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Abstract 
 

Failures due to instability phenomena will happen suddenly and can cause the whole 

structure to collapse. It’s therefore in the engineer’s best interest to have a good knowledge 

about these phenomena. One example of instability phenomena is column buckling, which 

is the main focus of this thesis.  

 

The main cases that are being evaluated have a single brace in the middle of a timber 

column with hinged ends, where a part of the report revolves around a comparison of 

calculation methods for column buckling in Eurocode and the U.S. Building code. 

 

The second part revolves around the influence of the initial curvature shape and magnitude 

on a column. During this evaluation second order is taken into account in the numerical 

analysis. Finally the brace stiffness and reaction force on a column is evaluated, to gain a 

better understanding of its overall influence on a column’s load bearing capacity. 

 

In the study it was shown that Eurocode and the U.S. Building code weren’t comparable 

due to formation of respective building code. A comparison between the two building codes 

was however done, to get a better understanding of the difference between the two. 

 

Results show that a larger initial curvature leads to a larger reduction to the overall load 

bearing capacity for a column. The assumed shape of the initial curvature has a large 

impact on the load bearing capacity. There exist a large discrepancy between the simplified 

shape of the initial curvature and the least beneficial, which depends on the size and shape 

of the initial curvature. 

 

Findings show that an increase of a column’s brace stiffness contributes to the load bearing 

capacity even though the stiffness might be small. The European standard however 

demands a minimum stiffness for a brace to be considered acceptable. 

 

The study also shows that the brace force is dependent on the initial curvature of the 

column and the bracing stiffness. Yura’s & Helwig’s brace force expression is studied and 

compared with the result of a numerical analysis.  

 

 

 

 

Keywords: Column buckling, bracing, building codes, stiffness, initial curvature, 
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Nomenclature 

 

Abbrevations 

Eurocode 5  SS-EN 1995-1 

FEM  Finite Element Method 

 

Latin upper case letters 

A  Area [m
2
] or [inch

2
] 

     Load duration factor 

    Wet service factor 

    Temperature factor 

    Size factor 

    Column stability factor  

    Inscised factor for sawn lumber 

E  Young’s modulus [Pa] or [psi] 

       Modulus of elasticity associated with the axis of column  

buckling [Pa] 

    Modulus of elasticity associated with the axis of olumn buckling  

[psi] 

F  Force [N] 

     Tabulated compressive stress parallel to grain [psi] 

      The Euler critical buckling stress for columns [psi] 

  
  The design load for the compressive stress parallel to the grain 

[psi] 

  
   Tabulated compressive stress parallel to grain multiplied by all  

adjustment factors except    [psi] 

I  Moment of inertia [m
4
] 

     0,3 for visually graded lumber 

    Effective length factor 

L  Length [m] 

M  Moment [Nm] 

N  Normal force [N] 

Nd  The design load [N] 

P  Force [N] 

Pcr  Critical force [N] 

W  Section modulus [m
3
] 

 

 

Latin lower case letters 

b  Width [m] or [inch] 

h  Height [m] or [inch] 

c  The buckling and crushing interaction factor for columns 

        Compressive stress capacity parallel to the grain [Pa] 

fck   Compressive stress capacity parallel to the grain [Pa] 

    the compressive stress parallel to the grain [psi] 

i  Gyration ratio 

k  Brace stiffness [N/m] 



 

 

 

 

2 

 

kc  Reduction factor 

kideal  Ideal brace stiffness [N/m] 

kreq  The required brace stiffness to prevent side sway [N/m] 

l  Effective length [m] 

 

 

Greek lower case letters 

β  Euler’s buckling factor 

    Straightness requirement factor 

σ   Stress [Pa] 

λ  Slenderness ratio 

         Relative slenderness ratio 
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1 Introduction 

This chapter is an introduction to this report, where the underlying background and the 

objective for this report will be given. The chapter starts with an introduction to the 

subject, were the problem formulation of the report will be presented. Later in this chapter, 

the reader will get more detailed description about the objective and the method of the 

report. 

 

 

1.1 Background 

When instability phenomena occurs in a structure the consequences can become dire fast 

(Bauchau & Craig, 2009). Failures due to instability phenomena can happen suddenly and 

can cause the whole structure to collapse. It’s therefore in the engineer’s best interest to 

have a good knowledge about these phenomena. Examples of instability phenomena are 

local buckling, column buckling and lateral torsional buckling. 

  

Instability problems such as column buckling can be counteracted by bracing. When 

bracing a column for column buckling the brace reduces the effective length of the column, 

thus increases the load bearing capacity for the structure and it becomes more stable. 

During the design of a brace, the bracing is normally considered to be infinitely stiff to 

enforce a certain kind of failure. However an infinitely stiff bracing is never the case in 

reality.  

  

However it’s hard to calculate the stiffness for the bracing and the way it’s calculated 

differs dependent on the method. It is therefore of importance to gain a better understanding 

of how a brace influences the column buckling phenomenon. 

 

 

1.2 Objectives and aim 

Calculation methods to design a column due to column buckling vary between the different 

building codes. In this report the difference between how the European and the U.S. 

building code calculates the design load for a column in compression are presented. The 

design loads is compared to each other and a numerical analysis.  

  

The second part of this thesis is a parametric study where the effects of initial curvature on 

the critical load bearing capacity are evaluated. During this evaluation a numerical analysis 

is performed to take into account non linearity. 

 

By bracing a column, column buckling can be prevented by increasing the columns load 

bearing capacity. It is however hard to evaluate what kind of stiffness properties that is 

required for obtaining an effective brace for a wooden column. It is also hard to anticipate 

the magnitude of the reaction force in the brace. 

 

Aim 

 How does the design procedure and results differ between Eurocode and the U.S. 

building code, when it comes to timber columns in compression? 
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 How does the shape and magnitude of initial curvature influence the load bearing 

capacity of a column?  

 

 How does the stiffness of a brace affect the load bearing capacity in the column and 

the resulting force in the brace? And how does the influence of several braces with 

different stiffness affect the load bearing capacity of a column? 

 

 

1.3 Scope  

This thesis focuses on column buckling. The main cases that are being evaluated have a 

single brace in the middle of the column with hinged ends. The study will revolve around 

timber columns. 

  

The columns that are being evaluated for timber have a rectangular cross-section with the 

material properties of timber class c27.  

  

During calculations eccentricities, residual stresses and inclination are not taken into 

account unless assigned a specific value. Other deciding factors such as long time 

deformations, moisture content for the columns are not considered. While comparing 

European with the U.S. building code only calculations with critical load due to column 

buckling are done. 

  

The evaluation of a brace’s contribution to the load bearing capacity will only be done in a 

linear analysis in FEM. This report evaluates the phenomena up to the second order (by 

using computer modeling), this means that no larger deformations are taken into account.  

 

 

1.4 Method 

A literature review of current and relevant knowledge of stability phenomena will be the 

base foundation of this report. The procedure of the literature review will be done 

analytically and systematically. 

  

To quantify and clarify the relations mentioned in the literature review, a calculation part 

will be carried out in the report. These calculations will be based on the European and the 

U.S. building codes for structural design and computer model in Brigade. 

  

The European building code for timber is based on SS-EN 1995-1, also called Eurocode 5. 

The basis of the European building code for this report comes from the book 

“Byggkonstruktion – Regel och formelsamling” by Isaksson and Mårtensson (2010). 

  

The review of the U.S. building code in this report revolves around the book “Design of 

Wood Structures – ASD” by Breyer et al (2003). The book goes through the basis for 

structural design and includes practical literature.  The literature includes publication and 

design criteria’s of the National Design Specification for Wood Construction (NDS), 

Allowable Stress Design Manual for Engineered Wood Construction and the International 

Building Code. 
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Brigade/plus 5.1-4 is an add on program from Scanscot Technology AB to Abaqus from 

Dassault Systèmes, that offers a variety of extra features in design of bridges. Brigade is the 

preferred and used finite element program for this report, this since it has all the right 

properties needed to do advanced calculations but also because the authors are used to its 

interface. The finite element method is necessary in this case to obtain the second order and 

also used as a comparison to the hand calculations. 

 

 

1.5 Outline of this thesis 

Chapter 1 –  Introduction, introduces the problem studied in this report  

 

Chapter 2 –  Literature review, underlying theory that serves as a foundation for the report 

 

Chapter 3 –  Standards and building codes, presents theory and methods behind the 

 different standards and building codes 

 

Chapter 4 –  Modeling, this part walks through how the calculations and studies are 

performed in this report. 

 

Chapter 5 –  Results and analysis, presents a results and discussion part, where the 

calculations and findings are analyzed and discussed. 

 

Chapter 6 - Discussion and conclusion, a conclusion of the result and discussion is done 

to answer the objectives of the report.  
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2 Literature review 

This chapter is a literature review, where the underlying theory for the report will be 

presented. The chapter begins with a short review of the materials that are studied, and 

then to describe the theory behind stability theory and the column buckling phenomena. In 

connection to the column buckling part, there’ll be a section that describes the influence of 

bracing. 

 

 

2.1 Material properties 

In this subchapter general information about the materials wood and steel are presented 

from a structural point of view. 

 

2.1.1 Timber 
Timber comes in all shapes and sizes, since it’s organic it varies in quality. Many of the 

weaknesses of wood comes from its growth deviations such as knots, bark that grows 

inwards or tree sap (Burström, 2007). The woods anisotropic properties will cause the wood 

to absorb moisture differently in each direction. The moisture levels in newly cut timber are 

approximately 30-35% at the core (Burström, 2007). When the wood planks later dry out 

they will shrink and bend dependent on where they are cut out of the timber log. To 

illustrate this see picture 2.1 below, this initial bending can cause irregularities when used.  

 

 

 
Figure 2.1 Shapes of dried out wood planks (Burström, 2007)  

 

 

The strength properties of wood is very complex due to its anisotropic structure (Burström, 

2007). Most types of timber have the largest strength capacity when it is subjected to pure 

tensile force along the fibers. The lowest strength capacity is obtained when timber is 

subjected to pure compressive force along the fibers. Since bending is something in 

between the strength will also be something in between tensile and compression strength. 

Since wood is anisotropic its strength capacity also becomes dependent on how the wooden 

fibers are take on the load. The tensile- and compressive strengths are at a high point when 

the wood takes on load parallel to the wooden fibers and noticeably weaker perpendicular 

to the same fibers. If the load is applied perpendicular to the wooden fibers the largest 
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strength is reached parallel to the annual rings of the timber, even known as the tangential 

direction. For further viewing of how the three main directions are defined see figure 2.2 

below. 

 

 Fiber direction (along the trunk) 

 Radial direction (perpendicular towards the annual rings and the fiber direction) 

 Tangential direction (perpendicular the fiber direction but parallel towards the 

annual rings) 

 

 

 
Figure 2.2 The timbers main directions F- fiber, R-radial and T-tangential  

 

 

The strength properties of wood are directly dependent on the on density, moisture content, 

fiber direction, temperature and dimensions (Burström, 2007). 

 

 

2.2 Stability theory 

In the world of mechanics one separates different equilibrium states from each other 

(Höglund, 2006). This is done by classifying certain types of scenarios into three main 

categories, 

 

 Stable 

 Unstable 

 Neutral  

 

To illustrating the stable case imagine a ball in a valley, if a small interference changes its 

position it will self-regulate and get back to its original state (Höglund, 2006). In the 

unstable case on the other hand, a small interference leads to an increase of force acting 

against the balls equilibrium state. In the neutral state the interference will only move the 

case further away it will not affect the equilibrium of the ball. These cases are illustrated in 

the figure 2.3 below. 
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Figure 2.3 Stability cases, from left to right stable, unstable and neutral (Höglund, 2006) 

 

 

Preconditions for a body are the determining factor in how the body will act when it’s 

subjected to a load (Höglund, 2006). Thus one can say that a structure is in a stable 

equilibrium if it will self-regulate back to its original position after exposure to a small 

interference. While examining stability phenomena one often presume certain restrictions 

for instance, 

 

 

 Material properties are linear elastic 

 The shape of the structural element has an ideal form 

 Constitutive properties are based on presumptions of small deformations 

 

 

Dependent on what kind of mechanical phenomena that occurs on the load bearing structure 

different failure modes can occur (Höglund, 2006). If a structure is subjected to tensile 

forces the material yield strength, fatigue or breaking point becomes critical for failure. 

However compressive forces enforce column buckling or local buckling to take precedence 

above other parameters concerning failure for slender columns. 

 

 

2.3 Failure due to geometry  

Depending on the column’s geometry, the allowable stress for a given material can vary 

and be divided into three groups (Efunda, 2014). The three groups are the short, 

intermediate and long column. 

 

The materials strength limit is the dominating factor for a short column. For an intermediate 

respective a long column it’s however the inelastic and the elastic limit that are the 

bounding factor for the column members (Efunda, 2014). The slenderness or the stiffness of 

the column becomes more and more important as a column becomes longer. The capacity 

of the material in a column, that is long and slender, will not be fully utilized. The column 

will buckle before the stresses in the column reaches the stress limit of the material. 

 

For an illustration of the correlation between the strength limit and the slenderness ratio for 

the different groups, see figure 2.4 below. 
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Figure 2.4 Slenderness-ratio dependent on height (efunda, 2014) 

 

 

 

With other words, it’s the material’s strength properties (as the yield strength and Young’s 

modulus) and the geometry (slenderness ratio; the cross-section and the length) that decides 

in which group a column resides. 

 

2.3.1 Buckling 
The critical load for a column, in pure buckling, is defined by Gere & Timoshenko (1961) 

as the axial force that is sufficient to keep the bar in slightly bent form. By assuming that 

the beam acts as an ideal column, the critical load for the compressed beam can be 

calculated. The fundamental case of column buckling, where you have the case with a bar 

with hinged ends, you can obtain a general equation for the critical load, see equation 2.1 

below, 

 

 

    
    

     
    (2.1) 

 

 

2.4 Bracing of columns 

To prevent buckling the easiest way is to reduce the length in some form or to change the 

shape of the cross section. The length reduction can be done by the use of a brace (Winter, 

1958). The brace can either be considered to be elastic or ideal. An elastic brace takes on 

the load and deflects out as well as the bracing gets displaced from its origin. The 

displacement is dependent on the stiffness of the brace, when it becomes stiff enough it will 

remain in place and be considered as ideal. 

 

To acquire an effective bracing against buckling the bracings required strength and the 

rigidity of the whole structure needs to be taken into account also the fact that there will 

always be imperfections of shapes or loads (Winter, 1958). It is common knowledge that 

imperfections in placements of loads will create unwanted moments that in turn causes a 

deflection of the column, in the case of column buckling the critical load is not affected by 

this however the total deflection becomes larger. 
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2.4.1 Bracing at the end of a column element 
If a column is subjected to an axial load, hinged on the ends with the assumption of 

adequate stiffness to the restraints, the critical load is given by Euler’s load (Helwig & 

Yura, 1996). For illustration for the case, see figure 2.5 and equation 2.2 below, 

 

 
Figure 2.5 Hinged and braced top of a column (Helwig &Yura, 1996) 

 

 

    
    

  
    (2.2) 

 

 

Consider now that the top end is elastic and that the bracing is inadequate, this will result in 

the inevitable deflection of the column but also a displacement of the bracings original 

position, see figure 2.6 below. 

 
Figure 2.6 Inadequate stiffness gives side sway (Helwig &Yura, 1996) 

 

 

The manner of which the structure acts can be described by the moment equilibrium state at 

the hinge. The expression of the equilibrium can according to Helwig & Yura (1996) be 

illustrated and expressed by figure 2.7 and equation 2.3 below, 
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Figure 2.7 Equilibrium state (Helwig &Yura, 1996) 

 

 

 

           (2.3) 

 

 

The force, F, in the spring can be expressed by the stiffness of the brace and the 

deformation of the column this can be seen in equation 2.4 below. By implementing 2.4 

into the equation 2.3 the following expression is given, see equation 2.5 below, 

 

 

         (2.4) 

 

            (2.5) 

 

 

This can be further derived to equation 2.6 below, 

 

 

         (2.6) 

 

 

When this equilibrium state between the stiffness of the brace and the applied load is 

reached see equation 2.3, the column will not sway out sideways. The equilibrium state 

between the support reaction and acting force together with the two buckling cases is 

illustrated in figure 2.7 above.  

 

The first buckling load prescribed in figure 2.7 is described as a linear relation, which is 

dependent on the stiffness of the spring (sidesway). When the second buckling load is 

reached it triggers the spring to act more like a hinge (no sidesway), by doing so the load 

can be expressed with Euler’s critical load as in equation 2.6 above. The ideal stiffness for 

the bracing, can according to Winter (1958), be derived from equation 2.7 to equation 2.8 

below, 
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    (2.7) 

 

       
    

  
    (2.8) 

 

 

The correlation between the rigidity of the bracing and the critical buckling load is 

illustrated in the figure 2.8 below. The critical buckling load will increase as the stiffness of 

the bracing increases. When the critical buckling hit the second buckling mode, an 

increased stiffness won’t improve the load capacity as the buckling mode will govern the 

load capacity (Galambos & Surovek, 2008). 

 

 

 
Figure 2.8 Relation between the stiffness and critical load when bracing at the top (Helwig &Yura, 1996) 

 

 

It is therefore shown that it isn't necessary to strive for larger brace stiffness, the fully 

braced buckling mode can be acquired through sufficient bracing (Winter, 1958). The only 

requirement for the bracing is to have sufficient strength and rigidity to withhold the effects 

from the critical load. 

 

2.4.2 Bracing at the middle of a column element 
The usual way to stabilize a column with two hinged supports at each end, is to connect it 

to a bracing, this can be done for example in the middle (Winter, 1958). The value of the 

necessary stiffness of that bracing can be determined by previously defined correlations in 

the section 2.4.1 above. On that basis one could even calculate more than one bracing 

between two supports.  

 

Winter (1958) states when a column has a bracing in the middle with an adequate stiffness, 

the buckling mode will follow the appearance of two half sine waves. Helwig & Yura 

(1996) illustrates it like figure 2.9 below.  
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Figure 2.9 Column with sinus shaped curvature (Helwig &Yura, 1996) 

 

 

If however the support were to not to have an adequate stiffness the result would be an 

displacements of the bracings origin and the column will get a buckling mode similar one 

described in figure 2.10 below. 

 

 
Figure 2.10 Inadequate stiffness (Helwig &Yura, 1996) 

 

 

When an ideal column with hinged ends is improved by an unyielding support at a 

miniscule portion of the middle and tested, it buckles into two half sine-waves (Winter, 

1958). If this ideal column’s unyielding support got replaced by a real or fictitious hinge at 

the middle of the column the result becomes the same where the column still buckle out in 

two half sine-waves. Since both cases express the same shape a fictitious hinge can in this 

case be introduced at the middle with insignificant error. To illustrate this see picture 2.11 

below. 
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Figure 2.11 Illustrating column that is subjected to column buckling with a minuscule unyielding support 

verses a hinge in the middle.(Winter, 1958) 

 

 

The moment equilibrium of the column seen in figure 2.12, can therefore be described by 

introducing a fictitious hinge in the middle of the column to describe the equilibrium 

correlations (Winter, 1958). In this case the equilibrium can be expressed and illustrated as 

in the equation 2.9 and figure 2.12 below, 

 
Figure 2.12 Moment equilibrium (Helwig &Yura, 1996) 

 

 

    
   

 
      (2.9) 

 

 

The formulation can later be simplified as in equation 2.10,  

 

 

    
   

 
    (2.10) 

 



 

 

 

 

16 

Based on this correlation one can later evolve it to the expression in equation 2.11 for the 

necessary stiffness for the bracing,       , in the same manner as in previous sections, 

 

 

         
    

     (2.11) 

 

 

The figure 2.13 below illustrates the relationship between the critical buckling load and the 

bracing’s stiffness. As in section 2.4.1 the stiffness of the bracing has a great influence of 

the critical buckling load, in the first buckling mode. An increased stiffness will increase 

the load capacity.  But when the column reach the second buckling load, the increase of 

stiffness becomes less relevant and the buckling mode will govern the capacity of the 

column according to Helwig & Yura, (1996). 

 

 

 

 

 

 
Figure 2.13 Relation between stiffness and critical load with a bracing in the middle. (Helwig &Yura, 1996) 
 

 

 

 

 

2.4.2.1 Imperfections 
If the imperfections in the column are taken into account, the formulation of the required 

stiffness will change slightly from the earlier expression. Winter (1958) uses an equilibrium 

equation about the hinge to describe the correlations of the bracing, which is illustrated in 

fig 2.14 and stated in equation 2.12 below, 
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Figure 2.14 Equilibrium with initial curvature (Winter, 1958) 

 

 

   
  

 
              (2.12) 

 

 

By implementing the equation 2.4 in the formulation 2.12 above, the required stiffness of a 

full braced column is acquired. The formulation is presented in the equation 2.13 below, 

 

 

     
    

 
[    ⁄    ]    (2.13) 

 

 

According to Winter (1958) this demonstrates that a bracing’s rigidity for an imperfect 

column exceeds the need of an ideal column, to produce full bracing. This means that a 

larger imperfection requires a stronger and more rigid bracing. 

 

2.4.2.2 Brace force 
According to Yura & Helwig (1996) the initial curvature has a big influence on the brace 

force. The brace force can be expressed as equation 2.4. The formulation can according to 

Yura & Helwig, due to initial curvature, be expressed as equation 2.14. This formulation 

can be further derived and expressed as equation 2.15 below, 

 

 

    
  

 
         (2.14) 

 

 

    
  

 

  

  
      

 

    (2.15) 
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3 Standards and building codes 

This chapter is a review of the methods and design standards that are in use in the report. 

The chapter starts with an introduction that describes the differences between an ideal- and 

a real member. The reader will also get a presentation of the design building codes in 

Europe and U.S. for timber columns in compression. A section about the Finite Element 

Method (FEM) will later be presented, to describe the method in general. 

 

 

3.1 Theoretical members opposed to real members 

The difference between theoretical and the practical member is the existence of different 

unspecified factors that together with the deviation from the linear elastic behavior acts on 

the member (Runesson et al., 1992). During design procedures these conditions need to be 

taken into account in general, for instance: 

 

 Inhomogeneity in material properties 

 Initial stresses in the form of residual stresses  

 Initial curvature    

 Eccentricity of axial load point of application 

 

Real members are never perfectly straight nor are there load applied without eccentricities 

(Trahair & Bradford, 1994). To simplify the problem these imperfections can be equal to an 

addition in initial curvature since the behavior is similar.  

 

Initial curvature is a form of geometrical imperfection where a straight beam or column has 

a natural curvature to its shape often caused by residual stresses (Trahair & Bradford, 

1994). The maximum allowed stresses and design rules that takes initial curvature into 

account are based on semi-empirical studies. Residual stresses are those stresses that act 

internally on a structural member in an unloaded state. By definition this means that those 

stresses are in equilibrium since they are there without external forces (Höglund, 2006). 

However residual stresses are not being taken into account in this report. 

 

The shape of how the initial curvature acts in a column is very irregular and different in 

each case. When the column becomes subjected to a load the buckling effect is added with 

the initial curvature and thereby speeds up the process of failure due to column buckling. 

The model assumption is that the shape for column buckling also is the shape for the initial 

curvature of the column. In this case the total deflection becomes the contribution from the 

column buckling and the contribution from the initial curvature. 

 

When adding all deviations on a perfect member the critical load is reduced dependent on 

how much and of what the actual member is exposed to (Trahair & Bradford, 1994). To 

illustrate an example of a real member compared with a purely theoretical member see 

figure 3.1 below, 
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Figure 3.1 example of a real members behavior compared to the theoretical value in the dotted line 

(Trahair & Bradford, 1994) 

 

 

3.2 Design according to Eurocode 5 

In a previous section 2.1     is described as the critical axial force that is needed for a 

column to buckle. This value of Pcr is a pure theoretical value, in a perfect case where a 

column is subjected to an axial force without any eccentricity or any other imperfections. It 

is simply impossible to recreate it in the real world since a lot of different factors can 

interfere for instance (Crocetti and Mårtensson, 2011). 

 

 Strength/stiffness - A materials modulus of elasticity and compressive strength 

varies. 

 

 Geometry of the member - Creation of members has a certain precision therefore it 

might have small variation in cross section, initial curvature and length. 

 

 Support conditions - Countered by effective buckling length 

 

 Material imperfection - Grown materials vary in quality and imperfections. Density, 

moisture and effect of compression are all properties that vary dependent on type of 

material, where it’s created and where it’s stored. 

 

 Geometry imperfections - The human factor is always present during erection of 

buildings and can cause imperfections such as eccentricities and inclination. This 

together with a materials initial curvature needs to be taken into account. 

 

 

To counter this theoretical value Eurocode 5 introduce a reduction factor kc, kc depends on 

previous mention factors but also the slenderness ratio  . 

 

3.2.1 Column Subjected to Compression 
In Eurocode 5 the general expression is presented for a column subjected to compression. 

These expressions have been redone for a more user friendly guideline in 

“Byggkonstruktion: Regel- och formelsamling” by Isaksson and Mårtensson and are 

presented below.  
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The load capacity for thus column is calculated in the following manner see equation 3.1 

below, 

 

 

                 (3.1) 

 

  

 Where       = compressive stress capacity parallel 

to the grain 

    = Area of the cross-section 

     = Reduction factor 

  

 

   is a reduction factor that is taking into account the risk of plane buckling. When 

determining the reduction factor the column’s slenderness is of grave importance. The 

slenderness factor is prescribed as equation 3.2 below, 

 

 

  
   

 
    (3.2) 

 

Where   =  Euler’s Buckling factor 

   = Length of the column  

  = √
 

 
  

 

 

Thereafter the relative slenderness ratio can be expressed as equation 3.3, 

 

 

     
 

 
√

     

     
   (3.3) 

 

Where       =  Compressive stress capacity parallel  

to the grain 

   

        = modulus of elasticity associated with  

the axis of column buckling 

  

 

Finally the reduction factor will be decided according to equation 3.4, 

 

 

   
 

  √       
 

, for            (3.4)

  

   

Where                                                                   
   

    =  Straightness requirement factor
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Comments: 

The reduction factor kc has been determined by large quantity testing (Crocetti and 

Mårtensson, 2011). The columns that were tested was picked at random had different 

deviations in material properties, geometry and initial curvature. Property values between 

different columns were taken in to account for correlation. By studying the tested columns 

using second order one could calculate the ultimate load. 

 

3.2.2 Live loads in Eurocode 
Design guidance on how to design for imposed loads for structural designs, are also given 

by Eurocode. The characteristic values are divided in different categories, which indicate 

on its occupancy. 

 

The live load that is of an interest in this report is, 

 

School, classroom:           

 

3.2.3 Single members in compression 
For each single member in compression, the required minimum resistance of the lateral 

support is given by C in Eurocode 5 (2004). The minimum stiffness of the brace is given by 

equation 3.5 below. 

 

 

    
  

 
     (3.5) 

 

Where    =  Is a modification factor varied from 1  

to 4,where 4 is recommended. 

   = Is the mean design compressive force       

in the element 

  =  Is the bay length between the support  

   and spring. 

 

 

Nd is given by equation 3.1 above, 

 

 

3.3 Design according to the U.S. standard 

This section will go through the U.S. structural design approach for axially loaded column. 

 

3.3.1 Axially loaded column 
The general expression for a column subjected to an axially load is presented in “Design of 

Wood Structures – ASD” (2003).  The formula 3.6 below, is a control of the capacity of an 

axially loaded wood column. 

 

 

   
 

 
    

     (3.6) 
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 Where    =  the compressive stress parallel to the 

grain 

  P = the members axial compressive force 

  A = the area of the cross-section 

    
  = the design load for the compressive 

    stress parallel to the grain 

 

 

The design load is taking in to account several different factors in addition to the column 

stability. Example of the different factors is the temperature, the moisture content in wood 

and the load duration. The different factors are manifested as adjustment factors.  

 

The formula for the allowable stress in a column is presented in equation 3.7 below. 

 

 

  
                           (3.7) 

 

 

 Where   
  = allowable load for the compressive 

    stress parallel to the grain 

      = tabulated compressive stress 

    parallel to grain 

      = load duration factor 

     = wet service factor 

     = temperature factor 

     = size factor 

     = column stability factor  

     = incised factor for sawn lumber 

 

 

More detailed information about the various adjustment factors can be found in the book 

“Design of Wood Structures – ASD” (2003). 

 

As specified above, the adjustment factor,   , considers the columns stability. The    

factors is defined as specified as the equation 3.8 below, 

 

 

   
       

 ⁄

  
 √(

       
 ⁄

  
)
 

 
     

 ⁄

 
   (3.8) 

 

 

 Where      = the Euler critical buckling stress for 

    columns 

    
   = tabulated compressive stress parallel 

    to grain multiplied by all adjustment 

    factors except    

  c = the buckling and crushing interaction 

    factor for columns 
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The c factor varies dependent on what kind of column it is. For more detailed values look 

below, 

 

 

c = 0,8 for sawn lumber 

= 0.85 for round timber 

   = 0,9 structural composite or glulam 

    lumber columns 

 

 

U.S standard describes the failure of a column with two failure modes, the buckling and the 

crushing mode. The second failure takes in to account the crushing of the wood fibers, e.g. 

the material capacity before plasticity. It’s given by the formula 3.9 below, 

 

 

  
                       (3.9) 

 

 

  
  includes the tabulated compressive stress parallel to grain,     and all the adjustment 

factors except the column stability factor,   . 

 

The first buckling mode is given by Euler critical buckling stress. To use the Euler stress in 

allowable stress design (ASD), a factor of safety is used and divided with the Euler 

expression. The Euler critical buckling stress for columns is therefore expressed in NDS as 

equation 3.10 below, 

 

 

    
     

       
    (3.10) 

 

 

 Where    = modulus of elasticity associated with  

    the axis of column buckling 

      = 0,3 for visually graded lumber 

   = 0,384 for MEL 

   = 0,418 for products with less 

    variability such as MSR lumber and 

    glulam 

 

 

The safety factor and    are included in the     
  term. 

 

The formula for the general slenderness ratio is expressed as equation 3.11 below. 

 

 

 
  

 
   (3.11) 

 

 

Equation 3.11 can be derived from the equation 3.12 seen below, 
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(
  

 
)
   

 (
   

 
)
   

   (3.12) 

 

 

Where    = effective unbraced length of a 

Column 

  r = least radius of gyration of column 

    cross section 

     = least cross-sectional dimension of  

column 

   = unbraced length 

    = effective length factor 

 

 

3.3.2 Live loads in U.S. Building code 
Design guidance and actions on how to design for imposed loads for structural designs, are 

also given by the U.S. building code. However the regulation in U.S. differs between the 

states.  

 

In this study the live loads where taken for New York City, which was given by the 

International Council (Iccsafe, 2014). 

 

School, classroom:        

 

 

3.4 Finite Element Method and modeling 

In mechanics physical phenomena are often described and modeled by differential 

equations (Ottosen & Petersson, 1992). The studied problems are often too complex to be 

solved by the classical analytical methods. The finite element method solves differential 

equations in an approximate manner with a numerical approach. Since the differential 

equations describe a physical problem, one can assume it acts over a certain region. This 

region might be one-,two- or three-dimensional in nature. This approximation of the region 

is often done by a polynomial. What the finite element method does is divide the region 

into smaller pieces called finite elements, the approximation is then done in each element 

instead of done over the whole region at once.  

 

The whole cluster of finite elements are often referred to as finite element mesh or mesh 

(Ottosen & Petersson, 1992).  After the approximation of the physical phenomena is made 

over the each single element in the mesh, the reacting behavior will be determined in each 

element. When all elements behavior has been determined they can be patched together 

according to the systematic formation of the mesh, this gives the entire region. This in turn 

provides an approximate solution for the entire body's behavior. The element adopts the 

general approximation to see how it changes over the element. The approximation becomes 

an interpolation over the element, where one assumes to know values at certain points in 

the element. At the boundary of each element one often find these points even known as 

nodal points.  

 

The behavior between the nodal points varies on approximation it may linear, quadratic, 

cubic and so on (Ottosen & Petersson, 1992). The finite element method is matrix based 
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because it enables one to use thousands of unknown variables in a compact fashion. The 

number of elements is crucial for the accuracy, more nodes means more accurate 

approximation which in turn means that the solution will converge towards the actual case. 

When one uses FE programs in practice the user still need to have the understanding of 

underlying theories otherwise the result might be irrelevant. 

 

3.4.1 Mathematical modeling 
This section is a review of the different approaches in mathematical modeling within FEM, 

which is implemented to interpret the mechanical behavior.  

 

3.4.1.1 First order theory 
In the first order theory, the applied load is directly proportional to the deformations and the 

section forces, when a structure is of a linear elastic material (Runesson et al, 1992). This is 

true as long as one assumes that the deformations are small and neglect able during 

equilibrium equation. The original geometry of the structure is thus analyzed as a whole in 

the first order theory. Each load can therefore be treated separately and later on be added to 

the result since its linear, this is also referred as the superposition principle 

 

3.4.1.2 Second order theory 
When some structures is subjected to utility loads significant deformations can occur, it’s 

therefore important that one takes the size of the deformations into account alongside the 

other geometry of the structure (Runesson et al, 1992).  

 

In the second-order theory the structural deformations are still assumed to be small 

(Runesson et al, 1992). But compared to the first-order theory the equilibrium equations in 

the second-order theory consider the deformations. The superposition principle does 

therefore not apply anymore and the relationship between the deformation and the load 

generally isn’t linear, even for linear elastic material. 

 

3.4.1.3 Third order theory 
By increasing realism further in the third order, deformations are no longer small and no 

simplifications of geometry can be made, since the real geometry is the ground pillar to the 

equilibrium equation (Runesson et al, 1992). Superposition principle is no longer possible, 

neither is the possibility for simplifications for example, one can’t use the reduced 

expression for curvature everything needs to be taken into account. 

 

 

Comments:  

To gain a better understanding of the linear elastic and inelastic behavior of the material the 

FEM calculations will consider up to the second order.  
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4 Modeling 

In this chapter methods and models of the different cases will be presented. The 

calculations and modelling that are done in this report are based on the methods 

prescribed in this chapter. The aim of this chapter is to describe the approach we take on 

solving certain problems.  

 

 

4.1 Case study 

The cases that are studied have hinged ends with a bracing at the mid-span and a length of 2 

m. The preconditions are illustrated in the figure 4.1 below. The effective length of the 

column are 1/2 times L since the Euler case and support conditions describing the problem 

will not interfere or create any reduction to the effective length. 

 

 
Figure 4.1 Reference case 

I 

4.1.1 Material properties 
The columns that are analyzed vary in size of the different cross-sections. The differences 

are presented in the table 4.1 below. The material-properties are the same for the various 

columns.  

 

 

Case A B C D E 

Height [m] 0,145 0,145 0,145 0,145 0,145 

Width [m] 0,022 0,028 0,034 0,045 0,07 

Length 

[m] 
2 2 2 2 2 

Timber 

class 
C27 C27 C27 C27 C27 

fck 

[MPa] 
22 22 22 22 22 

E [MPa] 11 500 11 500 11 500 11 500 11 500 

Table 4.1 The different cross-section and material properties 
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The cases studied are all targeted for column buckling at the weak side, this causes the 

slenderness to be dependent by the width of the cross-section rather than the height in a 

rectangular cross-section. The height is therefore kept constant for all cases. Other 

geometrical information can be found in the following table 4.1 above. 

 

 

4.2 Finite Element Method (FEM) model 

This section introduces the method of how the FEM calculations are made. During FEM 

calculations all cases are based on the reference case seen in 4.1.  

 

Initial curvature is also pre-determined in all cases to 2 mm, L/500, unless it is otherwise 

specified. The cross sections that are studied in second order analysis and have a 

rectangular shape. The bracings are always placed on the weak direction since it's the side 

that will give in first. Other presumptions during FEM are that each case is restricted in the 

strong direction and rotations are presumed to be zero to prevent rigid body motion in those 

cases it might occur.  

 

4.2.1 Geometry  
The cases that are being studied are modeled in FEM into wire models. The reason behind 

the use of the wire type is because of its accuracy and it gives a good approximation of the 

case.  

 

To create the model start of by draw a line of equivalent length to the case studied, then 

apply the cross-section and material properties of the object. Since it’s a wire element the 

user needs to specify an orientation of the line as well.  

 

4.2.2 Load case   
When the geometry is done the load is applied in the form of a concentrated force on the 

wire object. 

 

During the linear perturbation buckling the force from the load is put to 1 so the resulting 

eigenvalue will give you the load in Newton. The force is applied in the top of the wire 

object. 

 

In the second order the columns get a small initial curvature of L/500 so the simulation 

reassembles a more realistic case. The loads in these cases are dependent on cross sections 

and therefore different for all cases, to evaluate the load the linear perturbation buckling 

calculation are made where the load is given in the shape of the eigenvalue. 

 

4.2.3 Boundary conditions 
When it comes to limitations the program needs to know a reference in space where the 

object is restricted. This is first done in assembly where the object is placed in a coordinate 

system. Later one adds boundary conditions where the object gets given restriction 

properties of how it should act in different directions in this space. Together it forces the 

object in place when adding the applied load. The boundaries in these cases are given in 

three points the two hinges at top and bottom together with the spring brace system in the 

middle. 

 

http://tyda.se/search/equivalent?lang%5B0%5D=en&lang%5B1%5D=sv
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The boundary at the top is only restricted in x and z axis where the bottom is restricted in 

the y axis as well as the others. The hinge boundary is placed in the middle of the top and 

bottom part of the objects, this is done to best resemble a hinge.  

 

When it comes to the spring on the other hand it is created by a specific type of boundary 

condition called “spring to ground”, this causes one connection point to get a spring 

restriction in one direction. The stiffness of the spring needs to be specified to know what 

kind of resistance it causes to the system. During the second order the spring is considered 

to be indispensable, and can therefore withstand forces acting on it. During other 

calculations where the spring stiffness is evaluated it varies.  

 

Since the cases are done in a three dimensions the nodes takes into account six different 

values at each nodal point, displacements and rotations in x,y and z. Rotations are restricted 

to prevent rigid body motion. 

 

4.2.4 Mesh 
The key in a finite element method is the mesh, the matrix based appearance of the original 

shape. Together with boundary conditions, load cases and the mesh FEM is capable to 

calculate objects in a three dimensional space. The mesh size is dependent on the size of the 

analyzed case, larger dimensions increases the mesh. More detailed mesh increases the 

accuracy however and this cannot be over emphasized more detailed mesh takes more 

computer power. In a perfect world one would have used infinitesimally small elements in a 

mesh, but since the computer advancements of this day and age doesn’t allow it 

simplifications needs to be made. 

 

Everything is now in place to start calculating, when done the program gives the 

displacements with the correlating force applied or other stresses dependent on what the 

user specifies in the history output. At this point the data is converted over to excel to 

restructure it and manage it further into tables and figures.  

 

4.2.5 Linear perturbation buckle analysis 
The linear perturbation buckle analysis is preformed to gain the critical load for the studied 

column case. This type of analysis will later be used as a reference case for how the initial 

curvature shape will occur in the second order analysis.  
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Figure 4.2 From start to finish with the beginning of a line to its deformed state after a linear perturbation 

buckle analysis.   

  

 

4.2.6 Second order analysis 
During the second order analysis the computer gives an increment of the load applied and 

the resulting deformation. When the stresses become too big failure occurs, calculations 

after failure are of no interest therefore calculations stop there. 

 

 

4.3 Comparison between the building codes 

As seen in previous chapter’s different building codes address the same problem 

differently. Therefore a comparison is going to be made between Eurocode and the U.S. 

Building code. This will be done by firstly doing the full calculations of each standard 

separately and then compare it against each other. 

 

Design problem 

Later a study is done, where both building codes are taking on the same design problem. A 

column is subjected to three different influence areas when designing a class room for a 

school. The different influence areas of interest are 3 m
2
, 4 m

2
 and 5 m

2
. The live load that 

is in use for respective building code can be found in section 3.2.2 and 3.3.2. 

 

4.3.1 According to Eurocode 5 
The method to calculate the design load for timber members in compression according to 

Eurocode 5 is presented in section 3.2. The design load, formulated in equation 3.1, is 

defined by parameters as the timber’s allowable stress level, the reduction factor and the 

area of the cross-sections.  

 

By using the method, described in subsection 3.2.1, the design load for respective cross-

sections, presented in table 4.1, are calculated.  
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In the results the design load is used in order to compare Eurocode with the U.S. standard. 

Kmod is given a value of 0.9 while calculating the design load. 

 

4.3.2 According to the U.S. standard 
In section 3.3.1 the method to calculate the design load, according to the U.S. standard, for 

timber members was presented. The design load is given in equation 3.6 where it is defined 

that the subjected axial compressive stress in the member has to be lower than the capacity 

of the column, which is defined by the columns allowable compressive stress. 

 

Material properties 

The material properties for timber are given in NDS Supplement 4A. As the essence of this 

rapport is to compare the different methods and standards, the material properties of timber 

class 27 has been implemented and converted to the U.S. customary units. The properties 

used in this section are presented in table 4.2 below. 

 

 

           

U.S. Customary units  3191 psi 1 670 000  psi 1 

SI-units 22 MPa 11 500 MPa 1 

Table 4.2 Timber properties converted from SI to U.S customary units 

 

 

For further information regarding unit conversion between U.S. customary units and SI-

units can be found in Appendix A. 

 

Correction factors 

The U.S. standard is using correction factors for calculating the allowable stress capacity 

for the column. The correction factors are dependent on different factors, which are defined 

in chapter 3.3.1. In this report the correction factors have been decided to have the values 

presented in the table 4.3 below. 

 

 

 

  

Values of correction factors 

   – Wet service factor 1 

   – Temperature factor 1 

   – Size factor 1 

   – Incised factor for 

sawn lumber       1 

   – Load duration factor 1,25 

Table 4.3 Correction factors 
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The correction factor considering the slenderness of the column 

The calculations start with deciding the column’s capacity by calculating the slenderness of 

the column, see equation 3.12. The Euler critical buckling stress and the limiting 

compressive stress in column at zero slenderness ratio was presented in equation 3.10 

respective equation 3.9. By calculating the values of these two, the correction factor that is 

dependent on the slenderness can be estimated.  

 

The allowable force 

The allowable compressive stress and the allowable force in the column can now be 

calculated. It is calculated by using equation 3.6. To able to compare the result between the 

U.S. standard and Eurocode, the results have also been converted to SI-units in the results. 

 

 

4.4 Initial curvature 

In this section the effects of initial curvature on the load bearing capacity of a column, are 

going to be evaluated. As effects of a varying initial curvature, but also how the size and 

shape of the initial curvature influence the load bearing capacity. 

 

4.4.1 Critical force dependency to initial curvature 
In this part the effects of a varying initial curvature are going to be evaluated, therefore one 

cross-section case A is kept and the initial curvature for this case is changed between 

L/500, L/400, L/300, L/250 and L/150.   

 

4.4.2 Shape and magnitude of Initial curvature in a column 
In previous experiments initial curvature has been set to be ideal for each case where the 

shape between two nodal points has been set to half a sinus curve. However initial 

curvature rarely acts as in the ideal case, therefore the shape and appearance of the initial 

curvature needs to be readjusted to a more plausible shape. In this part the shape becomes a 

coalition between different buckling modes dependent on how many buckling modes a 

column will have. As an example if a column has a brace in the midpoint the imperfection 

becomes dependent on two buckling modes.  

 

The resulting shape is calculated by adding the shape of respective imperfection curve. 

Some of the shapes and the formulations of respective imperfection are presented figure 4.3 

to 4.5 below. 
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First buckling shape 

 
Figure 4.3First buckling shape 

 

 

 

Second buckling shape 

 
Figure 4.4 Second buckling shape 

 

 

 

Third buckling shape 

 
Figure 4.5 Third buckling shape 

 

 

 

 

Where, 

 

   = Amplitude of respective buckling shape 

  = Total length of the column 
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4.5 Bracing of a column 

By using a brace the load bearing capacity of a column can increase. However, how much 

the load bearing capacity increases solely depends on how stiff the brace is.  

 

4.5.1 Ideal stiffness according to Yura 
In equation 2.11 the expression of calculating the ideal stiffness for a bracing, for an ideal 

column with a bracing at the midpoint, was given. The formulation is dependent on the 

critical load given by Euler’s theory.  

 

Yura’s & Helwig’s equation for reaction force in a brace known as equation 2.15 is 

evaluated. This is done be varying the critical vertical column force and stiffness of the 

brace. Since the critical force of a column is dependent on the stiffness of its bracing the 

critical force used in this evaluation is dependent on the stiffness used. The stiffness is 

varying from 0 to 50000 N/m with a step of 1000 in between. The critical load is calculated 

by the known stiffness values input into equation 2.10 in previous chapter. This is only 

valid until it reaches the columns maximum capacity. Only case A is used during this 

evaluation. 

 

4.5.2 Bracing stiffness in Eurocode 
In section 3.2.2 the method for calculating the minimum spring stiffness is defined. To be 

able to calculate the stiffness using equation 3.5 the critical bending stress needs to be 

calculated first. The critical bending stress together with the material strength gives the 

relative slenderness factor that in turn will give the reduction factor kcrit. The reduction 

factor is needed to calculate the critical moment but also to calculate the mean compressive 

force in the member. When the mean compressive force is done everything needed to 

complete equation 3.5 are acquired and can thereby be calculated.   

 

4.5.3 Stiffness of a brace  
The critical force a column with brace can obtain is however dependent on how stiff the 

bracing is. To see how it affects a column case A‘s bracing are varied and simulated to gain 

the critical load for each stiffness. During this simulation no initial curvature was applied or 

any other forms of disruptions.  

 

4.5.4 Influence of several braces 
The influence of having several braces is studied in this section to get a better 

understanding of how a column is affected to it compared to a single brace. The study will 

have a focus on two and three braces, where the stiffness of the braces will vary. 

 

Brace stiffness variation on a column with two braces 

For the two brace scenario the lower brace is varied while the upper is kept constant. The 

stiffness value of the brace that is kept constant is 30 kN/m, 75 kN/m, 150 kN/m and 200 

kN/m.  

 

Brace stiffness variation on a column with three braces 

In the study of a column with three braces there exist two separate scenarios. The first 

scenario is where the middle brace is kept constant and the outer braces are varying. In the 

second scenario the outer braces are kept constant, and the middle is varying. In both cases 

the constant braces have a stiffness of 100kN/m, 200kN/m 400kN/m and 500kN/m. 
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4.5.5 Brace force study 
To evaluate the study of bracings further, a study of the reaction force in the brace is done. 

This is done to verify Yura’s equation of a brace force seen in equation 2.15. This is 

compared in FEM by varying the vertical column force and the stiffness of the brace. This 

is done be varying the critical vertical column force and stiffness of the brace. Since the 

critical force of a column is dependent on the stiffness of its bracing, the force applied is 

always set so the critical force for each stiffness case used during this evaluation.  

 

The critical load is calculated by linear buckling analysis which uses the stiffness 

prescribed. This is only valid until it reaches the columns maximum capacity. Only case A 

is used during this evaluation with an initial curvature of d0 = 2mm. 

 

4.5.6 Influence of initial curvature 
Lastly the initial curvature is changed to see its effect of how the reaction force in a brace is 

in correlation to the initial curvature, and how it behaves for a known bracing stiffness. The 

known brace stiffness that is evaluated is 50000 N/m and 40000 N/m. The load that acts on 

the column is restricted by the columns load bearing capacity. The results is therefore 

restricted to p/pcr = 1 throughout the evaluation.  
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5 Results and Discussion  

This chapter presents the results and discussion, where the underlying methods have been 

used to gain the data and results presented in this chapter. In the result part the authors 

observes and interpret of how the data acts. Some minor clarifications of what has been 

done are presented so the reader might gain a better understanding of how the problems is 

solved for a more detailed version see previous chapter. Finally an analysis of the each 

subchapter is made of  the findings. 

 

 

5.1 Comparison between different building codes 

In this subchapter, the design loads are presented for the cases in section 4.1. A comparison 

is also done between Eurocode and the U.S. building code, regarding a column’s design 

load. 

 

5.1.1 Eurocode and the U.S. Building code 
Eurocode and the U.S. building code are used to calculate the load bearing capacity for 

cases A to E. The result is presented in the table 5.1 below. 

 
 

Case A B C D E 

Eurocode, design value 

[kN] 
9,3 17,6 30,2 61,4 136,3 

U.S. building code [kN] 5,3 10,8 19,1 43,2 145,4 

Table 5.1 Design load for respective case A to E. 

 

By observing the table 5.1 above it becomes clear that there exist a big difference between 

the two design codes. Eurocode design value is larger than the U.S. building code in each 

case with the exception of case E.  

 

The large differences in the result are due to the formation of each standard. The building 

codes are based on different methods and thereby cannot be compared directly. The 

American building code is based on allowable stresses whereas Eurocode uses partial 

coefficient. Individual components in each respective standard can thereby not be compared 

directly. 

 

Design study comparison between Eurocode and the U.S. Building code 

Eurocode and the U.S. building code are used to design a column, based on the problem 

formulation in section 4.3. The calculated design load is presented in the table 5.2 below. 

 

 

 

Design load 

(3m
2
) [N] 

Design load 

(4m
2
) [N] 

Design load 

(5m
2
) [N] 

Eurocode 7500 10000 12500 

U.S building code 5745 7660 9576 

Table 5.2 Calculated design load for 3 m2 live load (class room) for respective standard 
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By observing the results, it can be seen that there exist a difference in respective standards 

approach towards live load. The design load for Eurocode is also in this case larger than the 

U.S. building code. 

 

Respective cross-section is later decided by using the calculated design loads in table 5.2, 

for a predetermined width of 45 mm. The result is presented in table 5.3 below. 

 

 

Influence 

area 

Design standard Cross-section 

[mm] 

Column’s load 

capacity (EU) [N] 

Column’s load 

capacity (US) [N] 

3 m
2
 

Eurocode 0,045x0,095 9 095 5 142 

U.S building code 0,045x0,120 11 488 6 495 

4 m
2
 

Eurocode 0,045x0,120 11 488 6 495 

U.S building code 0,045x0,145 13 881 7 848 

5 m
2
 

Eurocode 0,045x0,145 13 881 7 848 

U.S building code 0,045x0,195 18 668 10 555 
Table 5.3 Cross-section are designed based on the design load presented in table 5.2 for respective standard, 

for a predetermined width of 45 mm. 

 

 

By observing table 5.3 above it becomes clear that the European building code allows for a 

smaller cross section, whereas the U.S. standard has a harder restriction. Since the standards 

are based on different approaches the result becomes very different when adding the design 

load into the equation. The differences between the two are not as large as previous result 

has pointed towards, whereas the difference is given by one standardized size. 

 

5.1.2 Analysis of results 
The result indicates a larger difference between the European building code and the U.S. 

counterpart. The authors didn’t at first anticipate the big difference between the two 

standards. As previously mention the differences depend on the fact that both standards are 

not based on similar methods. It becomes therefore harder to compare the two in a smaller 

perspective and an overall approach needs to be made. 

 

 

5.2 Initial curvatures effect on the load bearing capacity 

In this subchapter the initial curvature’s effects on the load bearing capacity are presented. 

A numerical analysis is performed to determine the correlation between initial curvature 

and load bearing capacity. 

 

5.2.1 Effect of initial curvature 
The columns load bearing capacities for case A- E are presented below in table 5.4, by 

using Euler and FEM.  
 

Case A B C D E 

Euler load [kN] 14,6 30,1 53,9 125,0 470,4 

FEM Linear buckling [kN] 14,6 30,0 53,7 124,3 464,3 

FEM Second order (L/500) [kN] 13.5 25,2 42,4 85,7 187,7 
Table 5.4 Buckling load for respective cases A to E,  
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By observing the results in table 5.4, one can see that the Euler load and the FEM linear 

analysis are similar. They should theoretically be the same since they both use the same 

method. The reason behind why Euler’s load and FEM linear analysis differs could be 

because of Euler’s load is meant for slender columns. 

 

The force- and deformation correlation for FEM secondary analysis is presented in the 

figure 5.1 below. 

 

 

 
Figure 5.1 Force - Deformation diagram for case A to E, with an initial curvature of d0 = 2 

mm  

 

 

Comparing the Euler buckling load and the buckling load based on FEM second order 

analysis in table 5.4, a large difference becomes present. Second order indicates a smaller 

capacity since it takes imperfections and smaller deformations into account, which can be 

seen in table 5.4. The column’s load bearing capacity is therefore smaller than an ideal 

column. Figure 5.1 illustrates the nonlinear effects of the deformation in the second order 

analysis. 

 

5.2.2 Critical force dependency due to initial curvature 
Table 5.5 and figure 5.2 below presents the resulting load bearing capacity and deformation 

of a column due to a varying initial curvature. The different initial curvature cases are set 

from the smallest L/500 (d01) to the largest L/150 (d05), and are based on Case A. To 

evaluate each imperfection with resulting deformation a bit closer figure 5.3 below will 

display how it behave during two known forces. 

 

Initial curvature case L/500 L/400 L/300 L/250 L/150 

Initail curvature d0 [mm] 2 2,5 3,3 4 6,7 

Force [kN] 5,32 4,60 3,87 3,38 2,29 

Deformation d1 [mm] 1,86 1,78 1,80 1,77 1,75 
Table 5.5 Initial curvature cases 
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Figure 5.2 Initial curvature variation, case A 

 

 

 
Figure 5.3 Deformation due to imperfection, case A 

 

 

By studying figure 5.2, it can be seen how a larger initial curvature leads to a smaller load 

bearing capacity for the column. The load bearing capacity for various initial curvatures are 

also presented in the table 5.5 above. The deformation slightly increases as the initial 

curvature gets larger, except in initial curvature case L/400 where it gets smaller.  
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In figure 5.3 one can see that larger initial curvature leads to an increased rate of 

deformation. The deformation rate is with other words dependent on the initial curvature of 

the column. 

 

5.2.3 Shape and magnitude of initial curvature 
As mentioned in section 4.4.2 the shape and the form of the initial curvature in a column 

can vary.  

 

Imperfection shape for one brace 

By using the mathematical models shown in section 4.4.2, the influence of the different 

forms are tested. The resulting buckling load due to the varied forms of the initial curvature 

is shown in table 5.6 below. 

 

 

Dtot D1 D2 Buckling load 

0,002 0,0018 0,0005 13308 

0,002 0,00165 0,0007 13238 

0,002 0,0015 0,0008 13222 

0,002 0,00135 0,001 13142 

0,002 0,00115 0,0011 13137 
Table 5.6 Buckling load due to varied buckling 

shape. For a column with a single brace. For case A. 
 

Figure 5.4 Illustrates the influence of buckling 

shapes. 

 

 
Figure 5.5 Illustrates the buckling load capacity of the five different scenarios seen in table 5.6. For a 

column with a single brace due to varied shape of the initial curvature. For case A. 

 

 

Results in table 5.6 shows that the resulting buckling load capacity is increasing as the 

imperfection of the first buckling shape d1 is more dominating and as the second buckling 

shape gets smaller. This can be interpreted that a more dominating role for the second 

buckling shape d2 is less beneficial for a column’s load capacity. The difference in load 
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buckling capacity between a more dominating d1 and d2 is though very small in this 

example. 

 

The shape and form of the initial curvature has with other words an influence on the load 

bearing capacity. When observing a single column without a brace buckle, the column will 

slowly indicate a shape of half a sine wave. If a brace is added to the same set up the shape 

will be determined by a correlation between the old shape (half a sine wave) and the second 

buckling shape, which has a shape of a whole sine wave. 

 

The new shape can be adjusted by allowing different contributions from each part. 

However the worst scenario in this case would be when the second shape of a full sine 

wave gets its largest allowed amplitude. 

 

In the figure 5.6  below, an exaggerated buckling shape d1 (5.6 A) and d2  (5.6 B) is 

generated to illustrate the correlation of combining the buckling shapes  in FEM. The 

resulting initial curvature in the column is shown in figure 5.6 C below. The figures 

confirms figure 5.4 (above) and how the resulting initial curvature looks like. 

 

 

 

 
A  

 
B 

 
C 

Figure 5.6 Illustrates an exagguration of the buckling shape in FEM. Whereas A is dependent 

on d1 and B is dependent on d2. C describes the correlation of A and B. 

 

 

Imperfection shape for two braces 

In a similar fashion when adding a second brace to the system the influence of the different 

forms is tested. In difference to the previous example, an additional imperfection 

contributor is added, to calculate the resulting initial shape of the column. In table 5.7 

below the resulting buckling load due to a varied initial imperfection is shown. 
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Dtot D1 D2 D3 
Buckling 

load 

0,002 0,00185 0,000225 0,0001 32028 

0,002 0,00165 0,00035 0,0003 30660 

0,002 0,0015 0,0005 0,00045 29774 

0,002 0,00135 0,00065 0,00055 29222 

0,002 0,0011 0,0008 0,000775 28163 
Table 5.7 Buckling load due to varied buckling shape. For a 

column with two braces. For case A. 

 
Figure 5.7 Illustrates the influence of 

buckling shapes 

 

 
Figure 5.8 Illustrates the buckling load capacity of the five different scenarios seen in table 5.7. For a 

column with a single brace due to varied shape of the initial curvature. For case A. 

 

 

Upon viewing table 5.7 it becomes clear that as soon as d1 gets reduced and d2 and d3 gets 

larger, d2 and d3 will govern the outcome of the buckling load. The bearing load capacity of 

the column gets smaller as d1 is reduced. By studying the figure 5.8 above a distinctive 

difference in buckling load capacity can be seen between a more governing d1 and a smaller 

d1, in difference to the previous section which had a small variation seen in figure 5.5. This 

can be interpreted that the addition of an initial shape has a big influence on the resulting 

bearing load capacity of a column. 

 

Similar to the case with one brace a column with two braces will gain an extra shape to its 

shape contributors as its predecessor. In this case this would mean that the total value 

would be a mixture of a half a sine wave, whole sine wave and the 1,5 sine wave.  

 

The worst contributions from this scenario would be when the third and second contribution 

parts gain as large amplitude as possible. 

 

In the figures 5.9 below, an exaggerated buckling shape d1 (5.9 A), d2  (5.9 B) and d3  (5.9 

C) is generated in a similar manner as in the previous example to illustrate the correlation 
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of combining the buckling shapes in FEM. The resulting initial curvature in the column is 

shown in figure 5.9 D below. The figure confirms figure 5.7(above) and how the resulting 

initial curvature looks like. 

 

 

 

 
A 

 
B 

 
C 

 
D 

Figure 5.9 Illustrates an exagguration of the buckling shape in FEM. Whereas A is dependent on d1, B is 

dependent on d2 and  C is dependent on d3. Together A,B and C becomes D.  

 

 

5.2.4 Analysis of results 
The result in table 5.4 between Euler and FEM were anticipated by the authors. As written 

in the results, the load bearing capacity in FEM linear buckling should equal the Euler 

buckling load, whereas the difference between Euler and FEM second order analysis is 

considerably larger. The resulting buckling load in FEM can be displayed as a ratio of 

Euler’s buckling load to illustrate the difference better. The ratio between FEM and Euler is 

shown in the table 5.8 below. 

 

 

Case A B C D E 

FEM Linear buckling [kN] 1,00 1,00 1,00 0,99 0,99 

FEM Second order (L/500) [kN] 0,88 0,84 0,79 0,69 0,40 

Table 5.8 Ratios between FEM and Eulers buckling load. 

 

 

The study on critical force dependency due to initial curvature, seen in table 5.5, shows that 

the initial curvature has a large impact on the load bearing capacity of the column. This was 
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anticipated by the authors, as a column with a larger initial curvature will have a decreased 

load bearing capacity compared to an ideal column. 

 

It was also shown that the deformation and the deformation-rate of the column are 

dependent on the magnitude of the initial curvature, which can be seen in figure 5.3. The 

total deformation of the column and the deformation -rate gets larger as the initial curvature 

gets larger. 

 

The most disadvantageous situation for the column with one brace is when the second 

buckling shape governs the total shape of the imperfection in the column. As the second 

shape, which has the form of a full sine wave, gets its largest allowed amplitude the column 

will get its largest reduction on the load bearing capacity as shown in figure 5.5. The 

second situation with two braces has a similar counterpart whereas the second and third 

shape governs the magnitude of the reduction on the load bearing capacity as shown in 

figure 5.8. The authors find the results both interesting and logical. 

 

The findings indicates that if the other shape models of the initial curvature are taken into 

account, the total load bearing capacity of the column will decrease further. This can be 

studied in 5.6 and 5.7.  

 

5.3 Stiffness requirement of a brace 

The required stiffness of a brace for a column in compression, with a brace at the midspan, 

is presented in the table 5.9 below for respective method and building code.  

 
 

Case A B C D E 

Yura's ideal stiffness [kN/m] 29,2 57,6 103,1 239,1 940,8 

FEM- Linear analysis [kN/m] 29,2 60,1 107,5 248,6 928,6 

Eurocode's minimum ks=1 [kN/m] 13,3 25,4 43,6 88,7 196,9 

Eurocode's maximum (recommended) ks=4 

[kN/m] 
53,2 101,8 174,4 355 787,8 

Tabell 5.9 1Required stiffness for the brace according to the following 

 

 

5.3.1 Yura’s and Helwig’s model 
First of Yura’s ideal stiffness is calculated for each case where neither imperfection nor any 

other disturbance affects the case.  By reviewing the results in table 5.9 one finds yet again 

the linear buckling analysis in FEM to reassembles the theoretical values. Theoretically the 

results from linear analysis should reassemble those of Yura’s and Helwig’s theories, and 

are therefore a good check to see if the theory is accurate. As mentioned in the section 

5.2.1, the deviation in the results is probably caused by the shape of the cross-section where 

Euler’s load is best suited for analyzing slender columns. 

 

Bracing stiffness 

By modeling the ideal case of the column with a single brace at the midspan in FEM, with 

no imperfections, it can be shown that Yura’s & Helwig’s theories from chapter 2.4.2 are 

confirmed.  
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Figure 5.10 Critical force due to stiffness of the bracing, for case A 

 

 

 

As described in chapter 2.4.2 the spring stiffness takes on critical load in a linear manner 

until the ideal stiffness threshold kideal is reached, afterwards the load bearing capacity 

cannot be increased, this can also be viewed in figure 5.10. At this point the maximum 

capacity of the column is obtained. Afterwards an increase of stiffness becomes 

unnecessary since it does not contribute to an increase in the load bearing capacity of the 

column.  

 

As one can see in figures below, the column will at first buckle as a half sinus curve as the 

load on the column gets larger. When it later hits the threshold value kideal, the buckling 

shape will become a full sine curvature. This is true for an ideal case where no 

imperfections or disturbances act on the tested column. To illustrate the buckling modes see 

figure 5.11 below, 
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Figure 5.11 From left to right the stiffness of the brace is 0 to 29200 

N/m. For case A. 

 

 What cannot be overemphasized is that a brace only reinforces in one axis. During the 

design procedure the engineer needs to be aware of the systems overall capacity and of 

what kind of force each brace will counteract.  

 

5.3.2 Eurocode’s stiffness requirement 
In contrast to the mathematical expression of the ideal stiffness, defined by Yura, the 

formulation in Eurocode isn’t as specific where some correction factors can be seen more 

as guidelines. The expression for minimum required stiffness for timber in Eurocode is 

dependent on several factors, where one of these is the factor ks. The correction factor ks is 

dependent on implementation and varies from 1 to 4, where 4 is recommended to be used.  

 

To gain a better perspective of the effects of ks, the maximum 4 and minimum 1 are tested 

in the table above. When         Eurocode’s maximum stiffness requirement becomes 

larger than Yura’s for slimmer designs. 

 

5.3.3 Influence of several braces 
As seen in previous sections the usage of a brace can increase the load bearing capacity of a 

column. By using additional braces the load bearing capacity can be increased furthermore, 

this can be seen in the figure 5.12 below. 
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Figure 5.12 Illustrating the effect of having several braces on a column with a cross section of 22x145 mm2. 

 

 

By studying the figure above it is shown that additional braces will contribute to a larger 

load bearing capacity for column. For every brace that is added to the column the load 

bearing capacity will be increased, as shown in the figure 5.12 above.  However dependent 

on the total amount of braces the size of the increased capacity will vary, it is not profitable 

to add unlimited braces since after a while the materials capacity limit is reached and 

thereby cancels out the beneficial increase from the brace. This means that the material 

properties will govern the column buckling failure instead of the geometrical properties. 

 

 

Influence of two braces 

In the previous section the braces of the column was presumed to have the same stiffness.  

In reality the stiffness of the braces doesn’t have to be the same, it can vary. The influence 

of a varying stiffness between two braces is shown in the figure 5.13 below. Where one of 

the braces stiffness is constant and the second brace stiffness is varied between 0 to 400 000 

N/m. 
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Figure 5.13 Illustrating the influence of a varying stiffness between two braces. One of the braces stiffness is 

constant and the second brace stiffness is varied. 

 

 

The study shows that the resulting load bearing capacity of a column has a strong relation 

to its brace stiffness. If k1 has a larger stiffness, the load bearing capacity of the column will 

have a larger total increase rate in load bearing capacity than one with a brace with a lower 

stiffness. The maximum load bearing capacity of the column will be reached earlier. To be 

able to reach the maximum buckling load, the minimum requirement is either that both 

braces at least have a value of kideal, which is 150000 N/m, or one value over and the other 

is close under. 

 

 

 

Influence of three braces 

In a similar manner as in the previous section, the braces stiffness is varied to study its 

influence on the load bearing capacity.  This section is divided into two parts, where the 

braces stiffness’s are varied in different ways/manners to get a better grasp of its influence. 
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Test variation 1 

In this case, the stiffness’s of the outer braces k1 and k3 are kept constant while the stiffness 

of the brace in the middle k2 is varying. The result is shown in the figure 5.14 below, where 

the influence of the brace stiffness is plotted against the resulting buckling load. 

 

 

 
Figure 5.14 In the figure it can be seen that the increase stiffness for k2 in the beginning results in the same 

load bearing capacity for the column. However as the brace stiffness gets larger the increase rate starts to 

differ. The brace stiffness combo with the lowest stiffness will stagnate quicker than those of a larger 

magnitude. 
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Test variation 2 

In this case, the stiffness’s of the outer braces k1 and k3 are varying while the stiffness of 

the brace in the middle k2 is constant. The result is shown in the figure 5.15 below, where 

the influence of the brace stiffness is plotted against the resulting buckling load. 

 

 

 

 
Figure 5.15 Similar to figure 5.14, this figure illustrates k1 and k3 stiffness increase in relation to the load 

bearing capacity of the column. 

 

 

In the figure 5.15 above it can be seen that the lowest buckling load for respective 

correlation have a larger value than the previous case, due to set up of the braces. The 

increasing rate of the column’s load bearing capacity is also isn’t as fast as the previous 

case. The curves for respective object are stagnating in a higher pace. The k2 brace with the 

lowest stiffness value has a really low load bearing capacity, which can be due to that the 

brace stiffness isn’t enough to make the column change buckling mode. It becomes present 

that the stiffness of the middle brace at least needs to be able to withstand a buckling mode 

shift. 

 

5.3.4 Analysis of results 
The result of the correlation between the load bearing capacity of the column and the brace 

stiffness was anticipated by the authors. As the stiffness of the brace gets more robust, the 

column will be able to take on more force. But as the study shows there is a limit on how 

much the load bearing capacity can be increased. 
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In comparison to Yura’s and Helwig’s model, the brace stiffness in Eurocode isn’t as 

absolute. Instead it’s varying due to the chose one makes as their     factor. When       , 

Eurocode’s minimum stiffness requirement becomes larger than Yura’s for slimmer 

designs. The authors think it’s reasonable since Yura uses an ideal case and Eurocode does 

not. The interesting part though is when the cross-section causes the overall slenderness to 

become smaller, Yura’s ideal case gets a larger stiffness then Eurocode. It can be explained 

as when the cross section causes the overall slenderness to become smaller, the columns 

failure behavior changes with it. The column will get a higher tendency to have a failure 

caused by the material capacity being reached, than the risk of failure due to column 

buckling. 

 

As shown in figure 5.12 the use of several braces will lead to an increase of load bearing 

capacity for the column. This was something the authors anticipated, since the effective 

length of the column will become shorter.  

 

In the study of multiple braces, the placements of the braces were always placed in the ideal 

position to acquire the most profitable Leff. In this type of scenario, the findings shows that 

a column with three braces will have a better strategic placement than a column with two 

braces if only one brace has a larger stiff, due to its positioning of the middle brace.  

 

The results show that if a brace in the middle has a larger stiffness than the outer braces (in 

the three brace case), the load bearing capacity can be increased further if it were the other 

way around. However, in the case with two braces it doesn’t exist a more beneficial 

situation which is as distinguishable as in the case with three braces. Since the two braces 

has the same influence on the column.   

 

 

5.4 Brace force 

In this chapter a study is preformed of how the reaction forces are affected by the 

correlation between the acting load on the column and the stiffness of the brace. The results 

are presented as a comparison between Yura’s & Helwig’s mathematical expression found 

in equation 2.15 and a numerical analysis.  

 

5.4.1 Yura’s & Helwig’s model 
The reaction force in the brace due to initial curvature defined by Yura & Helwig is 

illustrated in figure 5.16 below, 

 

This is done be varying the critical column force on the column and the stiffness of the 

brace where the force relation is kept to p/pcr = 1. Only case A is used during this 

evaluation. The initial curvature was set to d0 = 2 mm 
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Figure 5.16 Brace force - Bracing stiffness, by means of varying stiffness and load acting on the column. 

When the stiffness hits the threshold value the brace force goes towards infinity. But this is not shown in the 

figure due to limitations of the software. 

 

In the figure 5.16 it can be seen that the brace force gets larger as the stiffness of the brace 

and the force acting at the column gets larger. This correlation is applied until the point 

where the stiffness of the bracing has reached the ideal stiffness. When the ideal stiffness 

for the column is reached, the brace force goes to the infinite. This is the point where the 

column goes from the first buckling mode to the second buckling mode. Thereafter the 

reaction force in the spring will decrease, as the stiffness of the bracing is increased mean 

while the load acting at the column is constant.  

 

5.4.2 Brace force due to imperfections 
To study how the brace is dependent on different variables and verify Yura’s and Helwig’s 

equation 2.15 a numerical analysis is made. In this model the stiffness of the brace and the 

force that acts on the column are changed and analyzed for each step. Where the force has a 

relation of p/pcr = 1. For more information about the procedure see section 4.5.5. During 

this procedure the initial imperfection was set to d0 = 2 mm. Results is displayed in figure 

5.17 below 
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Figure 5.17 Brace force - Bracing stiffness, by means of  varying stiffness and load acting on the column 

 

 

Out of figure 5.17 it can be seen that the brace force is increasing as the stiffness of the 

bracing and the load acting at the column gets larger.  The reaction force is increasing until 

it reaches the region surrounding the required stiffness. In the surrounding region of the 

required stiffness the reaction force becomes unstable. It both shows high and low reaction 

forces in the brace. When the stiffness is later increased and passes the region, the resulting 

reaction force in the brace decreases. 

 

5.4.3 Influence of initial curvature for the brace force 
In the next study the influence of the initial curvature for the brace force is studied. The 

result is presented in figure 5.18 below. In the model every variable, except from the initial 

curvature is constant.  
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Figure 5.18 Brace force - Initial curvature 

 

 

The result of the initial curvature evaluation shows a linear behavior between the brace 

force due to increased initial curvature. In figure 5.18 it is shown that a larger initial 

curvature leads to a higher brace force. It also shows that higher brace stiffness affects the 

brace force to be smaller. 

 

5.4.4 Analysis of results 
The numerical analysis seen in figure 5.17 partially confirms the mathematical modeling 

seen in figure 5.16. To clarify the differences further the two figures are plotted close 

together in figure 5.19 below, 
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Figure 5.19 Comparison between Yura's & Helwig's model and the results from the numerical analysis 

 

 

By comparing the two methods it can be seen in figure 5.19 that the behavior in the 

respective models is similar, after and close to the required stiffness region. However it 

exist a difference in how the brace force is increasing at stiffness values beneath the ideal 

stiffness. The brace force is larger and increases in a higher pace than the mathematical 

model, until the stiffness of the brace reaches the ideal stiffness. This is the point where the 

force goes to the infinity in the mathematical model, in contrast to the numerical analysis 

model where the reaction force gets unstable. After the required stiffness region, the 

numerical analysis shows as mentioned before similarities to the behavior of the Yura’s & 

Helwig’s model where the reacting force decreases rapidly. The authors believe that this 

indicates that Yura’s & Helwig’s mathematical formulation is only valid for stiffness values 

above krequired, due to the shown behavior in figure 5.19 above. 

 

In the study of the initial curvature in correlation to the brace force it can be seen that the 

relation is linear and dependent on stiffness. It also shows that a larger imperfection leads to 

a larger reaction force in the brace. 
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6 Discussion and Conclusions 

In this chapter the authors present the conclusions of the findings from the result and 

analysis part in the previous chapter in this report. 

 

 

Comparison between Eurocode and the U.S. Building code 

In the start the main objective in this comparison was to study and clarify the difference 

between Eurocode and the U.S. building code. But as the process went on, it was made 

clear for the authors that the both standards couldn’t be compared due to the design of 

respective standard. 

 

The main difference between the two is that Eurocode uses the Ultimate Limite State 

design (ULS) approach  and that the U.S. building code is in use of allowable stresses. The 

result of the two standards is therefore not comparable, as one can see in table 5.1, the load 

bearing capacity of the two standards differs a lot. This information was unfortunately 

revealed late for the authors.  

 

If one were to analyze the result, one would think that the U.S. building code is more 

restrictive for slender columns than Eurocode, and that Eurocode is more restrictive as the 

column gets more robust.  

 

Since time was running short a compromise had to be made, whereas the two building 

standards were both faced with the same design problem. A comparison between the two 

revealed that the U.S building code seem to be more restrictive than Eurocode, since 

Eurocode always have the smaller cross-section of the two. 

 

Influence of initial curvature 

In the study it is shown that an initial curvature in a column will affect the overall load 

bearing capacity. Initial curvature has a negative effect on the column, since it decreases its 

total load bearing capacity. The reduction is dependent on the how large the magnitude of 

the initial curvature is. It is shown in the result that a larger initial curvature will lead to 

larger reduction of the load bearing capacity of the column, which was expected by the 

authors. 

 

It’s not only the load bearing capacity of the column that is affected by the initial curvature. 

The total deformation and deformation rate is also affected by it. The findings show that the 

total deformation and the deformation rate are increased, as the magnitude of the initial 

curvature in the column gets larger.  

 

The results were based on a simplified shape model of the initial curvature, whereas the 

first buckling mode is the only one to affect the initial curvature. In reality the initial 

curvature is a coalition of several different buckling modes, therefore the shape and 

appearance of the initial curvature needs to be readjusted to a more plausible shape. 

 

The findings indicates that if a correlation of the buckling modes is taken into account the 

total load bearing capacity of the column will decrease compared to the simplified 

imperfection model. The magnitude of the additional reduction on the load bearing capacity 

of the column is however dependent on the resulting shape of the imperfection.  
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The study indicates that when higher tiers of the buckling modes govern the shape of the 

initial curvature, the overall load bearing capacity will decrease further. The load bearing 

capacity can with other words vary, dependent on the model one assume. The findings 

indicate that the most disadvantageous situation for a column occurs when the higher 

buckling shapes acquire its largest allowed amplitude. 

 

Influence of brace stiffness 

It is shown in the study that the stiffness of a brace has a contribution to the total load 

bearing capacity of the column. The contribution is in an ideal column case proportional to 

the increase in stiffness. Even though the increase is small, the increase is always present as 

long as the stiffness is above zero. However, as the results shows there is a limit on how 

much the load bearing capacity can be increased. As the stiffness of the brace reaches the 

threshold value kideal a new buckling shape occurs, which will govern the load bearing 

capacity. The load bearing capacity cannot thereafter be increased further. 

 

By using additional braces the results shows that the column’s load bearing capacity can be 

increased further. Dependent on the total amount of braces that are in use, the increase of 

load bearing capacity will vary. However there exists a limit/ where it isn’t profitable to add 

more braces. When this limit is reached the material capacity of the column will govern the 

failure.  

 

The study was continued with comparing the influence on a varying brace stiffness of 

multiple braces, As mentioned before, the study indicates that an increase of brace stiffness 

will result in a larger load bearing capacity. However as the stiffness of respective brace is 

varied, the findings shows that there may exist a more favorable correlation between the 

braces, if one is restricted. 

 

But something the authors found was interesting was how a varying stiffness of respective 

brace influenced on the total load bearing capacity for the column. It is revealed in the 

result that even though a more robust brace lead to an increase in load bearing capacity for 

the column, there are good things to keep in mind when designing the braces. It appears to 

exist strategically places where one brace is more suitable than two/three less strategically 

placed braces, when one has insufficient brace stiffness. A rule of thumb should be to 

minimize the effective length of the column as much as possible. As in the case with three 

braces, it is for example smarter to put a stiffer brace in the midpoint of the column with 

two supporting braces at the sides. 

 

The design guidance for a column’s brace stiffness in Eurocode isn’t as absolute, as in 

Yura’s and Helwig’s model. As shown in the results, the brace stiffness can vary due the ks 

factor one can choose in Eurocode. The study has shown that a smaller stiffness contributes 

to a larger load bearing capacity. Eurocode does not calculate stiffness contribution per say, 

it checks if the stiffness of the brace is rigid enough to be considered as a lateral support or 

not. The authors think Eurocode should therefore be reevaluated in order to take into 

account contributions from braces with a smaller stiffness. 

 

Reaction force in a brace 

This study shows that the brace force increases proportionally to the columns imperfection, 

due to its dependence on the columns overall deformation. This correlation does only 

coincide as the brace stiffness goes towards the required stiffness of the column, to make it 
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change its buckling shape. As the brace stiffness either become lesser or larger than the 

required stiffness value, the brace force will decrease. 

 

In the findings it is also shown that the numerical analysis has a large similarity to Yura’s 

and Helwig’s mathematical model. However Yura’s and Helwig’s model is questioned, due 

to its large difference in the area where the brace stiffness values is lower than Kreq. The 

authors believes that the mathematical model of Yura and Helwig is only applicable for 

describing correlations for a brace force that has brace stiffness larger than Kreq. 
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Appendix A – Unit Converter 
This Appendix is a reference document to convert U.S. costumary units into SI- units. 

 

 

Loads 
 

1 Ib  =  4,448 N 

 

1 k  = 4,448 kN 

 

 

 

Modulus of elasticity and stresses 
 
1 psi = 6,895 kPA 

 

 

 


