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Abstract 

Global warming has both short and long term effects on seasonal phenological cycles of 

vegetation. Phenology parameters of vegetation such as start, end, length and amplitude of season 

can describe life cycle events of vegetation. These parameters are commonly extracted from 

vegetation indices. Long-term dataset of GIMMS NDVI time series from 1983 to 2005 was used to 

extract and analyze vegetation phenology over Sahelian to equatorial areas. TIMESAT software 

package was used as an automated method to extract the phenology parameters of the dataset. 

Since changes of vegetation are not always simply linear; higher order of polynomial trends was 

applied to investigate the fluctuation of phenology parameters using methodology developed by 

Jamali et al. (2014). A new concept denoted “polynomial hidden trends” was introduced by Jamali 

et al. (2014), referring to areas with no significant linear changes, while they can be described by 

significant higher order polynomials.  

 

Results showed that the polynomial trends can detect notable proportions of vegetation changes 

over the study area, although changes of phenology parameters were mainly explained by linear 

trends. Also, a significant portion of the change was represented through quadratic and cubic 

trends.   

Since soil moisture is identified as a better indicator than rainfall to describe vegetation greenness 

(Huber et al., 2011), polynomial trends in soil moisture were compared against mean values of 

dates of occurrence of phenology parameters. There were several other factors influencing 

vegetation phenology such as rainfall, land cover and soil texture. These factors also were 

compared against the results of each phenology parameter. 

 

Results also illustrated that soil moisture trends followed the phenology parameters trends of Start 

of growing Season (SOS) and End Of growing Season (EOS). It was found that Entisols and 

Oxisols were associated with phenology changes, particularly in the Guinean zone. Also, 

deciduous woodland, shrub lands and irrigated crop lands were found to be those land covers with 

maximum response to variation in phenology parameters. 
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Chapter 1 

1. Introduction 

Global warming has immediate and recognizable effects on seasonal phenological cycles   

therefore; study of long term phenological series could explain how climate changes may affect the 

environment (Karlsen et al. 2007). In this regard, phenology parameters can be considered at both 

short and long time scales. While short-term climate fluctuations (e.g., temperature and rainfall) 

and/or human influences (e.g. extraction of ground water, urban development) may affect the 

annual variation of phenology parameters, long-term climate change and large scale human 

disturbances may cause shifts in general phenology patterns (Bradley et al. 2007). Moreover, 

changes in phenology may be due to changes in vegetation type, and give useful information about 

agriculture, ecosystem as well as climate (Heumann et al, 2007).  

 

Maignan et al. (2008) defined vegetation phenology as “studying the time of different stages of 

vegetation seasonal cycle (such as leaf unfolding, flower first bloom, leaf fall…) in relation with 

climatic parameters.” De Beurs and Henebry (2004) defined Land Surface Phenology (LSP) as 

discovering both temporal and spatial growing of the land surface vegetation through satellite 

sensors. Cyclic nature of vegetation phenology parameters, in addition to their immediate response 

to climate change can describe the variation of LSP.  

 

Phenology or seasonality of vegetation can be identified from several parameters such as: the start 

of the growing season (SOS), end of the growing season (EOS), amplitude of the season (AMP), 

and length of the growing season (LOS). While the life cycle events of vegetation like bud burst, 

flowering, and leaf senescence cannot be directly extracted from high temporal resolution satellite 

sensors, they can be described and estimated by phenology parameters.  

 

Phenology parameters are commonly extracted from vegetation indices, and among several 

vegetation indices, the Normalized Difference Vegetation Index (NDVI) is a widely used index for 

this purpose (Heumann et al .2007). Time series of NDVI can be used to observe regional and 

global land cover, and to analyze the global cycles of energy and matter in order to get information 
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about shifts in spatial distribution of bioclimatic zones as well as to extract the phenology 

parameters (Jönsson and Eklundh 2002). 

 

Long-term NDVI time series is required to analyze the vegetation phenology. For that purpose, 

data from AVHRR (Advanced Very High Resolution Radiometer) sensors which have been 

archived since 1981 are commonly used in vegetation analysis. Nevertheless, the datasets suffer 

from quality deficiencies due to instrumentation problems, changes in sensor angle, atmospheric 

conditions (e.g., clouds and haze), and ground conditions (e.g., snow cover), as has been reported 

by Bradley et al. (2007). They argued that the identification of phenology parameters via NDVI 

datasets is problematic. To overcome these problems, maximum value compositing (MVC), the 

best index slope extraction (BISE) and spatial and temporal smoothing methods have been 

introduced (Bradley et al. 2007). Among different datasets based on AVHRR, data from the NASA 

Global Inventory Monitoring and Modeling Systems (GIMMS) group at the Laboratory for 

Terrestrial Physics (Tucker et al. 2005) is the most known dataset (De beurs and Henebry 2010, 

Fensholt et al. 2009) . Moreover, due to enhanced and high quality of dataset which was achieved 

from applying several correction methods (Tucker et al. 2005), this dataset is widely used. 

 

Although several methods (smoothing functions, fitted models, thresholds and derivatives) have 

been studied for extracting the phenological parameters, only few methods have been  developed 

for that purpose (Jönsson and Eklundh 2004). The TIMESAT software package as an automated 

method uses a model fit approach which has been developed by Jönsson and Eklundh (2002). It 

also has capability of merging multiple local functions, and includes the Savitzky-Golay filtering, 

asymmetrical Gaussian, or double logistic for large flexibility. TIMESAT has been programmed in 

a way that fitted function can follow the complex behavior of time series functions (Jönsson and 

Eklundh 2002, Jönsson and Eklundh 2004). Furthermore TIMESAT has ability to fit curves on 

upper envelope of NDVI time series. This capability can reduce noise related errors and soil 

background reflectance in NDVI, since most of errors are negatively biased (Eklundh et al., 2009). 

 

Through applying linear regression models on time series of phenology parameters, rates of 

vegetation changes over a time period is observed (Heumann et al., 2007). Changes in seasonality 

parameters may point out variation in vegetation types and deliver information related to 

agriculture and ecosystems (Heumann et al., 2007). Furthermore, estimating vegetation changes 
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has enriched our understanding of intra and inter–annual fluctuations of vegetation changes from   

local to global scales (Fensholt et al., 2009).  

 

However, linear regression may have some weaknesses regarding vegetation studies, because the 

changes of vegetation are not always   linear. Also in some circumstances, significant abrupt 

changes might be overlooked by ordinary linear regression (Jamali et al., 2014); such abrupt 

changes may reflect environmental events such as fire, drought and land use changes. Therefore, 

an analysis of higher order polynomial trends could give better understanding of vegetation 

behavior change. Also, there may be some areas with no significant linear change, but containing 

notable hidden fluctuations best captured by quadratic or cubic models. These kinds of trends are 

named as “hidden or concealed trends” in this work. Hidden trends must be considered, since they 

may indicate particular events such as droughts. They can also detect when optimal fluctuations of 

the phenology parameters occur.  

 

There are several factors influencing vegetation phenology such as soil moisture, rainfall, land 

cover and soil texture. Studying the correlation between these factors and vegetation parameter 

changes is required to evaluate observed changes in phenology in order to understand how they 

influence such vegetation changes. For instance, each land cover has different response to climate 

change (De Jong et al. 2012) .Therefore they can be used as reliable indicators to explain 

vegetation changes. Also soil moisture is identified as a better indicator than rainfall for describing 

vegetation greenness (Huber et al., 2011). Consequently, studying soil moisture trends helps to 

understand the variations of vegetation greenness.  
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1.1. Objective of the thesis 

In this thesis, changes of vegetation phenology were investigated over the Sahelian to Equatorial 

area in Africa from 1983-2005 using NDVI time series of remotely sensed data. Main hypotheses 

of the thesis are: 

1- Notable proportions of changes in phenology parameters can be described by polynomial trends. 

2- Variations in phenology parameters are significantly correlated with soil moisture. 

   

The overall aim of this thesis was to study vegetation changes through analysis of phenology 

parameters in the Sahelian to Equatorial area, and also to investigate increased precision when 

determining trends in phenology parameters using polynomial regression, rather than linear 

regression, for describing phenology parameters of vegetation. 

 

Some more specific objectives that were considered are: 

 

- Analysis of the spatial and temporal vegetation changes over the Sahelian region by applying 

linear, quadratic and cubic regression models to phenology parameters. 

 

-  Analysis of the variations of phenology parameters in order to detect hidden changes in 

vegetation dynamics (at time scales less than the length of the AVHRR record). 

 

- Evaluation of the relationship between the phenology parameters and soil moisture as a main 

factor that influences the variation in phenology parameters. 

 

- Identifying driving forces behind changes in phenology parameters, including land cover, soil 

texture and rainfall over the study area.  
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1.2. Background and theory  

1.2.1. Remote sensing and the theory of its application in vegetation study 

After introducing satellite remote sensing in recent decades, several studies have been done to 

investigate vegetation phenology using remote sensing satellite imagery. The coarse spatial 

resolution of high temporal data from National Oceanic and Atmospheric Administration 

(NOAA)/AVHRR sensor was studied by Justice et al. (1985), in order to monitor seasonal dynamic 

of vegetation. They found that coarse-resolution satellite data could be used as a reliable tool in 

order to mapping and monitoring the vegetation at regional and global scales. Jönsson and 

Eklundh, (2002) fitted nonlinear asymmetric Gaussian model functions to the time-series of 

AVHRR NDVI. They introduced TIMESAT software package to extract the phenology parameters 

while applied AVHRR ancillary data of cloudy days to estimate uncertainty in the data values. 

Zhang et al. (2003) fitted series of piecewise logistic functions to remotely sensed Vegetation 

Index (VI) data from Moderate Resolution Imaging Spectro-radiometer (MODIS) to show intra-

annual vegetation dynamics over a large area in the United States. Results of the method coincided 

with behavior of the vegetation both geographically and ecologically (Zhang et al. 2003). The 

GIMMS AVHRR NDVI dataset was used to investigate vegetation changes over the Sahelian 

countries by analyzing linear trends for the time period of 1982-2005 (Heumann et al. 2007).  

 

To study the climate change effects, the vegetation phenological data are required at large spatio-

temporal scales. Since only few ground based stations have recently been established, generating 

data from these stations to cover a large area is challenging (Delbart et al. 2005). Satellite sensors 

can detect different response of vegetation to electromagnetic wavelengths (Norman et al. 2004). 

This property in addition to available short to long term observations of remotely sensed data has 

provided an opportunity to distinguish not only the vegetation types, but also the phenological 

changes of vegetation.  

 

There is a specific reflectance curve for each material on the Earth surface which shows the 

fraction of incident radiation as a function of wavelength (Norman et al. 2004). Orientation and 

structure of leaf canopy including leaf pigmentation, leaf thickness, cell structure and amount of 

water in the leaf tissue determine reflectance characteristics of vegetation (Norman et al. 2004). 

Figure (1) shows an ideal reflectance curve of healthy vegetation. It is shown that, low reflectance 
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have been measured due to absorption in visible bands, while relatively high reflectance has been 

detected from near infrared band (Norman et al. 2004).  

 

        

Fig.1.An idealized spectral reflectance curve of healthy vegetation (Norman et al. 2004) 

 

As shown in the Fig. 1, there is a significant difference between red and near infrared wavelengths 

of vegetation where infra-red reflectance value is higher than red reflectance. Thanks to this 

property, vegetation indices are identified from the ratio between the values of red and near 

infrared bands. Among the vegetation indices, NDVI, which responds to chlorophyll abundance, is 

related to photosynthetic capacity and vegetation amount (Myneni et al. 1995), and is widely used 

to monitor vegetation (Jeong et al. 2011). NDVI is calculated based on measured spectral 

reflectance (Rouse et al. 1974) as: 

                 NDVI= 
𝑅𝑁𝐼𝑅− R𝑟𝑒𝑑

𝑅𝑁𝐼𝑅+ R𝑟𝑒𝑑
    Equation (1)       

Where: 𝑅𝑁𝐼𝑅 is reflectance in the near infrared band and R𝑟𝑒𝑑 is reflectance in the red band. 

From the above equation the NDVI values range from -1 to 1. NDVI illustrates the presence, 

density and condition of vegetation. It is related to absorb photosynthetically active radiation 

(APAR) and vegetation gross primary production (GPP) (Herrmann et al. 2005). 
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Apart from the target’s spectral response, the atmosphere has significant effects on the perceived 

reflectance of materials through absorption and scattering (Tso and Mather, 2009). These effects 

could result in artificial NDVI seasonal cycle, particularly in areas with low NDVI values (Moulin 

et al. 1997). Another effect which should be taken in consideration refers to vegetation 

background. Montandon and Small (2008) argued that this effect could have a substantial influence 

on the reflectance, consequently also vegetation indices. They discussed that NDVI of bare soil is 

expected to be close to zero (NDVI∼0.05), but the computed mean soil NDVI from 2906 samples 

was much larger (NDVI = 0.2) with remarkable variation (standard deviation = 0.1). Since there is 

sparse vegetation in the Sahel region, the NDVI signal acquired from AVHRR may be too weak to 

be distinguished from noise (Heumann et. al, 2007).  

 

Phenology parameters are derived from the vegetation index (VI) values for each season. The 

general concept of extracting the seasonality parameters for one season from NDVI values is 

shown in the Fig. 2 (Jönsson and Eklundh, 2002).  

 

     

Fig.2. Schematically how the seasonality parameters are extracted from NDVI data. 

Points (a) and (b) mark, respectively, start and end of the season. Points (c) and (d) give the 80 % 

levels. Point (e) displays the largest value. Point (f) displays the seasonal amplitude and (g) the 

seasonal length. Finally, (h) and (i) are integrals showing the cumulative effect of vegetation 

during the season (Per Jönsson and Lars Eklundh, 2002). 
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The procedure can be applied to several years of data through using the time series of VI. By 

plotting the vegetation indices against time, and then fitting a smooth curve (Red Curve) on raw 

NDVI data (thin black curve), the general pattern of a full season is achieved as shown in Fig.2.  

 

1.2.2. NDVI applications in Land Surface Phenology 

Phenology parameters are mostly extracted from NDVI. However this index is very sensitive and 

might be affected by soil color, atmospheric effects, illumination and observation geometry 

(Herrmann et al. 2005). However, several indices, like the Soil-Adjusted Vegetation Index(SAVI) 

(Huete, 1988), the Modified Soil-Adjusted Vegetation Index (MSAVI) (Qi et al., 1994), the 

Atmospherically Resistant Vegetation Index (ARVI) (Kaufman and Tanre,1992), and the  

Enhanced Vegetation Index (EVI) (Huete et al. 2002) have been introduced to offset some of these 

weaknesses. Nevertheless, the results did not show a consistent value for universal 

applications.NDVI remains as a reliable and well known index for monitoring the vegetation and it 

has been widely used by remote sensing researchers (Herrmann et al. 2005).  

 

 Fensholt et al. (2009) found that there is a good agreement between several different NDVI 

products from AVHRR sensor and in situ NDVI measurements over the semi-arid Sahelian zone 

for the time period of 2000-2007. They also concluded that GIMMS NDVI for annual average 

value trend analysis coincided well with Terra MODIS NDVI data for the semi-arid Sahelian zone, 

leading to a higher reliability of the results. However, they suggested caution, regarding 

interpretation of trends in the humid areas in Sahel due to inconsistencies between Terra MODIS 

and AVHRR GIMMS NDVI datasets.  

 

1.2.3. Methods of extracting the seasonality parameters 

Several approaches have been introduced and examined for retrieving vegetation seasonality 

parameters. The methods that have been used to extract the seasonality parameters are classified in 

four main categories by De beurs and Henebry (2010). These classes include smoothing functions, 

model fits, thresholds and derivate methods, and are discussed in this section.  However, there are 

some limitations regarding the extraction of seasonality which could be classified in two groups: 
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- Limitations of datasets exist in terms of accuracy, gaps as well as overestimates or underestimates 

of the vegetation index. For instance, melting snow in higher latitudes leads to artificial increases 

of NDVI which may be indicated as an earlier SOS (Reed et al., 1994, Delbart et al., 2005). As 

another example, in some cases extended periods of cloudiness causes misunderstanding of the 

EOS (De beurs and Henebry, 2010). 

 

- Limitations exist in terms of the methods that have been used to extract the parameters. For 

instance, in the case of applying a threshold, there is not a fixed threshold value to be consistent 

when covering a large study area (De beurs and Henebry, 2010). 

Moreover, it is anticipated that there should be correlations between the parameters estimated from 

satellite datasets and ground based observations. While, tying satellite-based and field-based 

research is not easy because of two challenges: field-to-satellite scaling and selecting comparable 

phenological information (Fisher et al, 2006).  

 

The phenological extraction methods have their weaknesses and strengths which influence results. 

For example, the curve fitting methods reduce noise and trusts on general behavior of time series 

data (Jönsson and Eklundh, 2002), while neglecting the spatial aggregation (Bradley et al., 2007). 

Also due to simplifying of smoothing functions, important phenological information may dampen 

and caus new errors (Fisher and Mustard, 2007).  

 

Fitting a model on a dataset is appropriately defined in the publications relating to TIMESAT. To 

fit a curve on NDVI data in TIMESAT, the first step is to solve a least square model through 

applying required weights which could be achieved from ancillary data or STL decomposition 

method. “STL is a filtering procedure for decomposing a time series into trend, seasonal, and 

remainder components. (Jönsson and Eklundh, 2009) ”. From the first step, initial parameters of 

the function will be determined, afterward the NDVI values below the first fitted function are 

considered to be less important. In the next step the equation is solved with assigning new weights 

based on the first step. This process can be repeated twice in TIMESAT (Jönsson and Eklundh, 

2009, TIMESAT Manual page 14). Finally, seasonality parameters of the time of the start and end 

of the season, the largest NDVI value, and the amplitude are computed “for each of the full 

seasons in the time-series (Jönsson and Eklundh, 2009).  
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Apart from the above capability of TIMESAT, it has several more advantages  that makes it  a 

powerful software package for extracting phenology parameters, such as: its graphical interface for 

viewing binary images, the possibility to define a cutoff for off-season data error management ,and 

a user interface. Moreover, it is a widely used software package not only for computing 

phenological metrics from vegetation datasets, but also for other purposes in several tasks, such as 

detection of forest disturbances, and testing eddy covariance data and moisture data (Eklundh et 

al. 2009). For more information refer to: (http://www.nateko.lu.se/timesat/ ) 

 

The four extraction methods in addition to an overview of their benefits and drawbacks are 

described in the following sections. The first two methods describe the general pattern of data, 

while the last two methods are concerned with the extraction of the parameters after fitting a 

model. 

 

A)  Smoothing functions 

This category consists of several sub-methods which use a smoothing function to describe the 

dataset changes over time, and define the parameters based on a smoothed function. 

 

Reed et al. (1994) defined the SOS and EOS as dates where the smoothed time series line passed 

the curve of a moving average model. Since it is assumed that the phenology is well represented by 

a moving average model, the method may not be applicable for data with disturbances and land 

surface changes (De beurs and Henebry, 2010, page 186). The method is also not appropriate in 

areas with rapid response to precipitation (De beurs and Henebry, 2010). The Savitzky-Golay 

method was implemented by Jönsson and Eklundh (2004) based on least square fit to upper 

envelop of the NDVI data, using local polynomial functions. In this method, a moving average 

window is selected, and each data value is replaced with a linear combination of nearby values. 

The method uses a local function, it is appropriate to be applied on data with less noise (Jönsson 

and Eklundh, 2004). Positive point about this method is that the method can track complex 

behavior of data. 

 

Olsson and Eklundh (1994) and Moody and Johnson (2001) examined the discrete Fourier analysis 

approach, using a sum of sinusoidal waves at several frequencies to estimate the curve. They found 

that the approach responds well to systematic changes, but is comparatively unresponsive to 

http://www.nateko.lu.se/timesat/
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nonsystematic data noise. After ignoring higher order harmonics, it is possible to retrieve lower 

signals of noise which performance basic behavior of the vegetated surface (Moody and Johnson, 

2001).The first harmonic conveys mean NDVI and overall productivity of a region, and its 

amplitude illustrates changes in the productivity over the year (Moody and Johnson, 2001). In a 

case of very regular cyclic temporal patterns, results of this approach could successfully show 

ecological behavior of a region, while there are limitations when applying the approach to an area 

with unrecognized ecological behavior (Moody and Johnson, 2001).  

 

B)  Model Fit 

In this method, a model is fitted to the dataset, and phenology parameters are extracted based on 

the fitted curves and threshold or derivate methods. Several models have been developed in order 

to fit curves to time series of vegetation indices. The first model was a parameterization of an 

NDVI temporal profile (Badhwar 1984). Zhang et al. (2004) fitted a logistic model to Enhanced 

Vegetation Index (EVI) in two separate parts: vegetation growth and senescence; then the SOS and 

EOS were extracted based on the derivative of curvature function on both parts. 

 

Asymmetric Gaussians and double logistic functions were fitted to data as local models (Jönsson 

and Eklundh 2002, 2004). The functions are well matched for describing the time series around 

optimum points while they are not well suited at the limbs. Therefor the local model functions are 

merged to a global function. Advantages of these models are the flexibility of the fittings, allowing 

the functions to follow complex behavior of the time series (Jönsson and Eklundh 2002, 

2004).They finally defined SOS and EOS from a global model using the threshold method.  

 

C)  Threshold 

In this category, the SOS and EOS can be derived from an absolute threshold (when the NDVI 

crosses a certain value) or a relative threshold (e.g. when the NDVI passes the certain percentage 

of the seasonal amplitude). Since different areas do not have the same phenology cycles, 

particularly when latitude changes, a fixed threshold value may not properly observe phenological 

events and results will not be reliable (De beurs and Henebry, 2010).  

 

Karlsen et al. (2006, 2007) applied a threshold to select SOS and EOS for 21 years-mean 

vegetation values. By defining a baseline year, Shabanov et al. (2002) selected the NDVI of 120 
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Day Of Year (DOY), and 270 DOY of median year as the threshold values to find SOS and EOS. 

White et al. (1997) defined the NDVI ratio as: 

 

        NDVI ratio= 
NDVI− NDVI𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥− NDVI𝑚𝑖𝑛
   (Equation 2)             

 

Where NDVI𝑚𝑖𝑛  and 𝑁𝐷𝑉𝐼𝑚𝑎𝑥 could be defined annually (White et al., 1997), or as mean 

maximum and minimum of the long-term NDVI (Kogan, 1995). They determined SOS and EOS 

as dates when NDVI ratio passed 50% in upward and downward directions, respectively. Delbart 

et al. (2005) introduced a threshold based method for the Normalized Difference Water Index 

(NDWI) for areas with snowfall. NDWI, which responds to water content of vegetation, has been 

used as an index to observe the stress of water in semi-arid areas, map burnt areas in boreal forests, 

as well as describing land cover and vegetation types (Delbart et al, 2005). They discussed that 

SOS in such areas results from snow melt rather than vegetation greenness. Although the method 

can separate green-up from  snow melt; there are some limitations for applying the method because 

of lack of a fixed threshold value that could be found for all land cover types (Delbart et al, 2005).  

 

D)  Derivative 

The derivative methods assign the time of greatest increase and decrease in NDVI as SOS and 

EOS, respectively (De beurs and Henebry, 2010). SOS was defined as the time of the greatest 

positive derivate due to occurring fast and rapid increasing of NDVI, while EOS was determined 

as the time of the lowest negative derivate due to rapid decrease in NDVI (Tateishi and Ebata, 

2004). Baltzer et al. (2007) applied 5 composites moving window which passed over every pixel of 

the time series. They calculated regression slope of NDVI against time for every window, then the 

second ordered derivate was calculated for the same moving window. They assigned SOS as a day 

that the second derivate of the moving window regression reached the local maximum of 13-

composites window with a positive slope. EOS was calculated in the same way but with a negative 

slope. Use of the method was based on the assumption that SOS and EOS occur at a breakpoint in 

the time series, while in some environments this may not be the case. 
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1.2.4. Trend Study 

Vegetation changes affect phenology parameters. Therefore, investigating the trend of phenology 

parameters can describe vegetation changes. De Jong et al. (2012) defined the trend as the 

direction and rate of change through time, which usually is derived from the slope of a linear 

regression model. 

 

Several studies applied the trend analysis for investigating vegetation changes. Eklundh and 

Olsson (2003) studied trends in vegetation greenness for African Sahel from 1982-1999, they 

found “a strong increase in seasonal NDVI over a large area”. Through studying the vegetation 

trend in Sahel, Olsson et al. (2005) found that “increase rainfall is a certain reason, while other 

factors, such as land use change and migration, may also contribute”. Seaquist et al. (2009) tested 

the effects of climate and people on vegetation dynamics in Sahel, while they did not find a 

significant human footprint on vegetation dynamics. 

 

The trend results of three different NDVI dataset (Pathfinder, GIMMS and FASIR), which have 

been produced from AVHRR data were compared by McCloy et al. (2005). All three datasets 

indicated an increasing average global trend, while some variations from one dataset to another 

were recorded (McCloy et al., 2005).  

 

The BFAST (Breaks For Additive Season and Trend) package was published in 2010 by Jan 

Verbesselt and his colleagues as a part of R programing language (Verbesselt et al., 2010). The 

package is used to decompose time series into trend, seasonal, and remainder components. The 

method is also used to detect and describe abrupt changes within a trend and seasonal components 

(Verbesselt et al., 2010). De Jong et al. (2012) used the BFAST method to detect and describe the 

breaks in the trend components over the world by using GIMMS NDVI time series from 1981 to 

2008.  

 

Most of the vegetation trend studies have been concerned with analyzing linear trends in NDVI, 

and there are only few studies that examined the trend of phenology parameters. An example of the 

latter is Heumann et al., (2007) who analyzed TIMESAT derived phenology parameters in Sahel, 

Soudan and Guinean regions using 10 day MVC of GIMMS NDVI dataset from 1982 to 2005. 

They used ordinary least squares trends within 95 % of significant interval to analyze the 
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phenology parameter changes. Due to high probability of noise, Heumann et al. (2007) defined a 

20% threshold for estimating SOS and EOS, in addition to excluding the data values less than 0.1 

NDVI units.  

 

Jamali et al. (2014) applied an automated method for analysis of non-linear vegetation changes. 

They argued that linear trends cannot fully represent vegetation changes, and some information 

will be ignored. They also mentioned that vegetation changes do not always have gradual and 

constant changes. Several classes have been distinguished in their study:  linear, quadratic, cubic, 

hidden, and no-trend classes. These polynomial trends can give indirect explanation of vegetation 

change occurrence on a case-by-case basis (Jamali et al., 2014).  

Note: In this thesis the algorithm of Jamali et al. (2014) and some parts of their scripts were used 

to analysis the parameters.  

1.3. Data 

1.3.1. GIMMS NDVI dataset 

 

The GIMMS NDVI dataset (Tucker et al. 2005), which is a bimonthly composite of NDVI with a 

spatial resolution of approximately 8 km, was used to estimate and investigate the phenology 

parameters from January 1983 to December 2005. Low NDVI values are affected by soil 

background reflectance more than high NDVI values; therefore, low NDVI may relate to false 

vegetation values (Tucker et al. 2005). However, after applying Empirical Mode Decomposition 

(EMD) and Maximum Value Composition (MVC) methods, these effects were limited (Tucker et 

al. 2005). The MVC has been applied to the GIMMS dataset by assigning the maximum NDVI 

value to pixels during 15 days of regularly spaced interval in order to reduce the cloud cover 

effects (Tucker et al. 2005). 

Chappell et al. (2001) pointed out that due to structure of the surface and the atmospheric 

scattering, radiation on the surface would be not equal in different direction (anisotropy). They also 

argued that implementation of MVC algorithm without considering the anisotropy may results in a 

large NDVI values because of directional effects rather than atmospheric effects. To minimize 

these preferential errors, GIMMS NDVI dataset has been corrected from: 

- Residual sensor degradation and sensor inter-calibration differences 
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- Effects of changing solar zenith and viewing angles due to satellite drift 

- Volcanic aerosols 

- Distortions caused by persistent cloud cover globally 

- Low signal to noise ratios due to sub-pixel cloud contamination and water vapor (Tucker et al. 

2005).  

Another error that may occur refers to transitions between the platforms which may cause 

discontinuity of data, but the error is not anticipated to affect the trend slope (De Jong et al., 2012). 

Volcanic eruptions can be seen over dense vegetated tropical land covers for limited time periods 

causing NDVI signal reduction (Tucker et al. 2005). The dataset has also been validated through 

comparing with the well-calibrated and atmospherically-corrected MODIS dataset for the period of 

2000-2007 over the semi-arid regions of the Earth (Fensholt et al., 2012). 

 

1.3.2. Modeled soil moisture dataset 

A monthly soil moisture dataset, which has been created by the Climate Prediction Center (CPC) 

placed in National Oceanic and Atmospheric Administration (NOAA) agency, is available from the 

time period of 1982 to 2008, and was used in this work. The soil moisture model was produced 

based on the equation (3)  

 
dw

𝑑𝑡
 = P-E-R  equation (3)  

Where, w stands for soil moisture and P, E and R are precipitation, evapotranspiration and runoff, 

respectively (Fan and Dool, 2004). They used Climate Prediction Center (CPC) monthly global 

precipitation over land, which was covered by over than 17,000 gauges worldwide, and monthly 

global temperatures from the CDAS- Re-analysis product, as driving input fields in the model . 

Outputs of the model consist of global monthly soil moisture, evaporation and runoff (Fan and 

Dool, 2004). They also validated the model with in situ observations around the world. Results 

showed that simulation was reliable compare to measurements of seasonal to inter-annual variation 

of soil moisture in many places of the world (Fan and Dool, 2004). Theunit of the result is mm in a 

single column of 1.6 meter, and maximum value is set to be 760 mm in the model. Since spatial 

resolution of the dataset was 0.5 degree, they were resampled to 0.0727 º degree of spatial 

resolution and projected to UTM WGS84 geodetic reference system. 
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1.3.3. Land Cover data 

The Global Vegetation Monitoring unit belongs to the research Center of European Commission 

coordinated implemented the Global Land Cover 2000 Project (GLC 2000) in cooperation with 

some other partners around the world. They used a 14 months dataset of preprocessed daily global 

data, using the vegetation sensor on board the SPOT 4 satellite to accomplish the project. They 

also used the FAO Land Cover Classification System (LCCS), and allowed the partners to describe 

their regional land cover classes, and define their legends in addition to following a standard 

classification approach. They used global classes to show the vegetation types and density of the 

cover, independent from climate zones. The land cover of Africa, including 27 main classes, was 

clipped to the study area and defined within the WGS84 spatial reference. Afterward the data was 

resampled from one kilometer to 8 kilometer spatial resolution as shown in Fig.3.  

For more information about GLC 2000 Land cover data or for downloading the product, go to: 

(http://bioval.jrc.ec.europa.eu/products/glc2000/glc2000.php). 

Fig.3. Land Cover Map of 2000 over the study area (GLC 2000). 

 

1.3.4. Soil Map data 

The global Soil region map was digitized by ESRI (Environmental Systems Research Institute) is 

based on a reclassification of the FAO-UNESCO Soil Map of the world combined with a soil 

climate map. The soil map data produced in April, 1977 and revised in September, 2005 covers the 

http://bioval.jrc.ec.europa.eu/products/glc2000/glc2000.php
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globe in a minimum scale of 1:5,000,000. The global soil map was resampled from about 4 km to 

8km spatial resolution 

 (http://soils.usda.gov/use/worldsoils/mapindex/order.html). 

 

 

Fig.4. Soil Texture Map over the study area. Source: FAO-UNESCO. 

 

The study area was clipped and defined using the WGS84 geodetic spatial reference system. In this 

project the original soil map was reclassified into 12 main classes based on FAO-UNESCO 

classification, as shown in Fig.4 and Table.1.Table.1illustrates the main soil map classes regarding 

to their locations and characterizations according to NRCS (Natural Resources Conversation 

Service), and also their percentages in the study area. As shown, Entisols, Alfisols, Oxisols, 

Aridisols, Ultisols, Vertisols and Inceptisols are the main soil texture types that cover the study 

area. Around 8% of the study area is covered by other land types: shifting sand, 6.8%, water 

bodies, 1%, and rock, 0.2%. 

 

Table 1. 12 Soil texture types with their characterizations and their percentage over the study area, 

based on FAO-UNESCO classification, NRCS. 

Soil order  Location  Description  

Entisols  Occur in many 

environments  

Characterized by absence of pedogenic horizon development and likely to 

found in flood plains, dunes and steep slopes.  

http://soils.usda.gov/use/worldsoils/mapindex/order.html
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Alfisols  Semiarid to moist 

areas  

Characterized by holding water and nutrients to plants, occurs under high 

dense vegetation regions like as forest or mixed vegetation cover and it’s 

a good productive soil for crops.  

Oxisols  Tropical and 

Subtropical regions  

Characterized by low fertility and a low capacity to retain additions of 

lime and fertilizer.  

Aridisols  Deserts of the world  Highly dry soil for the growth of plants, characterized by lack of moisture 

and accumulating gypsum, and salt.  

Ultisols  Humid areas  Nutrients are concentrated in the upper zone of soil, and it is classified as 

acid soils that can’t retain addition fertilizer and lime easily.  

Vertisols  Occur in many 

environments  

Characterized by high content of expanding clay minerals that transmit 

water very slowly and tend to be high in natural fertility.  

Inceptisols  Semiarid to humid 

environments  

Characterized by a moderate degree of soil weathering and development 

in a wide variety of climates. . 

1.3.5. Annual Rainfall 

The average annual rainfall map of Africa over a period of 1951-1980 was published by UNEP in 

1992 as results of a cooperative effort between UNEP's Desertification Control Program Activity 

Centre (DC/PAC), the Global Environment Monitoring System (GEMS) and the Global Resource 

Information Database (GRID).  

 

Fig.5. Mean annual rainfall over the Sahel, UNEP 1992 

 

The mean annual rainfall is based on precipitation and temperature stations data from UEA/CRU 

for two 30-year periods, 1930-59 and 1960-89. The rainfall data was in shape file format, and is 

defined in the WGS 84 geographic system. The data were clipped to the study area and classified 
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to 8 main classes as shown in Fig.5. For more information please go to: 

(http://ede.grid.unep.ch/mod_download). 

 

1.4. Study area (definition and characterization) 

The area between the arid Sahara in North Africa and the humid tropical savanna in the Equatorial 

area was selected to be analyzed in this thesis. Due to substantial variation in rainfall during the 

recent decades (Heumann et al. 2007), and being a transition area, it has been studied intensively in 

order to detect, understand and monitor vegetation changes.  

 

Fig.6. The study area, green color from 1.324˚ N to 19.36036296˚N & 19.127˚W to 

52.94572457˚E where North and South Atlantic oceans, Arabian Sea, Red Sea, Islands in African 

coasts and Yemen were excluded. 

 

The area includes four sub eco-climatic zones including the Sahelian zone, the Sudano-Sahelian 

zone, the Sudanian zone and the Guinean zone (Fig. 7).  These zones were introduced based on the 

average annual precipitation and agriculture features (FAO/GIEWS, 1998) as shown in Fig.7. The 

Sahelian zone is a region with average annual rainfall between 250 and 500 mm, and scant 

permanent vegetation. Only pastures and short-cycle cereal crops which are resistant to drought 

exist in the area. All crops in this zone are highly vulnerable. The Sudano-Sahelian zone is a region 

with average annual rainfall between 500 to 900 mm. Sorghum and millet with a short growing 

cycle of 90 days are the main cultivated crops growing in this area. The Sudanian zone is a region 

with average annual rainfall from 900 to 1100 mm. Maize, root and cash crops with a growing 

http://ede.grid.unep.ch/mod_download
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Fig.7. Four eco-climatic 

zones in Sahel: 

 Sahelian 

 Sudano- Sahelian 

 Sudanian  

 Guinean  

 (FAO/GIEWS, 1998) 

 

 

cycle of 120 days or more are dominant crops   growing in this area. The Guinean zone is a region 

with average annual rainfall more than 1100 mm. Root crops are more suitable in the Guinea-

Bissau and a small area of southern Burkina Faso (FAO/GIEWS, 1998).  

 

     

  

 

   Intensify of vegetation amount decreases from south toward north, from savanna forest and 

cropland in the south to stony and sandy desert in the north of the region as shown in Fig.3. While 

the southern part of study area is dominantly covered by evergreen forest, east part including north 

of Kenya, Somalia, Eritrea, and Djibouti and east part of Ethiopia are covered with sparse 

grassland and classified as dry climate.  

 

Some exogenous rivers in the area play an important role in agriculture and livestock industry 

including the Senegal, Niger, Volta and Nile rivers (Le Houerou, 1980). The wells have the small 

quantity of   discharge, and deep ground water rarely exists in the region (Le Houerou, 1980). 

 

 In this area, the mean annual rainfall follows a north to south   gradient (Fensholt et al., 2009). 

Rainfall which occurs from mid-June to mid-September (Le Houerou, 1980) has had decadal 

fluctuation and large inter-annual variability (Huber et al., 2011). Nicholson (2005) found that this 

variability is mostly related to the August rainfalls as the wettest month in the Sahel because of the 

remarkable contribution of August rainfall to inter-annual variability.  
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Fig.8. June through October averages of the Sahel rainfall series, http://www.jisao.washington.edu 

 

Fig.8 illustrates mean rainfall for the Sahel for JJASO period (July, June, August, September and 

October) which has been standardized for the period of 1950 to 2004, in a way that the mean and 

standard deviation of the series became 1 and 0, respectively. A significant decrease in mean 

rainfall is seen from 1970 to 1990, while after that period the mean rainfall has been fluctuating.  

 

The temperature has an average maximum from 40-42˚C in April-May to average minimum of 

15˚C in December-January in the Sahel region; the potential of evapotranspiration is very high and 

the air humidity is extremely low (Le Houerou, 1980).  

 

While some research (Mitchell and Hulme, 1999; Held et al., 2005) pointed toward a drier climate 

for Sahel in the next 50-100 years, there were some others (Haarsma et al., 2005) that expect a 

wetter Sahel with a seasonal precipitation increase up to 30%. Although The IPCC Third 

Assessment Report (TAR) had challenged the results of increasing the greenness over Sahel 

(IPCC, 2001), regarding the vegetation in Sahel, recent remotely sensed studies (Rasmussen et al., 

2001; Olsson et al., 2005; Herrmann et al., 2005) show an increased greenness in most parts of 

Sahel, which was a response of semi-arid ecosystems to variation in climate, and capacity of the 

area to cover from droughts (  Eklundh and Olsson, 2003).  

 

 

 

 

http://www.jisao.washington.edu/
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Chapter 2 

2. Methodology 

The GIMMS dataset was analyzed in order to examine the polynomial (quadratic, cubic, hidden 

quadratic and hidden cubic trends) trends of vegetation phenology over the Sahelian to Equatorial 

region. 

 

Figure 9 shows the general processes of the seasonality, trend analysis and spatial comparison. In 

the first step, 5 main phenology parameters (SOS, EOS, LOS, AMP and Small Integral of the 

season (SI)) have been extracted using the TIMESAT software. Following this, the polynomial 

regression algorithm was applied to the phenology parameters. The ArcGIS software was used to 

extract more information regarding the areas with significant changes, and also to generate the 

required maps from the results. 

 

Also, the polynomial regression algorithm was applied to derive polynomial trends of the modeled 

soil moisture for each month. Phenology trends and soil moisture trends were compared in order to 

find the relationship between soil moisture and each phenology parameter.  

 

As each land cover has different response to climate change (De Jong et al. 2012), results were 

compared against the land cover map of the study area. Finally, since impacts of climate change on 

soil moisture may depend on soil texture (Bormann, 2012); soils map data was considered to interpret 

the results of phenology trends. Finally the mean annual rainfall as a climate driver was considered 

and overlaid on the results. 
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Fig.9. Description of the processes of seasonality analysis in the study. 
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2.1. Seasonality analysis 

2.1.1. Pre-processing of data 

Through using a MATLAB script, written by Lars Eklundh, the global GIMMS NDVI data was 

clipped to the study area domain. 

 

2.1.2. Extracting the phenology parameters using TIMESAT 

Several steps were done to extract the final phenological parameters from clipped GIMMS NDVI 

time series using TIMESAT. 

 

2.1.2.1. Visual investigation of images 

GIMMS NDVI binary images were visually observed in TIMESAT in order to comprehend the 

NDVI pattern over the study area. For instance, the general pattern indicates increasing NDVI 

from north to south as shown in Fig.10. The highest greenness occurred around ITCZ (Inter-

Tropical Convergence Zone), extending from 10º E to 35ºE longitudes. Through investigating the 

NDVI data in TIMESAT, it was realized that NDVI values in some areas, particularly northern 

areas, were too low to be distinguished from noise. Also inter-annual changes occurred in these 

areas. Therefore, such areas may not show real vegetation seasons and therefor cause errors. These 

problems were taken into consideration during the interpretation of the results.  

 

Fig.10 illustrates how the NDVI varied over the study area, spatially and temporally. Fig. 10A 

illustrates the NDVI values of MVC of first 15 days of February 1983. Figures (10B and 10C) 

represent the MVC NDVI values regarding the first 15 days of February 2003 and September 

1983, respectively. As a general consideration the NDVI increases from North to South in the 

study area. Although not remarkable, NDVI changes happened from 1983 to 2003 in February, and 

some notable changes of NDVI were recorded from February to September, 1983. Through 

investigating the NDVI imagery in TIMESAT, the general trends and patterns of vegetation 

changes were observed. 
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Fig.10. MVC NDVI of first 15 days of February 1983(up), February 2003(middle) and September 

1983(down). NDVI values have been up-scaled to 1000. 

 

 



[27] 
 

2.1.2.2. Processes to define setting parameters  

The first step in processing the data in TIMESAT was to define the setting parameters, in order to 

apply it to NDVI time series. Since NDVI from different land covers may follow different pattern, 

there is a capability in TIMESAT to define several sets of parameters based on land cover. Setting 

parameters define how the smoothing model or the fitted curve can represent fluctuations of the 

NDVI data, in addition to define extracting methods. The setting parameters are parameters related 

to: spikes removing methods, number of upper envelope, and the threshold value. Three methods 

have been developed in TIMESAT to fit a curve on data, which are based on least-square method 

fits to the upper envelop of the NDVI data: Savitzky-Golay, asymmetric Gaussians and double 

logistic functions (Jönsson and Eklundh, 2009). As shown in Table. 2, for each method of 

extraction setting parameters were changed to find the best fitting curve. Only relative threshold of 

20% and 50% of amplitude was used to define SOS and EOS. Regarding removal of the spikes, 

since no ancillary data was used, only a median filter and the STL technique for replacing outliers 

were applied on the dataset. The strength of adaptation to the upper envelope was assigned as 

levels of 2 and 3.  

 

Fitting a curve or model on dataset 

1) Adaptive Savitzky–Golay filter  

The savitzky-Golay filtering is a smoothing method and uses the moving window in order to 

replace values with a linear combination of nearby values (Jönsson and Eklundh, 2009) .In this 

method, the values are obtained from the quadratic polynomial least square fit function to all 

2*n+1 points in the moving window (n points backward and forward). In order to overcome the 

negatively biased noise, the fitting process is done in several steps and will be adapted to the upper 

envelope of the NDVI values (Jönsson and Eklundh, 2009). The degree of smoothness in the 

Savitzky-Golay approach depends on the parameter of “n”, and can be defined in TIMESAT. For 

the areas with larger fluctuation in NDVI, it is better to define smaller values for the parameter; 

otherwise the abrupt changes are smoothed out. In this thesis n = 4 was defined as the degree of 

smoothness for all the methods. 

 

2) Asymmetric Gaussians and double logistic functions  

These two methods use similar approaches with different mathematical functions. In these 

methods, local functions are fitted to data in the interval around the maxima and minima (Jönsson 
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and Eklundh, 2002). While the local functions properly describe the NDVI data in overlapping 

intervals around maxima and minima, the accuracy around the limbs is lower (Jönsson and 

Eklundh, 2002). To handle this, the local functions are fitted in several steps. Since negatively 

biased noise must be considered in the processes, the functions are fitted to the upper envelope of 

the NDVI time series data, (Jönsson and Eklundh, 2009). The merging function allows the 

functions to follow complex behavior of the data (Jönsson and Eklundh, 2002).  

 

Ancillary quality data and removal of outliers 

The possibility of using ancillary data as weights on the dataset has been well developed in 

TIMESAT (Jönsson and Eklundh, 2009). For instance, ancillary data could be used, e.g. data that 

describes the ratio of cloudy days in the MVC dataset of NDVI, which may vary from zero for 

fully cloudy to one for no clouds. Although ancillary quality data reduces most spikes and outliers, 

some outliers still remain, which may affect the degree of smoothness (Jönsson and Eklundh, 

2009). Three different methods to remove the spikes have been introduced in TIMESAT. In the 

first method, the weight of data points having substantially different values from the neighbors and 

median values, are assigned to zero. In the second approach, the weights of data points are 

assigned based on the STL method (Cleveland et al. 1990). Data values that deviate from the 

seasonal cycle are assigned low values. In the third approach, weights are chosen based on the 

product of assigned STL decomposition weights and the ancillary weights (Jönsson and Eklundh, 

2009). 

Note: as no ancillary data was used, the first and second spike methods were applied in this 

project. The STL decomposition method was chosen as the final method for removing the spikes. 

 

2.1.2.2. Extracting the seasonality parameters from the curves 

A relative or absolute threshold can be applied to the NDVI time series to define SOS and EOS of 

each season. In the first approach SOS and EOS are determined as the date when the fitted curve 

crosses an absolute threshold value. In the second method, these parameters are defined as when 

the curve reaches a fraction of AMP, which is measured from the left or right minimum value 

(Jönsson and Eklundh, 2009). For this purpose, a range between 0 and 1 can be selected in 

TIMESAT. However, due to possible noise in data, especially in the dry season (Heumann et al, 

2007), the minimum values may not represent a real value and cause errors in the results. In this 

thesis, only a relative threshold (of the seasonal amplitude) was determined. Since in some areas 
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two or more growing seasons may occur, the possibility of selecting the number of seasons has 

been embedded in TIMESAT (Jönsson and Eklundh, 2009). Nevertheless, only one season was 

assumed to occur in the study area. 

 

Table.2 shows a summary of methods and processes which have been applied to the dataset. All 

parameters related to removal of outliers were applied for each of the three methods of fitting 

functions in TIMESAT (adaptive Savitzky–Golay filter, asymmetric Gaussians and double logistic 

functions (Jönsson and Eklundh, 2009). 

 

Table 2. Summary Settings information of parameters related to three methods of extracting the 

seasonality parameters in TIMESAT. 

  

Method 

Spike 

method 

Start of 

season 

method 

Adaptation 

strength 

Savitzk

y-Golay 

window 

size 

Value 

for start 

the 

season 

Value for 

end of the 

season 

Savitzky- Golay(1) Median filter Amplitude 3 4 0.2 0.2 

Savitzky- Golay(2) Median filter Amplitude 3 4 0.5 0.5 

Savitzky- Golay(3) STL replace Amplitude 2 4 0.2 0.2 

Asymmetric 

Gaussians(1) 
Median filter Amplitude 3   0.2 0.2 

Asymmetric 

Gaussians(2) 
Median filter Amplitude 3   0.5 0.5 

Asymmetric 

Gaussians(3) 
STL replace Amplitude 2   0.2 0.2 

Double Logistic(1) Median filter Amplitude 3   0.2 0.2 

Double Logistic(2) Median filter Amplitude 3   0.5 0.5 

Double Logistic(3) STL replace Amplitude 2   0.2 0.2 

 

Several ground observation stations have recently been established in the Africa, though they are 

not many enough to cover the area spatially and temporarily (Delbart et al. 2005). In this thesis the 

fitted curves values of NDVI for all different methods were compared against half-hourly in-situ 
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rainfall data from NE-Waf ground based station (Wankama fallow station in Niger), using MRS 

(Mean Root Square) method. Due to recently establishing of ground based station, only NDVI data 

of 2005 was used in the analysis. Finally asymmetric Gaussians function with the characteristics 

described as asymmetric Gaussian (3) in the Table.2 resulted in the best fits, and was selected to be 

the preferential method used in TIMESAT in the following processing. 

 

2.1.3. Data Processing in TIMESAT 

In this step, the best fit method was applied in the study area. It is noticed that in TIMESAT there 

is an ability to apply different setting parameters based on land covers or quality indicators 

(Jönsson and Eklundh, 2009). However, as different settings in different land use areas were not 

deemed necessary, only one set of parameters was applied on the whole study area.  

 

2.1.4. Post-Processing 

In this step, the phenology parameters (Start of Growing Season (SOS) ;End of Growing Season 

(EOS); Length of Growing Season (LOS) ; Amplitude (AMP) ; Small Integral (SI)) were 

generated for all 23 years (because the first and last seasons are not automatically achieved in 

TIMESAT), using a MATLAB script written from Lars Eklundh and Per Jönsson. 

The generated annual parameters from TIMESAT were used as input for estimating polynomial 

trends over the whole study area. The following section describes the methods that used for 

investigating the phenology changes. 

 

 

2.2. Trend analysis  

2.2.1.  Phenology Trends  

 

The TIMESAT derived phenology parameters (SOS, EOS, LOS, AMP and SI) of 23 years were 

used to compute polynomial trends for the time period of 1983-2005 over the study area. Linear, 

quadratic, cubic and hidden trends were investigated in this work. It has to be mentioned that there 

were some areas with no significant trends, which in this thesis are shown as “no trend” areas. A 

significant trend is defined as a trend that is caused by a factor or factors rather than chance, tested 
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using a statistical significance test based on the T value. An algorithm developed by Jamali et al. 

(2014) was applied to detect the trends, and a MATLAB script was used to implement the 

algorithm. The general steps of the algorithm are shown in Fig.11.  

 

The algorithm starts with fitting a cubic polynomial function on the dataset of phenology 

parameters. Three conditions are required to assign a trend as a cubic class. First of all, the cubic 

coefficient must be statistically significant, which means that the first coefficient must pass a t-test 

at confidence interval (in this work: 95%). The second condition is that a cubic trend must have 

both a local maximum and a local minimum. If one of these conditions fails, the algorithm tests a 

quadratic trend; otherwise a first order polynomial is fitted. In a case when the first linear trends 

statistically passes a t-test at the 95% significance level , the trend is assigned as a cubic class, 

which means that the trend has two optimal points, and the general trend is significant. However, 

rejecting the linear trend results in a cubic hidden trend. It means that although two distinct 

optimums (fluctuations) have occurred, no significant net change has occurred. 

 

In the case that the cubic trend is rejected, a quadratic trend is tested. It follows the same procedure 

as the cubic trend, with the difference that only one minimum OR one maximum is required. 

Similar to the cubic trend, a first order polynomial is fitted, and a quadratic trend class is assigned 

to the pixel if the coefficient of the linear trend passes t-test at 95% of confidence interval; 

otherwise, a quadratic hidden class is assigned to the pixel. 

 

In case of rejecting both cubic and quadratic trends,  a linear trend is tested on the annual 

seasonality parameters. The only condition required for fitting the linear trend class is to check if 

the coefficient passes the t-test. If this is true, then the pixel is assigned to the linear class, 

otherwise, no trend class is assigned to the pixel. 
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Fig.11.General steps to implement the linear, quadratic, cubic trend in addition to define the cubic 

hidden trend, quadratic hidden trend and no trend (Jamali et al., 2014). 

 

The algorithm described above was implemented for five annual phenology parameters over the 

study area. Apart from the trend types, another parameter that was considered during the trend 

analysis was the magnitude of the higher degree polynomial trends.. The quadratic trend 

magnitude was defined as the differences between the maximum or minimum values of the 

quadratic trend and the linear trend value at the same time, as shown in Fig.12. 
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Fig. 12. Quadratic and linear trends of SOS against time. Double arrows sign shows the magnitude 

of a hidden trend. 

 

Moreover, the year of optimum occurrences was derived for all quadratic hidden trends which refer 

to the year that had the lowest or highest value of a phenology parameter. Finally the results were 

imported in ARCGIS and masked to the study area.  

 

 MATLAB software version 7.12.0(R2011a) was used to calculate the trends of phenology 

parameters.  

Note: regarding statistical analysis, accuracy of fits is affected by the number of observations; 

therefore those pixels which had more than five no-data values (of 23 total values) were excluded 

from the analysis.  

 

2.2.2.  Soil Moisture trends 

The same algorithm was used to detect the trend types for all 12 months of soil moisture dataset. 

Polynomial and hidden trends for the period 1983-2005 were investigated over the study area.   

2.3. Spatial comparison 

Preparation of trend results of phenology parameters: 

The binary format results from the phenology trend analysis were imported into ARCGIS. The 

spatial reference system of the resulted raster files were defined as Universal Transfer Mercator 

80

90

100

110

120

130

140

150

0 5 10 15 20 25

St
ar

t 
O

f 
G

ro
w

in
g 

Se
as

o
n

 

Year 

Quadratic Trend against Linear trend 

Magnitude of 
hidden trend 



[34] 
 

(UTM) with geodetic ellipsoid of WGS84. The spatial resolutions of the results were 0.0727 º 

degree which is almost equal to 8 kilometers. The total region that was investigated as the study 

area covers around 11,000,000 Sq.km. 

Preparation of mean phenology parameters: 

The average of the derived phenological parameters (over 23 years) was calculated in Matlab. The 

results were imported to ARCGIS; afterward, were converted to raster format and defined as 

Universal Transfer Mercator (UTM). 

 

2.2.3.1. Preparation of soil moisture trends 

The binary format results from the soil moisture trend analysis were imported to ARCGIS and 

converted to raster formats. Since the spatial resolution of the soil moisture data was 0.5 degree, 

data was resampled to 0.0727 degree spatial resolution to be comparable with the phenology 

parameters. The soil moisture data was projected to UTM WGS84 reference coordinate system, 

and afterward was clipped to the study area.  

 

2.2.3.2. Preparations of correlation maps 

The phenology parameters from TIMESAT were tested for correlation against the resampled soil 

moisture data. For this purpose, the resampled soil moisture data of each month was correlated 

with the phenology parameters from 1983-2005, 

From the trend maps, regions of occurrence of each trend kinds for SOS and EOS were identified. 

Also from the mean phenology parameters, the mean values of the parameters were defined. 

Afterwards, the relationship between the trend kinds and the soil moisture data for the 

corresponding time was investigated through the correlation coefficient. A p-value map was 

created to show the probability of no correlation, which means the probability of occurrence of a 

relationship by chance. Since SOS and EOS are directly affected by soil moisture, the correlation 

coefficient and the p-value analysis was only performed for SOS and EOS. 
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2.2.3.3. Data preparation for land cover, soil texture and rainfall 

The land cover and soil texture maps were defined in UTM WGS 84 and clipped to the study area. 

These layers were overlaid on the map of phenology parameters in order to find the effects of 

driving forces behind the phenology changes. 

 

2.3. Spatial comparison: 

The results of the phenology trends were compared against the trend kinds of soil moisture to show 

their spatial relationship. Finally, through overlaying the data, the relationship between the results 

of the phenology parameter trends and the climate driving forces and soil texture were 

investigated. 
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Chapter 3 

3. Results and Discussion 

The results are discussed in three sections: 

 

In the first part, the results of the mean phenology parameters values are presented and discussed. 

These results are valuable, because they display general spatial variation of the vegetation 

phenology parameters. In addition, these results are used to compare the phenology parameters 

against soil moisture and to find their correlation. 

 

In the second part, the results of linear trends of phenology parameters are considered, and are 

compared with the previous results.      

 

In the third part, the different polynomial trends, including cubic; quadratic; and hidden cubic 

and hidden quadratic trends are discussed, ordered by the phenology parameters. The results of 

SOS and EOS are compared against the polynomial trends of soil moisture time series for the same 

period as the phenology parameters. Through overlaying on the phenology results, rainfall and 

land covers as two factors that may contribute to the vegetation phenology trends, are considered 

and discussed. Finally, the map of soil types is spatially compared against the trends of phenology 

parameters. 

 

  

  

 

 

 

 



[38] 
 

3.1. Mean phenology parameter values  

3.1.1. Results 

Fig. 13 shows the mean occurrences of phenology parameters from 1983 to 2005. Only one 

growing season per year was analyzed in this project; therefore, the analysis ignored possible 

variation in the secondary production of herbage.    

SOS generally started from February in the south to August in the northern latitudes (around 15º 

N) as shown in Fig.13A. Except for local variations, the mean SOS   followed rainfall and land 

cover patterns (compared with Figs. 3 and 4). The main occurrences of EOS, around 63.1% of the 

study area, occurred in November and December, particularly over the central parts (Fig.13B). The 

northeast regions, as well as some regions in the eastern countries (including east of Ethiopia, 

north of Kenya and Somalia) and those areas in the south dominated by evergreen forests (Fig. 3), 

were not distinctly separable due to low amplitude. The dominant land cover of northeast and 

eastern parts is sparse grassland and sand, with annual rainfall of less than 400 mm. The highest 

amplitude happened in the middle latitudes of the study area (Fig. 13C), where the areas are 

mainly covered by shrub lands, closed grassland and cropland. The general trend of LOS increased 

from north towards south, as shown in Fig. 13D. In addition, the general pattern of LOS generally 

followed the land cover and rainfall variations. SI had maximum values in those regions within 

maximum amplitude and longest length of growing season (Fig.13E).  
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Fig.13.(A-E). Mean values of large integral of season from 1983- 2005. Start of Season (A), End 

of Season (B), Amplitude of season (C), Length of Season (D), and Small Integral of season (E) 

are shown. 

 

3.1.2. Discussion 

The results illustrate that seasonal phenology parameters derived from NDVI depicted the general 

increase of vegetation trends from north towards the south of the study area. However, some 

exceptions to these trends were found over the area such as the Ethiopian mountain regions, where 

vegetation decreased from high elevated regions towards cropland plains in both sides of the 

mountain chain. 

 

The maximum length of growing seasons occurred over the Guinean zone and the mountain chain 

of western Ethiopia (Fig.13), from 9 to 10 months of greenness which were associated with annual 

rainfall and land cover patterns.  

 

The results from the north-east areas as well as some regions in the eastern countries (including 

east of Ethiopia, north of Kenya and Somalia), and those areas in the south which are covered by 

evergreen forests (Fig.3) might not represent the real occurrence of phenology parameters. One 

reason for unrealistic values is climate factors and very low amplitude in the north-east and the 

eastern regions. For instance, weather in Ethiopia and Kenya is affected by ITCZ and circulation 

over the Indian Ocean and Arabic peninsula. Since the regions are located in dry climate with low 

annual rainfall of less than 400 mm, it has resulted in low NDVI values as well as a very short 

E 
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growing season period. The dominant land covers of these areas (sparse grassland or sand) convey 

these characteristics. These circumstances make it hard to distinguish between NDVI and noise in 

the area. Moreover in such areas, NDVI values might have been affected by soil background 

reflection (Heumann et al., 2007) more than in the humid and sub-humid regions. In comparison 

with dry areas, distinguishing variation of phenology parameters over the evergreen forests areas 

was difficult, because of low fluctuation of NDVI during the growing seasons (Fig.13).  

 

The highest amplitude occurred in the middle latitudes (Fig. 13D). This was anticipated, since land 

cover of the area has fast response to rainfall variation compared to other areas such as deserts and 

evergreen forest. Regarding vegetation production, local variation might be due to the land cover 

of the area, soil texture characterizations as well as variation in topography and human 

contribution. 

 

 

3.2. Linear Trend of Phenology Parameters  

3.2.1. Results 

Figure 14 shows the spatial distribution of linear trends for five phenology parameters over the 

study area. Negative, positive and not significant classes were distinguished over the study area for 

the period of 1983 to 2005. Negative and positive trends of SOS and EOS refer to early and late 

start and end of growing seasons, respectively.  

 

Positive linear trends of phenology parameters have occurred in different climate zones. The 

Guinean zone, including some parts of Central African Republic, Cameroon, Burkina Faso, 

Guinee, Mali and central Nigeria have had positive linear trends of EOS and LOS, while AMP and 

SI have mainly increased over the Sahelian zone. Central Nigeria and north of Central African 

Republic were two large clusters wherein EOS has been delayed as shown in Fig. 14B. LOS in 

Central African Republic as a main cluster in the Guinean zone has increased by up to 1.5 day per 

year (Fig.14C). The significant increase of AMP was found over the Sahelian zone, including 

central Chad, regions in the border of Burkina Faso and Mali, and some scattered areas in 

Mauritania (Fig.14D and Fig. 14E). These regions are dominated by cropland with relatively low 
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annual rainfall. Maximum increase of SI was mainly recorded over cropland areas of the Sudano-

Sahelian zone. 

 

Significant negative trends of SOS, EOS and LOS were mainly found in the Sahelian zone except 

a deciduous woodland cluster in Guinean zone of the east of Central African Republic (Fig.14) 

wherein SOS has decreased. The main clusters of these changes were located in the border of 

Sudan and Chad, Central Chad and an area near the border of Mali and Burkina Faso (Fig. 13). 

These areas which are mainly covered by grasslands with mean AMP of less than 0.35 NDVI units 

have experienced annual rainfall of less than 400 mm (Fig. 5). Substantial decrease of AMP (1.0% 

per year) was found over the Guinean zone in Cameroon, Cote d’lvorie, Liberia, Sierra Leone and 

Guiana with annual rainfall of 1000 to 2000 mm (Fig.14D). The areas are dominated by deciduous 

woodland and mosaic forests. SI has decreased over the same zone as the amplitude, but to a lower 

extent (Fig. 14E).  
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Fig.14. (A–F): significant trends of SOS (A), EOS (B), LOS (C), AMP (D), and SI (E).  

 

3.2.2. Discussion 

The magnitude of the negative linear trend of SOS in both clusters, one month advance over the 23 

years, as shown in Fig. 14A, is remarkable. An earlier start of season in Mali has resulted from an 

increase of the mean annual rainfall over the area (Huber et al., 2011), while due to no significant 

changes of rainfall over the Central African Republic, the early start of growing season is not 

explained through this factor. These two clusters were not detected in Heumann et al. (2007). The 

reason for the inconsistency might be due to different temporal resolution of the datasets. In 

addition, it might be   because of their classifying the area into several land cover- based zones . 

Since only one method of extraction the parameters could not cover the variations of different land 

covers in the study area, classifying the area based on land covers may result in higher accuracy.  

      

Fig.15. Time series of NDVI of a pixel in Eastern area in Mali using (raw data is in blue, 

TIMESAT fitted curve is in black). The NDVI unit is up- scaled 1000 times. 

E 
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Since the maximum NDVI values in the Mali cluster were usually less than 0.2 units as shown in 

Fig. 15 (A sample point was selected in the border of Mali and Burkina Faso), the negative linear 

trend of EOS recorded in this area does probably not reflect any real change. The reason is high 

probability of noise in the NDVI data as well as the soil background effect. As shown in Fig. 13B, 

the magnitude of positive linear trend in EOS is substantial, particularly in the Central African 

Republic and central Niger. Moreover the results of positive linear trends of EOS were relatively 

well matched with the Heumann et al. (2007) results. 

 

LOS has changed remarkably mainly over the Central African Republic, which is corresponds   

fairly well with reults of Heumann et al. (2007) and Jamali et al. (2014).  Inconsistencies compared 

to the mentioned studies exist due to   different temporal resolutions (10 days compared to 15 days 

in this work) and different procedures of extracting the parameters (classifying the area and 

applying calibration in Heumann et al. (2007) work).  

 

Huber et al. (2011) found that the general trends of NDVI showed a significant increase in the 

Sahelian, Sudano-Sahelian and Sudanian zones. Variation in amplitude might be due to extending 

the season which led to increased differences between maximum NDVI and base line (Fig. 2) 

and/or changes in maximum NDVI. The increase of AMP in the Sahelian zone was due to a large 

increase in the maximum NDVI. However, significant decrease of AMP over the south east of the 

study area as well as central Cameroon was not anticipated, since no change of NDVI had been 

recorded (Huber et al., 2011); also no changes of SOS, EOS and LOS were recorded in those areas, 

as shown in Figs. 16 (A-C). However, the results were fairly consistent with the previous studies 

(Hermann et al., 2005, Heumann et al., 2007 and Jamali et al., 2014).  

 

The map of SI linear trends was fairly consistent with Heumann et al. (2007) and Jamali et al. 

(2014). As SI is directly dependent on the amplitude and length of the growing season, the positive 

trend of SI seems reasonable due to remarkable increase of amplitude over the same area. 

Moreover, rainfall and soil moisture had increased from 1982 to 2007 in the regions which led to 

increase of SI (Huber et al., 2011).  

 



[46] 
 

However, there were substantial areas that did not experience significant linear changes of the 

parameters.  

 

3.3. Polynomial Trends of Phenology Parameters 

 

Figures 16(A-E) show computed polynomial trends of phenology parameters over the study area 

from 1983 to 2005. The changes of phenology parameters were mainly modeled with linear trends; 

however, there were a substantial percentage of phenology changes that was recorded as 

polynomial trends. However, “no trend” was found in large parts of the study area, as shown in 

Table.3. 

 

Table 3.Percentages of different trends over the study area 

  
Positive 

linear  

Negative 

linear  
Quadratic Cubic Hidden Quadratic 

Hidden 

Cubic 
No trend 

SOS 0.2 1.5 0.3 0.1 2.6 0.8 94.4 

EOS 11.1 2.2 1.6 1.4 2.6 3.4 77.7 

LOS 8.0 1.0 2.2 1.6 5.2 2.7 79.2 

AMP 7.3 7.9 1.6 1.3 3.4 2.9 75.6 

SI 13.8 1.6 2.3 1.4 4.6 3.2 73.1 

 

Among the different polynomial trends, quadratic hidden trends had the largest proportions. The 

quadratic hidden trends could better explain the phenology changes than cubic and quadratic 

trends, since they were more frequent and occurred in clusters. As shown in Table.3, the cubic 

trend had the lowest proportion of phenology parameters.  
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Fig.16. Polynomial trends of phenology parameters (negative and positive linear trends, quadratic, 

cubic, hidden quadratic, hidden cubic trends and no trend) over the study area from 1983 to 2005.   

 

3.3.1.  Polynomial trends of start of season 

Figure 16A displays the polynomial trends map of SOS over the study area. Negative and 

quadratic hidden trends were recorded as the dominant occurring trends over the study area.  

3.3.1.1. Results 

Regarding the linear trend, two main areas in Mali and Central African Republic have experienced 

an advance of the growing season. The Mali area is covered with sparse grass with mean annual 

precipitation of less than 400 mm and Entisols soil type. No significant trends of AMP, LOS and SI 

were found for this region, while EOS has had a negative linear trend. Since the mean annual SOS 

D 

E 
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for this area begun in August, the correlation coefficient and p-value between SOS and soil 

moisture in August was calculated (Figs. 17 and 18).  

  

 

Fig. 17. (Top): Correlation coefficient between mean SOS and mean soil moisture in August. 

Fig.18. (Bottom): P-value between mean SOS and mean soil moisture in August. The blue polygon 

shows the area with linear negative trend of SOS.                  
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Fig.19. Soil moisture trend kinds of August from the studied period, 1983-2005. The blue polygon 

shows the area with linear negative SOS. 

 

Moderate correlation (Fig. 17), between -0.7 and -0.3, with high probability of correlation (Fig.18) 

was found in the area. Also the positive trend of soil moisture in Mali relatively well coincided 

with the negative linear trend of SOS as shown in Fig. 18.   

 

Fig.20. Correlation coefficient between mean SOS and mean soil moisture in April. Blue polygon 

shows the area with linear negative trend of SOS. 
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The other area that experienced a negative linear trend was located in deciduous woodland in 

Central African Republic, with mean annual rainfall of between 1000 to 2000 mm, and Oxisol soil 

type. The mean SOS of the area occurred in April. No significant correlation between soil moisture 

and SOS in April was found over the dominant part of this cluster, as shown in Fig. 20.  

 

Infrequent and sparse quadratic and cubic SOS trends   were found over the study area. However, 

only three areas of quadratic hidden trend were found, forming notable clustered regions, including 

the west of Ethiopia, north-west of South Sudan and the southern part of Chad, as shown in 

Fig.16A (light violet color).  

 

The quadratic hidden trend of SOS was found mostly in deciduous shrub lands with sparse tree 

cover, mainly located in mountain areas of Ethiopia with soils of Alfisols and Inceptisols types. 

This area has had large   annual precipitation, from 1000 to 2000 mm.  In high mountain areas 

rainfall can reach 3000 mm. The second site has the same land cover, while its annual rainfall is 

between 600 and 1000 mm, and has soils of the Entisols class. Since the average time for start of 

growing the season in these two locations    started in May, the correlation coefficient between 

mean SOS and mean soil moisture in May was investigated over the same period from 1983 to 

2005.  

 

Fig.21. Correlation coefficient between mean SOS and mean soil moisture in August. The blue 

polygons show the area with quadratic hidden trend of SOS. 
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Fig.22. P-values between mean SOS and mean soil moisture in May. The blue polygons show the 

area with quadratic hidden trend of SOS.              

 

 

Fig.23. Soil moisture trend kinds of May from the studied period, 1983-2005. The blue polygons 

show the area with quadratic hidden trend of SOS. 

 

A moderate correlation (-0.7- -0.3) between the variables was detected (Fig. 21), which was 

verified by p-value evaluation (Fig. 22). Moreover, soil moisture trend in May from 1983 to 2003 

was similar to that of SOS (Fig. 23). 

 

 Another SOS quadratic hidden trend area was found in the south-east of Chad (Fig 16. A). The 

mean SOS in this area occurred in June, with annual precipitation of 600 mm up to 1000 mm, 

where it consists of  open deciduous shrub lands, with Vertisols soil texture. In this area, only weak 
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significant correlation was found. Moreover, the trend of soil moisture was not the same as that of 

the SOS trend during the studied period. 

 

Figure (24) displays the magnitude of quadratic hidden trend values of SOS. All three major 

clusters have experienced a negative quadratic trend with magnitude of 15 up to 30 days, which 

means that the growing season has tended to start earlier toward the minimum (earliest) SOS;   

after that, SOS has gradually increased (delayed) again (Fig. 12). 

 

 

 Fig.24. Quadratic hidden trend values of SOS over the study area from 1983-2005. 

 

The optimal occurrence of a quadratic hidden trend was defined (in this work) as a year or a period  

during which the area has experienced the earliest (in this case) or the latest SOS. The optimal 

times of quadratic hidden trend of SOS, were classified into three main periods as shown in Fig.25. 

The results illustrates that the period   1993-1996 has had the earliest SOS for the studied area. 
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Fig.25. Occurrence of quadratic hidden trend in terms of maximum or minimum SOS. 

 

 3.3.1.2. Discussion 

A negative correlation coefficient between SOS and soil moisture means that increasing the soil 

moisture corresponds to an earlier growing season, while a positive value reflects a later growing 

season. Significant correlation between SOS and mean annual soil moisture happened in August 

for the Mali cluster, displaying linear negative of SOS (Fig.17). The moderate correlation 

coefficient and p-value (less than 0.2) verified the high significance of correlation in August 

(Fig.17). Soil texture of the area is Entisols, which has been recognized as a soil type with largest 

contribution to vegetation changes over the study area (Ahmad, 2012). Occurring early SOS in in 

sandy soil areas of Mali was confirmed also by Kumar et al. (2002).  While no significant change 

of AMP, LOS and SI was found in this site, an advanced EOS means that the growing season has 

largely had a shift towards an earlier occurrence without extending the season. However, the 

negative linear trend of SOS in the second site may not be reliable, since the only parameter that 

has increased was LOS (Fig. 16.C), and no changes of NDVI, rainfall and soil moisture were 

recorded over the region (Huber et al., 2011). Moreover, as shown in Fig. 19, there was no 

significant correlation between soil moisture and SOS in this site. 

 

Regarding the quadratic hidden trends, soil moisture and SOS trends coincided in the first and 

second sites (western Ethiopia and north- west of South Sudan, respectively) while no coincidence 

was found in the third site (south-east of Chad). The reason for inconsistency in the third site 
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(south of Chad) might be due to the soil texture characteristics of the region (Fig.4), since this site 

has different soil texture in the region. As Vertisols have the ability to transmit water very slowly, it 

may have led to an earlier SOS. Significant moderate correlation coefficients, in addition to have 

the same soil moisture trends in the area indicates that soil moisture variation could explain the 

variation of start of growing season. However, quadratic hidden trend of soil moisture occurs over 

a considerably larger area than the SOS quadratic hidden trend. The reason may be differences in 

spatial resolution of the two data sets, and different techniques of achieving the data, as well as low 

accuracy of the soil moisture data set, since only few distributed ground stations for modeling the 

soil moisture data exist. 

 

The results of the quadratic trend regarding SOS and EOS were considered together, because there 

might be a shift in only one parameter or shifts occur in both parameters. In the first case, the shift 

conveys the changes of the length of growing season based on direction of the phenology 

parameter change, while in the second case it depends on how SOS and EOS have changed. If both 

parameters change in the same direction (positive or negative directions), the results convey a 

complete seasonal shift. Otherwise, it leads to changes in the length of the growing season. Since 

no changes in EOS were recorded at all three sites, it is concluded that these areas have 

experienced the longest LOS during 1993-1996.  

 

3.3.2. Polynomial trends of End of season 

3.3.2.1. Results 

Positive and negative linear trends, quadratic trends and hidden cubic trends were major kinds of 

EOS trends that occurred over the study area, as shown in Fig. 16B.  

Early occurrence of linear EOS trends was located in several clusters in the Sahelian zone. These 

clusters were dominantly found in Mauritania, border areas of Mali, Niger and Burkina Faso, Chad 

and Sudan. This trend was found mostly in grass lands with Entisols soil type and low annual 

rainfall between 200-400 mm. The moderate negative correlation between EOS and soil moisture 

in November was recorded in the areas, except in Chad wherein the correlation was found as 

positive (Fig. 26).  
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EOS was delayed predominantly in areas with relatively high annual rainfall, from 600 to 2000 

mm (Figs 5 and 16 B). The positive linear trend of EOS occurred particularly in the Sudanian and 

Guinean zone, and extended southwards from deciduous shrub lands and cropland to the mosaic 

forest lands, with dominant presence of Alfisols and Oxsisols soil types. Since the mean 

occurrence of EOS was in November and December, the correlation between soil moisture and 

EOS in November was considered. The correlation between EOS and soil moisture had decreased 

from north to the south of areas wherein EOS had been delayed. While moderate significant 

correlation between soil moisture and EOS was found over the northern parts of Central African 

Republic, Cameroon, Niger and south east of Mali, no correlation were recorded over the central 

and south regions of these countries (Fig. 26). 

 

 

Fig. 26. Correlation coefficient between mean EOS and mean soil moisture in November. 

 

Quadratic trends mainly occurred in cropland and deciduous woodland, of central Nigeria,and in 

Benin and Togo, respectively These two clusters have Oxisols soil type, and are located in the 

humid area with annual rainfall between 1000 and 2000 mm. Since the mean time of EOS in 

central Nigeria, Benin and Togo was in December, the results were compared with the soil 

moisture data in December. The results showed moderate significant correlation between the soil 

moisture and EOS in these areas. Moreover, the soil moisture followed the same trend as EOS.  

 

The cubic hidden trend of EOS was frequently found in the same areas as the negative linear trend. 

The results indicated that Sahelian zone has experienced remarkable fluctuations of EOS regarding 

cubic and cubic hidden trends. 
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3.3.2.2. Discussion 

Regarding areas with negative linear trend of EOS: since SOS had been delayed, while no changes 

of LOS and SI were found, the results are interpreted as a shift of the whole growing season. 

Moreover, since rainfall and soil moisture had increased by around 100 to 200 mm (Huber et al., 

2011), and AMP had increased (Fig.16); the early EOS in these regions might occur because of a 

shift towards earlier dates in the rainfall distribution.   Considering the increase of rainfall, the 

negative correlation between EOS and soil moisture might be due to low accuracy of the soil 

moisture data in the region. 

 

The maps of positive linear trends matched those of previous studies (Heumann et al., 2007 and 

Huber et al., 2011), particularly in the north of Central African Republic where a significant 

positive correlation between soil moisture and EOS had been recorded. However, weak 

correlations in the southern parts of these countries might be because of low accuracy of the soil 

moisture dataset compared to EOS. Nevertheless, the results of soil moisture trend kinds in 

December (Mean occurrence of EOS), illustrated that EOS has followed changes in soil moisture 

relatively well. 

For areas that have quadratic and hidden quadratic trends of EOS, due to the similar geographic 

and climate characteristics with the surroundings, and also the areas had the same soil moisture 

trends as EOS trends in addition to find the positive correlation between soil moisture and EOS, it 

is hard to highlight the land cover or soil types as drivers behind occurring these trends.   The 

occurrences might be interpreted based on variations in rainfall regimes of the regions. Although 

considerable areas could be modeled with hidden cubic trends, there was no significant correlation 

between the soil moisture and EOS in those areas. However, sporadic occurrence of the hidden 

cubic trend might happen by chance (defined 5% as confidence interval in this thesis). 
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3.3.3. Polynomial trends of length of Season 

3.3.3.1. Results 

Fig. 16C illustrates the trend class map of LOS over the studied time period. Positive linear trends 

(7.9 % of the whole study area), quadratic hidden trends (5.1 %) and cubic hidden trends (2.5 %) 

were three major recorded trends in the middle latitude, mainly around north latitude of 10º. 

There were also   clusters of other trend types including negative linear trend (0.9 % of the study 

area), quadratic trend (2%) and cubic trend (1.42%), while about 80 % of the study area had not 

experienced significant changes. 

 

Positive linear trends were found mostly in some parts of Central African Republic,   Nigeria, and 

western countries of the study area (Fig .16C).  

 

Table 4. Five main land covers wherein positive linear trends have occurred, considering their soil 

textures. Only 5 first major land cove types and three first main soil types which had a high 

percentage are shown in the table.  

5 Main Land Cover classes with Positive Linear Trend of LOS 

(only first three major soil texture types were considered) 

 Land Cover 

Mean Annual 

Precipitation 

(mm) 

Soil Texture Percentage 

Total 

Percentage of 

the trend 

including all 

soil texture 

1 
Deciduous woodland 

 
1000-2000  

Oxisols 13.6 

31.26 Entisols 7.3 

Ultisols 5.5 

2 
Deciduous shrub land with 

sparse trees 
1000-2000  

Entisols 8 

20.44 Alfisols 6.7 

Ultisols 3.4 

3 Mosaic Forest / Savanna 1000-2000  

Oxisols 10.7 

14.12 Entisols 2.5 

Ultisols 0.7 

4 
Cropland with open woody 

vegetation 
600-1000  

Alfisols 5.2 

12.31 Entisols 4.1 

Vertisols 1.7 
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5 Cropland (>50%) 600-1000  

Alfisols 2.6 

6.4 Entisols 2.1 

Vertisols 0.8 

 

Deciduous woodland with mean annual precipitation more than 600 mm, mainly located in Central 

African Republic, Guiana and some parts of Nigeria, was the major land cover that was found to 

have positive linear trends (Table.4). Among different soil types which were covered by deciduous 

woodland, the oxisols had the maximum contribution (13.6 % of the entire positive linear trend). 

Other subclasses of land covers with major contribution to positive linear trend were deciduous 

shrub land with sparse trees and the savanna region, with annual precipitation of 1000-2000 mm.  

 

To sum up, Oxisols with 24.3 % and Entisols with 24% were two main soil classes wherein the 

positive linear trend of LOS had occurred.  

 

Quadratic hidden trends were recorded in 5 main areas with different characteristics. The results 

were overlaid on land cover and soil texture maps of the area in order to display the distribution of 

the trend over the land covers and soil texture, as shown in Figs 27 and 28. Regarding LOS, 

quadratic hidden trends mostly happened in deciduous shrub lands with sparse trees. As shown in 

Fig. 28, different soil types were found to have quadratic hidden trends of LOS, including 

Incepticols, Vertisols and Alfisols, while no distinct variations of soil texture were found inside 

these sites. 

 

Fig.27. Distribution of 5 clusters of LOS quadratic hidden trend over the land covers. 
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Among these areas, site number 2 had the shortest LOS (5 to 6 months), while sites number 1, 4 

and 5 had experienced the longest LOS (about 9 months), as shown in Table.5. Site number 3 had 

also relatively short LOS compared to other areas.  

 

   Fig.28. Distribution of 5 clusters of LOS quadratic hidden trend over the soil map. 

 

Table 5. Summary information of the above 5 sites having experienced quadratic hidden trend of 

LOS. 

Site 
Mean annual 

precipitation (mm) 
Dominant Land Cover 

Main Soil 

Texture 

Mean annual of 

LOS (number of 

months) 

1 
1000-2000 , some 

areas up to 3000 mm 

Deciduous shrub land with sparse 

trees 
Inceptisols 9 

2 600-1000 Cropland with open woody vegetation Vertisols 5-6 

3 600-1000 
Deciduous shrub land with sparse 

trees 
Vertisols 7 

4 1000-2000 
Deciduous shrub land with sparse 

trees 
Alfisols              9  

5 1000-2000 
Deciduous woodland & , Deciduous 

shrub land with sparse trees  
Alfisols 9 
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Only site number 2 had experienced a strong increasing of LOS, between 15 to 30 days, and other 

sites had increased by less than 15 days. Maximum increase of LOS was found in the period of 

1993 to 1996. 

 

Fig.29. Quadratic hidden trend value related to LOS over the study area during the time period of 

1983-2005. 

 

Figure (30) illustrates the spatial distribution of cubic hidden trends in relation with land cover of 

the study area. Six major sites with occurrences of cubic hidden trends, covering approximately 

2.5% of the study area, were scattered across different countries. 

 

Fig. 30. Land cover map in relation with the occurrence of cubic hidden trend of studied time 

period. 
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 However most of these sites were located in the western countries of study area between 10ºE and 

15ºW, but in different climate zones. 

 

Table 6. Information about 6 mentioned sites regarding land cover, soils and annual precipitation, 

which have experienced the cubic hidden trend of LOS among 1983-2005. 

Site 
Mean annual 

precipitation (mm) 
Dominant Land Cover Main Soil Texture Location 

1 600-1000 
Deciduous shrub land with 

sparse trees 
Oxisols & Entisols 

South 

Sudan 

2 600-1000 Cropland (>50%) Entisols Nigeria 

3 1000-2000 Deciduous woodland Alfisols Ghana 

4 600-1000 
Cropland with open woody 

vegetation 
Alfisols 

Borkina 

Faso 

&Mali 

5 400-1000 
Open grassland with sparse 

shrubs 
Alfisols & Entisols Mali 

6 400-600 
Cropland (>50%) & Open 

grassland with sparse shrubs 
Entisols 

Muritania 

&Mali 

To sum up, cropland with 33.9% and open grasslands by 12.9 % have had the maximum portions 

of cubic hidden trends (Table.6). 

 

Table.7explains how quadratic trends of LOS related to land cover and soil types over the study 

area. Quadratic trend of LOS were scattered in north-west of South Sudan, north of Central African 

Republic and in some small batch areas in Nigeria. The quadratic trends of LOS occured in areas 

around latitude of 10 degree of north; associated with relatively high annual rainfall, mainly 

covered by deciduous shrub land, cropland and deciduous woodland.  

 

Table 7. Major land cover covered by quadratic trends. Only the three first main land cover types 

and soil types which have high percentage of contribution are shown in the table.  

3 Main Land Cover classes with Quadratic Trend of LOS 

(only first three major soil texture types were considered) 

 Land Cover Mean Annual Soil Texture Percentage Total 
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Precipitation 

(mm) 

Percentage of 

the trend 

(including all 

Soil Textures) 

1 
Deciduous shrub land with 

sparse trees 
600-1000  

Entisols 14.6 

28.3 Alfisols 9.2 

Ultisols 2.0 

2 
Cropland with open woody 

vegetation 
1000-2000  

Alfisols 11.3 

23.1 Entisols 7.6 

Vertisols       2.5 

3 Deciduous woodland 1000-2000  

Entisols 7.0 

17.2 Alfisols 4.1 

Ultisols 3.1 

 

The cubic trend was found over three small clusters in Central African Republic, Chad and Sudan 

as shown in Fig. 16C. Deciduous woodland in Central African Republic, deciduous shrub lands 

with sparse trees in southern Chad and grassland in the border of Chad and Sudan were the main 

land covers, regarding the occurrence of cubic trend. Negative linear LOS trends occurred in 

several small patches, mainly located in cropland, in the Sahelian zone. 

 

3.3.3.2. Discussion 

The results confirmed that the changes of LOS over the study area could be modeled through 

higher levels of polynomial trends. The quadratic hidden trends had almost the same notable 

portion as the linear trend, as shown in the Table. 3. Although the cubic trend could represent the 

fluctuations of length of growing season well, higher temporal and spatial resolution of the data 

may have improved the results.  

 

The results of the linear trend analysis showed that the LOS had increased in those areas (Fig. 

16C) with relatively high annual rainfall and high greenness, including deciduous woodland and 

shrub land, cropland and savanna regions. Since no significant changes of amplitude were found 

over the dominant parts of this area (Fig.16D), the extension of the season might be explained 

from the seasonal variations in the distribution of rainfall. Also, it might be explained from the soil 

type of the area; for instance the Oxisols has low degree of fertility which affects the water uptake  
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by the vegetation roots. However, the results of the positive linear trend analysis confirmed the 

results of previous research (Hermann et al., 2007, Hermann et al., 2005, Jamali et al., 2014).  

 

The quadratic hidden trend indicates that the area has had the capability to recover, since it has 

decreased to a short growing season and then increased again The reason for the different 

magnitude values of the quadratic hidden trends between site number 1, and numbers 2 and 3 (Fig. 

29) may be explained by the topography of the area, since number 1 is located in the mountain 

areas with higher amount of annual rainfall, compared to sites number 2 and 3. The spatial 

distribution of vertisols in site number 3, which is surrounded by Alfisols, coincided with the 

spatial distribution of quadratic hidden trend. It was confirmed that the soil type is a determining 

factor for the fluctuations of vegetation changes in this area.  

 

 Regarding the magnitude of the quadratic hidden trends in site number 2; since its main land cover 

was cropland, a positive magnitude means that the area has had the maximum length of agriculture 

during the period of 1993 to 1996. The extending of the LOS might be also due to a change in the 

cultivation of crops over the area.  

 

Deciduous shrub land was the major land cover wherein the higher levels of polynomial could 

realistically represent changes in LOS. It means that this land cover has had significant variations 

of the length of growing season, and consequently has been more sensitive to climate changes than 

other land covers. 

 

Compared to other trend kinds, negative linear trends of LOS had the minimum percentage of LOS 

changes, only 0.9 % of the entire area. Moreover, the accuracy of the result in these areas is 

doubtful, due to fairly low value of NDVI, and also due to the difficulty in separating the 

greenness from noise. Moreover, since the confidence interval of the test was defined as 95% the 

trend results of low proportion are doubted, particularly for pixels not found in clusters. 

 

Due to cropland has responded strongly to climate variations, LOS has decreased in the cropland 

regions in the middle part of Ethiopia.  . 

 

3.3.4. Polynomial trends of amplitude of season 
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3.3.4.1. Results 

Regarding the amplitude of the season, the negative linear trends (7.9% of the whole study area), 

positive linear trend (7.3 %), quadratic hidden trend (3.4%) and cubic hidden trend (2.9%) were 

the main trend kinds found over the study area.  

 

Positive linear trend mainly occurred in the Sahelian zone with low amount of rainfall, while 

negative linear trends occurred in the Sudanian and Guinean zones with relatively high amount of 

rainfall (Fig. 16D). While negative linear trends were mainly found in the deciduous woodland and 

deciduous shrub lands with sparse trees, AMP had increased over the grassland or cropland in the 

Sahelian zone wherein a relative increase of precipitation was found for the studied period (Huber 

et al., 2011).  

 

Several clusters of quadratic hidden trend were found in the south-east of South Sudan, Central 

African Republic and Nigeria. In contrary to cubic trends, quadratic trends more often occurred in 

clusters, as shown in the Fig. 16D. 

 

The major portion of quadratic hidden trend of AMP was recorded in deciduous woodland, 

occurring as a large cluster in south and south-east of South Sudan. However, some sparse clusters 

were found over the west of Central African Republic, Nigeria and some small parts scattered 

mainly in Guinean zone. Furthermore, results illustrated that the amplitude has reflected the 

general rainfall pattern over the study area.  

 

3.3.4.2. Discussion 

For areas having a negative linear trend of AMP, due to no significant changes of rainfall and soil 

moisture over these regions for the studied time period (Huber et al., 2011), decrease of amplitude 

does not seem reasonable. However, the magnitude of the decrease was relatively low as shown in 

Fig.14D. Nevertheless, the occurance of negative linear trends is fairly consistent with previous 

findings (Heumann et al., 2007, Jamali et al., 2014, Huber et al., 2011).  

 

In areas with a positive trend of AMP, such as Sudan, increasing the rainfall did not result in 

significant changes of soil moisture, (Huber et al., 2011). Also, in the absence of soil moisture, 
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bare soil might have resulted in low NDVI values (Heumann et al., 2007). Thus, the increase was 

the result of an increase of the total annual rainfall over the area (Heumann et al., 2007).  

The quadratic hidden trend of AMP followed the pattern of land cover and soil type as shown in 

Figs 4, 5 and 6. Deciduous woodland in association with Oxisols soil type coincided with this 

trend kind. The quadratic trend kind of AMP happened only in the Guinean zone with annual 

rainfall of more than 1000 mm. 

 

Since the cubic and hidden cubic trends were found as sparse and small clusters over the different 

zones of study area, they may not represent the real fluctuation of the vegetation phenology.  

 

3.3.5. Polynomial trends of small integral of season 

3.3.5.1. Results 

Figure (16E) shows trends map of Small Integral of season. Positive linear trend, negative linear 

trend and hidden quadratic trend were three major trends that found over the study area. However, 

some small scattered areas of other trend kinds were found over the study area. SI had increased 

over a large area in the Sahelian and Sudano-Sahelian zones, with precipitation between 400 to 

1000 mm, where the lands are dominantly used for agriculture. These areas were found at latitudes 

higher than 10°N. There were also some patchy areas of positive trend, placed in Central African 

Republic, South Sudan and Sudan. The trend was coincided fairly well with the distribution of 

Alfisols. 

 

Negative linear trend was distributed over the South-West part of the study area, including Sierra 

Leone, Guinea and Coted’ Ivoire, which was covered by mosaic forest / cropland. These areas 

which are close to the equator were classified as areas with high amount of annual precipitation 

(Guinean zone). There were also some sparse patches in Cameroon and Ethiopia was SI had 

decreased. Oxisols and Ultisols were the dominant soil types that were associated with the negative 

linear trend. 

 

Quadratic and cubic trends were limited to some parts of South Sudan, Chad and Nigeria. While 

the hidden quadratic trend happened in areas with a remarkable fluctuation in SI, the hidden cubic 

trend were concentrated to the east of Cameroon and some small parts of the South Sudan, 
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Ethiopia and Central African Republic. The cubic hidden trend did not generally occur in 

homogeneous soil types. The major land covers where this trend type was found were deciduous 

woodland, deciduous shrub land and crop lands. 

 

3.3.5.2. Discussion 

Regarding linear trends o SI, an increase of the vegetation production was mainly due to a 

significant increase of rainfall and relative increase in soil moisture over the studied time period 

(Huber et al., 2011). The rainfall increase   led to an increase in NDVI. Since no significant change 

in length of growing season was recorded over the area (only hidden fluctuations, Fig. 16C), 

increase the amplitude, resulted in increasing the SI.   

 

Another reason for a negative linear SI trend was the decrease in amplitude. . As discussed in the 

previous section, due to no changes of NDVI and rainfall, the decreasing in AMP does not seem 

reasonable. Nevertheless the results were fairly coincident with Heumann et al., (2007).  

 

The quadratic hidden trend of SI can be explained by changes in length of growing season over the 

related regions. However, the reasons for the fluctuation in LOS varied from one area to another. 

While the rainfall was expected to be the reason of the quadratic hidden LOS trend in the mountain 

chain of the western part of Ethiopia, the soil type might have caused the variation of LOS in 

southern Chad..  

 

3.4 General Discussion 

Through computing phenology parameter through 23 years of NDVI data, the general variations of 

vegetation phenology in the Sahel were identified. Also correlations with soil moisture were 

identified. Through investigation of mean phenology parameters, it was found that mean SOS and 

LOS were coincided quite well with rainfall and land cover patterns of the study area. The Guinean 

zone and mountain areas in Ethiopia   had the maximum growing season length.  

 

The results illustrated that linear trends in EOS and LOS   mainly increased in the Guinean and 

Sudano-Sahelian zones, particularly in the Central African Republic and Cameroon, while trends 

in AMP and SI   increased in the Sahelian zone. Linear decreases of SOS, EOS and LOS were 
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mainly found in the Sahelian zone, while AMP and SI   decreased over the Guinean zone. Only 

AMP had decreased over a vast area, and decreases of SOS, EOS and SI were not substantial 

compared to their increasing in the Sudano-Sahelian and Guinean zones.  

 

In some areas, higher order polynomial trends revealed vegetation changes better than linear trends 

because they occurred in clusters. Clustering leads to greater credibility of the results compared to 

scattered pixels. Furthermore, while there were some areas with significant changes, these changes   

were not detected either through the linear regressions or the polynomial trends. The hidden 

polynomial trends detected the fluctuations of vegetation parameters in these areas. However, the 

magnitude of the polynomial trends (Fig. 12) must be considered in terms of the meaningfulness of 

the fluctuation because small magnitude of trend is not meaningful.  

 

Since the climatic changes generally occur at large scale, it is important only to interpret changes 

in phenology parameters occurring in clusters (except in some small irrigated areas), when 

interpreting cause-and-effects between the climate system and the vegetation. The meaningfulness 

and magnitude of fluctuation of the parameters must also be considered when interpreting the 

results.  

 

The results illustrated that the polynomial trends of level 2 (quadratic and hidden quadratic) were 

more commonly found in clusters than were the cubic trends. The reason might be   the low 

number of investigation years (23 in this case), since more years are needed for identifying 

statistically significant cubic trends. Also the polynomial of level 2 (quadratic and hidden quadratic 

trends) mostly occurred around the mountain areas in Ethiopia and central Nigeria (Guinean Zone) 

with high annual precipitation, while polynomial trends of level 3 (cubic and hidden cubic trends) 

were scattered in small patches in the Sahelian and Sudano-Sahelian zones (Fig16), with relatively 

low annual precipitation. 

 

Regarding the correlation between SOS and soil moisture, a moderate negative correlation between 

SOS and soil moisture was found for the negative linear and hidden quadratic trends in the 

Sahelian, Sudano-Sahelian and Sudanian zones. Also, soil moisture followed the same trend as 

SOS. Although, negative moderate correlation between EOS and soil moisture was found in the 

Sahelian zone, the correlation was positive in the Sudano-Sahelian and Sudanian zones. However, 
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positive correlations got weaker towards the Guinean zone. While LOS increased in the Sudanian 

and Guinean zones, cumulative increase of greenness was occurred in the Sudano-Sahelian zone. 

The reason was due to an increase of the amplitude in this zone, and its decreasing in the Guinean 

zone. However, as soil moisture dataset has been modelled based on ground based stations, and the 

distribution of the stations in the study area might not be sufficient, this may have resulted in some 

inconstancies in the correlations between soil moisture and phenology parameters.  

 

Except in some areas, the vegetation trend changes did not spatially follow land cover and soil 

types of the study area. However, some land covers and soil types responded more to vegetation 

changes. Deciduous woodland, shrub lands and irrigated crop lands were those land covers 

wherein the largest portion of phenology parameter fluctuations were detected. Regarding the soil 

types, Entisols and Oxisols were the main soil types that were affected, particularly in the Guinean 

zone. 

 

 

Uncertainties and Future Work 

There were several factors that affected the results, from uncertainties in the remotely sensed data 

to the extraction of the phenology parameters and application of the trends. Data acquisition and 

processing errors as well as spatial and temporal resolution of data affected accuracy and precision 

of extracting the phenology parameters. Lower spatial resolution hides the details of local 

variability; meanwhile low temporal resolution may not reveal the essential details of growing 

seasons whereas plant growth is a fairly abrupt change in terms of greenness. Regarding the soil 

moisture dataset, although the dataset is based on more than 17000 ground stations, the distribution 

of the stations in the study area might be not sufficient to cover the study area. Also, since the 

dataset had a coarse spatial resolution compared to the phenology parameters; it might have 

affected the accuracy of the results. To conclude, in future studies, using more accurate data may 

give a better perception of how polynomial trends can detect vegetation changes. 

 

Regarding the study area, since there are remarkable variations in climate and geography, a unique 

extraction method of phenology parameters using the same defined TIMESAT parameters could 
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not lead to proper extracting of the parameters.   For that reason, these characteristic must be taken 

in consideration in the future works. 

 

Lack of available ancillary data, also not considering variations in a large area and applying only 

one method of extraction for a large may affect the results, as acknowledged in the linear trend 

discussion part. However, since no ground based dataset of phenology parameters existed for the 

study area, the errors could not be properly evaluated. Consequently, using ancillary data and 

ground based observations must be taken in considerations in future studies. 

 

Furthermore, to analyze the higher polynomial trends particularly cubic and hidden cubic trends 

may need investigation of longer time periods, because significant fluctuations of changes 

normally occur in time periods. However, it might be better to use linear trend instead of applying 

polynomial trends of degree higher than 3, because when the degree of polynomial in a time period 

increases, magnitudes of fluctuations decrease and trends treats as a linear trend. 
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3. Conclusion 

The results illustrated that polynomial trends can detect notable proportions of vegetation changes 

in the Sahel using remotely sensed data. Significant portions of areas with linear trends could be 

represented using quadratic and cubic trends, and these trends increased the precision of phenology 

change detection. Furthermore, in some areas vegetation changes were not detected neither 

through linear regressions nor polynomial trends. In these areas, hidden polynomial trends could 

be applied for detecting the fluctuations of vegetation parameters. Among polynomial trends, 

hidden quadratic trends covered the largest area. However, these trends were not found over the 

whole study area. Compared to other zones of the study area, the Sudano-Sahelian zone had the 

least response to vegetation phenology changes. While LOS increased in the Sudanian and 

Guinean zones, a cumulative increase of greenness had occurred in the Sudano-Sahelian zone. 

 

The results illustrated   how the growing season has shifted in two directions, or, how it was 

extended or shortened in one or two directions (earlier or later) over the study area. Also, through 

investigating of quadratic hidden trends, it was realized that LOS increased in specific period of 

time over some regions, while no changes were recorded in linear trends for these areas. 

 Regarding the climate driver forces, results showed that the vegetation phenology changes 

followed soil moisture variations, and in most occurrences, moderate correlations were found 

between SOS and soil moisture. The trends of vegetation changes did not spatially follow land 

cover and soil types of the study area. However, in some limited cases, land cover, soil texture and 

geographic characteristics such as elevation were related to the changes.  

  

 To conclude, the most important results of the thesis are: 

 Around 95 % of the study area did not experience any changes in SOS, and small portion 

of the area experienced a linear trend. Nevertheless, quadratic hidden trends with 2.6 % of 

the whole study area (mostly occurring in clusters) could better detect the changes in SOS. 

 

 EOS and LOS had mainly increased in the Guinean and Sudano-Sahelian zones, while 

AMP and SI had increased in the Sahelian zone. However, the increase of amplitude did 

not lead to an extension of the season or any seasonal shift over the area.  
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 Decrease of SOS, EOS and LOS   mainly happened in the Sahelian zone, while AMP and 

SI decreased over the Guinean zone. However, only AMP had decreased over a vast area 

(more than one percent per year in Guinea, Côte d’Ivoireand Cameroon), and decrease of 

SOS, EOS and SI were not substantial compare to their increase in the Sudano-Sahelian 

and Guinean zones. 

 

 Hidden trends were more efficient in detecting the phenology parameter changes than 

quadratic and cubic trends. Quadratic hidden trend was the main hidden trend representing 

large fluctuation of the phenology parameters. This trend mostly occurred in clusters and its 

main fluctuations occurred from 1993 to 1996. 

 

 

 Soil moisture was significantly correlated with variation of phenology parameters. 

However, to analyze the importance of soil moisture it is necessary to investigate more 

accurate datasets of both soil moisture and precipitation, regarding their spatial and 

temporal resolutions, over the studied area. 

 

 Although the polynomial trends did not generally follow land cover and soil types of the 

study area; Entisols and Oxisols were the classes where most phenology changes had 

occured, particularly in Guinean zone. Also deciduous woodland, shrub lands and irrigated 

crop lands were those land covers with maximum response to variation in phenology 

parameters. 

 

 In summation, applying polynomial trend analysis to time-series of satellite data is a 

powerful tool for investigating trends and variations in vegetation in semi-arid to sub-

humid regions, like the Sahel. 
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