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Abstract

Orbit integration for three different assumed Intermediate-mass Black Hole (IMBH, defined as black
holes with mass MBH in the range 100M@   MBH   104M@) populations in the Milky Way for
10 Gyr has been performed. Upon collision with molecular clouds in the galactic disc, the relative
velocity between both objects has been measured and the luminosity resulting from the gas accretion
process onto the IMBH has been modeled. IMBHs moving on the very same orbits as today observed
globular cluster do not create X-Ray luminosities during molecular cloud crossings exceeding 1039 erg

s

with the exception of the disc-like orbit of NGC 6838. A population of 5.3 � 105 IMBHs, orbiting
on similar orbits as globular cluster do, create on average 1 observable X-Ray object within the
galactic disc at any given time. IMBHs orbiting within the galactic disc create high luminosities
up to 1043 erg

s
due to low relative velocities upon collisions. Assuming those disc-IMBHs have been

created in cores of massive star cluster during the lifetime of the Milky Way, the fraction f of
cluster creating IMBHs over all cluster capable of doing so has to be fA   0.35 (fB   0.018),
otherwise ULXs (Ultraluminous X-Ray sources, luminosity ¡ 1039 erg

s
) are predicted to be visible

at any given time, contradicting with observations. Index A refers to the model in which all cluster
with masses Mcluster ¡ 5 � 104M@ can create IMBHs, while model B assumes cluster have only to
obey Mcluster ¡ 2.5 � 103M@ to do so. In turn, given the different mass distributions within the
IMBH population assuming model A or B, not more than about 15000 (A) or 16000 (B) IMBHs
can be present today within the galactic disc. From the total number of IMBHs formed within star
cluster in the disc, 49 % (A) or 54 % (B) have already lost their host cluster due to disruption in
molecular cloud encounters. With the exception of NGC 6838, no globular cluster is expected to be
destroyed via molecular cloud collisions within 10 Gyr.
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Populärvetenskaplig sammanfattning

I detta projekt undersöks konsekvenserna av att anta förekomsten av Intermediate-mass black hole
(IMBH, definerade som svarta h̊al med massa, MBH , i intervallet 100M@   MBH   104M@)
i v̊ar galax. Medan stellar mass black holes (MBH   100M@) är lätta att upptäcka i X-Ray-
dubbelstjärnor, och supermassive-black holes (MBH ¡ 104M@) ligger i de flesta galaxers, centrum
är förekomsten av IMBHs fortfarande omtvistad. Om ett IMBH kolliderar med ett gasmoln, f̊angar
det upp en del av gasen vilket resulterar i observerbar röntgenstr̊alning. Antalet s̊adana händelser
och den resulterande ljusstyrkan hos röntgenstr̊alningen undersöks för tre olika IMBH populationer.
En sidofr̊aga som måste besvaras är om, de ännu inte är helt klarlagda, extremt ljusa objekten i
vissa andra galaxer, men inte v̊ar kan förklaras med IMBHs som kolliderar med gasmolm eller inte.
Den först undersökta IMBH-populationen gessamma banor som klotformiga stjärnhopar vilket är
en rimlig uppsättning av galaktiska banor och som inte är, som för de flesta av stjärnorna i Vinter-
gatan, begränsat till den galaktiska skivan och bara korsar den d̊a och d̊a. Detta gör det möjligt
att undersöka effekterna av IMBHs p̊a s̊adana icke-skivbanor. Men kollisioner med molekylmoln
sker endast i den galaktiska skivan; sannolikheten att träffa ett moln i en passage genom skivan i de
tätaste regionenerna är cirka 3%. Efter analysen av denna IMBH population kan slutsatsen dras, att
den ljusstyrka som skapas i s̊adana kollisioner är i samma storleksordning som typiska röntgenbinärer
inneh̊allande ett stellar mass black hole, vilket gör det sv̊art att skilja mellan de b̊ada fallen i ob-
servationer. För att förbättra statistiken och att övervinna den inneboende bristen av att endast
ha ett begränsat antal banor, har en andra, slumpmässig population skapats. Banorna hos denna
slumpmässiga population har liknande egenskaper som de klotformiga stjänhopparna, men varierar
i hg grad när det gäller lutningen med avseende p̊a skivan. Fr̊an resultaten av denna population kan
slutsatsen dras att i genomsnitt 5, 3 �105 IMBHs som kretsar runt krävs för att skapa vid varje given
tidpunkt, ett observerbart röntgen objekt. Den tredje IMBH populationen ligger i den Galaktiska
skivan. Kollisionerna här är mycket mer frekventa och orsakar högre ljusstyrkor p̊a grund av att
den relativa hastigheten mellan de IMBHs och gasmolnen i allmänhet är l̊ag; som den teoretiska
härledningen visar är den relativa hastigheten den mest avgörande parametern vid bestämning av
ljusstyrka. Som tidigare nämnts, är den ljusaste röntgenstr̊alningen inte observerbar i Vintergatan,
men simuleringen bevis ar att IMBHs p̊a skiv banor klarar av att skapa det. Detta begränsar därför
antalet IMBHs som vistas i galaktiska skivan. Med detta argument kan vi dra, inte mer än 15000
eller 16000 IMBHs (beroende p̊a den antagna massfördelningen för de IMBHs) kan kretsa Vinter-
gatans skiva.
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1 Introduction

This project investigates the expected impact of assumed Intermediate-mass Black Hole (IMBH, defined
as black holes with mass MBH in the range 100M@  MBH   104M@) populations orbiting in the Milky
Way. The impact focused on, is the X-Ray luminosity resulting from gas accretion inside molecular
clouds within the galactic disc. The methodology used consists of the numerical, computer based orbit
integration of the IMBHs, modeling the molecular cloud population and gas accretion and measuring the
relative velocity between IMBH and cloud upon collision. With these tools combined, the luminosity
created in such collisions can be statistically investigated in terms of frequentness and dependency
on orbital parameters of the IMBH such as the inclination with respect to the galactic disc or the
eccentricity. Since the frequentness directly depends on the total number of IMBHs assumed, and given
today’s observed number of X-Ray sources, this in turn allows deriving an upper limit for the number
of IMBHs present in the Milky Way today.
A side question to be answered is whether or not ULXs (Ultraluminous X-Ray sources, defined as off-
nuclear objects with X-Ray luminosities exceeding 1039 erg

s ) can possibly be caused by IMBHs accreting
in molecular clouds rather than by a (massive) binary system. Since no such ULX is observable in
the Milky Way but in numerous nearby galaxies, this might be an important constrain for the possible
number of IMBHs on orbits creating high luminosities.
The inherent problem with the project laid out so far are the unknown orbit properties of IMBHs in
the Milky Way, assuming they exist at all. This defines the practical setup of the project, leading to
the following three logically succeeding investigation steps:

1. In a first approach, globular cluster are used as an analog population, investigating the behaviour
of IMBHs located outside the galactic disc and crossing it only occasionally. This is motivated on
the theoretical side by suggested IMBH creation mechanisms found in literature which imply the
existence of IMBHs in the halo rather than in the disc. On the observational side, some globular
cluster are suspected to host IMBHs, making the analogy quite realistic. These information found
in literature are explained and referenced in detail in section 2. The results are statistically
analyzed focused on the expected luminosities upon molecular cloud collisions.

2. As a next step, a ’random’ IMBH population is created and their impact investigated. The pop-
ulation is intended to represent an extension of the in number limited globuar cluster population
from step 1. This is realized by creating orbits with eccentricities and mean distances from the
galactic center which are similar to the globular cluster sample. Set random is the inclination of
the orbits with respect to the galactic disc. This is motivated by the theoretical consideration,
that the inclination is the orbital property most responsible for the luminosity created in collisions.
Therefore, this population follows two general goals: The confirmation of results derived in step 1
by increasing the number of objects, and to find a direct relationship between orbital properties
and resulting luminosity.

3. Interpreting the results from step 2, the most luminous IMBH orbits can be identified as orbits
within the galactic disc. The investigation is focused on the possibility that IMBHs are created
within massive star cluster. The implications of this scenario for IMBHs in terms of quantity,
resulting luminosities and expected number of visible X-Ray sources today are analyzed in detail.

Concerning the models used, the orbit integration is carried out within a cylindric symmetric potential
representing the gravity within the Milky Way. The molecular cloud distribution is modeled based on
observed relations between cloud mass, radius and number. The number of clouds in turn depends
on the distance from the galactic center, assuming again cylindrical symmetry. For simplicity and less
computational expense, this is translated for the globular cluster analogy and the random population
into a probability to hit a cloud upon entering the galactic disc from below/above. For the investiga-
tion of orbits within the disc, each molecular cloud is followed individually. The accretion rate inside
the molecular clouds is modeled via the Bondi-Hoyle-accretion, resulting in a theoretical upper limit.
Assuming a similar behaviour as in accretion discs formed in binary systems, the luminosity can be
calculated. This derivation reveals a sensitive dependency of the luminosity on the relative velocity
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between the IMBH and the molecular cloud.
In the course of the IMBH investigation in step 1 and 3, the impact of molecular clouds on globular
cluster and cluster within the galactic disc is examined. First, this gives an answer towards the ques-
tion, if it is surprising that globular cluster survived until today given the disruptive effect of multiple
molecular cloud encounters, or not. Second, the probability that an IMBH formed in a cluster lost its
host can be derived.

This report is organized as follows:
Section 2 summarizes the background and already done research found in the literature related to this
project, section 3 derives the basic equations and models used, namely the orbit integration and ac-
cretion, section 4 concerns the globular cluster analogy including the simplified molecular cloud model,
section 5 improves the globular cluster statistic with the help of a random population, section 6 examines
the impact of IMBHs orbiting within the disc and motivates their existence and section 7 is dedicated
to the globular cluster destruction via molecular clouds. Section 8 summarizes the results.

11



2 Background

This section summarizes previous work found in the literature related to my project and gives a broader
background. This gives an overview about how my project fits into current research.

2.1 Orbit integration

In order to integrate orbits of objects of any kind in the Milky Way, the gravitational potential of the
galaxy in an analytical closed form is needed. Different expressions with parameters found by fitting
to observations have been proposed in the literature. Paczynski (1990) used a superposition of three
potentials describing the influence of different parts within the galaxy: axissymmetric Miyamoto-Nagai
(Miyamoto & Nagai, 1975) potentials for the galactic disc and the galactic bulge, and a spherical sym-
metric potential for the dark matter halo. Allen & Santillan (1991) introduced a similar three component
potential. It consists in the same way of Miyamoto-Nagai disc potential, but uses a spherical symmetric
bulge and a different expression for the halo. One method to verify the accuracy of different galactic
potentials is to calculate the velocity which an object orbiting within the plane of the galactic disc
needs in order to be circular (i.e. the distance R from the galactic center is constant). This velocity vc
depends on R and is therefore plotted in an vc - R diagram called the rotation curve. The capability of
the rotation curve to reproduce the observed mean motion of stars for different R is used to evaluate
the quality of the model. Despite the differences of the above models, both rotation curves are able to
fit the observations equally well due to high uncertainties in the observed values especially in the dark
matter halo. Irrgang et al. (2013) improved the potential proposed by Allen & Santillan (1991) by using
new observational constraints and modifying the expression for the dark matter potential. However, the
differences of the resulting rotation curve towards the rotation curve of Paczynski (1990) are smaller
than the errorbars of the new observational constrains, especially for the dark matter halo. The same
argument holds for a different potential presented by Law & Majewski (2010) which main difference is
the use of a non-sperical halo potential. Given this equality in capability of reproducing the observations
and the slightly simpler expression for the dark matter halo, the Paczynski (1990) model is used in this
work. For simplicity, non-axissymmetric potentials describing the bar structure in the bulge (Pichardo
et al., 2004) or the spiral arm structure of the disc ((Binney & Tremaine, 1987); (Pichardo et al., 2003))
are not considered.
Orbit integration especially for globular clusters has been done by Odenkirchen et al. (1997) using the
Allen & Santillan (1991) potential, Casetti-Dinescu et al. (2013) using a by Carlin et al. (2012) improved
Law & Majewski (2010) potential, Allen et al. (2008) using the Allen & Santillan (1991) potential and
comparing it to non-axissymmetric potentials, Shu et al. (2010) using the Paczynski (1990) potential,
and Irrgang et al. (2013) using the described improved Allen & Santillan (1991) potential.
A compilation of the known position and proper motions of 63 globular cluster needed as inital condi-
tions for orbit integration can be found online 1. The positions are obtained from the Harris catalogue
(Harris, 1996), the proper motions have been collected from Cudworth et al. (1993), Odenkirchen et al.
(1997), Dinescu et al. (1997), Dinescu et al. (1999a), Dinescu et al. (1999b), Dinescu et al. (2003),
Casetti-Dinescu et al. (2007), Casetti-Dinescu et al. (2010) and Casetti-Dinescu et al. (2013).

2.2 Molecular clouds

The interstellar medium within the Milky Way mostly contains molecular H2 gas which clusters to-
gether into molecular clouds ((Solomon & Sanders, 1980); (Scoville & Sanders, 1987)) with cloud masses
between 104 and 107M@ (Hou et al., 2009). About 90% of the total H2 mass is contained within self-
gravitating giant molecular clouds (Mass M ¡ 105M@) ((Scoville & Sanders, 1987); (Solomon et al.,
1987)). Since H2 is a light molecule with no permanent dipole moment, it has no permitted emissions
in radio frequencies and is therefore difficult to detect; instead, a by H2 collisions induced CO transition

1http://www.astro.yale.edu/dana/gc.html

12



is used as an H2 tracer (Scoville & Sanders, 1987). The cloud mass is then derived from the observed
cloud size and its internal velocity dispersion assuming virial equilibrium. Statistically, the number of
found clouds with given properties (mass, size, dispersion) scales with the property values in simple
power laws ((Larson, 1981); (Heyer et al., 2009); (Scoville & Sanders, 1987)). In terms of spatial distri-
bution, molecular clouds are confined within the galactic disc with a scale height of about 75pc (Krolik,
2004). They can be used as tracer for spiral arms (Hou et al., 2009). This manifests in the first galactic
quadrant into an increased cloud concentration for distances from the galactic center between about
4 and 6 kpc (Clemens et al., 1988); extrapolated towards the full disc, this is called in this work the
molecular ring.

2.3 Accretion

Accretion in this work is defined as the process of accumulating mass onto a gravitating object. The
Bondi-Hoyle accretion is an analytical model proposed by Bondi & Hoyle (1944) and Hoyle & Lyttle-
ton (1939) for describing the time dependent matter flow onto a gravitating point mass which moves
through a gas cloud (Edgar, 2004). Due to the movement, material accumulates in a wake behind the
point mass and gets slowly accreted due to friction within the wake. Although this formalism provides
useful approximations for most applications, it does not cover more realistic, less idealized situations.
Most notable, if the gas has a net angular momentum, an accretion disc is formed, thus destroying
symmetry and introducing different new physical effects (e.g. Park & Ricotti (2011)). In this disc
case, the lost gravitational potential energy heats up the disc via friction, creating black body radiation
peaking typically in X-Ray (see McClintock (2004) for a review). Another effect is radiative feedback:
the momentum of the emitted non-escaping photons act against the gravitational pull towards the gas
and therefore reduces the accretion rate, which in turn leads to an decrease of the temperature and
therefore to less energetic photons. If the gravitational pull and the photon momentum are balanced,
the corresponding luminosity resulting from the escaping photons is called the Eddington luminosity;
this therefore defines the theoretical highest possible luminosity emitted by an accreting object (Rybicki
& Lightman, 1979). See section 3.2 for a detailed derivation. Note here, that the Eddington luminosity
is proportional to the mass of the gravitating object. Additionally, as shown in hydrodynamical simu-
lations done by Park & Ricotti (2011), radiative feedback induces oscillations in the accretion, causing
that only in about 6% of the accretion time the peak luminosity is actually reached.

2.4 Stellar mass black holes

Stellar mass black holes are supernova explosion remnants of massive stars and do not exceed 80M@
(Kocsis & Loeb, 2013). They are easiest detectable in stellar binaries due to the X-Ray luminosity
created by the accretion of mass from the companion star (Casares & Jonker, 2013). Those black hole
X-Ray binaries can be divided into two subgroups: Low-mass X-Ray binaries (LMXBs) and high-mass
X-Ray binaries (HMXBs), depending on the mass of the companion star (Kocsis & Loeb, 2013). In low-
mass X-ray binaries (LMXBs), the low-mass companion star fills and overflows its Roche lobe, enabling
the black hole to accrete the excessive mass. In high-mass X-ray binaries (HMXBs), the high-mass
companion ejects a dense wind which the black holes accrete; Roche lobe overflow is possible but rare
(Chaty, 2013). A catalogue containing 187 LMXBs has been published by Liu et al. (2007), a catalogue
containing 114 HMXBs by Liu et al. (2006). Of this, 113 LMXBs and 64 HMXBs have no orbital period
listed, leaving room for the speculation in this project, that those objects might in fact not be binaries.
The X-Ray luminosity of the objects with known distance from the sun ranges from 1033 erg

s to several
1038 erg

s . A lower limit for the mass of the black hole is most robustly calculated by radial velocity
measurements of the companion star. An estimation for the exact mass with this technique however
requires knowledge about the difficult to obtain inclination of the binary ((Casares & Jonker, 2013);
(Zhang, 2012)). For LMXBs, the black hole mass distribution has been modeled as a Gaussian with
mean at 7.8M@ and 1 � σ spread of 1.2M@ by Özel et al. (2010). Prestwich et al. (2007) found in the
HMXB system IC 10 X-1 an exceptional high massive stellar black hole of � 24� 34M@.
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2.5 Supermassive black holes

Supermassive black holes (106�1010M@) are observed in the center of most galaxies (Casares & Jonker,
2013). The mass can be derived by observing the motion of stars and gas orbiting the central object
(e.g. Ghez et al. (2008)). If the black hole is associated with an active galactic nucleus, defined as
a region of increased luminosity within the galaxy, then another possibility is applying reverberation
mapping towards the emission lines, which uses the doppler effect of photons escaping the accretion disc
in order to determine the keplerian speed of the disc and hence the mass of the central object (Peterson,
2013). The formation process of Supermassive black holes especially in the early universe is subject to
current research. Black holes with masses of � p1� 2q � 109M@ have been detected at redshift z ¡ 6.5,
corresponding to an age of the universe of less than 1Gyr (� 7 �108 years) (Venemans et al., 2013). This
leads to the problem, that since even the first generation of stars (so called Population III stars) need a
few 108 years to form (Inoue et al., 2014) and, if massive enough, collapse into a stellar mass black hole
seed of 100M@, accretion at the Eddington limit resulting in an exponential growth with the salpeter

timescale 5 � 107yr needs about 5 � 107 � ln
�

109

100

	
� 8 � 108 years to grow a supermassive black hole of

mass 109M@ ((Haiman, 2013) ; (Volonteri, 2010); (Kocsis & Loeb, 2013)). Additional to that these
timescales barely fit to explain fast enough growth to explain early supermassive black holes, permanent
Eddington accretion is an unlikely assumption ((Madau et al., 2014); (Kocsis & Loeb, 2013); (Park &
Ricotti, 2011)). Other mechanisms to overcome these assumptions have been proposed, including direct
gas collapse into bigger seeds, merging of black holes or super-Eddington accretion. See Haiman (2013)
for a review.

2.6 Intermediate-mass black holes

This just described and not yet fully understood formation process of supermassive black holes nat-
urally involve Intermediate-mass Black Holes (100 � 104M@) as an intermediate step. This leads to
the question of direct observational evidence for IMBHs not only to confirm or discard the evolution
process of SMBHs, but also as a study field on its own. So far, the existence of IMBHs is still in dispute
((Rashkov & Madau, 2014) ; (Webb et al., 2012); (Casares & Jonker, 2013)), but evidence hardens.
Valencia-S et al. (2012) and (Dewangan et al., 2008) report the detection of IMBHs in galactic centers.
For off-nuclear IMBHs, defined as IMBHs not located in the galactic center, globular cluster are possible
candidates: Kinematics of stars in globular cluster suggest IMBHs reside in their center ((Lützgendorf
et al., 2013); (Feldmeier et al., 2013); (Umbreit & Rasio, 2013); (Noyola et al., 2008)). The expected
X-Ray luminosity of a globular cluster accreting IMBH is low due to the lack of gas (Sun et al., 2013).
However, the fundamental plane relation ((Maccarone, 2004); (Plotkin et al., 2012)) links the easier
observable radio luminosity with the black hole mass, suggesting again the existence of IMBHs in cer-
tain globular cluster ((Sun et al., 2013); (Nyland et al., 2012)). On the theoretical side, the creation
of IMBHs in globular cluster seems possible via stellar collisions ((Portegies Zwart & McMillan, 2002);
(Goswami et al., 2012); (Freitag et al., 2006)) or a combination of accretion and black hole mergers
(Miller & Hamilton, 2002).
Besides the mentioned formation in clusters, IMBHs may in general form out of two mechanisms: The
growth of massive PopIII black hole remnant in the pregalactic halo via accretion and/or merging
((Tanaka & Haiman, 2009); (Volonteri et al., 2003)) or the direct gravitational collapse of gas (Mayer
et al., 2010). Rashkov & Madau (2014) statistically investigated the consequences of both mechanisms
and concludes the presence of several hundred up to few thousand remnant IMBHs present in the Milky
Way halo today. Kuranov et al. (2007) investigated the creation of IMBH binaries originated from the
Pop-III mechanism, and concluded, that too many ULX (see below) are observed today to be explained
by accreting IMBH binaries. However, IMBH binaries may also form within young dense star cluster
within the galactic disc (Portegies Zwart, 2010).
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2.7 Ultra luminous X-Ray sources

Another piece of evidence for off-nuclear IMBHs has been found in Ultra-luminous-X-Ray sources
(ULXs), defined as off-nuclear point sources with X-Ray luminosity exceeding 1039 erg

s , observed in
nearby galaxies but not in the Milky Way (e.g. Caballero-Garćıa et al. (2013)). Although there are
more than 400 ULXs known, their nature remains unclear (Pintore et al., 2014). The spectra of some of
these objects resembles those of stellar mass black hole binaries but exceed their Eddingtion luminosity.
This leads to the possible explanation of a more massive IMBH accreting rather than a stellar mass black
hole ((Makishima et al., 2000) ; (Miller, 2006); (Makishima, 2007); (Fabbiano, 2006)). However, also
other explanations without involving an IMBH, such as beaming (King et al., 2001) or super-Eddington
emission (Begelman, 2002), have been proposed. ULXs are mostly associated with star forming regions
(e.g. Mezcua et al. (2014)), leading to contaminations in the spectra and making mass estimations via
radial velocity measurements difficult (González-Galán et al., 2013).
Another possible explanation for ULX are IMBHs accreting within molecular clouds (Krolik, 2004),
which is explained in detail in this thesis.
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3 Modeling

3.1 Orbit integration

The first step in investigating the interactions between objects in the Milky Way, such as the collisions
between IMBHs and molecular clouds, is to calculate the trajectory of their orbits. This is done by nu-
merically integrating the initial conditions (3-Dimensional position x0, y0, z0 and velocity vx,0, vy,0, vz,0)
of each object under the influence of the gravitational potential of the Milky Way.
Throughout this thesis, the galactic cartesian coordinate system is defined as follows: x points from the
galactic center into the direction of the sun, y into the direction of the rotation of the galactic disc, and
z towards the galactic north pole (which is uniquely defined by demanding a right-handed coordinate
system).
As described in section 2, the Milky Way potential used follows Paczynski (1990). In detail, the model
consists of a superposition of two cylindric symmetric Miyamoto-Nagai potentials (Miyamoto & Nagai,
1975) ψd and ψb for representing the galactic disc and the bulge, respectively, and a spherically sym-
metric potential ψh for the dark matter halo:

ψdpR, zq � � GMdc
R2 �

�
ad �

a
z2 � b2d

	 ψbpR, zq � � GMbc
R2 �

�
ab �

a
z2 � b2b

	 (1)

ψhprq � GMc

rc

�
1

2
ln

�
1� r2

r2
c



� rc

r
arctan

�
r

rc


�
(2)

with R �
a
x2 � y2, r �

a
x2 � y2 � z2, G the gravitational constant. The parameters are:

ad � 0 pc

ab � 3700 pc

bd � 277 pc

bb � 200 pc

rc � 6000 pc

Md � 1.12 � 1010 M@

Mb � 8.07 � 1010 M@

Mc � 5 � 1010 M@

(3)

The total Milky Way potential ψ is then defined as ψ � ψd � ψb � ψh. Note here, that the zero point
of the three potential contributions is not at the same level. For the disc and bulge it is set to infinity:

lim
RÑ8

ψd{bpR, zq � lim
zÑ8

ψd{bpR, zq � 0 (4)

Whereas for the dark matter halo:

lim
rÑ8

ψhprq � 8, lim
rÑ0

ψhprq � GMc

rc
(5)

However, since only the derivative of the potential ∇ψ � ∇ψd � ∇ψb � ∇ψh is the essential quantity
as explained below, different zero points between the contributing potentials only add in the derivation
negligible constants.
The corresponding density distributions ρ can be calculated by solving the poisson equation ρ � ∇2ψ
(Miyamoto & Nagai, 1975):

ρd,bpR, zq � b2M
aR2 � �a� 3

?
z2 � b2

� � �a�?
z2 � b2

�2
4π
�
R2 � pa�?

z2 � b2q2�5{2 � pz2 � b2q3{2
(6)

ρhprq � Mc

4πr3
c �
�

1� pr{rcq2
	 (7)
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For each time step ∆t, the acceleration of each object due to the force of the gravitational potential ψ
is calculated according to Newton’s law

d2~r

dt2
� �∇ψ (8)

For N objects this delivers 3N second order differential equations, which can be rewritten into 6N first
order equations:

d~r

dt
� ~v (9)

d~v

dt
� �∇ψ (10)

The derivative ∇ψ can be analytically calculated. The trajectory for all N objects are found by numer-
ically integrating (9) and (10) starting with 6N initial conditions.
For trivial cases, the trajectory can be found directly analytically and gives insight in the properties
of the used galactic model. For z = 0, for each distance R �

a
x2 � y2 a circular orbit can be found

which has a constant rotation velocity vc. This velocity can be calculated by balancing gravity with the
centrifugal force:

|∇ψ| � v2
c

R

ñ vc �
a
R � |∇ψ| (11)

As pointed out in section 2.1, a plot of vc versus R is called the rotation curve and is for the here used
potential presented in figure 1.
For huge distances, the rotation velocity becomes a constant:

vc �

gffffeG

�
��Ms

R2�
R2 � pas � bsq2

	3{2
�Md

R2�
R2 � pad � bdq2

	3{2
� Mh

rc

�
1� rc

R
arctan

�
R

rc


���


Ñ lim
RÑ8

vc �
c
G
Mh

rc
� 189

km

s
(12)

Another useful aspect of the potential is the property, that all objects are necessarily bound to the
Milky Way independent of their speed. In order to proof this, the escape velocity vesc,h of the in huge
distances dominating halo potential can be calculated by balancing the kinetic energy with the potential
energy:

1

2
v2
esc,h � |ψh|

ñ vesc,h �
a

2|ψh| (13)

This relationship is plotted in figure 1. For huge distances,

lim
rÑ8

vesc,h �
d

2
GMc

rc

�
1

2
ln

�
1� r2

r2
c



� rc

r
arctan

�
r

rc


�
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So due to the logarithm,

lim
RÑ8

vesc,h � 8 (14)

Meaning the energy necessary to increase the distance from the galactic center to infinity is also infinity,
making an escape impossible. The reason for this behaviour is the density distribution ρh which leads
to an infinite amount of mass Mhalo in the halo and therefore in the whole galaxy:

Mhaloprq � 4π

r»
0

ρhalopr1q r12dr1

� Mc

r3
c

r»
0

1

1�
�
r1

rc

	2 r12dr1

� Mc

rc

�
r � rc arctan

�
r

rc




(15)

Therefore,

lim
rÑ8

Mhaloprq 9 r (16)

Meaning the model assumes a linear increase of the total mass with r for huge distances. This increase
in mass then in turn leads to an increase of the potential energy as shown in equation (14). Note here,
that the common simplification of ψ for huge distances r into a spherical potential with all total mass
M 9 r concentrated in the center, which would result into

ψ � G M

r
� G r

r
� const, (17)

does not hold. The reason for this is, that since the mass spreads towards infinity, an object can never
be at a distance where a further increase of the distance does not add new mass. If for clarity this
problem would be transfered onto the gravitational potential of the earth, the infinite increasing mass
would mean, that an object can never reach earths surface at which (17) would be valid.
As mentioned, this behaviour of the potential to keep all objects bound is desirable, since the simulations
investigate the impacts of objects crossing the disc. Objects escaping the Milky Way do not contribute
to the statistic and need unnecessary computational time.

The orbit integration is done numerically on a computer using a combination of python and C++
as programming languages. As a reasonable compromise between speed and accuracy, (9) and (10) are
solved by a 4th-order Runge-Kutta integrator. Since the total energy of an object orbiting in the pre-
sented Milky Way potential is a conserved quantity, the energy conservation is used as a measurement
of the error done in the integration and in turns constrains the allowed step size: If E0 is the total
kinetic and potential energy of an object at time t, and E the total energy after one time step t � ∆t
has been performed by the integrator, then an adaptive step size routine decreases ∆t until at least
|E�E0|
|E0|

  1 � 10�6 for each integrated object is fulfilled.
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Figure 1: Blue: rotation velocity vc of the Milky Way potential. Green: escape velocity vesc,h for the
halo potential. Both curves assume z = 0.

3.2 Accretion

Figure 2: Scheme for the Bondi-Hoyle
accretion: The IMBH enters a field of
constant density and accretes all particles
within rBond.

In this section, an upper limit for the accretion rate and
resulting X-Ray luminosity of a black hole entering a molec-
ular cloud is derived.
The black hole is modeled as a point object with mass
MBH which moves with the relative velocity vrel through
the molecular cloud. The molecular cloud is assumed to be
a field of homogenous gas of constant density ρ. The ther-
mal motion within the few Kelvin cold cloud is neglected
compared to typically vrel in the order of tens to a few hun-
dred km{s (compare figure 9).
For the case of a black hole, the Bondi-Hoyle radius rb
is defined as the distance from the black hole at which
the kinetic energy of the gas particle is equal to the grav-
itational potential energy due to the black hole. All
particles within this radius are slower than the escape
speed and therefore gravitationally bound. rb is given
by:

|Ekin| � |Epot|
Ñ 1

2
v2
rel �

GMBH

rb

Ñ rb � 2
GMBH

v2
rel

(18)

As an upper limit, it is assumed that all particles which become gravitationally bound during the motion
of the black hole through the molecular cloud are being instantaneously accreted.
In reality, the bound particles are first focused in a wake following the black hole motion. Friction within
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the wake then enables particles to collide with the black hole, resulting in a delayed accretion which
finishes after the black hole has already left the cloud. See Edgar (2004) for a review covering this more
complex model.
As sketched in figure 2, all accreted particles are located within a cylinder of radius rb and length

2Rcloud � vrel∆t (19)

with Rcloud the radius of the molecular cloud and ∆t the time spent within the cloud. The total accreted
mass ∆M is therefore given by

∆M � πr2
bρ � vrel∆t (20)

Using (18) and the assumption that all particles are instantaniously accreted,

9M � ∆M

∆t
� 4π

G2M2
BH

v3
rel

ρ (21)

which represents an upper limit for the accretion rate.
In order to put radii into context, for a massive black hole with MBH � 104M@, rb � 0.009pc. This is
small compared to the radii of molecular clouds which is of the order of a few up to tens of pc (compare
to equation (49)). The schwarzschild radius rs of a black hole,

rs � 2GMBH

c2
(22)

results for MBH � 104M@ in rs � 3 � 10�4 pc.

Although the formation of a wake is neglected, its presence is essential for converting kinetic energy into
photons which create a black body spectrum with a peak in the X-Ray regime and luminosity L. The
energy lost due to the photons equals a mass loss 9m according to the time derivative of the mass-energy
relation,

E � mc2 (23)

Ñ L � 9mc2 (24)

with c the speed of light. Assuming an accretion rate 9M , a fraction of the matter is converted to energy
according to equation (24), the rest falls into the black hole. The efficiency of this conversion is called
µ and is for a thin stellar mass black hole accretion disc of the order µ � 0.1 (Park & Ricotti, 2011),
which is also used here:

L � µ 9Mc2 (25)

Using equation (21) and the mass - radius relation for molecular clouds from equation (49) for β � 0.55
and k � 0.5,

L � 4πµ
G2M2

BH

v3
rel

ρc2

� 5.2 µ � 1040

�
MBH

M@


2�
km{s
vrel


3�
Mcloud

M@


�0.43
erg

s
(26)

Figure 3 is a plot of (26) for lines of constant luminosity assuming a cloud mass of Mcloud � 107M@.
The plot emphasizes the sensitive dependence of the luminosity on the black hole mass and the relative
velocity. For a massive IMBH of MBH � 104M@, a luminosity of L ¡ 1039 erg

s , the luminosity of ULXs

(section 2.7), requires relative velocities of below 100kms . A luminosity of L � 1041 erg
s requires about

20kms .
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Figure 3: Lines of constant luminosity due to accretion of an IMBH within a molecular cloud of 107M@
for different IMBH masses MBH and relative velocities vrel.

Another important physical aspect concerning high luminosities is radiative feedback. Ignoring once
again the motion of the black hole with the forming wake and using the picture of a homogeneous
spherical shell of gas around the black hole, then the gas heats up due to friction which allows particles
to spiral into the black hole. The heated gas emits photons, observable as the black body radiation.
Photons which are reabsorbed by incoming particles accelerate them outwards, effectively decreasing
the accretion rate 9M . This in turns reduces the friction and temperature in the shell, reducing the
photon pressure. The equilibrium between both processes is called the Eddington Limit and represents
a theoretical upper limit for the accretion rate and therefore luminosity.
The photon flux f is the emitted energy dE per area dA per time dt,

f � dE

dA dt
(27)

Only a fraction of the emitted photons is reabsorbed by incoming atoms. To give a lower limit on
radiative feedback, pure Thomson-scattering of completely ionized hydrogen with cross-section σT is
assumed. The energy E of the photons correlates with their impuls p as E � pc, so

f � c dp

σT dt
� c

σT
Fphoton (28)

with Fphoton the force on a single electron inflicted by photons. Since the total flux is isotropicall over
the whole area of the shell at distance r from the black hole, the luminosity L is given as:

L � 4πr2f (29)

Assuming the impuls is carried via electromagnetism from the electron towards the whole hydrogen
atom with mass mH , the resulting force per mass is given by

Fphoton
mH

� σT
mH

L

4πr2c
(30)
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If the force is equal to the gravitational force per mass Fgrav,

Fgrav
mH

� �GMBH

r2
(31)

then the Eddington luminosity LEdd is reached:

σT
mH

LEdd
4πr2c

� GMBH

r2

Ñ LEdd � 4πcGMBH
mH

σT
(32)

For σT � 6.65 � 10�25cm2 (Rybicki & Lightman, 1979),

LEdd � 1.26 � 1031

�
MBH

M@



kg m2

s3
� 1.26 � 1038

�
MBH

M@



erg

s
(33)

which is an upper limit for the accretion luminosity. This directly visualizes, that stellar mass black
holes with 1M@   MBH   10M@ can not cause luminosities of L ¡ 1039 erg

s . The easiest solution if
such a luminosity is observed is the assumption of an IMBH accreting (100M@  MBH   104M@).
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4 Globular cluster population

4.1 Overview

The first method used in this project focuses on the possibility that IMBHs are located in the halo of the
Milky Way rather than within the galactic disc. This is motivated by in section 2.6 presented different
creation mechanisms such as growth via accretion starting with early PopIII stars, direct gravitational
gas collapse or merging mechanisms in star cluster. Additionally observation of kinematics in certain
globular cluster suggest the presence of IMBHs in their cores. In contrast to stellar mass black holes
which are an end product of stellar evolution and therefore frequently located in bright binaries, IMBHs
are expected to be mostly single, dark objects. The simulation carried out in this section answers the
question, if IMBHs can be detectable while passing molecular clouds.
Due to the difficult detection of IMBHs, their general spatial distribution and number in the Milky Way
is unknown. As an first approximation, the orbits of globular cluster as galactic objects located mostly
in the Milky Way halo are used as an analog population representing the orbits of IMBHs. The 63
globular clusters with known position and velocity vectors are therefore used as initial conditions for the
numerical orbit integration. Each time a globular cluster collides with a molecular cloud, the luminosity
according to the Bondi-Hoyle accretion is calculated.
This represents the first step towards the investigation whether IMBHs can cause observable X-Ray
luminosities or even ULXs via accretion in molecular clouds or not.

4.2 Molecular cloud distribution - 2D model

Although the number of IMBHs in the halo is unknown and their orbital motions require analogies as
just described, the number and properties of molecular clouds to collide with can be approximated. Due
to the lack of gas, molecular clouds are not to be expected outside the galactic disc. Consequently, only
molecular clouds within the galactic disc are modeled. In this section, the probability for an object to
hit a molecular cloud while passing through the galactic disc is derived.
The modeling process consists of following steps:

1. The molecular cloud distribution is axisymmetric around the galactic center. The midpoint of each
cloud is located in the galactic disc (z = 0). The radial dependence of the distribution is derived
using observations within the first galactic quadrant and extrapolating towards the complete disc.

2. The molecular cloud distribution is associated with a mass distribution. Using this and assuming
a cloud density profile, the cloud radius distribution Rcloud is calculated.

3. Each molecular cloud is reduced into a flat, 2-dimensional circular object located within the galactic
disc (z = 0). The surface area covered by the cloud is equal πR2

cloud. The area coverage of all
clouds is summed up, assuming no overlap between clouds, and divided by the total galactic disc
area in order to obtain the fractional cloud coverage. As evidently following from step 1, this
fractional cloud coverage is axisymmetric but changing radially.

4. The fractional cloud coverage equals the probability for an object to collide with a cloud while
crossing the galactic disc. If a hit occurs, Mcloud of the hit cloud is derived in the way, that the
overall cloud mass distribution is being followed. The speed vector of the cloud is determined
by assuming that the cloud rotates in a perfect circular orbit within the galactic disc. From this
point, the Bondi-Hoyle accretion is modeled as described in section 4.3.

The steps in detail:
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Step 1

In order to obtain the spatial molecular cloud distribution, not the actual observed cloud distribution
is used but instead the observed H2 mass distribution. This follows the assumption mentioned in sec-
tion 2.2, that about 90 % of the H2 is indeed located in molecular clouds. The H2 mass distribution,
extrapolated from the first galactic quadrant towards the whole disc, is shown in figure 4 along with a
triangle fit f(R). Note that the data points are binned: The data point located at radius Ri is the sum
of the mass within the radius interval rRi� 0.25, Ri� 0.25s, Ri P t1.75, 2.25, ..., 15.75u. The fit function
fpRq, although analytically, is also only evaluated at these discrete points (see step 3). Note that due
to this discrete nature of fpRq,

Ri�0.25»
Ri�0.25

fpRqdR � fpRiq (34)

According to Scoville & Sanders (1987), the relationship between the amount of observed molecular
clouds N and their mass dMcloud follows

dNcloud
dMcloud

� cR αMα�1
cloud (35)

with α � �0.61. The proportional constant cR depends on the total mass within the distribution. Since
the total mass is given by fpRq:

MtotalpRi, Rjq �
Rj»
Ri

fpRqdR �
»
MclouddNcloud �

Mup»
Mlow

αcRM
α
clouddMcloud ; i   j (36)

For a value of α � �0.61, (36) and therefore the unknown cR critically depends on the mass of the most
massive observed molecular cloud Mup and the least massive, Mlow. Hou et al. (2009) show in their
figure 2 an upper mass of 2 � 107M@ and a lower mass cut-off at Mlow � 104M@, which is used.
Solving the integral yields cR:

cR � α� 1

α

MtotalpRi, Rjq
Mα�1
up

(37)

Plugged into (35), the total number of clouds depending on R can be calculated:

Ncloud �
»
dNcloud � α� 1

MtotalpRi, Rjq
Mα�1
up

Mup»
0

Mα�1
cloud dMcloud (38)

For the next step it is more convenient to use the differential form (35) rather than calculating the total
number of clouds in each interval for R and afterwards assigning each cloud a statistically correct mass.

Step 2

In this step, a relationship between the mass of the molecular cloud Mcloud and its radius Rcloud (as-
suming a spherical symmetric cloud) is derived. The base of this derivation is the empirically found
connection with proportional factor k between the 1-Dimensional velocity dispersion σ and the size of
the cloud (Scoville & Sanders, 1987),

σ � k

�
2
Rcloud
pc


β
km s�1 (39)
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Figure 4: The extrapolated total H2 mass in the galactic disc versus the galactic radius. Crosses: data
points from (Clemens et al. (1988), fig.11), solid line: fit of the data points.

assuming a 1
r density profile within the cloud. The mass is then linked to the radius using the virial

theorem: The theorem balances the gravitational potential energy of the particles with their internal
kinetic energy via the radius of the cloud. The balanced state is called virial equilibrium; all clouds are
assumed to be in virial equilibrium.
For simplicity, but taking into account the expected densed core within a self-gravitating system, the
mentioned 1

r profile for the molecular clouds is used:

ρprq � C � ρ0 � Rcloud
r

(40)

with ρprq the density, ρ0 the mean density of the cloud, r the distance from the cloud midpoint, and C
a constant. The constant is linked with ρ0 and Mcloud:

Mcloud � 4π

R»
0

r2ρprqdr � 2Cπρ0R
3
cloud (41)

Which requires C � 2
3 .

Assuming the cloud consists of N particles with equal mass m, the total kinetic energy T is given by

T � 1

2

Ņ

i�0

miv
2
i �

Mcloud

2

Ņ

i�0

v2
i m

Mcloud
(42)

Since

xv2y �

N°
i�0

v2
i

N°
i�0

1

�

N°
i�0

v2
im

N°
i�0

m

�

N°
i�0

v2
i m

Mcloud
(43)
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the kinetic energy can be written as

T � Mcloud

2
xv2y � Mcloud

2
σ2 (44)

Assuming the velocity dispersion is homogeneous in all spatial dimensions, σ � pσ1D, σ1D, σ1Dq, and
σ1D is the observed 1-Dimensional velocity dispersion,

T � 3Mcloud

2
σ2

1D (45)

The total potential energy U of the spherical cloud can be calculated by dividing the sphere into shells
and successively removing the outer most shell while summing up the energy needed to do so. The
energy dU needed to remove a shell of mass dM depends on the mass contained within the shell Mprq
according to the gravity law:

dU � �GMprq � dM
r

� �G
4π
3 r

3ρ � 4πr2ρ

r
dr � �G16π2

3
ρ2r4dr (46)

Using (40), the total energy can be calculated by integration:

U �
»
dU � �4

9

GM2
cloud

Rcloud
(47)

The virial theorem for gravity connects the total potential energy with the total kinetic energy:

2T � �U

Ñ 3Mcloudσ
2
1D � 4

9

GM2
cloud

Rcloud

Ñ Rcloud � 4
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GMcloud

σ2
(48)

Plugging in (39) and using convenient units,

Rcloud � 1

2

�
Mcloud

781k2M@


 1
2β�1

pc (49)

which connects the total mass of a molecular cloud with its radius. The values k and β are found by
fitting observations to (39). Scoville & Sanders (1987) report k � 0.5 and β � 0.55 which is used in this
thesis. As an example, a massive cloud of Mcloud � 106M@ has a radius of 29 pc.

Step 3

The in step 2 found relation between mass and radius for the molecular cloud population can be used to
calculate the total disc area covered by molecular clouds. This is done by projecting the 3-Dimensional
clouds onto the two dimensional galactic disc (z = 0). The resulting total area is then given by

A �
»
πR2

clouddNcloud (50)

Plugging in (49),(35) and (37) the cumulative area function is given by (all masses in M@):

Acumpm,Ri, Rjq � π

4
MtotalpRi, Rjq

�
1

781k2


 2
2β�1 α� 1

Mα�1
up

m»
0

M
2

2β�1�α�1

cloud dMcloud pc2

� π

4
MtotalpRi, Rjq

�
1

781k2


 2
2β�1 α� 1

Mα�1
up

1

α� 2
2β�1

mα� 2
2β�1 pc2 (51)
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As pointed out in step 1, MtotalpRi, Rjq is a discrete function with intervals ∆R � 0.5 kpc. This al-
lows the simplification, that all clouds are located completely within one of the intervals, border effects
between the intervals, such that some clouds are partially located in two intervalls, are neglected. The
bigger the intervals, the more accurate is this simplification, but in turn the resolution of the fractional
area coverage function Afraction reduces.

AfractionpRiq � AcumpMup, Ri, Ri�1q
πpRi�1 �Riq2 (52)

This implicitly assumes, that no clouds are overlapping each other. This is justified by the evaluation
of (52) shown in figure 5. The highest fractional area coverage around 5 kpc does not exceed 3%,
overlapping is therefore unlikely. The plot illustrates a peak area coverage between 4 and 6 kpc. This
is in this work called the molecular ring.

Figure 5: Fraction of area covered by molecular clouds in the galactic disc as a function of galactic
radius. Red circles: AfractionpRiq versus Ri. Blue lines: linear interpolations.

Step 4

If an object, (e.g. an IMBH) crosses during its orbit the galactic disc at the galactic distance Rcross,
the fractional area coverage function is evaluated at AfractionpRkq with Rk ¤ Rcross   Rk�1. This
represents the probability that a molecular cloud is hit. If a hit occurs, the mass of the hit molecular
cloud is statistically derived from the normalized cumulated area function Ancpmq:

Ancpmq � Acumpm,Ri, Rjq
AcumpMup, Ri, Rjq (53)

Which implies 0 ¤ Ancpmq ¤ 1 (see figure 6). The mass is found by generating a random number
s P r0, 1s and evaluating numerically the inverse function A�1

nc :

Mcloud � A�1
nc psq (54)

The velocity vector of the molecular cloud is derived by assuming the cloud orbits in a perfect circle
around the galactic center at R �

a
x2

0 � y2
0 with x0 and y0 the coordinates of the object (IMBH)
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Figure 6: Normalized cumulated surface area covered by molecular clouds AncpMcloudq versus the cloud
mass Mcloud.

when the hit occurs. The circular velocity vc is calculated using (11). The velocity vector of the cloud
vcloud � pvx, vy, vzq is then given as

vx � �vc y0

R

vy � vc
x0

R
vz � 0

(55)

If

vIMBH � pvx0 , vy0 , vz0q (56)

is defined as the velocity vector of the IMBH at the collision point, then

vrel � |vcloud � vIMBH | (57)

is called the relative velocity between both objects.

4.3 Results

The orbits of the globular cluster population, the subset of globular cluster with known proper motions,
has been numerically integrated for 10 Gyr. Each time a molecular cloud has been hit, the luminosity
resulting from this event has been calculated.

4.3.1 Relative velocities

The relative velocity between the IMBH and the molecular cloud is a critical parameter in determining
the Bondi-Hoyle luminosity, L 9 1

v3rel
(equation (26)). Due to the almost constant rotation curve

(compare figure 1), this velocity barely depends on the distance R from the galactic center at which
the cloud is hit, but is sensitive to the velocity vector of the IMBH. Both factors are determined by the
shape of orbit of the IMBH (i.e. globular cluster).
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Figure 7: Orbits of the globular cluster NGC 6838 (green) and 6553 (red) for 10Gyr in the x-y plane.
The galactic center is at (x = 0, y = 0, z = 0). The blue circles indicate the border of the molecular
ring.

Figure 8: Orbits of the globular cluster NGC 6838 (green) and 6553 (red) for 10Gyr. R �
a
x2 � y2.

The galactic center is at (x = 0, y = 0, z = 0). The blue line indicates the molecular ring.
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Figure 7 and 8 illustrate the orbits for the globular cluster NGC 6838 and 6553. These plots give an
overview about the general shapes of orbits within the Milky Way and the range of distances from the
galactic center achieved.
While NGC 6838 is confined towards the galactic disc (�0.4   z   0.4) and forms a narrow ring around
the galactic center, NGC 6553 goes deeper into the galactic halo and has a highly eccentric orbit. This
two extreme examples illustrate, that the globular cluster population varies within a wide spread of
orbital parameters. This in turn allows to draw general conclusions for halo-like IMBHs.
Ignoring the model described in section 4.2, figure 9 shows a histogram of the relative velocity for all
globular cluster within the 10 Gyr integration time assuming that each time the galactic disc is crossed
(�100pc   z   100pc) a hit occurs.

Figure 9: Histogram of the relative velocities between globular clusters/IMBHs crossing through the
galactic disc and a GMC orbiting in a perfect circular orbit according to the rotation curve, sampled
for 10Gyr. It is assumed that each time the disc is crossed, a molecular cloud is hit. Green color:
contribution of the globular cluster NGC 6838. Red: contribution of NGC 6553. Blue: total contribution
of all globular cluster.

The histogram visualizes, that the peak occurrence of relative velocities vrel is about a few hundred
km/s. According to figure 3, such high vrel are not sufficient in order to produce ULX - luminosities
of L ¡ 1039 erg

s . Investigating the contribution of single globular cluster towards the total number of
occurrences, following two statements can be made:

• The green color in the histogram indicates the contribution of the single globular cluster NGC 6838,
it is therefore the only globular cluster which achieves vrel ¤ 80kms . The low relative velocities

  100kms are statistically uncertain since only few objects realize them, leading to huge differences
between similar vrel in the histogram ranging from less than 10 to over 200 occurrence.

• Globular cluster which realize lower vrel are over-representative in the histogram since their orbit
shape, resulting in low vrel, leads towards a higher frequency of disc crossings (compare figure 8).
This is visualized by coloring the contribution of the globular cluster NGC 6553 in red; the total
amount of disc crossings in the same time is significant lower for NGC 6553 than for NGC 6838.
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In conclusion, orbit shapes of globular cluster which leads to high vrel (about few 100kms ) are far more

common than orbit shapes for low relative velocities (vrel   100kms ). However, the mean relative velocity
averaged over all low relative velocities is a uncertain quantity since these vrel are only achieved by very
few orbits, meaning too few examples are available in this regime for a meaningful statistic.

4.3.2 Collisions: Luminosity

As mentioned, figure 9 sets the probability of colliding with a molecular cloud while passing the disc
to 100%. The described model in section 4.2, in which the probability to hit a cloud is determined by
the fraction of disc area the whole cloud population covers, reduces the probability towards 0 � 3 %,
depending on the distance from the galactic center (see figure 5). This additionally adds a dependency
on the orbital shape of the globular cluster, since only orbits within the molecular ring (4 -6 kpc) do
have a reasonable chance of colliding with clouds. In order to visualize this, for each disc crossing the
probability to hit a cloud is evaluated resulting into a total number of hit clouds per globular cluster
within 10 Gyr. For most of the globular cluster the statistical noise is too high, meaning that the total
number of disc crossings is too low to result into any or only few hits due to the low probability. In
order to obtain a useful statistic representing the properties of the different orbits in general, the total
number of hit clouds within the 10 Gyr is calculated 50 times with different sets of random variables
which determine if a hit in a particular disc crossing occurred or not. The different results are then
averaged. The top plot of figure 10 shows for each globular cluster on the ordinate the averaged number
of hit clouds with its 1-σ error, the abscissa the mean distance from the galactic center when hits occur,
also including the 1-σ error. The bottom plot shows on the ordinate the in the same way averaged vrel
for each globular cluster with its 1-σ error. The abscissa is identical to the top plot for easy comparison;
the errorbar is here not shown for better clarity. The key results of both plots can be summarized as
follows:

• The total number of hit clouds correlates tightly with figure 5: Only globular cluster orbits entering
the molecular ring have a chance to hit several clouds within 10 Gyr.

• Most of the globular cluster have a spread in R of several kpc, meaning their orbits cross the disc
at very different locations within the 10 Gyr.

• The relative velocities are not correlated with the entrance point R in the galactic disc. Although
the data points pile up within the molecular ring, all different values for vrel are realized, no
general bias towards lower or higher values can be observed.

The next physical property needed to be taken into account is the mass distribution of the molecular
clouds. Each time a hit occurs, the mass is statistically selected according to (54) and transformed into
a mean gas density inside the cloud ρ0 by (41). The luminosity, the quantity actually observable on
earth and comparable to observations, is then calculated according to (26). Note here that the cloud is
always assumed to be crossed through its full length 2Rcloud and the gas density during this crossing
is constant (ρ0). The mass of the IMBH is assumed to be MBH � 104M@. The again over 50 sets of
random variables (this time also effecting the random size of the molecular cloud in each hit) averaged
luminosity is plotted in figure 11. The errorbars in luminosity are therefore determined by both the
uncertainty of vrel and Mcloud. However, no major fluctuation in the length of the errorbar compared to
figure 10, bottom, can be observed, suggesting that the contribution and uncertainty of vrel outweights
that of the cloud mass Mcloud. This is not an unexpected result since the luminosity is proportional to

1
v3rel

(equation (26)). This result can be qualitatively summarized as

• The luminosity is weakly sensitive towards Mcloud and very sensitive towards vrel.

The last investigated property of the collisions is the shining time tsh for each globular cluster, defined
as the fraction of time spent within molecular clouds with respect to the total orbit time of 10 Gyr.
This uses the assumption made section 3.2, that the bound gas molecules in the molecular cloud are
instantaniously accreted, meaning the accretion luminosity is only produced as long as the IMBH is
within the cloud. Additionally, to obtain a more realistic value, the oscillation in accretion mentioned
in section 2.3 is taken into account. As described there, only in about 6 % of the total accretion time
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Figure 10: Top: Total number of hit molecular clouds (MCs) per globular cluster after 10Gyr, averaged
for 50 sets of random variables (see text) versus the mean distance Rmean from the galactic center while
the hits occur. Bottom: corresponding mean relative velocities versus Rmean. Error bars indicate the
1-σ error.

32



Figure 11: Top: Mean luminosity while accreting within molecular clouds versus galactic radius for each
globular cluster, assuming MBH � 104M@ and averaged for 50 sets of random variables (see text) versus
the mean distance Rmean from the galactic center while the hits occur. Bottom: Fraction of time spent
in molecular clouds, reduced by 94 % due to accretion oscillations (see text), versus Rmean. Error bars
indicate the 1-σ error.
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the peak luminosity is actually reached. This factor of 6 % is used here to scale the found shining
time tsh down accordingly. Figure 11, bottom, shows the result: Assuming that each globular cluster
contains/is an IMBH then no IMBH is visible for more than 0.01 % of their orbit time or 0.1 Myr per
1 Gyr. The average shining time is 3 � 10�6 years per year. Using this average, the following conclusion
can be drawn:

• If it is assumed that a population of 3.3 � 105 IMBHs on similar orbits as the globular cluster
orbits exists, statistically about 3.3 � 105 � 3 � 10�6 � 1 observable X-Ray source with luminosity
1036 erg

s   L   1040 erg
s can be expected at any given time. (Assuming MBH � 104M@)
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5 Isotropic population

5.1 Overview

Based on the results from the globular cluster (section 4) which have been used as an analogon population
for IMBHs, this section is dedicated to increase the number of objects and therefore to improve the
statistics in terms of noise (compare the fluctuations of occurrences between similar vrel in figure 9).
This is done by creating a ’random’ population based on the globular cluster orbital parameters. Since
the globular cluster represent a population observable today, this approach allows to investigate a broad
range of reasonable orbits. The general aim for this investigation is to derive a relationship between one
or several orbital parameters and the expected relative velocities while crossing the disc.
The overall goals of this section are therefore defined as

• Obtaining a richer statistic for verifying or correcting the results from section 4

• Establishing a direct relation between orbital parameters and vrel

• Predicting the lowest possible vrel and corresponding parameters

The last point, the predictions, then finally lead into a more detailed investigation for especially inter-
esting orbits in section 6.
The orbit integration technique, the accretion model and the molecular cloud distribution and therefore
the collision probabilities and properties are unchanged compared to section 4.

5.2 Orbit creation

The first step towards creating randomized orbits in the 3-Dimensional Milky Way potential is to iden-
tify the orbital parameters most responsible for the resulting relative velocity vrel (as defined in (57)).
These parameters will then be randomized in order to create a new IMBH population.

The results from section 4 indicate, that the relative velocities are not correlated with the entry point R
towards the galactic disc (compare figure 10, bottom). This can be rationalized as follows: The circular
velocity of the molecular clouds (11) is close to independent of R in the region where hits can occur
(� 3 � 11 kpc, compare figure 5), as seen in the rotation curve (figure 1). The variation in the cloud
velocities is only of the order of about 10 % and can therefore not be responsible for the wide range of
vrel of several hundred km

s (compare figure 9). The velocity of the IMBH ( |vIMBH |, the absolute of
(56)) also does not directly depend on the entry point R but on the eccentricity e, defined as

e � rmax � rmin
rmax � rmin

. (58)

with rmax and rmin the maximum and minimum distance from the galactic center reached during the
integration time. A low eccentricity implies a circular orbit, either in the galactic disc or outside,
with lower and less varying velocities compared to high eccentricities; high eccentricities suggest falling
into and again climbing the potential well which requires high absolute velocities. Therefore, e can be
expected to be a critical orbital parameter in determining vrel.
Another aspect is the angle of the entry point into the galactic disc. The molecular clouds are modeled
as moving objects according to (55) rather than being static. Assuming the same |vIMBH |, an entry
into the disc perpendicular to the disc necessarily results into a different vrel than with a with respect
to the disc tilted trajectory. This suggests a ”tilt angle” of the IMBH orbit with respect to the disc
could be a parameter which is possibly responsible for a rich variation in vrel. Such a ”tilt angle” can
be identified as the angle α, defined as the angle between the angular momentum vector J ,

J � pJx, Jy, Jzq � x� v (59)
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of the IMBH at the time tJ and the z = 0 axis of the coordinate system:

α � arccos

�
Jz
|J |



(60)

Jz ¡ 0 corresponds to 0� ¤ α   90� and implies an orbit of the same sense of rotation as the molecular
clouds in section 4.2. This is in this work referred to as a positive rotation. α � 0� defines a positive
rotation within the galactic disc. Jz   0, meaning 90�   α ¤ 180�, corresponds to a negative rotation
against the disc.
Note that due to the cylindrical symmetry of the potential, only Jz rather than J is a conserved quantity
over time. Therefore, for a comparability between orbits, tJ is chosen to be the time in which the object
within its integration time of 10 Gyr reaches the maximum distance from the galactic center:

rptJq � maxprptqq � rmax (61)

Closely related is the maximum height zmax the orbit reaches above/under the disc. An object starting
at high z accelerates longer towards the galactic disc, resulting in high |vIMBH | in the disc, and then
deaccelerates after passing the disc until vz � 0 is reached at the turning point (compare figure 8). This
is directly analog towards a 1-Dimensional spring, only complicated due to the 3-Dimensional move-
ment. Although this effect is expected to influnce vrel, zmax and α for constant J are directly correlated
(increasing height for increasing α up to α   90, decreasing height for α ¡ 90 ), so that both quantities
do not need to be treated separately in the investigation of the vrel dependency.
In conclusion, e and α are expected to be the main contribution in determining vrel.

As a first step, the orbits are randomized in α; it will turn out that this procedure together with
the chosen boundary conditions also creates a useful variety in e. The random orbits are required to be
realistic and a natural extension of the globular cluster orbits in the sense, that the distances from the
galactic center r and the absolute of the angular momentum J are within the same value range as for
the globular cluster orbits. This implies the identification of globular cluster orbits with IMBH orbits,
as already done in section 4. In detail, the following steps for each globular cluster individually are
taken in order to create in α randomized orbits. Steps 2 - 4 are explained in detail below.

1. Within the 10Gyr integration time of the globular cluster, the values rmin and rmax, the minimum
and maximum distance from the galactic center, are determined.

2. The globular cluster orbit is projected onto the galactic disc.

3. A random distribution of the angle α is determined.

4. The projected, flattened orbit from step 2 is tilted using α.

The steps 2-4 in detail:

Step 2

Projection onto the galactic disc:
An orbit is searched with zptq � 0 for all times t and the same values for rmin and rmax as for the
globular cluster orbit. To find initial conditions satisfying these requirements, the coordinate system is
rotated 2 in the way that

rmax � rptpq �
b
xptpq2 � yptpq2 � zptpq2 � xptpq � xmax (62)

meaning the turning point of the orbit at time tp is on the x-axis.
From this follows vxptpq � 0 since 9rptpq � 0.

2Due to the rotation symmetry of the potential, the physical properties including the resulting vrel are invariant for
rotation within the x-y plane
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vyptpq is determined by demanding minprptqq � rmin:
An initial guess for vy is used and the resulting orbit with initial conditions as in (63) is integrated
for 2 Gyr. The resulting minimum distance towards the galactic center, r1min, is compared to the
desired rmin. A new initial guess based on the result is calculated and the procedure repeated. If
∆rmin � |r1min � rmin|   0.01pc, then the corresponding vypr1minq is accepted. The initial conditions
for the flattened orbit are therefore:

xptpq � rmax

yptpq � 0

zptpq � 0

vxptpq � 0

vyptpq � vypr1minq
vzptpq � 0

(63)

Step 3

Random angle α:
Let ρ be the angle between the onto the x-y plane projected angular momentum vector J and the x-axis,
tanpρq � Jy

Jx
. Then ρ P r0, 2πs and α P r0, πs define a point on the surface of a sphere. Since the area

element dV is a function of α, dV � sinpαqdαdρ, picking random numbers from the intervals r0, 2πs and
r0, πs for ρ and α, respectively, will result in a point distribution biased towards the poles.
Therefore, the points need to be picked following the distribution sinpαq:

c

α»
0

sinpαqdα � y � F pαq (64)

with y a random variable picked from the interval r0, 1s and c the normalization constant.
Normalization towards the interval r0, 1s:

1
!� F pπq � c p� cospπq � cosp0qq � 2c

ñ c � 1

2
(65)

Inverting F pαq results in

F pαq � 1

2
r� cospαq � 1s � y

ñ α � arccosp1� 2yq (66)

This transforms the random number y into a correctly distributed random number α. For each globular
cluster orbit, 20 random numbers for α are determined.

Step 4

Tilt of the projected globular cluster orbit with α:
If the index t refers to the tilted orbit constructed in this step and the index f to the flat orbit of the
projected globular cluster from step 2, then the initial conditions for an orbit which is satisfying in at
least one point

|Jt| � Jz,f (67)

is searched. This conservation of angular momentum loosely ensures that the values rmin,t and rmax,t
are similar compared to the ones from the flat orbit and enable in a simple manner the tilting of the
orbit itself. The angular momentum vector is then readily constructed as

Jx,t � Jz,f � sinpαq cospρq
Jy,t � Jz,f � sinpαq sinpρq (68)

Jz,t � Jz,f � cospαq
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In the same point as in step 2, namely y � 0, z � 0 , vx � 0 and x � rmax,f , the position and velocity
vectors can now be constructed using (59) and (68):

Jz,t � x vy � y vx

ñ vy � Jz,t
x

� Jz,t
rmax,f

Jy,t � z vx � x vz

ñ vz � �Jy,t
x

� � Jy,t
rmax,f

Jx,t � y vz � z vy � 0

ñcospρq � 0 ñ ρ � π

2

This procedure implies, that each constructed orbit has a turning point with 9r � 0 in the x-y plane.
For each globular cluster, 20 of such in α randomized orbits are created.

5.3 Results

5.3.1 Comparison with globular cluster

As listed in section 5.1, the first goal of the random population is to provide a natural extension of
the globular cluster population with the purpose of verifying the statistics. This section is dedicated to
re-evaluate the results made in section 4.

The total number of disc crossings for all 63 globular cluster is NGC � 13764 (total area in figure
9), the total number for all 63 � 20 � 1260 random orbits is NR � 335299, meaning the average number
of disc crossings per object ncross increases in the random population by 22 %. This discrepancy is plau-
sible by analyzing figure 12. Figure 12 shows a histogram of the relative velocities while crossing the
disc for all objects of the globular cluster population (blue, same as figure 9) and the random population
(red). The total number of crossings in each bin for the random population are reduced by the factor
NR
NGC

� 24.3 in order to make both populations comparable by forcing the total area of the histograms
to be equal.

Figure 12: Histogram of the relative velocities while passing through the galactic disc. Blue: Globular
cluster population (63 objects), red: random population created according to section 5.2 (1260 objects).
The numbers for the random population are scaled down in a way that the total number of collisions for
both populations is identical. The red curve highlights the peaks of the random population since they are
in some cases covered by the blue bars.
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The random population is as expected and intended far less noisy than the globular cluster population
with a peak at 300km{s. The distinct local peaks of the globular cluster population at 360� 400km{s,
180� 200km{s and 130� 150km{s and the structure below 100km{s are not reproduced and can there-
fore be attributed to noise due to the low number of globular cluster. Therefore, also ncross is expected
to be influenced by the inhomogeneity.
The region for vlow (vlow   100 km{s) is not longer produced by one single object (compare figure 9,
green bars) which evidently overrepresented these velocities. The peaks are smoothed out and blend
into the overall distribution.
In the region above 400km{s the random distribution is permanently in excess of the globular cluster
distribution, meaning the orbit parameters of the latter case responsible for these velocities are under-
represented.
However, the similarity and therefore comparability between both populations is limited. The most sys-
tematical discrepancy found is the eccentricity e (58). Figure 13 plots as an example for the problem the
minimum and maximum distance rmin and rmax from the galactic center within the 10 Gyr integration
time for the 20 random objects based on the globular cluster NGC 1904 versus the maximum height
zmax above the galactic plane. The red line represents the values for the globular cluster itself. Although
rmax stays constant and equals the globular cluster case for all random objects, rmin is decreasing with
increasing zmax. Since rmax and rmin of the globular cluster equal by design the case of the flattened
orbit with zmax � 0, the random orbits are not able to reproduce the eccentricity of globular cluster
with high zmax.

Figure 13: Maximum height above the plane zmax versus the minimum (rmin) and maximum (rmax)
distance from the galactic center within 10 Gyr. Blue: The 20 random orbits based on the globular
cluster NGC 1904, red: The globular cluster itself.

Assuming each object is a black hole of MBH � 104M@, the mean luminosities calculated for each
object reach only in 9 cases (out of 1260) 1039   L   1040 erg

s due to still too high minimum vrel of not

lower than 50kms (see figure 12).
The mean shining time, defined as in section 4 as the time spent within clouds divided by the whole
simulation time of 10 Gyr and times the factor 0.06 for taking into account oscillations in the accretion,
averaged over all 1260 objects, is 1.9�10�6, therefore slightly lower than in the globular cluster population.
Assuming then 5.3 � 105 IMBHs are orbiting on orbits similar to the orbits of the random population,
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then on average, 5.3 � 105 � 1.9 � 10�6 � 1 X-Ray object can be expected to be visible at any given time in
the Milky Way (1036 erg

s   L   1040 erg
s ). For having one ULX with 1039 erg

s   L   1040 erg
s permanent

visible, 1.1 � 107 IMBHs are necessary.
Concerning the first general goal of the random population as described in section 5.1, the results so far
can be summarized as:

• The random population extends the globular cluster population with systematically differing ec-
centricity in the sense, that in the random population rmin decreases with increasing zmax within
one set of orbits based on the same globular cluster. The actual globular cluster value for zmax
and rmin might therefore not be represented.

• Within this limitation, the random population produces a smoothed version of the globular cluster
relative velocity distribution.

• With the constraint that relative velocities vrel   100kms are uncommon and blend neatly into
the overall distribution, all conclusions made in section 4 remain valid. The number of IMBHs
necessary to create one visible X-Ray source at any given time increased from 3.3 � 105 to 5.3 � 105.

5.3.2 Relation between α, e and vrel

The orbit creation in section 5.2 assumed, that the most critical parameters influencing vrel are the
inclination of the orbit α (60) and the eccentricity e (58). According to the goals of section 5.1, this
section empirically derives the relation and enables predictions for vrel.

Figure 14: The mean relative velocity while passing the galactic disc for each of the 1260 random orbits
versus the initial inclination angle α. The random orbits based on the globular cluster NGC 104 (red
downwards triangles), NGC 1851 (yellow upwards triangles) and NGC 2298 (magenta squares) are
highlighted.
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For each random orbit, 1260 in total, the mean relative velocity v̄rel resulting from collisions with molec-
ular clouds while passing the galactic disc is calculated. For the sake of a more accurate statistic, it
is assumed that each disc crossing has a hit probability of 100 %. The mean relative velocity v̄rel is
plotted versus the random inclination angle α in figure 14. The data points for the orbits based on
the clusters NGC 104, NGC 1851, NGC 2298 are highlighted in order to emphasize the trend within
one set of orbits. For α ¡ 90�, implying a negative rotation compared to the sense of rotation of the
molecular clouds, v̄rel saturates towards � 440kms , which equals about twice the rotation velocity of the
disc (figure 1). This corresponds to the relative speed resulting from the collision of two objects circling
with a opposite sense of rotation within the disc on circular orbits. For orbits with a positive sense of
rotation, v̄rel shows a systematic relation with the inclination angle α; lower inclinations correlate with
lower v̄rel. Additionally, lower inclinations result in higher spreads in v̄rel. For values α   20�, v̄rel
reaches its minimum of about 60� 100kms for few orbits, but the spread reaches up to 280kms .
The marked data points, identifying the results of the 20 random orbits based on the same globular
cluster, follow very strictly a monotonous decreasing curve for decreasing angles. This strongly suggest a
direct explicit relation between v̄rel and α. Since such a relation necessarily depends on the complicated
Milky Way potential, the existence of an analytical closed form is unlikely. Given the high density of
data points, such an expression or a fit of the curve are unnecessary. Although each point on a curve for
a given globular cluster basis is defined solely by the inclination angle, the difference between the curves
for different globular cluster imply the influence of at least one further parameter. This parameter is
identified as the eccentricity e.
Figure 15 displays a plot of e versus v̄rel within the narrow range of 0�   α   20� for the inclination. A
clear trend connects high eccentricities with high v̄rel, as motivated in section 5.2. The differences in the

Figure 15: The mean relative velocity while passing the galactic disc for all random orbits with initial
inclination angle of α   20� versus the orbit eccentricity. Symbols as in figure 14.

curves are therefore plausible explainable via their differences in their eccentricities. It is nevertheless
surprising, that eccentricities up to 0.4 are possibly able to create the lowest measured v̄rel. This enables
for example an IMBH to cover within its low inclined orbit the molecular ring down to rmin � 4kpc and
spreading outwards towards 9kpc while achieving v̄rel   100kms .
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In conclusion, the results of the random population based on globular cluster can be summarized as
follows:

• The mean relative velocity v̄rel depends directly on the the inclination α of the orbit with respect
to the disc and its eccentricity e.

• v̄rel   100kms are achievable for disc-like orbits, defined as α   20� and e   0.4

Therefore, in order to create luminosities in the scope of ULXs, only disc-like orbits are possible candi-
dates. However, a closer investigation using the 2D molecular cloud model as presented in section 4.2
becomes for this special case problematic. This is further addressed and solved in section 6.
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6 Thin disc IMBHs

6.1 Overview

The statistically robust results from section 5 clearly indicate, that vrel   100kms and therefore lumi-
nosities of the order of ULXs (compare figure 3) are only reliable achievable for IMBHs with disc like
orbits. This section investigates the possible impact of such IMBHs in three steps:

• Changing the molecular cloud model to fit the special case of orbiting within the disc

• Giving a theoretical motivation for the existence and number of IMBHs in the disc

• Comparing the resulting luminosity distribution with observable X-Ray sources

6.2 Molecular clouds - 3D Model

The 2D model for the molecular cloud distribution as described in section 4.2 does not hold for the case
of orbits with too small inclinations α for two reasons:

Figure 16: Edge-on sketch of the galactic disc visualizing the problem for disc-like orbits. Coordinate
system in the lower left corner; the dashed line indicates z � 0. The height of the disc is approximately
200 pc. The radius of the molecular clouds (gray shaded balls) is in the order of pc to several tens of pc.
The Bondi-Hoyle radius for an IMBH with MBH � 104M@ is 0.009pc (black circle at height zIMBH , not
to scale, otherwise it would be invisible). The red arrow indicates the direction of travel for the IMBH.
The molecular cloud distribution in z-direction becomes evidently important since it influences if a hit
occurs or not.

First, in the 2-D model the molecular clouds have been assumed to be flat objects located in the x-y
plane. This is an accurate model for IMBHs crossing the disc perpendicular, the deviation of the cloud
from z � 0 up to about z � 100pc is negligible and does not effect the question whether or not the cloud
is hit. IMBHs orbiting parallel to the disc at a certain height zIMBH might or might not hit certain
molecular clouds depending on their location in z-direction (figure 16). Therefore, in the latter case the
simplifying 2-D model can not be used.
Second, the 2-D model assumes a static distribution of molecular clouds; only after a hit occurred the
theoretical speed of the cloud assuming a circular orbit is calculated. In the case of orbits in the disc
(figure 16) the relative speed between clouds and IMBH becomes already important in determining the
probability of a hit. For example, an IMBH following a molecular cloud in the very same circular orbit
can never hit the cloud or any other cloud. This effect has been neglected in the 2-D model but needs
to be taken into account for disc-like orbits.

In order to overcome the shortcomings of the 2-D model, in the thin disc simulation presented in this
section all molecular clouds are treated as individual objects which are integrated forward in time analog
to the IMBHs orbits according to (8). The statistical total number N of molecular clouds present in
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the disc today can be calculated using (38) with Mtotal � 1.6 � 109M@, the H2 mass of the whole disc,
and results in N � 5227 molecular clouds.

The radial distance R �
a
x2 � y2 from the galactic center for each cloud is determined by invert-

ing the normalized cumulative function NncpRq based on (38) (compare the analog situation for masses
in (53), (54))

NncpRq � pα� 1q
5227

Mtotalp0, Rq
Mα�1
up

Mup»
104

Mα�1
cloud dMcloud (69)

The angular position of each molecular cloud is determined by a random variable ρ P r0, 2πs,

x � R cospρq
y � R sinpρq (70)

The distance z from the galactic disc is modeled via a normal distribution fpzq with maximum at z =
0 and a standard deviation of H � 100pc,

fpzq � 1?
2πH

e�z
2{2H2

(71)

The normalized cumulative function fncpzq is then

fncpzq � 1?
2πH

z»
�8

e�z
12{2H2

dz1 (72)

Although the integral has no closed analytical form, it can be evaluated and inverted numerically. The
inverted function then results for random variables s P r0, 1s into statistically correctly distributed values
for z.
The initial velocity of each cloud is calculated according to (11). Note that due to the deviations from
a flat orbit (z � 0 in general) the orbit becomes eccentric.
In order to simulate the finite empirical lifetime of molecular clouds of about 10Myr, all molecular
clouds are removed in 10Myr intervals from the simulation and are immediately replaced by an equal
numbered population, again distributed as described above. Due to the different random variables in
both populations, the overall distribution remains constant, but individual clouds vanish and reappear
at different locations, simulating in a simple approximation the dynamics in the galactic disc.

6.3 Existence and number of IMBHs in the galactic disc

As mentioned in section 2.6, numerical simulations of stars in dense star cluster indicate, that IMBHs
may form within about a few Myr by subsequent star/black hole collisions and merging in the core, i.e.
in the bottom of the potential well of the cluster. Although the lifetime of the cluster itself does in most
cases not exceed 100 Myr (Whitmore, 2009), the IMBH, once formed, can be expect to be present in
the disc until today. The mass MBH of the resulting IMBH is expected to be proportional to the total
cluster mass, Mcls and ranges between

MBH � 2 � 10�3Mcls (Freitag et al., 2006) � Case A

MBH � 4 � 10�2Mcls (Portegies Zwart & McMillan, 2002) � Case B
(73)

Demanding MIMBH ¡ 100M@, this limits the mass of cluster capable of creating IMBHs to

Mcls ¡ 50000M@ pCase Aq
Mcls ¡ 2500M@ pCase Bq (74)
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The total number of cluster which fulfil this mass boundary created during the lifetime of the Milky
Way gives a first approximation for the number of IMBH possibly present in the disc today resulting
from this mechanism. For the purpose of calculating this number, it is assumed that the star formation
rate sr in the history of the Milky Way is a constant and equals the value found today, sr � 3 M@

year

(Misiriotis et al., 2006), and all stars are created within star cluster. The empirical relation between
number of star cluster Ncls and their mass observed today follows (Lada & Lada, 2003)

dNcls
dMcls

� γM�2
cls (75)

With γ a constant. Given a total lifetime of the Milky Way of about 1010yr (Chiappini et al., 2013),
then the total star mass in the Milky Way is 3 � 1010M@, which equals the total mass of all cluster:

3 � 1010M@ �
»
Mcls � dNcls �

Mmax»
Mmin

γM�1
cls dMcls (76)

This integral critically depends on Mmin and Mmax, the minimum and maximum possible mass of a
star cluster. Here, two different values for Mmin found in literature are used, Mmin,1 � 20M@ (Lada
& Lada, 2003), Mmin,2 � 50M@ (Piskunov et al., 2008), in order to show the impact on the results
if the number of heavy star cluster is lower (index 1) or higher (index 2). Also, Mmax, the highest
theoretically achievable cluster mass, is a difficult to be determined, but has, as shown in the results, no
severe impact on the IMBH mass distribution. As following from the power law, more massive cluster
are lower in number, therefore in principle less likely to be detected. Therefore, it is not sufficient to
use the highest in the Milky Way observed cluster mass of Mmax � 4 � 104M@ as reported in Portegies
Zwart et al. (2010) in their figure 2. Instead, the sample has to be increased by including nearby spiral
galaxies. A fit of the cluster mass function towards such a sample done by Dowell et al. (2008) results
into an upper mass of Mmax � 107.5M@, which is used here.
The integral then results for γ into

γ1 � 2.1 � 109M@

γ2 � 2.2 � 109M@
(77)

With this, using (75) the total number N of clusters which possibly produced IMBHs can be calculated
(which neglects the time needed to form the IMBH in the cores of (� few Myr)):

Np1,2q �
»
dN �

Mmax»
MpA,Bq

γp1,2q M
�2
cls dMcls (78)

The indices are defined as follows: The different considered lowest observed cluster mass create two
scenarios labeled with index 1 and 2. Additionally, the two different cases which refer to different lowest
possible cluster mass which still enables IMBH formation in the core create two more scenarios, labeled
A and B. Combined, this results in 4 setups labeled pA, 1q, pA, 2q, pB, 1q, pB, 2q respectively. A notation
Xp1,2q or XpA,Bq indicates that the value for X corresponding to the desired scenario needs to be plugged
in.
MpA,Bq refers to the lowest possible cluster mass for creating an IMBH inside the core for the different
cases (see (74)). Evaluating (78) yields the total number of cluster which can create IMBHs for these
four setups:

Case A

NpA,1q � 41934

NpA,2q � 43930

Case B

NpB,1q � 839934

NpB,2q � 879930

(79)

The mass of each cluster is individually determined by inverting the normalized cumulative function
Ncumpmq; this procedure results in a cluster mass distribution which follows (75). Compare for details
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the analog situation for the molecular cloud masses in (53) and (54).

Ncumpmq �

m³
MpA,Bq

M�2
cls dMcls

107.5³
MA,B

M�2
cls dMcls

(80)

The total mass of all IMBHs formed within cluster, assuming all cluster capable of creating IMBHs
indeed do so, equals 1.1% of the mass of the Milky Way for setup (A,1) and 1.2% for setup (A,2). For
setup (B,1) this equals 29.5%; for (B,2), 30.9%.

The spatial distribution is set to be identical to the molecular cloud distribution as presented in section
6.2. This follows the reasoning, that the molecular clouds eventually collapse into star cluster and inherit
their orbit parameters. Note that the transition from molecular clouds into a star cluster is not modeled
here; as described in section 6.2, all molecular clouds vanish and reappear from the simulation after a
lifetime of 10 Myr. In contrast to that, the disc is only once populated with the in (79) defined number
of IMBHs.

6.4 Results

This section presents the results following from integrating the molecular clouds and the IMBHs located
within the thin disc for 10 Gyr and investigates the collisions.
The total number of objects needed to be integrated according to section 6.2 and section 6.3 is of the
order of 104 � 107, which is too much considering the computational time. Therefore the number of
IMBHs is set to 500 and scaled up afterwards accordingly, as described below. The molecular cloud
population is simulated in full number.

The IMBHs, having compared to the molecular cloud radii a negligible Bondi-Hoyle radius (see sec-
tion 3.2), are treated as point objects. As long as an IMBH is inside any molecular cloud, defined as
p∆r { Rcloudq   1 with ∆r the distance between cloud and IMBH and Rcloud defined as in (49), 6 %
of the time spent inside is considered to be ’shining time’ with the luminosity calculated according to
(26); if the Eddington limit (33) is overstepped, the Eddington luminosity is used instead. The reduc-
tion towards 6 % is due to the accretion oscillations mentioned in section 2.3 found in hydrodynamical
simulations done by Park & Ricotti (2011). After 10 Gyr, the shining time of all IMBHs is summed up
with respect to the associated (binned) luminosity Li. The binning of the luminosity L is defined as

L P Li if i   log10pLq ¤ i� 1 (81)

This total shining time is then divided by the integration time of 10 Gyr, resulting in the fraction of
time spent in clouds producing the respective luminosity range. This quantity, called S̄1pLiq, can be
interpreted as the average expected number of IMBHs emitting at any given time with L P Li. As
an example, a value of S̄1pLiq � 2 indicates, that in total within the 10 Gyr integration time so many
IMBHs have been accreting in the luminosity range Li, that, if they would shine all after each other,
20 Gyr of shining time has been produced. This can be understood as the average, that permanently 2
IMBHs are accreting with L P Li within the 10 Gyr integration time.

As a last step, the resulting S̄1pLiq is then multiplied by the factor S̄pLiq � Np1,2qpA,Bq

500 � S̄1pLiq, with
Np1,2qpA,Bq corresponding to the model in (79), in order to take the reduced number of IMBHs into ac-
count. This assumes that the masses and orbits covered by the 500 IMBHs are representative. A plot of
the resulting S̄pLiq versus the luminosity bins Li for the four different setups is shown in figure 17, top.
Blue straight lines correspond to setup (A,1), blue dashed to (A,2), red straight to (B,1) and red dashed
to (B,2). The error bars follow

?
Ni with Ni the number of collisions resulting in the luminosity bin Li,

and are only shown for setups (A,1) and (B,1) for clarity. 18.6% of all collisions result in luminosities
higher than the Eddingtion limit and needed to be capped, causing the peak for 1040   L   1041. This
encourages the consideration of super-Eddington emissions.
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Note here, that the difference between setups (X,1) and (X,2) does only affect the total number of
cluster as represented by the proportional factor γ in equation (78), but not their mass distribution.
This follows directly from equation (80), which is independent of γ. Consequently, the blue dashed lines
are always 5% above the blue straight lines, the red dashed lines always 5% above the red straight lines.
Similarly, an assumption that 5% of the stars are not born in cluster results in additional 5% difference
compared to the results shown. This gives a sense about the degree of sensitivity of the results on the
initial assumptions.
In order to investigate the effect of the different mass distributions assumed in the cases A and B, the

fraction of the unmodified expected number of IMBHs, s1pLiq � S̄1
ApLiq

S̄1
BpLiq

can be calculated. This assumes

both cases, A and B, only consist of 500 IMBHs and allows direct comparsion between the resulting
shining times since the number of objects is identical and only the mass distribution is different. Un-
surprisingly, for low luminosities (1034 erg

s   L   1035 erg
s ) this value is low with s1pL34q � 0.8, meaning

only 80% of the shining time in this luminosity range of case B is achieved in case A. Since case B allows
smaller cluster masses, and due to the dependency of N9 1

Mcls
in equation (80), lighter cluster creating

lighter IMBHs take a higher fraction within the whole population for case B than for case A. This then
results in more low luminosity events. Consequently, the trend reverses for higher luminosities: in case
A more massive IMBHs are present than in case B, causing s1pL41q � 1.4. In the middle, 34   i   41
the ratio is about constant 1, meaning the statistic is too noisy in this region to follow a linear increase
from 0.8 to 1.4.
Figure 17, bottom, visualizes the contribution of each actually simulated IMBH (500 in total) towards
S̄1pLiq. The x-axis refers to the (unbinned) luminosity, the y-axis to the mass of the IMBH causing
this luminosity in a cloud collision. Each blue data point represents one cloud collision (3329 in total)
with the IMBH/cluster mass distributed according to case A (Note: setup (A,1) and setup (A,2) follow
the same mass distribution, therefore produce here an identical plot), the red data points represent
the same collisions but the IMBH/cluster mass distribution follows case B. The green line corresponds
to the Eddington limit. For clarification: The resulting shining time caused by each of the collisions

summed up and scaled up with the factor
Np1,2qpA,Bq

500 produces figure 17, top. Figure 17 bottom reveals,
that in both mass distributions no IMBH is assigned a mass higher than about 3 � 104M@, although the
upper limit in both distributions is 107.5M@, hinting towards a low impact of high mass cluster/IMBHs
due to the mentioned N9 1

Mcls
relation. In general, the constructed mass distribution of IMBHs, either

following case A or B, results in reasonable IMBH masses between 100M@ and 3 � 104M@ with a bias
towards lower masses. This bias is higher for case B, causing only two IMBHs with MBH ¡ 5 � 103M@
while case A causes eight; consequently, case B produces more low mass IMBHs.
This enables the conclusions, that different assumptions for the mass of the in the cluster growing
IMBHs (73) does not significantly change the result qualitatively, only quantitatively due to different N
(equation (79)); this effect of different N dominates the compared to this small difference of up to 40 %
due to the shifted mass distribution.
This can be compared to an assumed constant IMBH mass distribution with MBH � 100M@ for all
IMBHs. The luminosity distribution resulting from this example is plotted in figure 18, assuming the
same number of IMBHs as used in figure 17 and defined in (79). The Eddington limit restricts the
luminosity to be lower than 1.26 � 1040 erg

s . The peak luminosity shifts into the bin L38.

The most influential and not yet addressed parameter in this investigation is the fraction f of massive
enough star cluster which indeed produce an IMBH; so far this value is set to f � 100%. As evidently
following from figure 17, this results in the prediction of several (case A) to several tens (case B) ULX
sources (L ¡ 1039 erg

s ) permanently visible today. Since this is not the case (section 2.7) but X-Ray
sources of lower luminosity are indeed observable, f needs to be adapted accordingly. This is addressed
along with a quantitative investigation of figure 17, top, and figure 18 in the next section.
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Figure 17: Top: S̄pLiq versus the binned luminosity Li (see text). Straight blue: setup (A,1), dashed
blue: setup (A,2), straight red: setup (B,1), dashed red: setup (B,2). (setups defined in (79)). Bottom:
IMBH mass in each cloud collision versus the resulting luminosity; see text for details. Blue: IMBH
mass distribution following case A, red: distribution following case B.
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Figure 18: S̄pLiq versus the binned luminosity Li assuming all IMBHs have a mass MBH � 100M@.
The number of IMBHs follows the four different setups as in figure 17. Straight blue: setup (A,1),
dashed blue: setup (A,2), straight red: setup (B,1), dashed red: setup (B,2))

6.5 Comparison with observations

This section is dedicated to the investigation whether or not the results from figure 17 are possible to
be scaled in a way, that the predictions match with the current observations. If so, a fraction of the
observed X-Ray binary sources which are not confirmed binaries might be identified as IMBHs accreting
in molecular clouds. The scale factor investigated for this purpose is the even in terms of magnitudes
unknown factor f , the ratio between the cluster capable of creating IMBHs and the cluster indeed cre-
ating IMBHs. For simplicity, f is assumed to be independent from the cluster mass. This implies that f
is directly proportional to S̄pLiq.

Following the optimistic case B with 839934 (879930) IMBHs present in the Milky Way today, fig-
ure 17 predicts the permanent visibility of in total 56.3 (59.0) X-Ray objects with luminosities L ¥ 39
(ULX luminosities, see section 2.7). Case A predicts 2.84 (3.14) objects. Since no ULX are observable
in the Milky Way today, this gives a first estimation for f: fA   0.35 and fB   0.018 would result in
less than 1 predicted ULXs.
Another constrain can be provided by comparing the number of observed X-Ray sources in the galaxy
with the predicted. For that purpose, all HMXB and LMXB found in literature (see section 2.4) which
have no orbital period given are considered to be not confirmed X-Ray binaries and therefore possible
candidates for in molecular clouds accreting IMBHs. Additionally, only X-Ray sources in the galactic
disc are considered in order to enable comparability with the thin disc simulation. Since for most of
the HMXB and LMXB sources the distance from the sun is not known, this constrain is applied in the
way, that only sources with galactic latitudes smaller than 5� and bigger than �5� are considered. This
translates into a reasonable disc height of 400 pc at a distance from the sun of 5kpc; a lower angle might
cut out sources close to the sun.
Figure 19 visualizes the selected X-Ray sources in an Aitoff projection of the galaxy. The Aitoff pro-
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jection maps the galactic longitude, l, and latitude, b, onto a 2:1 ellipse with the galactic center in the
middle. The advantage of an Aitoff projection is, that distance and orientation of each point towards
the galactic center are compared to other points proportionally correct. An Aitoff projection is defined
as

xAit �
2α cospbq sinp l2 q

sinpαq
yAit � α sinpbq

sinpαq

(82)

with

α � arccos

�
cospbq cos

�
l

2




(83)

and xAit, yAit the transformed coordinates as seen in figure 19.

Figure 19: Aitoff projection of the galaxy with the galactic center in the middle. Galactic longitude
increases from left p�90�q to right p�90�q, galactic latitude as shown. Plotted are the HMXBs (red) and
LMXB (green) with no known orbital period. These objects are here considered to be non-binary X-Ray
sources. The black lines include all sources with �5�   latitude   5�.

The total number of HMXBs and LMXBs with unknown orbital period is 177, from that 155 are within
�5�   b   5�. The luminosity of the X-Ray objects with known distance reaches up to luminosities
of several 1038 erg

s . The thin disc simulation carried out in this section results for non-ULX objects
(L   1039 erg

s ) into expected 2.1 (2.2) objects for setups (A,1) ((A,2)) and 41.9 (43.9) for case (B,1)
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((B,2)) as shown in figure 17.
This result does not constrain f in any way for case A; even if the massive cluster produce IMBH with
100% efficiency, only a fraction of 1% of the observed possibly non-binary X-Ray sources are expected
to be in molecular cloud accreting IMBHs. However, if so, then also about 3 objects with L ¡ 1039 erg

s
are expected, of which none is observed. Therefore, the most optimistic estimation for f can only be
fA,1   1

2.84 � 0.35 (fA,2   0.32), resulting in one predicted ULX which can be considered in agreement
with the observations. In this case, also about 1 object with L   1039 erg

s is expected, which is of course
also consistent with observations.
For case B, the expected number of non-ULX objects are equal to about 25% of the observed non-binary
X-Ray sources for fB � 1. However, this implies as mentioned in turn 56.3 (59.0) ULXs. Again here
the not existing ULX in the Milky Way constrain fB , fB,1   0.018 (fB,2   0.017) for only one expected
ULX at any given time. This then results into 0.75 (0.75) expected objects with L   1039 erg

s . If case
A and B are regarded as extreme assumptions with a realistic relation between Mcluster and MIMBH

somewhere in the middle, then 0.017   f   0.35.
Even if it is assumed that each cluster produces an identical IMBH with the mass of 100 M@ as seen in
figure 18, ULX luminosities, meaning here accretion close to the Eddington limit, confines f most. Here,
fA,1   0.56, fA,2   0.53 resulting in one expected ULX and 1.7 (1.8) expected objects with L   1039 erg

s .
For case B, fB,1   0.028, fB,2   0.027 cause one ULX and 1.74 (1.74) low luminosity X-Ray sources.
Therefore, the restriction applied by the not observed ULXs in the Milky Way is an inherit problem for
IMBHs in general and can not be overcome by using IMBHs with a low mass.

The results of section 6 can therefore be summarized as:

• Different assumptions about the fraction of cluster mass ending up in IMBHs changes most sig-
nificantly the total number of expected objects, the shifted mass distribution has only a minor
impact.

• The IMBH creation efficiency f in cluster is constrained by the lack of ULXs in the Milky Way
for all assumed IMBH mass distributions: fA   0.35, fB   0.017.

• If f is constrained via the number of ULXs, then less than 1 X-Ray sources in the Milky Way with
L   1039 erg

s is expected to be caused by in molecular clouds accreting IMBHs.
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7 Cluster destruction

7.1 Overview

In this section, the disruptive effect of multiple molecular cloud encounters on star cluster is investigated.
Gieles et al. (2006) derived a single expression for the energy gain in star cluster depending on the impact
conditions. This expression is applied on the globular cluster (section 4) and the disc-like cluster (section
6) simulated for 10 Gyr using the 3D model presented in section 6.2. Other disruptive effects, such as
two body relaxation, mass loss due to stellar evolution or gas expulsion are not considered (Gieles, 2010).

7.2 Cluster energy gain in molecular cloud encounter

Gieles et al. (2006) performed N-body simulations of star cluster while encountering a molecular cloud.
They used the results to motivate and verify the adoption of an analytical closed formular for the total
energy gain ∆E in the cluster due to the encounter.
Their resulting formular is an extrapolation from previous works in this context, namely from Spitzer
(1958) and Binney & Tremaine (1987) and is given as

∆E � 4.4 R2
cls�

p2 �aRcls R3
cloud

	2

�
GMcloud

vrel


2

Mcls (84)

with Mcls the mass and Rcls the radius of the cluster, Mcloud the mass and Rcloud the radius of the
molecular cloud, and p the closest distance between cloud and cluster upon collision.
The initial energy of the cluster E0 can be derived using the results from section 4.2. Assuming a 1

r
density profile (40) for the cluster, virial equilibrium between kinetic energy T (44) and gravitational
potential U (47) results in

2T � �U (85)

ÑMclsσ
2 � 4

9

GM2
cls

Rcls
(86)

with σ the velocity dispersion of the cluster. The total energy E0 is then given as

E0 � |T � U | � |1
2
Mclsσ

2 � 4

9

GM2
cls

Rcls
| � 2

9

GM2
cls

Rcls
(87)

Note that Gieles et al. (2006) used a plummer model (Plummer, 1911) for the density distribution and

derives E0 � 0.19
GM2

cls

Rcls
.

Fit to observations done by Larsen (2004) revealed a mass-radius relationship for star cluster of

Rl � 1.12

�
Mcls

M@


0.1

pc (88)

with Rl the half-light radius of the cluster. Given the different observed density profiles, Portegies Zwart
et al. (2010) suggests Rcls � 1.625Rl as a standard relation widely used.
Although this mass-radius relation has been derived from young stellar clusters in different spiral galax-
ies, it is used in this project as an approximation for both the globular cluster radii and the radii of the
cluster in the disc.
The fractional energy gain of a cluster due to an encounter with a molecular cloud is defined as Ef � ∆E

E0
.

The fractional energy gain translates into increased motions of stars inside the cluster, leading to stars
escaping the gravitational potential. This in turn decreases the total cluster mass; most energy is in
fact lost in stars escaping with high velocities far above the velocity dispersion. The N-body simulations
done by Gieles et al. (2006) reveal, that a fractional energy gain of about 10 corresponds to a mass loss
equal to the total cluster mass. This represents the upper limit at which the cluster can be considered
destroyed. In the following sections the cumulative effect of energy gains on cluster due to several colli-
sions is investigated. In order to give an upper limit for the time until the cluster is destroyed, Mcls is
considered to be constant, ignoring the effect of decreasing mass between encounters.
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7.3 Results

7.3.1 Globular cluster

The globular cluster for which position and proper motions are known (63 in total) together with the
5227 molecular clouds of the 3D model have been integrated for 10 Gyr. Each time a cloud is hit, defined
as ∆r   Rcloud with ∆r the distance from the cluster midpoint to the cloud midpoint, the fractional
energy gain ∆E

E0
as defined in (84) and (87) is calculated. The sum of all fractional energy gains due to

cloud encounters within the 10 Gyr is plotted for each globular cluster in figure 20, top. The clusters
are sorted on the x-axis according to their mean distance from the galactic center R �

a
x2 � y2 while

the hits occur. This sorting is visualized in the bottom plot, in which the same ordering of the globular
cluster is used; the y-axis shows the corresponding mean distance from the galactic center. A direct
plot of the fractional energy gain versus the mean distance from the galactic center is not desirable due
to the high number of data points within the molecular ring (4 � 6kpc). Note that 19 globular cluster
have fractional energy gains of ∆E

E0
¤ 10�5 and are not shown for better clarity in the high energy gain

cases. A energy gain of zero corresponds to no hit. In this case, the mean distance from the galactic
center of the cluster orbit is used for the sorting process.
As mentioned and as the sorting of the cluster reveals, most cluster with high energy gains collide with
clouds in the molecular ring. Outside the ring, beyond 6kpc, the fractional energy gain systematically
decreases, implying less collisions due to the lack of clouds. Mean (orbital) distances below 3kpc result in
a step jump due to the absence of clouds (compare figure 5). The two globular cluster with exceptional
high energy gains are NGC 6838 (∆E

E0
� 9.7) and NGC 5927 (∆E

E0
� 0.7). For NGC 6838, figure 8

visualizes the disc-like nature of the orbit exactly within the molecular ring, making collisions likely and
the high energy gain reasonable. The fact, that the cluster is observable and has not been destroyed
within its lifetime of 14� 16Gyr (Hodder et al., 1992) as the fractional energy gain of 9.7 within 10 Gyr
suggest, leads to the conclusion that the cluster has been more massive in the past. Indeed, the todays
observed mass for NGC 6838 is 36700 M@ (Harris, 1996) while the mean mass of all here investigated
cluster is with 450851 M@ one magnitude higher. The energy gain of the other globular cluster is
compared to this example insignificant; a fractional energy gain of 0.1 corresponds only to a mass loss
of about 1%. To conclude:

• With the exception of NGC 6838, globular cluster are not expected to suffer significant mass losses
or even destruction due to molecular cloud encounters within 10 Gyr.

7.3.2 Thin disc cluster

The main difference between globular cluster and thin disc cluster in terms of molecular cloud colli-
sion is the frequency with which they collide with clouds and the relative velocity by doing so. The
mean number of cloud collisions averaged over the globular cluster population within 10 Gyr is 1.3
collisions per cluster (with many cluster having no collisions), the mean number averaged over the thin
disc cluster population is 6.7 collisions per cluster. Additionally, as shown before, the relative velocity
vrel is expected to be lower. According to equation (84), the fractional energy gain with lower vrel is
higher. Combining the higher collision probability and lower vrel, thin disc cluster are expected to be
destroyed on far shorter timescales than the globular cluster. This section derives a lower limit of sur-
vived star cluster with the probability to host an IMBH until today by assuming a destruction if ∆E

E0
¡ 1.

Case A and case B as defined in section 6.3 produce different cluster destruction probabilities, be-
cause case A assumes only cluster with Mcls ¡ 50000M@ are capable to host IMBHs, while in case B
cluster are assigned with masses Mcls ¡ 2500M@. Since according to equation (84) more massive cluster
are expected to survive longer, differences between both cases are to be expected. Note that the mass
distribution of the cluster is independent of whether scenario 1 or 2 is used since these scenarios only
determine the total number of cluster, as expressed in the scale factor γ in equation (78). The mass
distribution, defined in (80), is independent of γ.
Figure 21, top, presents the total fractional energy gain for 500 simulated thin disc cluster populated in
the same way as in section 6 within 10 Gyr. The cluster mass is distributed following case A (blue), or
case B (red), both distributions are applied towards the same simulation, revealing directly the impact
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of different cluster masses. The total fractional energy gain of a cluster is the sum of all individual
fractional energy gains calculated upon collision according to (84) and (87), with a collision defined as
∆r   Rcloud with ∆r the distance from the cluster midpoint to the cloud midpoint. The energy gains
of the clusters are plotted against a column of numbers in the order of increasing mean distances from
the galactic center; figure 21 bottom translates the column of numbers into the mean distances.
Analog to the globular cluster case, mean distances in the molecular ring result reliable into higher
energy gains. However, also outside the ring destruction due to single close encounters are possible.
If Qptq is defined as the fraction of cluster destroyed after the time t in the simulation has passed,
then Qp10 Gyrq � 0.68 for case A, meaning 68 % of all cluster are destroyed within 10 Gyr. (Case B:
Qp10 Gyrq � 0.74).
In order to find out the fraction of cluster which possibly created an IMBH within their lifetime and
are still alive today, the different points in time at which the cluster are formed need to be taken into
account. If s is a random number in the interval s P r0, 1s and Q�1 is the inverse function of Q, then

l � Q�1psq (89)

can be interpreted as a lifetime l of an individual cluster. The lifetime is therefore chosen in the following
way: if a whole cluster population is associated with l with different random numbers s for each cluster,
the cluster destruction fraction depending on time follows Qptq. As a next step, the total lifetime of
the Milky Way is discretized in time steps ∆t with n � ∆t � 10 Gyr. Assuming now at each time step
i � ∆t are N cluster born and each cluster is associated with an individual lifetime lpsq, and all cluster
overstepping their lifetime are destroyed, then the total number of ’alive’ cluster for each time step
Napt � i �∆tq with i � p1, ..., nq can be determined. A cluster is considered alive if it has already been
created and its lifetime is not yet overstepped. The fraction

Napi∆tq
N � n (90)

then represents for i = n the fraction of cluster which are possibly able to create an IMBHs within
their lifetime and are still alive today. Figure 22 shows a plot of (90) for ∆t � 20 Myr and N � 5000.
As a result, in case A (blue), 51% of all cluster which can possibly contain an IMBH are after 10Gyr
(= today) not destroyed due to molecular cloud collisions. The different mass distribution in case B
(red), allowing lighter cluster to create IMBHs, results in only 46% still intact cluster, mirroring the
implication of equation (84) and (87), that lighter cluster are destroyed faster. In conclusion,

• Star cluster within the thin disc are likely to be destroyed due to molecular cloud collisions: For
case A, after t = 10 Gyr, 68% off all cluster which have been present since t = 0 have been
destroyed (74% for case B)

• Taking into account star cluster are born successively during the lifetime of the Milky Way, only
49% (case A) off all cluster born until t = 10 Gyr have been destroyed (54% for case B), implying
that about half of all IMBHs which have been created in star cluster have already lost their host.
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Figure 20: Top: Fractional energy gain ∆E
E0

due to molecular cloud collisions of globular cluster versus
a column of increasing numbers. The globular cluster are associated with the numbers in the order of
increasing mean distance from the galactic center Rmean while the collisions occur. Bottom: The same
column of numbers plotted versus Rmean of the corresponding globular cluster.
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Figure 21: Top: Fractional energy gain ∆E
E0

due to molecular cloud collisions of 500 thin disc cluster
versus a column of increasing numbers. The cluster are associated with the numbers in the order of
increasing mean distance from the galactic center Rmean while the collisions occur. Blue: the cluster
mass distribution follows case A. Red: case B. Bottom: The same column of numbers plotted versus
Rmean of the corresponding cluster. Note that this curve is identical for case A and B since different
cluster masses do not affect the position of collisions with molecular clouds.
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Figure 22: Fraction of alive (= not destroyed and already created) cluster over the total number of star
cluster born in the whole lifetime of the Milky Way. Blue: cluster mass distribution and therefore Qptq
following case A. Red: case B.

57



8 Summary

This project investigates the possible impact of different assumed IMBHs populations in the Milky Way.
The idea followed is, that IMBHs create detectable X-Ray luminosities while passing through molecular
clouds in the galactic disc.
The modeling of the resulting luminosity in an accretion process within a molecular cloud revealed,
that, assuming Bondi-Hoyle accretion as an upper limit, the luminosity critically depends on the relative
velocity L9v�3

rel between IMBH and cloud and is almost insensitive to the cloud mass, L9M�0.43
cloud . For

luminosities in the ULX regime, vrel   100kms are required.
The orbits of three different assumed IMBH populations have been numerically integrated for 10 Gyr.
For each collision with a molecular cloud, vrel has been measured and translated into a luminosity.
As a first step, globular cluster orbits have been used as an analogy for the unknown IMBH orbits
representing objects located mostly outside the galactic disc. Therefore, the orbit and resulting cloud
collisions of each globular cluster for which position and proper motions are known (63 in total) have
been investigated. The probability to hit a cloud while crossing the galactic disc is highest within the
molecular ring located at a distance from the galactic center of about 4-6 kpc; the high concentration of
clouds in this ring results in a collision probability of about 3%. With the exception of NGC 6838, no
globular cluster orbit achieves vrel below 80km{s, resulting, if an IMBH mass of MBH � 104 is assumed,
in luminosities below 1039 erg

s . Although NGC 6838 can potentially create an ULX, the fraction of time
shining with such a luminosity (’shining time’) is below 10�4 years per year, making single IMBHs, such
as IMBHs residing in fact within globular cluster, difficult to detect via this mechanism. However, if
a sufficient high number of IMBHs on globular cluster orbits are assumed, then a cloud collision with
any of them becomes likely enough so that at any given time one X-Ray object can be expected to
be observed. Quantitatively, if the shining time is averaged over the whole globular cluster population
(resulting in 3 �10�6 years per year), then 3.3 �105 IMBHs are required to produce on average one X-Ray
object at any given time.
An inherit flaw of the globular cluster analogy is the low number of available orbits to investigate.
The next step in this project increases this number by creating an artificial population based on the
globular cluster orbits but with random inclinations α towards the galactic disc, resulting in total in
1260 different orbits. As intended, this random population is a meaningful extension of the globular
cluster population and creates similar results in terms of vrel but with less statistical noise due to too
low numbers. It is confirmed that vrel below 100kms for those halo-like orbits is only rarely achieved (in
1.3% of all collisions). ULX luminosities are therefore rare and only reached during 9 different collisions.
The mean relative velocity averaged over all collisions is 356.3kms . The mean shining time compared to
the globular cluster value corrects down to 1.9 �10�6; the number of IMBHs required to orbit in the same
way as the random population in order to create on average one X-Ray object at any given time changes
therefore to 5.3 � 105. Given Rashkov & Madau (2014) theorized 70 to 2000 IMBHs should be present
today in the Milky Way halo assuming massive black hole seeds were common during galaxy formation
(which could explain the fast growth of supermassive black holes), then this work concludes, that only
in a small fraction of time, namely 1.3 �10�4 up to 3.8 �10�3 years per year, one of those halo-like IMBHs
should be observable as X-Ray object in the galactic disc due to accretion within molecular clouds. This
means the search for halo-like IMBHs via this mechanism would be nearly impossible.
If v̄rel is defined as the mean relative velocity averaged over all collisions of one particular IMBH, then
the random population additionally proves a direct relation between v̄rel, the inclination angle α and
the orbit eccentricity e. Given this, the orbits with the highest expected relative velocities have been
identified as disc-like orbits defined as orbits with α   20� and e   0.4.
This leads to the last investigated assumed IMBH population, the disc-like population. It is assumed
that each star cluster with sufficient high mass can create within its center an IMBH with the probability
f . Given this and tracing back the cluster formation process towards the beginning of the Milky Way,
then, with f = 1 (meaning 100 %), between 41934 (case A) and 879930 (case B) IMBHs can be expected
to be present today in the Milky Way, depending on the lowest cluster mass which still enables the
cluster to create an IMBH. Simulating this population reveals, that about 3 (case B: almost 60) ULX
should be visible at any time in the Milky Way. Given that no ULX are observed today, this in turn
constrains f towards fA   0.35 and fB   0.018. Freitag et al. (2006) performed N-body simulations
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investigating the core collapse into massive objects within cluster and concluded, that presumably more
than 20% of all globular cluster indeed created IMBHs in an early stage (� few Myr) of their formation.
Using their assumptions (case A), this work concludes, that for (open) cluster within the disc, less than
35% of all cluster can create IMBHs. This work therefore provides an upper limit on the lower limit
given in literature by investigating the observational consequences of too high f .
Applying this constrain, less than 1 non-X-Ray source (L   1039 erg

s ) is expected to be visible at any
given time. Therefore, only less than 0.6 % of all today observed X-Ray sources in the Milky Way disc
are expected to be caused by in molecular clouds accreting IMBHs. This proves, that a detection of disc-
like IMBHs is as difficult as the detection of halo-like IMBHs using the effect of X-Ray creation within
molecular clouds. This also implies, that no more than 14677 (case B: 15839) IMBHs are expected to
be present within the galactic disc, otherwise one ULX would be expected to be observable at any given
time.
About 49 % (case B: 54 %) of the in the disc present IMBHs which have been formed during the lifetime
of the Milky Way within star cluster cores have already lost their host cluster due to perturbation during
molecular cloud encounters. In a similar way, the globular cluster NGC 6838 is expected to be destroyed
within 10 Gyr on its present orbit. Since the cluster with an age of 14 � 16Gyr is evidently observed
today, it had to be more massive upon creation than it is measured today. With the exception of NGC
5927, all other investigated globular cluster are expected to suffer a mass loss of only up to 1% due to
molecular cloud encounters.
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