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Abstract

Population growth, infrastructure and economy puts pressure and demand on the
existing power supplies. It puts strains on the current power systems which causes
instabilities in the systems. This is an ongoing challenge which needs an immediate
solution. The objective of this thesis is voltage stability. This is examined with the
help of constructing a small power system using a programming language called
Matlab. Optimization tools provided by Matlab are used to find the maximum pos-
sible pre-contingency load, while still maintaining a stable system. To find feasible
solutions in Matlab, system models, such as load models and power line models are
simplified.

The results show that a system which has experienced a fault can successfully
recover by using a linear load recovery model and an exponential load recovery
model. Certain constraints, such as generator ramping and limitations on the field
voltages in the generators are implemented. Feasible solutions are found although
constraints might have made it more difficult under the course of this study.

These findings are rough approximations of how a small power system can op-
erate. Though, this can give valuable information on how a more complex system
might act before and after a contingency as well as suitable recovery paths.

Although the thesis is more suited for those who have some knowledge in con-
trol or power systems, a reader without a technical background can enjoy the paper
too.
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List of abbreviations and
keywords

Definition of abbreviations and keywords used in the study.

• Contingency: An event, e.g. a faulty line, that might happen in the future
which causes problems in the network

• Pre-contingency load: Load before a fault.

• Post-contingency load: Load after a fault.

• Voltage collapse: When the voltage in a system is so low that it decreases to
zero leading to a blackout.

• pre: Pre-contingency (before a fault has occurred).

• post: Post-contingency (after a fault has occurred).

• m-file: A Matlab file.
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1
Introduction

The Chapter explains the historical information about a specific Swedish power
failure. It also explains the objective and methods used, as well as the outline of the
report.

1.1 Historical Background

In 1996 the Swedish electricity market was deregulated to introduce competition for
trade and production of electricity, according to [ 2014]. Today, the Nordic coun-
tries, except Iceland, have a common electricity market. Swedish Energy, a trade
association which consists of 380 companies in the energy sector, have a goal of
having a single European electricity market [ 2014]. However it is not possible to
choose the network operator that distributes power, even with the reforms made in
the 90’s since one single company may have monopoly of a local power grid.

The infrastructure of an electrical grid1 is of importance for stability. A large
part of Swedish electricity is from hydropower plants which are mainly located in
northern Sweden, while the highest demand is in the south.

23rd of September, 2003, southern Sweden was hit by a blackout. 1,5 million
people were without electricity, some for 5 hours, which resulted in an estimated
power loss of 10 million kWh and economical loss of 500 MSEK. The power fail-
ure was due to the several reasons. The main triggers were; an internal fault in the
nuclear power plant at Oskarshamn and a switchyard failure at Horred close to Var-
berg. These events put an extreme stress on the backbone of the power system which
caused a voltage collapse2 in Southern Sweden, the south link between Varberg and
Norrköping, and Danish Själland and Bornholm [ 2014].

There are various ways of preventing blackouts. One option is to build new
lines and spread out the distribution. However, this might be quite expensive. A

1 An electrical grid is an interconnected network which delivers electricity to consumers from suppli-
ers.

2 A voltage collapse occurs when the voltage in the system is so low that it can not be saved or increased
to a stable level. A voltage collapse leads to a blackout.
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1.2 Motivation and Goal

more economical approach is to enforce a control system which can be triggered
whenever an unusual event occurs in the power system.

A simple example of a power system is shown in Figure 1.1. This power system
will be explained greater in a later chapter. It might be useful to give the reader
some introduction to components in the system with the help of Figure 1.1. The
system in Figure 1.1 contains three circular symbols (Pg1, Pg2 and Pg3) in the system
which symbolize generators. The smaller rings which are connected to each other
are transformers. A line can be defined between two busbars and a load is described
as an arrow. The two plates against each other (B) is a capacitor. How some of these
components function will be explained in the Chapter 2.

Figure 1.1 An example of a power system from [Karystianos et al., 2007]. The
power system consists of three generators Pg1, Pg2 and Pg3 that are connected to the
network via transformer. The transformers are positioned between busbars 1-5, 2-6,
3-7 and 4-7. The load and the capacitor (B) are in parallel and connected to busbar 4.

1.2 Motivation and Goal

As mentioned in the Background, a blackout can be prevented either by reinforcing
the power system or by using control actions. This challenge is of great interest
since electricity is a vital resource in todays society.

This thesis focuses on control, especially preventing voltage collapses. The in-
terest in the study lies in using control actions as a way of preventing blackouts
rather than reinforcing the network, since building new lines is generally regarded
as expensive.

Course literature and research papers were used to extract knowledge in this
field. Lecture scripts [Andersson and Franck, 2012] and [Andersson, 2012] gave a
basic understanding while more advanced theory came from articles such as [Ha-
mon et al., 2013], [Eriksson et al., 2011] and [Perninge, 2013]. Equations taken
from lecture notes and articles are presented in Chapter 2.

Studying a small system before and after a fault, might reveal that certain control
actions can prevent the system from a total collapse. Stability assessments can also
be done to find post-contingency corrective control, i.e. control actions that will

13



Chapter 1. Introduction

save a system from partly or complete failure after a fault. Paper [Perninge, 2014]
examines post-contingency control in a security-constrained optimal power flow.
The paper investigates stability after a fault while having certain contraints on the
system. The restrictions may be on the generators’ production or the field voltage
in the generators. This point of view is interesting and relevant in this project. The
main focus will be on the pre-contingency load which is the load before the fault
occurs. The goal is to maximize this load and still have a stable system after a
contingency.

1.3 Tools

Most of the programming was done in Matlab. Verifications of the results were also
done in Matlab.

Matlab
Matlab is a program used for numerical computation, visualization and program-
ming. Optimization-tools provided by Matlab where essential in the thesis. The
two main tools were fsolve and fmincon. Both these commands can solve nonlinear
equations. The main difference between the commands is that fmincon solves opti-
mization problems while fsolve solves a systems of equations. Another thing which
sets the tools apart is possibility to have constraints. Fsolve tries to find a static
equilibrium with system equations while fmincon minimizes an objective function
with static equilibrium while satisfying constraints. How these tools were used will
be profoundly explained in Chapter 4.
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2
Network Models of Power
Systems

There are different ways to model power systems using power flow equations for
various situations. This chapter will give an overview of common components in a
power system and the models used in this master thesis. Most equations are taken
from lecture notes [Andersson and Franck, 2012] and [Andersson, 2012], therefore
all terminologies and details of power systems will not be explained but can be
found in the references.

2.1 Lines, Loads and Generators

Lines
In Figure 1.1, a power line is represented by a straight line (e.g. line 5-6 which is
connected to busbars 5 and 6). The lines in the figure are connected to busbars. An
equivalent circuit diagram of a line element, which can be seen in Figure 2.1, is de-
rived from a single line element. An infinitesimal line element is considered where
voltages and currents can be described by a differential equation of the assumed
homogeneous line. By using Maxwell’s field theory, the electromagnetic effect of
the power line can be analyzed. The per unit length capacitance and inductance
are assumed constant along the line and the characteristic of the power line is the
propagation of a wave [Andersson and Franck, 2012].

Depending on the length of the line, different assumptions can be introduced.
One useful assumption is the lossless power line i.e R’=G’=0, meaning no active
power will be lost across the line.

Another commonly used line model is the two-port model, also known as π-
model, see Figure 2.2. The shunt admittance of the line is split in half and connected
to each side of the circuit. Even this model can be simplified, further information can
be obtained from [Andersson and Franck, 2012]. From [Andersson, 2012], we have:
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Chapter 2. Network Models of Power Systems

Figure 2.1 Equivalent circuit diagram from [Andersson, 2012]. The resistance
(R’), the inductance (L’), the conductance (G’) and the capacitance (C’) are all in
per km. i is the current and u is the voltage. The denotations dx, di and du stands for
infinitely small changes in distance, current and voltage.

Figure 2.2 π-model from [Andersson and Franck, 2012]. U1 and I1 are the voltage
respective current on the primary side and U2 and I2 are the voltage and current on
the secondary side. Zl is the line impedance and

Y q
2 is the shunt admittance.

R’ = series resistance/km per phase (Ω/km)
X’ = series reactance/km per phase(Ω/km)
B’ = shunt susceptance/km per phase (Siemens/km)
G’ = shunt conductance/km per phase (Siemens/km)

Assume k and m are two nodes, then the parameters above can characterise the
series impedance, Zkm (Ω), and shunt admittance, Y sh

km (Siemens) between the nodes.

Zkm = Rkm + jXkm (2.1)

Y sh
km = Gsh

km + jBsh
km (2.2)

Computing the series admittance from node k to node m in the nodal admittance

16



2.1 Lines, Loads and Generators

matrix y1,

ykm = z−1
km = gkm + jbkm (2.3)

The complex voltages (E) at the terminal nodes k and m are known as,

Ek =Uke jθk (2.4)

Em =Ume jθm (2.5)

where θ is the phase angle at a node, hence θkm = θk−θm.

The complex currents (I) can be expressed as a function of the difference be-
tween two complex voltages (E) at their branches and the admittance (y) of the
power line. The current is defined as positive when injecting a bus and negative
when leaving one.

Ikm = ykm(Ek−Em)+Y sh
kmEk (2.6)

Imk = ykm(Em−Ek)+Y sh
kmEm (2.7)

The complex power (S) can be derived using the complex voltage and complex
conjugate of the current (I∗)2,

Skm = Ek ∗ I∗km (2.8)

and the active power (P) and reactive power (Q),

Pkm =U2
k gkm−UkUmgkm cos θkm−UkUmbkm sin θkm (2.9)

Qkm =−U2
k (bkm +bsh

km)+UkUmbkm cos θkm−UkUmgkm sin θkm (2.10)

Loads
The load is drawn as an arrow in Figure 1.1. Generally loads can be expressed by
their current consumption Iload

km ,

Iload
km = Iload

km (Uk) (2.11)

1 Lower case letters are used for components given in the per unit system while upper case letters are
used when elements are in SI-units. The per unit system is explained in the appendix.

2 A star (*) above a complex variable indicates it’s a conjugate.
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Chapter 2. Network Models of Power Systems

where the function Iload
km (·) describes the steady state load characteristics which is

dependent on the voltage Uk. More often loads can be described by the amount of
active and reactive power they use,

Pload
k = Pload

k (Uk) (2.12)

Qload
k = Qload

k (Uk) (2.13)

While loads are current-”consumers”, generators are current injectors. Generator
voltage is primarily determined by the reactive power injected into the node.

The exponential load model, equations (2.14) and (2.15), is found in [Van Cut-
sem and Vournas, 1998], where P0 and Q0 are the inititial values of active and reac-
tive power. V0 is the reference voltage. α and β are exponents which are determined
by the type of load one has e.g. lights, motor, heating etc.

P = P0(
V
V0

)α (2.14)

Q = Q0(
V
V0

)β (2.15)

The exponential load model can be sensitive to low voltages beneath a certain
threshold e.g. V < 0.6. Too low voltage can result in load shedding or different
load characteristics.

A simple load model is static, where the load remains constant at all times. For a
more accurate thus more complicated description of a load, dynamic behavior has to
be included, meaning the load changes with time. From [Van Cutsem and Vournas,
1998], the general load model depends on the instantaneous value of a load state
variable, denoted x:

P = Pt(z,V,x) (2.16)

Q = Qt(z,V,x) (2.17)

where Pt and Qt are smooth functions called the transient load characteristics. V is
the voltage and z is the load demand. A smooth differential equation is included in
the dynamic model, see (2.18).

ẋ = f (z,V,x), (2.18)

and at steady state the following algebraic equation holds:
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2.1 Lines, Loads and Generators

0 = f (z,V,x) (2.19)

Equation (2.18) will detemine the recovery path of the load after a contingency.
This equation can take many different form but most important, it can be simplified.
With some alterations which can be studied in [Van Cutsem and Vournas, 1998], the
two equations below can be obtained:

P = Ps(z,V ) (2.20)

Q = Qs(z,V ) (2.21)

where Ps and Qs are the steady-state load characteristics which are not dependent
on the load state variable x. Since the dynamic load model can be complicated to
implement due to the differential equation, simplifications were done in this thesis.
The load equations used in this project are found in Chapter 3.

Generators
Generators are seen as circles in the power system diagram, see Figure 1.1. The
generator model used in the thesis was a synchronous machine called the Stationary
Single Phase Equivalent Circuit from [Andersson, 2012] and can be seen in Fig-
ure 2.3. It is assumed that a generator has an automatic voltage regulator (AVR). An
AVR is a device which automatically keeps a constant voltage level. Each generator
is described by the equations below, also found in [Eriksson et al., 2011].

δ̇ = ω (2.22)

ω̇ =
1
M

(Pm−
E ′qU
x′d

sin(δ −θ))−Dω (2.23)

Ė ′q =
1

T ′do
(E f −

xq

x′d
E ′q +

xd− x′d
x′d

U cos(δ −θ)) (2.24)

Ė f =
1
Te

(−E f −KA(Ure f −U)) (2.25)

where δ is the rotor speed and ω is the rotor speed deviation. E ′q∠δ and U∠θ

are voltage phasors in the generator and the terminal respectively. T ′do and Te are the
time constants for the d-axis transient open-circuit3 and exciter. Pm is the mechanical

3 The time constants for the d-axis transient open-circuit characterizes the initial decay of transients in
the d-axis variables in a synchronous machine with stator windings open-circuited. A synchronous
machine has two axis, a d-axis and a q-axis. More information about the axis of a synchronous
machine is found in [Andersson, 2012].

19



Chapter 2. Network Models of Power Systems

Figure 2.3 The Stationary Single Phase Equivalent Circuit from [Andersson, 2012]

power from the generator shaft while D is the shaft damping constant. The generator
inertia is given as M. The synchronous reactance and the transient reactance on the
d-axis, are xd and x′d . E f is the generator field voltage and Ure f is the set-value of
the connecting terminal bus voltage. KA is the gain for the AVR. At steady state Ė ′q
and Ė f are zero. Hence, a dot above a capital letter indicates it is a time derivative,
e.g. Ė f is the derivative of the field voltage.

The expression for active and reactive power generated in a generator,

Pg =
UEq

xd
sinθ (2.26)

Qg =
−U2

xd
+

UEq cosθ

xd
(2.27)

2.2 Nodal Formulation of the Network Equations

Applying Kirchoff’s Current Law e.g. the current injection at each bus can be de-
termined e.g. at bus k,

Ik + Ish
k = ∑

m∈Ωk

Ikm, f or k = 1, ...,N (2.28)

where k is a generic node, Ik is the net injection from generators and loads, Ish
k

is the current injection from shunts reactors and m is a node adjacent to k. Ωk is the
set of nodes connected to k and N is the number of nodes in the network. This is
also illustrated in Figure 2.4. A relationship between current injection vector I with
elements Ik, k=1,...N, nodal voltage vector E with elements Ek =Uke jθk and nodal

20



2.3 Basic Power Flow Problem

Figure 2.4 Net injection of a node from [Andersson, 2012]

admittance matrix Y = G+ jB, can be expressed the following way,

I = Y E (2.29)

2.3 Basic Power Flow Problem

To formulate a basic power flow problem four variables are needed at each bus k,
[Andersson, 2012]:

• Uk = voltage magnitude

• θk = voltage phase angle

• Pk = net active power (sum of generation and load)

• Qk = net reactive power (sum of generation and load)

Three types of buses can be determined depending on which variables are known:

• Uθ -bus (slackbus): Uk and θk are known; Pk and Qk are calculated

• PQ-bus: Pk and Qk are known; Uk and θk are calculated

• PU-bus: Pk and Uk are known; Qk and θk are calculated

21



Chapter 2. Network Models of Power Systems

The slack bus, also known as the reference bus, has two functions in the power flow
problem. First it serves as a voltage angle reference and secondly it balances gen-
eration, load and losses of active power in the system. PQ-buses usually represent
load buses without voltage control and PU-buses are normally buses with voltage
control. The most common bus type in systems is the PQ-bus. Let’s use Figure 1.1
as an example. Pg1 could be a slack bus which balances the production and the con-
sumption in the system. Pg2 and Pg3 could be PU-buses if they have AVRs4 that
control the voltage at their terminals. The load node would be a PQ-bus since it’s
missing a voltage regulator.

All voltage magnitudes and voltage angles can be computed in a fully specified
system. But as mentioned before, this information is not always given for all buses,
only for the slack bus. This problem can be solved by using numerical methods by
setting up a power flow problem. How to set up and solve a power flow problem can
be read in G. Andersson’s lecture script, Power System Analysis [Andersson, 2012].
When the problem is formulated, different numerical methods can be used to obtain
all voltage angles and magnitude in all nodes. Common methods are Gauss-Seidel
Iteration and Newton-Raphons Method.

A rough estimation of the Power Flow Problem was used in this thesis. Equa-
tions for the rough estimates can be found in [Andersson, 2012]. Approximative
methods are mostly used to identify critical cases or to find initial guesses which
are then used in the full model for a complete solution of the system. The following
equations hold for transmission lines:

Pkm =U2
k gkm−UkUm cos(θkm)−UkUmbkm sin(θkm) (2.30)

Pmk =U2
mgkm−UkUm cos(θkm)+UkUmbkm sin(θkm) (2.31)

Qkm =−U2
k (bkm +bsh

km)+UkUmbkm cos(θkm) (2.32)

Qmk =−U2
m(bkm +bsh

km)+UkUmbkm cos(θkm) (2.33)

where the nodal admittance matrix is defined as,

bkm = bmk =−x−1
km (2.34)

bkk = ∑
m∈Ωk

x−1
km (2.35)

For high-voltage systems there are strong couplings between P and θ and Q and U
which can be transformed into a linear approximation. In addition to this simplifi-
cation the shunt admittance and series resistance in the line can be neglected giving

4 Automatic voltage regulator (AVR), controls the voltage at a specific node so it maintains constant.
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2.4 Power System Stability

the following equations,

Pkm =U2
k gkm−UkUm cosθkm−UkUmbkm sinθkm ≈−UkUmbkm sinθkm (2.36)

Qkm =−U2
k (bkm−bsh

km)+UkUmbkm cosθkm ≈UkUmbkm cosθkm (2.37)

2.4 Power System Stability

A correct way of modeling a power system includes dynamic behavior which is
modelled by differential equations. A good example of a unit in a power system is
an electric load consumer. The load demand might vary spontaneously with time,
never bringing the system to a steady state. This problem will mathematically be
difficult to solve and can be simplified. Though simplifications may make it easier
to evaluate the system, one ought to keep in mind what information is left out.

Since this thesis deals with stability issues in a system when a fault occurs, it is
useful to know some general information about faults in networks. There are many
types of faults that can occur in a power system which can be classified as shunt or
series faults . A shunt fault occurs when an unwanted connection between phases
or a connection between phases and ground occurs. An example of a shunt fault
is the very common Single line to ground fault, where one phase has a connection
to ground. A series fault is a failure along a power line that causes undesirable in-
terruptions or connections in the network. An example of a series fault is when a
breaker does not trip on command. This type of event leads to asymmetrical oper-
ating conditions which can damage the equipment in the system. The combinations
of faults are many but more information about them can be retrieved from chapter
7 in [Andersson and Franck, 2012]. Small disturbances will cause transients in the
network which can damp out with time. Larger disturbances on the other hand will
cause oscillations that will give rise to stability issues. The definition of stability is
quoted from [Andersson, 2012]:

Power system stability is the ability of an electric power system,
for a given initial operating condition, to regain a state of operating
equilibrium after being subjected to a physical disturbance, with most
system variables bounded so that practically the entire system remains
intact.

This implies that a stable system is able to recover, find an equilibrium and operate
after a disturbance. Classification of power system stability can be made depending
on active or reactive power imbalance, locally or globally. Figure 2.5 is an overview
of the classification of stability in power systems and the main focus will be on volt-
age stability. The other stability classes will briefly be explained before continuing
on to voltage stability.
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Chapter 2. Network Models of Power Systems

Figure 2.5 Classification of power system stability from [Andersson, 2012].

Synchronous Stability and Frequency Stability
Synchronous Stability, also known as Rotor Stability, is the ability of synchronous
machines to maintain synchronism in a power system after a disturbance. The dis-
turbance may be an active power imbalance between prime mover, e.g. hydro and
steam turbines, and loads. Since the net active power from energy producers should
be equal to the power demand from loads and losses in the system, machines with
rotating parts will try to compensate the mismatch by increasing or decreasing the
kinetic enegry in their moving parts. The attempt to correct the energy gap will
force the machines with rotating parts to fall out of synchronism. Locally a single
generator can fall out of step due to a fault occuring close to it. One example is
an earth fault close to the generator, which will result in high currents flowing in
the generator windings forcing it to disconnect to avoid substantial damages to the
machine. This type of disturbance is called Transient Instability due to the lack of
synchronism of the generator torque. Insufficient damping of oscillations is classi-
fied as Small-Disturbance Rotor Angle Stability. It determines how well a system is
able to maintain in sync during a small disturbance.

The previous power imbalance was local, a corresponding problem on a global
scale will affect the frequency of the entire system. As in the past paragraph, active
power difference between production and consumption will force rotating parts in
synchronous machine to compensate for the imbalance. These machines will supply
missing energy by utilizing kinetic energy stored in moving parts or by converting
excess power, stored kinetic energy in rotating machine parts. This sort of instability
will significantly affect the frequency of a power system. Decreasing or increasing
active power generation in the system must be enforced, otherwise it can result in
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2.4 Power System Stability

Frequency Instability. The time scale of Frequency Instability is quite varying, from
a few seconds to several minutes.

Voltage Stability
[Andersson, 2012] defines Voltage Stability the following way:

A system is said to be voltage stable if an increase in load admit-
tance results in an increase in load power.

The definition says, that a system is stable if an increase in load will lead to an
increase in load power, satisfying the energy demand.

It is easier to balance the active power than the reactive power in a power system.
The lack of reactive power injection in a node will cause the voltage at the same
node to decrease. (The other way around is also possible. A high reactive power
injection can cause a high voltage which might damage the equipment in the power
system). It is indeed recognised that reactive power and voltage are coupled to each
other. An increase in reactive power will rise the voltage level and vice versa.

While active power is considered as a global quantity, reactive power is regarded
local because of the extensive reactive power losses across power lines. Normally
the relationship between resistance (R) and reactance (X) is R << X in power lines,
making the reactive power loss more evident than the active power loss.

When a reactive power imbalance occurs in a power system, voltage problems
appear, creating Voltage Instabilities or worse, a Voltage Collapse. Usually, it is the
low voltages that create stability issues but in principle, high voltage can also cause
problems. The difference is that instabilities caused by low voltages are associated
with high load conditions while instabilities induced by high voltages are related to
low load conditions.

The time scale of the voltage instabilities divides them into two groups, short-
term (a few seconds) and long-term (seconds to minutes). Short-term voltage in-
stabilities involve fast dynamics such as induction motors, electronically controlled
loads, and HVDC converters. Long-term voltage instabilities are typically triggered
by tap-changing transformers, thermostatically controlled loads and generator cur-
rent limiters [Andersson, 2012].

A convenient way of describing the voltage stability of a power system is with
the Nose Curve. The Nose Curve explains the relationship between the load power
(PL) and the voltage (VL) in a node, see Figure 2.6. The shape of the curve is similar
to a nose and can be divided into to two parts; an upper part and a lower part. The
maximum load of the system is on the tip of the curve. As one can see, a single
load power can have two voltage solutions (except the maximum load power which
only has one load voltage). It is extremely important to know the voltage at the load,
since the two voltage values affect the system differently, where one is stable and
one is unstable. The upper part of the curve, i.e. above the maximum load, is the
area of stability. The lower part of the curve should be avoided since loads with

25



Chapter 2. Network Models of Power Systems

Lo
ad

 V
ol

ta
ge

 (V
L)

Load Power (PL)

PL,max

PL

Figure 2.6 An example of a nose curve before a contingency. The curve is divided
by the maximum load power into two parts, one stable side, coloured green and one
unstable side in red. The two areas are divided by a maximum load power.

these load voltages result in an unstable system. Normally, a fault is followed by
a voltage drop and a load decreases. The new active power and reactive power are
derived by using equation (2.16) for the active power and equation (2.17) for the
reactive power. The recovery path is determined by (2.18).

A increase of the load power, leads to a voltage decrease. Where the load is
located on the Nose Curve is very important, see Figure 2.6. If the load is on the
upper side of the Nose Curve, the system is regarded as stable. If the load power
is located on the lower side of the Nose Curve, the system is regarded unstable. A
good way of describing the Nose Curve is via an example.

Figure 2.7- 2.9 illustrate an example when a fault occurs in a power system by
using the Nose Curve. The system is stable in Figure 2.6. The maximum possible
load power is marked out as PL,max and the actual load is PL. The stable side of the
curve is marked green, while the unstable part is red. Why the curve is divided into
a stable side and unstable side is clear when the system tries to recover from a fault.

A fault occurs and the new system is represented by a new nose curve, see
Figure 2.7. There are two curves, one Pre-contingency curve (before the fault) and
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Figure 2.7 An example of a nose curve after a contingency. There are two curves,
the Pre-contingency curve which is the system before the fault and the Post-
contingency curve after the fault. The red arrows show a possible way of a location
change of the load, from a system without a fault to a faulty system. The change
between the two nose curves, is derived by equations (2.16) and (2.17).

one Post-contingency curve (after the fault). The fault forces the load power and
voltage to decrease, see the black solid line in Figure 2.7. The black line is the path
of the load between pre-and post-contingency. No time step is between pre-and post-
contingency, meaning that the time dependent equation (2.18) is not needed here.
Equations (2.16) and (2.17) are the ones changing the active power and the reactive
power of the load due to the change in voltage and load demand. The recovery path
of the load power is determined by (2.18) and Figure 2.8 will demonstrated one
successful recovery and two which will fail.

The three solid lines (black, blue and purple) in Figure 2.8 are derived by
equations (2.16)-(2.18) and describe how the load changes. These equations are
highly dependent on (2.18) when there is a time change (not between pre- and post-
contingency) since the variable x needs to be updated at each time step. The two
other colours, blue and purple, will give different recovery paths (2.18). The new
maximum load PLpost,max and the new load power PLpost are located on the Post-
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contingency curve.
The power system is stable when (2.19) is fulfilled, i.e. when the system has

found a steady state. By that time, the load power should be recovered.
There are three different solid line (blue, black and purple) in Figure 2.8, rep-

resenting three different scenarios for the same system.The solid lines have three
different load powers which will determine their chances of recovering from a fault.
The blue line has the lowest pre-contingency load, the black one is in between the
blue and the purple, and lastly the purple solid line has the highest pre-contingency
load. The only scenario which will result in a fully recovered load power is the blue
line. The other two will not find any stable operating points for a fully recovered
load. The following examples of scenarios are viewed in Figure 2.8.

For the "blue line scenario”, the load is located at PLpre,1 on the Pre-contingency
curve. A fault occurs and the load power changes due to the voltage decrease in load
node. The load change is derived by equations (2.16) and (2.17). The load is now
located at the PLpost,1 on the Post-contingency curve which is the upper and stable
side of the curve. Due to the fault, there is a difference between the load demand
and the load which (2.18) will try to eliminate5. The state variables are updated
using (2.18) so that (2.16) and (2.17) can increase the load power. As expected,
the voltage at the load node decreases, but since the load is on the upper part of
the nose curve, the voltage decrease leads to a load power increase. The difference
between the load demand and the load will keep on decreasing until the load has
reached the nominal load power. At each time step (2.18) updates the system state
variables and new active and reactive powers are computed using (2.16) and (2.17).
The "blue line scenario” in Figure 2.8 will successfully restore the load power while
still maintaining stability, meaning that equation (2.19) will be satified. The green
arrows between PLpost,1 and PL,ss presents a load recovery path. Observe that PL,ss is
on the same vertical line (Line 1) as PLpre,1 and therefore fully recovered.

Lets move on to the “black line scenario”. Before the fault, the load is located at
PLpre,2 and after fault, at PLpost,2 by using (2.16) and (2.17). The load is on the stable
side of the Post-contingency curve but that will not guarantee a full load recovery
for a stable system.

All stable operating points are on the Post-contingency curve and loads which
are not on any nose curve are regarded as not feasible. Since the load will have to
leave the Post-contingency curve and be larger than the maximum post-contingency
load (PLpost,max) to reach full load recovery (Line 2), the system will never be stable.
In other words expression (2.19) will never be fullfilled. Therefore the “black line
scenario” is not able give a fully recovered load and a stable system at the same
time.

Lastly, the “purple line scenario” is also presented in Figure 2.8. Once again
the load is located on the Pre-contingency curve before the fault, but at PLpre,3. A
fault occurs and the load is located at PLpost,3, which is on the lower and unstable

5 Equation (2.18) can be modelled as a feedback controller that tries to satisfy the load power demand.
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Figure 2.8 An example of a power system after a contingency and during recovery.
The generated power is the same as in Figure 2.7. There are three different scenarios,
the blue line scenario, the black line scenario and the purple line scenario. The blue
line is the only stable load recovery path, while the other two lines will not be able
to give a fully restored load for a stable system.

side of the Post-contingency curve. The difference between the load demand and
the load will trigger (2.18) to reduce the power mismatch. (2.18) will compute new
state variables which will be used in (2.16) and (2.17) to increase the load power.
The voltage will decrease, and unfortunately so will the load power since the load
is located on the lower part of the nose curve. The difference between demand and
load will increase and force (2.18) to update the state variables and equations (2.16)
and (2.17) to compute new load power values. Once again the voltage and the load
power will decrease since the load is located on the unstable side of the nose curve.
This snowball effect will continue until the system reaches a voltage collapse and
probably a blackout. The “purple line scenario” will never reach a full load recovery
(Line 3) with a stable power system.

While Figure 2.8 shows one successful recovery path without increasing the
generated power in the system, Figure 2.9 has a different solution which involves
increasing the power generation. As in the previous examples, the load is located at
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Figure 2.9 An example of a power system after a contingency and during recovery.
The generated power is increased and so is the load power. Curve 1 represents the
new system which has a higher generation. There are two load recovery paths (black
solid line and orange solid line) which succeed in restoring the load power to its
initial value.

PLpre before the contingency and changes location to PLpost after the fault (follow
the red arrows on the black solid line in Figure 2.8). The load power and the voltage
at the load node are decreased after the fault. To increase both voltage and load, the
generated power is increased. The system is now presented by a new curve, Curve
1, where the generated power is higher than at the Post-contingency curve. Equation
(2.18) will once again try to reduce the power difference between the nominal load
power and the current load. (2.18) will update the state variables which are used
when (2.16) and (2.17) compute new load power values. There are two examples of
feasible recovery paths in Figure 2.9, one black solid line and one orange solid line.
The load power is fully restored at PL1. In Chapter 4 the Nose Curve will be used to
explain the recovery path of the Seven-Node System.
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3
The Optimization Problem

The optimization problem in this thesis, is to find a maximum pre-contingency load
in a system which is subjected to a fault and still remaining stable. An example of a
fault can be a faulty power line whose impedance will increase after the contingency.
The system has to be able to recover from the fault and restore the initial load power.

After a fault the load and the voltages in the system will decrease, but how
the system recovers is critical to maintain stability. As stated before, dynamic load
behavior are described as differential equations. Since solving differential equations
can be difficult, simplifications are usually done. Load model approximations will
be presented in this chapter.

The optimization is done on a small system called the Seven-Node System or
Seven-Node Model, see Figure 3.1. The system was presented in Chapter 1 as an
example of a power system. The name is inspired by the number of nodes in the
system which is seven. There are three generators (Pg1,Pg2 and Pg3), one load which
is in parallel with the shunt (B) at node 4.

The optimization problem can be seen below:

max
x,y

PL,0 (3.1)

P = Pt(x,y) (3.2)

Q = Qt(x,y) (3.3)

ẋ = f (x,y) (3.4)

0 = ψ0(x(0−),y(0−)) (3.5)

0 = ψ1(x,y), ∀t ∈ [0,∞) (3.6)

0≥ g(x,y) (3.7)

f a,i(z) · f b,i(z) = 0, i = 1, . . . ,ng, ∀t ∈ [0,∞) (3.8)

f a,i(z)≥ 0, i = 1, . . . ,ng, ∀t ∈ [0,∞) (3.9)

f b,i(z)≥ 0, i = 1, . . . ,ng, ∀t ∈ [0,∞) (3.10)
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0 >
dV
dP

(∞) (3.11)

The variables x and y are time dependent, with a time interval t ∈ [0,∞). x is the
load recovery state variable, y is a vector of algebraic variables e.g. voltages and
phase angles at nodes and internal generator variables. ∀t ∈ [0,∞) tells that the
optimization is done from a time interval zero to infinity, i.e. until the system finds
an equilibrium. ng is the number of generators in the system (which is three in this
study).

The first expression (3.1), tells which expression is optimized over defined vari-
ables. Our objective function (the variable to be optimized), is maximizing the pre-
contingency load (PL,0) over x and y.

As in Chapter 2, (3.2), (3.3) computes the load power and (3.4) the recovery
path of the load power.

The power system is expressed in (3.5) and (3.6). The system is represented by
(3.5) at pre-contingency and (3.6) at time t ∈ [0,∞) (excluding pre-contingency).
(3.5) and (3.6) contains power flow equations ((2.34)-(2.37)) and equations for gen-
erators ((2.22)-(2.27)) found in Chapter 2.

The search for the maximum possible load is done while subjected to constraints
which are expressed in equations (3.7)-(3.10). Some of the constraints, are the ramp-
ing of the generators, placed in expression (3.7). An ideal generator can increase and
decrease its production infinitely fast, but in reality this is a limiting factor. Gener-
ator 2 (Pg2 in Figure 3.1) cannot increase or decrease more than 0.04 p.u. per time
step while generator 3 (Pg3 in Figure 3.1) is limited to 0.1 p.u. ramping per time
step. Constraints on the generators internally are also included in the optimization
problem and are written in expressions (3.9) and (3.10). f a,i is the equations of the
field voltage of generator i under voltage control and f b,i is the equation of the field
voltage of generator i under overexcited voltage control. f a,i and f b,i are two very
important constraints since they include certain limitations a generator might face.

Equation (3.8) is a constraint that always forces one of (3.9) and (3.10) to be
zero. The constraint can be relaxed in order to have a larger search area for the
optimization. When and why the complementary-constraint (3.8) can be relaxed is
explained in section 3.2.

The optimization is feasible if the system has found a steady state for a fully
recovered load power. The stability expression is equation (3.11). It says, that the
partial derivative of the voltage at the load node over the load power should be
negative. When the load power is decreasing the voltage has to increase and vice
versa, when the load power is increasing the voltage should decrease. This translates
to being located on the upper part of the Nose Curve.

Further more expressions (3.9) and (3.10) describe the first-order automatic
voltage regulator (AVR) with overexcitation limiter (OXL) in the generators in
equations (3.12)-(3.13). The AVRs can become saturated and therefore two eqau-
tions are needed to express the field voltages, one before saturation (eq. 3.12) and
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Figure 3.1 An example of a power system from [Karystianos et al., 2007]. The
power system consists of three generators Pg1, Pg2 and Pg3 that are connected to the
network via transformers. The transformers are in between busbars 1-5, 2-6, 3-7 and
4-7. The load and the capacitor (B) are in parallel and connected to busbar 4. This
power system is also called the Seven-Node System. The optimization was performed
on this system.

one when the AVR is saturated (eq. 3.13).

f a,i(z) =−E i
f +Ki

A(Vre f −V i), i = 1, . . . ,ng, ∀t ∈ [0,∞) (3.12)

f b,i(z) =−E i
f +E lim

f , i = 1, . . . ,ng, ∀t ∈ [0,∞) (3.13)

3.1 Implemented load models

When a fault occurs the load decreases. The recovery path is very important for the
chances of the system to regain stability and function in a safe matter. Different load
models are tested to see if the system will remain stable and recover from a fault.
Generally a dynamic load model should include differential equations (2.18), which
will make it more difficult to find solutions to the optimization problem. For those
reasons, approximations were done on the load model. In Chapter 2, the load is de-
scribed by three equations, (2.16), (2.17) and (2.18). The two first equations, (2.16)
and (2.17) decide the active power and the reactive power of the load, while equa-
tion (2.18) is used to approximate the load recovery . Since (2.18) can be expressed
in many different ways, equations (3.14) and (3.15) are chosen as load recovery
models in this thesis.

The first load recovery model is linear, equation (3.14) which describes how the
load (PLC) recovers after a fault,
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PLC = PL0 +
t
T
(PL0−PLC0) (3.14)

where t is the current time, T is the end time, PL0 is the pre-contingency load
and PLC0 is the load right after the contingency. In this study, the recovery time is
fixed to five time steps, therefore T = 5.For the exponential load recovery model,
see equation (3.15),

PLC = PLC0 +β (t)(PL0−PLC0), (3.15)

where β (t) = 1−0.5t

1−0.5T .
The voltage dependent load model before a fault (3.16) and (3.17), while imme-

diately after a fault (3.18) and (3.19) can be described with equations below. They
correspond to the load power equations (2.16) and (2.17). (2.18) is not included in
the change from pre-contingency to post-contingency since there is no time change
between these events. (2.18) is only valid at time changes.

PL0,pre = PL0 = p0 ∗V 2
pre, (3.16)

QL0,pre =
1
2

PL0 (3.17)

PL0,post = PLC0 = p0 ∗V 2
post , (3.18)

QL0,post =
1
2

PLC0 (3.19)

where p0 is a variable computed from knowing the load and the load voltage for
either pre-contingency or post-contingency. For example, if PL,pre, VL,pre and VL,post
are known we can set up a very simple equation system and obtain PL,post . The same
thing holds the other way around, when PL,pre is sought after. This load model is only
used right after the contingency and not at the other time steps. The advantage of
using a voltage dependent load recovery model, is the incorporation of the voltage
but that also makes the implementation more intricate. The load voltage effect the
stability factor, as shown earlier by the Nose Curve. By using a time dependent
load model instead of a voltage dependent load model, the recovery time can be
predefined. A voltage dependent load model at load recovery is difficult to find a
feasible solution for. Therefore, equations (3.15) and (3.16) are only used at pre-
and post-contingency and not at each time step. Adding the voltage characteristic is
crucial here since the voltage at post-contingency will determine whether the system
will successfully recover or not.
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3.2 Solving the Optimization Problem

The actual optimization problem solved in this study is presented bellow:

max
x,y

PL,0 (3.20)

PL0,pre = PL0 = p0 ∗V 2
pre (3.21)

QL0,pre =
1
2

PL0 (3.22)

PL0,post = PLC0 = p0 ∗V 2
post (3.23)

QL0,post =
1
2

PLC0 (3.24)

PLC = h(t,PL0,PLC0) (3.25)

0 = ψ0(x(0−),y(0−)) (3.26)

0 = ψ1(x,y), ∀t ∈ [0,∞) (3.27)

−0.04≤ Pg,2(t)−Pg,2(t−1)≤ 0.04, t ∈ [0,1,2,3,4,5] (3.28)

−0.1≤ Pg,3(t)−Pg,3(t−1)≤ 0.1, t ∈ [0,1,2,3,4,5] (3.29)

f a,i(z) · f b,i(z) = 0, i = 1, . . . ,ng, ∀t ∈ [0,∞) (3.30)

f a,i(z) =−E i
f +Ki

A(Vre f −V i)≥ 0, i = 1, . . . ,ng, ∀t ∈ [0,∞) (3.31)

f b,i(z) =−E i
f +E lim

f ≥ 0, i = 1, . . . ,ng, ∀t ∈ [0,∞) (3.32)

VL,post ≥VL,min (3.33)

First expression is the same as before. ng ∈ [1,2,3] is the number of generator in the
system.The first expression (3.20) is the same as before, the pre-contingency load is
to be maximized. (3.21)-(3.24) compute the load powers and correspond to (3.2) and
(3.3). (3.4) corresponds to (3.25) which is one of the load recovery models (3.14)
or (3.15). (3.26) and (3.27) have the same definitions as (3.5) and (3.6) explaining
the power system. (3.28) and (3.29) are the generator constraints in (3.7) and (3.31)
and (3.32) are the constraints on the AVRs.

Lastly, (3.33) expresses the stability constraint (3.11) in terms of the voltage
level. The voltage at the load node for the maximum post-contingency load is used
as a threshold during computations. The post-contingency voltage at the load node
will have to be larger than the threshold (VLpost,min). In a nose curve, the voltage has
to stay on the upper side of the curve since (VLpost,min) is located on the tip of the
curve, see Figure 3.2.
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Figure 3.2 The stability constraint (3.33) expressed in a post-contingency nose
curve. The voltage has to be larger than V L,min.

Figure 3.3 shows the system events for a linear load recovery model in the
Seven-Node System (Figure 3.1). The horizontal axis is the load power and the ver-
tical axis is the time step. The events in the system are regarded as three, before the
fault, right after the fault and when the load power is fully recovered. Before a con-
tingency, we are located at the black dot. A fault occurs in line 5-6 which doubles
the line reactance from 0.12 p.u. to 0.24 p.u. The load power decreases to the red
dot. The system recovers according to the linear load recovery model (3.14) to the
initial load power, the green dot.

The time for the system to recover from a fault is defined as the end time (T) and
is set to 5 time steps. Generator 1 (Pg,1) is regarded as a slack bus and initial values
on generator 2 (Pg,2) and generator 3 (Pg,3) are determined at each computation and
may vary between 0-3 p.u.

The optimization problem is divided into three steps. The first step is to find the
maximum load at a predefined end time (T = 5). The constraints at this step, are
on the field voltages in all three generators and the power production. Equations
(3.12) and (3.13) are the behaviors of the AVRs in the generators. Constraints on
the generator values at the end time are defined as; −0.04∗T ≤ Pg,2 ≤ 0.04∗T and
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Figure 3.3 Events in a power system subjected to a fault and how it recovers. The
load power is on the horizontal line and the time is on the vertical line. There are
three dots, a black dot representing the load before the fault, a red dot for the load
right after the fault and a green dot representing the load at a full load power recovery.
The load recovery is linear in this figure but can also be exponential.

−0.1∗T ≤ Pg,3 ≤ 0.1∗T , where T=5.
The second step is to find a maximum post-contingency load. The only con-

straints in this step, are on the AVRs ((3.12) and (3.13)). If a post-contingency load
is found, a pre-contingency load is derived using equations (3.16) and (3.18). The
pre-contingency load is only feasible if the system has found a static equilibrium. It
is very important that the system remains stable at all times, from pre-contingency
to the end of the recovery time. Therefore, the newly computed pre-contingency
load (from Step 2) and the load at the end time (from Step 1), are compared. The
smallest of these two loads, is regarded as the systems pre-contingency load. If the
pre-contingency load in Step 2 is replaced by the smaller load at the end time, the
post-contingency load is recomputed. Equations (3.16) and (3.18) are used with the
updated pre-contingency load to obtain a new post-contingency load.

In Step 3, the linear load recover model (3.14) is included since the optimization
is done over the three events, defined in Figure 3.3. A vector of loads are computed
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using equation (3.14). These loads are used to find corresponding state variables
at a system steady state at each time step (1-4). The results from previous steps
are used as initial guesses when optimizing over the three events, pre-contingency,
post-contingency and load recovery. Constraints on the AVRs and the rampings of
the generators are valid at all time steps. The generator rampings are expressed the
following way at each time step; −0.04 ≤ Pg,2(t)−Pg,2(t− 1) ≤ 0.04 and −0.1 ≤
Pg,3(t)−Pg,3(t−1)≤ 0.1. At post-contingency the complementary-constraint (3.8)
is valid. Step 3 is repeated, but with the exponential load recovery model (3.15).

The complementary-constraint (3.8) is important at post-contingency. The con-
straint forces the post-contingency load to be located on the nose curve and prevents
the load from being very low. Loads larger than PLpost,max are not feasible and solu-
tions inside the nose curve are too low. Though, it is possible for the load to recover
from a fault when the post-contingency load is low, the issue is not finding feasible
solution but rather, how easy it might be and to some extends unrealistic. It is less
difficult for the load to recover when the post-contingency load is low than high.
By using (3.8) the low load is avoided, since it has to be located on the nose curve.
A higher post-contingency load is more realistic but feasible solutions are more
difficult to find.

At discrete time steps 1-5, the switching-constraint does not have to be enforced,
which expands the search area for the optimization problem. The loads PL,i, i ∈
[1,2,3,4,5] are not forced to be on their nose curve, as long as PL,i ≤ PLmax,i, where
i stands for the current time step and its nose curve.

How the optimization problem is implemented in Matlab can be read in Chap-
ter 4.
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Implementation

Chapter 2 gives the reader basic information about power systems and in Chapter 3,
the optimization problem is presented. This chapter shows how the optimization
problem is solved using Matlab. Before any computations, the power system Seven-
Node system is built in a Matlab-file.

The first section covers the building blocks (Matlab-files) in the Seven Node
System, which contain equations from Chapter 2. Some of the equations are simpli-
fied to make it possible to find feasible solutions during computations. The overview
of the building blocks of the system, is followed by the use of the optimization tools
fsolve and fmincon. This part is also sectioned into parts done in chronological order.
For further understanding, the Nose Curve is used to explain events in our system.
But first an overview of the programming.

4.1 Overview

A quick overview of the programming might be helpful before explaining any de-
tails. To make the work easier to understand, programming can be divided into four
steps. The steps will be named after the order they are executed in. Step 1 is where
the maximum load at end time (T = 5) is found. Step 2 is where the maximum
pre-and post-contingency load are evaluated. Step 3 is where the optimization over
all the time step ( pre-and post-contingency and over a time interval 1−5) is done
to find the maximum pre-contingency load. The linear load recovery is assumed
and state variables at time tt ∈ [1,2,3,4] are computed. The initial guess for this
optimization is a vector with state variables computed in Step 1, Step 2 and the
state variables for the discrete time interval 1-4 which are computed right before the
optimization. Step 4 is similar to Step 3 but with an exponential load recovery. In
between the step, results are plotted. Figure 4.1 is an overview of the programming.

39



Chapter 4. Implementation

Step 1
1. The maximum load at end time is computed.

Step 2
1. The maximum post-contingency load is computed.
2. The maximum pre-contingency load is computed.

Step 3
1. System state variables for the time interval 1-4 are computed.
2. The maximum pre-contingency with a linear load recovery model is 

computed.

Step 4
1. System state variables for the time interval 1-4 are computed.
2. The maximum pre-contingency with an exponential load recovery 

model is computed.

Plotting results from Step 1 and Step 2

Plotting results from Step 4.

Plotting results from Step 3.

Figure 4.1 An overview of the programming. Step 1 computes the maximum load
at end time T = 5. Step 2 computes the maximum pre-contingency and the maxi-
mum post-contingency load. Step 3 finds the maximum pre-contingency load over
a distrete time interval 0-5 with a linear load recovery model. Step 4 computes the
maximum pre-contingency load over a distrete time interval 0-5 with an exponential
load recovery model.
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4.2 The Seven-Node System

Table 4.1 Power System Details contains values such as line impedances eg.
impedance between node 1 and 5 is x15. The gains of the exciters (KA), the capaci-
tance (B), voltage reference (Vre f ,i) and the maximum excitation field voltage (E lim

f ,i )
are also included in the table

x15 = x26 x37 = x47 x56 x67

0.032 0.016 0.12 0.005625
B KA Vre f ,i E lim

f ,i
0.25 100 1 2.5968

4.2 The Seven-Node System

Overview of the system
The Seven-Node System is taken from [Karystianos et al., 2007] and built in Matlab
by writing several functions as building blocks (M-files). These M-files will soon
be explained but first a quick glance of the system specifications.

The name Seven-Node System comes from the number of nodes in the power
system, see Figure 4.2 (the same system as the example in chapter 1, Figure 1.1).
Study Figure 4.2. There are three buses, two PU buses, Pg2 and Pg3, and one slack
bus Pg1. Four transformers are located between nodes, 1-5, 2-6, 3-7 and 4-7 and
the load is connected at node 4. Table 4.1 contains values of system components
such as reactance of lines and transformers. All transformer ratios were set to 1 and
the relationship between active and reactive power consumption of the load was
PL = 2QL to keep the power factor at 2/

√
5. A fault in line 5-6 would occur and this

is expressed by doubling the impedance of the line to x56 = 0.24.

Figure 4.2 The Seven-Node System from [Karystianos et al., 2007]. The power
system consists of three generators Pg1, Pg2 and Pg3 that are connected to the network
via transformers. The transformers are in between busbars 1-5, 2-6, 3-7 and 4-7. The
load and the capacitor (B) are in parallel and connected to busbar 4.
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Chapter 4. Implementation

Building Blocks
The optimization problem is presented in Chapter 3. Since differential equations
are hard to solve, simplified equations are used to express the system. The m-file
sjunodsmodell (Seven-Node model in Swedish), computes the system, excluding
the AVRs. Sjunodsmodell sends back nonlinear equations of power flow equations
and generated power values. The inputs of this m-file are state variables (x), the
initial load (PL0), the initial generated power (GEN0 = [Pg2 Pg3]) and a fault in-
dicating variable (fault)1. The main state variables (x) are the excitation field volt-
ages (E f ), the voltage phasors and amplitudes at all seven nodes (θi and Ui, where
i = 1, ...,7). The state variables computes the system nodal admittance matrix, the
power flow and the generated active and reactive powers from the generators in m-
files get_nod_adm, get_p_flow and get_p_gen. The nonlinear equations which are
sent back are the difference between initial generation (GEN0) and the calculated
generation from get_p_gen and the difference between the initial active and reac-
tive powers generated and consumed and the net power flow from get_p_flow. See
Figure 4.3 for a chart of the Matlab-file sjunodsmodell.

sjunodsmodell_p0 functions as sjunodsmodell but instead of an initial load (PL0)
as input, p0 is sent in and the load is calculated as a voltage dependent load (3.16).

4.3 Complementary Building Blocks and Matlab-files

Some of the files might not build the actual power system but they are vital in the
computations. These m-files are gathered under this subsection.

The AVRs are expressed in get_g_fa and get_g_fb. When the controllers are not
saturated, get_g_fa (3.12) is used. Saturated generators use (3.13), implemented in
get_g_fb. The generators can switch between these two Matlab-files but to switch
between these equations, two vectors, aset and bset are defined, one contains un-
saturated while the other contains saturated generators. aset holds the unsaturated
generators and bset contains the saturated ones. As inputs, both files have the state
variables (x) and number of generators (nbr_gen = 3). aset is an input to get_g_fa
while bset is input to get_g_fb.

Two other important Matlab-files are get_PL_from_p0 and getx_from_PL which
both use the scripts sjunodsmodell, get_g_fa and get_g_fb. get_PL_from_p0 calcu-
lates the matching load (PL) for the variable p0

2. The function has the state vari-
ables (x), p0, the initial generation (GEN0) and the variable fault as inputs and as
outputs, the load (PL), updated state variables and an exitflag which tells if the com-
putations made in get_PL_from_p0 are feasible. getx_from_PL is very similar to
get_PL_from_p0 but this m-file delivers the corresponding state variables to the ini-
tial load PL0. The inputs are initial state variables (x0), load (PL0) and generation

1 If f ault = 0, there is no fault in the system and if f ault = 1, there is a fault in the system
2 p0 is presented in Chapter ?? equations (3.16) and (3.18). It can be obtain by solving a system of

equation.
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4.3 Complementary Building Blocks and Matlab-files

Sjunodsmodell
Input: x,GEN0,PL0,fault

Output: Nonlinear equations (F)

get_nod_adm
Input: B4,fault

Output: B

get_p_flow
Input: n,B,U,ANG

Output:PF,QF

get_p_gen
Input: Ef,U,ANG,delta

Output: Pg,Qg,Eqp

Figure 4.3 The building blocks of the Seven-Node System or Seven-Node
Model (sjunodsmodell in Swedish). The Seven-Node System has four inputs, sys-
tem state variables (x), initial generation for generator Pg2 and Pg3 (GEN0 =
[Pg2 Pg3]), initial load (PL0) and fault ( f ault = 0 = no f ault and f ault = 1 =
there is a f ault). Further, the Matlab-file sjunodsmodell contains three m-files,
get_nod_adm, get_p_flow and get_p_gen. B4 is the capacitance at node 4 and B is
the nodal admittance matrix. E f is the excitation field voltages, U and ANG are the
voltage magnitudes and phase angles at all seven nodes while delta are the voltage
phasors at the generator nodes. Pg and Qg are the calculated active and reactive pow-
ers from the generators and Eqp are the actual generator voltages (not the terminal
voltage U). n is the number of nodes in the system (7 nodes). PF and QF are the
active and reactive power flows.
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Chapter 4. Implementation

(GEN0) and the variable fault. The outputs are the current state variables and an
exitflag that shows feasibility of the computations.

get_end uses the Matlab-tool fmincon to find the maximum load at a defined end
time T. Its inputs are initial state variables, end time (T) and the initial generation
(GEN0) and outputs, the state variables at end time and the exitflag. The maximum
load is included in these state variables, placed as the first variable in the vector.
In get_end, function nonlcon_end is used to handle all nonlinear equations of the
system. nonlcon_end is a part of fmincon, where all nonlinear equations are placed
while linear equations are put in matrices. The inputs of nonlcon_end are state vari-
ables (x) and the fault variable (fault). The outputs are the nonlinear equations of the
Seven-Node System. A second function which belongs to fmincon is funmin. funmin
is the objective function, it decides what is to be optimized. Our objective is to max-
imize the load which is done by minimizing the negative load since fmincon tries to
find the minimum.

get_post is comparable to get_end. The interest here is to find maximum post-
contingency load. The inputs are the same as for get_end without the end time and
the output related to post-contingency, i.e. state variables at post-contingency with
its exitflag and maximum load as the first state variable. As in get_end, fmincon is
used by get_post.

get_interval computes state variables for the discrete time interval 1-4. The
main inputs are previously calculated pre-and post-contingency loads, the end time
(T), the initial generation (GEN0), the end generation (GENend) and the post-
contingency state variables. The outputs are the state variables for the time interval
1− 4 including power generation at all time steps and lastly, exitflags. Matlab-file
getx_from_PL, is used at each time step. Most important, the loads at each time
step are decided in function get_P_LC_lin for a linear load recover model and
get_P_LC_exp for exponential load recovery model.

pre_post_int_end finds the maximum pre-contingency load over an entire time
interval. The initial guess is a vector with initial state variables, previous computed
variables from pre-contingency, post-contingency, at end time and variables for the
interval 1− T . Fmincon, fsolve and most of the m-files mentioned are involved.
The interested reader can be provided the Matlab-file by contacting the author. The
two essential outputs from this file, are the maximum pre-contingency load and the
exitflag indicating whether the optimization was successful or not. For an exponen-
tial load recovery nonlcon_fa_fb_lin is replaced by nonlcon_fa_fb_exp. Table 4.2
shows what equations are used in the Matlab-files.

4.4 Fsolve and Fmincon

How the two optimization tools, fsolve and fmincon, are used will be explained in
this section.
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4.4 Fsolve and Fmincon

Table 4.2 This table shows which equations are included in the Matlab-files. On
the left we have m-files, in the center are the m-files that are included in the files
to the left and on the right side the equations. For example, if sjunodsmodell is to
the left we would find get_nod_adm, get_p_flow and get_p_gen in the center and no
equations to the right (since no equations are actually computed in sjunodsmodell,
only in its sub-files). get_P_LC_lin can be changed to get_P_LC_exp if the load
recovery is exponential and not linear. The same holds for nonlcon_fa_fb_lin which
can be replaced by nonlcon_fa_fb_exp for exponential load recovery.

Main function Functions inside the main function equations in the main function

sjunodsmodell get_nod_adm, get_p_flow, get_p_gen no equations

sjunodsmodell_p0 get_nod_adm, get_p_flow, get_p_gen no equations

get_nod_adm no m-files eq.2.34-2.35

get_p_flow no m-files eq.2.26-2.27

get_p_gen no m-files eq.2.24, eq.2.36-2.37

get_g_fa no m-files eq.3.12

get_g_fb no m-files eq.3.13

get_PL_from_p0 sjunodsmodell, get_g_fa, get_g_fb no equations

getx_from_PL sjunodsmodell, get_g_fa, get_g_fb no equations

get_end nonlcon_end, funmin eq.3.12-eq.3.13

get_post nonlcon_post, funmin eq.3.12-eq.3.13

get_interval getx_from_PL, get_P_LC_lin no equations

get_P_LC_lin no m-files eq.3.14

get_P_LC_exp no m-files eq.3.15

pre_post_int_end nonlcon_fa_fb_lin, funmin eq.3.12-eq.3.13

nonlcon_end sjunodsmodell no equations

get_end sjunodsmodell no equations

nonlcon_fa_fb_lin sjunodsmodell, sjunodsmodell_p0,
get_P_LC_lin, get_g_fa, get_g_fb

eq.3.14-eq.3.15
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Fsolve is used to find static equilibrium. By using this tool we can see if the
system can find state variables which correspond to a stable system. At the very
beginning of the project fsolve was used to determine whether the system had stable
operating points for different initial generator values. All system equations from
sjunodsmodell, get_g_fa and get_g_fa are defined as functions and then computed
by fsolve to find an equilibrium point for the system.

The tool is used to test different production power, meaning the generator power
varies from 0−3 p.u. Later on, the sum of the power productions wass restricted to
5.1 p.u. due to some optimization issues which were discovered when using fmin-
con. After successfully finding feasible solutions for the system Seven-Node System
with fsolve the actual optimization could begin. For now on, fsolve is only used to
find static equilibriums for the system, e.g. in the Matlab-file getx_from_PL, where
nothing is optimized and the goal is to find a stable operating point. An example of
how fsolve functions, is presented below.

An example of how fsolve is used. Similar sequences can be found in func-
tions as getx_from_PL and get_PL_from_p0. x0 is the initial guess, nbr_gen is
the number of generators (three in our system), GEN_0 initial guesses of gen-
erator 2 and 3, and xsolve are the optimal state variables. The first row defines
the system as a function. The second row, fsolve computes state variables.
1)F = @(x)[s junodsmodell(x,P_L0,GEN_0, f ault);get_g_ f a(x,nbr_gen,aset);
get_g_ f b(x,nbr_gen,bset)];
2)[xsolve, f val,exit f lag] = f solve(F,x0,options);

Fmincon performs the actual optimization. An objective function decides what
is to be minimized. Since the load is to be maximized, the object function is to
minimize the negative load. In fsolve all system equations are defined and com-
puted the same way but in fmincon linear and nonlinear equations are separated.
The equations are put in matrices and the nonlinear ones are defined as function,
the same way as for fsolve. Equations (3.12) and (3.13) are placed in the matrices
while the rest of the system equations are put in a m-file for nonlinear equations
e.g. nonlcon_end or nonlcon_fa_fb_lin. There is an example of how to use fmincon
below.

An example of how fmincon can be used. The linear equations are placed
in the matrices A and B where Ax≤ B must hold. The nonlinear equations are
in nonlcon. options is used to select the type of computation the user wants (e.g.
Newton iteration) and if the computation should be displayed or not.
[x, f val,exit f lag] = f mincon(@ f unmin,x0,A,B, [], [], [], [],@(x)nonlcon(x,GEN0,T ),
options);

Equations (3.12) and (3.13) are not always placed in the matrices as linear functions.
It is critical that equation (3.8) is satisfied at post-contingency. The complementary-

46



4.4 Fsolve and Fmincon

Table 4.3 Exit conditions of fsolve. All exitflags over zero are considered good
results.

1 fsolve converged to a root.
2 Change in X too small.
3 Change in residual norm too small.
4 Computed search direction too small.
0 Too many function evaluations or iterations.
-1 Stopped by output/plot function.
-2 Converged to a point that is not a root.
-3 Trust region radius too small (Trust-region-dogleg).

constraint (3.8) is relaxed at other time steps to expand the search space for the opti-
mization. The advantage with expanding the search area, is the increased chance of
finding solutions to the optimization. (3.8) holds at post-contingency due to voltage
stability. If the voltage is too low at post-contingency, chances of finding realistic
stable solutions are slim. By activating (3.8), the post-contingency load will end
up on the nose curve and provide a more stable load recovery and an acceptable
voltage.

The complementary-function is implemented using aset and bset as mentioned
earlier in the chapter. The generators which are not saturated, are placed in aset
while the saturated ones are put in bset. Functions get_g_fa and get_g_fa are called
to compute new aset and bset for the time step. If a generator is placed wrongly the
generator is moved to the right vector (aset or bset) and fmincon is called again to
find a new solution. The optimization with fmincon is repeated until all generators
are in the right set, using the right equations for their AVRs. The same method can
be done using fsolve instead of fmincon, though a steady state is sought after with
fsolve and not a solution for an optimization problem.

Two other important constraints are the ramping of the generators. Generator 2
(Pg2) should not decrease or increase more than 0.04 p.u. per time step and generator
2 (Pg3) has a max ramping of 0.1 p.u. These limitations are put in the matrices
for fmincon since they are linear while previously discussed the complementary-
constraint is defined with the nonlinear equations.

Both optimization tools fmincon and fsolve return exitflags, which will tell how
feasible the solutions are. Tables 4.3 and 4.4 give an overview of the exitflags. Solu-
tions with exitflags over zero were regarded as successful and the pre-contingency
load was used in the results.
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Table 4.4 Exit conditions of fmincon. As for fsolve, flags bigger than zero are seen
as useful results.

1 First order optimality conditions satisfied.
2 Change in X too small.
3 Change in objective function too small.
4 Computed search direction too small.
5 Predicted change in objective function too small.
0 Too many function evaluations or iterations.
-1 Stopped by output/plot function.
-2 No feasible point found.
-3 Problem seems unbounded.

4.5 Nose Curve demonstration on the Seven-Node
System

The Seven-Node System is roughly described using the Nose Curve. Figure 4.4 rep-
resents our system. There are three important curves, the Pre-Contingency Curve,
the Post-Contingency Curve and the curve at end time T = 5. Before the fault, we
are located on the Pre-Contingency Curve but a fault occurs and the system is rep-
resented by the Post-Contingency Curve. The load power is to recover in five time
steps which are five solid curves between the Pre-Contingency Curve and the Post-
Contingency Curve.

By enforcing the complementary-constraint (3.8) at post-contingency the load
voltage is bounded to the Post-Contingency Curve, making the optimization more
difficult. The voltage constraint (3.33) forces the load to be located on the up-
per part of the curve. If (3.8) is valid at each time step, it becomes more diffi-
cult to find a feasible solution for the optimization problem. But by relaxing the
switching-constraint, the search area of the optimization will expand and increasing
the chances of finding feasible solutions. It is important that (PL,i(t)) is less than the
current maximum load (Pmax,i(t)), i.e. (PL,i(t) ≤ Pmax,i(t)), at each time step i, for
the system stability. At end time T=5, the load power is fully recovered since it is at
the same vertical line as the pre-contingency load.
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Figure 4.4 An example of how the Nose Curve for the Seven-Node System would
look like.
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5
Results

The results are presented in four sections, pre-contingency, post-contingency, at a
defined end time T and lastly all sections mentioned in a time interval. The results
will be analysed in Chapter 6.

5.1 Pre-contingency

The maximum pre-contingency loads can be seen in figures 5.1- 5.2. The two fig-
ures contain the same results but represented from two different angles. The initial
generation of generator 2 and 3 are on the x- and the y-axis and the load is placed on
the z-axis. The optimization problem was solved using fmincon and the Matlab-file
sjunodsmodell. The figures contains only results with feasible solutions meaning no
results with exitflags equal or under zero were plotted. Further analysis regarding
this outcome will be carried out in the next chapter.

5.2 Post-contingency

As in the pre-contingency figures, the x-and the y-axis are the initial generations
from generator 2 and 3 while the z-axis is the post-contingency load. Figures 9.3-
9.4 show the post-contingency load. Only results from fmincon with feasible solu-
tions are plotted, i.e. no results with exitflags under or equal to zero are included.
The two post-contingency figures have the same results but plotted from different
angles.

5.3 At end time T=5

The x-and y-axis in figures 9.5 and 9.6 are the same as the ones in pre-and post-
contingency figures, i.e. the inititial generations from generators 2 and 3. The z-axis
is the maximum load at end time T = 5.
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Figure 5.1 The pre-contingency load is computed by the optimization function
fmincon from Matlab. x- and y-axis are the initial generations and z-axis is the actual
solution of the problem, the pre-contingency load.
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Figure 5.2 Pre-contingency load, same results as in figure 5.1 but from a different
angle.

5.4 Pre, Post and time interval

This section contains results for pre-contingency, post-contingency and a time inter-
val t ∈ [1,2,3,4,5] with a linear and exponential load recovery model. The results
for the linear load recovery model, using equation (3.14), can be seen in figures 5.7-
5.8. Like the previous plots, the x-axis and y-axis are initial generated power and the
z-axis is the pre-contingency load. The results for the exponential load model, using
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Figure 5.3 The post-contingency load is obtained from fmincon. The x- and the y-
axis are the initial generations and the z-axis the post-contingency load. Only feasible
results are presented.
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Figure 5.4 Post-contingency load, same results as in figure 9.3 but from another
point of view.
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Figure 5.5 The load at end time (T = 5) shows feasible solutions from fmincon
when searching for the maximum load. The x-axis and the y-axis are the initial gen-
erated power from generator 2 and 3, while the z-axis is the sought load.
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Figure 5.6 The load at end time. Identical results as 9.5 but from a different angle.
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equation (3.15), are seen in figures 5.9- 5.10 and have the same representation of
the axis as previous plots. This optimization is more complex due to the number of
time steps which are included. Fmincon is to optimize and find the maximum pre-
contingency load over a time period while still retaining a stable system. Beside a
stable system, the optimization had to fullfil certain constraints. The constraints on
the generators ramping and the limited field voltage had to be included. The results
were different than expected and will be commented on in chapter 6.
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Figure 5.7 Pre-contingency load with linear load recovery model.
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Figure 5.8 Pre-contingency load with linear load recovery model, same results as
in 5.7 but from another angle.
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Figure 5.9 Pre-contingency load with exponential load recovery model.
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Figure 5.10 Pre-contingency load with exponential load recovery model as in 5.9
but another angle.
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6
Discussion

The difficulty of finding solutions to an optimization problem varies depending on
the system models. The approximations done and constraints subjected onto the
system will determine whether feasible solutions will be found. With the approxi-
mations and constraints assumed in this study, a pre-contingency load is found in
most cases but not when both generators have high values.

At the beginning of the project, the optimization was not broken down into the
four steps, as presented in Chapter 4. The entire optimization was done over pre-
contingency, post-contingency and the defined discrete time interval 1-5, all at once.
This way of solving the problem made it difficult to find feasible solutions and the
problem had to be broken down into separate parts. The two first steps would tell if
there existed maximum possible loads for a stable system at pre-contingency, post-
contingency and at the end time (T = 5). This would indicate which areas had solu-
tions and provide good initial guesses for the “overall” optimization done in Step 3
and Step 4. The previous results from Step 1 and Step 2, could therefore determine
which areas were worth exploring. As one can see, results where the generator val-
ues are both high, are not shown due to discontinuities in the graphs. Since the very
high generation combinations (where the sum of the generators is higher than 5.1
p.u) were not interesting for me, they were not computed. The unmodified figures,
the ones where high generator values are included, can be seen in Chapter 9.2.

All figures show how the maximum possible load can be found in the middle,
where generation of both generators is about 1.5 p.u. It seems like the system finds
stable equilibriums which allow high loads in those areas. Another important mat-
ter for stability is the voltage level in the system, especially at the load node. The
load voltage at post-contingency will determine whether a stable solution to the op-
timization problem will be found. Too low post-contingency load voltage will make
it difficult for the system to recover from the fault. Both linear and exponential load
recovery models work excellently and feasible solutions were found. Since the op-
timization was possible on a small system, it should be possible to implement it on
a larger system. The question is how accurate the results will be with all simplifica-
tions made.
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Chapter 6. Discussion

Another vital discovery, is the importance of the initial values for the optimiza-
tion. Bad initial guesses could give suboptimal solutions or worse, no solutions at
all. This is the reason why the programming was divided into steps, where the two
first steps (1 and 2) were mainly for computing good start values for Step 3 and Step
4.

The voltage dependent load model is significantly harder to stabilise than the
previous load models. The short time interval 1-5 will not be enough to solve
the problem. The amount of time steps required are infinitely many and numeri-
cal methods are needed to find feasible solutions. Although the voltage dependent
load model is complex, it might give a more accurate behavior of a system.

Verifications were also done in Matlab. It was mentioned that the optimization
tool fmincon, uses matrices for linear constraints, where Ax < B. This constraint
was controlled at times. Another good way of verifying the results, was to put the
computed state variables into the actual system, the Seven-Node System. If the sum
of these results were smaller than a threshold (1e−5), the state variables were con-
sidered correct.
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7
Conclusion

It is possible to find a pre-contingency load for a small system by using tools in
Matlab. The load power is able to recover from a fault using both linear and ex-
ponential load recovery models, while maintaining stability. Matlab is capable of
solving optimization problems, using approximated models.

Observations shows that, generated power over 5.1 p.u. will not give numeri-
cally correct values, since it is difficult to find an equilibrium then. The initial values
of the optimization have proven to be important. Therefore, the problem has been
broken down in steps, where the first steps provide good initial guesses for the final
computation. Although, the defined optimization problem was successfully solved
in this study, a more complicated load model, such as a voltage dependent load
model during load recovery, will probably have a different outcome.
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8
Future work

It would have been interesting to study the optimization done in this thesis, on a
large scale system. Another question is, how much the results in this project dif-
fer from results of a more complex method. Would more complicated models be
worth the advanced computations or is the simple approach good enough? Lastly,
verifications in a different program could also be useful to confirm the results.
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9
Appendix

9.1 Per Unit System

It is common to use per unit values (p.u.) when describing quantities in an electric
grid. The values are related to a predefined base unit as a multiple of the base unit.
How to transform a value from S.I. units to per unit values is done in equation (9.1).

quantity in p.u.=
actual value
base value

(9.1)

The advantage of using p.u.-values is that equipment with different ratings can
easily be compared. The p.u. system is very convenient for systems with transform-
ers, where the primary side and secondary side might have values in different orders.
By using the p.u. values the primary and secondary side will be comparable.

It is mainly the currents, voltages, powers (active and reactive) and impedances
which are transformed to p.u. values. To calculate p.u. values, two nominal values
need to be decided as bases. For example is a nominal voltage (UB) and a nominal
apperent power (SB) chosen as bases. From Ohm’s law a base current (IB) and a
base impedance (ZB) are found.

IB =
SB

UB
(9.2)

ZB =
UB

IB
(9.3)

Now for the per unit values using eq.9.1,

s =
S
SB

(9.4)

u =
U
UB

(9.5)

i =
I
IB

(9.6)
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9.2 Figures

z =
Z
ZB

(9.7)

where all quantities in lower case letters are in the p.u. values and the upper case
letters are the actual values of the quantities. More examples of the per unit system
is found in [Andersson and Franck, 2012].

9.2 Figures

These are the figures which to high values of the generators into account. As dis-
cussed in chapter 6, the sum of the generators had to be less than 5.1 p.u. to obtain
reasonable results.
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Figure 9.1 Pre-contingency load without generation restrictions on generators to
be less than 5.1 p.u. in total.
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Figure 9.2 Pre-contingency load without generation restrictions, same results as
above but with a different angle.
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Figure 9.3 Post-contingency load without generation restrictions on generators.
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9.2 Figures
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Figure 9.4 Post-contingency load without generation restrictions.
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Figure 9.5 Load at end time without generation restrictions on the generators.
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Figure 9.6 Load at end time without generation restrictions.
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Figure 9.7 Load at end time plotted against maximum generation without genera-
tion restrictions
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Figure 9.8 Load at end time plotted against maximum generation without genera-
tion restrictions
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