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Abstract
This Master Thesis successfully explains the difference in probability of default implied

by Credit Default Swaps, traded by the market, and the benchmark Moody’s EDFTM. The
difference is explained by the market price of risk, related to the Girsanov kernel, allowing us
to transform the risk neutral measure Q to the physical measure P. This market price of risk
is modeled with a log-linear multivariate regression model combined with elastic net, using
market data. The predictability of the model is examined. The market price of risk is seen to
be mostly dependent on market sentiment, in front of firm specific factors and liquidity. The
analysis is made for AB Volvo, Stora Enso Oyj and TeliaSonera AB on data from 2006 - 2014.
The work was carried out at Swedbank.
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1 Introduction
The basic purpose of the Credit Default Swap (CDS) is to insure the buyer against default risk.
The CDS spreads have historically been seen as a pure measure of default risk since the cash-flows
exchanged between the buyer and seller of protection represent the price of such an insurance.
After the invention of the CDS in the late 1990’s this was what researchers assumed. However, the
probability of default (PD) implied by the market is observed to diverge from the PD calculated
from more fundamental models. This suggest that the CDS spread contains more than a compen-
sation for a possible default. After the contracts started traded more actively in 2004 this view was
absorbed by the research community who started to try to explain the difference in implied credit
risk from CDS and bond spreads.

While researchers have discussed drivers of CDS spreads, apart from the true credit risk, not
many have discussed its impact on the probability of default. As the CDS contracts should insure
you for a possible default, the comparison between the PD implied by the market and a "true" PD
should contain the same determinants as the extra compensation in spread, since the "true" credit
risk should be ascribed to the "true" PD. This difference is attributed to the market price of risk
related to the Girsanov kernel via the Radon-Nikodym derivative for the change between a risk
neutral measure, Q, and the physical measure, P.

1.1 Purpose
This thesis tries to evaluate and explain the difference in the probability of a firm to default from
the two main methods available; Structural and Reduced form models.

1.2 Delimitations
The goal of this thesis is not to perfectly model the difference in implied PD from the reduced form
models and structural models. It rather tries to explain the difference using market data.

1.3 Outline
The thesis is split into four main parts. A theoretical background on the subjects handled is given
after which the methodology and model is specified. It continues to present the results and ends with
a discussion and potential drawbacks. The reader is expected to be familiar with basic probability
theory.
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1.4 Related Previous Work
Longstaff, Neis and Mithal (2003) investigate how much of yield spread from corporate bonds that
are attributed to default risk and how much that comes from a non-default component, which they
attribute to liquidity and taxes. In contrast to previous work they use CDS spreads. However, they
use the CDS spread as a pure measure of default risk. The same authors move along to examine
whether credit protection is priced consistently in the corporate bond market and CDS market
using a reduced form model. They base their analysis on raised concerns that the insurance is not
priced fairly in the credit derivative market and exemplifies by rumors that hedge funds should
have driven up the CDS spreads in an effort to induce rating agencies to downgrade specific firms
[Longstaff et al. , 2003].

The view of CDS contracts by the research community largely differs from the inception of the
first contracts, it also differs before and after the financial crisis. It has been suggested that the
CDS could cause, rather than insure against, default. The CDS contracts played large roles in
both the collapse of Lehman Brothers in 2008 and the Greek debt crisis in 2010 as an increase
in CDS spread can lead to an increased borrowing cost misrepresenting to the underlying credit
risk. Tang and Yan (2013) discusses the lack of empirical evidence on the determinants of spread
changes and investigate what moves CDS spreads through a regression model of daily changes
[Tang & Yan, 2013] .

When looking at default, there is a difference between physical and risk neutral default measures.
Hull, White and Predescu (2005) show through analysis of bonds that the ratio of risk neutral to
real world default intensities decreases as the credit quality, measured by ratings from Moody’s,
declines. They also show that the difference between the two default intensities increases as the
credit quality declines. The size between the two default intensities is sometimes referred to as the
credit spread puzzle. Many researchers have tried to solve this puzzle with more or less qualitative
arguments. Later research, that has included CDS contracts instead of bonds, has mainly focused
on structural frameworks [Hull et al. , 2005a].

In this thesis we take on the task to try and solve this puzzle in a more quantitative way. The reader
should thus be aware of the difficulty of the problem, which at a first look might seem simple.

1.5 Problem Formulation
In difference to models from the beginning of the 2000’s this thesis assumes that the CDS spread
observed in the market contains a demanded compensation for default and a compensation for a
non-default component that could include other risks in the market.

CDSspread = f(compensation for default, compensation for non-default) (1)

Hypothesis 1 An initial hypothesis was to think of the non-default component as noise. In
the market this noise causes the investor to pay a different premium for the insurance than the
actual premium for the risk of default. This was assumed to be the largest cause of the difference
between the calculated implied PD and Moody’s EDFTM. An initial approach to explain and
"wash" away this extra noise in the spreads to gain a more accurate estimated implied PD was
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made, see Appendix A.1 for further reading. While this initial analysis was shown not to be fruitful,
analysis of the correlation between market data and the CDS spread of the selected firm was useful.

Hypothesis 2 A second hypothesis was made under the discovery that the implied PD and
Moody’s EDFTM are priced under different probability measures. Given that Moody’s EDFTM is
priced under the physical measure P while the implied PD is priced under the risk neutral measureQ,
there should be a fundamental difference between the two. This difference is commonly attributed
to the market price of risk, i.e. the risk premium demanded by the market for the investment. It
is next assumed that it is this difference that causes the divergence between the implied PD and
EDFTM. This thesis next tries to evaluate if it is possible to quantify this market price of risk and
further, is it possible to explain it and find its biggest drivers and possible predictive abilities using
market data?
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2 Theory and Concepts
To assure the reader’s understanding of the problem and the results, some underlying theory need
to be specified.

2.1 The Credit Default Swap
A Credit Default Swap (CDS) is a contract providing insurance against a default of a certain
company, the reference entity. It is designed to transfer credit risk. The default can be triggered by
a number of events such as the failure to pay, bankruptcy or restructuring. The latter was subject
to change after years of debate in the ISDA "Big Bang" in 2009, where some North American
contracts started trading without the restructuring clause [Markit, 2009]. The protection buyer
pays a periodic fee, a premium, to the protection seller in return to be compensated in the case of a
triggered default. The fee is paid until the end of the life of the CDS or until a credit event occurs.
The swap is settled by cash or physical delivery, where the actual underlying bond is delivered in
exchange for its par value. In the case of a cash settlement the protection seller pays (1 - RR) of
the principal, where RR is the recovered amount from the reference borrower as a percentage of
the face value, the recovery rate, see Figure 1 [Berndt et al. , 2005, ISDA, 2013].

Figure 1: The figure shows the cash flow exchanged by the buyer and the seller of protection

The instruments are used to hedge and trade credit risk and are traded over the counter, OTC.
The contracts could for long be tailor made to the buyer preferences. Although, since after the
2008 financial crisis, where shortcomings in the CDS market were revealed, the derivatives have
moved to become more standardized with standard maturities and coupons. CDS contracts are
available in a number of maturities where the 5 year maturity is by far the most liquid. The CDS
has contributed to market completeness through an easier way to express a short view on bonds,
since shorting bonds can be difficult as it required the short-seller to borrow the assets through
repo [Weistoffer, 2009].

Since the seller agrees to compensate the buyer in the case of default in return for a premium
the market price of the payment is an indication of the perceived default risk for the reference
entity. The premium is quoted as an annual spread on the market. The value of a swap at
time zero is usually assumed to be fair, the present value of the exchanged cashflows are zero
[Hull & White, 2000].

PVPremium leg = PVProtection leg (2)
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2.2 Existing Models of Default Risk
Two main approaches behind the estimation of default probability has emerged; structural models
and reduced form models.

2.2.1 Structural Models

Structural models includes a set of models that model the PD through the firm value of a specific
firm. The default event is assumed to be triggered when the firm value drops below a random or
non-random barrier. This definition results in the default time being a predictable stopping time
with respect to the reference filtration, modeling the flow of information of the whole market. Since
the model models default time in terms of firm value the method is closely linked to the economic
fundamentals of the firm, the structure. Some well known models are the Merton model from
1974, Black and Cox model and Moody’s KMV model. The latter is currently most commonly
used by market practitioners as a benchmark and will continue to serve this purpose in this thesis
[Bielecki & Rutkowski, 2002].

In short, the Merton model and structural models derived from it includes three steps:

1. Estimate the market value At and volatility σA of the firm in question’s assets.

2. Calculate the distance-to-default DD given in number of asset standard deviations σA.

3. Transform the distance-to-default into a PD.

The Merton model sees the firm’s value of equity Et as a call option written on its value of assets
At with strike price equal to the debt payment D promised i.e.

ET = max[AT −D, 0] (3)

here ET is the payment to the shareholders at time T [Hull et al. , 2005b]. The firm defaults when
the value of assets At goes below the promised debt payment D. The Merton model operates under
Black & Schole’s framework. To estimate the actual probability of default, it is assumed that under
the real-world probability P the value process At has the following dynamics

dAt = µAtdt+ σAAtdWt (4)

where µ is the expected growth rate andWt is a Brownian motion under P [Bielecki & Rutkowski, 2002].
Under these dynamics the asset values are assumed to be lognormal distributed

ln(At) ∼ N
(

ln(A0) +

(
µ− σ2

A

2

)
, σ2
A

)
(5)

The probability of default, PD, can now be calculated

P[τ < T |F0] = P[AT < D|F0] = P[ln(AT ) < ln(D)|F0] = Φ

[
−

ln(A0

D ) + (µ− σ2
A

2 )T

σA
√
T

]
= Φ[−DD]

(6)
[Bielecki & Rutkowski, 2002]. Φ is the standard normal cumulative density function and DD the
distance to default according to Merton [Hull et al. , 2005b].
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2.2.2 Reduced-Form Models

In difference from the structural models the reduced-form models or hazard rate models do not
model the firm value but are instead only concerned with the modeling of the default time. The
set of reduced form models model a random default time, nonpredictable stopping time, defined as
the jump time of some one-jump process, usually a Poisson process. This leads to the modeling of
the default intensity process, the hazard rate [Bielecki & Rutkowski, 2002].

Given that default has not occurred before time t the conditional risk neutral probability of time
of default is

Q[τ < t+ dt|τ ≥ t] = h(t)dt (7)

Where h(t) is the intensity of the Poisson process, the hazard rate, which is assumed to be determin-
istic (independent of interest rates and recovery rates) and time varying [O’Kane & Turnbull, 2003].
The hazard rate is the instantaneous rate of default and using it, the survival probability can be
derived. Defining H(t) =

∫ t
0
h(u)du, the survival probability under the risk neutral measure Q can

be written as

Q{τ ≥ t} = Q{H(τ) ≥ H(t)} = Q
{
H(τ) ≥

∫ t

0

h(u)du

}
= e−

∫ t
0
h(u)du (8)

where the survival probability is the probability of no default before time t. The last step of equa-
tion (8) uses that under the Poisson assumption the waiting time until the default is exponentially
distributed. The risk neutral probability of default (PDt) before time t can now be expressed as

PDt = Q(τ < t) = 1−Q(τ ≥ t) = 1− e−
∫ t
0
h(u)du (9)

[Brigo & Mercurio, 2006].

2.3 The Benchmark Probability of Default - Moody’s EDFTM

Moody’s KMV (MKMV) is a structural model which is used by Moody’s to calculate the Expected
Default Frequency, EDFTM. This is a widely used benchmark measure of PD. This thesis uses this
EDFTM to test the explanatory power of the model [Hull et al. , 2005b].

As mentioned, MKMV is an extension to Merton’s default probability framework. However, it is
extended to better match the real world behavior. For instance Moody’s uses proprietary routines
to calculate asset value and asset volatility, they also have a large database of historical defaults.
DD is calculated in terms of standard deviations and then they look at the empirical distribution
for default and from that they calculate the EDFTM. With this model they calculate the "physical
probability of default" which is a probability under the physical measure P.

The survival probability, S(t), is related to Moody’s annualized EDFTM as

EDFTM
t = 1− S(t)

1
t (10)

See [Sun et al. , 2012] for details.
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2.4 The Pricing of a Credit Default Swap using a Reduced Form Ap-
proach

In the absence of arbitrage and under the risk neutral probability measure Q one can derive the
risk neutral valuation formula of a defaultable claim.

Protection
Seller B

-

�

protection 1−RR at default τ if Ta < τ ≤ Tb

spread S at Ta+1, . . . , Tb or until default τ

-

�

Protection
Buyer A

Figure 2: The cashflows in a CDS contract valid between times [Ta, Tb] where τ is the time of
default and RR is the recovery rate for the reference entity. Premium payments are to be made at
Ta+1, . . . , Tb unless the reference entity defaults somewhere between [Ta, Tb], then B is required to
cover the losses for A due to the default [Brigo & Mercurio, 2006].

From the sellers perspective, the present value at time t of the CDS contract can be expressed
according to

Πa,b(t) = S
B(t)

B(τ)
(τ − Tβ(τ)−1)1{Ta<τ<Tb}+

+ S

b∑
i=a+1

B(t)

B(Ti)
∆i1{τ≥Ti} − (1−RR)

B(t)

B(Ti)
1{Ta<τ≤Tb}

(11)

where τ is the time of default, Tβ(t) is the first date among the Ti’s that follows t, t ∈ [Tβ(t)−1, Tβ(t)),
∆i is the year fraction between Ti−1 and Ti. B(t)/B(T ) is the stochastic discount factor at time
t for maturity T . RR is the recovery rate which is assumed to be deterministic and S is the CDS
spread. The risk neutral valuation formula for the CDS price is

CDSa,b(t, S,RR) = EQ (Πa,b(t)|Gt)
def.
= PV a,bPremiumLeg − PV

a,b
ProtectionLeg (12)

Where Gt is the default free filtration that includes default monitoring i.e. it is known whether the
underlying name of the CDS has defaulted so far or not. As equation (12) shows, the evaluation
formula can be expressed using the present values of the premium leg and protection leg mentioned
in Section 2.1. These legs can now be expressed as equation (13) and (14) respectively. See the
Appendix A.5 for derivation.

PV a,bPremiumLeg = S

∫ Tb

t=Ta

EQ
[
B(s)

B(t)

]
(τ − Tβ(τ)−1)Q(τ ∈ [t, t+ dt))+

+ S

b∑
i=a+1

EQ
[
B(s)

B(Ti)

]
∆iQ(τ ≥ Ti)

(13)

PV a,bProtectionLeg = (1−RR)

∫ Tb

t=Ta

EQ
[
B(s)

B(t)

]
Q(τ ∈ [t, t+ dt)) (14)
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The fair CDS spread S is calculated using that the expected value of future exchanged cash flows
should be zero which is the same as equalising the premium- and protection leg as in Section 2.1
i.e.

CDSa,b(t, S,RR) = 0 ⇒ PV a,bPremiumLeg = PV a,bProtectionLeg ⇒

S =
(1−RR)

∫ Tb
t=Ta

EQ
[
B(s)
B(t)

]
Q(τ ∈ [t, t+ dt))∫ Tb

t=Ta
EQ
[
B(s)
B(t)

]
(τ − Tβ(τ)−1)Q(τ ∈ [t, t+ dt)) +

∑b
i=a+1 EQ

[
B(s)
B(Ti)

]
∆iQ(τ ≥ Ti)

(15)

If S is known from the market, equation (2) can be used to calculate the default probability implied
by it. One way of solving for this probability is by discretizing the expressions in equation (13) and
(14) by assuming a hazard rate model [Brigo & Mercurio, 2006].

2.4.1 Discretization of the Premium- and Protection Leg Assuming Constant Hazard
Rates

One way of computing the implied PD is to calculate the implied hazard rate. Assume that
CDS spreads S0,tN for different maturities tN written on the same underlying entity is accessible,
ti, i = 0, 1, 2, . . . , N is the premium payments dates. If the hazard rate is assumed to be constant
and deterministic between the tN ’s the premium- and protection leg given in equation (13) can be
approximated as follows

PVPremiumLeg = S0,tN

{
N∑
i=1

∆ti−1,tiDFt0,ti

[
Q(t0, ti−1) +

1PA

2
(Q(t0, ti−1)−Q(t0, ti))

]}

PVProtectionLeg = (1−RR)

M ·tN∑
m=1

DFt0,tm(Q(t0, tm−1)−Q(t0, tm))

(16)

Where ∆ti−1,ti is the year fraction between ti−1 and ti, DFt0,ti is the risk free discount factor from
t0 to ti which is assumed to be known, Q(t0, ti) is the survival probability between t0 and ti for the
underlying entity that the CDS is written on. The accrued interest i.e. the integral in the expres-
sion for the premium leg, equation (13), is here approximated using the trapezoidal rule. Accrued
interest is not always specified in the CDS contract, the function 1PA is therefore a function that
is 1 if accrued interest is specified and 0 if not. The integral in the protection leg, equation (14) is
here discretized by assuming that default only can occur on a finite number of discrete points per
year, M , called the discretization frequency. A CDS with maturity tN has M · tN possible default
times m = 1, 2, . . . ,M · tN in equation (16). The larger the value for M the more accurate the
calculations will be but larger M also means more calculations.

Based on the fact that hazard rates between the maturity times tN are assumed to be constant,
given a set or subset of maturities tN1 , tN2 , . . . , tNn , the survival probability on α years basis can
be written as

Q(t0, tNα) = exp(−(h0,1tN1 + h1,2(tN2 − tN1) + · · ·+ hn−1,n(tNα − tNα−1))) (17)
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Where hi−1,i is the constant hazard rate between maturities tNi−1 and tNi . Using this, it is possible
to iterate a hazard rate term structure by taking the shortest CDS maturity and use equation (2)
to calculate the constant hazard rate h0,1 for that maturity. When this is done the procedure is
repeated and solved for h1,2 and so on [O’Kane & Turnbull, 2003].

2.4.2 Implied PD, a Practical Example

Assume given spreads S0,tNi
for maturities i = 1, 3 and 5 years. A monthly discretization frequency

M = 12 and quarterly premium payments are set, which mean that a premium is paid at i =
3, 6, 9, . . . , tNi . It is also assumed that no accrued interest is specified, see equation (16). The value
of h0,1 can now be calculated using the 1 year CDS spread and equation (2).

PVPremiumLeg = PVProtectionLeg ⇒

S0,tN1

∑
i=3,6,9,12

∆ti−3,tiDFt0,tie
−h0,1

i
12 = (1−RR)

12∑
m=1

DFt0,tm(e−h0,1
m−1

12 − e−h0,1
m
12 )

(18)

This equation can now be solved for h0,1 by using a numerical method such as a one dimensional
root searching algorithm e.g. Newtons method. Next step is to repeat the procedure to solve for
h1,2 and so on until the final maturity is reached, in this case tN5

. When the iteration is done the
piecewise constant hazard rate term structure is evaluated [O’Kane & Turnbull, 2003].

2.5 The Lasso Method
The Least Absolute Shrinkage and Selection Operator Method or the lasso method, is a method for
variable selection for regression models introduced by Tibshirani in 1996 [Tibshirani, 1996]. The
lasso method minimizes the residual sum of squares subject to the sum of the absolute value of the
coefficients being less than a constant. It improves prediction accuracy by shrinking some coefficients
or setting others to zero by imposing a L1 - norm penalty on the regression coefficients. The more
commonly used Ordinary Least Squares, OLS, regression finds an unbiased linear combination of
the xi’s that minimizes the residual sum of squares. However, if the number of parameters are
large or if the parameters are highly correlated through multicolinearity, the OLS method may
yield results with large variance, thus reducing the accuracy of the prediction. The lasso method
sacrifices a bit of the bias in order to reduce the variance of the parameters to improve the overall
prediction accuracy [Tibshirani, 1996]. In order to understand the lasso method it is relevant to
start with something that can be solved in closed form, which lasso cannot. Therefore a short
description of ridge regression follows.

Definition 2.1 (Ridge Regression). Consider the data (xi, yi), i = 1, 2, ..., n, where xi = (x1i, ..., xpi)
are the prediction variables and yi are the responses. Assume that the xij are standardized so that∑
i xij/n = 0,

∑
i x

2
ij/n = 1. If β̂ = (β̂1, ..., β̂p), the ridge estimate on Lagrangian form is defined as

β̂ = arg min
β

N∑
t=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

β2
j , λ ≥ 0 (19)

[Hastie et al. , 2009]
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Here λ is the shrinkage parameter, the larger λ the greater the shrinkage. The parameters are
shrunk towards zero due to the L2-norm penalty. Writing equation (19) on matrix form

arg min
β

(y −Xβ)T(y −Xβ) + λβTβ, λ ≥ 0 (20)

it is possible to get a closed form solution

β̂ = (XTX + λI)−1XTy. (21)

Although ridge regression does not have the property of setting coefficients to zero, the lasso method,
which possess this property, is very similar [Hastie et al. , 2009].

Definition 2.2 (Lasso). Consider the data (xi, yi), i = 1, 2, ..., n, where xi = (x1i, ..., xpi) are
the prediction variables and yi are the responses. Assume that the xij are standardized so that∑
i xij/n = 0,

∑
i x

2
ij/n = 1. If β̂ = (β̂1, ..., β̂p), the lasso estimate β̂ is defined by

β̂ = arg min
1

2

n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)
2 subject to

p∑
j=1

|βj | ≤ t (22)

Here t ≥ 0 is a tuning parameter controlling the amount of shrinkage that is applied to the estimates.
Values t <

∑
|β̂oj |, where β̂o are the OLS estimates, will cause shrinkage of the solution towards

zero, some coefficients may be exactly zero. If t >
∑
|β̂oj | the lasso method yields the same estimate

as the OLS [Tibshirani, 1996]. This expression can also be written on an equivalent Lagrangian
form

β̂ = arg min
1

2

n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)
2 + λ

p∑
j=1

|βj | , λ > 0 (23)

[Hastie et al. , 2009].

A fundamental step is to chose the value of λ optimally. As mentioned this parameter controls
the amount of shrinkage on the coefficients resulting in a subset of selected variables to include
in the final model. A too large λ leads to excessive shrinkage on the parameters and the selected
variables may lack some informative variables. On the other hand a too small λ could lead to a
scenario where the amount of shrinkage is too small and the set of selected variables may contain
some uninformative variables. For these reasons the λ parameter should be chosen optimally. This
is often done through cross-validation.

The lasso has shown to have excellent abilities, however some drawbacks should be mentioned.
In the case of multicolinearity among the variables, the penalty from the L1 norm is not sufficient.
Methods as ridge regression or elastic net, that uses the L2-norm respectively both the L1 and L2

norm, succeeds the lasso in prediction performance. Therefore the issue of multicolinearity should
be carefully evaluated before a method is selected. A common critique is also found in the case
when p > n, as the lasso cannot select more than n variables [Tibshirani, 1996].

The relaxed lasso first uses lasso to select non-zero predictors, then applies the lasso method again
using only the selected variables from the first step. Since the variables in the second step have
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Figure 3: Contours of constant value of
∑
|βj |q for given values of q [Hastie et al. , 2009].

less competition from noise variables, cross validation will tend to pick smaller values for lambda.
This results in the coefficients to be shrunken less than those in the initial estimate. This is
the method used for parameter estimating in the thesis but in combination with the elastic net
[Hastie et al. , 2009].

2.6 The Elastic Net
The elastic net is a related method to lasso which should be used when the variables are highly
correlated. In general the elastic net tends to retain more non-zero variables than lasso but with
smaller magnitudes. As previously mentioned the elastic net penalize using both the L1 and L2

norm. The penalty has the form

(1− α)‖β‖22 + α‖β‖1 =

p∑
j=1

(α|βj |+ (1− α)β2
j ) (24)

When α = 1 the elastic net is the same as lasso and when α = 0 the elastic net approaches ridge
regression. The α is often chosen qualitatively and is set to 0.5 for the purpose of this thesis
[Hastie et al. , 2009].

As seen in Figure 3, depending on the choice of norm, q, the constraint region has different shapes.
In the two-dimensional case the lasso has the shape of a diamond while ridge regression has the
shape of a disk. In the case when q > 1, |βj |q is differentiable at 0 and does not share the ability
of the lasso for setting coefficients exactly to zero. The elastic net mixes the L1- and L2-norm
depending on the choice of α, thus resulting in a diamond shape with smooth edges but with
non-differentiable corners, see Figure 4.

2.7 Cross-Validation
A simple and commonly used method for estimating prediction errors is cross validation. The
method estimates the expected extra-sample error ε = E[L(Y, f(X)], the average generalization
error when the method f(X) is applied to an independent test sample from the joint distribution
of X and Y [Hastie et al. , 2009]. The cross-validation method is here used to choose an optimal
penalizing λ.
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Figure 4: Contours of constant value of
∑
|βj |q for q = 1.2 (left plot), and the elastic-net penalty∑

(αβ2
j + (1 − α)|βj |) for α = 0.2 (right plot). Although visually very similar, the elastic-net has

sharp (non-differentiable) corners, while the q = 1.2 penalty does not[Hastie et al. , 2009].

2.7.1 K-Fold Cross-Validation

K-Fold cross-validation uses parts of the available data to fit the model and a different part to test
it. The data is split into K roughly equal sized parts and the kth part is fitted to the other K − 1
parts of the data. The prediction error of the fitted model is calculated when predicting the kth
part of the data. This is done for k = 1, 2, ...,K and the K estimates of the prediction error are
combined [Hastie et al. , 2009].

Definition 2.3. Let κ : {1, ..., N} 7→ {1, ...,K} be an indexing function indicating the partition
to which observation i is allocated by the randomization. Denote by f−κ(i)(x) the fitted function,
computed with the kth part of the data removed. Then the cross-validation estimate of prediction
error is

CV (f) =
1

N

N∑
i=1

L(yi, f
−κ(i)(xi)) (25)

[Hastie et al. , 2009]

In the case when K = N the method is known as leave-one-out cross-validation and the esti-
mator is approximately unbiased for the true predictor error, but can have high variance due to the
N training sets being so "similar" to each other. With a lower K, the cross-validation has lower
variance but depending on the size of the training set, bias could be a problem. A common choice
for K is 10 and is usually recommended as a good compromise between bias and variance. This is
also the choice for this thesis [Hastie et al. , 2009].

2.8 Goodness of Fit
To test how much of the variability of the response that can be explained by the variables, the
coefficient of determination or the R2 can be used. R2 ranges between 0 − 1 where a R2 = 1
implicates a perfect fit.

R2 = 1−
∑

(yi − ŷi)2∑
(yi − ȳ)2

(26)

where ȳ = 1
n

∑n
i=1 yi , and ŷ is the model estimate of y [Rawlings et al. , 2001].
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2.9 Change of Probability Measure
To change measure in the setting of a general probability space (Ω,F ,P), the Radon-Nikodym
Theorem is used. The theorem states that for a measure Q absolutely continuous with respect to
P there is a stochastic variable L such that Q is given by

Q = EQ[1AL]

L is the likelihood ratio of the measure change P→ Q [Åberg, 2010].

Theorem 1 (Change of Measure and L). Consider a probability space (Ω,F ,P) and an absolutely
continuous probability measure Q. Then there is a stochastic variable L with

L ≥ 0

and
EP[L] = 1

such that
Q(A) = EP [1AL] , ∀A ∈ F
EQ[X] = EP[XL], ∀F −measureable X

If P and Q are equivalent, i.e. P(A) = 0⇔ Q(A) = 0, ∀A, the likelihood ratio L fulfills

L > 0

and
P(A) = EP

[
1A

1

L

]
, ∀A ∈ F

[Åberg, 2010]

Lemma 1. Let g(t) be an Ft-adapted process that satisfies

P

{∫ T

0

g2(t) dt <∞

}
= 1

Then the equation
dL(t) = g(t)L(t)dX(t), L(0) = 1 (27)

has the unique and strictly positive solution

L(t) = exp

(∫ t

0

g(s) dX(s)− 1

2

∫ t

0

g2(s) ds

)
(28)

[Madsen et al. , 2004]

Theorem 2 (The Girsanov Theorem). Let X(t) be a (P,Ft)-Wiener process and let g(t) and L(t)
be as defined in Lemma 1. Assume that E[L(t)] = 1 and define the probability measure Q by
dQ = L(T )dP on Ft. Then the process W(t), defined by

W (t) = X(t)−
∫ t

0

g(s) ds

becomes a (Q,Ft)-Wiener process. Or on differential form

dX(t) = g(t)dt+ dW (t)

[Madsen et al. , 2004]
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2.9.1 Hazard rates under Q

If Q is absolutely continuous with respect to the reference probability measure P, then under mild
assumptions, it is possible to derive a relationship between the hazard functions HQ and HP under
Q and P respectively. If the filtration F is generated by a Brownian motion, any F-martingale is
a G-martingale under P and the hazard process H(τ) is a continuous increasing process, then it
would be natural to conjecture that if a probability measure Q is equivalent to P on (Ω,Gt), the
F-hazard process HQ is given by the following expression

HQ =

∫ t

0

(1 + Γ)dHP
u , ∀t ∈ [0, T ].

[Bielecki & Rutkowski, 2002]. In the case of a random time τ , which admits the F-intensity process
hP under P it would be natural to expect that τ also admits the F-intensity process hQ under Q
and that the relationship

hQ = hP(1 + Γ) (29)

is satisfied for every t ∈ [0, T ] [Bielecki & Rutkowski, 2002].

2.9.2 The Interpretation of Γ

The Bank for International Settlements suggest that the Γ is the market price of default event
risk based on analysis of default intensities in bonds. In another publication they apply (29)
to CDS where they suggest Γ to be the jump-at-default risk. However, these definitions were
made in 2005-2006 before the financial crisis which very much changed the view of CDS contracts
[Amato & Luisi, 2006, Amato, 2005]. Given that later research, such as Tang and Yan (2013),
suggest that the CDS spreads contain other drivers than the true credit risk, this thesis defines Γ
as the market price of risk, thus including more than default event risk/jump-at-default risk. Björk
(2009) defines a market price of risk as −g, where g is the Girsanov kernel, and the market price
of risk measures the aggregated risk aversion in the market [Björk, 2009]. It always appears in
pricing equations when something that isn’t traded is modeled, in this case Moody’s EDFTM. It
measures how much extra return you need to take unhedgeble risk [Ahmad & Wilmott, 2007]. A
Γ = 0 implies a risk neutral market where hQ = hP.
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3 The Data
The data used was daily samples from January 3rd 2006 to December 31st 2013 obtained through
Bloomberg. Moody’s EDF was provided by Moody’s Investors Service. The data was matched
using an intersection of the time vectors. As the dataset included several crises with turbulent
changes on a daily basis the intersection of the times was used instead of interpolation of missing
data. Mid price CDS data was obtained for for 1y, 3y and 5y CDS for AB Volvo, TeliaSonera AB
and Stora Enso Oyj. Data points where the bid price was higher than the ask price were removed.
See Appendix A.6 for further explanation of the data. Each set of factor data was divided with its
mean in an attempt to neutralize the effect of different units across the different factors.

It is to be noted that the data obtained from another timezone can have a lagged correlation,
investor reaction in the United States does not match reaction in the European market due to
the difference in market opening times. As the US market has opening times that intersect the
European market this offers some difficulty and the correlation plot need to be closely examined.

3.1 Factors Evaluated
The factors chosen for evaluation were based on previous research and discussion with experienced
traders. Tang and Yan (2013) find that CDS prices are more sensitive to trading when option
implied volatility is higher. They also find that changes in macroeconomic conditions, measured
by changes in the five year swap rate and the VIX among else, and firm fundamentals, such as
firm volatility, are important determinants for changes in the CDS spread [Tang & Yan, 2013]. The
traders also indicated the importance of macroeconomic conditions but rejected the hypothesis that
the change in exchange rate of the quotation currency of the CDS contracts has any impact on the
actual CDS spread. After this initial analysis subgroups of potential factors that influence CDS
spreads were selected.

3.1.1 Market Sentiment

Equity Based Volatility Measures A measure of option implied volatility is the VIX, a
volatility index well known by the market. It is based on implied volatility from options on the
S&P 500, an equity index comprising of the 500 largest companies by market value in the United
States [CBOE, n.d.b]. A European alternative is the V2X derived from Euro Stoxx 50 index
options. Both of these indices measures market participants sentiment of 30 days forward volatility
[CBOE, n.d.b, Eurex, n.d.]. These indices are also commonly used as a measurement for market
risk aversion or the "fear factor" in the market.

Volatility Skew The Chicago Board Option Exchange (CBOE), has created an index derived
from the price of S&P 500 tail risk, the risk of outlier returns of two or more standard deviations
below the mean. An increased perceived tail risk results in an increased demand for low strike puts
which increases the Skew [CBOE, n.d.a].

Foreign Exchange Implied Volatility The implied volatility for options on foreign exchange
rates for USD/SEK and EUR/USD with expiry in 1 day, 1 week, 1 month, 6 months, 1 year, 2
year, 3 year and 5 year was analyzed. The selection was highly influenced by the number of data
samples available in each set which were limited in some of the expires.
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Swaption Volatility Implied volatility for 5 year swaptions for SEK, EUR and USD with
expiry 3 months, 6 months and 1 year were analyzed.

Rates Germany is one of the leading economies in Europe with a substantial economic influ-
ence. When Europe faces distress the German Bund benefits from investors flight to quality and
the rate could therefore potentially be used as a market sentiment factor for Europe. Data for a
5 year Germany government bond-rate index was used. Evaluation was also made with some of
the European interbank rates for 3 months maturity; London Interbank Rate (LIBOR), Stockholm
Interbank Rate (STIBOR) and European Interbank Rate (EURIBOR). These are all often used as
a benchmark. Five year swap rates for EUR and SEK were also analyzed.

3.1.2 Firm and Sector Specific Variables

Equity The companies analyzed all had publicly traded equity. The equity traded on the
Stockholm exchange was chosen to minimize the effect of lagged correlation from another timezone.

Volatility from Equity Returns A GARCH(1,1) with a student - t distribution was used
to model the time-varying volatility from daily returns in equity, see Appendix A.2 for for further
reading.

Sector index A global equity based sector index was used to model changes in the market af-
fecting the sector but not necessarily leading to an increase in firm specific credit risk. For AB Volvo
the capitalization weighted Bloomberg World Industrials Index was used. The Bloomberg World
Communications Index was used for TeliaSonera AB and the Bloomberg World Basic Material
Index was used for Stora Enso Oyj.

3.1.3 Liquidity

Market liquidity is generally defined as the ability to trade quickly at a low cost. This usually trans-
fers to low transaction costs from low bid-ask spreads, low price impact of trading large volumes
and large market depth [Bielecki et al. , 2011]. Liquidity risk is usually defined as the risk of not
being able to trade immediately in the market to liquidate or hedge ones position. This risk results
from the fact that the financial market is not perfect at all times [Bevras, 2006]. One should note
that liquidity level and liquidity risk are conceptually distinct from each other, although often cor-
related. Generally, market liquidity is a precondition for market efficiency and a sudden worsening
of market liquidity may degenerate into a systematic crisis [ECB, 2009].

The market has yet to come to consensus for a measure of liquidity and liquidity risk. Many
has evaluated different measures with different ratios of success but the difference in bid-ask spread
is still the most commonly used as it expresses various components captured by the market micro-
structure, such as adverse selection, inventory cost and search frictions [Tang & Yan, 2013]. The
choice of this thesis is the difference in ask and mid price as that is the extra cost of your insurance
due to illiquidity in the market.
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3.2 The Discount Factor
To get the "risk-free" discount factor the swap curve that ISDA uses was used. The data included
annualized historical rates for maturities 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 and 15 years. When the
implied PD was calculated, monthly historical discount factors were needed, therefore the missing
rates were interpolated linearly and then transformed into discount factors according to

DFi = (1 +RiTi)
−1 (30)

whereDFi is the discount factor for time i, Ri is the rate and Ti is the time to maturity [White, 2013].
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4 Method
The methodology of the thesis consists of three main steps: implementation of an implied PD
model, data mining of factors from market data and the estimation of the market price of risk.

The implied PD model was implemented in accordance with the methods and assumptions used by
the market [O’Kane & Turnbull, 2003, Luo, 2005]. Sensitivity analysis was performed to conclude
that the model’s behaviour was consistent with theory.

To evaluate which market factors that could impact the market price of risk, discussions with
experienced traders were held and the factors were divided into three subsets; market sentiment,
firm specific variables and liquidity. Given that Moody’s updated their model after critique of its
slow reactions during the financial crisis, the data was split into two subsets. One including the full
set, 2006 - 2014, and one from 2011 - 2014 [FCIR, 2011, Sun et al. , 2012].

Starting of with data for AB Volvo, an expression for the market price of risk, Γ, was derived.
Regression plots of the factors were observed and the style of relation was analyzed, i.e. linear,
logistic, non-linear. The correlation and cross-correlation between Γ and the market factors were
examined to determine the choice of regression method, lasso or elastic net, as well as the lag with
the largest dependence. The chosen variable selection method was performed with different choices
for λ and the relaxed elastic net method was used to determine the parameters. A Bootstrap
method was used to gain confidence intervals for the parameters, see Appendix A.3 for details. The
model estimated Γ was used to estimate a new implied PD, this time under P, and it was once again
compared to Moody’s EDFTM. The step was repeated for TeliaSonera AB and Stora Enso Oyj.
To evaluate the behaviours of the estimated parameters over time, linear regression of time-varying
parameters was done with a Kalman filter, see Appendix A.4. To evaluate the consistency of the
estimated parameters regression of chosen factors was performed using rolling windows of sizes 30
- 600 sample points. To evaluate the predictability of the model the same windows were used to
estimate the parameters, then used to predict the next point in time. The 2011 - 2014 data sample
was used for this step to minimize the effect on Γ due to updates in Moody’s model. The results
were discussed.
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5 Modeling and Assumptions
Given the assumptions that {

hQt = hPt (1 + Γt)

1− EDFTM
t = e−

∫ t
0
hP
s ds

(31)

an expression for the market price of risk, Γ, can be derived.

1− EDFTM
t = e−

∫ t
0
hP
s ds = e−

∫ t
0

hQs
(1+Γt)

ds ⇔

ln(1− EDFTM
t ) = −

∫ t

0

hQs
(1 + Γt)

ds ≈ 1

(1 + Γt)

t∑
s=0

hQs ∆s

Resulting in

Γt =
−
∑
hQs ∆s

ln(1− EDFTM
t )

− 1 (32)

This Γt is for the purpose of this thesis assumed to be the true Γt. Here the first assumption in
equation 29 is derived from Section 2.9.1 and the second assumption suggest that Moody’s structural
model can be written on a reduced form.

5.1 The Model
To model Γ using market data, a multivariate linear regression model was used. A multivariate
linear regression model is on the form,

Y = β0 + β1x1 + · · ·+ βnxn + ε (33)

This model often assumes that ε ∈ N(0, σ2). If the relationship is shown to be nonlinear one can
transform the variables, the response or both to see if the transformation model can be linearized.
A log-linear model is on the form

ln(Γ) = β0 + β1x1 + · · ·+ βnxn + η (34)

If additive errors are assumed this can be written as

Γ = eβ0+β1x1+···+βnxn + ε (35)

[Rawlings et al. , 2001]. In this case the ε ∈ lnN(0, σ2). This distribution is well known within
finance from the framework of Black and Scholes, who assumes the logarithm of stock returns to
be normally distributed [Åberg, 2010].

5.2 Underlying Assumptions
Absence of arbitrage is a fundamental assumptions for many mathematical models. To guarantee
the existence of the risk neutral measure Q, this is also an assumption for this thesis. However, a
mechanism called basis is present in the CDS market, where an arbitrage opportunity can be present
in the difference between CDS index and underlying firm specific CDS contracts. In order for Q to
be unique the market has to be complete. In spite of the unrealistic nature of the assumption, this
is an assumption that is made. For the purpose of this thesis, it is also assumed that no accrued
interest is paid if default occurs between payment dates.
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5.2.1 Recovery Rate, RR

Many models in literature assumes the recovery rate to be constant, commonly 40% in accordance
with market practice. However, some argue that the recovery rate may be cyclically negatively
correlated with the default rate, implying a positive correlation between loss given default and PD.
Literature propose that RR can be modeled as a stochastic process or cheapest-to-deliver bond
price can be used to estimate a more accurate RR [ECB, 2009].

However, IMF (2009) suggest that it could be difficult to disentangle both a stochastic PD and
a stochastic RR [Singh & Spackman, 2009]. With this in mind and with the purpose of this paper
the RR is assumed to be constant at 40% and the sensitivity of the model to RR is evaluated.

5.2.2 Counterparty Risk

Since the collapse of Lehman Brothers in 2008 the concern about counterparty risk has increased in
the context of valuing CDS contracts. However, as previously examined by Hull and White (2001)
the counterparty risk only has a minor impact on the valuation when the correlation between the
counterparty and reference entity is zero [Hull & White, 2001]. Therefore for the nature of this
thesis the counterpart risk is assumed to be nonexistent.
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6 Results

6.1 Variable Selection
Numerous factors from market data was used in the regression. The elastic net was chosen as a
variable selection method due to high correlation between some of the data sets used when modeling.
It penalizes the parameters in different extent due to the choice of λ. For that reason one must
sacrifice a bit of the accuracy of the model in order to reduce the number of variables. Table 1
shows the coefficients for relaxed elastic net for different choices of λ. For the choice of λ that
minimises the mean squared error plus one standard deviation, λMSE+1σ, for variable selection but
with the choice of λ that minimises MSE, λMSE , for the fine tuning of the parameters through
relaxed elastic net, 14 variables were chosen for AB Volvo. The 95% parameter confidence intervals
can be seen in Table 2. These selected variables were used throughout the rest of the analysis.

Table 1: Variable selection results for AB Volvo 2006-2014 data for different choices of λ.
Factor Elastic Net, λMSE Elastic Net, λMSE+1σ

β0 -1.6233 -1.1856
V2X -0.0499 -0.1103
Vix -0.2075 -0.1982
VixLagged -0.0070 0
FXImpVolEUR1y 0.9009 0.5235
FXImpVolSEK1m -0.2928 0
Ger5yChange 0.2485 0
Skew -0.6534 -0.6490
Stibor3m -0.4335 -0.3387
Libor3m 0.2539 0.2456
Euribor3m 0.8548 0.7849
SwapVolEUR6m 0.2791 0
SwapVolSEK6m -0.5486 -0.3617
SwapVolUSD6m 0.8658 0.8320
Swap5ySEK -1.2374 -1.0049
Swap5yEUR 0 0
Equity 0.9749 0.9886
EquityVol 0.6192 0.5867
Sector 1.2003 1.0324
Liquidity -0.0343 -0.0365
R2 0.7337 0.7293
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Table 2: Bootstrapped 95% confidence intervals for the parameters given in Table 1 (AB Volvo),
the result is based on 1000 bootstrap iterations. Significant parameters are bold, see Appendix A.3
for more details.
Factor Elastic Net, λMSE Elastic Net, λMSE+1σ

β0 -2.1621 -1.3120 -1.5711 -0.6450
V2X -0.1561 0.0925 -0.2627 0.0341
Vix -0.3377 -0.0946 -0.3137 -0.0688
VixLagged -0.1274 0.0948 0
FXImpVolEUR1y 0.7831 1.1297 0.3762 0.6595
FXImpVolSEK1m -0.4435 -0.1952 0
Ger5yChange 0.1033 0.5361 0
Skew -0.9688 -0.3778 -1.0153 -0.2889
Stibor3m -0.5558 -0.3331 -0.4250 -0.2352
Libor3m 0.2087 0.2937 0.1966 0.3015
Euribor3m 0.7518 0.9846 0.6476 0.8983
SwapVolEUR6m 0.1929 0.4365 0
SwapVolSEK6m -0.7107 -0.4548 -0.4806 -0.2346
SwapVolUSD6m 0.7635 1.0128 0.6947 0.9635
Swap5ySEK -1.6813 -1.0168 -1.1587 -0.8197
Swap5yEUR 0 0
Equity 0.8946 1.0607 0.8949 1.0921
EquityVol 0.5619 0.6831 0.5034 0.6652
Sector 1.0339 1.4893 0.7906 1.2773
Liquidity -0.0482 -0.0183 -0.0561 -0.0167

Table 3: Explanatory power of percentage weighted subgroups for λMSE+1σ with relaxed elastic
net with λMSE for 2006 - 2014.
Company Market

Sentiment
Firm Specific Liquidity R2

AB Volvo 0.656 0.339 0.005 0.729
TeliaSonera AB 0.772 0.225 0.003 0.588
Stora Enso Oyj 0.805 0.182 0.013 0.821

Table 4: Explanatory power of percentage weighted subgroups for λMSE+1σ with relaxed elastic
net with λMSE for 2011 - 2014 datasample.
Company Market

Sentiment
Firm Specific Liquidity R2

AB Volvo 0.703 0.289 0.008 0.730
TeliaSonera AB 0.709 0.286 0.005 0.703
Stora Enso Oyj 0.675 0.314 0.011 0.758
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6.2 Estimated Γ and the implied PD under P
Figure 5 shows the estimated Γ through multivariate regression against the derived market price of
risk and has a R2 of 0.729. The resulting implied PD under the probability measure P can be seen
in Figure 6 for AB Volvo. The result for equivalent analysis for Stora Enso Oyj and TeliaSonera
AB can be seen in Figure 7 and 8. As seen in Table 3 and 4 the subgroups of variables named
market sentiment is shown to have the largest percentage impact on all firms. Liquidity is shown to
have the largest effect on Stora Enso Oyj. The time-varying parameters estimated with a Kalman
filter was shown to not vary very much through time, motivating the choice of estimating constant
parameters, see Appendix A.4, Figure 13.

As seen in Figure 5 there is a huge peak in Γ in March 2008 in the 2006 - 2014 dataset, where
Moody’s fail to react as quickly as the market. The model fail to incorporate this huge peak and for
that reason the errors have a fat tail. For the 2011 - 2014 where these outliers are absent the errors
are nicely normally distributed. As the model fail to explain the peak it also fails to predict it,
resulting in huge squared errors for the prediction. For the 2011 - 2014 set the model show decent
prediction abilities for almost all windows. Figure 9 shows the resulting implied PD under P for
windows of size 30, 100, 300 and 500 sample points. The corrected MSE for the prediction of ln(Γ)
for these windows are 0.0066, 0.0080, 0.0230 and 0.0377.

Figure 5: The figure shows the modeled Γ from market data against the true Γ for AB Volvo.
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Figure 6: The figure shows implied PD under Q and the implied PD under P transformed with the
modeled Γ, compared to the benchmark, Moody’s EDFTM for AB Volvo.

Figure 7: The figure shows implied PD under Q and the implied PD under P transformed with the
modeled Γ, compared to the benchmark, Moody’s EDFTM for Stora Enso Oyj.
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Figure 8: The figure shows implied PD under Q and the implied PD under P transformed with the
modeled Γ, compared to the benchmark, Moody’s EDFTM for TeliaSonera AB.

Figure 9: The figure shows implied PD under Q, compared to Moody’s EDFTM and the implied
PD under P transformed with the modeled and predicted Γ for windows of size 30, 100, 300 and
500 sample points for AB Volvo February - December 2013.
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6.3 Model Sensitivity
To test how sensitive the model output was against changes in input data some tests were per-
formed. The first test was to check how the model answers to a small change in the yield curve,
second the reaction to CDS spread changes was analysed and lastly the implied PD was calculated
for different recovery rates.

When the yield curve was moved upward 1 percent the difference between the implied PD’s were
very small. However, one can see though that the difference is larger during periods where the
CDS-spreads change rapidly such as during the financial crisis, see Figure 10. This indicates that
the model is a little bit more sensitive against changes in the yield curve during periods where the
CDS-market i very volatile.

Pushing the credit curve up 1 basis point results in an average increase of 9.5 · 10−5 for the im-
plied PD which is is good because a higher spread should indicate a higher implied PD, see Figure 11.

The implied PD was calculated for recovery rates going from 0 - 0.95 with a distance of 0.01
between the calculations i.e. 96 implied PD’s. All other parameters being held constant. The
result shows that the model is more sensitive against large assumed recovery rates. As Figure 12
shows, a higher assumed recovery rate implies a higher implied PD and for very large recovery rates
the increase seems to be almost exponential [Schönbucher, 2003].

Figure 10: The Figure shows the original implied PD minus the implied PD when the interest rate
curve is pushed 1 percent upwards, the calculation was made using CDS spreads from AB Volvo.
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Figure 11: The figure shows the implied PD calculated when pushing the spread curve up 1 basis
point minus the original implied PD, the calculation was made using CDS spreads from AB Volvo.

Figure 12: Implied PD as a function of the recovery rate calculated using 1, 3 and 5 year constant
CDS spreads from AB Volvo, the values of the spreads where 94, 176 and 228 basis points.
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7 Discussion

7.1 Overall Succession
The model was built with data for AB Volvo but tested on TeliaSonera AB and Stora Enso Oyj,
rated A- respectively BB by S&P. The model performed very well with data from Stora Enso Oyj
with a resulting R2 of 0.820 for the full set. However, the model was shown to be a worse fit for
higher rated TeliaSonera AB with a large constant and a R2 = 0.588. From this result one could
argue that the model potentially could be better suited for lower rated companies. Since lower
rating means larger risk with a higher risk premium demanded, these companies could be more
effected by uncertainty in the market, thus having a larger Γ explainable by market data. This is
supported by the fact that liquidity was shown to have the largest importance for high-yield rated
Stora Enso Oyj. However, analysis should be made for more companies with a larger difference in
rating before a conclusion of the argument can be made.

The time series of data analyzed contains much of the life of the CDS contracts and also con-
tains a number of contractual changes during that period. This could potentially lead to some
changes in the CDS spreads, not considered by the model. For example, the removal of restructur-
ing as a credit event in some contracts in 2009 could lead to a lower risk neutral implied PD as
the group of credit event you pay to be protected against are smaller. Also Moody’s EDFTM has
been subject to change during the time series. During the 2008 financial crisis the rating companies
were subject to much critique and were accused of reacting to slowly. Moody’s has since updated
their EDFTM model, after which the measure can be seen to react more quickly to coming events
[Markit, 2009]. For this thesis this means that the cross-correlation changes with time. However, for
the full dataset the correlation is the highest in lag zero. Using this lag, a PD under P, comparable
to Moody’s, was predicted with decent results.

7.2 Weaknesses in the Analysis
Points of weakness in the thesis include: the discretization of the integral in equation (31), the
assumptions of a constant recovery rate of 40%, the absence of counterparty risk and the liquidity
measure. As counterparty risk has been an increasing concern since after the 2008 financial crisis
it is a major weakness that it, for this purpose, is assumed to be zero. Liquidity was shown not
to have a very large impact on the market price of risk, although significant. However, as there
lie some uncertainty about the quality of the the actual measure, the results might improve if a
better measure was used. For example trading volume was discussed as a potential measure, but
not available due to the OTC nature of the CDS market.

It is observed that some highly correlated variables gain similar non-zero parameters with the
elastic net method but with different signs. Logically, these should add out in the linear-regression
model thus limiting the use of them in the model. As elastic net chooses quite a large set of vari-
ables, this could be an additive method to reduce the complexity of the input although sacrificing
a bit of the explanatory power.

By discretizing the integral in the implied PD calculations, it is assumed that default only can
happen on equidistant monthly times. From a mathematical view one might seek to model de-
fault as an event that can happen at any time. However, the actual event of default is often not
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something that happens from one day to another but rather at some specific dates. The thesis also
assumes zero accruals, hence you will not get paid for the days between the premium payment days
if a default should occur. Other has approximated the integral of the accruals with the trapezoidal
rule. This basically implies one more payment date between the original dates, and the impact on
the calculated implied PD should be minimal.

7.3 Suggested Future Work
Future work on the subject would be to create an improved model including counterparty risk,
able to forecast the market price of risk, Γ, using some of the factors evaluated in this thesis and
potentially new ones. An attempt to make the model more general with less explanatory variables
would also be of value as well as modeling of the recovery rate as a stochastic process. A good
forecasting model would let you transfer from Q to P. This could open opportunities for trading as
well as risk management.
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8 Conclusion
This thesis has successfully explained the difference in implied PD from a reduced-form model,
using CDS contracts, and a structural model, Moody’s EDFTM. This is done by modeling the
market price of risk, Γ, with a log-linear multivariate regression model and using it to transfer the
implied PD from the risk neutral measure Q to the physical measure P.
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A Appendix

A.1 The Model Underlying Hypothesis 1
The initial model assumed that the noise in the CDS spread from the non-default component can
explain the difference in PD from reduced form models, implied PD, and structured models, Moody’s
EDFTM. To evaluate which factors in the market that may explain the noise a linear regression
model was used. The daily changes in the mid CDS spread was regressed on daily changes in the
factors, X, and the unexplained portion was assumed to be the daily changes in Credit Risk, i.e. the
defaultable component. The same linear regression model was also tested on the absolute values of
the spread and factors.

∆CDSSpread = ∆CR+ β∆X, (36)

CDSSpread = CR+ βX, (37)

The correlation between each factor and the CDS spread was analyzed. In each data group the
factors with the largest correlation to the data was chosen. Further variable selection was then
preformed with the relaxed lasso method and the R2 value was noted. A Kalman Filter was
implemented to filter out a time varying ∆CR. However, the linear regression model of the absolute
spreads showed not to be sufficient to model the CDS spread as most of the variation was explained
by the constant, thus indicating the bad fit of the model. The delta model performed slightly better
but as the goal was to extract a "clean" spread to estimate a new PD, a transformation from daily
changes to spread was needed. This offered many obstacles as the transformation depends on a
start value as well as assumptions about the noise in the one year and three year CDS spreads,
as they also are inputs to the PD-model. For these reasons, this model approach was discarded
leading to Hypothesis 2.

A.2 The GARCH Model
The GARCH model is a model describing conditional variance through an extension of ARMA-
like structures for the squared process. While for the ARCH process, the conditional variance is
specified as a linear function of past sample variances only, the GARCH process uses past values of
conditional variance as well. The GARCH model is given by

εt|ηt−1 ∼ N(0, σ2
t )

σ2
t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiσ
2
t−i

The coefficients (αi, βi) must be non-negative to ensure positive variances, as well as

q∑
i=1

αi +

p∑
i=1

βi < 1

to preserve stability [Madsen et al. , 2004].
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A.3 Bootstrapping Confidence Intervals for Elastic Net-Parameters
The only way of calculating confidence intervals for the parameters estimated by the elastic net
method is to use the bootstrap. Bootstrapping can be performed in different kind of ways but for
this thesis residual bootstrap was used [Fox, 2008].

Residual bootstrap is when you resample the estimated residuals of the model and add them to
your estimated parameters and explanatory variables. The parameter estimation method is then
done again calculating new parameters which are saved. If this procedure is repeated a lot of times
(say 1000) then a histogram of the estimated parameters can be plotted and also bootstrapped
confidence intervals can be calculated by taking the quantiles of the parameters. Assume you have
a model such as

y = Xβ + ε (38)

where y is a (n × 1) vector of target variables, β is a (k × 1) vector of parameters, X is a (n × k)
matrix of explanatory variables and ε is a (n × 1) vector of residuals. The different steps in the
residual bootstrap are

1. Calculate the parameters β̂ using the elastic net method.

2. Calculate the estimated residuals ε̂ = y − β̂X.

3. Resample ε̂ with replacement creating ε̂resampled.

4. Create a new vector of target variables y∗ by using X, β̂ and ε̂resampled, y∗ = Xβ̂+ ε̂resampled.

5. Use y∗ to calculate and save new parameters β̂∗ using the elastic net method.

6. Repeat steps 3 - 5 lots of times (at least 1000).

7. The residual bootstrap is done and bootstrapped distributions for the parameters can be
examined.

A.4 Time Varying Parameters in Linear Regression Using the Kalman
Filter

If the parameters in the regression model, equation (34), are assumed to be time varying, they can
be estimated using a Kalman filter. The problem can be described in the following state space form{

yt = Xtβt + εt

βt = Aβt−1 + ηt
(39)

Where yt is the observed process and βt is the assumed dynamics of the parameters which is
a latent process, A is the identity matrix, εt and ηt are assumed to be normally distributed
[Ravichandran & Prahneshu, 2002]. To estimate the parameters i.e. filter out the latent process
the following Kalman filter was used
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Figure 13: The estimated time varying parameters for AB Volvo 2006-2014 and the log-price of risk
in pink.

Prediction
βt|t−1 = E[βt|Ft−1] = Aβt−1|t−1

Pt|t−1 = APt−1|t−1A
T +Q

Prediction error and its variance

perr = Yt −Xtβt|t−1

Verr = XtPt|t−1X
T +R

Update
Kt = Pt|t−1X

T
t V
−1
err

βt|t = βt|t−1 +Ktperr

Pt|t = Pt|t−1 −KtXtPt|t−1

Where Pt is the covariance matrix, Kt is the so called Kalman gain, Q and R comes from the
assumption about εt and ηt i.e. εt ∼ N(0, R) and ηt ∼ N(0, Q).

45



A.5 Deriving Premium- and Protection leg
Using Ft equation (12) is rewritten as

CDSa,b(t, S,RR) =
1{τ>t}

Q(τ > t|Ft)
EQ (Πa,b(t)|Ft)

=
1{τ>t}

Q(τ > t|Ft)

{
SEQ

[
B(t)

B(T )
(τ − Tβ(τ)−1)1{Ta<τ<Tb}|Ft

]
+

b∑
i=a+1

∆iSEQ
[
B(t)

B(Ti)
1{τ>Ti}|Ft

]
−(1−RR)EQ

[
1{Ta<τ≤Tb}

B(t)

B(τ)
|Ft
]}

(40)

If we were to calculate the the fair spread by setting equation (40) to zero the solution would
technically be defined for τ > t, but since the value of S does not matter if τ < t the indicator
function in de beginning of the above expression can be ignored [Brigo & Mercurio, 2006]. From
equation (40) the premium- and protection leg can be identified. The premium leg corresponds to
the cash flows coming from the buyer of the CDS contract and the protection leg corresponds to
the ones from the seller. The premium- and protection leg is defined at time s < t in equations (41)
and (42) respectively. This is done assuming independence between the stochastic discount factors
B(s)/B(t) and the time of default τ

PV a,bPremiumLeg = SEQ
[
B(s)

B(τ)
(τ − Tβ(τ)−1)1{Ta<τ<Tb}|Ft

]
+

b∑
i=a+1

∆iSEQ
[
B(s)

B(Ti)
1{τ>Ti}|Ft

]

= S

∫ Tb

t=Ta

EQ
[
B(s)

B(t)

]
(τ − Tβ(τ)−1)Q(τ ∈ [t, t+ dt))

+S

b∑
i=a+1

EQ
[
B(s)

B(Ti)

]
∆iQ(τ ≥ Ti)

(41)

PV a,bProtectionLeg = (1−RR)EQ
[
1{Ta<τ≤Tb}

B(s)

B(τ)
|Ft
]

= (1−RR)

∫ Tb

t=Ta

EQ
[
B(s)

B(t)

]
Q(τ ∈ [t, t+ dt))

(42)

With the definitions and statements above, equation (12) can now be defined accoring to

CDSa,b(t, S,RR)
def.
= PV a,bPremiumLeg − PV

a,b
ProtectionLeg. (43)

For the more interested reader, see [Brigo & Mercurio, 2006] for details.

A.6 Summary of Data
Table (5) is an overview over the firms analysed in the thesis, Table 6 is an overview of the market
factor data used.
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Table 5: The table shows a summary of the firm data used, source Bloomberg.
Company S&P rating Moody’s rating Sector IG/HY
AB Volvo BBB Baa2 Industrials IG
TeliaSonera AB A- A3 Telecom IG
Stora Enso Oyj BB Ba2 Basic Materials HY

Table 6: List of factor data including Bloomberg tickers used
Bloomberg ticker Description mean std min max
VIX Volvtility index on S&P500 20.60 10.23 9.89 80.86
V2X Volatility index on EuroStoxx 50 24.06 10.02 11.60 87.51
SKEW CBOE tail risk from S&P500 120.20 5.34 106.43 143.20
USDSEKV1y FX Implied Volatility USD/SEK,

expiry 1y
12.84 3.35 7.40 22.33

USDSEKV1m FX Implied Volatility USD/SEK,
expiry 1m

12.60 4.30 6.38 32.28

EURUSDV1y FX Implied Volatility EUR/USD,
expiry, 1y

10.88 3.00 5.55 19.86

EURUSDV1m FX Implied Volatility EUR/USD,
expiry, 1m

10.25 3.61 4.65 28.63

EUSV0F5 Swaption Implied Volatility EUR,
expiry 6m

30.43 14.12 10.70 66.04

SKSV0F5 Swaption Implied Volatility SEK,
expiry 6m

26.40 9.25 11.20 55.80

USSV0F5 Swaption Implied Volatility USD,
expiry 6m

36.26 14.49 11.90 72.90

GDBR5 5y Gernamny Govenment Bond Index 2.36 1.28 0.24 4.76
SKSW5 5y Swap Rate SEK 3.13 1.00 1.48 5.63
EUSA5 5y Swap Rate EUR 2.82 1.18 0.71 5.20
EUR003M EURIBOR 3 months 2.01 1.56 0.18 5.39
US0003M LIBOR USD 3 months 2.09 2.05 0.23 5.73
STBB3M STIBOR 3 months 2.27 1.31 0.47 5.60
BWINDU:IND Bloomberg World Industrial Index 167.81 29.51 83.34 239.87
BWBMAT:IND Bloomberg World Basic Materials

Index
199.85 41.81 96.39 316.80

BWCOMM:IND Bloomberg World Communication
Index

135.42 19.08 83.71 174.08

VOLVA.SS Volvo A Equity 82.93 22.51 31.10 153.00
TLSN.ST TeliaSonera Equity 44.96 6.92 29.82 59.76
STER.SS Stora Enso Equity 69.43 25.18 27.36 124.73
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