.60 30

Band 3 0.63-0.69 30

Band 4 0.77-0.90 30

Band 5 1.55-1.75 30

Band 6 10.40-12.50 60 * (30)

Band 7 2.09-2.35 30

Band 8 .52-.90 15

* ETM+ Band 6 is acquired at 60-meter resolution. Products processed after February 25,
2010 are resampled to 30-meter pixels.

2.3.3 Normalized Difference Vegetation Index (NDVI)
An Index that is widely used in Remote Sensing is the Normalized Difference Vegetation
Index (NDVI) that is based on how plants reflect different wavelengths of the spectrum.
Therefore, this Index is used to determine the density of green on a patch of land.
Reflectance is the ratio of energy that is reflected from an object. Spectral reflectance of
objects differs in the range of wavelength of the electromagnetic spectrum. Plant
photosynthetic activity is determined by chlorophyll content. Chlorophyll in plants
absorbs blue and red portion of the spectrum, i.e. visible light (from 0.4 to 0.7 µm), and
reflects green. Near infrared radiant energy (NIR, from 0.7 to 1.1 µm) is strongly
reflected from the plant surface (Kumar and Silva 1973). The contrast between
vegetation and soil is at a maximum in the red and near infrared region. Therefore,
spectral reflectance data can be used to compute a variety of vegetative indices. The
Normal Difference Vegetation Index (NDVI) could be used as a successful predictor of
photosynthetic activity, since it includes both NIR and red light wavelength.

The NDVI is calculated from reflectance measurements in the red and near infrared (NIR)
portion of the spectrum (Eqn 1):

NDVI= (RNIR –R)/(RNIR +R) (Eqn 1),

where RNIR is the reflectance of NIR radiation and R is the reflectance of visible red
radiation.

Calculations of NDVI for a given pixel always result in a number that ranges from -1 to
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+1. Negative values correspond to sea, lakes, rivers and oceans. Very low NDVI values
(0 - 0.1) correspond to barren rock, sand, or snow. Sparse vegetation such as shrub and
grasslands result in moderate NDVI values (0.2 - 0.5), whereas high NDVI values (0.6 -
0.9) correspond to dense vegetation. Generally, if the NIR in higher than the red
radiation, then the vegetation is likely to be dense. On the contrary, the vegetation is
sparse, when the difference in the reflected visible and NIR wavelength is minimized
(Rouse et al. 1973).

2.4 Ecological & Geographical Modeling of Species Distribution in the Landscape
2.4.1 Ecological Niche
Ecological niche relates a set of environmental variables to species fitness, and
according to Hutchinson (1957), is the volume in the environmental space that permits
positive growth. The presence of a species in a location depends on three parameters
(Soberon and Peterson 2005; Soberon 2007): (i) the local environment allows the
population to grow (Grinnellian niche), (ii) the interactions with other local species
(predation, competition, mutualism, etc.) allow the species to persist (Eltonian niche),
and (iii) the location is actually accessible, given the dispersal abilities of the species.
These constraints determine the geographical distribution of the species (Hirzel and
Gwenaëlle 2008). Moreover, Hutchinson (1957) defined the Realized niche as a subset
of the Fundamental niche a species was constrained to occupy because of interactions
with other species. However, the difference between realized and fundamental niche are
becoming lower, when spatial heterogeneity and dispersal limitations are considered
(Pulliam 2000).

2.4.2 Habitat Suitability (HS) models
When Fallacious absences (FA) are suspected, Habitat Suitability models that use only
presence data for the analysis should be preferred (Helfer and Métral 2001). Fallacious
absences stem from at least five causes, namely: (i) limited dispersal: geographical
barriers or slow dispersal prevent a species from occupying some parts of its potential
distribution; (ii) local extinction: environmental or demographic stochasticity has
momentarily driven a local population to extinction; (iii) patch size: the area of suitable
habitat is too small to harbour a viable population; (iv) alternative habitats: a generalist
species may use several types of habitat, possibly at different periods; (v) biotic
interactions (e.g. succession stage, competition, predation).

Additionally, Habitat Suitability (HS) models relate ecogeographical variables (EGV’s) to
the likelihood of species occurrence, related on Hutchinson ecological niche theory. HS
model analysis is based on ENFA, Environmental Factor Analysis, comparing in a
multidimensional space of ecological variables the species distribution, proposing habitat
suitability maps.

Crucial factors related to species distribution and their suitable habitats is global
marginality, tolerance, and specialization (Hirtzel et al. 2002). Marginality refers to the
impact of ecogeographical variables in the probability of species and population
occurrence, especially derived from unfavorable conditions and resource scarcity
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(Shreeve et al. 1996). The global marginality takes into account all the EGVs and
provides a summary of how much the species habitat differs from the available
conditions. A low value (close to 0) indicates that the species tends to live in average
conditions, whereas a high value (close to 1), in extreme habitats throughout the study
area. Moreover, a low value of the global tolerance (close to 0) indicates a "specialist"
species ending to live in a very narrow range of conditions, whereas a high value (close
to 1) indicates a generalist species. The global specialization is the inverse of global
tolerance, but as it varies between 1 and infinity, it is less easy to interpret (Hirtzel et al.
2002).

2.4.3 Rank - Abundance diagrams & Landscape Heterogeneity
Rank-abundance diagrams could be used in remote sensing for evaluating both spectral
richness and equitability. Former methods, used the richness of digital numbers (DNs),
the Shannon entropy/Boltzmann (Shannon and Weaver 1962) or Pielou evenness
(Pielou 1969) indices for measuring spatial heterogeneity. Shannon entropy is a diversity
index indicating the uncertainty of the prediction of a community, whereas Pielou
eveness is a measure that quantifies the equitability of the species community. Rank–
abundance diagrams were first introduced by MacArthur (1957), who developed the
theory with examples related to bird communities by plotting species abundance against
ranks. Further, Whittaker (1965) straightforwardly reworked the method with a graphical
representation of all possible theoretical situations of the community diversity of a
species. Rank-abundance diagrams are showing the diversity of an array of values.
Once the relative abundance of a species is ordered, a rank is assigned to each species
as a function of its abundance (Rocchini and Neteler 2012).
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3. Material and Methods

3.1 Flowchart

Figure 2. Master thesis research method flowchart.
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According to the above flowchart (fig. 2), the first step for this study was to review the
literature related to resistant to herbicide weed species and their response to differing
environmental conditions. Moreover, I searched through the literature of models that can
be applied to study weed species distribution in a variety of environmental and climatic
conditions. A number of ecological models were studied and a few of them were
selected. The next step was to set the aim of the study and the research questions to be
answered. Further, a number of data that can be used to answer the questions setted,
were acquired through internet, and downloaded free of charge. The data that were used,
were grouped to species data, Landsat ETM+ data, environmental data, such as land
cover, land use, soil data (transformed to Boolean data), and 11 bioclimatic factors
(Worldclim and CGIAR for 2000, 2020 and 2050). The relationship of species presence
with NDVI was studied by applying Ordinary Least Square (OLS) regression, Logistic
regression and WofE (Weight of Evidence) using ArcGIS 10 and ArcSDM software.
Moreover, this relationship was also examined by applying the Rank-abundance
diagrams and spatial variograms spatial models. So as to study Habitat Suitability for
each weed species, NDVI classified data and species data were turned to
presence/absence Boolean data using IDRISI software, and were combined with the
environmental and the 11 bioclimatic factors in the biomapper software. The projection of
species distribution in 2000, 2020 and 2050 was performed by applying GARP models
(openModeller Desktop 1.1.0 software), matching species Boolean data with the 11
bioclimatic factors.

3.2 Data

3.2.1 Species
An available reliable free species database is the Global Biodiversity Information Facility
(GBIF 2013). GBIF was established by governments in 2001 to encourage free and open
access to biodiversity data, via the Internet to promote scientific research, conservation
and sustainable development. Most of the species data used for this study are common
weeds found in both studied countries and they all share a common characteristic that is
herbicide resistance (International Survey of Herbicide Resistant Weeds 2013). Most of
the species collections dates range between 2000 and 2010. The data files were in excel
format and inserted into ArcGIS 10 as point shapefiles. The weed species used for this
study are shown in table 2.

3.2.2 Administrative boundaries
The data for the administrative boundaries of Greece and Germany were downloaded
from GADM database of Global Administrative Areas (GADM 2013). GADM is a spatial
database of the worlds’s administrative areas for GIS and similar software use.

3.2.3 Bioclimatic data and altitude
Climate layers for both countries were downloaded from WorldClim (WorldClim 2013), a
set of global climate layers (climate grids) and altitude grids with a spatial resolution of
about 1 square kilometer. The data layers were derived from interpolation of average
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monthly temperature and rainfall value data on a 30 arc-second resolution grid. For this
study eleven bioclimatic factors were used coded as follows:
BIO1 = Annual Mean Temperature
BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp))
BIO3 = Isothermality (BIO2/BIO7) (* 100)
BIO4 = Temperature Seasonality (standard deviation *100)
BIO5 = Max Temperature of Warmest Month
BIO6 = Min Temperature of Coldest Month
BIO7 = Temperature Annual Range (BIO5-BIO6)
BIO12 = Annual Precipitation
BIO13 = Precipitation of Wettest Month
BIO14 = Precipitation of Driest Month
BIO15 = Precipitation Seasonal

Moreover, altitude data were downloaded from WorldClim for both Greece and Germany.
In order to make future predictions for species distributions the same bioclimatic factors
were downloaded for 2020 and 2050 from GCM data portal (GCM 2013), data provided
by the CGIAR Research Program on Climate Change, Agriculture and Food Security
(CCAFS). The parameters selected were delta method, SRES_a1B scenario,
CSIRO_MK3_0 model with a resolution of 2.5 arc minutes.
Delta Method is a statistical downscaling method based on thin plate spline spatial
interpolation of anomalies (deltas) of original Global Climate Model (GCM) outputs.
Anomalies are interpolated between GCM cell centroids and are then applied to a
baseline climate given by a high resolution surface. The method makes the following
gross assumptions:
1. Changes in climates vary only over large distances (i.e. as large as GCM side cell
size).
2. Relationships between variables in the baseline ('current climates') are likely to be
maintained towards the future (CCAFS 2014).
Concerning CSIRO Mk3.0 model, a 12-month average temperature was calculated for
1961-1990 based on the simulated transient historical data. Result is a 12 month
simulated climatology at the scale of the CSIRO Mk3.0 grid. For each forecast month a
difference anomaly was calculated (ex. January_2021 – Mean_historical_January).
Result is a 100 year monthly set of temperature anomalies at the scale of the CSIRO
Mk3.0 grid (DATA BASIN 2014).
In this study, according to the IPCC Special Report on Emission Scenarios (SRES), the
A1 storyline and Emissions Scenario family was used that describes a future world of
very rapid economic growth, global population that peaks in mid-century and declines
thereafter, and the rapid introduction of new and more efficient technologies. Major
underlying themes are convergence among regions, capacity building and increased
cultural and social interactions, with a substantial reduction in regional differences in per
capita income. The A1 scenario family group that was applied in this study was the A1B
or a balance across all sources group, where balanced is defined as not relying too
heavily on one particular energy source, on the assumption that similar improvement
rates apply to all energy supply and end-use technologies (IPCC 2014).



13

3.2.4 Land cover
Dominant landcover types for 2000 (classified of the CORILIS layers) were downloaded
from the European Environmental Agency database having a resolution of 10 km. A land
cover type is dominant in a point when its density value in that point is bigger than a
threshold value. The dominant land cover types came up according to CORILIS
methodology. Data were generalized by crossing them with a regular grid of 3x3 km
resolution and then smoothed using a search radius of 20 km. The smoothing algorithm
uses the Gaussian function to weight data in the neighborhood. Then the smoothed
features were reclassified into Dominant Landscape types. The criterion Vn > mean +
standard deviation was used to assign dominant character to smoothed features. Vn is
the smoothed value of class n in a given cell of the map. The landcover types used were
agriculture, artificial, forest, dispersed urban, composite vegetation, open natural
grasslands, rural and pasture areas (EEA 2013).

3.2.5 Soil data
Soil data for both countries were downloaded from the European Soil Portal - Soil Data
and Information Systems (European Soil Portal 2013). The data are raster or grid files in
the ETRS89 Lambert Azimuthal Equal Area (ETRS_LAEA) co-ordinate system, having a
cell size of 1kmX1km. The soil database was constructed in 1985. The current
distribution is called version 1.0. It corresponds to the stage of development of the
European Soil Data Base on 1999.
The soil characteristics that were used in this study were the following:
- FAO85LEVEL 1 (Soil major group code of the STU from the 1974 (modified CEC, 1985)
FAO-UNESCO Soil Legend), reclassified into classes b (cambisol), g (gleysol), j (fluvisol),
i (lithosol), l (luvisol)
- 3 classes of Bs-top (Base saturation of the topsoil) (Medium, Low, and High)
- Moor, arable, pasture and grassland areas

http://eusoils.jrc.ec.europa.eu/ESDB_Archive/etrs_laea_raster_archive/etrs_laea_projection.txt
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Table 2. Common herbicide resistant weeds found in Greece and Germany, included in the study.
HERBICIDE RESISTANT WEEDS

Species Common Name Description Photosynthetic
pathway

Greece
(present)

Germany
(present)

Amaranthus
retroflexus

Redroot Pigweed Summer annual dicot
broadleaf

C4

+ +

Chenopodium
album

Lambsquarters Summer annual dicot C3

+ +

Conyza
canadensis

Horseweed Summer annual dicot C3

+ +

Echinochloa crus-
galli

Barnyardgrass Summer annual monocot
grass

C4

+ +

Papaver rhoeas Com poppy Winter annual dicot C3

+ +

Lolium rigidum Rigid ryegrass Winter annual grass
monocot

C3

+ -

Sorgum halepense Johnsongrass Summer perennial
monocot grass

C4

+ -
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3.3 Atmospheric Correction of Landsat ETM+ orthorectified data - Dark object
subtraction (DOS)
Remotely sensed radiance includes unwanted path radiance caused by atmospheric
interactions. The removal of this radiance is called atmospheric correction. In this study,
in order to eliminate the unwanted radiance a Dark Object Subtraction (DOS) method
was followed, proposed by Chavez 1988. The DOS method includes finding the darkest
object (usually water bodies) in the image, assuming that its spectral reflectance should
be zero, and subtracting the path radiance from each pixel of the image. For this reason
ENVI software was used. In ENVI, the DOS is called Dark Subtract, click Basic Tool ->
Preprocessing -> General Purpose Utilities -> Dark Subtract -> select the image as the
input file, click OK, select the Band Minimum, which means that the minimum value of
each band will be automatically selected, and then this value will be subtracted from all
pixels in this band.

3.4 Calculating Normalized Difference Vegetation Index (NDVI)
Spectral value images represented by digital number (DN) contain substantial noises. A
significant proportion of such noises can be normalized by converting the DN to at-
satellite reflectance value. The use of a radiometric correction is to convert the DN
values to absolute radiance and at-satellite reflectance values. Absolute radiance is
required when utilizing temporal data that may come from different sensors, variating in
sun elevation angle, acquisition date, illumination geometry etc (Huang et al. 2001).
Therefore, the process to calculate the NDVI index using the Landsat ETM+2000
(Landsat org. 2013) ortho-rectified and atmospheric corrected data, is described by the
following numbered steps, beginning with converting DN values to radiance, and further
to reflectance values:
1. Reclassify the Landsat data so that all zero values are mapped to “NoData”.
Reflectance is not calculated for the sections where data is missing.
2. Convert DN data to radiance data. Before converting to reflectance data, DN have to
be converted to radiance. This is done using the following expression (Eqn 2):

 biasDNgainL  )*( (Eqn 2),
where Lλ is the calculated radiance [in Watts / (sq. meter * μm * ster)] , DN is the Landsat
ETM+ DN data, and the gain and bias are band-specific numbers. The latest gain and
bias numbers for the Landsat ETM+ sensor are given in Chander et al. (2009) and are
shown in table 3.

Table 3. Gain and bias for Landsat ETM+.
Band Gain Bias
1 0.778740 -6.98
2 0.798819 -7.20
3 0.621654 -5.62
4 0.639764 -5.74
5 0.126220 -1.13
7 0.043898 -0.39
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3. Convert radiance data to reflectance data
Reflectance is a quantity measured by the Landsat sensors. To make better
comparisons between the different scenes, a conversion of radiance to reflectance is
needed, by removing differences caused by the position of the sun and the differing
amounts of energy output by the sun in each band. The reflectance can be thought of as
a “planetary albedo,” or fraction of the sun’s energy that is reflected by the surface. It can
be calculated using the following expression (Eqn 3):
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(Eqn 3),
where Rλ is the reflectance (unitless ratio), Lλ is the radiance, d is the earth-sun distance
(in astronomical units), Esun,λ is the band-specific radiance emitted by the sun, and θSE
is the solar elevation angle. These values are given in Chander et al. (2009) and are
repeated in table 4.

Table 4. Band specific radiance emitted by the sun.
Band Esun,λ[Watts/(sq.meter*μm)]
1 1997
2 1812
3 1533
4 1039
5 230.8
7 84.9

The second and third pieces of information are d, the earth-sun distance, and θSE, the
solar elevation angle. These two values are dependent on the individual scene,
specifically the day of the year and the time of day when the scene was captured. The
solar elevation angle and the day of year are listed in the header file for each scene.

4. Enforce positive reflectances
corrected_reflectance = CON( [reflectance] < 0.0, 0.0, [reflectance]) (Eqn 4)

5. Calculate NDVI
NDVI = (band 4 – band 3) / (band 4 + band 3) (Eqn 5)

The methodology for assisting to calculate the NDVI was downloaded from the following
site:
(Colorado State University 2013)

6. Mosaic NDVI maps
To create a single NDVI index raster, multiple raster NDVI index datasets were merged
into a mosaic for each country. All rasters used for each country had the same spatial
reference (WGS_84), the same pixel size, and the same number of bands. In many
cases, there was some overlap of the raster dataset edges that were mosaicked. These
overlapping areas were handled by taking the mean of the overlapping cell values. The
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rule used in raster calculator was:
Mosaic and Con(IsNull([ndvi184033_c]), focalmean([ndvi184033_c], rectangle, 2, 2),
[ndvi184033_c]) no data areas for mosaic Ndvi

3.5 Genetic Algorithm for Rule-Set Production (GARP Models)
One of the models that can be used to study species distribution in relation with
bioclimatic conditions is the Genetic Algorithm for Rule-Set Production (GARP) model.
This is a method that can be used to model the potential distribution of species based on
species occurrence and not absence data.
GARP relates ecological characteristics of known occurrence points to those of points
randomly sampled from the rest of the study region, developing series of decision rules
that best summarizes those factors associated with the species presence (Stockwell &
Peters 1999).
The software used for the analysis was openModeller desktop 1.1.0 (de Souza Muñoz et
al. 2011). The environmental layers that represent abiotic factors used to determine
species distribution for the years 2000, 2020 and 2020, were the 11 bioclimatic factors
described in section 3.13 (Bioclimatic data and altitude). The results of the analysis were
validated by using the Receiver Operating Characteristic (ROC) curves. The ROC plot is
obtained by plotting sensitivity as a function of the falsely-predicted positive fraction, or
commission error (1-specificity), for all possible thresholds of a probabilistic prediction of
occurrence. The resulting area under the ROC curve provides a single measure of
overall model accuracy, which is independent of a particular threshold. AUC values
range from 0 to 1, with a value of 0.5 indicating model accuracy not better than random,
and a value of 1.0 indicating perfect model fit (Fielding and Bell 1997).

3.6 Habitat Suitability Models (HS) using Biomapper
Another multivariate approach that can be used to study species distribution using
environmental variables and species presence only data is Habitat Suitability Models
(HS Models) using Biomapper software by Hirtzel et al. (2002). These Models are
designed to build habitat suitability maps using not only bioclimatic variables, but a
number of other environmental variables, such as, soil conditions, and land cover.
Moreover, HS models cannot make predictions of species future distribution in relation to
GARP models.
The first step in this analysis was that all variables used were converted into .rst file
format using IDRISI software. The data were exported form ArcGIS 10.0 as .img files
and imported to IDRISI. Concerning species data, Boolean maps of 0 and 1 values
indicating absence and species presence were created for each species using IDRISI
software.
Moreover, the predictor variables named as EGV’s, i.e. Ecogeographical variables that
were used in this study, were of two types, quantitative data, such as the 11 bioclimatic
factors and altitude data, and the qualitative or Boolean data, such as all landcover and
soil data downloaded for this study and referred above. The methodology to transform
the data used for the analysis was downloaded by the Biomapper’s wikispace
(Biomapper 2013).
Quantitative data are ready to be used by the model. On the contrary, qualitative data
need to be transformed into several Boolean maps, each describing a relevant category.
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Concerning NDVI index, it was classified into 5 classes (table 5).

Table 5. NDVI values classification in Greece and Germany.
Classes

1 2 3 4 5
Greece -1 to 0 0 to 0.25 0.25 to 0.5 0.5 to 0.75 0.75 to 1
Germany -1 to 0 0 to 0.4 0.4 to 0.6 0.6 to 0.8 0.8 to 1

The core part of HS models is the Ecological-Niche Factor Analysis (ENFA) that
computes suitability functions by comparing the species distribution in the EGV space
with that of the whole set of cells. The first factor extracted maximizes the marginality of
the species, whereas the next factors maximize the specialization.
The result of ENFA is a score matrix and a set of eigenvalues.The first column of this
matrix is the marginality factor. The score matrix (eigenvectors) provides information of
how the factors are correlated with the variables. The other columns are the V-1
specialization factors, (V is the number of variables).
Additionally, the eigenvalues indicate how much variance is explained by the factors.
The larger they are, the more information each factor is conveying (if your species was
distributed randomly throughout the study area, the eigenvalues would be all close to 1,
marginality would be close to 0 and tolerance would be close to 1). Finally, eigenvectors
and eigenvalues are readily interpreted and can be used to build habitat-suitability maps
(Hirzel et al. 2002).

3.6.1 Validating Habitat Suitability Models

3.6.1.1 Boyce Index
In order to validate the Habitat Suitability Models, Boyce et al. (2002) proposed a method
that consists of partitioning the habitat suitability range into b classes (or bins), instead of
only two. For each class i, it calculates two frequencies: Pi, the predicted frequency of
evaluation points, and the expected frequency (Fi) of evaluation points, i.e. the frequency
expected from a random distribution across the study area. For each habitat suitability
map the prediction the predicted-to-expected (P/E) ratio is given. A low suitability class
should contain fewer evaluation presences than expected by chance, resulting in a ratio
< 1. Conversely, high suitability classes should have ratio increasingly higher than 1.
Boyce et al. (2002) measure this monotonic increase by the Spearman rank correlation
coefficient between Fi and i. This “Boyce Index” Bb varies from −1 to 1. Positive values
indicate a model whose predictions are consistent with the presences distribution in the
evaluation dataset, values close to zero mean that the model is not different from a
chance model, negative values indicate an incorrect model, which predicts poor quality
areas where presences are more frequent (Hirzel at al. 2006).

3.6.1.2 Absolute and Contrast Validation Indices
The Absolute Validation Index (AVI) and the Contrast Validation Index (CVI) were
developed before Boyce Indices and cross-validation processes. The AVI is the
proportion of validation cells that have a HS>50. However, an AVI of 1 (best value) could
be obtained by a model predicting presence everywhere. In other words, the AVI cannot
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tell if a model is better than chance. The CVI does this: If we call AVI0 the proportion of
all cells that have a HS>50, then the CVI = AVI – AVI0. A model predicting presence
everywhere would thus get a CVI of 0. A good model should have CVI>0.3. All
presence-only evaluation Indices are always somewhat sensitive to the study area.
Indeed, the larger the study area (or the more specialized the focal species), the higher
the CVI (Hirtzel and Arlettax 2003).

3.7 Rank - Abundance diagrams and Spatial Heterogeneity
In order to test the potential of rank–abundance diagrams in discriminating differences of
the heterogeneity of the landscape around species (Rocchini and Neteler 2012), 3 km
buffer zones were created around species points, DN value's of the corresponding NDVI
and their abundances were extracted, and further analyzed. For this reason NDVI values
were converted into an 8-bit band splitting values into 256 equal intervals, hereafter
simply referred to as DN values.
For each species, rank–abundance diagrams were derived as follows: (i) the abundance
of each DN NDVI value in each species buffer zone was calculated, (ii) DNs were ranked,
with the most abundant DN ranked first and (iii) relative abundance was plotted against
ranks. Relative abundances were used in order to be consistent with previous studies
using rank–abundance diagrams (Magurran 1988). In other words, the most abundant -
common species will have a higher number of individuals and will be ranked ‘first’. Then,
relative abundances are plotted against ranks (rank–abundance diagram), and species
are ranked from commonest to rarest along the abscissa and their abundances are
plotted along the ordinate. The application of rank–abundance diagrams to remotely
sensed imagery is simple. The individuals correspond to individual pixels and the
species to reflectance values (Rocchini and Neteler 2012). Digital Number abundance
was plotted even on a log scale in order to decrease the outlier effect, that is, the
smoothing of the curve due to hyper-dominant DN values.
Additional indices were calculated, such as species richness, Shannon diversity or
entropy index (Shannon and Weaver 1962) and Pielou eveness index (Pielou 1969).
Species richness is referred as the number of different DN values around each species
point. Moreover, Shannon index, H, indicating the relative proportion of each DN value,
is calculated using the following equation (Eqn 6):
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(Eqn 6)

When the Shannon index takes into account the equitability of the system, then the
result is the Pielou index J (Eqn 7) that indicates the maximum possible diversity with the
same number of DNs N.
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3.8 Spatial variability: Variograms via Kriging interpolation
In order to explain spatial variation of species points related to NDVI, Kriging multistep
process was used, since it includes statistical analysis, variogram modelling, and surface
variance exploration. The main application of Kriging is to interpolate values at un-
sampled locations. Parallel, a semivariogram is constructed providing information on the
spatial autocorrelation of the dataset. To fit a model to the empirical semivariogram, a
spherical function was applied that rises and levels off for larger distances beyond a
certain range. Semivariogram modeling is a key step between spatial description and
spatial prediction. The sill of a semivariogram is the variance, and range is the distance
at which the variogram reaches the sill.
In this study the Kriging tool was applied on mean NDVI on an area of 3km around
species points, using the spherical function. Moreover, the sill and square root range of
the resulted semivariogram models were used in order to construct spatial variability
variograms, a methodology to characterize and quantify the spatial heterogeneity of the
landscape (Gariggues et al. 2006). The range square root value summarizes the mean
length scale (spatial scale) of the data, on the x -axis. The theoretical dispersion
variance from variograms quantifies the spatial heterogeneity, on the y-axis (Gariggues
et al. 2006).

3.9 Regression Models

3.9.1 Ordinary Least Square analysis & autocorrelation
Ordinary Least Squares (OLS) is a linear regression model for studying relationships. It
is the starting point of spatial regression techniques, and it fits one equation to represent
the dataset. The equation (Eqn 8) that describes OLS is the following:

  nny *..........1*10
(Eqn 8),

where
y is the process we are trying to explain,
β is the coefficients of the model
χ is used to predict the dependent variable

The model is constructed by minimizing the sum of squared vertical distances between
the observed and the predicted values. The difference between these actual and the
predicted Y value is called the residual of the model, and it provides an indication of how
well the model predicts each data point. So as to check for spatial autocorrelation, the
Global Morans’ I tool on the residuals of OLS analysis was used. Morans’ I index
evaluates whether the pattern expresses is clustered, dispersed, or random, by
calculating a z-score and p-value. In this study, OLS was performed using the mean and
standard deviation values of NDVI index on an area of 3km around species points.
Finally, Morans’ I autocorrelation was performed on residuals to check for spatial
autoregression.
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3.9.2 Weight of Evidence and Logistic Regression (SDMArcGIS)
Species’ distribution models (SDMs) attempt to predict the potential distribution of
species by interpolating identified relationships between species’ presence/absence, or
presence-only data on one hand, and environmental predictors on the other hand, to a
geographical area of interest (Raes & ter Steege 2007).
Due to non-linearity of the data, logistic regression was the next step. Spatial Data
Modeller (SDM) for ArcGIS 10 was used to perform the weight of evidence and logistic
regression analysis. Species presence was the dependent variable, whereas NDVI
reclassified into 5 classes (table 5) was the independent variable. NDVI in Germany had
very few values between 0-0.25, therefore classified differently. Environmental settings
were specified in Arctool box, weight of evidence (unique type) was calculated and finally
logistic regression was performed. The calculation of weights requires one training site
per unit area. The unit area selected was 3 square kilometers. Therefore, the result was
one training point per 3 kilometers buffer zone.
Weight is a measure of an evidential-theme class (feature) as a predictor of training
points. A weight is calculated for each theme class. For binary themes, these are often
labeled W+ and W- (Raines and Bonham-Carter 2006). A positive weight indicates areas
where training points are likely to occur, whereas a negative weight indicates an area
where training points are not likely to occur. While calculating weights of evidence (WofE)
for NDVI index grid classified, a contrast value is calculated for each class, by combining
the positive and negative weights. Moreover, contrast is a measure of evidence layer’s
significance in predicting the location on training points (Bonham-Carter 1994).
A positive contrast that is significant, suggests that the evidential theme is a good
predictor. The confidence of the evidential theme is the contrast divided by the standard
deviation. The second type of confidence can be calculated for each theme by dividing
the posterior probability by its standard deviation (Raines 1999). Confidence values and
its corresponding level of significance are presented in table 6.

Table 6. Test values calculated in WofE and their respective studentized T values
expressed as level of significance in percentages.

Test value Studentized T value (confidence
expressed as level of significance)

2.576 99.5 %

2.326 99 %

1.96 97.5 %

1.645 95 %

1.282 90 %

0.842 80 %

0.674 75 %

0.542 70 %

0.253 60 %
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The normalized contrast provides a useful measure of significance of the contrast
because of the uncertainties of the weights and missing data (Raines 1999).

3.9.3 Logistic & WofE Validation
3.9.3.1 CAPP curve method (Cumulative area posterior probability)
So as to validate logistic regression results, a CAPP curve is created by plotting
posterior probability on the Y axis and cumulative area (from low to high posterior
probability) on the X axis. Posterior Probability is the probability that a unit cell contains a
training point, given states of information from the evidential themes. This measurement
changes from location to location depending on the values of the evidence. (Raines and
Bonham- Carter 2006). After creating the curves, a model is fitted, and the Area Under
Curve (AUC) is calculated, using a widget (Wolframalpha 2013).
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4. Results
4.1 Climatic changes

Figure 3. Mean temperature (0.1 oC ), annual precipitation (mm) for 2000, and altitude (m) in Greece.
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The main environmental factors affecting species distribution are found to be mean
temperature (annual), annual precipitation and altitude. The mean temperature, annual
precipitation and altitude of Greece in 2000 is presented in fig. 3. The central part of
Greece is crossed by a high mountainous area (Pindos) creating two different patterns of
precipitation. A wetter one at the western part of the country and a drier one at the
eastern part (fig. 3). The mean temperature in Greece is higher at the Southern part of
the country, at low land areas and also at the Greek islands.

Concerning Germany, the bioclimatic characteristics, and also the altitude values, of
Greece are given at figure 4. Based on figure 4, mean temperature is higher at the
western part of Germany, gets average values in the north eastern part, and low values
in the South mountainous part of Germany. Moreover, at higher altitudes, south, and at a
lower value central Germany, the precipitation is higher.

Concerning climatic changes, in Greece the temperature and precipitation pattern does
not alter (figs 3 and 5). However, the minimum, low values as depicted on figs 3 and 5,
mean temperature and annual precipitation tend to decrease by 2050. The high values
of the same maps (figs 3 and 5) remain the same.
Comparing figs 4 and 6, the whole country of Germany becomes warmer, especially the
Southern part, by 2050. The increase is recorded between the years 2020 and 2050 (fig.
6). However, according to figs 4 and 6, the temperature does not alter in the time period
between 2000 and 2020. The pattern of annual precipitation does not seem to alter
through the studied years. However, a small decrease is recorded for the maximum
values of annual precipitation by 2050. Hence, Germany is becoming warmer by 2050.
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Figure 4. Mean temperature (0.1 oC ), annual precipitation (mm) for 2000, and altitude (m) in Germany.
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Figure 5. Mean temperature (0.1 oC) and annual precipitation (mm) for 2020 and 2050 in
Greece.
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Figure 6. Mean temperature (0.1 oC) and annual precipitation (mm) for 2020 and 2050 in
Germany.
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4.2 Habitat Suitability Maps (HS maps)

Figure 7. Marginality and tolerance of studied species, in Greece and in Germany, derived
from Habitat Suitability models by Biomapper.

Marginality seems to be higher for all species in Greece, related to the same species in
Germany, where marginality seems to be very low (fig. 7). The lowest marginality for
species in Greece is recorded for P. rhoeas, whereas the highest for C. canadensis, C.
album, and E. crus-galli. Concerning tolerance, all species both in Greece and Germany
do not get a very high value (fig. 7).

In order to assess which factors affecting mostly species distribution (eigenvector) and
also which factor is highly related with species marginality (eigenvalue), scatter-plots
were created depicting the eigenvector and eigenvalue of factors used in Environmental
Factor Analysis (ENFA) and Habitat Suitability models.

Concerning A. retroflexus, the most important factor affecting species distribution
(eigenvector) is the variable annual mean temperature (bio_1) (fig. 8a). The same holds
for the species both in Greece and in Germany, having though a higher impact on the
species in Greece. The next factors affecting A. retroflexus distribution in Greece is
annual precipitation (bio_12), precipitation of the wettest month (bio_13), and base
saturation of the topsoil, high value (BS_top_H). Moreover, the main factors affecting A.
retroflexus distribution in Germany are mean temperature (bio_1) and annual
precipitation (bio_12) values, in accordance with the eigenvector values of figure 4.
Additionally, the highest eigenvalue is getting the mean temperature (bio_1) for A.
retroflexus in Greece, whereas altitude for the same species in Germany.

Concerning C. album in Greece, highest eigenvector is recorded for bio_1, followed by
bio_12 and bio_13, whereas in Germany bio_1, bio_15 (seasonal precipitation), ndvi004,
and arable land are the highest eigenvector variables (fig. 7b). Moreover, the factor that
is related with the species marginality is bio_1 (mean temperature) in Greece, and
altitude in Germany.
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Figure 8a. Eigenvector (y-axis) versus eigenvalue (x-value) scatterplot derived from Environmental Factor Analysis for A. retroflexus, in
Greece and Germany.
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Figure 8b. Eigenvector (y-axis) versus eigenvalue (x-value) scatterplot derived from Environmental Factor Analysis for C. album, in
Greece and Germany.
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Figure 9a. Eigenvector (y-axis) versus eigenvalue (x-value) scatterplot derived from Environmental Factor Analysis for C. canadensis,
in Greece and Germany.
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Figure 9b. Eigenvector (y-axis) versus eigenvalue (x-value) scatterplot derived from Environmental Factor Analysis for E. crus-galli, in
Greece and Germany.
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Figure 10a. Eigenvector (y-axis) versus eigenvalue (x-value) scatterplot derived from Environmental Factor Analysis for P. rhoeas, in
Greece and Germany.
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Figure 10b. Eigenvector (y-axis) versus eigenvalue (x-value) scatterplot derived from Environmental Factor Analysis for L. rigidum, in
Greece.
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Figure 10c. Eigenvector (y-axis) versus eigenvalue (x-value) scatterplot derived from Environmental Factor Analysis for S. halepense, in
Greece.
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Higher marginality is recorded for C. album found in the Greek landscape, according to
the eigenvalues of figure 8b.

C. canadensis distribution is related mainly with variables bio_15 (seasonal precipitation),
bio_2 (mean temperature diurnal change), bio_14 (precipitation of driest month), and
finally, bio_12 (annual precipitation) in Greece, whereas bio_1, bio_12, bio-13
(precipitation od wettest month), bio_14 (precipitation of driest month) in Germany (fig.
9a). The species marginality (eigenvalue) depends mostly on annual precipitation for the
species in Greece, and altitude for the species in Germany (fig. 9a).

Moreover, bio_1 and bio_15 variables are the main factors affecting E. crus-galli
distribution in Greece, whereas bio_1 and bio_15 and agriculture land factors in
Germany (fig. 9b). Higher marginality is recorded for species in Greece than in Germany.
In Greece, marginality for the species is related with mean temperature (bio_1), and
secondarily with altitude, whereas in Germany with altitude and annual precipitation
(bio_12) (fig. 9b).

Concerning P. rhoeas, the main factor affecting species distribution in both countries is
mean temperature (bio_1), according to the maximum eigenvector value. Moreover, the
species in Greece presents very low marginality. On the contrary, high marginality is
recorded for the species in Germany related to the altitude variable (fig. 10a).

Distribution of L. rigidum in Greece seems to be related to almost all bioclimatic factors
studied, but also to the artificial landcover type and altitude (fig. 10b). Moreover, the
marginality of the species is mostly related with mean temperature (bio_1), and annual
precipitation (bio_12) (fig. 10b). Comparing to L. rigidum, marginality values are much
higher for S. halepense. Hence, marginality (eigenvalue) of S. halepense in Greece, is
related mostly with mean temperature (bio_1) and altitude (fig. 10c). Moreover, species
distribution is mostly affected by mean temperature (bio_1), annual precipitation (bio_12),
and seasonal precipitation (bio_15) (fig. 10c).

A. retroflexus, C. album and E. crus-galli are found mostly at the central part of Germany
(fig. 11a), where the annual precipitation rate, the altitude and the mean temperature get
average to low values, according to figure 4. On the contrary P. rhoeas is found at the
north eastern part of Germany, where the elevation and the precipitation rate is low;
however, the temperatures is a little higher than average (fig. 11b). Finally, C.
canadensis is expanded at the central and west part of Germany, where the temperature
and precipitation are higher related to other areas of Germany (figs 11b and 4).

As far as it concerns Habitat Suitability for the studied weed species in Greece, A.
retroflexus, C. album, C. canadensis, and S. halepense are distributed in the central part
of Greece, at lowland areas, with low altitude values, high temperatures especially
around the capital of Greece, Attiki, and in non mountainous areas of Peloponnese,
according to figures 12a and 3. Among these species, C. album, and secondarily S.
halepense are the more expanded. Additionally, E. crus-galli seems to prefer the
mountainous area of Pindos, i.e. an area with low temperatures, and average
precipitation (fig. 12a and fig. 3). However, this species is also found at drier and warmer
areas of Sterea Ellada, and lowlands of Thessalia (central part of Greece) (figs 12a and
fig. 3). Finally, the presence of species, P. rhoeas and L. rigidum, according to HS maps,
is scarce and dispersed all over the Greek landscape (fig. 12b).
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Figure 11a. Habitat Suitability maps for A. retroflexus, C. album and E. crus-galli weed
species for current conditions in Germany. The Habitat becomes more suitable from
lighter to darker colored map areas.
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Figure 11b. Habitat Suitability maps for C. canadensis and P. rhoeas weed species for
current conditions in Germany. The Habitat becomes more suitable from darker to lighter
colored map areas.
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Figure 12a. Habitat Suitability maps for A. retroflexus, C. album, C. canadensis and E.
crus-galli weed species for current conditions in Greece. The Habitat becomes more
suitable from lighter to darker colored map are



40

Figure 12b. Habitat Suitability maps for P. rhoeas, L. rigidum and S. halepense weed
species for current conditions in Greece. The Habitat becomes more suitable from lighter
to darker colored map areas.
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According to the cross-validation displayed in table 7, the Boyce index is above 0.5, for
almost all studied weed species in Greece, with the exception of C. canadensis, , L.
rigidum and at a lesser extent of E. crus-galli, with Boyce index values close to zero,
indicating that the model is not different from a chance model. Concerning P. rhoeas in
Greece, the Boyce index is negative that might indicate an incorrect model. However,
the cross-validation CVI index is over 0.3, for all species in Greece. L. rigidum and P.
rhoeas are excepted, since the corresponding CVI value is much lower.

All species in Germany have low Boyce (near to zero) and also CVI (0.2 to 0.3) values,
with the exception of A. retroflexus and P. rhoeas have higher index values.

Table 7. Cross-validation of Habitat Suitability Models, for all species in both countries.
Boyce and Contrast Validation Index (CVI) are given, accompanied by their standard
deviation (s.d.) values.

Boyce index Boyce std CVI CVI std

A. retroflexus-gr 0.692 0.078 0.482 0.086

A. retroflexus-ger 0.380 0.493 0.214 0.162

C. album-gr 0.601 0.189 0.463 0.126

C. album-ger 0.209 0.245 0.152 0.089

C. canadensis-gr 0.019 0.549 0.485 0.409

C. canadensis-ger 0.083 0.545 0.17 0.19

E. crus-galli-gr 0.317 0.472 0.48 0.297

E. crus-galli-ger 0.134 0.507 0.188 0.168

P. rhoeas-gr -0.355 0.462 -0.264 0.275

P. rhoeas-ger 0.503 0.424 0.273 0.155

L. rigidum-gr -0.093 0.399 -0.21 0.291

S. halepense-gr 0.480 0.347 0.473 0.16
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4.3 GARP Models

Based on the GARP maps of figure 13a, in 2000 C. album occurs at the Southern part of
Greece, such as Peloponnisos, and at areas around Attiki (Sterea Ellada - central
Greece). Populations of the same species, are also found at East Macedonia and
Thrace (fig. 13a). The scale of of all GARP maps indicates that the species distribution
ranges between low (0 percent) and high (100 percent) probability values. The species is
mostly distributed at dry areas with high temperatures (fig. 3). Concerning, C.
canadensis, and A. retroflexus, they are found in smaller populations, almost at the
same areas with C. album. Moreover, E. crus-galli is distributed with smaller population

Figure 13a. GARP maps for C. album, C. canadensis, A. retroflexus in Greece, using
annual mean temperature and annual precipitation, as environmental factors in 2000, 2020,
and 2050.
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Figure 13b. GARP maps for E. crus-galli, P. rhoeas, L. rigidum, S. halepense in Greece,
using annual mean temperature and annual precipitation, as environmental factors in 2000,
2020, and 2050.
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sizes around Attiki, Central - East Macedonia and Thrace (fig. 13b), mainly at dry - hot
low land areas (fig. 3). Additionally, P. rhoeas is found mostly around the Aegean islands,
and artificial areas, such as Athens, the capital of Greece(fig. 13b). L. rigidum seems to
expand at the same areas with P. rhoeas, included a low land agricultural area, Thessaly,
but in smaller populations. Finally, S. halepense seems to be distributed at low land
areas of Peloponnese and also, however, with lower probability, at the western wetter
part of Greece (figs 13b and 3). Therefore, most of the studied species in Greece, prefer
to loccur at dry - hot low mand areas, with the exception of S. halepense that seems to
prefer wet high temperature areas of low altitude (fig. 3).
Projecting species distribution in 2020 and 2050, all species in Greece, with the
exception of P. rhoeas and L. rigidum, tend to move to higher altitudes (figs 13b and 5),
having extremely low population sizes. On the contrary, P. rhoeas tends to expand with
a medium probability all over Greece by 2020 and 2050 (fig. 13b). The same holds for L.
rigidum, having though a higher probability of expanding to the drier and more hot east
part of Greece (figs 13b and 5). Therefore, in future climatic conditions in Greece,
characterized by higher minimum temperature compared to present conditions (figs. 3
and 5) most of the studied species, are limited, except from L. rigidum and P. rhoeas.
Based on table 8, almost all GARP models for species distribution in Greece, in 2000,
are 71 to 90 % accurate, The Area Under Curve (AUC) for all models is over 0.75 for the
species in Greece.

Table 8. Cross - validation of GARP analysis for all species studied in Greece and
Germany. Area Under Curve (AUC) for the whole model (species in 2000, 2020 and 2050)
and Accuracy of observed values (percent of all values) for the species in 2000 is recorded.

In Germany, current distribution of A. retroflexus is with higher probability at lowland
areas of the Northern half of Germany (figs 4 and 14a). However, there is also
probability, lower though, to find the species in other areas of the country, since the
species seems to have a wide distribution across the country (fig. 14a). Projecting the
distribution of A. retroflexus in Germany in 2020, the species are mostly found at the
southern part of Germany, where the altitude and the precipitation is higher, but the
temperature lower, compared to northern Germany (figs 14a, 4 and 6). Finally, the same
species in 2050, tends becomes limited (fig. 14a). Concerning, C. album and C.

Species
Greece Germany

AUC Accuracy
(%) AUC Accuracy

(%)
Amaranthus
retroflexus 0.76 86.96 0.64 92.11

Chenopodium album 0.75 93 0.61 88.22
Conyza canadensis 0.8 89.47 0.61 94.85
Echinochloa crus-galli 0.93 71.43 0.67 89.10
Papaver rhoeas 0.8 63.27 0.67 81.57
Lolium rigidum 0.84 84.2
Sorghum halepense 0.82 81.25
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canadensis, they are found with higher probability at the western part of Germany (fig.
14a). The probability of C. album and C. canadensis distribution (fig. 14a), is very similar
to the current mean temperature pattern of Germany (fig. 4). Both species in 2020, seem
to land up almost the whole country of Germany (fig. 14a). However, in 2050, C. album
seems to occur across the country, but the probability is quite low. On the contrary, there
is a higher probability for C. canadensis to become expanded across Germany, except
from the western part of the country (fig. 14a). In 2050, the whole Germany, becomes
warmer, especially the Southern areas (fig. 6).

Figure 14a. GARP maps for C. album, C. canadensis, A. retroflexus in Germany, using
annual mean temperature and annual precipitation, as environmental factors in 2000, 2020,
and 2050.
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As far as it concerns E. crus-galli in Germany (fig. 14b), it is found only at the northern
part of Germany in 2000. Projecting its’ distribution in 2020, the species occurs mainly at
the southern part of Germany, where the altitude is higher and the temperature lower (fig.
6). In 2050, in Germany, the species distribution is very limited and it is almost vanished,
becoming locally extinct. The main factor contributing to this change could be the
warming of the country by 2050 (fig. 6). Following the distribution of P. rhoeas in 2000,
the species has a medium probability to be found almost across Germany. Additionally,
there is a higher probability to find the species at the western cooler and wetter part of
Germany (figs 14b and 4). In 2020, the pattern of distribution is similar, but the higher
probabilities of distribution at the western part are decreasing (fig. 14b). Finally, in 2050,
the probability of finding the species across the country becomes lower (fig. 14b).

Figure 14b. GARP maps for E. crus-galli and P. rhoeas in Germany, using annual mean
temperature and annual precipitation, as environmental factors in 2000, 2020, and 2050.

Based on table 8, almost all GARP models for species distribution in Germany, in 2000,
are 82 to 95. However, the Area Under Curve (AUC) for all models is between 0.6 and
0.67 for the species in Germany, indicating models better than random.
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4.4 Rank - abundance diagrams

Figure 15a. Rank - abundance diagrams of mean NDVI value of 3 km buffer zone around
species points landing both in Greece and in Germany. Log values of relative abundance
are also given. The species presented are A. retroflexus, C. album and C. canadensis.
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Figure 15b. Rank - abundance diagrams of mean NDVI value of 3 km buffer zone around
species points landing both in Greece and in Germany. Log values of relative abundance
are also given. The species presented are E. crus-galli and P. rhoeas.
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Figure 15c. Rank - abundance diagrams of mean NDVI value of 3 km buffer zone around
species points landing in Greece. Log values of relative abundance are also given. The
species presented are L. rigidum and S. halepense.

The relative abundance of different pixels (DNvalues) around species points is ranked.
Moreover, DN abundance was plotted even on a log scale in order to decrease the
outlier effect, that is, the smoothing of the curve due to hyper-dominant DNvalues. The
tails of the curve of rank-abundance diagrams, provide information of the abundance of
the dominant and rare values. The left-side of the tail indicates dominant values,
whereas the right-side the rare values. Concerning the log curves, the more sigmoid the
curve, the more heterogenous the landscape is.
All curves are strongly right-sided, indicating equitability of the distribution of the
abundances of DN values (figs 15a, 15b and 15c). Another common characteristic of the
above rank - abundance diagrams, is the one or two dominant values in every species
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distribution. Moreover, dominant DN values correspond to very low NDVI values (figs
15a, 15b and 15c).
The relative abundance, and also log curves for A. retroflexus in both countries follow
the same pattern (fig. 15a).On the contrary, the log curves of C. album, C. canadensis
and P. rhoeas landing in Germany seem to be longer and more sigmoid related to the
Greek ones (figs 15a and 15b). However, concerning E. crus-galli, the relative
abundance curve and log-curve of the species in Germany is much longer, and more
sigmoid compared to the same species in Greece (fig. 15b). This could indicate, a
smaller DN diversity of NDVI values around the species in Greece (table 9), and
therefore a lower spectral heterogeneity.
Finally, the studied weed species in Germany seem to land in more diverse landscape
(table 9). Among all species, E. crus-galli, L. rigidum, and S. halepense in Greece, hold
the lowest spectral diversity, Shannon and Pielou index (table 9). On the contrary, all
species in Germany, and also C. canadensis, and E. crus-galli show the highest H value
(table 9).

Table 9. Diversity, Shannon and Pielou index, using the NDVI Digital Number (DN) values
around species points in a buffer zone of 3 km.

4.5 Ordinary Least Square (OLS) regression
According to table 10, most of the species distribution does not seem to be related with
NDVI index, since the Rsquare is near to zero, and the models are mostly not
statistically significant (f-probability, non significant). The Rsquare for E. crus-galli is 0.33,
but the test is not significant. Moreover, the Morans’ I analysis applied on the residuals of
the OLS regression, indicated that either there is spatial autocorrelation inside the
species or more predictor variables are needed to explain the species distribution.
Additionally, there is a high probability that the relationships are not linear. Normal
distribution of the residuals is recorded in Germany for A. retroflexus and P. rhoeas, and
in Greece for C. canadensis, E. crus-galli and P. rhoeas. Statistically significant models,
according to f-prob, are recorded for A. retroflexus in Greece, with an Rsquare 0.16,
though the residuals are clustered. In Germany, C. album distribution seems to be
statistically significant (f-prob and t-prob) and positively related with a low Rsquare of
0.10 to NDVI index. However, the distribution of the residuals in this case is not normal.

Country Species Diversity H J

Greece

A. retroflexus 190 4.71 0.89
C. album 198 4.67 0.88
C. canadensis 147 4.7 0.94
E. crus-galli 67 3.87 0.92
P. rhoeas 175 4.08 0.79
L. rigidum 112 3.73 0.79
S. halepense 131 4.28 0.88

Germany

A. retroflexus 209 5.04 0.94
C. album 254 5.2 0.94
C. canadensis 232 5.04 0.93
E. crus-galli 228 5.17 0.95
P. rhoeas 231 5.12 0.94
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Finally, significant is the t-test probability, in Greece for S. halepense (clustered
residuals), L. rigidum (clustered res.), C. canadensis (normal res.), P. rhoeas (normal
res.) both in Greece and Germany, and E. crus-galli (clustered res.), C. album (clustered
res.), and A. retroflexus (normal res.) in Germany. All the relationships resulted in very
low Rsquare values. Moran’s I autocorrelation evaluates whether the pattern of the
relationship expressed is clustered, dispersed or random. Normal distribution refers to
random distribution of the residuals of the analysis. For the Moran's I statistic, the null
hypothesis states that the attribute being analyzed is randomly distributed among the
features in the study area, i.e. the spatial processes promoting the observed pattern of
values is random chance. The values of the dataset tend to cluster spatially, when high
values cluster (group) near other high values or/and low values cluster near other low
values.

Table 10. Ordinary Least Square regression model of species distribution in Greece, and in
Germany, using as predictor, mean and standard deviation NDVI values, in an area of 3km
around species points. R2, coeff., t-stat, t-prob, f-stat, f-prob, Morans’ I z, Morans’I p and
the residuals are also presented for checking spatial autocorrelation.

SPECIES COUN-
TRY R2 Coeff. t-stat t-prob f-stat f-prob Morans'I z Morans' I p Residuals

Amaranthus
retroflexus

GR 0.16 10.70 0.64 ns 4.35 0.02 8.32 0.00 clustered

GER 0.14 140.30 3.00 0.01 2.68 ns 1.38 ns normal

Chenopodium
album

GR 0.07 28.00 1.96 ns 2.52 ns 7.62 0.00 clustered

GER 0.10 103.10 6.40 0 6.73 0.00 0.28 0.00 clustered

Conyza
canadensis

GR 0.26 41.8 2.82 0.01 2.75 ns 1.51 ns normal

GER 0.02 28.00 1.07 ns 0.84 ns 2.48 0.01 clustered

Echinochloa
crus-galli

GR 0.33 64.40 1.62 ns 1.21 ns 0.36 ns normal

GER 0.00 52.20 2.04 0.05 0.05 ns 2.64 0.01 clustered

Papaver
rhoeas

GR 0.02 36.30 2.86 0.01 0.51 ns 1.64 ns normal

GER 0.05 72.70 3.74 0.00 1.33 ns 0.48 ns normal

Lolium rigidumGR 0.01 54.00 2.36 0.03 0.09 ns 0.32 0.00 clustered

Sorghum
halepense GR 0.02 80.20 2.66 0.02 0.18 ns 2.37 0.02 clustered
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4.6 Variograms
The highest spatial variability around species points is recorded for P. rhoeas in Greece,
but also in Germany; however, with a lower sill. The spatial scale for this species is low
in both areas, indicating that a smaller number of cells is needed to record the maximum
spatial variability. Low mean NDVI length scale indicates that high spectral variability is
recorded in a small buffer zone or spatial scale around species points. High NDVI image
variability (sill) indicates high spectral heterogeneity around species points. According to
the figure above, all the other species in both countries follow the pattern of a much
lower spatial variability, and a higher mean NDVI length scale. Moreover, both length
scale and sill for A. retroflexus are almost identical for the species in the two studied
countries. The highest length scale in recorded for S. halepense, and the lowest spatial
variation for C. album in Greece (fig. 16).

Figure 16. NDVI spatial variability (σ2, variogram sill) versus the NDVI mean length scale
(square root of the variogram integral range).
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4.7 Weight of Evidence and Logistic regression
The relationship of NDVI with species presence is presented in table 11, for species in
Greece and on table 12, for species in Germany. The relationship varies between the
species. According to table 10, E. crus-galli, L. rigidum and S. talepense do not seem to
have any relationship with NDVI. On the contrary, C. canadensis, and P. rhoeas seems
to be related strongly (95 - 97.5 %) with the first class on the NDVI that corresponds to
values 0 to 0.25. For both species,the contrast value is over 0.9 that could indicate that
the class 0 to 0.25 of the NDVI could be a good predictor of species presence. Moreover,
the logistic repression’s p-value for the same class and species is also statistically
significant (table 11). The second NDVI class, i.e. 0.25 to 0.5 (class 2) is also well
related to the presence of C. album in Greece, with a level of significance between 99.5
and 100 percent (table 11). Moreover, the p-value of the logistic regression also
indicates a statistically significant relationship (table 11). Finally, A. retroflexus in the
Greek landscape is related with the third class of NDVI that gets values between 0.5 and
0.75, with a level of significance 90 to 95 percent; however, the relationship is not
statistically significant according to the corresponding p-value of the logistic regression
(table 11).
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Table 11. NDVI relationships with species presence studied in Greece. WofE contrast
values, their significance, Logistic Regression Post Probability values and their
corresponding two-tailed p-values.

Species Classes* LRPost
Prob

p-value
(two-tailed)

CONTRAST STUD_CNT Level of
sig. (%)

A. retroflexus 1 0.01 0.02 0.44 0.98 85-90

2 0.01 0.02 -0.52 -0.70 <70

3 0.01 0.10 0.64 1.46 90-95

4 0.01 0.00 0.28 0.60 70-75
C. album 1 0.00 0.16 0.02 0.07 <70

2 0.01 0.01 0.98 3.72 99.5-100

3 0.02 0.00 -0.78 -2.10 <70

4 0.01 0.00 -1.58 -2.20 <70
C. canadensis 1 0.01 0.01 0.91 1.91 95-97.5

2 0.01 0.03 -0.95 -1.50 <70

3 0.01 0.10 0.33 0.67 70-75

4 0.00 0.33 -1.00 -0.97 <70
E. crus-galli 1 0.00 0.39 -0.45 -0.40 <70

2 0.00 0.39 0.27 0.29 <70

3 0.00 0.25 -0.31 -0.28 <70

4 0.00 0.39 0.69 0.62 70-75
P. rhoeas 1 0.01 0.01 0.94 3.28 99.5-100

2 0.01 0.00 -0.35 -1.01 <70

3 0.02 0.00 -0.44 -1.14 <70

4 0.01 0.09 -0.82 -1.37 <70
L. rigidum 1 0.01 0.02 0.14 0.28 <70

2 0.01 0.04 0.00 0.00 <70
3 0.01 0.02 0.18 0.34 <70
4 0.01 0.17 -0.48 -0.64 <70

S. halepense 1 0.00 0.07 0.47 0.87 80-85

2 0.01 0.11 -0.31 -0.52 <70

3 0.01 0.03 -0.09 -0.14 <70

4 0.00 0.34 -0.28 -0.27 <70
* 5 classes for NDVI index, 0 to 0.25 (1), 0.25 to 0.5 (2), 0.5 to 0.75 (3) and 0.75 to 1 (4)
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Table 12. NDVI relationships with species presence in Germany. WofE contrast values, their significance level, Logistic Regression Post
Probability values and their corresponding two-tailed p-values.
Species Classes* LRPostProb p-value CONTRAST STUD_CNT Level of sig. (%)

P. rhoeas

1 0.00 0.00 0.03 0.08 <70
2 0.00 0.00 0.52 1.30 90-95
3 0.00 0.00 0.72 2.12 97.5-99
4 0.00 0.00 -0.20 -0.44 < 70

C. canadensis

1 0.00 0.00 0.34 1.31 90-95
2 0.00 0.00 0.18 0.60 70-75
3 0.00 0.00 0.46 1.93 95-97.5
4 0.00 0.00 0.21 0.77 75-80

E.crus-galli

1 0.58 1.79 95-97.5
2 0.28 0.73 75-80
3 0.33 0.99 80-90
4 -0.03 -0.08 <70

C. album

1 0.45 1.95 95-97.5
2 0.30 1.12 80-90
3 0.25 1.06 80-90
4 0.24 0.95 80-90

A. retroflexus

1 0.62 1.51 90-95
2 -0.31 -0.50 <70
3 0.47 1.15 80-90
4 0.19 0.40 60-70

* 5 classes for NDVI index, 0 to 0.4 (1), 0.4 to 0.6 (2), 0.6 to 0.8 (3) and 0.8 to 1 (4)
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Proceeding with species in Germany, the highest relationship is recorded between P.
rhoeas and NDVI class 3 (0.6 to 0.8 NDVI value), getting a contrast value of 0.7 with a
97.5 - 99 percent level of significance, and class 2 (0.4 to 0.6 NDVI value), getting a
contrast value of 0.52 with a 90-95 percent level of significance (table 12). The logistic
regression also results to statistically significant relationships (table 12).
Moreover, E. crus-galli, C. album, and A. retroflexus presence are related with the 1st
class of NDVI (0 to 0.4), with a medium contrast value (0.45 - 0.62), and level of
significance 95 to 97.5 percent for E. crus-galli, and C. album, and 90 to 95 percent for A.
retroflexus (table 12). Finally, C. canadensis is well related with the 3rd class of NDVI (0.6
to 0.8), with 95 to 97.5 level of significance, and also statistically significant p-value
derived from the logistic regression model (table 12).
Validating the logistic regression models (table 13), P. rhoeas in Germany. C.
canadensis both in Germany and Greece, and L. rigidum and S. halepense in Greece,
results into statistically significant models, since the Area Under Curve (AUC) is over 60
percent.

Table 13. CAPP curves equations fitted, Rsquare and AUC values for weed species in
Greece, and also Germany.

Species
Country Rsquare Equation (y) AUC (%)

P. rhoeas Greece 0.87 0.0123x^2+ 0.062x+0.0023 48.82
Germany 0.87 -0.0059x^2+0.0087x-0.0014 76.3

C. canadensis Greece 0.98 0.0056x^2+0.0064x+0.005 58.92
Germany 0.92 -0.0063x^2+0.0101x-0.0017 69.04

E. crus-galli Greece 0.90 0.0005x^2+0.0022x+0.0004 53.76
A. retroflexus Greece 0.99 -0.0026x^2+0.0192x-0.0037 44.65
C. album Greece 0.99 0.0168x^2+0.0008x+0.0003 35.2
L. rigidum Greece 0.99 0.0021ln(x)+0.0097 78.77
S. halepense Greece 0.89 0.0011ln(x)+0.0057 80.92



57

5. Discussion

5.1 Landscape heterogeneity & species presence
The landscape is more heterogenous (spectral heterogeneity) for the species found in
Germany than in Greece, especially for P. rhoeas. A number of different models can be
used to study landscape heterogeneity in relation to species presence. The results from
all models used were not contradictive, with the exception of OLS regression and HS
models that did not indicate significant relationships. Among the models used, WofE and
Variograms seem to be the most reliable spatial models that can be used to study NDVI,
landscape heterogeneity and species presence relationships.

5.1.1 Rank-abundance diagrams & Diversity Indices
Rank - abundance diagrams were created so as to speculate the heterogeneity of the
landscape around species points. The main pattern of the curves for almost all species
in both countries is the one or two dominant values and the evident right-sided tails. The
right-sided tails combined with the sigmoid shape of the log curves is an indication of a
large number of unique rare values, related to heterogenous landscapes or landscapes
with high spectral heterogeneity.
More specifically, for A. retroflexus, the spectral heterogeneity of the landscape around
species seems to be similar in both countries. On the contrary, the landscape around C.
album, C. canadensis, P. rhoeas and E. crus-galli seems to be more heterogenous in
Germany, since the curves are longer and slightly more sigmoid. Additionally, all species
in Germany have high landscape diversity (NDVI Shannon and Piellou index values).
Lower spectral diversity, according to diversity indices, was recorded for E. crus-galli, L.
rigidum, and S. halepense in Greece. The low spectral diversity for these species comes
in accordance with the regression (OLS and Logistic regressiion) and WofE results,
where the species presence were not related with NDVI. An explanation for the low
spectral heterogeneity around these three species in Greece could be the fact that they
are mostly grown in monoculture rice and sorghum fields, and not in more diverse
landscapes.
Moreover, based on Rank-abundance diagrams, the studied weed species in Germany
seem to land in more diverse landscape. Additionally, all species in Germany have high
landscape diversity (NDVI) values (Shannon and Piellou indices), and most of them
generally are related with more dense areas compared to Greece, according to Logistic
regression and WofE models. On the contrary, according to variograms, all species
studied, except from P. rhoeas, have a similar NDVI variability pattern. P. rhoeas has the
strongest relationships with NDVI and the highest spectral variability around it
(variograms).

5.1.2 Variograms & heterogeneity
According to the variograms, the highest spectral variability is recorded around P. rhoeas
both in Greece and Germany. The spatial scale for this species is low in both areas,
indicating that a smaller number of cells is needed to record the maximum spatial
variability. P. rhoeas is a species with a wide distribution across countries. As a species,
it prefers calcareous areas and soils (Emorsgateseeds 2014), therefore it can be
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expanded easily into the Greek landscape. The lowest variability of NDVI index, is
recorded for C. album and C. canadensis in Greece. The same holds for the species in
Germany, with slightly a few variations. Therefore, a clear difference of NDVI index
variability is recorded only for P. rhoeas. All other species studied have a similar NDVI
index variability pattern.

5.2 NDVI & species presence
Most of the studied weed species in both countries are related with NDVI. However, not
all models applied indicated significant relationships. Habitat Suitability and Ordinary
Least Square Regression Models resulted to non significant relationships, compared to
Logistic Regression and WofE Models. The relationships were more obvious for the
weed species in Germany, especially for P. rhoeas that was related with high NDVI
values, i.e. dense vegetated areas.

5.2.1 Habitat Suitability Models
According to Habitat Suitability models there is not an important relationship of NDVI
with species presence. However, this could be as a consequence of using a large
number of variables to describe species presence. In these models, the bioclimatic
factors, especially mean temperature and annual precipitation are the main factors
affecting species distribution.

5.2.2 OLS regression models
The distribution of most of the studied species in both countries does not seem to be
related to NDVI index, since the Rsquare is near to zero, and the models are mostly not
statistically significant (f-probability, non significant). Statistically significant relationships,
but of low strength, have been found for A. retroflexus in Greece (R2=0.16), and C.
album in Germany (R2=0.10); however, the residuals were not normal distributed.
Further, in most cases the residuals distribution of the OLS regression is clustered,
indicating that either there is spatial autocorrelation or more predictor variables are
needed to explain the species distribution. Finally, there is a high probability, the
relationship between species presence and NDVI not to be linear.

5.2.3 Logistic regression & WofE
On the contrary Logistic regression and WofE models resulted to statistically significant
relationships of weed species with NDVI values, comparing to OLS models. However,
significant relationships were not recorded for all species. More specifically, E. crus-galli,
L. rigidum and S. halepense in Greece do not seem to have any relationship with NDVI.
The species with the strongest relationships with NDVI is P. rhoeas landing in Germany,
found in dense vegetated areas. The same species in Greece is found in very low
vegetated areas. Generally, most of the species studied are related with low NDVI
values. The weed species studied in Greece, are mostly found in low vegetated areas,
whereas the same species in Germany are related with more dense vegetation. These
differences could be the consequence of the differing bioclimatic conditions, resulting to
differing vegetation types between the two countries; dry and hot, sparse, but more
diverse vegetation in Greece, more temperate and wet, more dense vegetation in
Germany. Finally, the logistic regression has a low predictive performance in Greece,
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according to validation results. This can be contributed to the primarily clustered
distribution of the species in the Greek landscape. Most of the species point data used
for the study are mainly found at the Central and Southern part of the country. However,
the analysis was performed for the whole country area.

5.3 Environmental Factors & weed species distribution
In Greece, all weed species studied tend to live in extreme habitats throughout the study
area (high marginality value). The lowest marginality for species in Greece is recorded
for P. rhoeas, whereas the highest for C. canadensis, C. album, and E. crus-galli. P.
rhoeas is a species that prefers to live in calcareous, dry and hot areas, a condition that
is very common in the Greek landscape.
Additionally, C. canadensis and C. album are summer annual C3 plants, whereas E.
crus-galli is a summer annual C4 grass that prefers to live in dry hot, and mainly artificial
areas. On the contrary, marginality for all studied species landing in Germany gets a low
value that indicates that the same species in Germany, tend to live in average conditions.
Moreover, the tolerance value for all species both in Greece and in Germany does not
get a very high value. A low value of the global tolerance (close to 0) indicates a
"specialist" species ending to live in a very narrow range of conditions, whereas a high
value (close to 1) indicates a species that is not too picky on its living environment. This
could indicate that all weed species studied neither prefer to live in a narrow range of
conditions nor to be specialists in their environment. This condition is more evident for
species in Germany, since the environmental conditions are less extreme than Greece,
where the climate is relatively more dry and hot, especially during the summer,
consisting a stressful environment for the species. This could be an explanation for the
higher species marginality in Greece.
Additionally, the main factor explaining species marginality in Greece, according to the
eigenvalues resulted from models applied, is mean temperature. Secondary factors in
Greece, are altitude for E. crus-galli (C4 summer annual monocot grass) and S.
halepense (C4 summer perennial monocot grass) and annual precipitation for L. rigidum
(C3 winter annual grass) and C. canadensis (C3 summer annual dicot).
Therefore, in Greece C4 plants marginality is not related to water availability, whereas C3

plants marginality is. These results could come in accordance with Ozturk et al. (1981),
found that the productivity of the C4 species declined at the highest level of water
availability, while the C3 species were least productive under dry conditions. However,
the study of Ozturk et al. (1981), was done for species in Peru, where the climate is very
diverse, with a large variety of climates and microclimates.
Concerning Germany, the main factor affecting species lower though recorded
marginality, is altitude, a second factor only for the species E. crus-galli is annual
precipitation. This result comes in accordance to Patterson (1995a), described E. crus-
galli as more competitive under moist conditions.
Hence, the climatic conditions are the main factors related to species marginality in
Greece, whereas altitude in Germany. The contribution of climate to species distribution
is 70 % for A. retroflexus and P. rhoeas, according to Hyvönen et al. (2012). Concerning
Chenopodium vulvaria and Chenopodium hybridum the climate contribution to dispersal
is 90 % and 55 %, correspondingly, according to the same author.
In addition, the abundance of C4 (including Amaranthaceae) plants of total C4 dicots,
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total C4 monocots and C4 Poaceae, was related to the climatic variables of annual mean
daily temperature, annual precipitation and DeMartonne’s aridity index, according to
Pyankov et al. (2010). Moreover, the abundance of total C4 plants monocots, C4

Poaceae decreases with increasing temperature but does not with precipitation
(Pyankov et al. 2010). This comes in accordance with our results.

C4 photosynthesis is a biochemical mechanism of a special mode of photosynthesis for
concentrating CO2 internally. Therefore, C4 plants can still operate well with partially
closed stomata. They generally have high water use efficiency (Black, 1973). It is
intriguing that monocots respond much more to the temperature factor and, conversely,
dicots to the precipitation factor of the aridity index. Grasses often possess
morphological and anatomical traits, such as narrow rolled leaves and epidermal cavities
protecting stomata under stress of low water availability and thick cuticles. These
contribute to controlling transpiratory water loss when water is limiting, whereas they do
not help to avoid temperature stress. In contrast, lower transpiration reduces
transpirational cooling and this increases temperature stress. Thus, the stress adaptive
C4 model should prove to be less in demand in relation to water stress and more
important in relation to temperature stress, which may explain why the abundance of C4

monocots increases more in response to temperature than precipitation. Conversely,
broad-leaved dicots may suffer more immediate stress as a result of transpiration when
precipitation is low and the abundance of C4 dicots responds more directly to
transpiration (Pyankov et al. 2010).

5.4 Projecting future weed species distribution
Temperature is a major factor governing the seasonal growth of weeds and their
geographic distribution (Woodward 1988). Davis et al. (2005) pointed out that there are
three biotic responses to climate change, with all three involving evolution: (i)
persistence if species tolerance limits are still within the changed climate parameters, (ii)
range shifts (migration) to allow organisms to continue to thrive within their tolerance
limits or (iii) extinction.
The first step in the risk assessment of weed range expansion is predicting the
probability of successful establishment of weed species by matching climate data
(Hyvönen et al. 2012). As far as it concerns climatic changes, the temperature increases
are predicted to be greater in winter than in summer and greater in the Northern
Hemisphere. The range expansion of many weeds into higher latitudes may accelerate
with global warming (Patterson 1995b). Projections for the range shifts of European plant
species due to climate change have indicated that the greatest species loss will occur in
Mediterranean regions, and the least in Boreal, northern Alpine and Atlantic regions
(Bakkenes et al. 2002; Thuiller et al. 2005).
In 2000, A. retroflexus is found in dry hot low land areas, and by 2020, and further by
2050, the species tends to move to higher altitudes, having very small population size. In
Germany, the same species in 2000 lives in landscapes with average temperature and
precipitation rates, whereas in 2020, it moves at higher altitudes, where the temperature
is lower and the precipitation higher. By 2050, the species in Germany becomes extinct.
A. retroflexus and E. crus-galli are C4 summer annual weeds, that prefer low land areas
with average or low precipitation rates, and average or high temperatures, in Central and
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Southern Europe, correspondingly. By 2020, these species tend to move to higher
altitudes, whereas the species in Germany, by 2050 decrease their population size.
S. halepense is a C4 summer perennial weed. In 2000, the species is found at low land
areas of Greece, but also at the western more wet part of Greece. According to Pyankov
et al. (2010), only the abundance of C4 dicots is correlated with precipitation. By 2020
and 2050, the species moves to higher altitudes with very small population size.
The abundance of C4 plants decreases with increasing temperature and expression of
aridity (decreasing aridity index) (Pyankov et al. 2010). Moreover, according to a study
by Parker-Allie et al. (2009), there was seemingly greater disparity among the C4

grasses in their modeled distributions with climate warming. However, all species studied
displayed habitat loss of relatively similar magnitude with climate warming and shifts in
their distribution ranges into higher elevations. This was most apparent in the drier and
warmer savannas. They also exhibited similar shifts in their distribution ranges into
predominantly colder and moister grasslands at higher elevations in the countries interior.
Proceeding with C3 weeds, in this study, C. album and C. canadensis (summer annual
C3 dicots) have the same pattern of distribution both as species in Greece and as
species in Germany. Therefore, in Greece, they almost co-exist in dry hot low land and
artificial areas. By 2020, and 2050 these species tend to move in much smaller
populations at higher altitudes. Additionally, in Germany, these species in 2000 are
found in hot low land areas, with average precipitation values. By 2020, they expand to
almost all Germany, having a medium probability though. The same pattern is recorded
for both species in 2050, with an exception of C. canadensis that is not found at the
western most cold part of Germany. However, the probability of C. canadensis to expand
all over Germany by 2050 is higher than for C. album. Compared to other studied
species, C. canadensis in Germany might be a more tolerant species to climatic changes.
Concerning, C3 winter annual plants, such as L. rigidum and P. rhoeas, the distribution
pattern and the projections of the species do not follow the same pattern as C3 summer
annual plants. L. rigidum in Greece is found at agricultural areas, low land areas, and
mainly in the Greek islands, hot and dry areas. By 2020, and 2050, the species has a
higher probability of expanding at the drier and more hot east part of Greece. However, It
is not found at high altitude areas. Additionaly, P. rhoeas in 2000 prefers dry and hot
areas. By 2020, and 2050, the species tends to expand allover Greece, with lower
though probability. In Germany, the same species prefers in 2000, low land areas, with
average temperature, and low precipitation. The pattern is similar in 2020, but the
probabilities of expansion become lower. By 2050, the species seems to expand allover
Germany, but the prediction is not so strong.
Therefore, C3 summer annual weeds, in central Europe seems to be tolerant to climatic
changes, whereas in drier and more hot climates they tend to move to higher altitudes in
small populations. On the contrary, the distribution of winter annual C3 weeds in Greece,
such as L. rigidum and P. rhoeas is not deteriorated by climatic changes.
According to Lee (2011), C3 plants with a long growth period, such as C. album, they
would not be able to avoid high temperature stress during late growth periods, such as
the reproductive stage. Under conditions with an increase in temperature without
elevated CO2 levels, the biomass production of C3 plants is expected to be strongly
depressed by high temperature stress. However, because elevated CO2 stimulates
photosynthesis in C3 plants during high temperature seasons, the loss in biomass and in
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the reproductive index in response to elevated temperature would be greatly attenuated
in C3 plants under conditions with elevated CO2. If they successfully compete during the
initial establishment stage in early spring, their survival ability will be greatly enhanced by
elevated CO2 and high temperature stress. This could be an explanation of why C3

winter annual weeds are more survival competitive than C3 summer annual weeds, since
their phenological stages are established much earlier than summer weeds. Therefore,
C3 summer annual weeds will not probably have a high chance of survival, while growing
at late spring, they would not be able to avoid high temperature stress.
Northern Europe, as well as some mountainous areas, were climatically more suitable
and southern Europe less suitable for the weed species studied. However, variation
among species was substantial, indicating the importance of species-specific responses
to climate change (Hyvönen et al. 2012). Finally, suitable climate conditions are the first
prerequisite for the establishment of a permanent weed population. The accuracy of the
projections could be improved by including the distribution of suitable cropping systems
for the weed species (McDonald et al. 2009).

5.5 Comparing HS with GARP models
A main difference between these two models is that Habitat Suitability Models are factor
analysis models, whereas GARP models combine variables to predict and project
species distribution in current and future conditions. GARP models do not specify the
factors affecting species distribution. Their analysis is related with the representation of
species distribution on maps. Moreover, in these models, mainly bioclimatic conditions
are used as explanatory variables. On the contrary, in Habitat Suitability Models a
number of Eco-geographical variables are used to specify current species distribution
and the factors affecting it, in an area of study.
Therefore, Habitat Suitability models seem to be more reliable than GARP models, since
they can combine a larger number of variables, and also explain which are the main
factors of species distribution. However, HS models cannot be used to speculate the
species distribution in future climatic conditions, since HS models cannot perform
projections in the future.
In this study, combining GARP and HS models, it is found that more marginal weed
species tend to become locally extinct or to be found in small populations at higher
altitudes. This is more obvious for species landing in the Greek landscape, with the
exception of P. rhoeas. On the contrary, the same weed species in Germany are less
marginal, and more tolerant to climatic changes. Therefore, species adapted strictly to
certain climate conditions may lose those conditions and face increased extinction risk in
a changing climate (Root et al. 2003; Thuiller et al. 2005). In contrast, species most likely
to benefit from climate change in terms of extending range sizes are those with
distributions independent of specific climatic conditions and land use patterns (Hyvönen
et al. 2011).
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6. Conclusions

The climatic conditions, especially mean temperature and annual precipitation, are the
main factors affecting weed species distribution both in Greece and Germany. NDVI and
landscape heterogeneity are in cases related with the presence of some of the studied
species. However, the models applied to examine the relationship of NDVI with species
presence need improvements concerning the scale that they are performed. Smaller
geographical areas could improve the performance of the models. Working in larger
scale maps that present smaller areas in detail, could make possible to use field data of
weed species populations (in situ). Improvements of the study could be made by using
crop, and cultivation techniques information, in relation with weed species
presence/absence. Moreover, information of natural weed populations that are
positioned in the field and recorded as herbicide resistant could upgrade the picture that
we have of the species performance in differing environmental conditions. For the
prediction of species future distribution, carbon dioxide emission trends per country
could also add to this study. Hence, further study is needed to come up with prediction
models of weed species future distribution. Finally, the models and maps produced in
this study could be used as a monitoring tool by farmers that would like to find new
cultivation areas and/or alternatively detect how their current agricultural areas will
respond and influenced by weeds in the next few decades. Moreover, crop science and
crop protection companies could be supplied by useful maps and information that
combined with crop maps could become a powerful management tool for finding new
innovative crop protection solutions.
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Appendices

Appendix 1 Weed species photos

Photo 1. Chenopodium album (SEINet 2013a)
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Photo 2. Amaranthus retroflexus (SEINet 2013b)

Photo 3.Papaver rhoeas (SEINet 2013c)
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Photo 4. Conyza canadensis (SEINet 2013d)
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Photo 5. Echinochloa crus-galli plant (SEINet 2013e)

Photo 6. Echinochloa crus-galli dried mature flower (SEINet 2013f)
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Photo 7. Lolium rigidum (Wikimedia 2013)



76

Photo 8. Sorghum halepense (SEINet 2013g)

Photo 9. Sorghum halepense flower (SEINet 2013h)
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