

Department of Automatic Control

A Practical Comparison of
Scheduling Algorithms for Mixed
Criticality Embedded Systems

Carl Cristian Arlock

Edward Linderoth-Olson

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lund University Publications - Student Papers

https://core.ac.uk/display/289949087?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Msc Thesis
ISRN LUTFD2/TFRT--5959--SE
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2014 by Carl Cristian Arlock & Edward Linderoth-Olson. All rights reserved.
Printed in Sweden by Media-Tryck
Lund 2014

Abstract

With the consolidation of automotive control processes onto single high-
performance ECUs the issue of running, and thus scheduling, processes of varying
criticality on a single CPU has moved to the fore. This has resulted in a number
of new algorithms for scheduling such systems, for example Adaptive Mixed Crit-
icality (AMC). This project attempts to measure the performance of some of these
algorithms on a singlecore embedded system CPU and compares them in order to
shed some light on their different advantages and disadvantages.

Keywords: Unicore, Scheduling, Embedded systems, Mixed Criticality, AU-
TOSAR, HCS12X.

3

Acknowledgements

We would like to thank Professor Gu Zonghua for the opportunity to do this work
at the Department of Computer Science at Zhejiang University in Hangzhou.

5

Contents

1. Introduction 9
1.1 Outline . 10

2. Background 11
2.1 Introduction to real-time scheduling 11
2.2 Introduction to mixed criticality real-time scheduling 16

3. Method 22
3.1 Scientific Method . 22
3.2 Implementation . 22
3.3 Target Platform . 23
3.4 Simulated Load Generation . 25

4. Results 26
4.1 Elicited Algorithms . 26
4.2 Implementation Specifics . 32
4.3 Overhead Measurements . 36
4.4 Response Time Measurements 37

5. Analysis 43
5.1 Measurement Data . 43
5.2 Preparatory Calculations . 43
5.3 . 44
5.4 Overhead . 44
5.5 Task Response Time . 45

6. Conclusion 46
6.1 Future Work . 46

Bibliography 47

7

1
Introduction

The migration of control systems from various scattered ECUs to fewer high-
performace ECUs has brought forth the problem of having processes of varying
importance to the system executing on the same CPU, and whereas it might not
pose a serious problem if some were to miss their deadlines, others might have re-
sults bordering on the catastrophic. This manner of mixed criticality systems poses
new challenges for scheduling processes, which have been met by an assortment
of new scheduling algorithms. Many of these are very recent developments, and so
little is known about their inherent advantages, disadvantages, and performance, in
comparison to each other, something this project hopes to help rectify. In order to
achieve this we have outlined the following research questions:

1. What scheduling algorithms are available for use in a multi criticality envi-
ronment?

2. What is the performance of each of these measured in terms of generated
overhead, response time and CPU utilisation?

The work has been performed for the most part at the Embedded System En-
gineering (ESE) Center at Zhejiang Univeristy in the People’s Republic of China,
under the tutelage of Professor Gu Zonghua. Research at the centre is primarily fo-
cused towards development of platforms for automotive physical information sys-
tems, standardised automotive electronics software development, automotive elec-
tronics simulation tests, and finally automobile intelligent environments. The RTOS
used in this project, SmartSAR, has been developed at the centre. Parts of the
project, primarily results processing and report writing, has been completed at the
Department of Automatic Control at Lund university, guided by Professor Karl-Erik
Årzén and Associate Professor Anton Cervin.

The work started with exploring viable algorithms. A real-time operating sys-
tem was needed to run elicited algorithms and this had to be run on hardware with
functionality and similar performance as in every day applications. Framework for
generating a test system had to be implemented. Each elicited algorithm was im-
plemented and fitted into the RTOS and then every test system generated had to be

9

Chapter 1. Introduction

Work Author
Eliciting algorithms Edward
Researching viability of using an Open Source RTOS Carl Cristian
SmartSAR research Edward, Carl Cristian
Test system generator framework Edward
AMC test system generator implementation Carl Cristian
EDF-DB test system generator implementation Carl Cristian
ZSS test system generator implementation Edward
AMC implementation Carl Cristian
EDF-DB implementation Carl Cristian
ZSS implementation Edward
Result generation Carl Cristian
Analysis of results Edward
Report sections 2, 3.1, 3.2, 3.3, main parts of 4.1, 5.3, 5.4, 6 Edward
Report sections 1, 3.4, parts of 4.1, 4.2, 4.3, 4.4, 5.1, 5.2 Carl Cristian

Table 1.1 Individual contributions

run. From this, results were gathered and compiled for analysis. The work was done
by Edward Linderoth-Olson and Carl Cristian Arlock. It was divided according to
Table 1.1.

1.1 Outline

The report is divided into the following chapters

• Chapter two: Describes the background information and theory on which the
report is based.

• Chapter three: How the work was performed and results gathered.

• Chapter four: The results gathered from the work.

• Chapter five: Analysis of the results.

• Chapter six: Includes conclusion and future work discussions.

10

2
Background

2.1 Introduction to real-time scheduling

An inherent problem in almost all real-world applications is the need for a program
to perform several actions seemingly at the same time, perhaps regulating tempera-
ture and level in a water tank. In theory this could be handled by having a processor
each for all the processes, but this is often impractical from a resource perspective.
Instead the problem can be solved by the application of what is reffered to as ’time
sharing concurrency’, having the programmes execute in sequence but, through the
use of special timing techniques, from a black box perspective it appears that they
are executing concurrently [Årzén, 2011].

These timing techniques allowing the sharing of processor time, and other re-
sources, are referred to as real-time scheduling. Perhaps an example would be useful
to illustrate the concept in more detail. The process of producing chocolate ganache
for danish pastries in a bakery requires both somewhat complicated temperature
control and the pouring of a correct amount of cream into the chocolate, leading
to two concurrent processes: one for the heat, and one for the cream. If the heat
drops below 35 degrees centigrade the ganache will not mix properly and should
the proportions of chocolate to cream be erronous the texture and taste will be off.

This gives us the system described in Figure 2.1. In this particular system, for
the sake of simplicity, every time the flow of cream or the chocolate temperature
needs to be corrected this takes an equal amout of cpu time and the processes that at
that time uses the cpu runs until its finished what its doing. Every instance when the
temperature or flow is calculated and corrected is referred to as a ’job’, every process
or task being comprised of a series of jobs. The deadlines, however, are slightly
different for the two processes. The cream just needs to be finished before it is time
to correct the flow again, since it is acceptable for the mixture to differ somewhat
in its proportions, it can be rectified by adding somewhat less cream during the
next iteration as long as the error is not too large. It is not even a catastrophe if the
process should miss its deadline, as long as it does not do so too often. A process or
system with these less stringent deadlines where a miss is occasionally tolerable is
referred to as a soft real-time system [Årzén, 2011].

11

Chapter 2. Background

Figure 2.1 An example of two processes executing on the same procesor.

The chocolate on the other hand must never go below 35 degrees, and as the
programme starts correcting the temperature very close to this value the deadline
is much tighter, being based on when the temperature without appropriate action
will drop too low. It is also critical that this deadline not be violated, as that will
render the entire bach useless. A system with these strict deadlines where a miss is
catastrophic is referred as a hard real-time system [Årzén, 2011].

The aforementioned system is quite content to run in this manner, each job only
starting to execute when the last one is finished. However, had the execution time
been somewhat longer for the cream process this would have caused the chocolate
process to breach its deadline, as in Figure 2.2.

How then can this particular conundrum be solved? The acute observer might
have noticed that the execution time between the arrival, or release as it is some-
times called, of the cream task until its deadline should be able to accomodate the
execution of the chocolate process, but due to the latters’ late arrival the cream task
has already started executing and will doggedly continue to do so until it is finished.
The solution is priorities. By assigning a higher priority to the chocolate task, its
arrival will cause the cream process to be interrupted while it executes. The cream
task can then continue once the chocolate process is finished, completing execution
just in time to meet its deadline, see Figure 2.3.

Apart from the overarching problem of finding a schedule where all tasks meet
their deadlines there are a number of more specific challenges associated with real-
time scheduling, particularly when it comes to managing common resources. These
problems arise when one or more tasks wish to access the same functions, e.g.
memory, a screen or a thermometer. For example, two tasks can be ’deadlocked’

12

2.1 Introduction to real-time scheduling

Figure 2.2 An example of two processes executing on the same procesor, with the
chocolate process breaching its first deadline.

Figure 2.3 An example of two processes executing on the same procesor, with the
cream process being pre-empted by the chocolate process.

waiting for the other to release a resource, or a lower priority task can accidentally
block one of higher priority by locking a resource and being interrupted by one
of middle priority that does not need the resource. However, as this project does
not deal with shared resources, the investigation of this particular area is left to the
reader’s curiosity.

There are two ways of realising these real-time systems: a real-time program-
ming language, e.g. Ada, or a sequential programming language augmented by a
real-time operating system, e.g. the combination of C89 and SmartSAR used in this
project [Årzén, 2011].

A real-time operating system (RTOS) can be likened to a bureacracy facilitating
the use of the processor by the various programmes one wishes to run, providing

13

Chapter 2. Background

the administrative framework for their operation. As such it should, although some
civil servants will most likely disagree, be fast, small and efficient. Two of its most
important functions that are at the center of this project are timing protection and
context switching. The latter is one of the basic functions of any operating system,
it refers to the process by which the memory housing all the variables and other
paraphernalia belonging to the currently executing task is switched for those of the
one next in line when it is time to hand over the processor. This allows the tasks to
execute in their own environment – their context, hence the name [Årzén, 2011].

Timing protection is another basic function of any OS – the system that enforces
and controls the deadlines, although its implementation can vary greatly. Once again
it is the common resources that lie behind many of the difficulties. It might be
intuitive that a task that has missed its deadline should be terminated immediately,
however, should it be holding locks on shared resources these might not be correctly
released. However, as mentioned previously, due to the nature of this project it is
deemed to be outside the scope of this report.

There are a number of more stringent requirements on real-time operating sys-
tems (RTOS), setting them apart from traditional time-sharing operating systems
like UNIX. The programmer and the processes must be able to perform actions they
would normally not be allowed to, for instance suspending interrupts and chang-
ing the priorities of tasks. The system must also be extremely reliable, being able
to run for a long time without restarting. It should also be quick to respond to I/O
operations and able to complete those and other operations within a well-defined
timespan [Årzén, 2011].

The chococlate ganache example relied on a method of scheduling referred to
as pre-emptive fixed priority, i.e. processes can interrupt each other if they have a
higher priority and priorities are fixed during execution. This is only one example
of a large flora of algorithms used to schedule task sets, as demonstrated by the
example depending on the configuration of the tasks a system may or may not be
schedulable, which also means that a system that is schedulable with one task set
might not be schedulable with another. One way to determine whether a certain
algorithm can assure that the tasks in a task set do not break their deadlines is
simply to calculate the schematic in the previous example, but in order for all the
possible interference patterns to have been tested this must be done over the entire
execution time for the programme, or the hyperperiod of the tasks. This quickly
becomes exceedingly impractical. An easier method to determine the schedulability
of a system is through the application of what is referred to as ’scheduling analysis’.

Scheduling analysis allows for the mathematical calculation of whether a certain
system is schedulable under a certain algorithm, but as all algorithms are different
there exists no one equation, each algorithm has its own requirements and condi-
tions. There is one strict requirement for a schedulability condition; that it is a suf-
ficient requirement for the system to be schedulable, i.e., if the condition indicates
that the system is schedulable then all deadlines will be met. This can, however,
mean that there are systems which are in fact schedulable but where the condition is

14

2.1 Introduction to real-time scheduling

too sceptical and indicates they are not, it is therefore desirable that the condition is
necessary as well, i.e. that when it says the system is unschedulable there is always
a situation where a deadline might be violated. If an algorithm’s condition fulfills
both of these requirements it is said to be exact.

This is, however, more readily understood through an example as well. The ear-
lier used example of of the chocolate ganache does, however, due to the somewhat
arbitrary priority setting, not confirm to any particular scheduling algorithm and as
such lacks a readily available scheduling condition. Nevertheless, the rationale used
is somewhat similar to that of the Rate Monotonic (RM) scheduling algorithm, a
variant of pre-emptive fixed priority scheduling where priorities are assigned ac-
cording to the frequency with which the tasks recur, with a shorter period entailing
a higher priority. The chocolate process would thus have a higher priority just as
earlier.

In order to determine whether the patissary task set is schedulable with RM
the idea is to calculate the response time (R) for every task, i.e. the sum of the
execution time (C) and the response time for all the jobs which can pre-empt it, and
then compare this response time to the task’s deadline (D). Should all the tasks in
the system have response times shorter, or equal to, their deadlines then the system
is schedulable. This results in a iterative equation running until the value for the
tasks’ response time stabilises, it is possible that the increasing response time due
to interruptions from higher tasks in itself gives birth to even more interruptions.
Equations 2.1 and 2.2 describe the initial setup for the example:

Rchocolate =Cchocolate, (2.1)

Rcream =Ccream +

⌈
Rcream

Tchocolate

⌉
Cchocolate. (2.2)

By inserting some values for the variables it is possible to iterate the equations
to determine whether the system is schedulable. Note that in order for this paric-
ular schedulability condition to be applicable the system must fullfil the following
requirements:

• only periodic tasks

• deadlines and periods for a certain task must be equal

• no interprocess communication

• tasks may not suspend themselves

• priorities are unique

• the real-time kernel is ’ideal’, i.e., context switches are performed instantly
and no CPU time is lost to kernel overhead.

15

Chapter 2. Background

Using excution time 3, period (T) and deadline 5 for the cream process and
exuction time 1, period and deadline 3 for the chocolate process this becomes:

Rchocolate = 1, (2.3)

Rcream = 3+
⌈

0
3

⌉
1, (2.4)

Rcream = 3+
⌈

3
3

⌉
1, (2.5)

Rcream = 3+
⌈

4
3

⌉
1, (2.6)

Rcream = 3+
⌈

5
3

⌉
1, (2.7)

Rcream = 5. (2.8)

As both response times are smaller than or equal to their respective deadlines
the system is schedulable. Often, however, it is not this trivial. Large systems of
tasks will make the calculation much more complex, and there are also some inher-
ent problems in the variables themselves. Although the deadline is usually not too
difficult to determine for a task, the execution time is generally impossible to get
an exact value for; depending on which path the programme takes in its execution
the result can vary greatly. As such programmers instead of exact values have to
resort to statistical estimates with a certain margin of error, which in the unlikely
event that they prove widely inaccurate for some special case can cause a task to
exceed its allotted execution time leading in the worst case to deadline misses. The
challenges associated with this are, however, discussed in more detail in the next
chapter, on mixed criticality scheduling.

Apart from RM scheduling there are, as mentioned earlier, various other algo-
rithms to schedule tasks depending on the demands of a particular system, one of
the more common ones is Earliest Deadline First which simply schedules the job
with the shortest upcoming deadline to run. Even so, a detailed discussion of this or
any of the other algorithms is best left to the users discretion, as they are of limited
use in the mixed criticality domain that is the focus of this paper.

2.2 Introduction to mixed criticality real-time scheduling

Mixed criticality scheduling is a relatively new discipline within software engineer-
ing, first introduced by Vestal’s article [Vestal, 2007]. As previously mentioned it is

16

2.2 Introduction to mixed criticality real-time scheduling

born from the need to consolidate different processes of varying necessity, or crit-
icality, to the system on a single CPU, hence the name. The problem derives from
the nature of the worst case execution times (WCET) used for the scheduling cal-
culations: most often it is impossible to determine an exact value for the WCET
and the scheduler instead has to rely on an imperfect estimate. This estimate can be
obtained in a wide variety of manners, sometimes a combination of different meth-
ods, but one can conjecture that as the imperativeness that the estimate hold true
increases so also said estimates become more conservative. This threatens to give
rise to a large amount of unutilised execution time for the normal case, which can
differ significantly from the worst case [Vestal, 2007]. Another problem caused by
this colocation of processes of mixed criticality on the same processor is criticality
inversion - if the WCET limits are enforced stringently, a high criticality processes
can be blocked when overrunning in order to let a lower criticality processes ex-
ecute, whereas it might actually have been more desirable to let it continue until
finished [Niz et al., 2009].

Figure 2.4 An example of two processes executing on the same procesor, assured
at the criticality of the chocolate and cream processes. Note that the media process
is blocked from executing in this example.

Perhaps, as with normal scheduling theory, mixed criticality scheduling is more

17

Chapter 2. Background

readily understood through an example. Returning to our earlier patissary discussion
of the chocolate ganache, let us asume that an overactive maintenance technician
working at the bakery has decided that it is desireable to install a media player on
the computer that runs the control process for the chocolate ganache. This will allow
the bakery to play classical music and hopefully improve production as indicated in
[Adrian North, 2001], provided cows are an adequate approximation of the bakery’s
staff.

However, a quick analysis indicates that it will be very difficult to include the
media player process on the control computer using normal rate monotonic schedul-
ing. In order to stop it from interfering with the more important tasks the technician
gives the media player process the lowest priority, but this means it will be blocked
from running by the other tasks and according to RM scheduling analysis the sys-
tem is unschedulable, see figure 2.4. Even so, the technician suspects that the system
should in fact be schedulable – due to the degree of safety necessary for the cream
and chocolate process, their WCETs have been estimated quite conseravtively, and
after performing some measurements it becomes apparent that the cream process is
ususally much quicker than indicated by the WCET.

How then to get at this unutilised execution time? We introduce two levels of as-
surance that the system will not fail, a higher confidence one at the level previously
used for the cream and chocolate processses, and a new lower one sufficient for the
media player process. The acute reader might have realised that since the cream
process was actually under a soft real time constraint whereas the chocolate process
has a hard real time constraint, it might actually have been benificial to introduce
three levels of criticality – separating the chocolate and cream processes. However,
as the system has run excellently without this separation previously it only adds
needless complexity, it is better to keep the solution simple, see [Extreme Program-
ming Pocket Guide 2003]. Calculating the WCET estimates for the different levels
of the criticality yields the results in Table 2.1.

Process High criticality estimate Low criticality estimate Deadline
Cream 2 1.5 5
Chocolate 1 1 3
Media 1 0.5 3

Table 2.1 WCET estimates and deadlines for the different tasks on the bakery’s
control computer.

Now, given this lower level of assurance the system is actually schedulable, as
in Figure 2.5. However, the probability of this latter system failing is higher than
the one described by the high criticality measurements. How then to reconcile these
two different depictions? There actually is a way, using scheduling analysis applied
to these two different sets of measurements, that allows for the reconciliation of

18

2.2 Introduction to mixed criticality real-time scheduling

the higher criticality tasks’ requirement of high assurance with the lower criticality
tasks’ disregard for it. Put simply, scheduling analysis is performed at the criticality
of the task being examined, allowing each task’s level of assurance to be set and
evaluated individually. The equation for a task’s reponse time thus becomes

Ri =Ci(Li)+ ∑
τ j∈hp(i)

⌈
Ri

Tj

⌉
C j(Li). (2.9)

With priorities as in the previous example but with the media player process
added as the lowest, WCETs (C) according to Table 2.1 and with the cream and
chocolate processes having a high criticality (L) and the media player a low, the
response time for the chocolate process thus becomes

Rchocolate =Cchocolate(Lchocolate), (2.10)

Rchocolate = 1. (2.11)

Respectively, the response time for the cream process becomes

Rcream =Ccream(Lcream)+

⌈
Rcream

Tchocolate

⌉
Cchocolate(Lcream), (2.12)

Rcream = 1+
⌈

0
3

⌉
1, (2.13)

Rcream = 1+
⌈

1
3

⌉
1, (2.14)

Rcream = 1+
⌈

2
3

⌉
1, (2.15)

Rcream = 2. (2.16)

Finally, the response time for the media player process becomes

Rmedia =Cmedia(Lmedia)+

⌈
Rmedia

Tchocolate

⌉
Cchocolate(Lmedia)

+

⌈
Rmedia

Tcream

⌉
Ccream(Lmedia),

(2.17)

19

Chapter 2. Background

Figure 2.5 An example of three processes executing on the same procesor, ass-
sured at the criticality of the media process.

Rmedia = 0.5+
⌈

0
3

⌉
1+
⌈

0
5

⌉
1.5, (2.18)

Rmedia = 0.5+
⌈

0.5
3

⌉
1+
⌈

0.5
5

⌉
1.5, (2.19)

Rmedia = 0.5+
⌈

3
3

⌉
1+
⌈

3
5

⌉
1.5, (2.20)

’
Rmedia = 3. (2.21)

All of which are within their respective deadlines, see table 2.1. The scheduling
algorithm just applied is in fact one referred to as Static Mixed Criticality, or SMC
for short. It is the predecessor of one of the algorithms discussed at length in this
paper, Adaptive Mixed Criticality or AMC, and it is only one of a large number
of different scheduling algorithms developed specifically to solve these manner of
mixed criticality problems.

20

2.2 Introduction to mixed criticality real-time scheduling

There are, however, a few points that should be noted and unfortunately are not
readily apparent from the previous discussion. In order for SMC to work at least
limited timing protection must be present – the RTOS must enforce WCETs for
the tasks lest they overrun and cause criticality inversion. Criticality inversion is a
phenomenon similar to priority inversion, a lower criticality task blocks a higher
criticality one from executing, e.g. by executing for longer than its allotted budget.
The reader might also have noticed that the high criticalty estimate for the media
process was never actually used in the example. This is an advantage of SMC’s, it
only requires that tasks have their WCETs estimated up to and including their own
level of criticality. It might not have been much of a boon in this particular example,
but in systems with many low criticality tasks it can save a significant amount of
resources as the process of estimating WCETs, as previously mentioned, is very
expensive [Baruah et al., 2011].

In order to develop these algorithms and other tools to manage these problems a
fair bit of research has been conducted into this area, resulting in a number of differ-
ent algorithms. At the time of experimentation, autumn 2012, it was still very much
an active field of research; the EDF-DB algorithm had been proposed in an article
in July that same year. However, the field has continued to develop after the exper-
iments where completed, for example Ekberg and Yi published som improvements
to the EDF-DB algorithm [Ekberg and Yi, 2014]. The review of the field published
by Alan Burns and Rob Davis, [Burns and Davis, 2013], covers the research area
up until December 31st 2013 and provides an excellent overview of its development
and scope until that date.

A more comprehensive discussion of the reasoning behind the different algo-
rithms, their strengths and weaknesses, is left to Chapter 4.1.

21

3
Method

3.1 Scientific Method

The project was divided into three phases: a litereature study, implementation of the
algorithms elicited by that study, and measurement of the above defined metrics.
Apart from finding algorithms to implement the purpose of the literature study was
to some extent to determine the results to expect for the different metrics. Also,
it provided some guidance regarding the implementation choices that were made
during the second phase, which are discussed in further detail in Section 3.2. In the
last and final phase of the project the overhead was measured using a logic analyser,
while the data for measuring utilisation and response times was provided by having
termination messages printed to the systems COM port.

3.2 Implementation

For reasons of simplicity and to limit the scope of the project, we opted for a two-
stage implementation: first in a fixed task priority (FTP) setting using only two al-
gorithms, which we then extended with a third algorithm from the fixed job priority
(FJP) domain.

The algorithms considered for implementation in an FTP system were:

1. Criticality As Priority Assignment (CAPA)

2. Own Criticality Based Priority (OCBP)

3. Period Transforming

4. Static Mixed Criticality (SMC)

5. Adaptive Mixed Criticality (AMC)

6. Zero-Slack Scheduling (ZSS)

22

3.3 Target Platform

CAPA has little merit other than as a benchmark, along with period transform-
ing in conjunction with EDF, however, the benefit of such a benchmark system was
deemed uncertain at best, and due to the limited resources available it was decided
to focus on implementing an FJP algorithm instead. As OCBP is simply a variant of
SMC that does not require runtime support implementing both is a little redundant,
also since the latter is becoming more and more common according to [Baruah et al.,
2011], SMC seems to be a more interesting choice although it will require slightly
more work to implement than OCBP. On the other hand SMC is stricly dominated
by AMC, which judging from the discussions in [Baruah et al., 2011] seems to in
all manners be an improvement on SMC though slightly more difficult to imple-
ment. Zero-Slack Scheduling is a novel way of performing scheduling though it
does require som patching from the original version, however judging by the ex-
perimentation described in [Huang, 2012] its performance is quite underwhelming.
On the other hand, as the metrics considered for this project are different from that
study it might still pose an interesting target for measurements. According to this
reasoning, the first algorithms selected for implementation were ZSS and AMC.

For the second implementation phase the following algorithms were considered:

1. Priority List Reuse Scheduling (PLRS)

2. Earliest Deadline First - Virtual Deadlines (EDF-VD)

3. Earliest Deadline First - Demand Bound (EDF-DB)

PLRS is a FJP version of OCBP, however, again according to [Huang, 2012], it
is quite slow and ponderous and as such not terribly relevant for the resource poor
embedded systems setting. EDF-VD and EDF-DB are both new algorithms and are
not included in Huang’s study, so either would be interesting to implement from this
point of view. However, seeing as EDF-DB is claimed to be an improvement over
EDF-VD, it was decided to implement only this in order to limit the scope of the
project.

3.3 Target Platform

The target architecture is a Freescale HCS12X board, running a variant of Smart-
SAR, a commercial AUTOSAR compliant RTOS developed by the Computer Sci-
ence Department of Zhejiang University, which was modified to include code to
measure execution and response times as well as overhead and CPU utilisation, and
to support the different scheduling algorithms.

SmartSAR
SmartSAR is a compononent-based layered platform based on the AUTOSAR
framework. SmartSAR is an implementation of the AUTOSAR framework which

23

Chapter 3. Method

is a collaboration between major car manufacturers and other interests. The goal is
to have a unified standard to increase reliability and portability. Individual software
components will be thoroughly developed and specialised rather than being gen-
eral purpose for fitting every type of operating system. The SmartSAR platform is
comprised of the following components:

SmartSAR OS An OSEK compliant operating system that provides task schedul-
ing, resource and event management and similar services to the RTE. [Li et
al., 2009]

SmartSAR BSW For full AUTOSAR support the basic software module should
support communication, memory and diagnostic services, however, in the
SmartSAR BSW so far only the communication module is operational. [Li
et al., 2009]

SmartSAR RTE The runtime environment supports applications, facilitates com-
munications between them and allocates them to specific ECUs. It is also
instrumental in making the applications platform independent, hiding imple-
mentation details of the OS and BSW systems. [Li et al., 2009]

SmartSAR HAL The hardware abstraction layer performs a similar function for
the OS and BSW as the RTE for the applications, in making the OS and BSW
more reusable. [Li et al., 2009]

SmartSAR IDE The integrated development environment contains tools for devel-
oping automotive electronics software, containing specific tools for modeling,
configuration and code generation. [Li et al., 2009]

For this project the concern has primarily been the OS, and to some extent
the RTE. The first as it contains the scheduling systems were the different algo-
rithms were implemented, and the second as it was used by the Code Generator
Java programme, see section 4.2, in order to generate the task systems used to test
the algorithms. The latter, however, interfaced directly with the RTE’s generated
source files in order to create new systems, which renders the RTE’s superstructure
exceedingly irrelevant to this project. As such the SmartSAR OS will be examined
in slightly more detail, whereas the others are left to the readers curiousity, e.g. by
consulting [Li et al., 2009].

SmartSAR OS
As described earlier, SmartSAR is based on OSEK, specifically Smart OSEK OS.
Its functions are provided to the RTE in the form of services, and can be grouped
into the following main segments of functionality:

Task scheduling Scheduling, as explained in Chapter 2.1, comprises management
of processor access between different tasks depending on their priorities and

24

3.4 Simulated Load Generation

other qualifications. Basic SmartSAR supports three different strategies: non-
preemptive, mixed preemptive and full preemptive scheduling. For the pur-
poses of this project, full preemptive scheduling was used for all the algo-
rithms. Significant changes were made to this module due to the nature of the
project.

Event management Handles support for waiting for specific events to happen, this
module was deactivated as there was no use for it in this project.

Alarm management Supports alarms capable of activating tasks, callback func-
tions or setting events. In this project alarms were, among other things, used
to implement the ZSI trigger function in the ZSS algorithm.

Resource management Facilitates sharing of common resources between tasks, or
interrupts. This module was also deactivated for the purposes of this project.

Interrupt management Interrupts can be triggered by the OS to perform specific
tasks, such as context switching. In SmartSAR there is support for two differ-
ent variants of interupts, 1 and 2. Variant 1 is faster and can execute without
triggering a context switch from the currently running task, however it cannot
use OS system calls. Variant 2 is slower and more ponderous but can use OS
system calls.

Stack monitor Supervises the stack during certain context switches, allowing early
detection of stack overflow errors and the management thereof.

Timing protection Ensures that tasks do not exceed their documented worst-case
execution times (WCET) and also monitors the time a task is blocked by
lower priority tasks. This system has been partly disabled for some scheduling
algorithms and heavily affected by the implementation of others.

Exception management Supports handling of exceptions to facilitate debugging
and increase system robustness.

3.4 Simulated Load Generation

A program was written to generate a simulated load consisting of a variable number
of tasks running in the system. Support for any number of tasks, which combined
utilised a variable percentage of the CPU, was added. Default settings added a set
number of tasks each with random run time and number of activations. Since run
time and number of activations were uncertain for each task, the utilisation percent-
age for each set of tasks was not exact, only as close as possible to the chosen value.
The program was able to generate sets of tasks for each algorithm with the three
each requiring different preparations and precalculations. Each set ran for twenty
seconds. For further discussion of this programme, please consult Section 4.2.

25

4
Results

4.1 Elicited Algorithms

Criticality As Priority Assignment (CAPA)
A very simple method for building an MC scheduler with very bad performance, it
simply assigns criticality levels as priorities, it might however be useful as a bench-
mark.
Source: [Niz et al., 2009]

Period transforming
The simpler of two algorithms introduced by Vestal in his seminal article, the point
is simply to transform the period of higher priority tasks to smaller intervals and
then apply EDF scheduling.It is the basis for a few more advanced variants of EDF,
EDF-VD and EDF-DB.
Source: [Vestal, 2007]

OCBP (SMC-NO)
A simple algorithm for assigning priorities so as to achieve an MC compatible sys-
tem first introduced by Vestal. It does not handle exceeded WCETs, it just allows
for different confidences in the estimations. The last article describes the algorithm
when used to set the priorities of individual jobs (FJP), and not tasks (FTP), with
varying priorities between these.
Source: [Vestal, 2007], [Li and Baruah, 2010]

Static Mixed Criticality (SMC)
Similar to OCBP, but a process cannot exceed its WCET. If it does, it is interrupted.
As such, this algorithm requires runtime support. Also, this is primarily a FTP algo-
rithm, although a port, as previously mentioned, of OCBP to FJP exists so in theory
it should be possible to extend this in a similar manner.
Source: [Baruah et al., 2011]

26

4.1 Elicited Algorithms

Adaptive Mixed Criticality (AMC)
A successor to SMC, this seems a lot more useful. In this algorithm, as soon as
a task exceeds its C(LO), be it HI or LO criticality, all LO criticality tasks are
suspended. Thus, this one also requires runtime support. This algorithm uses the
previously established model with each task τi in a mixed criticality sporadic task
set τ = {τ1, ...,τm} with the following statistics

• Ci(LO) and Ci(HI) to denote worst case execution times in low- respectively
high-criticality mode,

• Di denotes the relative deadline,

• Ti is the period,

• Li is the criticality.

AMC schedules tasks according to deadlines. The task with shortest deadline
gets the highest priority. Accordingly the Audsley based Algorithm 1 sorts each
task set according to deadline. This requires one priority per task, to sort the list.
Each iteration, the task with the lowest deadline in the set is removed and placed in
the list.

Schedulability is checked according to the calculations found in [Baruah et al.,
2011] and is based on response time analysis. Method number two from the article
was implemented and is discussed briefly here.

Based on the knowledge that a task τs invokes a criticality change at an arbitrary
time s, an expression is derived. The task τi is impacted if the priority of τs is equal
or greater than that of task τi. A formula for the response time of task τi is the
following:

Rs
i =Ci(HI)+ IL(s)+ IH(s),

where IL(s) is the interference from low criticality tasks and IH(s) is the inter-
ference from tasks with higher or equal criticality:

IL(s) = ∑
j∈hpL(i)

(bs/Tjc+1)C j(LO).

For the interference of the HI criticality tasks, the formulas get more compli-
cated. Here t denotes the time where task Tk interferes and t > s. The following
function helps minimising the response time and is needed for calculation of inter-
ference from HI criticality tasks:

M(k,s, t) = min
(⌈

(t− s− (Tk−Dk))

Tk

⌉
+1,

⌈
t

Tk

⌉)
.

27

Chapter 4. Results

Interference term at time t becomes

IH(s) = ∑
k∈hpH(i)

((M(k,s, t)Ck(HI))+
(⌈

t
Tk

⌉
−M(k,s, t)Ck(LO)

)
,

where R∗i = max(Rs
i)∀s. The values of s that have to be considered are in the

interval [0,RLO
i).

Algorithm 1 Audsley’s algorithm
for each priority level p, lowest first do

for each unassigned task τ do
if τ schedulable at priority p with all unassigned tasks assumed to have

higher priorities then
τ ← priority p
BREAK to outer loop

end if
end for

end for
if set of unassigned tasks is empty then

return schedulable
else

return unschedulable
end if

Zero-Slack Scheduling (ZSS)
This algorithm is based on each task having two modes, Normal and Critical. When
no slack (space for execution of lower criticality tasks) remains for a task to meet its
deadline, the task switches from normal to critical mode, meaning that the execution
of all lower criticality tasks is suspended. It was first put forward by de Niz et al in
2009, [Niz et al., 2009], however it was later revealed by Huang Huangming that this
form failed to take into account one subset of task interference. Huang suggested a
solution to this problem and thus the implementation in this project is based on his
complementary work in [Huang, 2012].

Similarly to the response time calculation for RM scheduling used in the above
example, ZSS uses a recursive algorithm to calculate the available ’slack’ - the
amount of idle processor time available for executing a task before its deadline.
In order to account for the different manners of interference between tasks in a bi-
modal algorithm such as this the calculations unfortunately become quite complex,
as such it is perhaps best discussed in smaller parts at a time, from whence a whole
shall emerge.

The crux of the problem is to find the Zero Slack Instant (ZSI), the point in
time where there is so little slack available for a certain task, once interference from

28

4.1 Elicited Algorithms

higher priority and higher criticality tasks has been taken into account, that it must
switch to critical mode in order to meet its deadline. Switching to critical mode will
suspend all lower criticality tasks in order to make their execution time available
for the task. Should the zero slack instant become negative for any task, due to
the response time being longer than the deadline, the task system is unschedulable.
Algorithm 2 describes the algorithm used to find the ZSI, followed by descriptions
of the functions used in that algorithm.

Algorithm 2 Calculation of task τi’s zero slack instant
s← 0
repeat

s′← s
Cc

i ←max(C0
i − slack,0)

k← K(Cc
i ,Di,Γ

c
i ,∆

c
i (ξ))

Zi←max(Di− k,0)
s← Sn

i (Γn
i ,Zi)

until s = s′ or Zi = Di
return Zi

The K function displayed in Equation 4.1, calculates the minimum time required
for the task τi to execute for the time t, where u is an upper limit to the execution
time. The ∆i(Γ, t) function returns the time demand generated by a taskset Γ for the
duration t after the release of a job from τi,

K(t,u,Γ,∆i) = min{{u}∪{t ′ ≥ t|t ′ = t +∆i(Γ, t)}}. (4.1)

However, as the algorithm is bimodal two different variants of the ∆ function
prove necessary; one for τi’s normal execution mode and one for when τi enters
critical mode. These two functions are described in Equation 4.2 and Equation 4.3
respectively,

∆
n
i (ζm,Γ, t) = ∑

τ j∈Γ

δ
c
i (ζm,τ j, t), (4.2)

∆
c
i (ζm,Γ, t) = ∑

τ j∈Γ

δ
n
i (ζm,τ j, t). (4.3)

In both of these cases, the function for the task set Γ’s time demand is of couse
reliant on the time demand of each individual task τ j in the set, calculated by the
functions in equations 4.4 and 4.5,

δ
n
i (ζm,τ j, t) =

(
1+max

(⌈
t−φ

i,n
j (ζm)

Tj

⌉
,0

))
Ii

j(ζm), (4.4)

29

Chapter 4. Results

δ
c
i (ζm,τ j, t) =

(
1+max

(⌈
t−φ c

j (ζm)

Tj

⌉
,0

))
Ii

j(ζm). (4.5)

As the reader with an eye for detail will quickly have noted, the difference be-
tween these two functions resides solely in the interference phase shift function φ

– depending on whether the system is running in critical or normal mode the tasks
will interplay differently, giving different values for the phase shift that generates
the worst possible inteference. However, before delving into the details of the re-
spective variants of that function, there is one common function used by both δ n

i
and δ c

i that merits explanation: the function for the execution time of τ j that will
interfere with the execution of τi calculated at the criticality ζm, Ii

j(ζm), described
as follows:

Ii
j(ζm) =

{
max(C j(ζm)−θ j(ζm),0) if τ j ∈ Lζ>ζi

i ,

C j(ζm) otherwise.
(4.6)

As is customary C j denotes the execution time of task τ j, however, with the
added qualifier that it has been measured at the criticality level ζm; as mentioned
previously execution times can be measured with varying degrees of assurance de-
pending on the criticality level, and as such the execution time for a task will vary
depending on at what criticality it has been measured. θ , on the other hand, is not
so straight forward; it constitutes the minimum amount of slack that can be used by
a task τi before it reaches its zero slack instant Zi, calculated at a criticality level
ζm. This is calculated as described in Equation 4.7, which will in fact render the
algorithm recursive with the base case being when there are no further tasks that
can interfere with task τi,

θ(ζm) = max(Zi−∆(ζm,Γ
n
i ,Zi),0). (4.7)

Returning once again to the phase funtions φ n and φ c their individual construc-
tion is quite different although their function is the same, and as such they are per-
haps best discussed in sequence. Starting with the phasing for the normal time de-
mand function, it is calculated as described in Equation 4.8 and reliant on the delay
between the release of task τi and the completion of task τ j, denoted ri,n

j . This once

again makes the algorithm recursive, as is clear from Equation 4.9 ri,n
j is calculated

using a special configuration of the K function, which was where this explanation
originally started,

φ
i,n
j = ri,n

j (ζm)+Tj−D j, (4.8)

ri,n
j (ζm) = K(C j(ζm),Di,H

ζ≥ζi
j ,∆n

i (ζm)). (4.9)

30

4.1 Elicited Algorithms

Moving on to the phasing of the critical mode time demand function its calcu-
lation differs significantly from that of the normal mode phasing, relying instead on
the response time of the task τ j as seen in Equations 4.10 and 4.11. However, just as
in the calculation ri,n

j , the equation hinges on the K function rendering it recursive
until all interference has been accounted for,

φ
i,c
j =C j(ζm)+Tj− ri,c

j (ζm), (4.10)

ri,c
j (ζm) = Z j +K(C j(ζm)−θ(ζi),D j−Z j,Γ

c
j,∆

c
j(ζm)). (4.11)

With the normal time demand function available, it is now possible to implement
a function to calculate the available slack in a time period t; the function Sn

i (t). As
τi cannot make use of slack before its release time it becomes necessary to check
all possible smaller intervals t ′ in the interval t,

Sn
i (t) = max(t ′−∆

n
i (ζi,Γ

n
i , t
′)|(∀t ′ < t)∪

(∀t ≥ twhere ∆
n
i (ζi,Γ

n
i , t
′) = ∆

n
i (ζi,Γ

n
i , t))).

(4.12)

Thus, all the parts necessary to execute algorithm 2 are assembled. The algo-
rithm should be applied to the tasks in descending criticality-priority order, that is
first all tasks with the highest criticality and priority, then all tasks with the high-
est criticality and second highest priority and so on and so forth. This is to ensure
that the recursion through the tree of interference dependencies is done properly; it
is reliant on the values for the interfering (higher priority and/or criticality) having
already been calculated.

PLRS
An adaptation of FJP OCBP with quicker priority calculation. It is somewhat du-
bious as to how fast this really is, it seems it is more a case of it being less bad
than the standard algorithm than actually good, which is corroborated by Huang’s
disputation.
Source: [Guan et al., 2011]

EDF-VD
A relatively new algorithm compared to the others, it seems no too difficult to imple-
ment (though it requires runtime support) and has not been compared to any others
experimentally except normal EDF in a resource reservation setting. It based on a
combination of EDF and period transforming, similar to what was introduced by
Vestal, the novely of this algorithm lies in the way the new deadlines are calculated.
Source: [Baruah et al., 2012], [“Preemptive uniprocessor scheduling for mixed-
criticality systems”]

31

Chapter 4. Results

EDF-DB
Another new algorithm based on EDF and period transformation, this utilises yet
another way to calculate the new deadlines: it is based on demand bound functions.
On a side note, as the algorithm is so new it is not included in Huang’s disputation.
This algorithm uses the previously established model with each task τi in a mixed
criticality sporadic task set τ = {τ1, ...,τm} with the following statistics

• Ci(LO) and Ci(HI) denote the worst case execution times in low- respectively
high-criticality mode,

• Di denotes the relative deadline,

• Ti is the period,

• Li is the criticality.

As a task set is produced, every task is evaluated. Each task has their original
deadline to begin with. Tuning a new, relative deadline according to the task set as
a whole one can achieve schedulability in a previously unschedulable task set. This
tuning is based on the demand bound functions introduced in [Baruah et al., 1990].
The basic principle is that if an upper demand of execution can be found on every
task, including both LO and HI criticality tasks, the task set can be investigated to
adjust the deadlines to achieve schedulability.

The demand bound functions are calculated for each specific task and criticality
mode and gives an upper bound of the maximum execution time on any time interval
of a given size. The formulas for calculating these functions have been omitted here
and can be found in [Ekberg and Yi, 2012].

Algorithm 3, as published in [Ekberg and Yi, 2012], was implemented in the
simulation support system to perform demand bound calculations on the task sys-
tems, iteratively tuning low-criticality relative deadlines.

In Algortihm 3, conditions A and B refer to the schedulability of the current task
in LO and HI criticality mode respectively.

4.2 Implementation Specifics

Some of the results are very much implementation specific, but they show the differ-
ence between the three chosen algorithms. Even if they are implementation specific,
it is clear that they work for the intended platforms.

While EDF-DB is time consuming to prepare, the schedulability rate, as is in-
vestigated in [Ekberg and Yi, 2012], is very high. The same goes for AMC. This is
not the case with ZSS. While generating systems with a utilisation higher than 60%,
increasing the amount of tasks proved to produce less and less schedulable systems.
That is why all graphs lack data for more than 30 tasks in the ZSS systems – there
where simply not enough schedulable systems.

32

4.2 Implementation Specifics

Algorithm 3 EDF-DB algorithm
candidates←{i|τi ∈ HI(τ)}
mod←⊥
lmax← upper bound for l in Conditions A and B
loop

f inal← True
for l = 0,1, ..., lmax do

if ¬A(l) then
if mod =⊥ then return FAILURE
end if
Dmod(LO)← Dmod(LO)+1
candidates← candidates\{mod}
mod←⊥
f inal← False
BREAK

else if ¬B(l) then
if candidates = /0 then return FAILURE
end if
mod← argmaxi∈candidates(db fHI(τi, l)−db fHI(τi, l−1))
Dmod(LO)← Dmod(LO)−1
if Dmod(LO) =Cmod(LO) then

candidates← candidates\{mod}
end if
f inal← False
BREAK

end if
end for
if f inal then return SUCCESS
end if

end loop

33

Chapter 4. Results

The other limit at 40 tasks is set by the limited amount of memory on the target
hardware, there was simply not enough memory to fit more tasks in the system.

SmartSAR
SmartSAR is mainly written in C89 and auto generated code is added by the IDE.
A basic system was initially created with the IDE. From then on, the Code Gener-
ator, described in Section 4.2, provided all code for the task system specific com-
ponents like tasks, alarms, priority levels and so forth.. Most of the modifications
were made in the operating system part of SmartSAR. The existing structures of
the OS were used as far as possible. The resource management system was deac-
tivated along with the multiple application support and event management features
to allow changes to the scheduling functions. Variables for external and internal
use were added to provide performance measurements and multiple criticality sup-
port. The main scheduling functions were identified and modified according to the
needs of each scheduling algorithm. In the end result, without too many changes
to the existing structures three different functions had to be modified to change the
way the system handled scheduling. Find_Next_Task, Insert_Ready_Task and
Remove_Ready_Task were called for scheduling needs, where the first was called
at every system return from interrupts.

AMC
The AMC scheduling algorithm was implemented with support for two levels of
criticality. From [Baruah et al., 2011], the following set of rules were implemented:

1. There is a criticality level indicator Γ, initialised at LO.

2. While (Γ ≡ LO), at each instant the waiting job generated by the task with
highest priority is selected for execution.

3. If the currently-executing job executes for its LO-criticality WCET without
signalling completion, then Γ← HI.

4. Once (Γ≡ HI), jobs with criticality level≡ LO will not be executing. Hence-
forth, therefore, at each instant the waiting job generated by the HI-criticality
task with the highest priority is selected for execution.

5. An additional rule specifying that Γ be reset to LO if there are no HI-
criticality tasks left to run.

The system was running a regular priority based FTP scheduler with these mod-
ifications to support multiple criticality scheduling. Tasks are put in a ready list
according to priority and regular polling finds which task with highest priority that
is ready to run.

The complexity of inserting, removing and finding next task is always O(1).
Priority was assigned to each task using Audsley’s algorithm and as such, there is

34

4.2 Implementation Specifics

one priority level per task. It follows that there is one ready list per task in this
particular implementation and this increased memory utilisation.

Running Audsley’s algorithm to assign priorities did not consume a significant
amount of time. These were the only preparatory calculations in AMC and proved
to be the fastest of the three implemented algorithms.

EDF-DB
The EDF-DB scheduling algorithm was implemented with support for two levels
of criticality. The existing priority based FTP scheduler was removed and a new
FJP scheduler was implemented. This implementation used a linked list to sort the
tasks according to nearest deadline. The task with nearest deadline is always first in
the list. In a worst case scenario, inserting into the list will be O(n). Removing and
finding next task is O(1). This algorithm did not require more than one list and as
such, the memory requirements are lower than those of AMC and ZSS.

This algorithm requires a lot of preparatory work. As noted in [Ekberg and Yi,
2012] the calculations to tune to the demands of the tasks requires at most

∑
τi∈HI(τ)

(Di−Ci(LO)+1)

outer loop iterations and lmax +1 inner loop iterations, where lmax is the system run
time or hyperperiod, whichever is shorter, in ticks.

The large number of iterations in the preparatory calculations for EDF-DB took
a lot of time. Even with a run time of only twenty (20) seconds as the amount
of tasks increased the time to compute increased exponentially. The preparatory
calculations of EDF-DB were by far the most time consuming.

ZSS
The implementation of the ZSS system can be divided into two parts: firstly, a sys-
tem for calculating the tasks’ zero slack instances (ZSIs) and secondly run time
support for the mode switch and management of tasks exceeding their deadlines.
The first part was implemented in line with Huang’s improved algorithm for calcu-
lating the ZSIs, accounting for some patterns of interference that were missed in the
original, among other improvements.

The run-time support consisted of some minor changes to the scheduler in order
to support the different execution modes and also the deactivation of large parts
of the SmartSAR timing protection which conflicted with the ZSS algorithm. The
ZSI was implemented as an alarm triggering a high priority high criticality thread
to set the system criticality mode. Perhaps this could have been implemented more
efficiently by incorporating it further into the SmartSAR system, however, this was
deemed to require too large changes to the existing systems.

The preparatory calculations for the ZSS systems were notably slower than the
ones for AMC but still a lot faster than the EDF-DB precalculations. A lot of time

35

Chapter 4. Results

was also spent on finding schedulable systems due to the lower schedulability of
ZSS.

Simulation Support Systems
The main support system for the load simulation implemented during the project
is the Code Generator, a Java programme that generates a task system with a spec-
ified number of tasks, utilisation, execution time, etc. It facilitates the automated
creation of task systems and the application of the different scheduling algorithms
on them, although there is no guarantee that a given task system once generated
will be schedulable in any or all of the algorithms. The offline computations for all
the algorithms were run within this Code Generator programme as part of the setup
process.

In order to achieve the specified utilisation the UniFast algorithm outlined in
[Bini and Buttazzo, 2005] has been employed, generating uniformly distributed
task utilisations. The periods where created using the standard uniform distribu-
tion implemented in Java’s Random class. After the parameters have been set and
calculated respectively, the system is printed as C89 source code for a SmartSAR
application.

4.3 Overhead Measurements

As previously mentioned, the overhead was measured using a logic anal-
yser. The execution time of the three scheduling functions Find_Next_Task,
Insert_Ready_Task and Remove_Ready_Task was measured by each of them
sending a signal while executing. These signals were caught and recorded by the
logic analyser. The combined time of the signals for each algorithm represents the
time spent scheduling, i.e., the overhead.

As the system keeps track of each task, all the ready to run tasks are placed in
lists. Depending on the scheduling algorithm, these lists were implemented differ-
ently.

Initially, the goal was to produce task systems using eight different numbers of
tasks, (5, 10, 15, 20, 25, 30, 35, 40), set at 60% utilisation to ensure schedulability
for ZSS, however task numbers greater than 30 also proved unschedulable in ZSS,
as mentioned previously. Thus task systems with up to 40 tasks were generated for
the other algorithms, but ZSS was limited to a maximum 30 tasks per system. There
were ten systems generated for each algorithm at each number of tasks, thus there
were 80 unique systems to run for AMC and EDF-DB each and 60 for ZSS.

Figures 4.1, 4.2 and 4.3 are all captured from the first 0.5 seconds of the systems
runtimes. This is the worst case scenario, when all tasks are inserted into the ready
list at once.

The single most used function is Find_Next_Task which is run every time the
system is ready to continue after an interrupt. As seen in the graphs, EDF-DB is the

36

4.4 Response Time Measurements

fastest thanks to the linked list. This is shown in Figure 4.1.
When inserting and removing tasks from the ready queue, however, EDF-DB

decreases in speed as the number of tasks increase, as can be seen in Figure 4.2.
AMC and ZSS have basically the same overhead since they share the same schedul-
ing at the base with different approaches for multiple criticality and preparatory
work. Figure 4.3 shows a sum of the overhead of all three functions for each algo-
rithm.

Figures 4.4, 4.6, 4.5 and 4.7 are based on data gathered over a period of eight
seconds, excluding the initial worst case phase of execution. These measurements
are thus closer to a more general execution situation. Here the generated systems
differ. They were generated at 70% utilisation for AMC and EDF-DB while still
at 60% for ZSS. Also, there were only three different amount of tasks, (10, 20,
30), and ten systems for each amount of tasks for each algorithm. The first three
figures, 4.4, 4.6, and 4.5, show the individual costs of the insert, find next, and
remove functions for each algorithm in turn. There is no great difference in these
measurements compared to those performed during the shorter interval, save for the
insert ready task function of the EDF-DB algorithm. An analysis of why this is the
case can be found in Chapter 5.

Figure 4.7 puts the total overheads of all the algorithms in comparison to each
other. The starkest impression is once again the low overhead of the EDF-DB al-
gorithm which was much greater than both ZSS and AMC in the short period mea-
surements but is now instead much lower. A slight difference can also be observed
between AMC and ZSS to the advantage of ZSS, but as our measurements do not
include overhead from the handling of the Zero Slack Instant it is doubtful whether
the latter actually is faster. This was omitted due to limitations in the amount of
time and resources available to spend on remodeling SmartSAR; the produced im-
plementation proved too ponderous to yield a good comparative measurement and
it was decided to exclude it from the measurements. It could also be an artifact of
the difference in utilisation between the two systems, a result of ZSS’s low schedu-
lability.

4.4 Response Time Measurements

The response time was measured in the scheduling systems of SmartSAR, by
recording the arrival and termination dates of the tasks, which was then printed
to the target board console.

The total response times of ten systems schedulable for all three algorithms
were measured, in order to see if there was any significant difference between them.
These systems were generated at 50% utilisation with 30 tasks each. This resulted
in the data described in Table 4.1. Postulating that the total response time can be
modeled by a normal distribution, the mean (µ), standard deviation (σ) and their
respective 95% confidence intervals can be found in Table 4.2.

37

Chapter 4. Results

System No. ZSS EDF-DB AMC
1 56863 62094 58772
2 43501 47087 50369
3 47895 55770 79377
4 58517 67499 58180
5 53730 53991 67873
6 54440 61323 63870
7 46364 57622 55536
8 49073 50975 56772
9 48862 55065 52494
10 58640 67913 48742

Table 4.1 Response Time Measurements

Although there appears to be a slight difference, the 95% confidence intervals
for the measurements overlap making it difficult to draw conclusions from them.

Figure 4.1 Time spent in the Find_Next_Task function for each algorithm

38

4.4 Response Time Measurements

ZSS EDF-DB AMC
µ 51789 57934 59199
σ 5354 6787 9171
µci 47959, 55618 53079, 62789 52638, 65759
σci 3683, 9774 4668, 12389 6308, 16743

Table 4.2 Response Time Estimates

Figure 4.2 Time spent in Insert_Ready_Task and Remove_Ready_Task com-
bined for each algorithm

39

Chapter 4. Results

Figure 4.3 Overall overhead for each algorithm during the short measurement in-
terval

Figure 4.4 The three scheduling functions overhead - Long overhead run in AMC

40

4.4 Response Time Measurements

Figure 4.5 The three scheduling functions overhead - Long overhead run in ZSS

Figure 4.6 The three scheduling functions overhead - Long overhead run in EDF-
DB

41

Chapter 4. Results

Figure 4.7 Overall overhead for each algorithm during the long measurement in-
terval

42

5
Analysis

5.1 Measurement Data

It was discovered that during the running of AMC and EDF-DB systems, the ZSS
system generation was unable to produce schedulable systems at higher than 60%
utilisation and with more than 30 tasks each. The long preparatory calculations of
EDF-DB and the time consuming running of both systems to achieve measurement
data prevented any adjustments. The limitations of the ZSS scheduling system were
not readily apparent before this moment.

During the task response time measurements, however, care was taken to assure
good schedulability for all three algorithms.

5.2 Preparatory Calculations

The time consumption of the three algorithms varied a lot when doing the prepara-
tory calculations. These calculations include changing priorities, adjusting dead-
lines and finding the ZSI among other things. When run on average, multi-core lap-
top computers the time consumed varied greatly, depending on which scheduling
algorithm was chosen. The by far fastest was AMC due to the low iteration count
of Audsley’s algorithm. ZSS did take notably longer time. Most time consumed by
far was EDF-DB. These results coincide with the iteration count estimates of the
individual algorithms.

As noted earlier, the systems ran for twenty seconds each. Longer runtime would
increase the preparatory calculations by a large amount of time, at least for EDF-DB
and somewhat ZSS as well.

43

Chapter 5. Analysis

5.3 Overhead

Overall, it ought to be mentioned that the measurements discussed in this report are
due to their intrinsic nature implementation specific; that is, the overhead generated
by the system is of course highly dependent on how this system is implemented.
This limits the applicability of the findings of this report but as the aim has been to
use solutions perceived as commonplace for this manner of problems and situations,
it should still provide some general guidance as to the advantages and disadvatages
of the respective algorithms from an overhead perspective.

The most interesting feature of the short measurements, i.e. Figure 4.3 is the im-
mense cost of the EDF-DB insert/remove functions for large amounts of tasks, espe-
cially compared to the relative cheapness of its find next function; the origins of this
phenomenon will be discussed in the next paragraph. Even so it is still cheaper than
the other two algorithms for task systems smaller than twenty tasks. ZSS has slightly
less overhead than AMC in this worst-case comparison, however, its schedulability
degrades rapidly, becoming almost zero for systems of more that 30 tasks with a
utilisation of 60%, as proven by Huang in [Huang, 2012]. Nevertheless, it should
be noted that the difference between ZSS and AMC in this initial phase is so small
that it is perhaps more likely due to some minor details in the implementation than
any large, overall difference in the algorithms.

Perhaps the most obvious difference when comparing the short and long mea-
surement runs, i.e. Figure 4.2 compared to Figure 4.6, is the radical difference in
the time consumption of the insert and remove functions of EDF-DB. This is quite
natural considering that its implementation is reliant on a linked list – during the
start up phase all tasks must be inserted into the list, which becomes quite onerous
if they are numerous. For the other two algorithms there appears to be no significant
difference when compared to the worst case overall costs, compare figures 4.3 and
4.7. The differences among the find next costs, as seen in comparing Figure 4.1 to
Figures 4.4, 4.5 and 4.6, is once again negligible.

As opposed to the overall overhead measurements for the short interval, the
differences among the measurements during the longer interval is much more pro-
nounced, with the interesting effect that EDF-DB is in fact the cheapest from that
perspective. This is most likely due to the fact that the previously mentioned worst
case for the linked list dominates the earlier measurements, and the fact that the
cheapness of the much more commonly executed find next function compensates
for the relative expense of the insert function; this works especially well in the latter
part of the programme as there are very few calls to the insert function at this stage
of execution.

It should also be noted, that these comparisons rely on average costs per exe-
cution of the function, i.e. the total costs of the system are reliant on the individual
configuration of the tasks, and how often they trigger a certain kind of operation.

44

5.4 Task Response Time

These measurements paint EDF-DB as the most economical algorithm for most
systems in the short and long run, although for certain systems, running perhaps for
a very short time, it might be better to employ one of the other algorithms.

5.4 Task Response Time

From the total system response times of Table 4.1 it emerges. interestingly enough
and perhaps somewhat counter intuitively, that the algorithm with the shortest total
response time is in fact ZSS, the algorithm with the worst schedualbility. It is pos-
sible that the limited schedulability is tied to the shorter response times, the system
being scheduled in a more compact manner. However, comparing the data for AMC
and EDF-DB indicates this is not the case; EDF-DB has a higher schedulability
than AMC but even so the results in Table 4.2 indicate that EDF-DB might have a
shorter general response time. It should be noted, however, that under the postulate
that the response time adheres to a normal distribution the difference between the
algorithms is within the 95% confidence interval, as demonstrated in table 4.2. It is
thus quite risky to draw any conclusions from this particular data, and any definite
conclusions are perhaps best deferred until further tests have been performed with
a bigger data set.

45

6
Conclusion

Having examined three of the elicited algorithms – Zero-Slack Scheduling, Adap-
tive Mixed Criticaliy and Earliest Deadline First Demand Bound – from the over-
head and response time measurement perspectives we are left with somewhat mixed
results. From an overhead point of view, both AMC and EDF-DB are interesting al-
ternatives. EDF-DB is quicker in run-time but the precalculations, being contingent
on the hyperperiod or the entire running duration of the system, might prove crip-
pling for large systems. AMC’s precalculations are quicker, but the overhead is also
somewhat more expensive for the general case. ZSS manages to combine time con-
suming precalculations with a low schedulability and an overhead which is most
likely more expensive than AMC. It does appear to have a shorter overall response
time, but these measurements do not, unfortunately, stand up to statistical scrutiny
as the confidence intervals for the different algorithms overlap, rendering them in-
conclusive.

6.1 Future Work

Perhaps the most obvious area for future work is the response time measurements.
Furher data could perhaps establish with a higher degree of confidence that there is
a difference , or at least that there is not. Should it be the case that there is in fact a
differece, and that ZSS is slightly cheaper as these results seem to hint at, it might
be interesting to investigate the root of this phenomenon.

It has also emerged during the project that some of the algorithms appear, at
cursory examination, to be quite sceptical in their estimation of the interference
provided by the tasks; especially if the tasks are considered to have a variable ex-
ecution time. It should be possible to estimate this scepticism through empirical
measurements over the whole hyperiod, i.e. running systems deemed by the algo-
rithms to be unschedulable and checking whether they actually fail. This accuracy
of estimation is an important factor pertaining to the usefulness of the algorithms
that has been left outside the scope of this project due to the unwieldiness of the
hyperperiod, but might be interesting to study in order to complete the picture.

46

Bibliography

Adrian North, L. M. (2001). “Psychologists’ trials find music tempo affects produc-
tivity”. http://www.le.ac.uk/press/press/moosicstudy.html.

Årzén, K.-E. (2011). Real Time Control Systems. Department of Control, Lund Uni-
versity, Lund, Sweden.

Baruah, S., V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, S. van
der Ster, and L. Stougie (2012). “The preemptive uniprocessor scheduling of
mixed-criticality implicit-deadline sporadic task systems”. In: Real-Time Sys-
tems (ECRTS), 2012 24th Euromicro Conference on, pp. 145 –154. DOI: 10.
1109/ECRTS.2012.42.

Baruah, S. K., A. K. Mok, and L. E. Rosier (1990). “Preemptively scheduling hard-
real-time sporadic tasks on one processor”. In: Real-Time Systems Symposium,
1990. Proceedings., 11th. IEEE, pp. 182–190.

Baruah, S., A. Burns, and R. Davis (2011). “Response-time analysis for mixed crit-
icality systems”. In: Real-Time Systems Symposium (RTSS), 2011 IEEE 32nd,
pp. 34 –43. DOI: 10.1109/RTSS.2011.12.

Bini, E. and G. C. Buttazzo (2005). “Measuring the performance of schedulability
tests”. Springer Science + Business Media, Inc. 30, pp. 129 –154.

Burns, A. and R. Davis (2013). “Mixed criticality systems: a review”. Department
of Computer Science, University of York, Tech. Rep.

Chattopadhyay, B. “Preemptive uniprocessor scheduling for mixed-criticality sys-
tems”.

Ekberg, P. and W. Yi (2012). “Measuring the performance of schedulability tests”.
In: Real-Time Systems (ECRTS), 2012 24th Euromicro Conference on, pp. 135–
144. DOI: 10.1109/ECRTS.2012.24.

Ekberg, P. and W. Yi (2014). Springer Real-Time Systems 30:50, pp. 48 –86.
Extreme Programming Pocket Guide (2003). Pocket References Series. O’Reilly

Media. ISBN: 9780596004859. URL: http://books.google.se/books?id=
Wt0FlVWrEXkC.

47

Bibliography

Guan, N., P. Ekberg, M. Stigge, and W. Yi (2011). “Effective and efficient schedul-
ing of certifiable mixed-criticality sporadic task systems”. In: Real-Time Sys-
tems Symposium (RTSS), 2011 IEEE 32nd, pp. 13 –23. DOI: 10.1109/RTSS.
2011.10.

Huang, H. (2012). MCFlow: Middleware for Mixed-Criticality Distributed Real-
Time Systems. PhD thesis. WASHINGTON UNIVERSITY IN ST. LOUIS.

Li, H. and S. Baruah (2010). “An algorithm for scheduling certifiable mixed-
criticality sporadic task systems”. In: Real-Time Systems Symposium (RTSS),
2010 IEEE 31st, pp. 183 –192. DOI: 10.1109/RTSS.2010.18.

Li, H., P. Lu, M. Yao, and N. Li (2009). “Smartsar: a component-based hierarchy
software platform for automotive electronics”. In: Embedded Software and Sys-
tems, 2009. ICESS’09. International Conference on. IEEE, pp. 164–170.

Niz, D. de, K. Lakshmanan, and R. Rajkumar (2009). “On the scheduling of mixed-
criticality real-time task sets”. In: Real-Time Systems Symposium, 2009, RTSS
2009. 30th IEEE, pp. 291 –300. DOI: 10.1109/RTSS.2009.46.

Vestal, S. (2007). “Preemptive scheduling of multi-criticality systems with varying
degrees of execution time assurance”. In: Real-Time Systems Symposium, 2007.
RTSS 2007. 28th IEEE International, pp. 239 –243. DOI: 10.1109/RTSS.
2007.47.

48

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
MASTER´S THESIS
Date of issue
September 2014
Document Number
ISRN LUTFD2/TFRT--5959--SE

Author(s)

Carl Cristian Arlock
Edward Linderoth-Olson

Supervisor
Anton Cervin, Dept. of Automatic Control, Lund
University, Sweden
Zonghua Gu, Zhejiang University, Kina
Karl-Erik Årzén, Dept. of Automatic Control, Lund
University, Sweden (examiner)
Sponsoring organization

Title and subtitle

A Practical Comparison of Scheduling Algorithms for Mixed Criticality Embedded
Systems
Abstract

With the consolidation of automotive control processes onto single high-performance ECUs the issue
of running, and thus scheduling, processes of varying criticality on a single CPU has moved to the
fore. This has resulted in a number of new algorithms for scheduling such systems, for example
Adaptive Mixed Criticality (AMC). This project attempts to measure the performance of some of
these algorithms on a single core embedded system CPU and compares them in order to shed some
light on their different advantages and disadvantages.

Keywords
Unicore, Scheduling, Embedded systems, Mixed Criticality, AUTOSAR, HCS12X.

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
1-48

Recipient’s notes

Security classification

http://www.control.lth.se/publications/

