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Abstract

Iterative Learning Control for Milling with Industrial
Robots in Advanced Manufacturing

The demand of today for advanced manufactured parts with high precision is due to

the increasing complexity of technologies. The parts are typically made by CNC

(Computer Numerical Control) machines, which are expensive and comparably

big. By using industrial robots that are significantly cheaper, reduced costs can be

achieved, which is particularly beneficial for small and medium enterprises. Robots

are, however, less stiff and strong and are less accurate compared to the CNC ma-

chines.

In this thesis, the idea was that by designing a controller, this could be com-

pensated for so that the robot could perform machining with high precision. The

research made in this thesis was part of the EU co-funded research project COMET.

The robot task was to repeatedly mill parts with improved results. Iterative

Learning Control (ILC) was therefore chosen as a suitable control strategy for this

task. It uses the position error from previous iterations and adds it to the control

signal to converge the output to successful results. Results showed that when us-

ing ILC for tracking paths, the position error could be reduced with approximately

11-20% in x, y, and z directions after one iteration.
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1
Introduction

Technologies of today require high precision manufactured parts to increase effi-

ciency and performance in industries such as aerospace. These advanced manu-

factured parts are typically produced by milling with CNC (Computer Numerical

Control) machines. They produce complex parts that require high tolerances with

significantly less time and effort than manual milling. CNC machines, however, are

expensive and comparably big, taking a lot of floor space. They also have limitations

regarding the size of the part that can be machined.

By using industrial robots that are significantly cheaper, costs can be reduced,

which is particularly beneficial for small and medium-sized enterprises (SMEs).

However, robots are not as stiff or accurate as CNC machines. The idea for this

thesis was that by using feedback control, this could be compensated so that the

robot could perform machining with high precision.

1.1 Background

Milling with industrial robots in advanced manufacturing is a cost effective solution

due to the fact that robots are significantly cheaper than CNC machines [Berselli et

al., 2013a] and can use a smaller operating space. If mounted on rails, robots can

also be used to machine larger parts. A robot also offers a more flexible solution

since the same robot can be used for various tasks, both handling and machining,

such as assembling of components, spray painting, and milling. Another benefit of

using robots is that SMEs are more likely to afford a robot than a CNC machine and

can therefore start producing parts after having invested in a robot. When the com-

pany grows it can gradually install more robot cells in order to increase production.

This master thesis was part of an EU co-funded research project called COMET,

which started in 2010 and was a collaboration between the Robotics Lab at Lund

University and other academic and industrial partners. The aim of the COMET re-

search was to develop plug and produce components and methods for adaptive con-

trol of industrial robots enabling cost effective, high precision manufacturing in

factories of the future [COMET, 2013].
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Chapter 1. Introduction

Research shows that when milling surfaces with industrial robots, the accuracy

can be improved by using control systems. With a joint stiffness model based feed

forward approach, an industrial robot could be made more accurate when milling

a surface in aluminum [Wang et al., 2009]. The challenge for this control solution

was to simplify the stiffness identification process when creating the joint stiffness

model. As a part of the COMET project, a macro/micro manipulator configura-

tion was tested for milling surfaces in aluminum [Olofsson, 2013]. The milling

experiments were performed on three different surfaces along a straight path, which

individually tested and evaluated the results of face milling along the x, y, and z

direction. Experimental results showed that the proposed actuator configuration,

combined with the control architecture could be used for increasing the accuracy

when milling faces. These results show the potential of using robots for milling in

advanced manufacturing.

A robot cell was set up at AML Ltd in Sheffield, UK, one of the COMET part-

ners and was used for the experiments and evaluation described in this thesis. Ex-

periments based on the methods described in this thesis were also done on a similar

robot cell by SIR in Modena, Italy which was one of the other COMET partners.

1.2 Problem Definition

Milling with industrial robots in advanced manufacturing is beneficial for industries

and SMEs in particular. A cost effective solution, for high precision manufacturing,

is successful if it can produce parts within acceptable time and tolerances. The sys-

tem must also be time and cost effective regarding implementation and adaptation

if it is to be industrialized and commercialized.

In an early stage, the COMET project only focused on evaluating if industrial

robots could be made accurate enough when milling by using a control strategy that

compensate dynamic position deviations. The aim of the research was, however,

to have a control strategy that could simultaneously perform 3D-milling within ac-

ceptable tolerances. An important milestone for the project to move on to stages that

focused on industrializing the solution. The time aspect and cost regarding produc-

tion and easy implementation, as well as adaptation was therefore not considered in

this part of the project.

This master thesis evaluates the possibility to reach acceptable tolerances by de-

signing and implementing a suitable control strategy that improves the robot’s per-

formance when simultaneously milling in 3D. Compared to CNC machines, robots

are neither as strong nor stiff and have less absolute accuracy. These deficiencies

need to be considered and compensated when milling with robots. In this project it

was decided that an acceptable tolerance was a maximum position error of ±0.1 mm

for milling [Berselli et al., 2013a]. It requires high-accuracy sensors integrated in a

control system that can compensate dynamic position deviations.
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1.3 Experimental Setup

The Iterative Learning Control (ILC) algorithm was chosen as a suitable control

strategy since the robot should repeat the same task with increased accuracy of

the results. In previous research, ILC has been proven to considerably improve the

tracking accuracy of a laser welding head, mounted to an industrial robot [Hakvoort

et al., 2007]. Conceptually, ILC uses the position error from previous iterations and

adds it to the control signal. It is an off-line control method based on the assumption

that the position errors that occur when milling were repetitive. The theory behind

ILC is further described in Section 2.2.

To summarize, the problem definition for this master thesis can be formulated

by the following requirements. These requirements were evaluated in this master

thesis and they were important for the success of the COMET project at this stage.

• Perform high precision manufacturing by using industrial robots.

• Implement off-line control system with integrated, high accuracy, sensors.

• Design and implement an ILC control strategy that simultaneously improves

the robot’s accuracy successively in 3D when milling.

• Implement algorithms for milling with ILC in 3D.

• Milling result within specified tolerance of a maximum position error of

±0.1 mm.

1.3 Experimental Setup

This section gives an explanation of methods used for this research and the setup

of the robot cell as well as software, protocols, and implementation used for the

experiments, evaluation, and control method.

Robot Cell
The robot cell at AML was set up of an ABB IRB 6640 robot with a mounted work

object, a Nikon Metrology K600 tracking system and a fixed mounted spindle. An

overview of the robot cell is seen in Figure 1.1.

ABB IRB 6640 Robot and IRC5 Controller The robot used at AML was an ABB

IRB 6640-205/2.75. This robot model is one of ABB’s stronger and rigid robot

models which uses the second generation motion control with increased path per-

formance and has an average accuracy of ±0.5 mm [ABB Robotics, 2010]. The

robot model has a weight of 1320 kg and is suitable for heavy material handling up

to 205 kg. It has the working range seen in Figure 1.2 [ABB Robotics, 2007].

An ABB IRC5 control cabinet was used to control the robot. This robot con-

troller is ABB’s fifth generation of robotic control cabinets and consists of a main
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Chapter 1. Introduction

Figure 1.1 Overview of the robot cell at AML [Berselli et al., 2013a].

computer and an axis computer. The main computer includes path planning and tra-

jectory generation from RAPID programs and manual jogging. In the axis computer

the power feed to the robot motors are regulated. For more information the reader

is advised to see [ABB Robotics, 2004] or [ABB Robotics, 2011].

Nikon K600 Tracking System and High-Frequency Controller The Nikon K-

series tracking system measure positions of infrared LEDs and through triangulation

calculate the 3D position of each LED [Nikon Metrology, 2013]. In this case the

LEDs were mounted to the spindle and the robot’s wrist. Measured positions were

used for motion analysis and 3D inspection. An image illustrating a tracking system

measurement of an LED is shown in Figure 1.3.

The K600 tracking system is used for high-frequency measurements. It uses a

high-frequency (HF) controller with a sample rate of 250 Hz to acquire data. The

Nikon software used was KLink with dMM (dynamic Motion Measurement), a digi-

tal metrology system that accurately tracks point coordinates and orientations of the

LEDs. This software is used for motion and deformation measurement evaluation

[Nikon Metrology, 2010].

Model and Control System
The model used for implementing the control strategy was designed to handle the

signals sent to and from the robot controller, as well as the signals received from

the tracking system. By processing signals into position coordinates with forward

and inverse kinematic blocks, which is further described in Section 2.1, the sig-

nals could be interpreted and analyzed as positions in cartesian coordinates. These

signals could be implemented in a controller designed within the model to control

the robot. Following is a short explanation of the control system and software used

for control implementation and code generation. For further details and information
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1.3 Experimental Setup

Figure 1.2 Working range in mm of the ABB IRB 6640-2.75 [ABB Robotics,

2007].

the reader is advised to read [Blomdell et al., 2010], [Dressler, 2012] and [Dressler,

2009].

Robot Control System The robot control system that was used in this thesis was

extended to connect with computers for low level sensors. Figure 1.4 gives an

overview of the extended control system. An extra module was connected to the

ABB IRC5 controller and could be used to either read signals sent between the

main and axis computer (submit) with a sample period of 4 ms or take control over

the robot (obtain). This module controller runs on a Xenomai Linux PC and was

implemented in the software Matlab with Simulink, which was then translated into

C-code using Simulink Coder [Dressler, 2012].

Matlab, Simulink and Real Time Workshop The software used to implement the

controller was Matlab with Simulink version 2009b. Commonly used blocks, S-

functions and embedded Matlab code blocks are supported by the Matlab Real Time

Workshop (RTW). They were used to implement complex relations such as forward

and inverse kinematics. All signals could be set up in the model to be logged as well

as the parameters that should be tuned in a GUI (Graphical User Interface). With
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Figure 1.3 Measurement with Nikon K600 tracking system [Nikon Metrology,

2013].

Figure 1.4 Control structure of the extended ABB IRC5 control system [Dressler,

2012].

Matlab RTW the model and controller could be translated into C-code, which could

be compiled and loaded for control [Blomdell et al., 2010].

ExtCtrl Library To transform coordinates between different coordinate systems,

the Simulink blocks available in the ExtCtrl library were used. There are different

blocks for the IRB robot in this library and they were used for joint angles expressed

on arm or motor side. The translation from motor to arm angles was done with the

motor2arm block and the arm2motor block translated the arm angles into motor

angles. All matrices are given as arrays where the elements are stored row after row

[Dressler, 2009]. In the ExtCtrl library there are also Quaternion, T44 conversion,

forward and inverse kinematics blocks available, further explained in Section 2.1.

An overview of available blocks is given in Figure 1.5.
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1.3 Experimental Setup

Figure 1.5 Overview of the Simulink blocks available in the ExtCtrl library.

Network and Data Communication
This is a short explanation of the protocols and programs used for network and data

source communication to sample data streams and interpret them. The readers is

advised to read [Blomdell et al., 2010] for further details and information.

LabComm The binary protocol LabComm was used for the communication be-

tween software and sensor data with different data sources and samples. It synchro-

13



Chapter 1. Introduction

nizes data sources and samples and verifies that all samples have same identical

layout as the sample data. Various samples such as primitive types, fixed, variable

size and multidimensional arrays as well as arbitrary nested structures can be sent

with LabComm. A LabComm data stream can be stored to a log file which can be

interpreted with a separate program.

ORCA and Opcom ORCA is a protocol built on top of LabComm for two-way

communication, which divides samples into inputs, outputs, parameters, and log

signals. Opcom is a GUI for ORCA, used to load models built in Simulink. The

parameters that were set up in the model could be accessed and tuned in Opcom.

rtw2orca Code generation for the robot controllers was done with Mat-

lab/Simulink RTW. To integrate with software that might be required for executing

the controller, the tool rtw2orca was used. It uses a template file together with

LabComm files to generate a main program that handles data between protocols

and code generated by RTW.

Kst For viewing and plotting the data, Kst was used. It is a tool for viewing

and plotting real time large data set with built-in data analysis functionality [KDE,

2013].

Research Approach
To systematically perform experiments and evaluate the system and the performance

of the robot, the research was divided into steps:

• Build a model in Matlab, Simulink with ExtCtrl library to log the ABB robot

and Nikon tracking system signals.

• Verify the kinematics setup in the model by modifying signals into Cartesian

coordinates using forward and inverse kinematic blocks.

• Modify reference signals sent from the robot and tracking system into the

same coordinate system to evaluate the performance of path tracking.

• Analyze the error between desired robot position and the measured data from

the tracking system to determine performance behavior caused by distur-

bances, such as vibration.

• Design an Iterative Learning Control (ILC) algorithm to reduce errors.

14



2
Theory

This chapter describes the theory that this thesis was based on. It describes the

theory behind robot kinematics and the Iterative Learning Control (ILC) strategy.

2.1 Theory of Kinematics

In order to control a robot and evaluate its performance, it is important that the

data received for interpretation is correct. To achieve correct data it requires an

accurate kinematic model where the dimensions of the robot are specified so that its

movements can be transformed into coordinates in a reference frame. With a correct

representation of the coordinates the data can be analyzed and used as inputs for a

controller.

This section describes the theory behind the transformations of coordinates and

orientations in space used in the Simulink model. The following theory and equa-

tions of kinematics are found in [Spong and Vidyasagar, 1989]. A robot manipulator

consists of a kinematic chain of links connected with joints. To control a robot the

operator needs to know the position of the end-effector or tool in a certain coordinate

system. Typically, a robot can give information about the angles of its joints on the

motor side, but not of the end-effector. The purpose of kinematics is to determine

the tool position and orientation by knowing the angles of the joints. With infor-

mation about the angles the position and orientation of the tool can be calculated,

which is called the forward kinematics problem. The inverse kinematics problem is

the inverse calculation where the angles of the joints are calculated from a desired

position and rotation of the tool in a cartesian coordinate system.

Homogeneous Transformations
The establishment of various coordinate systems that represent positions and rota-

tions of rigid objects is important in robot kinematics. With these coordinate sys-

tems, translations among them are used to calculate their positions relative to the

reference frame. To have a general reference it is customary to establish a fixed co-

ordinate system called the world or base frame. Translation and rotation matrices
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Chapter 2. Theory

are used to describe these relations. The homogeneous transformation matrix H,

given as

H =

[
R d
0 1

]
, (2.1)

is a transformation matrix that combines the two operations into one, where R is the

rotation matrix, d the translation distance and 0 denotes (0,0,0). The transformation

matrix T , given as

T =

⎡
⎢⎢⎣

nx sx ax dx
ny sy ay dy
nz sz az dz
0 0 0 1

⎤
⎥⎥⎦=

[
n s a d
0 0 0 1

]
, (2.2)

is considered the most general one, where n, s and a are vectors representing di-

rections of axes in relation to the coordinate system and d represents the vector

between the origins of the coordinate systems.

Forward Kinematics
With given joint angles, the position and rotation of the tool is calculated relative to

the reference coordinate system. Suppose a robot has n+1 links, numbered from 0

at the base of the robot to n and joints numbered from 1 to n [Spong and Vidyasagar,

1989]. Then the i-th joint, denoted as qi is the point in space where links i−1 and

i are connected. To each link a coordinate frame is rigidly attached with a frame at

the base referred to as 0. The frames are chosen as 1 to n so that frame i is rigidly

attached to link i. The idea of attaching frames rigidly to links is illustrated on an

elbow manipulator in Figure 2.1.

Suppose now the matrix Ai is the homogeneous matrix that transforms coordi-

nates of a point from frame i to frame i− 1. The matrix is not constant but varies

according to the joint variable qi, which gives

Ai = Ai(qi). (2.3)

The transformation matrix that transforms coordinates of a point from frame j to

frame i is then given by the homogeneous matrix T j
i . It is given by

T j
i = Ai+1Ai+2 . . .A j−1A j, if i < j (2.4)

T j
i =

{
I if i = j
(T j

i )
−1 if j > i

. (2.5)

According to the manner that the frames have been rigidly attached to the corre-

sponding links, any point on the end-effector expressed in frame n is constant inde-

pendent of the robot configuration. The homogeneous matrix (2.5) is given by

H =

[
Rn

0 dn
0

0 1

]
, (2.6)
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2.1 Theory of Kinematics

Figure 2.1 Coordinate frames attached to links on an elbow manipulator [Spong

and Vidyasagar, 1989].

with a position and rotation of the end-effector with respect to the base frame, rep-

resented by the vector dn
0 and the rotation Rn

0. Derivation of position and rotation of

the end-effector in the base frame is then done by

H = T n
0 = A1(q1) . . .An(qn). (2.7)

The form of each homogeneous transformation is given by (2.7) and

Ai =

[
Ri

i−1 di
i−1

0 1

]
. (2.8)

Finally this gives

T j
i = Ai+1 . . .A j =

[
R j

i d j
i

0 1

]
. (2.9)

Inverse Kinematics
If a robot should be controlled to move into a certain tool position, the joint angles

need to be calculated. It gives the problem of finding joint angles for a desired end-

effector position and orientation, which in general is more difficult than solving

the forward kinematics problem because of the fact there are multiple solutions.
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Chapter 2. Theory

A certain end-effector position and orientation can often be reached with different

joint angles.

With a given homogeneous matrix H, described in (2.1), the inverse kinematics

problem is stated to find one, or all solutions to

T n
0 (q1, . . . ,qn) = H, (2.10)

followed by

T n
0 (q1, . . . ,qn) = A1 . . .An. (2.11)

From (2.10) follows 12 nonlinear equations with n unknown variables q1, . . . ,qn.

2.2 Theory of ILC

Iterative Learning Control (ILC) is a strategy to iteratively compensate repetitive

errors. The concept of ILC is known to have been introduced by Uchiyama in 1978

[Uchiyama, 1978]. However, ILC is not considered to have ben an active research

area until 1984, when an article by Arimoto, Kawamura, and Miyazaki [Arimoto

et al., 1984] was published.

When machines are repeatedly doing the same tasks the idea is to use the knowl-

edge from previous iterations of the task to reduce the errors in the following itera-

tions [Norrlöf, 2000]. Experimental results from recent research show that a model-

based ILC procedure considerably reduced the tracking error of a laser welding

head, mounted to a six-axes industrial robot, because of the repeatability of track-

ing errors [Hakvoort et al., 2007]. In this project the machining tasks performed by

the robot were repeated to produce parts with improved accuracy. The errors that

occurred from using the robot were considered to be repetitive and hence the ILC

strategy was tested. If the errors were repetitive, ILC should significantly reduce

them to only leave errors caused by stochastic, non-predictive disturbances in the

system.

2.3 The ILC Problem Formulation

The theory and equations described in this section are based on [Norrlöf, 2000],

where the reader can find more information about ILC. The idea of ILC is to find

a control signal that follows the desired reference as well as possible through an

iterative procedure. Through iterations the control signal is updated to find the input

that converges the output error into successful results.

The ILC problem formulation is to find the input to the system such that the

output follows the desired trajectory as accurately as possible by using an iterative

procedure, given a reference trajectory and a system [Norrlöf, 2000]. With an avail-

able model of the system, the optimal solution is to invert the model and add it to
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2.3 The ILC Problem Formulation

the output of the inverted model and use it as an input, which will produce the de-

sired output. Suppose a system should follow a trajectory with high accuracy from

a given reference signal r(t) over an finite time interval [0, t f ]. Figure 2.2 illustrates

a system where r(t) is considered to be the desired position of a joint on the robot

arm and GC a discrete time SISO model of the closed loop that consists of the robots

joint and controller. The start position of the joint and the speeds of its movements

are assumed to be the same every time the procedure is repeated.

Figure 2.2 ILC controlled system [Norrlöf, 2000].

Initially the system is controlled with the signal u0(t), which gives the output

result given by

y0(t) = GC(q)u0(t), (2.12)

where q is the time shift operator and the index 0 indicates how many times the

iterative procedure has been repeated and is called the iteration index. The first

time the procedure is performed the iteration index is 0. The difference between the

desired and actual output, referred to as the tracking error, is then given by

e0(t) = r(t)− y0(t). (2.13)

Assume that the initial condition is reset for every new iteration and that GC is time

invariant. The idea behind ILC is then introduced, where the tracking error will

be the same for every iteration as long as the input signal is the same. With ILC

algorithms an iterative search method to find the optimal input solution, given as

u(t) = G−1
C (q)r(t) is introduced. This input solution gives the most common ILC

updating equation given by

u1(t) = u0(t)+L(q)e0(t), (2.14)

where L(q) is a linear discrete time filter that reduces high-frequency noise from

the error signal before adding it to the input. Results from (2.12), (2.13) and (2.14)
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Chapter 2. Theory

gives the generalized ILC equations [Norrlöf, 2000] in

ek(t) = r(t)− yk(t) (2.15a)

yk(t) = GC(q)uk(t) (2.15b)

uk+1(t) = uk(t)+L(q)ek(t). (2.15c)

These ILC algorithms are illustrated in Figure 2.2 as a block with uk(t) and ek(t) as

input and the output sequence as {uk+1(t)}t f
0 . Following the algorithms in (2.15) is

the transformation of the error between iterations given by

ek+1(t) = (1−GC(q)L(q))ek(t), (2.16)

where the sufficient condition for the error to decrease is given by

|1−GC(e)L(e)|< 1. (2.17)

The ILC algorithm given in (2.15) was implemented in the Matlab script de-

scribed in Section 5.2 to generate ILC compensated tool paths.
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3
Kinematic Model

A kinematic mode was created in order to control the robot. To evaluate a robot’s

performance it is important that the data received for interpretation are correct,

which requires an accurate kinematic model. The kinematic model needs to be ver-

ified and the coordinate systems defined.

All the dimensions of the ABB IRB 6640-205/2.75 robot were implemented

in a file that could be built into the Simulink model. The kinematic model was

then verified by jogging the robot in Cartesian coordinates. If a correct model was

built the Cartesian movements would only appear as movements in x, y, and z,

respectively, when being plotted. Since this experiment only evaluated if the signals

defined in the model were registered correctly in Cartesian coordinates, the choice

of reference frame was not important. For this experiment the flange frame was

used.

Coordinate Systems
To avoid unpredictable behavior of the robot it is important to keep in mind what

coordinate system that is used. There are four common coordinate frames used to

specify coordinates in relation to reference frames [Dressler, 2009]. The base frame

is attached to the base of the robot and is the only constant one. On the flange of

the robots end-effector is the flange frame. To define the tool center point (TCP) the

TCP frame is used. For references in relation to the sensor, the sensor frame is used.

The robots base and flange frames are shown in Figure 3.1.

T44 Conversion Block
To translate coordinates between reference frames the two blocks with T44 conver-

sions are available in the ExtCtrl library, inversion and multiply. If an input to a T44
block fulfills

Pbase = T 44 ·Pflange, (3.1)

where Pf lange are the coordinates of point P given in the flange frame, the block

output are the coordinates of P translated into the base frame [Dressler, 2009]. The
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Figure 3.1 The robots base frame (left) and flange frame (right) [Dressler, 2009].

T44 inversion in

Pflange = T 44−1 ·Pbase (3.2)

then translates coordinates from the base to flange frame. For the T44 multiply the

output of the block is the upper input multiplied with the lower one. If the upper

input T1 fulfills

Pbase = T1 ·Pflange (3.3)

and the lower input T2 fulfills

Pflange = T2 ·PTCP, (3.4)

then the output T3 = T1 ·T2 will fulfill

Pbase = T1 ·Pflange = T1 ·T2 ·PTCP = T3 ·PTCP. (3.5)

Quaternion Block
The ExtCtrl block such as T44 to Quat was used to translate the T44 matrix into a

representation with the translation vector and quaternion. This representation was

given as (T,qT ), which has 7 elements with the first three representing the transla-

tion vector T = (Tx,Ty,Tz)
T and the remaining 4 quaternion elements represent the

rotations qT [Dressler, 2009] and [Dressler, 2012].

Simulink Model
The signal transformation of the robot joint positions into Cartesian coordinates is

shown in Figure 3.2. First the signal was translated from motor angles into arm

angles with the motor2arm block. The forward kinematics block FORWARD trans-

lated the joint angles into flange coordinates. In the last transformation block T44
to Quat the coordinates were translated into a (T,RT ) representation. A data stream

xyzTestAml containing the x, y, and z values was plotted. An overview of the whole

Simulink model used for kinematic verification built with the dimensions of the

ABB IRB 6640-205/2.75 robot is shown in Appendix A.1.
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3.1 Verification of Kinematic Model

Figure 3.2 Signal transformation from motor angles to Cartesian coordinates.

3.1 Verification of Kinematic Model

By plotting the Cartesian positions over time as samples (Point Index) at 250 Hz in

Kst, the kinematics could be verified. In Figure 3.3 the start position in x, y, and

z at Point Index = 0 was compared to the start positions shown on the ABB teach

pendant in Figure 3.4. The robot was then manually moved in Cartesian directions

starting with x, then y, and finally z. These movements only appeared in the corre-

sponding diagram and no movements were registered in the other directions.

The results show that the kinematics built into the model were correct since the

values of all start positions were the same and because the Cartesian jogging moves

only appeared in the corresponding plot.
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Figure 3.3 Robot positions in x, y and z plotted relative to samples (Point Index)

[250 Hz].

Figure 3.4 Start positions in Cartesian coordinates shown on ABB teach pendant.
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Experimental Preliminaries

With a correct kinematic model, the robot’s performance when tracking a reference

path could be logged. A tool path created in PowerMill, which is a CAM (Computer

Aided Manufacturing) software that can translate tool paths into RAPID code, was

used as reference. The tool path was created to mill a pocket with a certain size

and depth out of an aluminum block, referred to as the Pocket tool path. Figure 4.1

shows pockets that were milled by the robot using the PowerMill tool path. The

reference sent to the robot and the positions measured by the tracking system were

compared and analyzed to determine the robot performance.

Figure 4.1 Pockets milled by robot using a PowerMill generated tool path.
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4.1 Loss of Data During Logging

To analyze the performance of the robot, the logged x and z positions were plotted

versus the y positions. The reference sent to the robot and the measured positions

from the tracking system was then plotted similar to the Pocket tool path. When

comparing the diagrams to the original reference it seemed like the robot was cutting

corners while it was moving along the trajectory, which is shown in Figures 4.2 and

4.3.

To determine if the cutting corner behavior was caused by the robot controllers

interpretation of the RAPID code generated by the PowerMill software, experiments

with a simple RAPID code tool path were done. This tool path was created to gen-

erate a simple box, referred to as the RapidBox where the robot would move in a

rectangle and then step down. This rectangle movement was repeated three times.

The tool path was created in RAPID code by programming each corner of the box

as points that the robot should move to and then move perpendicularly to the rect-

angle (step down). By plotting the resulting motion of this procedure the same way

as the Pocket program in Figures 4.2 and 4.3, the diagrams should appear as a rect-

angle when looking at it from above and three step downs along a straight line when

looking from the side.

When plotting the data logged from the RapidBox tool path it could be seen

that the cutting corner behavior appeared also in these diagrams, as can be seen in

Figure 4.4 and 4.5 with the robot speed of 25 mm/s. The speed of the robot affected

the intensity of cutting corners which is exhibited in Figure 4.6 and 4.7, where the

speed was 10 mm/s and then almost disappeard at a speed of 5 mm/s in Figure 4.8

and 4.9.

By plotting the data as points instead of lines it could be seen that there was

loss of data while it were being logged. This data loss can be seen in Figure 4.10,

it shows that the data were sampled with such a high-frequency that the plotted

points appeared as lines. These lines are separated with spaces where it is evident

that data were periodically being lost. The cutting corner appearance was caused by

lines drawn between spaces, which was exhibited by adding dashed lines between

the points, being evident in the corners in Figure 4.10. Figure 4.11 shows a close

up of one of the corners from Figure 4.10. The points that are frequently plotted

are clearly visible as well as the parts where the data were lost, causing the cutting

corners appearance illustrated by the dashed lines.

Divide Logging
The logging of data was done by storing the sampled data during execution of a

robot program into a log file and simultaneously converting it into a txt file. This txt

file was then plotted with Kst. The command used for logging is given below and

was executed in a Linux terminal.

orca_log -t 600 -o /dev/stdout --host localhost --port 2000
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| orca_log2matlab /dev/stdin > /tmp/$USER/x.txt

The periodic loss of data was caused by the simultaneous conversion of data into

the txt file. It seems like the logging of data stopped for a period while the data con-

version was done and was then continued, causing loss of data during that period.

The speed of the robot was therefore affecting the intensity of cutting corners due

to the distance that the robot moved during the period that data was lost. With a

higher speed the longer distance the robot moved during that period, appearing as

more intense cutting of corners.

By dividing the logging and conversion into two parts, where the first part was

the uninterrupted logging of data during the whole execution, the issue with losing

data was solved. The command for this logging is given below.

orca_log -t 600 -o /tmp/$USER/myfile_log --host localhost

--port 2000

Once the logging of data was finished the second part was to convert the log file

into a txt-file. The command used for this is given below.

orca_log2matlab /tmp/$USER/myfile_log >

/tmp/$USER/myfile_log.txt

When plotting the data after having used the divided logging method no data were

lost, which can be seen in Figure 4.12. Without periods of data being lost, the points

appear as thick lines without spaces due to the high-frequency sampling. No more

cutting corner behavior appeared after this.

4.2 Trajectory vs. Path Tracking

As described in Section 2.2, the ILC problem formulation is to find an input to a

system such that the output follows a desired trajectory, given a reference trajec-

tory and a system [Norrlöf, 2000]. This formulation is why the robot’s performance

when tracking geometric trajectories was evaluated.

A geometric trajectory is a path through space given as a function of time. From

experiments that tested the robot’s performance when tracking trajectories, its abil-

ity to move to certain positions at given times was evaluated. It evaluates both the

position accuracy as well as the synchronization between the robot’s movements

and reference. Errors between the reference and measured positions could therefore

be caused by either timing issues, position errors or a combination of both.

Path tracking does not consider the time aspect and therefore it was tested when

only evaluating the robot’s position accuracy. In this project it was important that

the accuracy of the robot was within the given maximum position error. It was not

important whether a certain position was reached at a certain time. That is why the

robot’s performance when tracking a path was of interest. However, if the robot was
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able to track trajectories with good results, the position error at a given time could

be calculated. Trajectories makes implementation of ILC easier since the algorithms

are given as functions of time, which is further described in Section 5. The position

error could then be added to the original reference at a certain time as an input for

the controller, which is why the robot’s ability of trajectory tracking was tested.

Evaluation of Trajectory Tracking
The data logged from executions were plotted over time (samples) to evaluate the

robot’s performance when tracking trajectories. From diagrams that show the refer-

ence, measured position, and the error between them as position error per sample

(Point Index) a large error could be seen. The errors varied between 1.5 mm to 4 mm,

which is shown in Figures 4.13 - 4.15 and Figures 4.16 - 4.18. These errors were

a lot larger than the specified robot accuracy of ±0.5 mm [ABB Robotics, 2010],

but since ExtCtrl was used the robot’s accuracy was reduced. The feedforward of

joint torques in the ABB IRC5 axes controllers were disconnected when ExtCtrl

was used, which reduced the robot’s accuracy, but the errors were still significantly

larger than expected.

The error was calculated by first setting the start positions of the reference and

measured positions to zero before running the program. It was then calculated as

relative movement between the reference and measured position in relation to the

base frame.

When looking at the diagrams over areas where the robot was making moves

in x, y and z directions, it could be seen that there was a difference in samples

between reference and measured positions. This sample difference can be seen in

Figures 4.19 - 4.21 where it is evident that the moves in reference positions start

and end on different times compared to the measured positions. Figures 4.22 - 4.24

illustrate the sample difference of the logged data with vertical lines showing where

the start and end of the moves are.

The exact cause of the different start and end times that appear in the diagrams

were not determined. They could be caused by a delay that occurred when the sig-

nals were processed, mechanical lag or by a combination of both. ORCA handled all

the signals that were logged from the model made in Simulink and it was when an-

alyzing this data that the delay of samples could be seen, but it was not determined

where it occurred.
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Figure 4.2 Diagrams logged from the Pocket tool path executed with a velocity

of 50 mm/s, showing the reference (top plots) and the measured positions (bottom

plots) relative the base frame.
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Figure 4.3 Diagrams logged from the Pocket tool path executed with a velocity

of 50 mm/s, showing the reference (top plots) and the measured positions (bottom

plots) relative the base frame.
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Figure 4.4 Diagrams from the RapidBox tool path executed with a velocity of

25 mm/s with the reference and the measured positions.

31



Chapter 4. Experimental Preliminaries

Figure 4.5 Diagrams from the RapidBox tool path executed with a velocity of

25 mm/s with the reference and the measured positions.
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Figure 4.6 Diagrams from the RapidBox tool path executed with a velocity of

10 mm/s with the reference and the measured positions.
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Figure 4.7 Diagrams from the RapidBox tool path executed with a velocity of

10 mm/s with the reference and the measured positions.
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Figure 4.8 Diagrams from the RapidBox tool path executed with a velocity of

5 mm/s with the reference and the measured positions.
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Figure 4.9 Diagrams from the RapidBox tool path executed with a velocity of

5 mm/s with the reference and the measured positions.
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Figure 4.10 Data plotted as points, appearing as thick lines because of the high-

frequency sample of data. Between the points are dashed lines that are visible over

the spaces where data was lost.
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Figure 4.11 Close up on a corner with clear visibility of the points and the spaces

between them, connected with dashed lines. The lines between spaces causes the

cutting corner appearance.
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Figure 4.12 Plot of data as points after using the divided logging method.
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Figure 4.13 Diagrams of Pocket tool path with reference, measured positions, po-

sition error and, samples (Point Index) [250 Hz].
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Figure 4.14 Diagrams of Pocket tool path with reference, measured positions, po-

sition error and, samples (Point Index) [250 Hz].
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Figure 4.15 Diagrams of Pocket tool path with reference, measured positions, po-

sition error and, samples (Point Index) [250 Hz].
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Figure 4.16 Diagrams of RapidBox tool path with reference, measured positions,

position error and, samples (Point Index) [250 Hz].
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Figure 4.17 Diagrams of RapidBox tool path with reference, measured positions,

position error and, samples (Point Index) [250 Hz].
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Figure 4.18 Diagrams of RapidBox tool path with reference, measured positions,

position error and, samples (Point Index) [250 Hz].
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Figure 4.19 Zoom on movements (RapidBox tool path) with reference, measured

positions, position error and, samples (Point Index) [250 Hz]).
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When the robot moved it started by accelerating to the specified robot speed and

would then decelerate until it stopped at the desired position. Since the acceleration

was registered in the reference first, the error would increase until the move started

in the measured position, which eventually resulted in a constant error. The size of

the constant error depends on the speed of the robot. At the end of the move the

deceleration reference would decrease the error. When both the reference and the

position had completed the move, the error went down to vary around zero again.

This appearance gave a step-shaped appearance when plotting the position error as

seen in Figures 4.19 - 4.21 and Figures 4.22 - 4.24.

The step-shaped errors caused by the different start and end times illustrate the

sample delay that appeared between the signals in the diagrams. Because of the

delayed samples the position error was showing a time-based error and not the dif-

ference between the desired and actual robot position from following the desired

path, which was the important error. This error could therefore not be used as an

input for the controller without estimating and compensating for the delay.

Model Compensation
From the diagrams the sample difference was estimated for the tested trajectory and

then added to the reference signal in the Simulink model. It was estimated to be

approximately 18 samples for this trajectory and by testing different values the best

result was given by delaying 18 samples. With the Simulink block Integer Delay
the number of samples that should delay the reference signal could be added. An

overview of the complete Simulink model is given in Appendix A.2.

The results showed that by delaying the reference for this trajectory with the es-

timated samples, the measured positions were aligned and the calculated trajectory

tracking error was significantly reduced. It was reduced from an average of 2 mm

to about 0.3 mm, which was within the specified robot accuracy of ±0.5 mm. Fig-

ures 4.25 - 4.27 show the result of the sample delay compensation with the signals

aligned and the error varying between 0.2 and 0.4 mm. This compensation was,

however, not a generic solution since the amount of samples to be delayed must be

specified for each trajectory.
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Figure 4.20 Zoom on movements (RapidBox tool path) with reference, measured

positions, position error and, samples (Point Index) [250 Hz]).

48



4.2 Trajectory vs. Path Tracking

Figure 4.21 Zoom on movements (RapidBox tool path) with reference, measured

positions, position error and, samples (Point Index) [250 Hz]).
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Figure 4.22 Zoom on movements (RapidBox tool path) with vertical lines show-

ing start and end samples of reference (blue) and measured positions (red) and the

position error and, samples (Point Index) [250 Hz].
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Figure 4.23 Zoom on movements (RapidBox tool path) with vertical lines show-

ing start and end samples of reference (blue) and measured positions (red) and the

position error and, samples (Point Index) [250 Hz].
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Figure 4.24 Zoom on movements (RapidBox tool path) with vertical lines show-

ing start and end samples of reference (blue) and measured positions (red) and the

position error and, samples (Point Index) [250 Hz].
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Figure 4.25 Results from delay compensation of 18 samples [250 Hz]. The refer-

ence positions and measured positions are aligned.
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Figure 4.26 Results from delay compensation of 18 samples [250 Hz]. The refer-

ence positions and measured positions are aligned.
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Figure 4.27 Results from delay compensation of 18 samples [250 Hz]. The refer-

ence positions and measured positions are aligned.
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5
Method

This chapter describes the methods used to implement ILC algorithms in milling

to improve the robot’s accuracy. It describes the script that was used to create the

reference tool paths, that were executed by the robot and how the measured data

from these executions were used to generate ILC tool paths.

5.1 ILC Script

Matlab was used to create a script that could calculate and generate ILC compen-

sated tool paths in three geometric dimensions. The script could read and analyze

chosen data log files and calculate compensated tool paths using ILC algorithms.

It could then translate the new tool path into RAPID code that could be sent to the

robot.

Reference Deviation
Before the robot received a cartesian position reference it was processed in the IRC5

robot controller to make the robot move along the desired positions as accurately as

possible. Model-based dynamic deviations that could occur at different robot posi-

tions were compensated for by the feed-forward in the controller. This IRC5 robot

controller compensation made the reference signal deviate from the original refer-

ence, which was used for calculating the error and could therefore not be used for

making ILC compensated tool paths. It would cause the ILC compensated reference

to contain both the deviations generated from the robot controller and the calculated

error. When sending this reference to the robot it would then be changed once more

within the robot controller. That is why all measured positions must be compared to

an original reference without adjustments.

In Figure 5.1 the nominal RapidBox tool path reference (red), described in Sec-

tion 4.1, was compared to the processed reference (blue). The references should

both have appeared as simple rectangles when x was plotted versus y. However, the

reference sent to the robot appeared with deviations when compared to the nominal

tool path. A zoom of the corner shows this deviation.
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This reference deviation was caused by the ABB IRC5 robot controller’s com-

pensation for dynamic position deviations when interpreting RAPID programs. The

compensation was done before the reference was logged with ExtCtrl and there-

fore it could not be used for calculating ILC tool paths since the sensor data was

compared to the processed reference. To calculate ILC tool paths the measured data

(sensor data) must be compared to the original reference without the compensation.

Figure 5.2 illustrates how the RAPID program was processed by the ABB IRC5

robot controller before it was logged and monitored through ExtCtrl to produce the

diagram seen in Figure 5.1.

Figure 5.1 Diagram of x and y positions of the RapidBox reference (blue) com-

pared to the processed reference (red).

Creating Path from Reference
Because of the reference deviation caused by the robot controller and the delay

of samples when the robot was tracking trajectories, described in Section 4.2, a

path was created in Matlab from the reference with intermediate points. This path
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Figure 5.2 Illustration of how the data signals were processed before they were

logged and monitored through ExtCtrl.

was then tracked by the robot to evaluate its position accuracy. By changing the

number of intermediate points in the path, it could be aligned with the measured

positions without deviations. The path was based on the RapidBox tool path that

was created directly in RAPID code. It was used as a reference when creating ILC

compensated paths, which were then translated into RAPID programs. Given below,

are the commsnds used in Matlab for generating the reference path.

% CREATING PATH REFERENCE:

% Setting Dimensions for Rectangle:

xLength= 30;

yLength= -20;

% Value for Creating Intermediate Points:

step= h

% Create All Sides Of Rectangle:

x1P = 0: step: xLength;

y1P = zeros(1,length(x1P));

y2P = 0: -step: yLength;

x2P = xLength*ones(1, length(y2P));

x3P = xLength: -step: 0;
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y3P = yLength*ones(1, length(x3P));

y4P = yLength: step: 0;

x4P = zeros(1, length(y4P));

% Creating Rectangle Sequence in Vectors:

xBoxPos = [x1P x2P x3P x4P];

yBoxPos = [y1P y2P y3P y4P];

% Creating Step Down Sequence in Z Direction:

z1P= 0: -step: -10;

z2P= -10: -step: -20;

% Creating Vectors to Time Robot Movement: Pause, In, and out:

zPause1= zeros(1, length(yBoxPos));

zPause2= -10*ones(1, length(yBoxPos));

zPause3= -20*ones(1, length(yBoxPos));

xyInOut = zeros(1,10);

zIn = xyInOut;

zOut = -20*ones(1,10);

xyPause = zeros(1,length(z1P));

% Creating Entire Sequence of Path in Vectors for X,Y, and, Z:

xPos = ([xyInOut xBoxPos xyPause xBoxPos xyPause xBoxPos

xyInOut])’;

yPos = ([xyInOut yBoxPos xyPause yBoxPos xyPause yBoxPos

xyInOut])’;

zPos = ([zIn zPause1 z1P zPause2 z2P zPause3 zOut])’;

By setting the start values of the tool path to zero, the tool path could easily be

added to any start position of the robot. To create a tool path with coordinates for

the robot to follow, the reference was set up as vectors of x, y, and z put together in a

sequence. The vectors were generated by setting a start and end value together with

the value for the distribution of points. By setting the value of the parameter step

(given as h) the number of points between the start and end value in the vector was

set, also referred to as the resolution. Figure 5.3 shows a diagram of xPos (blue),

yPos (red) and zPos (green), which was the sequence of vectors put together to

create the tool path. The Point Index shows the values of x, y and z at each point.
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Figure 5.4 shows the sequence of the x and y vectors that created the rectangle

Figure 5.3 Diagram of xPos (blue), yPos (red) and zPos (green) showing the

sequence of vectors generated in Matlab to create a tool path similar to RapidBox.

similar to the RapidBox tool path (Section 4.1). The points y1P, x2P, y3P, and x4P

represent the vectors that had constant values.

Reference to RAPID Code
The original RAPID code program (RapidBox) was used as base when the new

reference was translated into RAPID code. Given below is a simplified version of

the RapidBox code that shows the coordinates for the initial move (MoveJ) and how

the linear moves (MoveL) were changed to create the tool path that generates the

rectangle. To see the whole RapidBox program, see Appendix B.1. The first three

values of MoveL are the Cartesian coordinates at each point. These values changed

in a sequence with the same magnitude as the reference generated in Matlab.

% Simplified RapidBox Program:

MoveJ [[100.00,0.00,25.00], ...
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Figure 5.4 Sequence of the x and y vectors generated in Matlab that creates the

rectangle similar to the RapidBox tool path.

MoveL [[100.00,0.00,25.00], ...

MoveL [[130.00,0.00,25.00], ...

MoveL [[130.00,-20.00,25.00], ...

MoveL [[100.00,-20.00,25.00], ...

MoveL [[100.00,0.00,25.00], ...

MoveL [[100.00,0.00,15.00], ...

...

MoveL [[100.00,0.00,5.00], ...

All values of rotations and orientations were kept fixed as well as the speed v10

(10 mm/s) and z0, which forces the robot’s tool center point to move to the exact

point at each corner of the rectangle. The only values changing were the x, y, and z

positions of the MoveL command, which simplified experiments and evaluation of

the ILC compensation to only focus on the Cartesian translational moves.

By replacing all the Cartesian coordinates of the linear move commands

(MoveL), the original program was kept but the positions changed according

to the new reference. Each new position was given by xPos(i) and since
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the values begin in zero the start positions were just added to each point,

given from the initial position (MoveJ). In this case the start position was

MoveJ [[100.00,0.00,25.00], ... ]. The code given below shows how the

new positions at each point were inserted.

% Code to Generate Positions:

xPos(i) + 100

yPos(i) + 0

zPos(i) + 25

The Matlab code used in the script to translate the reference into RAPID code is

given below. It created a txt file (box_file.txt) with all the MoveL commands

that were inserted into the RAPID program to replace all the old positions.

% Code to Generate RAPID Program:

box_file = fopen(’box_file.txt’,’w’);

str = ’’;

for i = 1:2:length(xPos)

str = [str, ’\t’, ’MoveL [[’,

num2str(xPos(i) +100, ’%0.5f’), ’, ’,

num2str(yPos(i), ’%0.5f’), ’, ’,

num2str(zPos(i) +25, ’%0.5f’),

’],[0.70708,8.94019E-06,1.40498E-05,0.707134]

,[-1,-1,0,1],* [9E+09,9E+09,9E

+09,9E+09,9E+09,9E+09]], v10, z0,

tdelcam1\\WObj:=wdelcam1;’, ’\n’];

end

fprintf(box_file, str);

fclose(box_file);

5.2 Creating ILC Path

The RAPID program, created from the path reference, were executed on the robot

and all measured Nikon positions were logged. This data were then read into the

Matlab and compared to the original reference. In this section it is described how

the position error was added to the reference and a new ILC compensated tool path,

based on the equations in Section 2.2, was created. The whole script used for ana-

lyzing and creating ILC tool paths is given in Appendix B.2.

62



5.2 Creating ILC Path

Filter Design
As described in Section 2.2, a filter is needed to get rid of noise and high-

frequency oscillations that the robot should not compensate. A low-pass Butter-

worth filter was therefore designed to filter the Nikon data. The Matlab com-

mand [b,a]=butter(N,Wn) was used to design a Nth order Butterworth low-

pass filter with the cut-off frequency Wn. With the command filtered_data =

filtfilt(b,a,raw_data), a zero-phased digital filtering was done on the the

raw data by the previously designed filter. By testing different values for the Wn pa-

rameter the intensity of the filter was decided. The filtered signal should smoothly

follow the unfiltered signal without bias. Figure 5.5 shows the result of the signal

filtered by a 6th order lowpass filter (N=6) with the cutoff frequency Wn=0.064 Hz.

Figure 5.5 Diagram of filtered signal (red) of the Nikon data (blue) with a 6th

order lowpass filter [250 Hz].
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Aligning Reference
To create an ILC compensated tool path the position error between the reference

path and Nikon data, calculated at each point in the program, must be added to the

corresponding point. To do this compensation the number of data points must be the

same in both the Nikon data and the reference. They also need to be aligned. If the

data sets were not aligned the positions would be compared at different stages of

the program giving an incorrect position error. This false error would then be added

to the reference to create an incorrect ILC tool path. By changing the resolution

of the reference with the parameter step and the start and end value of the Nikon

data, the data sets could be aligned. With different values of step the resolution

of the reference changed its appearance resulting in a position error with varying

magnitude.

Some of the data sets also had an offset between the Nikon and robot coordi-

nate systems. These offsets had to be compensated before the references could be

aligned. To remove the offset, the average position error in x, y, and z was calcu-

lated and compensated in each data set. Figure 5.6 illustrates an example of a data

set with an offset in x position. From parts of data where the reference was constant

(green), the average offset was calculated from the corresponding position errors

δX1...6. The parts of data used to calculate the offset relative to the x-axis can be

seen in Figure 5.7, where the Nikon data was plotted over samples (Point Index).

The complete data set (red) was plotted with the parts used for calculating the offset

(blue). A closer view on one of the parts of data used for calculating the offset can

be seen in Figure 5.8. In Appendix B.2, the code for selecting parts of data can be

seen.

Different values of step were plotted to choose the value with best matching

curves. The step parameter was sensitive to small changes making the choice of

value for step quite delicate. To illustrate these changes, diagrams of the reference

with different values of step were compared to the Nikon data. Figure 5.9 shows

a diagram where the reference (black) was not aligned with the Nikon data (red).

With step=1/24 the value got too big, which gave the reference a lower resolution.

This step value made it faster than the Nikon data, resulting in an increasing position

error (green) up to about 8 mm. The increasing error was caused by the fact that the

plotted data started in the same position and then according to the resolution of the

reference the displacement increased over samples (Point Index). If the curves were

aligned the position error should be constant since they would not vary over time.

In Figure 5.10 the value for step was lower with step=1/26, which gave it

a higher resolution. This resolution made the reference (black) too slow compared

to the Nikon data (red), which resulted in an increased position error (green) up

to about 14 mm. With step=1/24.82 the reference was aligned with the Nikon

data resulting in a constant position error up to about 0.4 mm, which is shown in

Figure 5.11.
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Figure 5.6 Example of a measured data set (red and blue) with an offset to the ref-

erence (black and green), plotted in x position over samples (Point Index) [250 Hz].

The position errors δX1...6 were calculated between the parts of data where the ref-

erence was constant (green) and the corresponding measured data (blue).

Calculating ILC Tool Path
With the reference aligned to the filtered Nikon data, the ILC compensated tool path

could be calculated. The position error was calculated for x, y, and z at each point

of the program and was then added to the reference at that point.

To calculate ILC positions, the updating equation, given in (2.14) in Section 2.2

was used. Since the robot was following a path rather than a trajectory, the control

signal was calculated for each point instead of time. The generalized ILC algo-

rithms, presented in (2.15) were implemented in the ILC script.

By filtering the Nikon data with the low-pass Butterworth filter in Section 5.2,

the discrete time filter L(q), described in Section 2.2, was implemented. In (2.15c)

and (2.14) the position error is filtered before it is added to the input. The measured

signal (Nikon data) was, however, filtered when the ILC tool path was calculated.

The position error was calculated from the original reference path, created in the

ILC script in Section 5.1, and was therefore not filtered. Given below is the code for

filtering the Nikon data in x positions (xNikPosRaw).

% Zero-phased Digital Filtering of X:
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Figure 5.7 Overview of the complete data set (red) and data used for calculating

offset (blue) plotted in x position over samples (Point Index) [250 Hz].

xNikPos = filtfilt(b, a, xNikPosRaw);

Based on (2.15a), the error was calculated between the reference (xPos) and the

filtered Nikon data (xNikPos) with the code given below.

% Calculating Error in X Position:

xError(i) = xPos(i) - xNikPos(i);

This error (xError) was then added to the reference to create the updated control

position (xILC) by the code given below, implemented from (2.15c).

% Calculating Updated Control Position for X:

xILC(i) = xPos(i) + xError(i);

The code below was used to calculate all the updated ILC positions for all axes in

the program.

% Calculating All ILC Positions for X, Y and Z:

for i = 1: length(xPos)

xError(i) = xPos(i) - xNikPos(i);

xILC(i) = xPos(i) + xError(i);

yError(i) = yPos(i) - yNikPos(i);

yILC(i) = yPos(i) + yError(i);
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Figure 5.8 Diagram showing a close view of one of the parts of data used for

calculating offset, seen in Figure 5.7, with data set (red) and data used for calculating

offset (blue) plotted over samples (Point Index) [250 Hz].

zError(i) = zPos(i) - zNikPos(i);

zILC(i) = zPos(i) + zError(i);

end

By plotting the calculated ILC reference together with the Nikon data, reference

and position error the ILC compensation could be evaluated. Figure 5.12 shows a

diagram with the reference (black), Nikon data (red), position error (green) and the

ILC compensation (blue) calculated for z-axis with step=1/24.82. It shows that

the ILC compensation was correct since it follows the reference with the error added

from the inverted offset of the Nikon data. To evaluate the ILC compensation in the

x-axis, a zoom on one of the areas in Figure 5.13 was added because it moves over

a larger distance than z. In Figure 5.14 the ILC compensation in y is shown, also

with a zoom. The figures show that the ILC positions were calculated the right way

for the three dimensions and that they could be used to create an ILC tool path. To

generate the ILC program the compensation was added to the nominal path at each

point along the path with the code given below and then automatically translated to

MoveL commands.

% Code to Generate ILC Positions:

xILC(i) + 100

yILC(i) + 0
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Figure 5.9 Reference (black) with step=1/24, Nikon data (red) and position error

(green).

zILC(i) + 25

5.3 ILC Milling

To perform ILC milling experiments, pockets were milled out of the aluminum

block with 1 mm left on each side for the generated program to mill. This pre-

milling is referred to as roughing and the generated tool path performed the finishing

of edges. With a tool diameter of 6 mm the roughing tool path was designed to

remove all material inside the pocket, leaving 1 mm on the edges for finishing. To

avoid the tool from hitting the bottom surface, the depth of the pocket was milled

to 5 mm. The pockets are shown in Figure 5.15, where also the positions of the tool

and spindle relative to the aluminum block are shown.

Figure 5.16 illustrates how the tool (orange) and tool path (red) was placed

relative to the the pocket (dark grey) with edges marked in blue. At the center of

the 6 mm diameter tool was the tool path which was created to perform a 1 mm
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5.3 ILC Milling

Figure 5.10 Reference (black) with step=1/26, Nikon data (red), and position

error (green).

milling of the pocket edges. The finishing program was created to mill a total depth

of 3 mm in z direction, with a 1 mm step down. Figure 5.17 shows a side view (z

direction) of the pocket (dark grey) with the tool (orange) and the tool path (red)

that makes the step down with a starting point in 0. The starting position of the tool

path in z direction was set at 1 mm below the top surface of the pocket. This start

position made the robot do an initial move that plunged down 1 mm to the starting

point where it waited for the program to be executed.
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Figure 5.11 Aligned reference (black) with step=1/24.82, Nikon data (red), and

a constant position error (green).
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5.3 ILC Milling

Figure 5.12 ILC compensation (blue), Nikon data (red), position error (green) and

reference (black) with step=1/24.82.
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Figure 5.13 ILC compensation (blue), Nikon data (red), position error (green) and

reference (black) with step=1/24.82.
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Figure 5.14 ILC compensation (blue), Nikon data (red), position error (green) and

reference (black) with step=1/24.82.

Figure 5.15 Placement of aluminum block and robot arm relative to tool and spin-

dle.
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Figure 5.16 Top view of pocket (dark grey) with edges (blue), tool (orange), and

tool path (red).
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5.3 ILC Milling

Figure 5.17 Side view of pocket (dark grey) with edges (blue), tool (orange), and

tool path (red).
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6
Results

An ILC compensated tool path was created for the robot to perform a task with

a higher precision than before. To evaluate the result of using ILC, the measured

positions that were logged from executions run with the nominal (uncompensated)

path and the compensated ILC path were compared to the original reference. Ex-

periments were done both with the robot moving in free space and when milling to

evaluate the effects of disturbances caused by the milling.

6.1 Only First Iteration ILC

As described in Section 5.2 the reference must be aligned with the Nikon data to

create the first iteration ILC tool path. For the same reason it requires that new

Nikon data from subsequent tool paths can be aligned with the old for the following

ILC iterations to work. The resolution of the measured data can not be changed in

retrospect and therefore it requires that they can be aligned by only changing the

starting point of data to be analyzed. If the measured Nikon data sets are unable to

be aligned, the new position errors can not be added to the previous ILC tool paths

at the correct point in the ILC program, which prevents further iterations of ILC

tool paths.

After running first iteration ILC tool paths the new Nikon data were compared to

the uncompensated data. The indexing of iterations, described in Section 2.2, was

used for referring to the uncompensated data (iteration:0) and ILC compensated

data (iteration:1). It showed that the Nikon data from first execution could not be

aligned with the data logged from the ILC compensated path. The data from iter-

ated paths did not match even if they were logged with the same robot speed, which

can be seen in Figure 6.1 where both data sets were logged with a robot speed of

10 mm/s. In the beginning of the diagram the Nikon data were aligned due to a cor-

rect start point but then drift apart over time. By looking at the peaks in Figure 6.2,

numbered 1-3 in Figure 6.1, the displacement of data can be seen. It shows that in

the beginning of the diagram at peak 1 the data were aligned but at peak 2 the data

were separated. At peak 3 the data have drifted even further apart.
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6.2 Free Space Results

Figure 6.1 ILC iteration:1 data (blue) compared to uncompensated iteration:0
data (red) with peaks numbered 1-3.

The reason for the fact that the data could not be aligned was probably caused

by the ABB IRC5 robot controller’s interpretation of MoveL commands. When the

robot was set to move linearly from one point to another the controller generates

a trajectory between MoveL commands, which can have varying length or resolu-

tion. This trajectory generation effects the data length and causes the data between

executions to vary in resolution.

Since the measured data could not be aligned, only first iteration ILC tool paths

could be created. Executions from first iteration ILC tool paths were used in the

following results to analyze the effects of using ILC when machining with robots.

If the results after first iteration ILC were positive it was an indication that even

further iterations might improve the results.

6.2 Free Space Results

By evaluating the results of ILC when the robot was moving in free space, the

performance could be analyzed without disturbances that may occur when milling,

such as vibrations. To analyze the exact result of ILC, the reference and measured
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Chapter 6. Results

Table 6.1 Results of ILC in free space.

ILC Iteration: 0: [ x, y, z ] 1: [ x, y, z ]

Standard

Deviation [mm]:

[ 0.1140, 0.0672, 0.0854 ] [ 0.0495, 0.0476, 0.0281 ]

Reduced Error: [ 56.55%, 29.13%, 67.11% ]

data were plotted as x and z versus y. These diagrams eliminates the risk of analyz-

ing false errors caused by misalignment of the reference.

The tool path used for evaluating the result of ILC in free space had the robot

speed v10 (10 mm/s). For the ILC tool path, step=(1/24.82) was used for align-

ing the reference. Figure 6.3 shows an overview of the rectangle diagram where x

was plotted versus y. It shows the reference (blue), uncompensated iteration:0 data

(red), and ILC iteration:1 data (green). A zoom on the left side illustrates the result

in a closer look.

To quantify the position error from using ILC in free space, the variance and

standard deviation were calculated for x, y, and z. These values were calculated

from the same parts of data that were chosen to calculate the offset, described in

Section 5.2 and exhibited in Figure 5.7. When the reference values were constant

along x direction, the reference values were changing along y (or z) direction, and

vice versa. The robot’s ability to keep a fixed position in one direction, when moving

along another direction, was evaluated by calculating the position errors from parts

of data with constant reference. In Appendix B.2, the code for calculating these

results can be seen. The values from the uncompensated data (iteration:0) and ILC

data (iteration:1) are given in Table 6.1. The values showed an improvement in

standard deviation with ILC of 56.6% along the x-axis, 29.1% along the y-axis, and

67.1% along the z-axis.

In Figures 6.4 - 6.7 the results in x and y position, plotted along the y and x

direction respectively, are shown with the acceptable error of ±0.1 mm (grey) to

illustrate the accuracy specification. The result of ILC in z position, plotted along

the y direction is seen in Figure 6.8. In Figure 6.9 the ILC result in z position

(green) and uncompensated iteration:0 data (red) along y around 0 reference (blue)

is shown.

All figures show an improvement from the ILC compensated data in x, y, and z

position, where almost all positions were within the ±0.1 mm critical area, which

was the acceptable error when milling. The best results can be seen in z position,

where all measured positions were within the specified error, which corresponds to

the improvement value given in Table 6.1.

Since the step down in z direction was so small (1 mm) it was fast enough to be

aligned with the uncompensated iteration:0 data when plotted over samples (Point
Index). By looking at Figure 6.10 where the result of ILC in z position was plotted

over samples and Figure 6.11, which is a zoom of the result around 0 reference, it

is clear that there was an improvement over the whole execution with ILC along the
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Table 6.2 Results from milling with ILC.

ILC Iteration: 0: [ x, y, z ] 1: [ x, y, z ]

Standard

Deviation [mm]:

[ 0.1063, 0.0797, 0.0810 ] [ 0.0942, 0.0641, 0.0353 ]

Reduced Error: [ 11.39%, 19.60%, 56.42% ]

z-direction.

The results indicated an improvement in x, y, and z already after one iteration

ILC compensation, which reduced the position error to about ±0.1 mm. Since ILC

indicated a significant improvement with ILC from moving the robot in free space,

as seen in Table 6.1, it was encouraging to perform experiments with ILC for milling

as well.

6.3 Milling Results

To evaluate ILC results when milling, one of the pockets was milled with the fin-

ishing reference described in Section 5.3 without compensation. It was milled with

a robot speed of 10 mm/s and step=(1/24.82). The data logged from this milling

was then used for calculating the ILC compensation. By comparing the uncom-

pensated data (iteration:0) to the data logged from the ILC compensated reference

(iteration:1), the results were evaluated.

In Table 6.2, the calculated variance, standard deviation, and improved standard

deviation are given. The improvement from milling with ILC was 11.4% in x-axis,

19.6% in y-axis, and 56.4% in z-axis. The results from milling with ILC in x and y

position plotted along the y and x direction are shown in Figures 6.12 - 6.15. Fig-

ure 6.16 shows an overview of the result of ILC in z position along y. In Figure 6.17

the ILC result in z position (green) and uncompensated iteration:0 data (red) along

y around 0 reference (blue) is shown.

In Figure 6.18, the result of ILC in z position is plotted over samples (Point
Index). A closer view of the result around 0 reference is seen in Figure 6.19, where

it is clear that there was an improvement over the whole execution when milling

with ILC along the z-direction.
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Figure 6.2 Peaks numbered 1-3 from data sets shown in Figure 6.1 with ILC iter-
ation:1 data (blue) and iteration:0 data (red).
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6.3 Milling Results

Figure 6.3 Overview of free space result with reference (blue), uncompensated

iteration:0 data (red), and ILC iteration:1 data (green).
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Figure 6.4 Free space result in x position of ILC iteration:1 (green) and uncom-

pensated iteration:0 data (red) around 0 reference (blue) with error limits (grey).

Figure 6.5 Free space result in x position of ILC iteration:1 (green) and uncom-

pensated iteration:0 data (red) around 32 reference (blue) with error limits (grey).
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Figure 6.6 Free space result in y position of ILC iteration:1 (green) and uncom-

pensated iteration:0 data (red) around 0 reference (blue) with error limits (grey).

Figure 6.7 Free space result in y position of ILC iteration:1 (green) and uncom-

pensated iteration:0 data (red) around -22 reference (blue) with error limits (grey).
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Figure 6.8 Overview of free space result in z position of ILC iteration:1 (green),

uncompensated iteration:0 data (red), and reference (blue) with error limits (grey).

Figure 6.9 Free space result in z position of ILC iteration:1 (green) and uncom-

pensated iteration:0 data (red) around 0 reference (blue) with error limits (grey).
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Figure 6.10 Overview of free space result in z position of ILC iteration:1 (green),

uncompensated iteration:0 data (red), and reference (blue) over time (Point Index)

[250 Hz].

Figure 6.11 Free space result in z position of ILC iteration:1 (green) and uncom-

pensated iteration:0 data (red) around 0 reference (blue) with error limits (grey) over

time (Point Index) [250 Hz].
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Figure 6.12 Milling result in x position of ILC iteration:1 (green) and uncompen-

sated iteration:0 data (red) around 0 reference (blue) with error limits (grey).

Figure 6.13 Milling result in x position of ILC iteration:1 (green) and uncompen-

sated iteration:0 data (red) around 32 reference (blue) with error limits (grey).
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Figure 6.14 Milling result in y position of ILC iteration:1 (green) and uncompen-

sated iteration:0 data (red) around 0 reference (blue) with error limits (grey).

Figure 6.15 Milling result in y position of ILC iteration:1 (green) and uncompen-

sated iteration:0 data (red) around -22 reference (blue) with error limits (grey).
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Figure 6.16 Overview of milling result in z position of ILC iteration:1 (green) and

uncompensated iteration:0 data (red) around -22 reference (blue).
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Figure 6.17 Milling result in z position of ILC iteration:1 (green) and uncompen-

sated iteration:0 data (red) around 0 reference (blue) with error limits (grey).
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Figure 6.18 Overview of milling result in z position of ILC iteration:1 (green),

uncompensated iteration:0 data (red), and reference (blue) over time (Point Index)

[250 Hz].
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Figure 6.19 Milling result in z position of ILC iteration:1 (green) and uncompen-

sated iteration:0 data (red) around 0 reference (blue) with error limits (grey) over

time (Point Index) [250 Hz].

The result showed an improvement from ILC compensation also when milling,

as given by Table 6.2. Diagrams with ILC milling results in z direction showed a

significant improvement, which corresponds to the calculated improved standard

deviation of 56.4%. By looking at the diagrams of the results from milling in x and

y directions, it can be harder to see the improved results from milling compared to

the free space diagrams. It is harder because the improved standard deviation was

calculated as 11.4% for x and 19.6% in y, which can be harder to see by looking

at the diagrams. The improved standard deviation was therefore used to show that

there was an improvement in all directions when milling with an ILC compensated

path.

6.4 Results from SIR

The ILC methods and scripts described in this thesis were used by SIR in Italy to

perform experiments with the ILC approach. SIR had a similar robot cell as AML

with the same robot and Nikon tracking system. When testing the robot’s perfor-

mance when tracking trajectories, as described in Section 4.2, they had a similar

delay of samples [Berselli et al., 2013b].

SIR performed experiments with ILC when moving the robot in free space,

the same way as described in Section 6.2. The ILC tool paths were calculated and

analyzed by using the same Matlab script as described in Section 5.1. Measurements
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from SIR can be seen in Figure 6.20, which shows the result of using ILC for free

space motion.

Figure 6.20 Results from SIR using ILC in free space, with ILC iteration:1
(green), uncompensated iteration:0 data (red), and reference (blue) [Berselli et al.,

2013b].

The results showed an improvement from using ILC also at SIR. As seen in in

Figure 6.20, the deviation from the reference was lowered from 0.6 mm to 0.1 mm.

These results encouraged SIR to also perform experiments for milling with ILC

[Berselli et al., 2013b].
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7
Discussion

This chapter discusses the results in relation to problem definition and possible im-

provements. It also includes an analysis of the results achieved in this thesis.

7.1 Results in Relation to Problem Definition

To analyze the results presented in Chapter 6 they need to be put in relation to the re-

quirements in Section 1.2. First of all, high precision manufacturing was performed

with the robot both at AML and SIR. It was performed with an off-line feedback

control system with an integrated high-accuracy sensor. Secondly, the implemented

control strategy was based on ILC algorithms, which increased the robot’s perfor-

mance as described in the results. The script described in Section 5.2 was used to

calculate ILC compensated tool paths in three dimensions. Experiments showed

that there were improved results in all three dimensions when milling with ILC tool

paths.

The results presented were achieved after milling with only one iteration ILC

milling. The results show a reduced position error well within the specified toler-

ance of a maximum position error of ±0.1 mm in z direction. The milling results

were also improved for the x and y direction with between 11-20%. However, the

position errors over the whole execution along the x and y direction were not within

the specified tolerance. The idea of the ILC control strategy is that further itera-

tions should be performed to further increase the results. Since there was such an

improvement already after one iteration, the ILC control strategy seems to be suc-

cessful and indicates that further iterations might get results within the specified

tolerances for all dimensions.

7.2 Possible Improvements and Error Analysis

This section discuss possible improvements of the method used in this thesis and

the error analysis. The latter aims to analyze the results achieved in the previous

chapters.
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Discussion on ILC Assumptions
In Section 2.2, where the theory behind ILC is presented, it was assumed that the

initial conditions of the system was reset for every new iteration and that the system

was time invariant. Since the robot was required to follow a path with high accuracy,

without a time reference, the system was time invariant, assuming no tool wear and

the same working volume. The initial conditions of the robot should also be reset to

the same values between every iteration. For all executed iterations the speed of the

robot was the same as well as the value for moving in corners. These assumptions

were true for the free-space movement, where the start positions were the same be-

tween iterations. However, when performing milling experiments the start position,

from where the tool path was executed, was moved in x and y position to mill the

different pockets in the aluminum block, seen in Figure 5.15. This movement might

have effected the result from milling with ILC. To reset all initial conditions the

start position should be the same as well as the placement of the block for every

iteration.

As mentioned before, another assumption for using ILC is that the tracking

error was the same for every iteration as long as the input signal was the same.

When looking at diagrams from milling with ILC, the compensated iteration:1 data

at some points appear with worse results that the iteration:0 data, as seen in Fig-

ure 6.15. In the diagram it can be seen that the iteration:1 data has a larger devia-

tion than the iteration:0 data around X Position:20. This deviation could be a result

of disturbances that occurred at this particular position at a certain time. Further

milling experiments should be done to evaluate if stochastic non-predictive devia-

tions appear or if they can be compensated by ILC. If they do appear, an approach

could be to combine the ILC method with an accelerometer that measures the vibra-

tion together with a frequency controller that adjust the spindle speed. Experiments

from using a spindle frequency controller have been successful when tested at TEKS

Ltd in Sheffield, UK, one of the other COMET partners [Berselli et al., 2013a].

To evaluate improvement from multiple executions, both the iteration:0 and

iteration:1 paths should be repeated and compared to give an idea of the average

improvement from using ILC. Because of time constraints and limited access to the

robot at AML, multiple milling experiments were not performed.

Rotation of Z Reference
The result from milling with ILC showed an improvement after one iteration of

approximately 11-20% in x and y direction and 56% in z direction. The best results

were given in the z direction. This result, however, seems to be the effect of ILC

compensating for a rotation in the calibration of the robot. This rotation can be

seen in Figure 3.4, where the ABB teach pendant was showing values of rotation

in Euler angles. It is likely that the robot was slightly rotated in the calibration,

which would effect the reference sent to the robot. This rotated calibration might

explain why the reference seen in Figures 6.8 and 6.16 seems to be rotated, which
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was then compensated. It is probably why the improvement of ILC in z direction

was calculated to be more than 50%.

A rotation in z position should appear in diagrams with the largest deviation

at the beginning and an inverted deviation at the end, which can be seen in Fig-

ure 6.17. By looking at the mid section (Point Index:1000-1750) of the diagram in

Figure 6.19, where z positions were plotted over samples, it can be seen that there

was still an improvement with ILC, even though it might not be as much as 50%.

To calculate the exact improvement, the reference should be rotated to match the

rotation in Euler angles. This reference rotation would probably lower the improve-

ment value. The result, however, shows that the ILC compensation works, even if it

is compensating rotations or other kinematic calibration errors of the work piece or

robot.

95



8
Conclusion and Future
Work

This chapter summarizes the work and results described in this master thesis. It is

a conclusion of how the results relate to the problem definition and the goal of this

research project.

8.1 Conclusion

The results showed an improvement in all directions when milling with ILC. In Ta-

ble 6.2, the resulting standard deviation and improved standard deviation with ILC

are given. It shows an improvement of 11.4% for x, 19.6% for y, and 56.4% for z.

These numbers were calculated from first iteration ILC compensation and indicate

that even further iterations might improve the results. These results demonstrates

the potential of using ILC.

SIR also presented successful results, based on the methods described in Sec-

tion 5.1, that showed that ILC gave an improvement for their robot as well. These

results verified that ILC worked when they were moving the robot in free space. It

is an encouraging indication that ILC might work for SIR when milling as well.

With the results from this master thesis it was proven that when using ILC for

milling with industrial robots in advanced manufacturing, the accuracy could be im-

proved simultaneously in 3D. It gave a strong indication that by performing further

ILC iterations, the robots would get accurate enough to produce parts within spec-

ified tolerances. It was an important milestone for the COMET project, which was

extended to enter faces of optimizing and industrializing the solution. It is a further

step into enabling cost effective, high precision manufacturing in factories of the

future.
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8.2 Future Work

This section summarizes the work needed to pursue the research in this master the-

sis.

Further ILC Iterations
To fully use the potential of ILC, experiments with further iterations should be

performed. As described in Section 6.1, experiments were only performed with

iteration:1 ILC tool paths. There was a limitation of iterations because the data

logged from different executed iterations could not be aligned, probably since the

robot controllers generated trajectories between MoveL commands. A solution to

this problem could be to bypass the robot control with the obtain mode, described

in Section 1.3. This mode would force the robot to move exactly according to the

path created in Matlab. By using the same amounts of positions for the iterations,

the data sets would have the same resolution and could then be aligned. However,

the obtain mode disables parts of the safety control in the ABB IRC5 controller,

which makes sure that the robot does not make sudden fast movements over large

distances. A safety would therefore have to be added to the Simulink model.

If the problem with delayed samples when tracking trajectories could be elimi-

nated, the generalized ILC equations in (2.15), described in Section 2.2, are easier

to implement, which makes path tracking easier. The sequence of calculated errors

in (2.15a), could be added directly to the updated control signal in (2.15c). Errors

from further iterations could then be added directly to the previous control signal,

eventually converging the output to successful results.

Multiple Executions
To further evaluate the improvement from using first iteration ILC when milling

with industrial robots, multiple executions of both the iteration:0 and iteration:1
tool paths could be performed, as described in Section 7.2. By comparing the results

from repeated executions of the same tool path, an average of the improvement from

using ILC could be calculated. The average can be used to analyze if the position

errors were repetitive or affected by disturbances.
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Simulink Models

A.1 Kinematic Model

A.2 Trajectory Compensated Model
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A.2 Trajectory Compensated Model

Figure A.1 Overview of the Simulink model used for kinematic verification.
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Figure A.2 Overview of the Simulink model with the block Integer Delay (green

oval).

100



B
RAPID Programs and
Matlab Scripts

B.1 Original RapidBox Program

%%%

VERSION:1

LANGUAGE:ENGLISH

%%%

MODULE DELCAM_AML1

PERS tooldata tdelcam1:=[FALSE,[[1985.957,-151.27,1165.804]

,[0.00021425,0.70447824,-0.00021585,0.70972552]],[5,[0,0,100]

,[1,0,0,0],0,0,0]];

PERS wobjdata wdelcam1:=[TRUE,TRUE,"",[[0,-100,333.5]

,[0.70710678,0,0,0.70710678]],[[0,0,0],[1,0,0,0]]];

PROC Delcam1_AML()

! Joint angles at start point : [!A1!,!A2!,!A3!,!A4!,!A5!,!A6!]

,[9E9,9E9,9E9,9E9,9E9,9E9]

ConfJ\On;

ConfL\Off;

AccSet 5,100;

WaitTime 2;

MoveJ [[100.00,0.00,25.00],[0.707071,0,0,0.707142],[-1,-1,0,1]

,[9E9,9E9,9E9,9E9,9E9,9E9]],v20,z0,tdelcam1\WObj:=wdelcam1;

MoveL [[100.00,0.00,25.00],[0.70708,8.94019E-06,1.40498E-05

,0.707134],[-1,-1,0,1],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]

, v20, z0, tdelcam1\WObj:=wdelcam1;

MoveL [[130.00,0.00,25.00],[0.707085,-1.91866E-05,5.24451E-05

,0.707129],[-1,-1,0,1],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]
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, v20, z0, tdelcam1\WObj:=wdelcam1;

MoveL [[130.00,-20.00,25.00],[0.707085,-1.82253E-05,5.12611E-05

,0.707128],[-1,-1,0,1],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]

, v20, z0, tdelcam1\WObj:=wdelcam1;

MoveL [[100.00,-20.00,25.00],[0.707084,-1.95296E-05,5.34128E-05

,0.70713],[-1,-1,0,1],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]

, v20, z0, tdelcam1\WObj:=wdelcam1;

MoveL [[100.00,0.00,25.00],[0.707085,-1.97948E-05,5.33866E-05

,0.707129],[-1,-1,0,1],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]

, v20, z0, tdelcam1\WObj:=wdelcam1;

MoveL [[100.00,0.00,15.00],[0.707076,-1.40422E-05,6.3306E-05

,0.707138],[-1,-1,0,1],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]

, v20, z0, tdelcam1\WObj:=wdelcam1;

MoveL [[130.00,0.00,15.00],[0.707088,-1.2471E-05,6.17851E-05

,0.707126],[-1,-1,0,1],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]

, v20, z0, tdelcam1\WObj:=wdelcam1;

MoveL [[130.00,-20.00,15.00],[0.707087,-1.28744E-05,6.24542E-05

,0.707126],[-1,-1,0,1],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]

, v20, z0, tdelcam1\WObj:=wdelcam1;

MoveL [[100.00,-20.00,15.00],[0.707088,-1.36733E-05,6.21325E-05

,0.707126],[-1,-1,0,1],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]

, v20, z0, tdelcam1\WObj:=wdelcam1;

MoveL [[100.00,0.00,15.00],[0.707088,-9.23785E-06,5.8104E-05

,0.707125],[-1,-1,0,1],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]

, v20, z0, tdelcam1\WObj:=wdelcam1;

MoveL [[100.00,0.00,5.00],[0.707089,-1.46001E-05,6.5498E-05

,0.707125],[-1,-1,0,1],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]

, v20, z0, tdelcam1\WObj:=wdelcam1;

MoveL [[130.00,0.00,5.00],[0.707083,-1.33462E-05,5.95959E-05

,0.70713],[-1,-1,0,1],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]

, v20, z0, tdelcam1\WObj:=wdelcam1;

MoveL [[130.00,-20.00,5.00],[0.707085,-1.57842E-05,5.97814E-05

,0.707129],[-1,-1,0,1],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]

, v20, z0, tdelcam1\WObj:=wdelcam1;

MoveL [[100.00,-20.00,5.00],[0.707084,-1.41693E-05,6.02042E-05

,0.707129],[-1,-1,0,1]

,[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]

, v20, z0, tdelcam1\WObj:=wdelcam1;

MoveL [[100.00,0.00,5.00],[0.707084,-1.03862E-05,5.6834E-05

,0.70713],[-1,-1,0,1],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]

, v20, z0, tdelcam1\WObj:=wdelcam1;

ConfJ\On;
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ConfL\On;

! Stop;

ENDPROC

ENDMODULE

B.2 ILC Script

addpath /home/robot/project/extctrl/matlab/

% Read first nikpos-log from reference

%filename = ’/work/thomas/Air_ILC_Mill_130531.txt’; % Air

filename = ’/work/thomas/ILC_Mill_130531_P1.txt’; % Mill

[nikon,names]=readlog(filename,{’nikpos’});

%% Generate and filter signals from nikpos-log

% 1: Nikon data for "Air_ILC_Mill_130531.txt"

%indexStart= 952;

%indexStop= 9071;

% 2: Nikon data for "ILC_Mill_130531_P1.txt"

indexStart= 867;

indexStop= 8982;

xNikPosRaw = -nikon(indexStart:indexStop,2);

yNikPosRaw = -nikon(indexStart:indexStop,3);

zNikPosRaw = -nikon(indexStart:indexStop,1);

[b,a] = butter(6, 4/(0.5*125));

xNikPosBias = filtfilt(b, a, xNikPosRaw);

yNikPosBias = filtfilt(b, a, yNikPosRaw);

zNikPosBias = filtfilt(b, a, zNikPosRaw);

%% Calculate Start & End Points for Calculating Offset & Var

xPl = 5;

xMi = -5;

vSH1 = length(xyInOut) + length(x1P) +1;

vEH1 = vSH1 + length(x2P);
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vSL1 = vEH1 + length(x3P);

vEL1 = vSL1 + length(x4P) + length(xyPause);

vSH2 = vEL1 + length(x1P);

vEH2 = vSH2 + length(x2P);

vSL2 = vEH2 + length(x3P);

vEL2 = vSL2 + length(x4P) + length(xyPause);

vSH3 = vEL2 + length(x1P);

vEH3 = vSH3 + length(x2P);

vSL3 = vEH3 + length(x3P);

vEL3 = vSL3 + length(x4P) + length(xyInOut) -5;

%% Check X Start & End Points

set(0,’defaultlinelinewidth’,2)

xF1 = ((vSH1+xPl):(vEH1+xMi)-5);

xF2 = ((vSL1+xPl):(vEL1+xMi)+5);

xF3 = ((vSH2):(vEH2+2*xMi));

xF4 = ((vSL2+xPl):(vEL2+xMi));

xF5 = ((vSH3):(vEH3+xMi));

xF6 = ((vSL3+xPl):(vEL3+xMi));

figure

plot(xNikPosBias, ’r’)

hold on

plot(xF1, xNikPosBias(xF1), ’b’)

hold on

plot(xF2, xNikPosBias(xF2), ’b’)

hold on

plot(xF3, xNikPosBias(xF3), ’b’)

hold on

plot(xF4, xNikPosBias(xF4), ’b’)

hold on

plot(xF5, xNikPosBias(xF5), ’b’)

hold on

plot(xF6, xNikPosBias(xF6), ’b’)

%hold on

%plot(xPos)

grid on
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%% Calculate X Offset

xOffMeanH1 = xLength -mean(xNikPosBias(xF1));

xOffMeanL1 = 0 -mean(xNikPosBias(xF2));

xOffMeanH2 = xLength -mean(xNikPosBias(xF3));

xOffMeanL2 = 0 -mean(xNikPosBias(xF4));

xOffMeanH3 = xLength -mean(xNikPosBias(xF5));

xOffMeanL3 = 0 -mean(xNikPosBias(xF6));

xOff = (xOffMeanH1 + xOffMeanL1 + xOffMeanH2 + xOffMeanL2

+ xOffMeanH3 + xOffMeanL3)/6

%% Check Y Start & End Points

yPl = 15;

yMi = -15;

ydX = length(xyPause);

yF1 = (yPl:(vSH1+yMi));

yF2 = ((vEH1+yPl):(vSL1+yMi));

yF3 = ((vEL1-ydX+yPl)+5:(vSH2+yMi));

yF4= ((vEH2+yPl)-5:(vSL2+yMi)-5);

yF5 = ((vEL2-ydX+yPl+10):(vSH3+yMi));

yF6 = ((vEH3+yPl)-10:(vSL3+yMi)-5);

figure

plot(yNikPosBias, ’r’)

hold on

plot(yF1, yNikPosBias(yF1), ’b’)

hold on

plot(yF2, yNikPosBias(yF2), ’b’)

hold on

plot(yF3, yNikPosBias(yF3), ’b’)

hold on

plot(yF4, yNikPosBias(yF4), ’b’)

hold on

plot(yF5, yNikPosBias(yF5), ’b’)

hold on

plot(yF6, yNikPosBias(yF6), ’b’)

%hold on
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%plot(xPos)

grid on

%% Calculate Y Offset

yOffMeanL1 = 0 - mean(yNikPosBias(yF1));

yOffMeanH1 = yLength -mean(yNikPosBias(yF2));

yOffMeanL2 = 0 - mean(yNikPosBias(yF3));

yOffMeanH2 = yLength -mean(yNikPosBias(yF4));

yOffMeanL3 = 0 - mean(yNikPosBias(yF5));

yOffMeanH3 = yLength -mean(yNikPosBias(yF6));

yOff = (yOffMeanL1 + yOffMeanH1 + yOffMeanL2 + yOffMeanH2

+ yOffMeanL3 + yOffMeanH3)/6

%% Check Z Start & End Points

zF1 = (yPl:(vEL1-ydX+yMi)-5);

zF2 = ((vEL1+yPl)-10:(vEL2-ydX+yMi)-10);

zF3 = ((vEL2+yPl)-10:(vEL3+yMi)-10);

figure

plot(zNikPosBias, ’r’)

hold on

plot(zF1, zNikPosBias(zF1), ’b’)

hold on

plot(zF2, zNikPosBias(zF2), ’b’)

hold on

plot(zF3, zNikPosBias(zF3), ’b’)

grid on

%% Calculate Z Offset

zOffMeanL1 = 0 -mean(zNikPosBias(zF1));

zOffMeanL2 = -1 -mean(zNikPosBias(zF2));

zOffMeanL3 = -2 -mean(zNikPosBias(zF3));

zOff = (zOffMeanL1 + zOffMeanL2 + zOffMeanL3)/3

% OFF X,Y,Z

Off = [xOff, yOff, zOff]
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xNikPos = xNikPosBias +Off(1);

yNikPos = yNikPosBias +Off(2);

zNikPos = zNikPosBias +Off(3);

%% Calculate Var & Std for X,Y,Z

xH1 = xLength -xNikPos(xF1);

xL1 = 0 -xNikPos(xF2);

xH2 = xLength -xNikPos(xF3);

xL2 = 0 -xNikPos(xF4);

xH3 = xLength -xNikPos(xF5);

xL3 = 0 -xNikPos(xF6);

xVec = [xH1’ xL1’ xH2’ xL2’ xH3’ xL3’];

xVar = var(xVec);

xStdDer = std(xVec);

yL1 = 0 -yNikPos(yF1);

yH1 = yLength -yNikPos(yF2);

yL2 = 0 -yNikPos(yF3);

yH2 = yLength -yNikPos(yF4);

yL3 = 0 -yNikPos(yF5);

yH3 = yLength -yNikPos(yF6);

yVec = [yL1’ yH1’ yL2’ yH2’ yL3’ yH3’];

yVar = var(yVec);

yStdDer = std(yVec);

zL1 = 0 -zNikPos(zF1);

zL2 = -1 -zNikPos(zF2);

zL3 = -2 -zNikPos(zF3);

zVec = [zL1’ zL2’ zL3’];

zVar = var(zVec);

zStdDer = std(zVec);

VarNoComp = [xVar yVar zVar]

StdDerNoComp = [xStdDer yStdDer zStdDer]
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%% Plot shape/"toolpath" of reference and nikpos in X,Y

figure

plot(xPos, yPos, ’b’)

hold on

plot(xNikPos, yNikPos, ’r’)

%hold on

%plot(xILC, yILC, ’g’)

xlabel(’X Position [mm]’)

ylabel(’Y Position [mm]’)

grid on

figure

plot(zPos, yPos, ’b’)

hold on

plot(zNikPos, yNikPos, ’r’)

xlabel(’Z Position [mm]’)

ylabel(’Y Position [mm]’)

grid on

%% Determine start and end point of nikpos-data

figure

plot(xNikPos, ’r’)

%hold on

%plot(xPos)

grid on

figure

plot(yNikPos, ’r’)

%hold on

%plot(yPos)

grid on

figure

plot(zNikPos, ’r’)

%hold on

%plot(zPos)

grid on

%% Check filtered signal compared to unfiltered
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figure

plot(yNikPosRaw)

hold on

plot(yNikPos, ’r’)

grid on

%%

close all

%% Update Reference Parameters for Calculating ILC Offset & Var

xyInOutN2 = xyInOut;

x1PN2 = x1P;

x2PN2 = x2P;

x3PN2 = x3P;

x4PN2 = x4P;

xyPauseN2 = xyPause;

%% Determine step Value for ILC:1 Iteration

figure

plot(xPos, ’b’)

%hold on

%plot(xNikPosBias+(0), ’r’)

hold on

plot(xNewNikPosBias+(-56.61), ’r’)

xlabel(’X Position [mm]’)

ylabel(’Y Position [mm]’)

grid on

%% Generate Reference

xLength= 32;

yLength= -22;

% AIR:

%step= (1/24.82); % Original;

%% 0 Iteration "Air_ILC_Mill_130531.txt".

%step= (1/24.96); % PV2:Pos:

%% 1 Iteration: compAir_ILC_Mill_130603.txt".

% MILL:

%step= (1/(24.82)); % P1: Mill Original;

%% 0 Iteration "ILC_Mill_130531_P1.txt".

%step= (1/25.0); % P2: PV2-Pos: 1
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%% 1 Iteration: P2: compMill_ILC_Mill_130603_P2.txt".

%step= (1/24.95); % P5: PV2-Pos: 1

%% 1 Iteration: P5: airCompV10_ILC_Mill_130603_P5.txt".

%step= (1/(49.97)); % P6: PV2-Pos: 1

%% 1 Iteration: P6: compMill_V5_ILC_Mill_130603_P6.txt".

%step= (1/(49.61)); % P4: PV2-Pos: 1

%% 1 Iteration: P4: airCompV5_ILC_Mill_130603_P4.txt".

%step= (1/(26)); % Low Value Demo".

%step= (1/(24.84)); % High Value Demo".

x1P = 0: step: xLength;

y1P = zeros(1,length(x1P));

y2P = 0: -step: yLength;

x2P = xLength*ones(1, length(y2P));

% []

x3P = xLength: -step: 0;

y3P = yLength*ones(1, length(x3P));

y4P = yLength: step: 0;

x4P = zeros(1, length(y4P));

xBoxPos = [x1P x2P x3P x4P];

yBoxPos = [y1P y2P y3P y4P];

zPause1= zeros(1, length(yBoxPos));

z1P= 0: -step: -1;

zPause2= -1*ones(1, length(yBoxPos));

z2P= -1: -step: -2;

zPause3= -2*ones(1, length(yBoxPos));

xyInOut = zeros(1,10);

zIn = xyInOut;

zOut = -2*ones(1,10);

xyPause = zeros(1,length(z1P));

zPos = ([zIn zPause1 z1P zPause2 z2P zPause3 zOut])’;

xPos = ([xyInOut xBoxPos xyPause xBoxPos xyPause xBoxPos xyInOut])’;

yPos = ([xyInOut yBoxPos xyPause yBoxPos xyPause yBoxPos xyInOut])’;

110



B.2 ILC Script

%% Test of timing in RAPID-program --> all synced

figure

plot(-xPos, ’b’)

hold on

plot(-yPos, ’r’)

hold on

plot(zPos, ’g’)

grid on

%% Generate Reference RAPID Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

box_file = fopen(’box_file.txt’,’w’);

str = ’’;

for i = 1:2:length(xPos)

str = [str, ’\t’, ’MoveL [[’, num2str(xPos(i) +83.0, ’%0.5f’),

’,* ’, num2str(yPos(i) +34.5, ’%0.5f’),

’,* ’, num2str(zPos(i) +46.0, ’%0.5f’), ’],[0.707139,0.0,0.0,

0.707075],[-1,-1,0,1],* [9E9,9E9,9E9,

9E9,9E9,9E9]], v10, z0, tdelcam1\\WObj:=wdelcam1;’, ’\n’];

%sprintf(’%0.2f’,str);

end

fprintf(box_file, str);

fclose(box_file);

%%

close all

%% Generate ILC-reference from Errors in x,y,z

for i = 1:length(xPos)

xError(i) = xPos(i) - xNikPos(i);

xILC(i) = xPos(i) +xError(i);

yError(i) = yPos(i) - yNikPos(i);

yILC(i) = yPos(i) +yError(i);

zError(i) = zPos(i) - zNikPos(i);

zILC(i) = zPos(i) +zError(i);

end
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figure

plot(xError, ’g’)

hold on

plot(xPos, ’k’)

hold on

plot(xNikPos, ’r’)

hold on

plot(xILC, ’b’)

grid on

figure

plot(yError, ’g’)

hold on

plot(yPos, ’k’)

hold on

plot(yNikPos, ’r’)

hold on

plot(yILC, ’b’)

grid on

figure

plot(zError, ’g’)

hold on

plot(zPos, ’k’)

hold on

plot(zNikPos, ’r’)

hold on

plot(zILC, ’b’)

grid on

%%

close all

%% ILC RAPID CODE GENERATION

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Generate ILC Iteration:1; RAPID Code

box_file = fopen(’box_file.txt’,’w’);

str = ’’;

for i = 1:2:length(xILC)

str = [str, ’\t’, ’MoveL [[’, num2str(xILC(i) +83.0, ’%0.5f’),
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’,* ’, num2str(yILC(i) +34.5, ’%0.5f’),

’,* ’, num2str(zILC(i) +46.0, ’%0.5f’), ’],[0.707139,0.0,0.0,

0.707075],[-1,-1,0,1],* [9E9,9E9,9E9,

9E9,9E9,9E9]], v10, z0, tdelcam1\\WObj:=wdelcam1;’, ’\n’];

%sprintf(’%0.2f’,str);

end

fprintf(box_file, str);

fclose(box_file);

%% READ ILC:1:iter LOG txt-file

% Read ILC:1 First Iteration nikpos-log

%newFilename = ’/work/thomas/compAir_ILC_Mill_130603.txt’;

newFilename = ’/work/thomas/compMill_ILC_Mill_130603_P2.txt’;

%newFilename =

’/work/thomas/compMill_V5_ILC_Mill_130603_P6.txt’;

[newNikon,names]=readlog(newFilename,{’nikpos’});

%% CALCULATE ILC:1 SIGNALS

% Nikon Data ILC-Air: compAir_ILC_Mill_130603.txt’;

%newStart = 1095;

%newStop = 9259;

% Nikon Data P2: compMill_ILC_Mill_130603_P2.txt’;

newStart = 1047;

newStop = 9224;

% Nikon Data P6: compMill_V5_ILC_Mill_130603_P6.txt’

%newStart = 1273;

%newStop = 17590;

xNewNikPosRaw = -newNikon(newStart:newStop,2);

yNewNikPosRaw = -newNikon(newStart:newStop,3);

zNewNikPosRaw = -newNikon(newStart:newStop,1);

[b,a] = butter(6, 4/(0.5*125));

xNewNikPosBias = filtfilt(b, a, xNewNikPosRaw);

yNewNikPosBias = filtfilt(b, a, yNewNikPosRaw);
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zNewNikPosBias = filtfilt(b, a, zNewNikPosRaw);

%% Calculate ILC:1 Start & End Points for Calculating Offset & Var

xNPl = 0;

xNMi = -10;

vNSH1 = length(xyInOutN2) + length(x1PN2) +1;

vNEH1 = vNSH1 + length(x2PN2);

vNSL1 = vNEH1 + length(x3PN2);

vNEL1 = vNSL1 + length(x4PN2) + length(xyPauseN2);

vNSH2 = vNEL1 + length(x1PN2);

vNEH2 = vNSH2 + length(x2PN2);

vNSL2 = vNEH2 + length(x3PN2);

vNEL2 = vNSL2 + length(x4PN2) + length(xyPauseN2);

vNSH3 = vNEL2 + length(x1PN2);

vNEH3 = vNSH3 + length(x2PN2);

vNSL3 = vNEH3 + length(x3PN2);

vNEL3 = vNSL3 + length(x4PN2) + length(xyInOutN2) -5;

%% Check X Start & End Points ILC

xNF1 = ((vNSH1+xNPl):(vNEH1+xNMi)-10);

xNF2 = ((vNSL1+xNPl)-10:(vNEL1+xNMi)+10);

xNF3 = ((vNSH2+xNPl)+5:(vNEH2+xNMi));

xNF4 = ((vNSL2+xNPl)-5:(vNEL2+xNMi));

xNF5 = ((vNSH3+xNPl):(vNEH3+xNMi));

xNF6 = ((vNSL3+xNPl):(vNEL3+xNMi));

figure

plot(xNewNikPosBias, ’r’)

hold on

plot(xNF1, xNewNikPosBias(xNF1), ’b’)

hold on

plot(xNF2, xNewNikPosBias(xNF2), ’b’)

hold on

plot(xNF3, xNewNikPosBias(xNF3), ’b’)

hold on

plot(xNF4, xNewNikPosBias(xNF4), ’b’)

114



B.2 ILC Script

hold on

plot(xNF5, xNewNikPosBias(xNF5), ’b’)

hold on

plot(xNF6, xNewNikPosBias(xNF6), ’b’)

%hold on

%plot(xPos)

xlabel(’Point Index’)

ylabel(’X Position [mm]’)

grid on

%% Calculate X Offset ILC

xNewOffMeanH1 = xLength -mean(xNewNikPosBias(xNF1));

xNewOffMeanL1 = 0 -mean(xNewNikPosBias(xNF2));

xNewOffMeanH2 = xLength -mean(xNewNikPosBias(xNF3));

xNewOffMeanL2 = 0 -mean(xNewNikPosBias(xNF4));

xNewOffMeanH3 = xLength -mean(xNewNikPosBias(xNF5));

xNewOffMeanL3 = 0 -mean(xNewNikPosBias(xNF6));

xNewOff = (xNewOffMeanH1 + xNewOffMeanL1 + xNewOffMeanH2

+ xNewOffMeanL2 + xNewOffMeanH3 + xNewOffMeanL3)/6

%% Check Y Start & End Points ILC

yNPl = 10;

yNMi = -15;

yNdx = length(xyPauseN2);

yNF1 = (yNPl:(vNSH1+yNMi));

yNF2 = ((vNEH1+yNPl)-5:(vNSL1+yNMi))-5;

yNF3 = ((vNEL1-yNdx+yNPl):(vNSH2+yNMi));

yNF4= ((vNEH2):(vNSL2+yNMi)-5);

yNF5 = ((vNEL2-yNdx+yNPl)+10:(vNSH3+yNMi))-15;

yNF6 = ((vNEH3+yNPl)-5:(vNSL3+yNMi)-5);

figure

plot(yNewNikPosBias, ’r’)

hold on

plot(yNF1, yNewNikPosBias(yNF1), ’b’)

hold on

plot(yNF2, yNewNikPosBias(yNF2), ’b’)
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hold on

plot(yNF3, yNewNikPosBias(yNF3), ’b’)

hold on

plot(yNF4, yNewNikPosBias(yNF4), ’b’)

hold on

plot(yNF5, yNewNikPosBias(yNF5), ’b’)

hold on

plot(yNF6, yNewNikPosBias(yNF6), ’b’)

%hold on

%plot(xPos)

xlabel(’Point Index’)

ylabel(’Y Position [mm]’)

grid on

%% Calculate Y Offset ILC

yNewOffMeanL1 = 0 - mean(yNewNikPosBias(yNF1));

yNewOffMeanH1 = yLength -mean(yNewNikPosBias(yNF2));

yNewOffMeanL2 = 0 - mean(yNewNikPosBias(yNF3));

yNewOffMeanH2 = yLength -mean(yNewNikPosBias(yNF4));

yNewOffMeanL3 = 0 - mean(yNewNikPosBias(yNF5));

yNewOffMeanH3 = yLength -mean(yNewNikPosBias(yNF6));

yNewOff = (yNewOffMeanL1 + yNewOffMeanH1 + yNewOffMeanL2

+ yNewOffMeanH2 + yNewOffMeanL3 + yNewOffMeanH3)/6

%% Check Z Start & End Points ILC

zNF1 = (yNPl:(vNEL1-yNdx+yNMi)+5);

zNF2 = ((vNEL1+yNPl)+10:(vNEL2-yNdx+yNMi)-5);

zNF3 = ((vNEL2+yNPl):(vNEL3+yNMi));

figure

plot(zNewNikPosBias, ’r’)

hold on

plot(zNF1, zNewNikPosBias(zNF1), ’b’)

hold on

plot(zNF2, zNewNikPosBias(zNF2), ’b’)

hold on

plot(zNF3, zNewNikPosBias(zNF3), ’b’)

xlabel(’Point Index’)
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ylabel(’Z Position [mm]’)

grid on

%% Calculate Z Offset ILC

zNewOffMeanL1 = 0 -mean(zNewNikPosBias(zNF1));

zNewOffMeanL2 = -1 -mean(zNewNikPosBias(zNF2));

zNewOffMeanL3 = -2 -mean(zNewNikPosBias(zNF3));

zNewOff = (zNewOffMeanL1 + zNewOffMeanL2 + zNewOffMeanL3)/3

% NewOff X,Y,Z

NewOff = [xNewOff, yNewOff, zNewOff]

xNewNikPos = xNewNikPosBias +NewOff(1);

yNewNikPos = yNewNikPosBias +NewOff(2);

zNewNikPos = zNewNikPosBias +NewOff(3);

%% Calculate ILC Var & Std for X,Y,Z

xNH1 = xLength -xNewNikPos(xNF1);

xNL1 = 0 -xNewNikPos(xNF2);

xNH2 = xLength -xNewNikPos(xNF3);

xNL2 = 0 -xNewNikPos(xNF4);

xNH3 = xLength -xNewNikPos(xNF5);

xNL3 = 0 -xNewNikPos(xNF6);

xNewVec = [xNH1’ xNL1’ xNH2’ xNL2’ xNH3’ xNL3’];

xNewVar = var(xNewVec);

xNewStdDer = std(xNewVec);

yNL1 = 0 -yNewNikPos(yNF1);

yNH1 = yLength -yNewNikPos(yNF2);

yNL2 = 0 -yNewNikPos(yNF3);

yNH2 = yLength -yNewNikPos(yNF4);

yNL3 = 0 -yNewNikPos(yNF5);

yNH3 = yLength -yNewNikPos(yNF6);

yNewVec = [yNL1’ yNH1’ yNL2’ yNH2’ yNL3’ yNH3’];
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yNewVar = var(yNewVec);

yNewStdDer = std(yNewVec);

zNL1 = 0 -zNewNikPos(zNF1);

zNL2 = -1 -zNewNikPos(zNF2);

zNL3 = -2 -zNewNikPos(zNF3);

zNewVec = [zNL1’ zNL2’ zNL3’];

zNewVar = var(zNewVec);

zNewStdDer = std(zNewVec);

VarILC = [xNewVar yNewVar zNewVar]

StdDerILC = [xNewStdDer yNewStdDer zNewStdDer]

%% PRINT: Var & Std (Before (ILC:0) & After (ILC:1))

VarNoComp

VarILC

StdDerNoComp

StdDerILC

% IMPROVEMENT in Std With ILC

xImproveStdILC = 1 - xNewStdDer/xStdDer;

yImproveStdILC = 1 - yNewStdDer/yStdDer;

zImproveStdILC = 1 - zNewStdDer/zStdDer;

ImproveStdILC = [xImproveStdILC yImproveStdILC zImproveStdILC]

%% ILC:1: Determine start and end point of nikpos-data

figure

plot(xPos, ’r’)

hold on

plot(xNewNikPosRaw, ’b’)

grid on

figure

plot(yNewNikPosRaw)

hold on

plot(yPos, ’r’)

grid on

figure
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plot(zNewNikPosRaw)

hold on

plot(zPos, ’r’)

grid on

%% X,Y: ILC:1: Plot shape/"toolpath" of reference and nikpos

figure

plot(xPos, yPos, ’b--’)

hold on

plot(pXpath, pYpath, ’Color’,grey);

hold on

plot(pXtool, pYtool, ’Color’,grey);

hold on

plot(xNikPos, yNikPos, ’r’)

hold on

plot(xNewNikPos, yNewNikPos, ’g’)

xlabel(’X Position [mm]’)

ylabel(’Y Position [mm]’)

grid on

%% Y,X: ILC:1: Plot shape/"toolpath" of reference and nikpos

figure

plot(yPos, xPos, ’b--’)

hold on

plot(pYpath, pXpath, ’Color’,grey)

hold on

plot(pYtool, pXtool, ’Color’,grey)

hold on

plot(yNikPos, xNikPos, ’r’)

hold on

plot(yNewNikPos, xNewNikPos, ’g’)

xlabel(’Y Position [mm]’)

ylabel(’X Position [mm]’)

grid on

%% Z,Y: ILC:1: Plot shape/"toolpath" of reference and nikpos

figure

plot(pZVpath, pYVpath, ’Color’,grey);

hold on

plot(pZVtool, pYVtool, ’Color’,grey);
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plot(zPos, yPos, ’b--’)

hold on

plot(zNikPos, yNikPos, ’r’)

hold on

plot(zNewNikPos, yNewNikPos, ’g’)

xlabel(’Z Position [mm]’)

ylabel(’Y Position [mm]’)

grid on

%% Z Index and Err Lim

zLimH = 0.1*ones(1,length(zPos));

zLimL = -0.1*ones(1,length(zPos));

figure

plot(zLimH, ’Color’,grey);

hold on

plot(zLimL, ’Color’,grey);

plot(zPos, ’b--’)

hold on

plot(zNikPos, ’r’)

hold on

plot(zNewNikPos, ’g’)

xlabel(’Point Index’)

ylabel(’Z Position [mm]’)

grid on
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