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In this thesis, we study the problem of predicting users’ media preferences based on their,

as well as other users’ historical rating data. The model used is that a user’s rating for

an item can be explained by a sum of bias terms and an inner product between two

vectors in some multidimensional feature space that is specific to the product domain.

This model is fitted using a stochastic descent type method, the stochastic diagonal

Levenberg-Marquardt method. The method is studied with respect to its stability and

how fast it adapts its parameter estimates and it is found that these characteristics can

be accurately predicted for linear regression problems, but that the dynamics become

much more complex when training the nonlinear features. The concept of regularization

and the tuning of regularization parameters with the Nelder-Mead simplex method is

also discussed, as well as some methods for making the Python implementation faster

by using Cython.
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Chapter 1

Introduction

1.1 Background

To find a good song to listen to today is no longer about browsing the local music
store for new albums. Today we have access to millions of tracks over the internet for
small monthly charges, or even at the cost of hearing the occasional advertisement. But
having access to more than 20 million tracks on-demand means the problem is no longer
whether the music a user may like is available, but whether the user is able to find it.
This is an example of where the recommender systems steps in. Recommender systems
and related technologies are found in many of the web services we use today. Not only
in the context of music recommendation, but also when it comes to recommend other
products in web stores, suggesting friends on social networks, deciding which news items
that gets featured on the main page of a news site and displaying the advertisements
that a given user may be most likely to be interested in.

The purpose of a recommendation system is to predict what content might be suitable
for a user based on their previous behaviour such that it may be recommended to the
user. For most applications this means ranking the items from most to least likely
to suit a given user and presenting a selection of the top candidates to the user. From
a user perspective, a good recommendation system may make the service easier and more
enjoyable to use as it is more adapted to their preferences. For the service provider on
the other hand a good recommender system can mean more loyal customers, more sales
and better understanding of its customers.

1.2 State of the Art

Algorithms for recommender systems are typically divided into algorithms that base their
recommendations on knowledge about the items they recommend, and algorithms that
base their recommendations based on how users tend to interact with the recommender
system. Using data on how users typically interact with the recommender is referred to
as collaborative filtering and means that the recommender system learns to predict the
users’ behaviour based on how they and other users of the service have acted before.
An example of collaborative filtering is the neighbourhood-based recommender systems
that work by defining some form of similarity measure and use that to decide which
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Introduction 2

users or items that are similar to each other. If users that are similar to you tend to
like an item you haven’t seen yet, then it is probably a good item to recommend to you.
Neighbourhood-based recommenders are very common as they are easy to implement
and still offer good performance. Neighbourhood-based recommenders can be either
user-centric, giving recommendations based on what users similar to you have liked, or
item-centric, recommending items that are deemed similar to the ones you like.

Another form of collaborative filtering is to approximate the incomplete matrix of rat-
ings as a product between two low rank matrices such that the product explains the
known ratings as good as possible. The method is related to the singular value decom-
position [1] and infers a set of potential features in the data that can be used to predict
the missing ratings. Matrix factorization methods were found to perform well in the
Netflix challenge [2], where a million dollar price was offered to the team that could
make a recommender that was better at predicting a user’s preferences than the system
developed by Netflix could, and have since been used extensively. Many recommender
systems also use information about who liked what and how people are connected such
that items can be recommended based on what the user’s friends or people with similar
demographics have liked.

Another approach is to use content based filtering to make recommendations. A prime
example is the Music Genome Project [3] used by the music streaming service Pandora
Internet Radio. Pandora employs experts to quantify the features of every song in their
database which in turn are used to recommended items with similar features to the ones
they liked in the past. Basic features such as tempo and pitch, can also be extracted
directly from the audio files which may be used to give smooth transitions between songs
in a generated play list.

There are also methods that does not fall into either category of recommendation meth-
ods. Such methods are typically hybrid methods that use information about both content
and user interaction to make recommendations.

1.3 Scope of this Thesis

In this thesis, we study the problem of training a model for predicting ratings by captur-
ing various biases in how the users’ rate items, as well as the interaction between users
and items. The methods studied for doing so are the stochastic gradient descent method
and the stochastic diagonal Levenberg-Marquardt method; the main question concerned
is how to best tune the methods for speed, accuracy and stability. The methods are im-
plemented in Python and as the methods are computationally demanding some methods
for reducing the memory demands and computation time are also discussed.

The thesis is restricted to computations using only interaction data; no metadata such
as time stamps, demographic information and taxonomy, is being used. The evaluation
is restricted to prediction accuracy measured by the root mean square error. Algorithms
are limited to their single thread versions and are run in an offline setting.
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1.4 Notation

In this thesis, scalars are denoted by plain letters e.g. a,A, α, vectors by lower case
bold letters e.g. a,α, and matrices by upper case bold letters e.g A. Model parameters
and optimizer hyperparameters related to a specific user have the subscript u while
parameters related to a specific item have the subscript i. Hyperparameters related to
a specific parameter have the parameter as subscript e.g. ηb is a scalar hyperparameter
related to the parameter b.

1.5 Outline

Chapter 2 introduces two data sets, a small data set with movie ratings from Movielens
and a larger data set with music ratings from Yahoo! Music. Chapter 3 discusses how to
evaluate recommender systems and introduces the root mean square error on a valida-
tion set as an evaluation criterion. Chapter 4 discusses optimization methods for large
scale optimization problems. In particular, the stochastic gradient descent method and
the stochastic diagonal Levenberg-Marquardt method are introduced and analysed with
regards to how different learning rates affect their performance and stability. In chapter
5, some basic linear regression models are evaluated for predicting ratings. Methods for
avoiding overfitting are introduced in chapter 6. Chapter 7 explains how to use cross-
validation to compare different models and how to use Nelder-Mead’s simplex search to
test many models in a structured way. Matrix factorization models for personalization
are introduced in chapter 8. Some computational aspects are discussed in chapter 9 as
well as methods for reducing the time and memory demands of programs written in a
high level language by incorporating features from low level programming languages.
Finally, chapter 10 contains teh conclusions that can be drawn by our results.



Chapter 2

Data Sets

2.1 Ratings Data Sets

In this thesis, we examined two data sets. Firstly, a small data set with 100,000 movie
ratings, referred to as the Movielens 100k data set, collected by the GroupLens Research
Project at the University of Minnesota. Secondly, a much larger data set consisting of
262,810,175 music ratings, referred to as the Yahoo! Music data set, collected by Yahoo!
Both data sets are freely available on the internet [4, 5] and are well known within the
research community.

2.1.1 The Movielens 100k Data

The Movielens 100k data is one of the oldest data sets in the studies of recommender
systems. It consists of 100,000 ratings on a five star scale by 943 users on 1,682 movies,
where each user has rated at least 20 movies. The data set is distributed freely for
research purposes on the GroupLens web page as plain text files. The data files used in
this thesis are the ua.base and ua.test files, which is a split of the data into a training
set and a test set with exactly 10 ratings per user in the test set. In situations were
a further validation set has been used in intermediate steps these have been taken by
further splitting the training data. A sample of the data may look something like this,

3 353 1 889237122
3 354 3 889237004
3 355 3 889237247
4 11 4 892004520
4 210 3 892003374

where the first column is the user ID sorted in ascending order, the second column is
the item ID, the third column is the given rating on a five star integer scale and the
final column is a time stamp in seconds since 1970-01-01. There are also files containing
further information about the movies such as title, genres and release year. For users
there is information available about age, gender, occupation and zip code that may be
used in modelling.

4
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2.1.2 The Yahoo! Music Data

The Yahoo! Music data set is one of the largest data sets currently available to re-
searchers. It consists of 262,810,175 ratings on a 100 point scale by 1,000,990 users on
624,961 items, where each user and each item has at least 20 ratings. The data set is
publicly available through the Yahoo! Webscope program to researchers and academics.
The data files used in this thesis are the ones created for the track 1 of the KDD Cup
2011 Challenge, which is split into training data, validation data and test data by taking
the last six ratings by each user and adding those to the test set and taking the four
ratings before those and adding those to the validation set. The total size of the training
set is thus 252,800,275 ratings, the validation set is 4,003,960 ratings and the test set is
6,005,940 ratings [6]. For comparison a sample of the data looks something like this,

2|101
238557 90 4220 08:31:00
115200 100 4220 10:16:00
176889 100 4220 10:16:00
329058 100 4220 10:16:00

where the first row tells that this is the ratings made by user number two and that the
next 101 rows are ratings made by the same user. For those rows the first column is
the item id, the second is the rating, the third is a time stamp signifying which day the
rating was made and the final column tells the time the rating was given. Additional
text files contains information about which items were songs, artist, albums and genres
and also how different items were related to each other. For privacy reasons there is
however no more identifying information than that.
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Evaluating Recommender
Systems

3.1 Offline Evaluation

The overall goal of a recommender system is to provide as accurate and satisfying rec-
ommendations as possible leading to increased customer satisfaction and revenue to the
service provider. However, these goals are hard to measure in an offline setting as the
users’ true preferences will only be known to themselves. Had it been knowable, we
would not need a recommender system at all.

Most metrics for offline evaluation rely on withholding a subset of the items rated by
the users and see how well the recommendations compares to the test data. The reason
for doing this, rather than using all available data for training, is that without these
precautions there would be no way to tell how well the insights gained can be expected
to generalize to previously unseen ratings. There have been a vast number of meth-
ods proposed for offline evaluation of recommender systems, see for example [7] for a
treatment of the subject. Roughly, the methods can be divided into methods that view
the recommendation problem as a prediction problem, methods that view the problem
as a classification problem and methods that view it as a ranking problem. Seeing the
problem as a prediction problem the recommender is evaluated based on prediction error
over the test set. Common measures are the mean average error, MAE, and the root
mean square error, RMSE. Methods based on viewing the recommendation problem as
a classification problem instead evaluate how well the recommender can recognise a well
liked item in the test set and tend to use some variation on precision and recall measures,
where precision is a measure of how likely a recommended item is to be relevant and
recall is a measure of how likely a relevant item is to be correctly classified. Ranking
based approaches base the score on some function of the ranking errors of items in the
test set. One problem all offline methods have in common is that they are all limited by
only being able to measure how the user interacted with items that were found without
the recommender. There is no way to tell if a recommendation of an item unknown to
the user is correct or not based only on data of items known to the user. This means
that it’s hard to determine whether a serendipitous recommendation is correct or not in
an offline setting.

6
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3.2 Root Mean Square Error

For the purpose of this thesis the results will be evaluated by first training the predictor
using the training data and then evaluating the prediction error as measured by the
Root Mean Square Error (RMSE) on the test set using

RMSE(θ) =

√√√√ 1

m

U∑
u

I∑
i

Mui(rui − r̂ui(θ))2 (3.1)

where m is the total number of ratings in the dataset, U is the number of users, I is
the number of items, Mui is a mask that is equal to one if user u rated item i and
zero if the item was not rated by that user. Furthermore rui is the true rating given by
user u for item i and r̂ui(θ) is the estimate of that rating given model parameters θ.
The RMSE is mathematically elegant and simple to evaluate. The minimum is a least
squares solution and there is a correspondence to making certain normality assumptions
on the prediction errors. Comparing to the mean average error measure the impact
of a large error is more severe under the root mean square error measure. Since the
RMSE was used in the Netflix challenge it has become a standard in the recommender
systems community, which means it is easier to find benchmark results using the RMSE
than many other error measures. The RMSE is of the same dimension as the errors
themselves, which makes it more intuitive to work with than the MSE or scalings of
it, but the square root makes it harder to differentiate, which makes the optimization
procedure more complicated. Another cost function with the same minimum is

J(θ) =
1

2m

U∑
u

I∑
i

Mui(rui − r̂ui(θ))2, (3.2)

which is a scaled MSE that can be used internally in the optimization procedure as it
leads to simpler calculations.



Chapter 4

Optimization Methods

4.1 Batch Gradient Descent

Given a cost function, such as (3.1) or (3.2), the next step is to work out a way to
minimize its value. The most basic such method is the batch gradient descent method,
sometimes known as steepest descent. The method works by updating the parameter
vector θ at each iteration according to the update rule

θ(k + 1) = θ(k)− η∂J(θ)

∂θ
, (4.1)

where η is the step size or learning rate. The batch gradient descent is conceptually
simple, but it suffers from slow convergence near the minimum. If line searches are
used to select η, it approaches the minimum value in a zigzag pattern [8]. For the cost
function (3.2) the derivative with respect to a single parameter θ is

∂J

∂θ
= − 1

m

U∑
u

I∑
i

Mui (rui − r̂ui(θ))
∂r̂ui(θ)

∂θ
. (4.2)

4.2 Stochastic Gradient Descent

A problem with the batch gradient descent, and other optimization methods that calcu-
late the derivatives (4.2) of the cost function (3.2) at each step, is that the computation
of the gradient requires a summation over all the training examples. For a data set
as large as the Yahoo! Music data set this means a summation of m = 252, 800, 275
training examples to take a single step. To increase the execution speed, one can instead
use only a subset of the training data for each step. By averaging over a mini-batch or
even taking just a single training example and updating according to that sub-gradient
the algorithm can take a large amount of steps in the same time as the batch version
could take only one. A sub-derivative of (3.2), being the derivative with respect to only
one term of the sum, is

8
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∂Jui
∂θ

= − 1

m
(rui − r̂ui(θ))

∂r̂ui(θ)

∂θ
. (4.3)

When the training examples are evaluated one at a time in, preferably in a randomized
order, the method is referred to as the Stochastic Gradient Descent method (SGD). The
idea behind stochastic gradient descent is that the average behaviour will cancel out
most of the noise introduced by only considering a small sample at each step [9]. One of
the reasons that we can achieve faster convergence using the stochastic gradient descent
over the batch gradient descent is that it makes good use of redundancies in the data set.
For a large data set with redundancies, one epoch of stochastic gradient descent, being a
training cycle visiting all training examples once, may reduce the prediction errors more
than a batch gradient descent would in several epochs [10]. To see why the stochastic
gradient descent method utilises redundancies better, consider a data set where each
training example appears twice. For a batch method the duplicates will only increase
the time demands without speeding up the convergence. For a SGD method on the
other hand each duplicate example will not matter, the algorithm still goes through just
as many training examples from the same distribution per time unit.

Input: S: Set of training examples
Output: θ: Estimate of model parameters
Shuffle training examples
for k in 1...MAX EPOCHS do

for rating in S do

θ ← θ − η ∂Jui(θ)∂θ
end
if Stop Criterion met then

Return θ
end

end
Return θ

Algorithm 1: Stochastic Gradient Descent

Compared to batch optimization algorithms, stochastic descent algorithms may not
converge as fast in terms of number of epochs towards the minimum of the empirical cost
function – the cost function evaluated on the known training set. However, stochastic
descent algorithms converge just as fast towards the minimum of the expected cost
function [11]. The lower complexity also means that the algorithm can visit more training
examples in less time, which is why they can still perform faster. SGD methods are
popular as they are easy to implement and work well for very large data sets, however one
drawback pointed out in [12] is that they require much manual tuning of hyperparameters
such as the learning rates and convergence criteria.

4.3 Setting the Learning Rate

The noise introduced by visiting the training examples one by one when using the
stochastic gradient descent method means that we will in general not converge to a
specific point in the parameter space. Instead the parameter estimate will wander about
in an area around a, possibly local, minimum [13]. The higher the learning rate, the
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faster the solution approaches the minimum initially. But a higher learning rate also
means that the area in which the solution wanders about is larger. By selecting a suitable
scheme for decreasing learning rates one can make the algorithm converge almost surely
[9]. However, reducing the noise introduced by a high learning rate may not be as critical
as one may think as overtraining may occur long before the noise regime is even reached
[10].

Another issue to consider is how much of the previous parameter estimate that is re-
tained and whether the update scheme is stable. The amount of the previous parameter
estimate that is retained determines how fast the algorithm learns and how many train-
ing examples the current estimate is based on. A high learning rate corresponds to
weighting the current training example high relative to the previous parameter estimate
and as such the algorithm learns fast, but also forgets quickly. The SGD update step

θ(k + 1) = θ(k) + η
1

m
(rui − r̂ui(θ))

∂r̂ui(θ)

∂θ
(4.4)

can, given a model r̂ui(θ) = aθ or a sum of such terms, be rewritten as

θ(k + 1) = θ(k)

(
1− ηa2

m

)
+
ηa

m
rui (4.5)

which clearly shows how much of the previous parameter estimate that is retained and
how much of the new training example that is taken into the model. For the most basic
models, consisting of a sum of bias terms as will be discussed in chapter 5, the variable a
in (4.5) is equal to one which further simplifies the form of the update. The dynamics of

such an update scheme is mostly determined by the factor
(

1− ηa2

m

)
. If the magnitude

is larger than one the updates will tend to become unstable, and if the magnitude is
lower the parameters will gradually adapt to new training examples while forgetting the
old parameter estimates. The weight of a training example decrease as

(
1− ηa2

m

)j
≈ e−ηa2j/m (4.6)

after j updates. This knowledge can be used to make sure the learning rates are not
too high or too low. If, for example, you have 10,000 training examples for learning
the parameter θ but the learning rate is so high that the weight of all but 10 training
examples is negligible then you are not taking advantage of your large data set and can
probably reduce your learning rate. If on the other hand you have only 10 training
examples in your data set but tune the learning rate to utilise the last 10,000 training
examples your final parameter estimate will probably be heavily biased by the initial
condition.

Setting the learning rate is not entirely a question about bias and variance, a very
important aspect is to make sure that the updates are stable. A too high learning rate
can lead to instability. Looking at how an update following (4.4) affects the error, eui(k),
at a specific training example we get
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eui(k + 1) ≈ eui(k)

(
1−

∑
θ∈θ

ηθ
m

(
∂r̂ui(θ)

∂θ

)2
)
, (4.7)

where the approximation lies in the assumption that

∂2r̂ui(θ)

∂θ2
= 0, (4.8)

which will hold for all models studied in this thesis. The error dynamics in (4.7) sets
an upper bound on the learning rates that will lead to stable updates. The stability
bounds are constant for linear models, but may change over time for nonlinear models
which will make these models much more complicated to tune. Further, we note that
models with many model parameters put stricter bounds on stability than models with
few parameters.

The information in (4.6) and (4.7) is enough to find a good learning rate for a specific
parameter, but regression models used in recommender systems typically have a huge
number of parameters, which may have a very different effect on the cost function
(3.1). The data set is very unbalanced, meaning that some parameters may only be
relevant to a few training examples, while others occur frequently. Using the same
learning rate for all parameters leads to slow convergence in directions corresponding
to parameters that occur infrequently in the training data. Setting the learning rate
manually for all parameters would however not be a better option since there are typically
too many parameters to tune individually. Luckily there are well structured ways of
setting learning rates for many parameters at once. One such method is the stochastic
diagonal Levenberg-Marquardt method.

4.4 Stochastic Diagonal Levenberg-Marquardt Method

The Stochastic Diagonal Levenberg-Marquardt (SDLM) method for selecting individual
learning rates for parameters in stochastic gradient descent makes use of the local cur-
vature to improve convergence. The learning rate ηθ for a specific parameter θ is chosen
as

ηθ =
η0

∂2J
∂θ2

+ γ1
, (4.9)

where η0 is the global learning rate and γ1 is a parameter to prevent the learning rate
from blowing up when the curvature is low. The inclusion of the second derivative of
the cost function with respect to the parameter means that a lower learning rate is used
for parameters that are encountered in many training examples. This ensures that the
higher amount of training examples is used to reduce the variance of those parameters.
Parameters that appear infrequently are given a higher learning rate such that the
infrequent updates do not slow down the convergence. Using this approach means that
we can set individual learning rates for millions of model parameters while only having
to tune the two hyperparameters η0 and γ1. As a rule of thumb, the SDLM method
converges about three times faster than a finely tuned ordinary SGD method [10].
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4.4.1 Tuning the Stochastic Diagonal Levenberg-Marquardt Method

A parameter update using the stochastic diagonal Levenberg-Marquardt method has
only two tunable hyperparameters. As such it is of great value to see how these hy-
perparameters affect the dynamics of the learning algorithm. Consider, as previously,
a model with a linear parameter r̂ui(θ) = aθ or a sum of such parameters. For such a
model the second derivative with respect to θ is

∂2J

∂θ2
=
a2

m

U∑
u

I∑
i

Mui =
a2Nθ

m
(4.10)

and subsequently the learning rate ηθ of that parameter θ is (4.11)

ηθ =
η0

a2Nθ
m + γ1

. (4.11)

The learning rates for linear parameters are thus scaled by the inverse frequency of how
often they appear in the training data. This means that if the weight decline (4.6) of a
parameter trained by the SDLM method is evaluated after one epoch’s worth of training
the weight decline will be the same for all parameters regardless of how many times they
occur in the training data. Thus, assuming the stabilization hyperparameter γ1 is small,
all parameters converge at the same rate when using the SDLM method. The weight of
an old parameter estimate declines by a factor of roughly

(
1− η0

1

Nθ + γ1m

)Nθ
≈ e−η0 (4.12)

per epoch, which can be used to set the number of epochs and the global learning rate
η0 to make sure all parameters are given appropriate learning rates that do not cause
the parameter estimates to have either too much bias from the initial conditions or the
estimates to be based on a too small subset of the available data.

To ensure stability we must require that all training examples result in a reduction of
the error magnitude based on (4.7). For a nonlinear model this depends on the current
parameter values, but for a linear model these bounds will only depend on the learning
rates and can as such be estimated by considering what would be a worst case scenario
for stability – typically an update involving several parameters with high learning rates,
such as when both the user and the item involved have only one rating each in the
training data. To make sure that even these extreme cases do not cause instability, the
learning rate η0 and stabilization term γ1 in (4.9) must be set such that (4.7) remains
stable, preferably with some margin to avoid oscillatory behaviour. A good way of
thinking of the stabilization parameter is that the value γ1m corresponds to a number
of virtual ratings added for each parameter in the data set when the learning rates are
calculated. This means that the parameters with few ratings are given lower learning
rates as if they had been items with a larger amount of ratings. Since these virtual
ratings are never encountered in training, the added stability of these parameters come
at the cost of them having a higher bias from the initialisation than predicted by (4.12).
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Based on these results we can set up a structured method for finding viable values of
η0 and γ1 when using SDLM. First decide how many epochs that can be afforded based
on how fast you can run your optimization algorithm. Then decide how much bias from
the initial conditions that can be allowed to persist at the end of the optimization. Set
η0 as low as can be allowed using (4.12). If the updates are predicted to be stable using
(4.7) you are done, if not – increase the value of γ1 to make the updates stable.

4.5 Advanced Batch Methods

In comparison with batch gradient descent the stochastic gradient descent needs less
time per update, but there are many batch methods that instead save time by con-
verging in fewer iterations. To achieve this they use smarter methods to select search
directions in order to avoid the zigzagging behaviour that plagues batch gradient de-
scent methods. One such method is the Conjugate Gradient (CG) method which selects
search directions using conjugacy which greatly reduces the number of times the same
search direction has to be used. Other methods, such as the limited memory Broy-
den–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm [14], makes use of the local curva-
ture of the cost function to find good search directions. The CG and L-BFGS methods
require computation of the cost function’s gradients on the full data set which can be an
expensive operation on a large data set, but if mini-batches are used, it may not be too
expensive. If multiple cores or GPUs are available the batch methods are much more
suited to parallel computing than stochastic methods. The study in [12] shows that
higher order methods are viable for large problems with close to one million parameters.
They also found that, in a multi-core environment with GPUs the performance of CG
and L-BFGS can be even faster than an SGD in the same environment. For the purpose
of this thesis however the SGD method was chosen as it is easier to implement and offers
good performance in single thread environments.



Chapter 5

Basic Bias Models

5.1 A constant predictor

The most basic predictor that can be considered is the constant predictor r̂ui(θ) = µ.
Minimizing the RMSE gives the following estimate

µ∗ = arg min
µ

√√√√ 1

m

Nu∑
u

Ni∑
i

Iui(rui − µ)2 (5.1)

or equivalently minimizing the MSE (5.2), which is easier to differentiate,

µ∗ = arg min
µ

1

2m

U∑
u

I∑
i

Mui(rui − µ)2 (5.2)

The µ that minimizes (5.2) is the mean rating. Using the mean rating of the training
set to predict ratings in the test set results in an RMSE of 1.1238 using the Movielens
data whether it’s trained with SGD or by taking the mean value of the ratings. This is
exactly the same results as reported by our Movielens benchmark [16], which isn’t all
that surprising since this model has no tuning to speak of.

Dataset Model RMSE Benchmark

Movielens Mean 1.1238 1.1238

For the Yahoo! Music data using the mean rating results in an RMSE of 38.2940. Our
main benchmark results [15] for the Yahoo! Music data on the other hand reports an
RMSE of 38.0617 using a constant predictor trained with stochastic gradient descent on
the Yahoo! Music data set.

Dataset Model RMSE Benchmark

Yahoo! Mean 38.2940 38.0617

The question that arises is then: how can another estimate of the mean give a lower
RMSE than the true mean? To understand that we need to study the parameter update

14
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equation. Taking a gradient descent step based on the cost function (5.2) above we
update µ as

µ(k + 1) = µ(k) +
ηµ
m

(rui − µ(k)), (5.3)

where η is the learning rate. One notable feature is that at each update the estimator
maintains a factor

(
1− ηµ

m

)
of the previous update, which is the way the adaptive update

can make use of information from several training examples. In chapter 4 it was explained
how this adaptive update results in different weight being assigned to different training
examples based on how recently they were encountered. As the Yahoo! Music data files
are distributed sorted by user this means that an estimate made without shuffling will
have a bias towards users with high user id. Depending on which learning rate that is
chosen this takes the structure of the data set as a feature and trains the model on it
and one can expect that another weighting leads to another estimate. If the learning
rate and stop criterion are tuned to get the best result on some validation data, the
resulting mean estimate may end up biased by the last training examples if these are
more similar to the validation data than the average training example is. This effect is
most prominent when the data sets have some form of structure as a structured data set
may have many samples that are similar to each other appearing together. While this
kind of structure may lead to better results than would have been possible for a shuffled
data set, the results become dependant on an arbitrary ordering of users and may be
hard to reproduce.

The validation and test sets have an equal amount of ratings for each user, while the
training set has more ratings from the more active users. As the active users generally
have different rating behaviour than the less active users, the mean of the training set’s
ratings may not be the same as the mean of the test set’s ratings.

If we instead change the cost function on the training set such that each user is given
the same weight when it comes to estimating the mean rating, rather than giving each
rating the same weight, the mean estimate is increased from 48.8698 to 70.3431 on a
rating scale of 0 − 100. This much higher mean estimate reflects that a user that only
rates a few items in general gives higher ratings than one that rates lots of items. A
possible explanation could be that many users start out by only rating the items they
actually like. Evaluating the prediction error using the weighted mean

µ∗ = arg min
µ

1

2m

U∑
u

1

Nu

I∑
i

Mui(rui − µ)2 (5.4)

results in an RMSE of 33.0353 on the test set which is a major improvement over using
the true mean as an estimator.

5.2 A Basic Bias Model

The major improvement that could be made to the constant predictor by using a
weighted mean was due to different users having different rating patterns. One way
to improve the model is by adding individual bias terms bu for each user to capture their
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personal user bias. It also makes sense that different items tend to get ratings reflecting
their popularity or quality. This can be modelled by introducing item bias terms bi. The
constant predictor is thus replaced by a basic bias model (5.5).

r̂ui(θ) = µ+ bu + bi. (5.5)

Note that this is a linear regression problem where the cost function can be written on
the form

θ∗ = arg min
θ

‖Bθ − r‖22 (5.6)

with θ being a column vector [µ, bu1, bu2, . . . , biNi ]
T containing all parameters, r being

a column vector containing all ratings in the training set and B being a sparse matrix
of ones and zeros selecting the bias terms relevant to each rating. A naive approach
to estimate the parameter vector θ would be to calculate the inverse or pseudo-inverse
of B and use that to solve the linear equation system corresponding to (5.6). The
problem is that the dimension of θ is equal to Nu + Ni + 1, meaning that for the
Yahoo! Music data set there are 1, 625, 952 parameters and the B matrix is of dimension
1, 625, 952 × 1, 625, 952, making Gauss elimination infeasible from the sheer size of the
problem. Attempting to store the pseudo-inverse of that matrix would be even more
futile as it would in general be a dense matrix requiring several Terabyte of disk space
to store.

If the point of using a stochastic gradient descent method was unclear when there was
only a single regressor variable this is a completely different situation when it would be
very hard to perform optimization without it. The bias terms all behave the same way
and may be updated analogously to (5.3).

After setting aside a fraction of the ratings for validation the Movielens training data
contained at least 9 ratings per user and at least one rating per item. This set an upper
bound (4.7) on the global learning rate, η0 < 1.8, if using (4.9) and the stabilization
parameter γ1 was close to zero. Experimentally it was verified that a global learning
rate of 2.0 leads to increasing training error while a global learning rate of 1.7 resulted
in the training process converging to an area close to a minimum. It was also found
that an epoch could be performed in less than a second after some code optimization,
see chapter 9. Knowing that training was somewhat cheap, 20 epochs of training with a
global learning rate of 0.3 was used. Setting the global learning rate to 0.3 ensured that
the initial condition θ0 = 0 would have small effect on the final results. These settings
resulted in an RMSE of 0.9647 which is a clear improvement over the constant predictor
and compares well with benchmarks of bias models using the same data set [16].

Dataset Model RMSE Benchmark

Movielens Mean 1.1238 1.1238
Movielens Bias 0.9647 0.9656

It is possible to get slightly better results by using more epochs and a lower learning
rate, but these improvements were found to be too small to be worth the additional
effort as the model is expanded in later chapters.



Basic Bias Models 17

The Yahoo! Music training set is almost 3, 000 times larger than the Movielens training
set. The training set has at least 10 ratings per user and at least 4 ratings per item
setting an upper bound on the global learning rate such that η0 < 5.7 when (4.9) is
used. The much larger size means that training was much more expensive and only a
few epochs per hour could be afforded after code optimization. Prior to optimization
the situation was even worse as a single epoch could take hours to perform.

The long computation time is the main reason why a good knowledge of how the learning
rates affect the results is needed. Trial and error is expensive and trying to play it safe
by setting a low learning rate and a high number of epochs can lead to simulations
spanning days, which may not even give good results in the end.

Three epochs of training at a global learning rate of η0 = 2.0 finished in slightly less
than an hour with our Python implementation to be discussed later and resulted in an
RMSE of 28.6588.

Dataset Model RMSE Benchmark

Yahoo! Mean 38.2940 38.0617
Yahoo! Bias 28.6588 26.8561

Here the results differs even more from the benchmark results from [15], which may be
related to the somewhat high learning rate and low number of epochs, resulting in a
significant difference between the weighting of the first training examples of an epoch
and the last. Experimentally, increasing the number of epochs and lowering the learning
rates however seemed to have a small effect on the resulting RMSE. There are many
other things that differ between the methods used, especially when it comes to the
training procedure, but one thing that is performed in [15] that we have not discussed
yet is regularization, which will be the topic of chapter 6.



Chapter 6

Regularization

6.1 Regularization

One problem with using a cost function like the RMSE defined in (3.1) when training is
that there is no cost associated with model complexity. This means that there is a risk
of overfitting the training data. When a model overfits the training data it may provide
a good description of the training data, but fail to generalize to data that was not part
of the training set. This behaviour comes from the model adapting to the noise specific
to the training data rather than learning the underlying structure. Since even the most
basic bias model with one parameter per user and item has thousands or even millions
of degrees of freedom, depending on which data set we are studying, there is a very real
reason to pay attention to the problem of overfitting.

A common way to counter overfitting is to modify the cost function to penalize the
number or the magnitude of the model parameters. A regularized cost function with
quadratic regularization costs, which penalizes the magnitude of the model parameters,
is

Jreg(θ) =
1

2m

U∑
u

I∑
i

Mui(rui − r̂ui(θ))2 +
λ

2
‖θ‖22, (6.1)

where λ is a non-negative regularization constant. For a linear model, such as the basic
bias model (5.5), this leads to a cost function similar to ridge regression for which it has
been shown that there exists positive regularization constants such that the resulting
MSE of the minimized solution is lower than for the unregularized problem [17]. Regu-
larization may also be motivated from a Bayesian framework by making assumptions on
the distribution of model parameters, see for example [18]. For a quadratic cost func-
tion like (6.1) this corresponds to an assumption that the linear bias terms are normally
distributed with zero mean and a variance proportional to 1/λ [19].

6.2 Regularized Stochastic Gradient Descent

If you calculate the gradient of the regularized cost function in (6.1), you get

18
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∂Jreg(θ)

∂θ
=

1

m

Nu∑
u

Ni∑
i

∂(rui − r̂ui(θ))

∂θ
(rui − r̂ui(θ)) + λθ, (6.2)

which is straightforward to use in batch gradient descent. The regularization terms
are not part of the sum from which the subgradients are taken which means some
modifications must be made for stochastic gradient descent. Ideally only the elements
of θ that are accessed by the summation should be updated at each step to keep the
updates computationally efficient. An update scheme that is true to the cost function
in (6.1) and the gradient in (6.2) is

θ(k + 1) = θ(k) + ηθ

(
1

m
(rui − r̂ui(θ))

∂r̂ui(θ))

∂θ
− 1

Nθ
λθ(k)

)
(6.3)

which compensates the various update frequencies by scaling the updates such that the
sum of all sub-gradients is the true gradient (6.2). The regularization hyperparameters,
λ, are often different for different parameter types, e.g. one parameter λ for user biases,
another for item biases and so on.

Many practitioners, such as [15], choose to regularize the update step rather than the
cost function and end up with an update step such as

θ(k + 1) = θ(k) + ηθ

(
1

m
(rui − r̂ui(θ))

∂r̂ui(θ))

∂θ
− λθ(k)

)
(6.4)

instead. This regularized update function does not compensate for different parameter
frequencies which makes it is easier to maintain the stability of the updates as the scaling
factor 1

Nθ
in (6.3), being the inverse number of ratings in the training set related to the

parameter θ, may vary a lot in magnitude for unbalanced data sets. The drawback is
that parameters that are updated often are regularized harder than parameters that
are updated seldom. This corresponds to an assumption that the often encountered
parameters are noisier, which is usually something you would not want to impose on
your model.

6.3 Bias and Variance

The words bias and variance are often used when describing the trade-off between a
very simple model that fails to fit the data properly and a complex model that fails to
generalize to new data. Signs of underfitting is that the model performs badly on both
the training data and the validation data and that adding more training data makes
little difference in the results. If a model is suspected of underfitting the data it may be
a good idea to increase model complexity by adding more parameters or reducing the
regularization cost of the model parameters. If the model on the other hand is overfitting
the data by having too many parameters and too little regularization it usually leads to a
very good fit of the training data, but bad results on the validation data. Overfitting can
be reduced by using more regularization, reducing the model complexity or by adding
more training examples. The expected MSE when a model is applied to new data is a
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sum of squared bias, model variance and noise [18]. As methods that reduce variance
tend to increase bias there is a trade-off between the variance and bias that has to made
to attain the lowest possible MSE.

6.4 Selecting the Regularization Costs

Selecting the optimal regularization costs is a nontrivial problem. As neither the char-
acteristics of the parameter distributions or the noise in the data is known it is hard to
make an informed choice based on those. For a guess at the right order of magnitude one
can look at how the regularization affects the steady state of the optimization algorithm
when being repeatedly fed the same rating. By knowing how large the errors are when
updates according to (6.3) results in no change to the parameter value we can get a
feel for how much bias the regularization introduces. For a parameter r̂ui(θ) = aθ the
steady state when receiving the rating rui is

lim
k→∞

r̂ui(θ(k)) =
rui

1 + mλθ
a2Nθ

(6.5)

assuming that the update convention in (6.3) is used. If (6.4) is used the λθ
Nθ

is substi-
tuted by λθ to compensate for the absence of frequency rescaling. This means that for
the update scheme (6.4) the steady state does not depend on how often a parameter is
encountered. While this rule of thumb by no means tells us what the optimal regular-
ization parameters are it can give a feel for whether a proposed level of regularization is
to be considered large or small. For example, consider the regularization cost of a bias
parameter for the Movielens data set. If λθ = 10−2 and the update convention (6.3) is
used, that means a parameter that occurs 1,000 times in the training data will reach a
steady state at barely 10 % of its steady state value without regularization, which seems
like too strict regularization. Similarly, if the regularization hyperparameter λθ = 10−7

for the same data set that means that even a parameter that occurs only once in the
data set will reach 99 % of its unregularized value at steady state, meaning that the
regularization is not making much difference at all. This information can be used as a
rough rule of thumb when it comes to setting the regularization parameters that can,
for example, be used to find a good starting point for a hyperparameter optimization
routine, such as the Nelder-Mead simplex search discussed in chapter 7.

6.5 Other Regularization Methods

Using L2-regularization as in (6.2) is not the only way to reduce variance. There are other
modifications of the cost function that add a penalty for models with high complexity.
One such regularization method is the Akaike’s information criterion, AIC, that adds
a penalty on the number of parameters imposing sparsity on the model. Other well
known methods that impose sparsity is the LASSO-estimator and the basis pursuit
denoising which both modify the cost function by adding a penalty on the L1-norm of
the parameter vector.

Other methods take advantage of how the training process gradually reduces bias at
the cost of increasing variance. At some point the variance will increase faster than
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the bias is reduced and the overall MSE will start increasing instead of decreasing. A
subset of the training data can be used as a probe set to monitor when the MSE starts
to increase. In [20] many methods that use this information to steer the training to
more preferable regions are compared to traditional regularization methods for neural
networks and are found to offer very good performance. The most basic such method is
the early stopping method for which the training process simply stops when the MSE
is found to be increasing on the probe set. This in effect means using the bias from the
initial conditions as a regularizer. In fact a low learning rate or a low amount of epochs
has a similar effect to ordinary regularization by stopping the parameter growth before
they reach their unregularized steady state.

Other methods modify the learning rate or increase regularization as signs of overtrain-
ing starts to occur. The use of nonconvergent methods is based on the knowledge that
gradient descent methods tend to converge slowly close to the minimum and that over-
training is likely to happen if training goes on for too long. As the objective of the
learning algorithm is not to minimize the error on the training set, but to minimize the
error on previously unseen data one can argue that convergence is not as important in
a learning problem as it is in an ordinary optimization task. What matters is that the
algorithm has learned as much from the training set as can be expected to generalize
well to new data. Experiments with early stopping based on a 2% probe set did however
not result in any better results than had already been achieved without it.



Chapter 7

Hyperparameter Optimization

7.1 Hyperparameter Over-fitting

When optimizing the algorithm to produce as good results as possible there are many
options to evaluate. First there is the choice of which model to use, then there is the
choice of optimization algorithm. If one chooses to use an SGD method one may have to
decide whether it is better to shuffle the data to avoid imposing structure by the update
scheme or if it is better to sort the ratings by their timestamps to use that structure to
weigh the recent ratings higher. You also have to select which regularization method to
use and how learning rates are chosen. If you decide to go with the SDLM method you
have to set values for the hyperparameters η0, γ and λ and so on. Combining the different
approaches there are endless ways of configuring the optimization algorithm and model.
To choose between many different hypotheses you need to be careful, as you may end up
selecting an approach that outperformed the others purely by chance. This is another
form of overfitting that is sometimes referred to as hyperparameter overfitting. Hyper-
parameter overfitting may occur if many different methods and hyperparameter settings
are tested at once. A good method to reduce the risk of hyperparameter overfitting is
to use cross validation.

7.2 Data Splitting and Cross Validation

As previously mentioned, the data sets are divided into three parts: training data, testing
data and validation data. The training data, which is available during training, and the
testing data, on which the final results are evaluated, are self-explanatory. The validation
data set is used as an intermediary data set to avoid tuning the learning algorithm to the
testing data. The procedure is to test all the algorithms and hyperparameter settings of
interest by training them on the training data. The resulting models are then validated
on the validation data to see which settings performed best. Once it has been settled
which model gives the best results this model is evaluated on the test set to produce
results that measure how well the model can be expected to generalize to previously
unseen data.

It is important to maintain a good data hygiene and only take results on the validation
data into account when deciding which set of parameters to evaluate on the testing data.
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If testing data results have been used, consciously or unconsciously as a deciding factor
for which method to use the results may be invalid due to fitting of the testing data. For
this reason many machine learning competitions withhold testing data until all contest
entries are submitted.

7.3 The Nelder-Mead Simplex Method

Having settled for a model to test and an optimization method there is the problem of
setting the regularization cost λ, or more generally, different λθ for different parameter
types. As the function evaluations, consisting of a full training session, are very ex-
pensive, a multidimensional grid search is not viable. A smarter method to search the
hyperparameter space is the Nelder-Mead simplex method [21]. The Nelder-Mead Sim-
plex method, see algorithm 2, is a derivative free optimization method for unconstrained
problems that should not be confused with Dantzig’s simplex method. It starts out with
an initial guess around which it sets up a non-degenerate simplex, then it proceeds by
evaluating the function value at the vertices of the simplex. Based on the function val-
ues, in this case the RMSE on the validation set after being trained with the proposed
hyperparameters, the simplex is morphed according to a set of rules. First it attempts
to reflect the vertex corresponding to the worst function value through the center of
gravity of the rest of the simplex. If that seems to be a good search direction, it may
attempt to expand the simplex to take larger steps in that direction. If, on the other
hand, reflecting does not improve the function value, it may be that the optimal value
is within the simplex, in which case the whole simplex is contracted and the process is
repeated.

7.4 Optimizing Regularization costs for the Bias Models

Fixing the global learning rate η0 in (4.9) to 0.3 and the number of epochs to 20, as in
section 5.2, the Nelder-Mead method was used to find good values of the regularization
parameters λbu and λbi for the Movielens data. The starting point was chosen as λbu =
λbi = 10−5. As the hyperparameters may span over several orders of magnitude the
search was conducted on a logarithmic grid as proposed by [15]. This procedure resulted
in suggested hyperparameters λbu = 4.03 · 10−5 and λbi = 1.31 · 10−5 and resulted in an
RMSE on the test set of 0.9615 which is slightly better than without regularization.

Dataset Model RMSE Benchmark

Movielens Bias (unregularized) 0.9647 -
Movielens Bias (regularized) 0.9615 0.9656

Changing the initialisation points for the Nelder-Mead solver either ended up with similar
hyperparameter settings or got stuck in the somewhat flat area where regularization is
too low to differentiate the solution from the unregularized model.

Performing the same procedure for the Yahoo! Music data with a learning rate of 2.0
and three epochs of training results in an RMSE of 28.1886 when the regularization
costs are λbu = 6.67 · 10−9 and λbi = 7.43 · 10−11 respectively.
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Dataset Model RMSE Benchmark

Yahoo! Bias (unregularized) 28.6588 -
Yahoo! Bias (regularized) 28.1886 26.8561

The small difference between the regularized bias models and the unregularized bias
models suggests that overfitting was not a major concern for the basic bias models
considered so far. It may even be so that the models are underfitting the data and that
a more complex model is needed to properly capture the structure in the data.

Input: x0: initial point in Rn, f : function of n variables
Output: xopt: local optimum of f
Set up initial non-degenerate simplex S around x0
while 1 do

xm ← arg minS f(x)
xM ← arg maxS f(x)
if f(xM )− f(xm) < tol then

Return xm
end
xg ← 0
for x in S not xM do

xg ← xg + x
n

end
xr ← xg + (xg − xM )
if f(xm) < f(xr) < f(xM ) then

xM ← xr
else

if f(xr) < f(xm) then
xe ← xg + 2(xr − xg)
if f(xe) < f(xr) then

xM ← xe
else

xM ← xr
end

else
xc ← xg + 0.5(xr − xg)
if f(xc) < f(xM ) then

xM ← xc
else

for x in S do
x← 0.5(x− xm)

end

end

end

end

end
Return xm

Algorithm 2: The Nelder-Mead simplex method



Chapter 8

Personalization Model

8.1 Limitations of the Bias Model

The linear regression models used in past chapters have a serious limitation. That
limitation is that every user would get the same ordering of the items with the only
difference being that the ratings are shifted by their user bias. This means that every
user would get the same recommended items. There is no notion of personalization in
the models; the user bias and mean estimate only change the predicted ratings to reduce
the RMSE, but does not result in any better recommendations. As the goal is to be able
to provide relevant ratings to all users, rather than merely generating a list of the most
popular tracks, the model needs to be improved to capture the user-item interaction.

8.2 Matrix Decomposition Models

One way to model the user-item interaction is to assume that each user can be associated
with a number of preferences, and each item with a number of features. How well the item
matches the users preferences is then some non-linear function of the user preferences and
the items features. Matrix factorization models represent the user and item preferences
as vectors in Rd and use the inner product

r̂ui = pTuqi (8.1)

between the user preference vector, pu, and the item feature vector, qi, to estimate
how the user-item matching affects the users rating for the item. An interpretation is
that, since pTuqi = ‖pu‖‖qi‖ cos(pu, qi), the interaction can be understood by noting
that users will be predicted to like the items the best when the angle between their
preference vectors and the items feature vectors are small. Further, the magnitude of
the feature vectors describe how much the preference matching contributes to the rating
for that specific user or item. A user with a broad taste in music that uses a narrow
interval of the rating scale would as such have a preference vector of low magnitude, while
a user with a very specific music taste would be characterised by a preference vector of
large magnitude. The favourite songs of the specific user would tend to have feature
vectors pointing in a similar direction in feature space as the user’s preference vector. In
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the article by [15], matrix factorization combined with the an extensive modelling of bias
terms is used. If we take the bias modelling from chapter 5 and add inner product terms
(8.1) we get a biased matrix factorization model for which the ratings are estimated as

r̂ui = µ+ bu + bi + pTuqi. (8.2)

8.3 Updating the Nonlinear Parameters

Consider the single feature model

r̂ui = puqi (8.3)

representing each rating as a product of two scalars. Differentiating the cost function
(3.2) with respect to pu using this very simple nonlinear model gives us

∂J

∂pu
= − 1

m

I∑
i

Mui(rui − r̂ui)
∂r̂ui
∂pu

= − 1

m

I∑
i

Mui(qieui), (8.4)

which differs from the linear case only in that the qi in general are different for each
item encountered in the sum. The summation over users not using the parameter pu is
also omitted. (8.4) gives us the SGD update rule

pu(k + 1) = pu(k) + ηpu
1

m
qi(k)(rui − pu(k)qi(k)). (8.5)

The important thing to note here is that the values of the item features will also be
updated over time in an analogous fashion. This means that the learning will have
nonlinear dynamics. One effect of the nonlinear dynamics is that it is much harder to
set an upper bound on the learning rate with (4.7) as the stability when updating pu
depends on the values of qi and the stability when updating qi depends on the values of
pu.

The update (8.5) can be rewritten as

pu(k + 1) =

(
1− ηpu

1

m
q2i (k)

)
pu(k) + ηpu

1

m
qi(k)rui (8.6)

which highlights how the stability of the updates for pu depends on the values of qi it
encounters. That is, if q2i (k) is large the stability of the updates of pu gets worse. For a
given learning rate this constrains the parameters pu and qi to a rectangular area outside
which the updates may be unstable. While the estimates are the same if pu = 1, qi = 1
or pu = 1/1000, qi = 1000 the latter will be more likely to cause instability. Regularizing
the cost function to make sure solutions with smaller norms are preferred prevents one
parameter from growing indefinitely while the other one shrinks.
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8.4 Stochastic Diagonal Levenberg-Marquardt for Nonlin-
ear Regression

The stochastic diagonal Levenberg-Marquardt method proved to offer a good way of
setting the learning rates for linear regression with the basic bias model. It would be
desirable to use the same approach for training the nonlinear matrix factorization model
on the residuals from the bias model. The SDLM method uses the curvature of the cost
function (4.9). Using the single feature model (8.3) as in (8.4) and taking the second
derivative with respect to pu we get

∂2J

∂p2u
=

1

m

I∑
i

Muiq
2
i (k), (8.7)

which is similar to (4.10) in form. There is however a very important difference between
the linear case and the nonlinear case. The difference is that in the linear case the
curvature, and, by (4.9), also the learning rate

ηpu =
η0

1
m

∑I
i Muiq2i (k) + γ2

(8.8)

is dependant on the current values of the parameters.

These updates makes sure that the preference vectors change more slowly for users
that encounter many items with large feature vectors. However, this does not fully
compensate for the factor q2i (k) in (8.6) and the stability may be orders of magnitude
worse than for the corresponding update of a linear model in terms of η0. A problem that
arises from the dependence between learning rates and parameters is that the learning
rates have to be recomputed often. Evaluating the sum in (8.8) every time pu is updated
leads to a time complexity that we can not afford, especially so if the purpose was to
save time and speed up calculations. The alternative of keeping all learning rates in
memory and updating the ones that are affected at every update is not much better as
it leads to both increased time complexity and increases memory demands by a large
amount. It should however not be necessary to use the exact values of the learning rates
all the time. In [10] it is suggested to use a running estimate of (8.7), in this case that
would correspond to having a running average of the squared magnitude of the item
preference values for items encountered during training for each user. This approach
makes sure that memory and time complexity stays in the same order of magnitude,
the drawback is that it comes at the cost of another hyperparameter to tune and more
complex dynamics of the optimization algorithm.

One such adaptive scheme gives each user an additional set of hyperparameters for
keeping track of the estimates of the mean square feature, q̂2u(k), for each dimension.
The learning rate (8.8) can then be rewritten as

ηpu(k) =
η0

1
mNuq̂2u(k) + γ2

(8.9)

whereas q̂u(k)2 is updated after each example as
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q̂2u(k + 1) = (1− αq)q̂2u(k) + αqq
2
i . (8.10)

The adaption rate αq can be set to e.g. 1
Nu

analogous to a somewhat aggressive SDLM
update that coincides with (8.8) in the case when the number of ratings made by the
user, Nu, is equal to one. As q̂2u(k) in the denominator of (8.9) changes over time it is
important to make sure γ2 is nonzero as the denominator may otherwise become small
and cause instability.

8.5 Stability and Learning Rate

As has been mentioned previously, there are situations when the stability of the nonlinear
updates behaves differently than the stability of linear updates. (8.6) shows that an
estimated user preference can become unstable if the corresponding item features are
large, analogously estimated item features may become unstable if the estimated user
preferences are large. The stability region is larger for lower learning rates, meaning that,
unlike the linear case, the learning rate now affects the solutions that are attainable.
How large the estimated values of the features will grow is hard to predict as the learning
process is stochastic and there are multiple parameter settings that result in identical
models. Regularization can make sure that more well-behaved models are preferred at
convergence. However, due to the random initialization and the noisy training procedure
there is still risk that the parameters may drift into unstable territory during training. If
an adaptive learning rate scheme is used such as the SDLM method (8.9) the dynamics
gets even more complex as the learning rates may span several orders of magnitude and
will also exhibit nonlinear stochastic dynamics.

Experimentally it is found that the SDLM method does indeed go unstable easily. Using
a single feature model r̂ui = puqi for the Movielens data it is found that parameters will
blow up at a global learning rate η0 as low as 0.03 when the stabilization parameter
γ2 is close to zero. That is a factor 60 lower than what would have been stable for a
linear model on the same dataset. In fact, it is not that surprising the stability is bad
when the stabilization parameter is low as the denominator of (8.9) may become close
to zero. By increasing the stabilization hyperparameter γ2, the stability is improved,
but the allowable learning rates are more limited than for the linear model.

As the model is expanded to a more useful size with a 50-dimensional feature space the
stability drops by even more as 100 parameters that may go unstable individually or in
combination as they are updated together.

One might get the impression that the low threshold on the value of η0 should mean
that it takes lots of epochs to have any effect at all on the initial conditions. But in the
previous analysis of forgetting factors the learning progressed at an even rate with the
same weight ratio between the old estimate and the new information at each update. In
this case the forgetting rate (4.12) corresponds to the average case per update, but since
it is the geometric mean that is of interest and the geometric mean is heavily influenced
by its lowest values - being the cases when the learning rate is higher than expected.
This means that the algorithm will tend to learn faster than expected from the analysis
of linear regression and may indeed learn fast enough despite a low value of η0 in (8.9).
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It would have been desirable to find a good rule for setting the learning rates such that
stability and convergence rate could be somewhat accurately predicted as in the case
for linear regression. But unfortunately the learning rate analysis is a lot more complex
in the nonlinear case. For matrix factorization with the SDLM method, what can be
said is that the global learning rate η0 should be lower than for a linear parameter
and the stabilization parameter γ2 should be large enough to prevent the denominator
to blow up. Aside of that, the best method seems to be to perform trial and error
to find a learning rate that is empirically stable, preferably with some margin, yet is
high enough to make sure the cost function decreases at an acceptable rate. When
evaluating empirical stability, it is important to let the training run for many epochs
while monitoring the cost function on the training set as sometimes the errors on the
unstable subset of the training data may grow so slowly that the effects aren’t noticeable
until the error has converged for the stable subset of the training data. This is one of
the problems with instability in highly dimensional systems; if training is stopped early
there may not be any sign that a small subset of the parameters is misbehaving and
deteriorates the results.

Due to the tight stability constraints pushing down the acceptable learning rates for
matrix factorization, a matrix factorization model may require a larger amount of epochs
than a bias model, which is problematic as the model in itself is more expensive to
train. This may even be a reason to avoid the SDLM method for unbalanced nonlinear
problems as the spread of learning rates may be very large. The large spread of learning
rates used by the SDLM method is what makes sure that parameters converge at the
same rate, but if stability puts an upper bound on the learning rates this also means
that all parameters are limited by the convergence rate of the parameters for which the
least data is available. If there is a large difference between how often parameters are
updated and training is very expensive, it may be worth limiting the spread by either
using a large value of γ2 in the SDLM method or by using a more simple method such
as the SGD as it allows a higher learning rate to be set for the densely rated parameters
without risking the stability of the sparsely rated parameters.

8.6 Hyperparameter Optimization

In contrast to the linear case where regularization made little difference in the results the
effect of regularization is much more pronounced when the model complexity is higher.
If the feature space is large there may be enough parameters to capture not only the
underlying structure, but also most of the noise specific to the data set which degrades
the results greatly. Without regularization the results for the movielens dataset and a 50
dimensional matrix model trained for 20 epochs on the residuals from a bias model with
an SDLM method using η0 = 0.02 for the matrix factorization is an RMSE of 0.9914,
which is actually even worse than the plain bias model. If more epochs are added
the overfitting of the unregularized matrix factorization gets even more pronounced
as there is less implicit regularization arising from the remaining bias of the initial
condition. Luckily the code could be run fast enough on the Movielens data set to run
the Nelder-Mead simplex optimization to find a good set of regularization costs. With
regularization it was found that a higher learning rate could be used, such as η0 = 0.3
without causing instability. Using that higher learning rate and regularization costs
selected by the Nelder-Mead simplex method the RMSE could be reduced to 0.9346. An
important thing to note is that the Nelder-Mead simplex method will have a hard time
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converging unless the seed is fixed at each iteration such that the feature vectors are
initialised the same way each time. If the seeds are different the function evaluations
will give inconsistent values during the search effectively preventing the algorithm from
terminating as even two evaluations at the same point may yield different values. Based
on [15] the feature vectors were initialized to small positive uniformly distributed values
using the same seed each time and the Nelder-Mead optimization converged in 121
function evaluations.

The Yahoo! Music data set proved to be much harder to work with. First of all it is
3,000 times larger. The average user has roughly three times more ratings, but the most
sparsely rating users have just as few ratings as in the Movielens data set meaning that
the learning rates are just as limited. A learning rate defined by η0 = 0.3 seemed to be
about as high as could be allowed. Using this learning rate and training for three epochs
the results had barely had the time to improve compared to the results from the bias
model. The alternative was to increase the number of epochs for the matrix factorization
despite the increased running time of the algorithm. Increasing the number of epochs for
the matrix factorization to 20 increased the running time of the algorithm to 14 hours,
which made Nelder-Mead optimization too expensive to perform as its expected time
to convergence would be a few months. Instead I decided to first set the regularization
costs for the matrix model manually to 10−7 as it was on a scale that seemed to be on
the somewhat strict side of the reasonable range based on a steady state argument (6.5)
had it been a linear parameter. From this position I tested searching nearby grid points
and managed to achieve an RMSE of 25.0878 when the regularization costs were 10−6.

8.7 Experimental Results

To get a better overview of how the results improve as more complex models are employed
and tuned, see the table below for a summary of the RMSE on the Movielens data. As
a benchmark, results from [16] that are using the same models on the same data set are
used.

Dataset Model RMSE Benchmark

Movielens Mean 1.1238 1.1238
Movielens Bias 0.9615 0.9656
Movielens Matrix Factorization 0.9346 0.9475

The results on the Movielens data set compare well with the benchmark results indicating
that the method is working as it should. There is even some improvement for the matrix
factorization results that are responsible for the personalization of the recommendation
system. Most of the variance is explained by the basic bias model which shows how
important the biases, arising from different item popularities and different users rating
patterns, are to capture in order to make good predictions.

The Yahoo! Music data was significantly harder to work with, as a baseline the results
by [15] are presented below.

Dataset Model RMSE Benchmark

Yahoo! Mean 38.2940 38.0617
Yahoo! Bias 28.1886 26.8561
Yahoo! Personalization 25.0878 22.9533
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Here the results are far from the benchmark. Now there are differences in that their
personalization model also used meta data such as time stamps and genre information.
Also their mean estimator providing better results than the true mean also suggests that
the learning rates may have been tuned to benefit from the arbitrary numbering of the
users, a form of hyperparameter overfitting. However, that is not enough to explain the
different results. Other groups that have worked with the same data and specified that
they did shuffle the data such as [22] have attained results that are still far better than
the ones that I managed to achieve. For a plain matrix factorization model [22] attained
an RMSE of 23.92 on the test set using an ordinary SGD method trained for 30 epochs.

There are a few differences in how the models were trained. We used the SDLM method,
which means that the parameters with a low number of ratings in the data sets can
attain a lower bias, but also a higher variance. To compensate for that we scaled
our regularization updates (6.3) to regularize these parameters harder. In comparison
a plain SGD without scaling the regularization updates may achieve regularization of
these parameters due to a limited amount of training, giving an effect similar to early
stopping. This difference in how the models are trained and regularized may well be
part of the explanation why the models differed in performance.

It could also be that, since our implementation was taking too much time to run, our
experiments were limited to a small number of epochs and very little hyperparameter
optimization. In fact, the learning algorithm used to run much slower and without
extensive code optimization it would have been impossible to perform any experiments
at all on the Yahoo! Music data set.



Chapter 9

Implementation Aspects

9.1 Implementation Aspects

Many of the difficulties in working with recommender systems arise from the scale of
the data sets used. While the Movielens 100k data set is somewhat straightforward to
work with on a modern computer, the Yahoo! Music data set proved to be a challenge
computationally. At one point a computation using a plain bias model for the Yahoo!
Music data set performed 30 epochs in 183 hours on an Intel 2.67 GHz Core i5 machine
with 8 GB RAM. Although that slow running simulation was partially caused by forget-
ting to turn off the interactive debugger, it was still obvious that improvements needed
to be made, especially if the Nelder-Mead method was to even be considered.

An important step in making the training more efficient is to analyse the mechanics of
the learning algorithm, see chapter 4, as it provides the means to set the right learning
rate from the start. This greatly reduces the number of experiments that have to be
performed and also means that the need for many epochs of training to ensure conver-
gence for linear models is reduced. With a better choice of learning rate, the number
of epochs needed can be reduced by a factor 10 and still yield better results than what
could be attained after weeks of tuning the learning rate experimentally.

However, as tuning the regularization parameters with the Nelder-Mead simplex method
requires hundreds of function evaluations and the matrix updates makes training much
more time consuming, it is crucial to also speed up the code as well to make sure all
needed experiments can be performed on time. To understand how changes in the code
can result in faster execution speed we need to discuss the Python programming language
a little bit more in depth.

9.2 Python Code

Python is a high level language, that uses dynamic typing and was designed with read-
ability in mind. This means Python code is fast to write and generally quite easy to
understand. As an example, consider the code example in listing 1 for predicting how a
given user would rate a given item.

32
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1 def estimate_rating(user, item, data):

2 estimate = data.bias + user.bias + item.bias

3 if MATRIX_MODEL:

4 estimate += numpy.dot(user.features.T,item.features)

5 return estimate

Listing 1: A basic Python implementation of code to generate a prediction of how a
user would rate an item.

The code is quite readable, the estimated rating is calculated by summing up the bias
terms arising from the data, the specific user and the specific item. If a matrix factor-
ization model is used the inner product between the feature vectors is calculated using
a function called dot that is imported from the numeric Python package NumPy. The
inner product is added to estimate and the result is returned to the calling function.

The code is however not optimized for speed or memory and even the innocent looking
second row translates to many rows of low level code. First, the program must verify
that the Python objects data and user have attributes called bias and increase those
attributes’ reference counts, then it adds those variables together, creates a reference to
the sum and clears the reference count of the bias terms before repeating the process
for the item bias term and creating a reference to the new result. For most of those
intermediary operations there is also an associated exception handler that makes sure
exceptions are thrown if any of the checks fail.

Many of these operations are not really necessary for the code to work as intended
but the program will perform these checks anyway in case the programmer has made a
mistake. Not having to write all this low level code is one of the reasons Python code is
highly readable and easy to write. Not having the control to turn off the checks that are
unnecessary and optimize the memory allocations is a reason that a low level program
written in for example C may perform much faster. That being said, there are ways to
speed up Python programs while maintaining many of Python’s strong points.

9.3 Profiling Python Code

When trying to speed up code there is one principle that should always be followed
and that is to never optimize without profiling. Profiling is done with a profiler, which
is a tool that you run together with the code to learn where in the code most of the
execution time is spent. Without a profiler you can not tell which parts of the program
are worth trying to optimize and whether the changes you make to the code have the
desired effect. Most Python installs include a profiling program called cProfile. The
easiest way to profile a program named recommender.py is to set up a script such as
the one in listing 2, which imports the profiler, cProfile, and a module called pstats that
gives better output from the profiler. The program is then run with the profiler attached
and the 10 most important posts are printed to terminal.
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1 import cProfile

2 import pstats

3 import recommender

4

5 cProfile.runctx("recommender.run()" , globals(), locals(), "Profile.prof" )

6 s = pstats.Stats("Profile.prof" )

7 s.strip_dirs().sort_stats("time" ).print_stats(10)

Listing 2: A simple script for running the Python program recommender with a
profiling tool and printing the top ten operations that the program spent time on.

9.3.1 Profiling Results

By profiling my code we can tell that most of the time is spent doing simple arithmetic
operations. For a simple experiment including setup, training a basic bias model one
epoch and then validating the results it is found that for the early implementation in
listing 1 45 % of the time is spent updating bias terms, 25 % is spent estimating ratings
and 20 % is spent calculating the RMSE at the end. Of the remaining 10 % about half
is spent in the main loop performing input/output and the remainder is spent at setup.

Establishing which operations are expensive in turn means that we can prioritize which
parts of the code to scan for possible improvements. Rather than spending a day trying
to optimize how data is read from the file we can focus on the parameter updates and
spot minor inefficiencies such as unnecessary explicit type casts which on their own
costed more than every file access costed in total.

9.4 Code Optimization

Having established which operations were costly means that some low hanging fruit can
be collected. Loops utilising lists of indices can be replaced by loops using iterators,
explicit type casts can be removed and some of the global variables can be replaced
by locals. It is also good practice to refactor the code to get rid of lines of code that
had outlived their usefulness. However, one reason the code is slow is that it uses
up almost all available memory on the computer it was being run on. To reduce the
memory footprint we can change the data structures used for storing parameters. Rather
than lists of user objects with encapsulated parameter values, these parameter values
themselves being Python objects with their own memory overhead, we can use NumPy
arrays for parameter storage. NumPy offers several highly optimized linear algebra
routines but the main reason we would like to use it is that it offers improved memory
efficiency as the arrays for many purposes are treated as one object containing many
values instead of many small objects with individual memory overhead. While working
on memory efficiency we can also change the file format of data files to HDF5 files while
only maintaining the data fields that are actually used. This can be achieved with the
pytables module and reduces the disc space required by the data files from 8 GB down
to 2.4 GB.

Making the application more memory efficient means that we no longer have to struggle
against insufficient disk space and memory errors. The code would also runs more
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1 import numpy

2 BIAS = 3 # index of bias terms in user and item.

3 MATRIX_MODEL = 1

4 estimate_rating(mean, user, item):

5 est = mean + user[BIAS] + item[BIAS]

6 if MATRIX_MODEL:

7 est += numpy.dot(user[FEATURE_1:FEATURE_END],

8 item[FEATURE_1:FEATURE_END].T)

9 return est

Listing 3: Another Python implementation of code for estimating a rating. Storing
all parameters in a NumPy array makes the code more memory efficient which can be

very important if the computer does not have much RAM.

smoothly, especially long running simulations on the Yahoo! Music data set becomes
much faster with these modifications. Now that it is possible to run the code with
matrix factorization without getting memory errors we can profile again to measure
which operations are the largest time sinks when the full model is used.

Method time/call (Python) time/epoch

estimate rating 4 µs 17 m
bias update 5.3 µs 24 m
matrix update 60 µs 4 h 10 m

These three methods amounted to over 90 % of the execution time, and it would be of
great value if these methods could be made even faster. The next step in the optimization
procedure is then to see if these methods can be made faster by using a tool to generate
and run optimized C code.

9.5 Cython

Cython is a programming language that is intended to make it easy for a Python pro-
grammer to write extension modules in C. With Cython you can take a piece of Python
code and compile it to C code. It also allows the programmer to add static type dec-
larations and decorators telling the compiler that it does not, for instance, need to
perform type checking inside functions that the programmer has provided declarations
for. This means that you can keep the code structure from your Python program, the
only difference is that you have to compile the code before running it.

If there is a function that you would like to optimize, such as the code for estimating the
rating of a user, you can take that code and compile it with the cython -a switch. This
creates an HTML file where lines are color coded depending on how well they translated
into C code. Lines with a large overhead are coloured bright yellow, and lines with low
or no overhead are light yellow or without overlay. Each line of Cython code in the
HTML file can be clicked to examine the generated C code. If there for instance are
many type checks in the C code for variables with known type you can speed up the
code by providing type declarations. A basic Cython version of the code for estimating
a rating is seen in listing 4.



Computational Aspects 36

1 import numpy

2 cimport numpy

3 ctypedef numpy.float64_t DTYPE_t

4 DEF BIAS = 3 # index of bias terms in user and item.

5 DEF MATRIX_MODEL = 1

6 cdef float estimate_rating(

7 float mean,

8 numpy.ndarray[DTYPE_t, ndim=1] user,

9 numpy.ndarray[DTYPE_t, ndim=1] item

10 ):

11 cdef float est = mean + user[BIAS] + item[BIAS]

12 IF MATRIX_MODEL:

13 est += numpy.dot(user[FEATURE_1:FEATURE_END],

14 item[FEATURE_1:FEATURE_END].T)

15 return est

Listing 4: A Cythonized version of the Python code for estimating a rating. Cython
allows you to use compiler directives and static type declarations to make the code run

faster.

The code example in listing 4 highlights some of the features of Cython. The first
difference lies in the cimport of NumPy which allows C typing for NumPy arrays. Next
is a typedef which allows types to be predefined in case you need to change the variable
type at a later stage. There are also precompiler instructions in the form of IF and
DEF, which are evaluated by the precompiler and inserts the correct code before the
code is compiled, meaning that the IF is never evaluated in the loop. This also means
that you do no longer have to choose between a global variable and a magic number,
which makes it easier to write good code.

The cdef at the function declaration means that the function calls from within C will
have reduced overhead. Most important are the type declarations of the local variables
mean, user, item and est that tells the final C code that it will not have to bother with
type checks for the typed variables.

Looking at the annotated HTML still shows most of the lines in yellow, but running
the profiler shows that the method is much faster already. The same procedure is done
for the bias updates with similar results. The generated C code tells us that there is
still some overhead resulting from checking that the accessed array indices are legal and
some overhead as the function is initialised and returns, but overall the improvements
are substantial.

The matrix updates that are responsible for roughly 75 % of the running time of the
code, counting setup and evaluation, can also be made substantially faster by providing
type declarations. Still, there is a lot more to do to improve the speed of this method.
One thing to note is that the C code ends up performing many expensive slicing opera-
tions and function calls to Python functions in the NumPy library. While the NumPy
functions are highly optimized for large linear algebra problems, the inner products in
question are comparably small and a simple for loop may be expected to translate better
into C code as calls to Python functions from C are expensive. However, this leads to
lots of array accesses which comes at the price of many checks of the array indices to
make sure they are positive and within the range of the arrays.
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In order to speed up array access we can use decorators. Decorators are instructions
to the compiler that for example tells the compiler that all indices of an array that are
accessed are legal to access which means no code has to be provided to check for invalid
indices. This can speed up array operations significantly, but if the programmer makes
a mistake it can results in serious errors as the code may attempt to access memory that
should not be available to it. The use of decorators is demonstrated in listing 5 which
runs in only 0.92 µs per call. Checking the C code it is not very surprising that this
code runs faster. The C code generated for the inner product was reduced from 30 rows
of C code, including several expensive calls to Python functions, to five rows of pure C
code.

1 import numpy

2 cimport numpy

3 ctypedef numpy.float64_t DTYPE_t

4 DEF BIAS = 3 # index of bias terms in user and item.

5 DEF MATRIX_MODEL = 1

6

7 @cython.boundscheck(False)

8 @cython.wraparound(False)

9 cdef float estimate_rating(

10 float mean,

11 numpy.ndarray[DTYPE_t, ndim=1] user,

12 numpy.ndarray[DTYPE_t, ndim=1] item

13 ):

14 cdef float est = mean + user[BIAS] + item[BIAS]

15 IF MATRIX_MODEL:

16 for k in range(PVEC_START, PVEC_STOP):

17 est += user[k]*item[k]

18 return est

Listing 5: An optimized version of the Cython code for estimating a rating. By
replacing the function call to numpy.dot with a for loop and adding decorators the code

could be made significantly faster.

With this information the matrix factorization can be improved by using a for loop and
adding decorators which brought its execution time down to 4.0µs per call. A summary
of the performance gains for the methods that is attained for some of the most important
methods can be seen below.

Method Time/call (Python) Time/call (Cython) Speed up

estimate rating 4 µs 0.9 µs 4.4 ×
bias update 5.3 µs 0.8 µs 7 ×
matrix update 60 µs 4 µs 15 ×

With this level of code optimization the training of a 50 dimensional matrix factorization
model for 20 epochs on the Movielens data finishes in less than 20 seconds. Training
such a model on the much larger Yahoo! Music data set for three epochs finishes in
roughly three hours, which is still somewhat slow as it would have been desirable to use
more epochs. But if the Nelder-Mead method is to be used it requires dozens of function
evaluations to converge which means it’s necessary to keep execution times down such
that the hyperparameter optimization can be expected to finish in time. At this stage
of optimization the tight loops are running almost pure C code except some Python
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overhead when entering or leaving a function. The function that is currently using most
of the execution time is the update manager that reads data from file and processes it
for the various update methods. Optimizing this method is harder as it relies on several
Python packages that would require much work to replace.

9.6 Scaling it up?

The Yahoo! Music data set is a large data set, but there are much larger data sets out
there. The Million Song Dataset [23] for example is slightly larger in amount of songs,
but it also comes packed with tons of metadata that makes it much bigger. That data set
comes in a 300 GB HDF5 file which is roughly 40 times the disk size of the Yahoo! Music
data set before compression. Commercial streaming services face even bigger challenges.
Not only are the amounts of users and items typically much bigger, Spotify for example
has over 24 million users and about as many tracks. This means that a commercial scale
algorithm has to be able to process data sets more than a hundred times larger than what
we’ve been doing in this thesis. Commercial recommendation systems may also need to
be able to produce recommendations in real time and although many computations can
be done in advance it still puts additional demands on the system.

To scale up the algorithms used in this thesis for a problem of that size would require
a lot more computing power and memory. Realistically a distributed approach would
probably need to be used which means that the algorithms used would have to be re-
placed by versions that are better suited for a parallel implementation. In their standard
forms neither stochastic gradient descent nor Nelder-Mead search are suited for paral-
lelism but there are modified versions that use some measure of parallelism. See for
example [24] for a parallel implementation of the Nelder-Mead method, [25] for a paral-
lel version of the stochastic gradient descent method and [12] for a discussion of higher
order mini-batch methods that scale well and can be distributed to multiple cores or
GPUs.



Chapter 10

Summary and Conclusions

10.1 Summary

In this thesis the problem of predicting people’s preferences for different media items
based on historical ratings of such items has been studied. The methods studied are the
stochastic gradient descent method and the stochastic diagonal Levenberg-Marquardt
method both minimizing a cost function (3.1) on the whole ensemble of training data by
only processing one training example at a time which makes them very scalable. These
stochastic descent methods were known to require much manual tuning to get working
at their full potential which is problematic as experiments can be very computationally
demanding for large data sets.

It was found that the learning rates could be associated with the attenuation of initial
conditions and the stability of the parameter estimates. This information can be used to
set the learning rate with much less need for trial and error, which can save many hours of
work. It is found that the stochastic diagonal Levenberg-Marquardt method distributes
the learning rates of the parameters such that the attenuation of the initial conditions
is the same for all parameters. For linear regression the stability does not depend on
the parameter values, which means that the learning rates and number of epochs can
be tuned to match given specifications on attenuation and stability. Experimentally it
was found that the algorithm behaved as expected for two different data sets of vastly
different scales, which indicates that the results should most probably generalize well to
similar problems in linear regression.

For the nonlinear regression that is needed to capture the interaction between users and
items it was found to be much harder to analyse stability and attenuation. This is be-
cause the evolution of parameter values depends on current parameter values. What can
be concluded is that the optimization process will in general be unstable for some param-
eter values. This in combination with the nonlinear stochastic evolution of parameter
values makes it very hard to predict whether the algorithm will remain stable or not.
Experimentally it was found that the learning rates had to be set to lower values than
for the corresponding linear models to remain stable when using the SDLM method,
which in turn lead to the demand for long running simulations to see any improvements
over the pure bias models.
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While the basic bias models had fairly low complexity relative to the large amount of
training data available, the matrix factorization models have a very high complexity. For
the Movielens data the matrix factorization model with 50 dimensions have more model
parameters than there are training examples in the data set. To prevent overfitting
the cost function was extended by adding penalty terms proportional to the squared
magnitude of the model parameters. To ensure that the optimization procedure stayed
true to the selected cost function the regularization updates were scaled by the parameter
frequencies to avoid imposing a higher cost on frequently occurring parameters. While
many practitioners omit the rescaling of the regularization costs since it makes it harder
to control the stability of the learning algorithm, we stayed true to the cost function
to see what that would buy us in return. The values of the regularization parameters
were selected using the Nelder-Mead simplex method, which performs many function
evaluations to find good values of the regularizaion costs.

To afford the many function evaluations needed to optimize the regularization costs it
proved necessary to make the initial python code run faster. By profiling the code,
critical code segments could be identified and optimized using Cython. The speed gains
were attained by providing static type declarations, removing global variables, replacing
calls to python libraries with simple loops and adding decorators such that Cython could
generate optimized C code that could perform the tasks much faster than the original
Python code. While the original Python code had left much room for optimization
the final transition to Cython made the resulting code roughly one order of magnitude
faster, which was crucial in order to perform all the necessary experiments to debug the
code and generate results.

When it came to predicting a user’s ratings of movies in the Movielens 100k data set
the resulting predictions on the test set had an RMSE of 0.9346 which compares well
with available benchmark results [16]. For the much larger and sparser data set of music
ratings it proved much harder to get results that compared well with the available bench-
marks, the best that could be attained was 26.6859 which is quite far from the results
of [15] that managed to bring the RMSE down to 22.9533 using a matrix factorization
model. While the models for the Yahoo! music data set were not identical in that they
used a more extensive modelling of bias terms and made use of more metadata, even
their intermediary results using simpler models, such as the basic bias model or the
constant predictor, outperformed the corresponding intermediary results that we could
attain with our experiments. The intriguing results by [15] for the constant predictor
model that outperformed the true mean could be an indicator that their results suffers
from some amount of hyperparameter overfitting. More importantly, they had better
means of evaluating and comparing many different hyperparameter settings with many
epochs of training, which we could not, as our code despite the code optimization was
still too slow.

10.2 Further Studies

In any further studies involving large data sets we would recommend making it a pri-
ority to make the training procedure run fast enough to perform experiments of desired
precision at a low cost. As such it would be of interest to see how to best implement
algorithms for training recommender systems in a distributed environment. If the al-
gorithms can be made faster by adding more nodes to a cluster that would be a great
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benefit as it frees us of the time constraints imposed by how fast the training can be
performed on a single computer. If training was fast it could for example be used to
determine experimentally whether the the SGD method or the SDLM method gives best
results when the amount of epochs is allowed to be large. It would also be of interest
to see if the batch methods can handle a problem of this scale and how such a method
would compare in speed, ease of tuning and generalization power of the results.

It would also be of great value to find a method for learning of scaled nonlinear regression
problems that was less reliant on hyperparameter optimization. With such a method
one would not have to perform as many experiments which could save lots of time and
effort.



Bilaga A

Populärvetenskaplig
sammanfattning

Aldrig förut har film och musik varit s̊a lättillgänglig som idag. Strömningstjänster som
Spotify och musiknedladdningstjänster som iTunes och Amazon MP3 ger sina tillg̊ang
till över 20 miljoner l̊atar vardera. Med s̊a mycket tillgänglig musik är vi helt beroende
av rekommendationer för att hitta ny musik. Det finns helt enkelt för mycket musik för
att kunna lyssna igenom allt. Musikrekommendationer kan finnas i m̊anga skepnader -
fr̊an topplistan som spelas p̊a radio till tips fr̊an en kompis som hört ett bra band p̊a en
festival. De stora musiktjänsterna använder sig ofta av ett automatiserat system som ger
rekommendationer baserat p̊a den information de har om hur du och andra användare
brukar använda tjänsten. Är de automatiska rekommendationerna bra s̊a kan det leda
till fler köp och nöjdare kunder varför företagen lägger stor vikt vid att utveckla s̊a bra
rekommendationssystem som möjligt.

I detta examensarbete har en metod för att förutsäga vad en given användare tycker om
en given l̊at, artist eller genre baserat p̊a vad den satt för betyg p̊a den musik den lyssnat
p̊a hittills studerats. Metoden är en typ av övervakad inlärning vilket innebär att en dator
tränas p̊a en stor mängd användardata där vi redan vet vilket betyg användaren satt. Om
modellen förutsäger för höga betyg kan den d̊a justeras baserat p̊a denna träningsdata
s̊a att dess förutsägelser stämmer bättre överens med träningsdata. Eftersom en typisk
musiktjänst har miljontals användare finns det väldigt mycket data att tillg̊a. Därför
hade det varit väldigt tidskrävande att g̊a igenom all data innan n̊agon uppdatering av
modellen sker. Istället används ofta s̊a kallade stokastiska optimeringsmetoder där man
tar ett slumpmässigt utvalt träningsexempel i taget och uppdaterar modellen baserat
p̊a det exemplet istället. P̊a s̊a vis kan algoritmen hinna med miljontals uppdateringar
p̊a den tid som den annars bara hade hunnit med n̊agon enstaka. Var och en för sig
är uppdateringarna som är baserade p̊a ett enstaka exempel väldigt osäkra i jämförelse
med om alla exempel behandlats p̊a en g̊ang, men om tillräckligt m̊anga uppdateringar
görs tenderar osäkerheten att jämna ut sig med tiden.

När man använder den här typen av inlärningsalgoritmer m̊aste man göra en avvägning
hur mycket man ska uppdatera modellen för varje träningsexempel i förh̊allande till hur
mycket man vill beh̊alla av den modell man redan tagit fram. Ett aggressivt uppdate-
ringsschema innebär att modellen anpassar sig snabbt, men att den slutgiltiga modellen
blir mer osäker. Om man istället gör väldigt försiktiga uppdateringar av modellen blir
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modellsäkerheten större, men det behövs mer tid att träna upp den. Det som särskilt
studerats är en specifik metod för hur man väljer hur stora uppdateringar som ska göras
vid varje träningsexempel. Metoden innebär att de delar av modellen som det är sv̊art
att f̊a information om, till exempel en l̊at som väldigt f̊a användare lyssnar p̊a, uppda-
teras aggressivt när chansen väl ges. Modellen för populära l̊atar kan uppdateras mer
försiktigt d̊a det i regel finns mycket träningsdata för detta.

Det som vi kunde komma fram till är att den här typen av inlärningsschema är lätt att
anpassa för enklare modeller som beskriver hur olika användare generellt sett betygsätter
l̊atar och vilka betyg l̊atarna i allmänhet brukar f̊a. Däremot visade det sig vara avsevärt
sv̊arare att hitta en balans mellan snabbhet och tillförlitlighet när mer komplexa model-
ler som försöker f̊anga in information om användarnas mer specifika musiksmak och vilka
l̊atar som liknar varandra skulle tränas upp. Detta beror p̊a att den typ av modeller som
krävs för att f̊anga upp denna typ av mönster beter sig väldigt olika under olika stadier
av inlärningsprocessen, vilket i sin tur gör det sv̊art att anpassa ett inlärningsschema
som fungerar bra fr̊an början till slut. Det kan till exempel hända att den övre gräns för
hur aggressiv inlärning som g̊ar att använda ändras under inlärningens g̊ang. För att
kompensera för detta känslighet behövdes en försiktigare inlärningstakt användas rakt
igenom, vilket i sin tur ledde till att träningen blev väldigt tidskrävande. Detta är ett
problem om systemet ska kunna användas i praktiken eftersom ett rekommendations-
system inte bara m̊aste vara träffsäkert för att vara till nytta, det m̊aste ocks̊a kunna
köras snabbt i bakgrunden s̊a att de som använder systemet inte märker av alla tunga
beräkningar som ligger bakom varje rekommendation.
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