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ABSTRACT 

 

The blood-brain barrier (BBB) constitutes a dynamic membrane primarily evolved to protect the brain 

from exposure to harmful xenobiotics. The distribution of synthesized drugs across the blood-brain 

barrier (BBB) is a vital parameter to consider in drug discovery projects involving a central nervous 

system (CNS) target, since the molecules should be capable of crossing the major hurdle, BBB. In 

contrast, the peripherally acting drugs have to be designed optimally to minimize brain exposure 

which could possibly result in undue side effects. It is thus important to establish the BBB 

permeability of molecules early in the drug discovery pipeline. 

Previously, most of the in-silico attempts for the prediction of brain exposure have relied on the total 

drug distribution between the blood plasma and the brain. However, it is now understood that the 

unbound brain-to-plasma concentration ratio (              is the parameter that precisely indicates the 

BBB availability of compounds.             describes the free drug concentration of the drug 

molecule in the brain, which, according to the free drug hypothesis, is the parameter that causes the 

relevant pharmacological response at the target site. 

Current work involves revisiting a model built in 2011 and uploaded in an in-house server and 

checking for its performance on the data collected since then.  This gave a satisfying result showing 

the stability of the model.  The old dataset was then further extended with the temporal dataset in 

order to update the model. This is important to maintain a substantial chemical space so as to ensure a 

good predictability with unknown data. Using other methods and descriptors not used in the previous 

study, a further improvement in the model performance was achieved. Attempts were also made in 

order to interpret the model by identifying the most influential descriptors in the model.  
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1. INTRODUCTION 

1.1 Background 

Trends and technologies associated with Drug discovery and development have experienced 

an upsurge over the last few decades. Being an interdisplinary field of research, this area has 

seen some profound expansion in the knowledge base with the improvements in 

understanding of basic chemistry, genetics, and molecular biology and so on. The sequencing 

of human genome was one such advancement that further opened up the prospects by aiding 

in the discovery of new targets. These advancements have led to a lot of success stories in 

treating various diseases.   

One of the major advancements in the field of pharmaceutical research can be pointed out as 

the advanced computational technologies that are now being employed in all major stages of 

the drug discovery process. These have been shown to considerably reduce resources and 

time and limit chemical synthesis of undesirable compounds. 

The drug discovery and development is in general a long, tedious and expensive process 

coupled with a high risk of failure. Typically, it takes around 15-20 years to develop a drug 

from the initial stages of target identification till the introduction of the drug into the market. 

The cost of introducing a drug molecule into the market has been approximated to be almost 

$1.2 billion. 
[1]

 U.S. Food and Drug Administration (FDA) estimates that eventually only 8% 

of the compounds that enter the Phase 1 clinical trials can reach the market.
 [2] 

Though the investment in the pharmaceutical research has increased through the years, 

associated developmental cost of drugs also seems to be accruing 
[3]

 while the number of 

approved drugs has reduced owing to the tighter regulatory requirements for the drug 

approval. A lot of efforts have been made to address the fundamental issue of reducing 

attrition while also speeding up the process of drug development.  

Traditionally, in the early phases of drug discovery, the focus was mainly on the efficacy and 

the selectivity of the molecule towards the target. The pharmacokinetics and ADMET 

(Absorption, Distribution, Metabolism, Excretion and Toxicology) studies were usually 

carried out later in the later phase. Through the years, some studies had indicated that a major 

portion of drug attrition is attributable to poor ADMET properties.
 [4]

 This called for a need to 

move towards the ‘Fail fast Fail cheap’ strategy by investigating the ADME properties in 
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early phases of drug discovery.
 [5]

 The cost associated increases as a compound progresses 

through the drug development cascade. 
[6]

 

To reduce the late-stage attrition, it is critical to identify compounds that are unlikely to 

succeed and to terminate the development of these as early as possible. Only the compounds 

exhibiting a good ADMET profile should be advanced into the clinical trials thus reducing 

the resources spent.  

Computational models are one of the attractive solutions for predicting the appropriate 

ADME characteristics of molecules under consideration. These approaches can be used as a 

cost effective filter for choosing compounds that are most likely to meet the desired needs
 [7]

, 

even before their actual synthesis. 

1.2 Drug discovery process 

Historically random experiments were designed by trial and error basis to find novel drugs 
[8]

. 

With the extensive efforts in understanding molecular biology, chemistry, biochemistry, 

genetics and so on, in context of human body and various related functions, the process of 

discovering drugs has become much more streamlined and continues to improve. 

Traditional linear model of drug discovery and development processes starts off with defining 

the disease to be investigated in the project. This is followed by identification of a target 

involved in the disease using various genomics and proteomics analysis and then followed by 

the validation of the identified target. A druggable target is usually a biological component 

like enzymes, receptors etc which can bind to the ligand and elicit the required response.  

Once a suitable target has been identified, thousands and millions of compounds are screened 

for an interaction with the target to discover “hit” compounds which serve as the starting 

compounds for the drug development process. The hit compounds are then progressed into 

the lead identification, validation and optimization phase. During this phase the compounds 

that can interact with the chosen target are then assessed for various properties like selectivity 

and affinity using biochemical assays. Potency of the compounds is also determined. This 

phase involves multitude of in-vitro/in-vivo screening assays to determine and confirm the 

characteristics of the molecule. The techniques like structure activity relationships (SARs) 

and ADMET studies are carried out to evaluate the development potential of the lead 

compounds. 
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After the initial selection of lead compounds series, optimization work is done to improve the 

efficacy and safety of the chosen compounds. Structural variations of the lead series are often 

performed at this stage to tailor the molecule for desired qualities. These analogues are then 

tested using various assays to find the best compound to serve as a drug candidate. 

The next step involves studying the effects of the drug candidate in animal models. In this 

stage the safety and efficacy of the candidate molecule is further studied and pharmacokinetic 

profiles of the molecule is established in the animal models. Drug toxicity profiles are 

extensively evaluated using in-vitro and in-vivo assays. High levels of safety have to be 

established before the human trials in the next phase. The above mentioned steps are referred 

to as pre-clinical research where the safety and efficacy of the drug molecule is established 

prior to its advancement towards the clinical trials. 

Clinical research is the final phase which involves various phases where the drug molecule is 

tested in human. After a drug molecule successfully passes these phases, the approval for the 

new drug is sought from the regulatory agencies. Once approved, the drug can eventually 

reach the market. However, the follow-up clinical studies still need to be conducted in of 

form of post-marketing investigations.  

1.3 Challenges in CNS drug discovery 

Many Central nervous system (CNS) diseases do not have effective drugs in the market. Most 

small molecule CNS drugs in the market are focused on certain therapeutic areas like 

migraine, epilepsy etc., while leaving some of the other common, often devastating CNS 

disease with no effective cure.
 [9]

 There is a great unmet need in the area of neurodegenerative 

diseases like Alzheimer's disease, Parkinson's disease and so on. 
[10]

 In many instances, 

despite identification of some promising molecules, the complexity of CNS has kept them 

much away from becoming successful drugs. On the other hand, targeting CNS might also be 

necessary in certain non-CNS diseases. 

CNS drug candidates have been observed to have a lower success rate and longer 

development phases, as compared to their non-CNS counterparts. 
[11]

 This difference can be 

largely associated with the numerous complexities involved in targeting CNS, like the 

intricacies of the human brain, lower predictability of animal models, CNS side effects and so 

on.
[11]

 This area thus entails a careful investigational research of alternate approaches for 

increasing the success rate. 
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In drug discovery phase, it is very essential to determine the possibility of a molecule to cross 

the blood-brain barrier. The drugs targeted to CNS must successfully permeate the BBB to 

achieve an optimal distribution to the brain. The peripherally acting drugs, on the other hand, 

may have to be kept away from the brain to avoid unwanted toxic effects. This necessitates a 

better understanding of the complexities that surround BBB and the properties of molecules 

that can increase or decrease the permeation. 

Various in-vivo and in-vitro experiments have been designed for the determination of extent 

of brain penetration for drugs. However, these methods are quite time-consuming and costly. 

Computational methods to predict molecular properties will be very useful in initial screening 

so as to make a good decision of which compounds can go forward to the more laborious and 

expensive tests involved in in-vivo and in-vitro studies. 
[12]

 

1.4 Barriers to access the brain 

Existence of physiological barriers that separate CNS from the systemic blood circulation has 

been well established. Two vital barriers in the CNS are the blood-brain barrier (BBB) and 

the blood-cerebrospinal fluid barrier (BCSFB). The former acts as a barrier between the 

blood and brain interstitial fluid (ISF) and is composed of brain capillary endothelial cells 

with tight junctions.  The latter is present at the choroid plexus, separating blood and 

ventricular cerebrospinal fluid (CSF) 
[13]

 and is formed of epithelial cells linked by tight 

junctions which are however more permeable than the BBB. 
[14]

 The BCSFB is found to have 

a relatively much smaller surface area as compared to the BBB, thus BBB is thought to play 

the major role in drug delivery. 
[15]

 Various metabolic enzymes and transporters are also 

present to shield/protect the brain from endogenous toxins and various other xenobiotics.  

1.4.1 The blood brain barrier 

BBB presents the major hurdle for a drug to reach a target in brain.  It primarily functions to 

regulate the transport of compounds to and from the brain for protecting it from harmful 

xenobiotics and other potential neurotoxins. It has been observed that almost 98% of the 

small molecules do not cross the BBB. 
[16]

 BBB is thus crucial to maintain homeostasis in the 

CNS.
 

The existence of such a barrier in the brain was first realized in the 19
th

 century through the 

experiments performed by Paul Ehrlich. 
[17]

 BBB has been actively under research and 

scientists are attempting to gain deeper understanding of the complexities. 
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The structural feature that is of primary importance in BBB is the tight junctions that exist 

between capillary endothelial cells. These effectively restrict inter-cellular transfer of solutes. 

The tight junctions are characterized by absence of fenestrations and usually display a low 

pinocytosis.
[18]

 Efflux transporters are another defense mechanisms flaunted by the BBB. 

They serve to pump toxins and xenobiotics out of the brain. BBB has also been observed to 

show a high electrical resistance, it thus keeps polar and ionic molecules, especially the acid 

compounds, away from penetrating into the brain. 
[19]

 

1.4.2 Transportation of molecules across the BBB 

Usually transport of compounds across the BBB occur transcellularly as the paracellular 

transportation is restricted by the presence of tight junctions. However, transcellular mode of 

transport is further affected by various efflux transports present at the BBB. There are various 

mechanisms that occur at BBB influence the brain permeation of compounds.  

Passive diffusion 

Most commonly, compounds enter the brain by passive diffusion, where the concentration 

gradient is the main driving force. Equilibrium is attained when the concentration of the drug 

compound at either side of the membrane are equal
 [20]

. The capacity of the drug to passively 

permeate depends on its physicochemical properties. For example, lipophilicity has been 

identified to be a key factor for diffusion of drug into the brain. It is seen that an increases in 

lipophilicity usually corresponds to a higher BBB permeation. Other properties like 

molecular weight, polar surface area etc, also play a vital role. 

Carrier mediated transport 

Various transporters are present at the BBB evolved to function in effectively protecting the 

brain. Some of the compounds that are hydrophilic and cannot undergo passive diffusion use 

transporters to aid the permeation process.  

Influx transporters are involved in transport of molecules like glucose, amino acids from 

blood to brain 
[21] 

to provide
 
the nutrients required by the brain. These mainly aid the 

transport of small hydrophilic molecules which can otherwise not pass through the BBB by 

passive diffusion.  

Efflux transporters are a very critical defense system evolved at the BBB. They serve the 

gatekeeper function by pumping out the potentially toxic compounds from the brain. The 

most important efflux transporters at BBB are P-glycoprotein (P-gp), breast cancer resistance 

protein (BCRP) and multidrug resistance protein (MRP). 
[22]

 They fall into the ABC (ATP-

binding cassette) superfamily.
 [23]
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1.4.3 Characteristics of molecules that can potentially cross BBB  

Drug-like molecules ought to have a good bioavailability, ADMET properties and potency. 

Druglikeness has often been defined based on “Rule of Five” proposed by Lipinski
[84]

, which 

is a set of rules assessing the oral absorption of the compounds. The “Rule of Five” states a 

rule of thumb for a compound to possess good bioavailability, a molecular weight less than 

500; Number of hydrogen bond donors less than 5; number of hydrogen bond acceptors less 

than 10 ; a ClogP (octanol-water partition coefficient) less than 5. Compounds that do not 

exhibit the forementioned characteristics are most likely to suffer poor bioavailability. 

Similar efforts have been made by many other groups to examine the relationship between 

the molecular properties of pharmaceutically relevant compounds and their potential to 

become drugs. The purpose has been to discover trends in the physicochemical properties for 

the compound in a particular developmental stage or in a certain disease area and to identify 

the key factors for compound related attrition.  

In general CNS drugs tends to be on the higher side with respect to the lipophilicity, and 

rigidity of the molecule while they need to be smaller (lower molecular weight), and possess 

lower hydrogen-bond acceptor and donors, fewer negative charges  and a lower PSA, 

compared to the non-CNS drugs. Numerous studies have attempted to look into the molecular 

physiochemical properties related to BBB penetration. Similar to Lipinski’s “Rule of five”, 

some simple rules have been formulated to define CNS drug-likeness. 

For example, it has been proposed that the following attributes are advantageous for a 

potential lead to be able to permeate the BBB. 
[24]

 A molecular weight less than about 400-

450; number of hydrogen bond donors less than 3;number of hydrogen bond acceptors less 

than 7; a PSA of 60-70 Å
2
; pKa of 7.5-10.5 and fewer rotatable bonds.  

Lipophilicity has been known to be one of the most critical factors for the BBB permeation.  

Higher lipophilicity enables the compounds to permeate the lipid rich membranes. 
[25]

 

Lipophilicity is often expressed in terms of logP. Though a high lipophilicity is favorable, it 

is important for a molecule to possess optimal values of logP, because with the increase in 

lipophilicity the non-specific binding of the molecules to the plasma proteins also increases.   

Permeation of a compound across BBB is highly influenced by hydrogen bonding potential 

of the molecule. BBB permeation decreases significantly with increase in number of 

hydrogen bonds. 
[26]

 This necessitates that the sum of nitrogen and oxygen atoms in the 

molecule should preferably be kept below 5.
 [24]
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For the passive diffusion, it has been observed that ionization of the molecule plays an 

important role. Weak bases and neutral compounds have much higher chances of permeating 

the BBB as compared to acids. On the other hand, strong acids and bases are usually not 

capable of penetrating the BBB. 
[27]

 

1.5 Measurement of brain exposure 

1.5.1 Total brain-plasma concentration ratio (Kpb) 

The total brain-plasma concentration ratio denoted by Kp,brain or logBB  has been the most 

widely used parameter for in-silico prediction of brain exposure. It is calculated as logarithm 

of the ratio of the concentration of the drug molecule in the brain to that in blood, at 

equilibrium (Equation 1 
[28]

). It basically measures the way the drug molecule partitions itself 

between the brain and the blood. 

            (1) 

However, it has been argued that logBB, being based on total concentrations, is affected by 

the non-specific binding of the molecules to the plasma protein and brain tissue
 [29]

 and may 

be misleading 
28,31,32

 since it is only the free drug that is available for transport across BBB 

and for binding to the target proteins in the brain. 

1.5.2 Permeability solubility product 

Upon realization of the incomplete description given by the conventional analysis using 

LogBB, it was suggested to alternatively use logPS (logarithm of permeability solubility) as a 

measure of unbound molecule. The permeability solubility product measures the rate of drug 

transport over the BBB 
[33]

. It is measured by in-vitro brain perfusion experiments. However, 

this measure does not represent the free drug concentration either as it does not consider the 

efflux clearance at BBB. Furthermore, PS is a measure of penetration rate and therefore is not 

necessarily correlated with the extent of penetration. 

1. 5.3 Unbound Brain-to-plasma Concentration ratio (Kp,uu,brain)  

Unbound brain-to-plasma concentration (Kp,uu,brain) is a parameter that estimates the amount 

of free drug in the brain ISF. It is defined as the ratio of unbound drug concentration in brain 

to the unbound drug in plasma, in steady state 
[28]

(Equation 2). 

            (2) 

 

C
u,brainISF

 
K

p,brain
 =  

C
u,p

 

=  K
p,uu,brain

 
Cu, brainISF 

Cu,plasma  
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Where Cu,brainISF is the free drug concentration in the ISF and Cu,plasma is the free drug 

concentration in the brain. The unbound drug concentration in brain, Cu,brainISF can be directly 

measured through microdialysis in brain
[45,46]

. The method is experimentally challenging and 

involves a large amount of resources to carry out. The non-specific binding associated with 

highly lipophilic molecules pose a further challenge for this method 
[34]

 and is therefore of a 

limited usability in drug discovery projects. However, an alternative method of determining 

Kp,uu,brain  has been proposed, which can be used to circumvent the problems associated with 

microdialysis
[28]

.Where two in-vitro experiments and one in-vivo experiment are used to 

determine Kp,uu,brain.  

            (3) 

Where Kp,brain is the total brain-blood concentration ratio, Vu,brain is the unbound volume of 

distribution in brain and fu,p is the unbound fraction of drug in plasma. Vu,brain is commonly 

measured using brain-slice method
[62]

 and  fu,p is determined by equilibrium dialysis 

technique.
[85]

 

Generally it has been concluded that when Kp,uu,brain is close to 1, the compound is expected 

to be able to cross the BBB by passive diffusion and is also not  a substrate for the 

transporters at the BBB. The compounds with a Kp,uu,brain  of greater than 1 are substrates for 

the influx transporters and are thus actively transported, while the compounds that have a 

Kp,uu,brain less than 1 tend to be substrates for efflux transporters.
[35]

 

According to the eq. 3, experimental determination of Kp,uu,brain  involves measurement of the 

total brain-to-plasma concentration ratio obtained from in-vivo animal experiments and in-

vitro determination of plasma protein binding and binding to the brain tissue. Predictive in-

silico models can be of great value in circumventing the necessity of performing such 

resource and time intensive experiments. 

1.6 In-silico predictive models 

Predictive modeling has now gained popularity in the area of drug discovery. It is based on 

using algorithms that can learn from the provided examples and can later be used for the 

prediction of unseen examples.  In-silico analysis involves various statistical methods like 

multiple-linear regression, Partial least squares (PLS), machine learning methods etc. Data 

modeling often involves the well known concept of structure activity relationships. As the 

K
p,uu,brain

 =  
V

u,brain
 

K
p,brain

 

f
u,p
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name suggests, structure activity relationships refers to the method of correlating structural 

features that a molecule possesses to its biological activity.  

1. 6.1 Quantitative structure activity relationships (QSAR) 

The idea of relating the structure of a compound to its biological activity can be traced back 

to 1869, when Crum brown and Fraser proposed the concept of biological response (φ ) being 

a function of chemical structure (C) of a compound (equation 4)
[36]

. Thus a change in the 

chemical feature will alter the biological activity exhibited by the molecule. 

φ  = f ( C )           ( 4 )  

Subsequent studies further supported the view of correlating the structure with the activity of 

molecules. The essence of these methods are in the fact that the structural features of 

molecule can be used to infer physical and chemical properties of the which can in turn be 

correlated to the biological activity of the molecule.
 [37]

 Various statistical methods are thus 

used to find features that make a compound active or inactive and the relationships between 

these features and the bioactivity. These relationships can be either qualitative (SAR) or 

quantitative (QSAR). 

Quantitative structure activity relationship attempts to determine the quantitative relationship 

between the chemical features and the desired biological response. This relationship between 

the biological endpoint and the descriptors of the compound are modeled using statistical 

methods. The modern QSAR studies were initiated by Corwin Hansch around 1963. 
[66]

 

The crucial stages in building a reliable QSAR model firstly involve collection of a good 

dataset as model quality will wholly depend on the quality of the dataset. The subsequent step 

involves calculating a set of relevant descriptors that can describe the dataset well. The model 

generation then begins by choosing a suitable method to establish the correlation between the 

compounds and the calculated descriptors. Validation of the built model is then done to 

investigate the predictive powers of the model (Figure 1.1). 

1.6.2 Molecular descriptors  

A molecular descriptor is a calculated numerical representation of various properties inherent 

in a molecule.  

Several common molecular descriptors exists that represent various attributes of a structure , 

ranging from descriptors that rely on simple counts 
[38]

 of important features like hydrogen 

bond donors acceptors , number of rotatable bonds, number of a aromatic rings systems and 
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so on to more complex descriptors, for example, based on quantum  chemistry calculated 

properties.
[68]

 

Of great importance are the descriptors for describing physicochemical properties of 

molecules, such as hydrophobicity measured in terms of octanol-water partition coefficient 

etc
 [38]

. Other commonly used descriptors include topological indices, shape indices
 [38]

, 

fingerprints 
[69]

 etc.  Designing of 3D descriptors for molecules has also been an attractive 

concept to capture the properties that 2D descriptors might fail to describe. 

Molecular descriptors thus form the basis to use the properties inferred from the chemical 

structure in a mathematical setting. 

 

Figure 1.1 General workflow of a QSAR experiment. 

 

1.6.3 Machine learning algorithms 

Classical linear QSAR models often utilize linear statistical methods like Partial least squares 

(PLS) and multiple linear regression. These often suffered from the problem of over fitting 
[1]

 

and nonlinear relationships cannot be addressed well using these methods. Thus non-linear 

machine learning methods like support vector machine(SVM), random forest  (RF) provide 

an attractive solution to this problem by offering the advantage of handling large amounts of 

data more accurately.
[39]

 Machine learning is thus one of the methods commonly used to 

build QSAR models. 

Machine learning is a sub field under artificial intelligence that involves creating computer 

algorithms that can learn from data.  It basically seeks to establish relationships from the data 

by finding sensible patterns in it, which can then be used to make predictions on new 

examples. Machine learning as a technique possesses some attractive qualities when 
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compared to direct programming. It is more accurate and can process larger data more 

efficiently. 

Machine learning includes supervised and unsupervised learning methods. Supervised 

learning involves algorithms that learn complex patterns from a set of labeled examples. 

Labeled examples refer to those that have both features and the associated labels. The 

algorithm thus learns a hypothesis to fit appropriately to the dataset in consideration 

Unsupervised Learning, on the other hand involves use of Unlabelled dataset thus there are 

no associated labels. The algorithm searches for patterns within the data to make useful 

inferences. 

There are two major categories of machine learning problems, namely, classification and 

regression problems. In regression, the data consists of continuous values, and the model thus 

predicts a real value for the new example. Classification, on the other hand, deals with 

categorical data. 

1.6.4 Validation of the QSAR model 

A key point to consider about a QSAR model is its predictive power, which is indicative of 

how well the model can predict an example that it has not seen before. Determination of this 

is done through different validation methods. The validation methods can be primarily 

categorized into internal validation and external validation.  

Internal validation is used to determine the model fit, which gives an idea of how an unseen 

example might be handled by the model. Most commonly employed methods are leave one 

out cross-validation 
[65]

, k-fold cross validation
 [66]

 and so on. It is measured in terms of cross 

validated correlation coefficient or Q
2
. 

External validation refers to the use of an external test set which is not included in the dataset 

used to build the model. The performance of the model on the test set is often measured in 

terms of correlation coefficient R
2 

and RMSE. 

1.7 In silico BBB penetration models 

1.7.1 logBB Models 

Previous work in this field has often been focused on logBB predictive models for describing 

the capacity of a compound to permeate and distribute across the BBB.  Various statistical 

methods and machine learning algorithms have been employed for building these models. 

Studies have also analyzed dependencies of the logBB to various vital physico-chemical 
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descriptors. It has been consistently noted that logBB is mainly dependent on hydrogen 

bonding potential, molecular volume and lipophilicity
 [42]

. 

One of the initial efforts towards QSAR modeling of logBB was taken by Young et al., where 

the correlation of logBB with logP was established in 20 anti-histamine molecules. Later 

studies by Waterbeemd et al.
 [44]

, attempted to correlate logBB to molecular volume and PSA. 

Futher, Abraham et al.
 [45]

, worked on logBB model based on 60 compounds and relating 

them to five solute descriptors  The major limitation with these initial studies were the 

smaller size of dataset used.  Thus, subsequent research saw a lot of progress in such logBB 

modeling based on extending the Young dataset along with using better statistical methods. 

The size of the publicly available logBB data has increased gradually. The biggest public 

logBB set so far compiled by Lanevskij et al 
[48] 

constitutes about 400 compounds.  Diverse 

molecular descriptors have been utilized, for example, 2D physicochemical descriptors
 [49-54]

 

describing information about the molecular size, shape, lipophilicity etc., and 3D molecular 

structure 
[54, 55, 56]

. The early logBB models typically used a smaller set of descriptors to build 

the model and the model building strategy was often limited to simple MLR statistics. The 

recent studies have attempted to build models using larger number of descriptors along with 

more complex algorithms that can deal with the increased number of variables 
[42, 57, 58]

. The 

models utilizing non-linear algorithms 
[42,58]

 have, in general shown a higher accuracy than 

the linear models 
[57,58,59]

.  

 However, recently it has been realized that logBB is not very relevant for making inferences 

on BBB permeability. Thus using Kp,uu,brain data for the purpose is a much more attractive 

solution. 

1.7.2 Classification models 

Various classification models have been developed for classifying compounds based on their 

ability to cross the blood brain barrier and elicit the required effect. A common strategy has 

been to classify compound into BBB+/BBB- based on whether they are permeate through 

BBB by passive diffusion. These classification models have shown an accuracy of about 75-

95 %. 

Ajay et al., performed a study on CNS active/inactive drug to build a compound library with 

potential CNS activity. They also analyzed the difference in the CNS active and inactive 

terms of seven important descriptors like molecular weight, number of rotatable bonds, 

kappa2, logP, hydrogen bond donors and acceptors and so on. The models built in this study 

could produce upto 80% predictability. Zhang et al.,
 [42]

 performed similar studies using a 
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dataset of 156 compound and building QSAR classification models mainly employing kNN 

and SVM algorithms. These models, built on different types of descriptors like Dragon, MOE 

and MolConnZ, showed a good accuracy of prediction. 

There have been several other attempts to build classification models for BBB penetration. 

Various modeling schemes have been used for building such models. Decision tree based 

techniques like recursive partitioning 
[43] 

has also seen to have a lot of potential for this 

purpose.   

CNS+/CNS- Classification have also been extensively studied. This usually involves 

categorizing compounds based on whether they are centrally active or not.  The CNS+ 

compounds are usually BBB+, on the contrary, the BBB+ compounds do not necessarily have 

to be CNS+. The BBB+ compounds can also be CNS- which implies that they permeate the 

BBB while not showing any activity.  This makes the definitions rather simple for the 

analysis of complexities related to permeation of compounds through the BBB. 

1.8  Kp,uu,brain Models 

The published Kp,uu,brain modeling studies performed by Fridén et al 
[28]

, utilized a dataset of 

43 compounds  to build in-silico Kp,uu,brain models using PLS. Kp,uu,brain was assessed based on 

Kp,brain, Vu,brain and fu,p using Equation(3) . 

16 molecular descriptors were included in the study which comprised of standard descriptors 

like ClogP, molecular weight, hydrogen bond donors (HBD) and so on. Irrelevant descriptors 

were later excluded based on calculation of variable importance for projection score (VIP). It 

was observed that the significant descriptors as picked by the VIP scores were related mainly 

to hydrogen bonding. The model utilizing only HBA as the descriptor was found to possess 

comparable predictive power to the model utilizing the set of 16 descriptors. 

Chen et al., in 2011, extended the Fridén’s dataset to include 247 in-house compounds in total 

for Kp,uu,brain. The model was primarily built based on SVM and RF machine learning 

algorithms. Descriptor set used for the model building consists of 196 in-house descriptors. 

Modeling strategy included building an indirect model, which utilized the individual datasets 

of Kp,brain, Vu,brain and fu,p for model building and the Kp,uu,brain values then calculated from the 

individual predictions, and a direct model based on the  Kp,uu,brain data. 

Studying through various single component and consensus model, it was found that the 

consensus model with SVM direct, RF indirect and RF direct components gave the best 
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prediction with an R
2
 of 0.58 and RMSE of 0.46. It was thus seen that consensus models in 

general perform better than the single component models.   

 

1.9 The goal of  Master Thesis project 

The aim of the current master thesis project was to collect the up-to-date AstraZeneca in-

house Kp,uu,brain  data, examine the performance of previously published Kp,uu,brain model 
[39]

 on 

the temporal test dataset and build new models by using the expanded dataset. During the 

model building, various QSAR modeling strategies were used and compared. It was 

particularly interesting to apply some new QSAR methods such as the combination of 

support vector machine (SVM) and molecular signature descriptors
 [63]

 and conformal 

prediction
 [64]

 etc. on the Kp,uu,brain dataset. The work further involved examining the 

substructures within the dataset to make useful inferences about the structural features that 

have strong influence on the penetration and distribution of the molecule across the BBB. 
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2. METHODS 

2.1. Dataset 

A predictive model for Kp,uu,brain was built in 2011 based on a set of in-house data and was 

uploaded into an in house server for routine usage. This study was based on a dataset 

consisting of 248 compounds that had the values for Kp,brain, Vu,brain and fu,p . While a separate 

set of dataset consisting of other measured values of Kp,brain, Vu,brain and fu,p  consisted of  505, 

3235 and 474 compounds respectively. 

Since 2011, there has been additional data accumulated for these parameters. This dataset 

was collected and cleaned to remove duplicates and overlaps. The old dataset was then 

extended by the addition of the newly measured compounds (since 2011). This new set of 

data had 100 compounds for which the values of Kp,brain, Vu,brain and fu,p  were available. 

The present dataset compiled for the model building and validation consists of 722, 1210 and 

5756 compounds for Kp,brain, Vu,brain and fu,p  respectively while the Kp,uu,brain dataset consists of 

347 compounds in total. 

 

2.2 Molecular descriptors  

In this work, two types of molecular descriptors were employed which are described below. 

The first set, called AZ descriptors (AZdesc), an in-house descriptor set consisting of 196 2D 

and 3D descriptors describing various physico-chemical properties like molecular weight, 

lipophilicity, hydrogen bonding properties, electrostatics and topology. An in-house program, 

Clab, was used for the calculation of AZ descriptors with input of SMILES strings. 

The second type of descriptor is the signature molecular descriptors. This descriptor was 

developed by Faulon et al. It is a class of atom based descriptor based on the concept of 

molecular graph. Such a molecular graph can be expressed as G = (VG, EG), where VG 

represents the atoms in the molecule being described while EG denoted the edges which 

represents the bonds between the atoms. A molecule is thus defined in terms of a set of 

canonical sub graphs which represent all the atoms that are at a predefined distance (height) 

from the central atom in consideration. Thus, for a molecular graph represented by G and an 

atom x in that molecule, the signature of height h of x I can be denoted by hσG(x). 

Signature molecular descriptor thus explains the extended valence of the atoms of the 

molecule under consideration
 [71]

. This way of representation gives a tree structure, where the 

first layer constitutes the neighbours of the atom x in the molecular graph G and the 
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subsequent layers consist of the neighbours of the vertices of the previous layer except the 

atom x
[72]

.  Thus, each molecule under consideration is associated with a vector whose 

components are the frequency of occurrence of the particular signature in the structure of the 

molecule. The signature descriptors have been previously used successfully in various QSAR 

modeling strategy 
[71, 73]

. 

 

2.3 Modeling methods  

In the current study, for building Kp,uu,brain models, two non-linear machine learning 

algorithms were used, namely, SVM and Random Forest . 

2.3.1 Support Vector Machine 

Support vector machine (SVM) is a supervised learning algorithm that was developed by 

Vapnik and co-workers 
[73]

. It is largely based on the concepts of statistical learning or VC 

theory (developed by Vapnik and Chervonenkis) and structure risk minimization theory. It 

was originally proposed for classification but is now also widely applied in regression 

problems. Typically, the goal of SVM algorithm is to map a n-dimensional input vector into a 

high dimensional feature space and define a optimal hyperplane that can maximize the 

margin between the classes, in case of a binary classification problem. In case of Support 

vector regression the selected optimal hyperplane is the one from which the distance to all the 

data points is minimum. This mapping is done to the training examples to make it closer to a 

linearly separable case and is accomplished using a kernel function. Radial basis function is a 

commonly used type of kernel for SVM algorithm. 

SVM algorithm depends on some hyper-parameters namely, C and gamma. C refers to the 

soft margin constant. These Parameters have to be optimized based on the nature of dataset 

under consideration. This is often done by k-fold cross validation where for each split of data 

into k subsets, the cross validation error is computed using different values of C and gamma. 

The values of C and gamma corresponding to the least cross validation error are then used for 

training an SVM model. SVM is particularly attractive as it effectively addresses risk of 

overfitting. It can handle high dimensional feature space and also local minimization.  

2.3.2 Random forest  

Decision trees methods are another category of widely used machine learning algorithms. In 

this algorithm, criteria are found for splitting the dataset into branches, thus forming a tree 

structure, hence the name. Each of these branches is referred to as a node and the terminal 

nodes are called leaves of the tree. The splitting of the nodes is achieved using some decision 
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rules which once established, are used to predict the future examples. A decision tree can be 

used in case of both regression and classification. Each end node of the tree denotes 

quantitative data in the former case and categorical data in case of classification problem. 

These set of methods find a great utility owing to their ability to handle high dimensional data 

while ignoring irrelevant descriptors 
[74]

 and providing a better ease of interpretation. On the 

other hand, decision tree algorithms may be on the lower side with respect to the prediction 

accuracy. 
[74]

 

While numerous improvements have been made to such decision tree algorithms to improve 

its applicability, Random forest is one such improvement. Random forest is an ensemble 

method proposed by Leo Breiman
[75]

 which aggregates results from multiple decision tree 

based learners. A random forest is a collection of trees constructed from the training dataset 

and validated internally to be capable of yielding predictions for future observations 
[76]

. 

Every tree in the collection, called a base learner, is constructed from a bootstrap sample 

drawn with replacement from the original dataset. This random sample often comprises of 

approximately two third of the data while the remaining one third of the dataset is referred to 

as the ‘Out-of-bag' sample. The OOB sample is then run down the constructed tree for 

prediction and the error rate is computed. The main improvement in case of the random forest 

algorithm as compared to many of the previous decision tree based methods is the 

introduction of an additional layer of randomness. Instead of splitting using all the available 

variables, the RF algorithm selects only a random subset of variables to find the best split at 

each of the nodes.  The trees are then grown to the maximum levels without pruning. Finally, 

the predictions from these ensembles of trees are combined using majority voting in case of 

classification problems and average values in case of regression problems. The number of 

descriptors considered at every node is often the parameter that has to be optimized 

depending on the dataset under consideration. 

RF has been found to be very useful in cases where the number of Independent variables is 

much greater compared to the number of observations 
[76]

. Some of the other attractive 

features of random forest predictors are high predictability and speed along with an inherent 

estimation of prediction accuracy and measures of descriptors importance. Such an ability of 

determining the measures of descriptor importance is of great utility in ranking the variables 

based on their capability to predict the response from the model.  
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2.3.3 Consensus models 

Consensus model refers to a kind of data fusion which considers ways to combine predictions 

from various models. This approach, in general, has been shown to improve the predictive 

performance of a model. This improvement is probably attributable to the fact that when 

predictions from various component models are combined, the errors are averaged out and 

the methods show a greater accuracy by complimenting each other. A commonly used 

method for building consensus model is to take the average of predictions from various 

models. 

2.3.4 Conformal predictors 

Conformal predictors are a set of predictors that provide confidence for the prediction, based 

on past experience.  These can be built on any traditional algorithm. Initially developed for 

classification problems, conformal prediction is now also being applied on regression 

problems.  This method is mainly based on the usefulness of hedged predictions in analyzing 

datasets. Predictions are said to be “hedged” when they are associated with scores of how 

confident and accurate the predictor is in predicting the values. 
[77]

 

For a typical classification problem, conformal prediction associates the prediction with 

confidence and credibility values. The confidence score indicates how likely it is for the 

predicted label to be correct while credibility evaluates the suitability of the training data to 

classify the given test example. On the other hand, conformal prediction applied on a 

regression problem gives a range of confidence levels and outputs region predictions 

(intervals) which indicate a range of possible values at that confidence level. The main 

criteria to be fulfilled for being able to apply conformal prediction are that the data should 

follow the IID (independent and identically distributed). The algorithm first produces a point 

prediction and then non-conformity scores are generated which evaluate how different the 

test example is compared to the previous examples seen by the algorithm 
[78]

. This score is 

then utilized in determining the region prediction. The conformal prediction is valid if the 

probability of true label lying outside the predicted region is not more than the error  . Thus 

as the confidence level increases the width of the region increases giving rise to nested 

prediction sets. This width is a kind of measure for the efficiency. Thus there is a trade-off 

between the reliability denoted by the confidence and the accuracy. 
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2.4 Model building workflow 

In the present study, two model building approaches were defined based on the dataset being 

used, namely, direct and indirect models. 

• Direct model represents a model built using Kp,uu,brain data determined from 

experimental values of  Kp,brain, Vu,brain and fu,p  .   

• Indirect model consists of the three single component models (Kp,brain, Vu,brain and fu,p  ) 

built based on the respective experimental data, whose individual predictions on the test 

set are combined to calculate Kp,uu,brain values (using equation (3) ) .  

Strategy of building the indirect model is to be able to effectively incorporate the 

experimental data available for each of the parameters, which is comparatively more 

compared to that of the Kp,uu,brain. 

 
Figure 2.2: Kp,uu,brain Model workflow 

 

Various attempts were made to build models and improve the performance. The SVM and RF 

models with AZ descriptors were built using AZOrange 
[81]

, an in-house implementation of 

the open source package Orange 
[80]

, which is software developed for data mining. The 

models using Signature molecular descriptors were built using LIBSVM 
[79]

, an open source 

SVM library. The statistical analysis was performed using R 
[82]

 and TIBCO Spotfire. Table 

2.1 explains the main models built during this study. 
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Table  2.1  Various Kp,uu,brain models built 

1 I.  

Signature SVM model built on  the 

old data 

O_ SVM(S,d) Signature SVM Direct model built on the old data 

2 O_ SVM(S,i) Signature SVM Indirect model built on the old data 

    

3 II.  

Single component models 

 

SVM(A, d) SVM Direct model built using AZ descriptors 

4 RF(A, d)  RF Direct model built using AZ descriptors 

5 SVM(S, d) SVM Direct model built using signature descriptors 

6 SVM(A, i) SVM Indirect model built using AZ descriptors 

7 RF(A, i) RF Indirect model built using AZ descriptors 

8 SVM(S,i) SVM Indirect model built using signature descriptors 

    

  

 

 

 

 

 

 

 

III. Consensus models 

AZ Descriptors  

9 SVM(A,d)_RF(A,d)  

Consensus models based on the two ML algorithms, SVM and 

RF,  and the two modeling workflows (direct and indirect),  

with only AZ descriptors set 

10 SVM(A,i)_RF (A,i)  

11 SVM(A,d)_ SVM(A,i)  

12 RF(A,d)_ RF (A,i) 

13 SVM(A,d)_ RF (A,i) 

14 SVM(A,i)_RF(A,d)  

15 SVM(A,d)_SVM(A,i)_RF(A,d)  

16 SVM(A,d)_SVM(A,i)_RF(A,d) +RF(A,i)  

17 SVM(A,d) _RF(A,d)_RF(A,i)  

 Signature Descriptor   

18 SVM(S,d)_SVM(S,i) Consensus model based on only signature descriptors 

 AZ Descriptors & Signature Descriptor   

19 SVM(A,d)_RF(A,d)_SVM(S,d)  

Consensus models based on two different descriptors, model 

workflows and ML algorithms 

20 SVM(A,d)_RF(A,d)_SVM(S,i)  

21 SVM(A,d)_RF(A,d)_ SVM(S,d) _SVM(S,i)  

22 SVM(A,d)_RF(A,i)_RF(A,d)_SVM(S,d)  

23 SVM(A,d)_ SVM(A,i)_RF(A,i)_RF(A,d)_SVM(S,d)  

24 SVM(A,d)_SVM(A,i)_RF(A,i)_RF(A,d)_SVM(S,d)_SV

M(S,i)  

    

25 IV. Conformal prediction CP_SVM(S, i)  Conformal predictor on SVM Indirect model  built based on 

signature descriptors 
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2.5 Model Validation 

Validation is a vital step for building a good QSAR model as it shows the goodness of fit of 

the model under consideration. Two types of validations are commonly performed to assess 

the predictive powers of a QSAR model. 

Internal validation is used to determine the model fit, which gives an idea of how an unseen 

example might be handled by the model. Most commonly employed methods are leave one 

out cross –validation Q
2
, k-fold cross validation and so on. It is measured in terms of cross 

validated correlation coefficient or Q
2
. In the present work, k-fold cross validation was used 

during the model validation. 

External validation refers to the use of an external test set which is not included in the dataset 

used to build the model. The performance of the model on the test set is often measured in 

terms of the coefficient of determination, R
2 

and RMSE. 

R
2
 value denotes the correlation coefficient, which describes how good the predictions from 

the model are. A high R
2
 value is thus indicative of a good predictability of the model under 

consideration. In essence, R
2
 basically represents the percent of data that is closest to the best 

fit line, thus gives a picture of how well the data under consideration is explained by the 

regression equation set up. The value of R
2
 ranges from 0 to 1. An R

2
 of zero is attributable to 

a case where none of the variation in the observations can be explained by the variation in the 

independent variables whereas a value of 1 describes an ideal case of exact explanation 
[38]

. 

RMSE (Root mean square error) represents the extent by which the predicted values deviate 

from the true experimental values. It is calculated as the square root of mean squared error 

that evaluates the square of difference between the observed and the predicted values. 

   

    (5) 

Where Yobs is the observed value of the dependent variable and Ypred is predicted value of the 

dependent variable. 

2.1.6 Classification model  

Classification models were evaluated by categorizing the data into classes based on certain 

criteria. Classification criteria used in this study are as follows. 

Two-class classification: The prediction results from the model were classified based on a 

cut off at -1, where a logKp,uu,brain value greater than or equal to -1 renders the compound as 

BBB positive while values less than -1 implies BBB negative.  BBB positive implying the 

√ (Y
obs

-Y
pred

)
2
 

n 
RMSE = 
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ability of the compound to permeate the BBB while BBB negative implying inability of the 

compound to do so. 

Three-class classification: A three-class model was also built based on a cut off at two levels 

where a logKp,uu,brain>=-0.52 is defined as HIGH, logKp,uu,brain <-1.3 as LOW and all 

compounds between logKp,uu,brain - 1.3 and -0.52 as MODERATE. Here the compounds under 

the HIGH category are said to have a greater chance of permeating the BBB while those in 

LOW class have little chance.  

Throughout the analysis, the classification performance have been measured based on certain 

parameters. To calculate these parameters, a confusion matrix is first constructed. A 

confusion matrix is a matrix representing how well the prediction fits the actual values. This 

is analyzed based on the fraction of True Positives (TP), False Positives (FP), True Negatives 

(TN) and False Negatives (FN) in the predictions.  The primary measures used are as 

described in table 2.2.  

• Accuracy describes the fraction of correctly predicted instances.  

• Sensitivity or recall is proportion of positives that are correctly predicted as positive.  

• The fraction of negatives that are correctly predicted as negatives comprise the Specificity. 

• Negative Precision and Positive precision describe the accuracy of prediction of negative and 

positive class respectively. 

• F-score provides a measure of accuracy considering the harmonic average of recall and 

precision.     

• Kappa score measures the difference between the observed agreement and the agreement 

expected to be present just by chance. 

• Matthew’s coefficient represents the correlation between the observed and predicted binary 

classification. 

 

Table  2.2 Classification performance measures 
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2.6 Model Interpretation  

Further, an analysis of substructures and descriptors were performed for the training sets used 

to build the Kp,brain, Vu,brain and fu,p models. This gives an idea of the overall trend represented 

by the model. This was performed to analyze the dataset for potential indications of 

association of values of Kp,brain, Vu,brain and fu,p  with the substructures that they possess or the 

descriptors that are used to best describe them and to corroborate the data already known 

about the same.  

 

2.6.1 Signature descriptor gradient 

An in-house script was used to produce the SVM decision function gradient values for each 

of the training set predictions made by the individual models of Kp,brain, Vu,brain and fu,p. 

These were used to infer the substructure that can possibly have the most effect (positive or 

negative) on the values of Kp,brain, Vu,brain and fu,p  respectively. 

 

2.6.2 AZ descriptor gradient 

A similar analysis was performed with AZ descriptors using some in-house python scripts 

using modules from the in-house implementation of the Orange package. The gradient values 

were analyzed to evaluate the descriptors showing the highest positive or negative effects on 

the end point values. 

 

2.6.3 VIP values (Variable importance of projection) 

An in-house python script that calculates the VIP values based on random forest model was 

used to analyze the descriptor importance in each of the Kp,brain, Vu,brain and fu,p  models. The 

descriptors with the highest VIP values were analyzed to make specific inferences. 

Based on the calculated VIP values, the important descriptors were ranked in both models 

using RF with AZ descriptors and RF with signature descriptors. 
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3. RESULTS AND DISCUSSIONS 

 

3.1 Compounds in the dataset 

As mentioned earlier, some characteristics of compounds are favorable for a good 

distribution across the blood-brain barrier. An overview of the trend of these properties 

among the compounds in the dataset used is as shown in figure below. 

Figure 3.1a shows the trend of the Kp,uu,brain values in the dataset. The average value is around 

-1.09± 0.75 as indicated. It can be noticed that a large majority of the data points lie in the 

intermediate region.  

 
a. logKp,uu,brain 

 
b. ClogP 

 
c. Rotatable bonds 

 
d. Molecular weight 

 
e. Polar count 

 
f. Non-polar count 
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g. PSA 

 
h. Hydrogen bond acceptor 

 

 

 

 

 
 

 

 

i. Hydrogen bond donor 

 
 

j. Acids 

 
 

k. Bases 

 
 

l. Neutral 

Figure 3.3: Overview of the trend of some properties across the dataset. 

ClogP denotes lipophilicity of the compound, and is an important parameter for BBB 

penetration. Some studies have shown the mean ClogP for CNS drugs to be around 2.1
[24]

. 

The dataset used in the study shows an average ClogP value of around 2.55 ± 1.61(Figue1 

(b)) which seems to be close to that value. The molecular rigidity is often defined using 

number of rotatable bond; a potential CNS drug is thought to have a slightly higher rigidity 

than Non-CNS drugs. The dataset here consists of an average rotatable bond count of around 

~6.47 (Figure 1(c)). 

The dataset represents a set of compounds with a molecular weight average at approximately 

409±84 (Figure1 (d)), which seems good as for a CNS drug the range usually suggested is 

around 400-450. It is also known that CNS drugs have a higher non-polar count than their 

non-CNS counterparts, which is reflected in the figures 1(e) and 1(f).  

Hydrogen bonding properties are critical for CNS drugs, an overall picture of how HBA and 

HBD are distributed across the dataset is represented in Figure 1(h) and 1(i). The figures 1(j) 

1(k) and 1(l) represent the details of number of acids, bases and neutral compounds in the 

dataset. 
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3.2 Validation of the Current Kp,uu,brain model 

Upon the external validation of the model built in 2011 using test set consisting of 

compounds from the new dataset for which Kp,uu,brain data was available (100 compounds), it 

was seen that the model gave a correlation coefficient, R
2
 of 0.46 which increased to 0.53 on 

removal of a clear outlier(Figure 3.2a and b), while the RMSE decreased from 0.63 to 0.58. 

The original study in 2011 had seen a R
2
 value of 0.58 with an external test set. This was thus 

indicative of the stability of the performance of the current model.  

This outlier had a unusually high experimental value, which can be noticed in the distance of 

the point marked from the best fit line. 

 
a. 

 

R
2
 0.46 

RMSE 0.63 

Observations  100 

 
b. 

 

R
2
 0.53 

RMSE 0.58 

Observations  99 

Figure 3.4 Prediction results on the temporal test set. 
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3.2.1 Classification performance: 

Classification performance of the model was determined based on the two difference methods 

of categorization, namely, two-class classification and three-class classification. 

Two class classification:  

A two class classification on the prediction given by the current model on the temporal test 

set (with the outlier removed) is as shown (Table 3.1 and 3.2). For assessing the classification 

performance, firstly, a confusion matrix was constructed where the prediction was evaluated 

and categorized into true positives, false positives, true negatives and false negatives. 

Determining the performance measures showed that the prediction had a decent accuracy of 

around 76% with a good sensitivity and specificity of 74% and 77% respectively.  

Table 3.1 Confusion Matrix for two-class classification 
                    

 

TP  34  

FP  12  

TN  41  

FN  12  

Total  99  

Table 3.2 Performance Measures for two-class model 
 

 

 

 

 

 

Accuracy  0.76  

Sensitivity  0.74  

Specificity  0.77  

Positive Precision  0.74  

Negative Precision  0.77  

F-score  0.74  

Kappa  0.51  

Matthews correlation coefficient  0.51  

 

 
Figure 3.5 A chart representing a comparison between the experimental and 

predicted data of logKp,uu,brain. 
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Three –class classification: 

From the various performance measures calculated from the confusion matrix, a classification 

accuracy of 92%, 81% and 40% for HIGH, LOW and MODERATE class respectively (table 

3.3), was observed. These results were again in line with what was observed in the previous 

study in 2011. 

It is important to note that about 57% of the compounds belong to the Moderate class (table 

3.3 and figure 3.4). The low prediction accuracy for the moderate class largely deteriorates 

the accuracy of the three class model for the whole dataset. 

Table 3.3 Confusion matrix for High, Low and Moderate classes 

 

 

 

HIGH  LOW  MODERATE 

TP 11 TP 25 TP 23 

FP 1 FP 5 FP 34 

Precision 0.92 Precision 0.833 Precision 0.40 

 

 
 
Figure 3.6 Comparison of predicted results with the experimental values using a three-class 

model 

 

Overall, these observations give us a good confidence in the predictive powers of the current 

model. On the other hand, it is important to realize that it is necessary to update these in-

silico models with temporal datasets to further extend the chemical space represented by the 

training set, thus further improving the chances of a good prediction of unknown compounds.  
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3.3 Signature SVM model built on the old dataset  

After the validation of the current model, an attempt was made to check the performance of 

the model built using signature molecular descriptors. This model was built based on the old 

dataset (used in the 2011 study) to evaluate the performance using signature molecular 

descriptor as the study in 2011 used only the AZ descriptors set. The specifications of the 

model are as listed in the table below (table 3.4). 

 

Table 3.4 Model specifications  

Model type Direct and Indirect model 

Machine learning algorithm SVM 

Descriptor Signature molecular descriptors 

Size of dataset (Training set) (Direct model) 

 

 

Kp,uu,brain     : 173 

Kp,brain   : 432 

Vu,brain  : 399 

fu,p   : 3161 

Size of dataset (Test set)  74  

 

External validation of the model gave an R
2
 of 0.52 and RMSE of 0.50 for the direct model 

and R
2
 of 0.46 and RMSE of 0.59 for indirect model (Figure 3.5 and 3.6). This was observed 

to be similar to the results that were obtained using the set in-house physico-chemical 

descriptors in the 2011 study (Direct Model R
2
 of 0.53 and RMSE of 0.48 and Indirect Model 

R
2
 of 0.42 and RMSE of 0.54) 

 

From this study it could be inferred that signature molecular descriptor alone does not greatly 

improve the performance of this particular model. Further the descriptor was employed in the 

model building along with the AZ descriptors to determine if consensus between the AZ 

descriptor and the signature descriptor can further improve the model. 

At this stage, different signature height ranges were checked for any improvement of the 

model. Since there was no significant improvement, a signature height range of 0-3 was used 

throughout the study. 
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Figure 3.7 Direct Model: Predicted vs Experimental  Values 
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Figure 3.8 Indirect Model: Predicted vs Experimental Values 
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The subsequent studies aimed at building a Model with the inclusion of the new data in the 

original dataset. The outlier (represented in Figure 3.2) was removed from the dataset. It was 

then attempted to improve the performance of the model using a different approach to model 

building.  

3.4 Single component models  

The subsequent studies involved model building using the dataset where the new and the old 

data (until 2011) were combined. During the model building, the whole dataset was randomly 

split into training and test set with the ratio of 7:3 and random splitting was repeated 10 times 

and thus 10 models were built of each model type. 

Table 3.6 lists and explains the notations used to represent the models, throughout the report.  

 

Table 3.5 : Model specifications  

Model type Direct model and Indirect 

Machine learning algorithm SVM and RF 

Descriptor AZ Descriptor and Signature descriptor 

Size of dataset (Training set) (Direct model) 

 

 

Kp,uu,brain     : 242 

Kp,brain   : 617 

Vu,brain  : 1105 

fu,p   : 5651 

Size of dataset (Test set)  104  

 

Table 3.6 Notations for the single component models. 

Model  ML 

Algorithm 

Model workflow Descriptor 

SVM_(A, d) SVM Direct AZ Descriptors 

RF_(A, d) RF Direct AZ Descriptors 

SVM_(S, d) SVM Direct Signature descriptor 

SVM_(A, I) SVM Indirect AZ Descriptors 

RF_(A, I) RF Indirect AZ Descriptors 

SVM_(S, I) SVM Indirect Signature descriptor 
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3.4.1 Internal Validation 

For the models using AZ descriptor, the internal cross validation q
2
 was calculated for all the 

datasets. The Average cross validation R
2 

(q
2
) for direct model was found to be 0.63 with 

SVM and 0.64 with RF respectively  (Figure 3.7) and in case of indirect model, Kp,brain, 

Vu,brain and fu,p had an average of 0.67, 0.67 and 0.80 respectively  with SVM and 0.70 ,0.65 

and 0.78 with RF (Figures 3.8, 3.9, 3.10).  The range of R
2 

values obtained with the internal 

validation is indicative of the good internal predictive performance of the models. 

The graphs represent the trend of the variation in cross-validation R
2
 (q

2
) for the direct model 

and the 3 component models of the indirect model. The x-axis represents the models and y-

axis represents the R
2
 values. 

 

 

 
Figure 3.9 Graph representing the q2 of the 10 training sets (Direct Model). 
 

ML Algorithm SVM RF 

R
2
 0.61 0.54 

RMSE 0.46 0.50 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10

R
2

 

Model 

Kp,uu,brain Direct Model 

SVM(A,D)

RF(A,D)



 

34 
 

 
Figure 3. 10 Graph representing the q

2 
values of Kp,brain 

model across the 10 sets of data. 
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Figure 3.11 Graph representing the q

2
 values of Vu,brain model 

across the 10 sets of data 
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Figure 3.12 Graph representing the q

2
 values of fu,p model 

across the 10 sets of data 
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3.4.2 External validation of the Kp,uu,brain models 

External validation involved testing the 104 compounds of the test set on the model built. The 

predictions on the test sets from the six single component models gave an insight into the 

machine learning method and the descriptors that are providing the best predictions for each 

of the dataset. Among the models built, it was seen that the indirect models based on SVM 

and RF with the in-house physicochemical descriptors gave the best predictions with an 

average R
2
 of 0.59 and an average RMSE of 0.49 in both cases. But, the model based on RF 

was considered to be the best among the two, owing to the more consistent predictions as 

seen in the graph (Figure 3.11). This was inferred based on the average R
2
 over the 

predictions of all the 10 models in each case (Table 3.7).  

 

Figure 3.13  R
2
 across the ten datasets for each of the models. 

 

Table 3.7  Performance of the models (Average over 10 sets) 

Model R
2
 RMSE 

SVM_(A, d)  0.57  0.49  

RF_(A, d)  0.54  0.52  

SVM_(S, d)  0.51  0.53  

SVM_(A, I)  0.59  0.49  

RF_(A, I)  0.59  0.49  

SVM_(S, I)  0.5  0.57  
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Some regression curves for the six single component models as explained above are 

represented with the equation and respective R
2
 values (Figure 3.12). In the regression 

graphs, the x-axis represents the Kp,uu,brain prediction values and y-axis represents the 

experimental or observed values. The line represented in the graphs is called the best fit line 

which basically best describes the data on the scatter plot.  

 
 

  

  
Figure 3.14 Regression curves for the six single component models of one of the datasets 
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3.5 Consensus Models: 

Following the analysis of the single component models, consensus models were built by 

taking the average of the predictions from the individual components. Various combinations 

of the descriptors, the machine learning algorithms and modeling schemes (direct and 

indirect) were tried out (Table 3.8). 

As it can be observed from the R
2
 values, consensus model seem to perform better as 

compared to their single component counterparts. Most of the models gave an R
2
 of above 

0.6. The consensus model based on only signature descriptor seemed to perform slightly 

poorer compared to the ones with AZ Descriptors. 

Based on the R
2
 and RMSE values the best four consensus models were picked for further 

analysis (Figure 3.13) 

 

Table 3.8: Consensus models 

Model  R
2
  RMSE  

AZ Descriptor  

SVM(A,d)_RF(A,d)  0.60  0.48  

SVM(A,i)_RF (A,i)  0.63  0.46  

SVM(A,d)_ SVM(A,i)  0.62 0.46  

RF(A,d)_ RF (A,i) 0.60  0.48  

SVM(A,d)_ RF (A,i) 0.63 0.46  

SVM(A,i)_RF(A,d)  0.62  0.47  

SVM(A,d)_SVM(A,i)_RF(A,d)  0.63 0.46  

SVM(A,d)_SVM(A,i)_RF(A,d) +RF(A,i)  0.63  0.47  

SVM(A,d) + RF(A,d) + RF(A,i)  0.64 0.46  

Signature Descriptor  

SVM(S,d)_SVM(S,i)  0.56 0.51  

AZ Descriptors & Signature Descriptor  

SVM(A,d)_RF(A,d)_SVM(S,d)  0.61 0.48  

SVM(A,d)_RF(A,d)_SVM(S,i)  0.62  0.46  

SVM(A,d)_RF(A,d)_ SVM(S,d) _SVM(S,i)  0.62 0.47  

SVM(A,d)_RF(A,i)_RF(A,d)_SVM(S,d)  0.63  0.46  

SVM(A,d)_ SVM(A,i)_RF(A,i)_RF(A,d)_SVM(S,d)  0.65  0.45  

SVM(A,d)_SVM(A,i)_RF(A,i)_RF(A,d)_SVM(S,d)_SVM(S,i)  0.65 0.45  
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Figure 3.15 Graph showing the variation of R

2
 values across the ten sets. 

 

Further, classification performance was checked for the top four consensus models that 

showed the best performance. 

Classification models using the best consensus models involved classifying the prediction of 

the model based on the 2-class (logKp,uu,brain >= -1 as positive and logKp,uu,brain < -1 as 

negative) or 3- class ( logKp,uu,brain  >= -0.52 (HIGH), logKp,uu,brain  < -1.3 as (LOW), -0.52 < 

logKp,uu,brain  >= -1.3 as (MODERATE)) categories. In general, different approaches exist to 

derive consensus models. In the current study, different approaches for calculations of 

consensus prediction were attempted by using Average, median, maximum value (where the 

maximum value among the predictions from the different model is taken as the consensus 

prediction) and minimum value (where the minimum value among the predictions from the 

different model is taken as the consensus prediction).  
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3.5.1 Two class classification  

Table 3.9 Classification performance (Two Class)  of the best consensus models using different ways of data fusion ( Average, Median, Max Value and Min Value) 

 

 Accuracy Sensitivity Specificity Positive 

precision 

Negative 

precision 

F-

score 

Kapp

a 

Matthews 

Coefficient 

AVERAGE 

SVM(A,d) _RF(A,d)_RF(A,i) 0.836 0.802 0.858 0.799 0.861 0.8 0.66 0.659 

SVM(A,d)_RF(A,i)_RF(A,d)_SVM(S,d) 0.836 0.814 0.848 0.791 0.867 0.8 0.662 0.66 

SVM(A,d)_ SVM(A,i)_RF(A,i)_RF(A,d)_SVM(S,d) 0.843 0.823 0.852 0.8 0.874 0.809 0.677 0.675 

SVM(A,d)_SVM(A,i)_RF(A,i)_RF(A,d)_SVM(S,d)_S

VM(S,i) 0.839 0.817 0.849 0.796 0.869 0.804 0.668 0.666 

MEDIAN 

SVM(A,d) _RF(A,d)_RF(A,i) 0.835 0.789 0.863 0.803 0.855 0.795 0.658 0.655 

SVM(A,d)_RF(A,i)_RF(A,d)_SVM(S,d) 0.831 0.805 0.847 0.785 0.861 0.792 0.651 0.65 

SVM(A,d)_ SVM(A,i)_RF(A,i)_RF(A,d)_SVM(S,d) 0.837 0.813 0.846 0.793 0.868 0.8 0.664 0.661 

SVM(A,d)_SVM(A,i)_RF(A,i)_RF(A,d)_SVM(S,d)_S

VM(S,i) 0.839 0.818 0.848 0.795 0.871 0.804 0.669 0.666 

MAXIMUM 

SVM(A,d) _RF(A,d)_RF(A,i) 0.799 0.89 0.729 0.7 0.905 0.782 0.6 0.612 

SVM(A,d)_RF(A,i)_RF(A,d)_SVM(S,d) 0.78 0.918 0.678 0.67 0.921 0.774 0.57 0.592 

SVM(A,d)_ SVM(A,i)_RF(A,i)_RF(A,d)_SVM(S,d) 0.762 0.949 0.628 0.646 0.948 0.766 0.541 0.585 

SVM(A,d)_SVM(A,i)_RF(A,i)_RF(A,d)_SVM(S,d)_S

VM(S,i) 0.75 0.968 0.597 0.631 0.966 0.762 0.523 0.58 

MINIMUM 

SVM(A,d) _RF(A,d)_RF(A,i) 0.825 0.654 0.941 0.885 0.795 0.749 0.621 0.638 

SVM(A,d)_RF(A,i)_RF(A,d)_SVM(S,d) 0.816 0.607 0.96 0.917 0.775 0.729 0.6 0.624 

SVM(A,d)_ SVM(A,i)_RF(A,i)_RF(A,d)_SVM(S,d) 0.816 0.589 0.971 0.933 0.771 0.721 0.599 0.628 

SVM(A,d)_SVM(A,i)_RF(A,i)_RF(A,d)_SVM(S,d)_S

VM(S,i) 0.806 0.565 0.972 0.935 0.76 0.702 0.574 0.609 
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From the 2-class classification performance measures it can be seen that consensus prediction 

based on minimum value has lower sensitivity and higher specificity while the one with the 

maximum value has a lower specificity and higher sensitivity (Table 3.9). Thus, as it can be 

noted, among the different methods, average calculation seemed to give a more consistent 

result. On an average, the models showed an accuracy of around 0.84 with a sensitivity or 

recall of approximately 0.81 and specificity of around 0.85. A Kappa value of around 0.67 on 

shows a good predictive performance of these models.  

 

3.5.2 Three class Classification   

Similar to the trend noticed with the 2-class classification results, the average method of 

calculating consensus prediction for 3-class model seemed to be more consistent across the 

models (table 3.10) . The precision fell in the range of 81-86%, 81-82% and 46-50% for the 

HIGH, LOW and MODERATE classes respectively. 

Table 3.10 Classification performance (three-class) of the best consensus models using different 

ways of data fusion (Average, Median, Max Value and Min Value) 

 Precision 

HIGH 

Precision  

LOW 

Precision 

MODERATE 

AVERAGE 

SVM(A,d) _RF(A,d)_RF(A,i) 0.816 0.806 0.456 

SVM(A,d)_RF(A,i)_RF(A,d)_SVM(S,d) 0.808 0.808 0.459 

SVM(A,d)_ SVM(A,i)_RF(A,i)_RF(A,d)_SVM(S,d) 0.862 0.819 0.479 

SVM(A,d)_SVM(A,i)_RF(A,i)_RF(A,d)_SVM(S,d)_SVM(S,i) 0.81 0.828 0.491 

MEDIAN 

SVM(A,d) _RF(A,d)_RF(A,i) 0.815 0.806 0.454 

SVM(A,d)_RF(A,i)_RF(A,d)_SVM(S,d) 0.834 0.801 0.457 

SVM(A,d)_ SVM(A,i)_RF(A,i)_RF(A,d)_SVM(S,d) 0.85 0.817 0.479 

SVM(A,d)_SVM(A,i)_RF(A,i)_RF(A,d)_SVM(S,d)_SVM(S,i) 0.826 0.817 0.492 

MAXIMUM 

SVM(A,d) _RF(A,d)_RF(A,i) 0.674 0.874 0.438 

SVM(A,d)_RF(A,i)_RF(A,d)_SVM(S,d) 0.645 0.889 0.419 

SVM(A,d)_ SVM(A,i)_RF(A,i)_RF(A,d)_SVM(S,d) 0.653 0.885 0.397 

SVM(A,d)_SVM(A,i)_RF(A,i)_RF(A,d)_SVM(S,d)_SVM(S,i) 0.619 0.892 0.375 

MINIMUM 

SVM(A,d) _RF(A,d)_RF(A,i) 0.89 0.744 0.431 

SVM(A,d)_RF(A,i)_RF(A,d)_SVM(S,d) 0.907 0.714 0.424 

SVM(A,d)_ SVM(A,i)_RF(A,i)_RF(A,d)_SVM(S,d) 0.909 0.719 0.404 

SVM(A,d)_SVM(A,i)_RF(A,i)_RF(A,d)_SVM(S,d)_SVM(S,i) 0.915 0.701 0.4 

 

From all the results described above, it can be noted that the best performance is exhibited by 

the 5-component model: SVM(A,d)_SVM(A,i)_RF(A,i)_RF(A,d)_SVM(S,d). This model 

has an average R
2
 of 0.65 with RMSE of 0.45, average two-class classification accuracy of 
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84% and an average precision of 48% for predicting Moderate class in the 3-class 

classification. Here we can see a clear improvement in the performance as compared to the 

validation result. The figures below (Figure 3.14,3.15 and 3.16) summarize sample results 

from one of the 10 SVM(A,d)_ SVM(A,i)_RF(A,i)_RF(A,d)_SVM(S,d) models. 

 

Figure 3.16 Sample regression plot for the 5 component consensus model (one of the 10 runs). 

 

  

Figure 3.17 (a) Two-class classification and (b) confusion matrix for the 5-component model 

(one of the 10 runs) 

 

 

Figure 3.18: Three-class classification for the 5 component consensus model (one of the 10 runs) 
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3.6 Conformal Prediction 

An indirect conformal prediction model was built using the dataset corresponding to the best 

model among the 10 runs used in section 3.5. The model utilized signature molecular 

descriptors. The purpose of using conformal predictors is to be able to associate the 

predictions from the model to a confidence score.  

In this case, the error percentage and interval length at every confidence level was computed 

for each of Kp,brain, Vu,brain and fu,p. Kp,uu,brain interval was calculated by combining the 

minimum and maximum values of each of the components. The table below (table 3.11) 

shows the specifications of the model and the dataset used. 

 

Table 3.11 Model specifications  (Conformal predictor) 

Model type SVM Signature -> Conformal predictor  

( Indirect Model ) 

Machine learning algorithm SVM 

Descriptor Signature descriptor 

Size of dataset (Training set)  

 

 

Kp,brain   : 617 

Vu,brain  : 1105 

fu,p   : 5651 

Size of dataset (Test set)  104  

 

To make useful inferences of the intervals obtained from the conformal predictor, 

experimental ranges of Kp,brain, Vu,brain and fu,p  were analyzed as summarized in table below 

(Table 3.12).  

Range of Experimental Values: 

Table 3.12  Experimental values range for the various parameter. 

logKp,brain - 2.46 to 1.33 

logVu,brain -0.24 to 3.52 

logfu,p -1.98 to 2.00 

logKp,uu,brain  -2.46 - 0.68 

 

The Kp,brain, Vu,brain and  fu,p component models (Tables 3.13, 3.14 and 3.15) were built and the 

predictions from these were used to calculate Kp,uu,brain. The models showed a consistency 

between the RMSE and the interval lengths. 
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Table 3.13 Prediction from Kp,brain model. 

Confidence 

Levels 

%Error  in the 

prediction 

Average Interval 

Length 

Average coefficient of 

variation 

40 61.54 0.87 1.14 

45 58.65 0.99 1.29 

50 53.85 1.11 1.44 

55 47.12 1.27 1.66 

60 37.50 1.50 1.95 

65 34.62 1.65 2.14 

70 32.69 1.87 2.43 

75 31.73 2.01 2.61 

80 21.15 2.68 3.48 

85 16.35 3.06 3.97 

90 6.73 3.83 4.97 

95 2.88 4.93 6.40 

 

Model Prediction 

R
2
 RMSE 

0.57 0.53 

 

 

Table 3.14  Prediction from Vu,brain model 

Confidence 

levels 

%Error  in the 

prediction 

Average Interval 

Length 

Average coefficient of 

variation 

40 68.27 0.19 0.16 

45 60.58 0.26 0.21 

50 57.69 0.30 0.24 

55 54.81 0.33 0.27 

60 51.92 0.37 0.30 

65 44.23 0.49 0.40 

70 42.31 0.55 0.45 

75 35.58 0.62 0.50 

80 26.92 0.76 0.61 

85 20.19 0.99 0.80 

90 11.54 1.24 1.00 

95 4.81 1.80 1.45 

 

Model Prediction  

R
2
 RMSE 

0.75 0.36 
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Table 3.15 Prediction from fu,p model 

Confidence 

levels 

%Error  in the 

prediction 

Average Interval 

Length 

Average coefficient of 

variation 

40 68.27 0.19 0.17 

45 64.42 0.24 0.21 

50 53.85 0.32 0.29 

55 44.23 0.39 0.35 

60 41.35 0.46 0.42 

65 34.62 0.53 0.48 

70 30.77 0.58 0.52 

75 23.08 0.77 0.69 

80 18.27 0.88 0.79 

85 14.42 1.10 0.99 

90 9.62 1.52 1.37 

95 7.69 1.69 1.53 

 

Model Prediction 

R
2
 RMSE 

0.76 0.36 

 

Kp,uu,brain Calculations: 

For calculating Kp,uu,brain value range the formula the formula as given in the table (3.16) 

below was used. This formula is based on the Equation (3).   

Table 3.16  Equation used to calculate Kp,uu,brain ranges. 

Maximum logKp,uu,brain = MaxlogKp,brain –MinlogVu,brain-Minlogfu,p +2 

Minimum logKp,uu,brain = MinlogKp,brain –MaxlogVu,brain-Maxlogfu,p +2 

 

From Table 3.17, it can be noted that the conservative validity of the conformal prediction is 

not satisfied as the error rates at each confidence level do not correspond to the ϵ and 1-ϵ 

relationship (5% error at 95% confidence). This can probably be overcome with a different 

approach to calculation of the Kp,uu,brain interval.  The interval length increases from 1.26 (at 

40% confidence) to 8.42 (at 95% confidence) these high interval lengths make the 

interpretation of the results somewhat complex. However, the model performance in terms of 

the RMSE seems to be consistent with the interval length (low RMSE).  
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Table 3.17 Prediction from Kp,uu,brain indirect model 

Confidence 

levels 

%Error  in the 

prediction  

Average Interval 

Length  

Average coefficient of 

variation 

40 47.12 1.26 0.17 

45 41.35 1.49 0.21 

50 33.65 1.73 0.29 

55 27.88 2.00 0.35 

60 18.27 2.33 0.42 

65 13.46 2.67 0.48 

70 9.62 3.00 0.52 

75 6.73 3.39 0.69 

80 3.85  4.32 0.79 

85 1.92 5.15 0.99 

90 0 6.58 1.37 

95 0 8.42 1.53 

 

Model Prediction  

R2 RMSE 

0.48  0.58  

 

 

As described by the Three Sigma rule (or 68-95-99.7 rule), for a normally distributed dataset, 

±1 standard deviation interval of the mean is where ~68% of the data points lie.  

Thus checking for the average for experimental values of Kp,brain, Vu,brain and fu,p and 

doubling the value we get the interval length where 60% of the data points are to lie, 

assuming that the data is normally distributes (Table 3.18). 

To understand the interval length given by the conformal prediction, experimental interval 

length was determined as above and compared to the interval lengths in case of confidence 

levels of 60%, 65% and 70% (Table 3.19). 

 

Table 3.18 Comparison of the standard deviation and interval length. 

 Avg Standard deviation Interval Length 

Kp,brain 0.1069 0.2138 

Vu,brain 0.2208 0.4416 

fu,p 0.1008 0.2016 
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Table 3.19 Comparison of the interval lengths at the confidence levels of 60, 65 and 70%. 

 Interval Length 

 60 65 70 

Kp,brain 1.5 1.65 1.87 

Vu,brain 0.37 0.49 0.55 

fu,p 0.46 0.53 0.58 

 

It can be noted from the above results that the interval length obtained Kp,brain and fu,p are 

much higher than the experimental interval lengths thus making it difficult to give accurate 

predictions with high confidence, while the interval length in case of Vu,brain seems to be 

slightly better (which is again consistent with the better model performance as shown by the 

R
2
 and RMSE values). 

Conformal prediction probably points to the inherent noise in the experimental measurement 

data due to which the IID (Independent and identically distributed) assumption may not be 

satisfied.  

However, in all cases shown above, the conformal prediction results were consistent in 

comparison to the model performance as observed from the R
2
 and RMSE values. 

3.7 Kp,brain Modeling approach  

This model was an approach to understand if improving the Kp,brain component alone can 

improve the Kp,uu,brain prediction of the model while utilizing experimental data for Vu,brain and 

fu,p. 

Among the various Kp,brain consensus models, the model with all the 3 component models ( 

SVM+AzDesc, RF+AZDesc and SVM+Signature descriptors)  gave the best performance 

with an R
2
 of 0.72 and a RMSE of 0.47. This model was used to build a kind of indirect 

model where the Kp,brain consensus model was used along with the experimental Vu,brain and 

fu,p to calculate Kp,uu,brain. Values obtained from such a calculation are as represented in the 

table below (Table 3.20). Average over all the ten models gave an R
2
 of 0.64 and RMSE of 

0.45. 

 Comparing these results to the values previously obtained from the consensus models, it can 

be seen that this model has a performance comparable to the performance of the best 

consensus models. 
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Table 3.20 Model Performance 

Dataset R
2

 RMSE 

1  0.68  0.41  

2 0.62  0.49  

3 0.64  0.46  

4 0.62  0.48  

5 0.67  0.48  

6 0.6  0.48  

7 0.61  0.43  

8 0.54  0.46  

9 0.67  0.43  

10 0.72  0.4  

Average 0.64  0.45  

For these models, classification performance was also evaluated and averaged over the 10 

runs (Table 3.21). Two-class classification gave an accuracy of around 84%, while with 3 

class, a precision of 81.4%, 82.3% and 51.3 % was obtained for HIGH, LOW and MEDIUM 

class respectively (Table 3.22). However, it can be noted that the precision for moderate class 

is somewhat higher than the previous models. 

Table 3.21 Two class classification performance. 

Two-class classification 

Accuracy   0.839 

Sensitivity  0.791 

Specificity  0.867 

Positive Precision  0.809 

Negative Precision  0.856 

F-score  0.8 

Kappa  0.666 

Matthews correlation coefficient  0.662 

 

Table 3.22 Three class classification performance 

Three-class classification 

Precision HIGH  0.814 

Precision LOW  0.823 

Precision MODERATE  0.513 
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3.9 Kp,uu,brain Model Interpretation 

3.9.1 Random Forest VIP values 

The table below summarizes the analysis of the descriptors based on RF VIP values (Table 

3.23). 

Among the top 15 descriptors for Kp,uu,brain most of them were related to polarity and 

molecular topology. These properties have been previously shown to be important 

determinants of Kp,uu,brain . However, it is also noticed that lipophilicity, though a very 

important factor for total brain-plasma concentration ratio (Kp,brain), does not appear in the list 

of top influential descriptors based on RF VIP values (ClogP). This is due to the fact that 

higher lipophilicity will lead to higher non-specific brain tissue and plasma protein binding 

and in the end has little influence on the Kp,uu,brain. 

Table 3.23 Top 15 descriptors based on RF VIP. 

Descriptor VIP  

MM_SAS_EP_P_SUM  0.023  

Sum of positive electrostatic potentials on solvent accessible 

surface.  

HBAsum  0.021  Sum of acceptor free energies according to Raevsky (HYBOT).  

Kappa2  0.021  Topological index.  

VDW_AREA  0.016  Van der Waals molecular surface area.  

MM_SAS_EP_P_MEAN  0.016  

Mean of positive electrostatic potentials on solvent accessible 

surface.  

MM_VDW_EP_P_SUM  0.015  

Sum of positive electrostatic potentials on Van der Waals 

surface.  

Kappa1  0.014  Topological index.  

CMR  0.014  

Calculated molar refractivity. Largely a volume descriptor, 

highly correlated with molecular weight.  

HBAmax  0.012  

Highest free energy factor for H-bond acceptors according to 

Raevsky (HYBOT).  

OVAL_NEW  0.012  TSA / the area of a sphere with the volume given by MolVol2D  

HBD  0.012  Lipinski number of HB donors = number of OH+NH.  

MM_VDW_EP_P_AREA  0.012  

Area of Van der Waals surface with positive electrostatic 

potential.  

AREA  0.012  

Van der Waals radius surface, summed over all atoms, with a 1-3 

overlap correction.  

Chi3p  0.011  

Sum of reciprocal square roots of valences over all 4-count linear 

atom paths.  

VOL  0.011  Gaussian volume. A measure of molecular volume.  
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3.9.2 AZ descriptor gradient values  

The most Influential AZ descriptors were also determined using the AZ Descriptor model 

with SVM. This was determined based on SVM decision function values. Based on the 

average decision function gradient values, a list of descriptors that potentially influence 

Kp,uu,brain  positively (Table 3.24) and negatively (Table 3.25) was highlighted. Based on the 

standard deviation within the gradient values, the descriptors that are not very influential in 

spite of having high average gradient values were removed from the list ( Standard deviation 

> absolute value of the average gradient values).   

This calculation performed on Kp,uu,brain data produced results that are very complex to 

interpret.   

Table  3.24 Top 15 positively influential descriptors based  on SVM decision function gradient 

Descriptor  Average  

Gradient 

 value  

Standard 

deviation  

Median  Description  

MM_HASA 4.168 2.554 3.737 A measure of the dispersion of the charge on 

hydrogen bond acceptor atoms on the surface. 

PolarCountMW  1.783 1.383 1.693 Polar count divided by molecular weight 

MM_HADSA 1.024 0.852 0.916 A measure of the dispersion of the charge on 

hydrogen bond donor and acceptor atoms on the 

surface. 

MM_QnegVar  0.938 0.853 0.862 Variance of negative charges . 

NonpolarCountMW  0.861 0.524 0.913 Nonpolar count divided by molecular weight 

MaxNegChargeGM  0.644 0.582 0.560 Maximum negative charge using the Gasteiger-

Marsili partial charge equilibration. 

AverNegCharge_GM  0.510 0.368 0.469 Average negative charge using the Gasteiger-

Marsili partial charge equilibration. 

MM_QposMean  0.264 0.166 0.271 Mean of positive charges. 

SPEC_SAS_NONPOL_ARE

A 

0.202 0.131 0.192 SAS_NONPOL_AREA / SAS_TOT_AREA. 

SIC 0.196 0.139 0.204 Structural information content of 0 order.  

SPEC_HB_TOT 0.187 0.117 0.175 HBsum/HeavyAtomCount. 

SPEC_VDW_HB_A_AREA 0.173 0.117 0.180 VDW_HB_A_AREA / VDW_AREA. 

MM_HACA 0.163 0.106 0.152 A measure of the dispersion of the charge on 

hydrogen bond acceptor atoms on the surface.) 

FractionNeutral  0.116 0.112 0.091 10 ^ (ACDlogD74 - ACDlogP) 

AverNegCharge_GH 0.106 0.081 0.076 Average negative charge using the Gasteiger-

Huckel partial charge equilibration. 
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Since Kp,uu,brain is a parameter involving many complex processes, interpretation of these 

descriptor is complex. 

Further work has to be carried out to be able to get a fundamental understanding of the listed 

influential descriptors.  

Table 3.25 Top 15 Negatively influential descriptors based  on SVM decision function gradient 

Descriptor  

Average  

Gradient 

 value  

Standard 

deviation  

Median  

Description  

MM_HDSA -4.572 3.677 -4.992 

A measure of the dispersion of the charge 

on hydrogen bond donor atoms on the 

surface. 

MM_QnegMean  -0.636 0.323 -0.659 Mean of negative charges. 

SPEC_SAS_HB_D_AREA -0.568 0.213 -0.557 SAS_HB_D_AREA / SAS_TOT_AREA. 

SPEC_VDW_HB_D_AREA -0.364 0.196 -0.373 VDW_HB_D_AREA / VDW_AREA. 

SPEC_FLEX_BND -0.276 0.110 -0.286 Defined as ratio FLEX_BND/HEAVIES. 

MM_HDCA -0.274 0.174 -0.293 

A measure of the dispersion of the charge 

on hydrogen bond donor atoms on the 

surface. 

SPEC_SAS_POL_AREA -0.202 0.131 -0.192 SAS_POL_AREA / SAS_TOT_AREA. 

OVAL_NEW -0.155 0.094 -0.122 

TSA / the area of a sphere with the volume 

given by MolVol2D 

FractionIonized -0.116 0.112 -0.091 (1 - FractionNeutral) 

MinEV3 -0.109 0.068 -0.098 

3rd smallest minimum eigenvalue from 

connectivity matrix, where diagonal has 

atomic weights. 

SPEC_VDW_POL_AREA -0.100 0.080 -0.094 VDW_POL_AREA / VDW_AREA 

HBAmax -0.070 0.045 -0.076 

Highest free energy factor for H-bond 

acceptors according to Raevsky (HYBOT). 

LUMO -0.063 0.045 -0.059 

Huckel molecular orbitals, Lowest 

unoccupied molecular orbital energy. 

Balaban -0.059 0.055 -0.034 

Topological distance matrix based index 

related to ring structures. 

MaxEV2 -0.014 0.008 -0.015 

2nd largest maximum eigenvalue from 

connectivity matrix, where diagonal has 

atomic weights. 
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3.9.3 Signature gradient values 

Decision function Gradient values were generated by a script that calculates the signature 

descriptors and builds an SVM model. These values somewhat represent the effect of the 

particular signature on the end point value. Thus this can be used to identify substructures 

within the molecule that could potentially exert a positive or negative effect.   

Based on the average gradient values, and analysis of other statistical parameters like 

standard deviation a set of top signatures have been selected and represented in the tables 

below (Tables 3.26 and 3.27). 

Complexity of the parameter Kp,uu,brain is reflected in the absence of an exact trend in the 

substructures obtained with signatures as with other methods (Figures 3.17 and 3.18). This 

necessitates a detailed study of the substructures obtained to possibly find any solid 

correlations with Kp,uu,brain. 
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Table 3.26 Top positively influential signatures for Kp,uu,brain 

Signature  Number  

of  

Occurences  

Average  

gradient  

values  

Standard  

deviation 

(of  

gradient 

 values)  

Classification  

(3- class)  

Average  

Experimental  

Value  

Standard  

Deviation 

(of 

Experimen

tal values)  

[C](p[C](p[C])p[C]([C]p[C]))  147  0.0641  0.0095 (L=66,H=33,M=48

)  

-1.12  0.75  

[N](p[C]p[C])  103  0.0509  0.0093 (L=38,H=28,M=37

)  

-1.02  0.78  

[C](p[C](p[C])p[C](p[C][F]))  33  0.0427  0.0101 (L=12,H=11,M=10

)  

-0.96  0.81  

[C]([C]p[C]p[C])  175  0.0424  0.0071 (L=76,H=42,M=57

)  

-1.09  0.75  

[C](p[C]([C]p[C])p[C](p[C][C]))  30  0.0411  0.0037 (L=12,H=4,M=14)  -1.20  0.55  

[C]([C](p[C]p[N]))  23  0.0325  0.0034 (L=6,H=12,M=5)  -0.52  0.84  

[C](p[C][N]p[N])  16  0.0323  0.0033 (L=2,H=10,M=4)  -0.45  0.77  

[C](p[C](p[C])p[C](p[C])[C](p[C]p[C]))  23  0.0321  0.0038 (L=0,H=13,M=10)  -0.25  0.50  

[C]([C]([C])[C]([C])[C]([C]))  13  0.0312  0.0038 (L=3,H=5,M=5)  -0.76  0.63  

[F]([C](p[C](p[C])p[C](p[C])))  21  0.0309  0.0087 (L=8,H=7,M=6)  -0.99  0.81  

[C](p[C](p[C])p[C](p[C])[F])  21  0.0309  0.0087 (L=8,H=7,M=6)  -0.99  0.81  

[C](p[C](p[C])p[C](p[C])[C]([N]))  16  0.0294  0.0018 (L=1,H=6,M=9)  -0.56  0.44  

[N](p[C]([C]([C][O])p[N](p[N,0]))p[N](p[N,0]([C])))  10  0.0293  0.0025 (L=3,H=3,M=4)  -0.93  0.54  

[N](p[C]([C]([C][O])p[N](p[N,0]))p[N]([C](p[C]p[C])p[N,

0]))  

10  0.0293  0.0025 (L=3,H=3,M=4)  -0.93  0.54  

[C]([C]([C][O])p[N](p[N])p[N](p[N]))  10  0.0293  0.0025 (L=3,H=3,M=4)  -0.93  0.54  
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Figure 3.19  Substructures showing positive influence on Kp,uu,brain. 
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Table 3.27 Top Negatively influential signatures for Kp,uu,brain. 

Signature  

Number  

of  

Occurenc

es  

Average  

gradient  

values  

Standard  

deviation 

(of  

gradient 

 values)  

Classification  

(3- class)  

Average  

Experiment

al  

Value  

Standard  

Deviation 

(of 

Experiment

al values)  

[C]([C][C][N]) 116 -0.0706 0.0106 

(L=67,H=16,M=33

) -1.35 0.69 

[C]([C](=[C])[N]([C])=[O]) 12 -0.0613 0.0048 (L=8,H=0,M=4) -1.65 0.43 

[O](=[C]([C](=[C])[N]([C]))) 12 -0.0613 0.0048 (L=8,H=0,M=4) -1.65 0.43 

[C](p[C](p[C])p[C](p[C][C])) 95 -0.0506 0.0096 

(L=37,H=17,M=41

) -1.12 0.67 

[N](p[C]([C]p[N])p[N](p[C])) 69 -0.0399 0.0021 (L=44,H=4,M=21) -1.41 0.47 

[C](p[C](p[C])p[C](p[C])[C]([N]=[O])) 24 -0.0384 0.0087 (L=15,H=2,M=7) -1.47 0.56 

[C]([C]p[N]p[N]) 75 -0.0375 0.0031 (L=45,H=6,M=24) -1.36 0.52 

[C]([C]([C][C][N])) 13 -0.0364 0.0171 (L=10,H=2,M=1) -1.56 0.79 

[C]([C]([C][C])) 11 -0.0361 0.0138 (L=7,H=0,M=4) -1.56 0.39 

[N]([C]([C])[C]([C])[C]([C][C])) 23 -0.0349 0.0085 (L=14,H=1,M=8) -1.46 0.44 

[C]([C](=[C]([C,0])[C](p[N]p[N]))=[N]([N]([C,0]))) 22 -0.0339 0.0029 (L=19,H=0,M=3) -1.67 0.32 

[C]([C](=[C]([C][C,0]))[N]([N](=[C,0]))=[O]) 22 -0.0339 0.0029 (L=19,H=0,M=3) -1.67 0.32 

[C]([C](=[C])[N]([N])=[O]) 22 -0.0339 0.0029 (L=19,H=0,M=3) -1.67 0.32 

[C]([C]([N]([N,0])=[O])=[C]([C](=[N,0])[C](p[N]p[N])))|0| 22 -0.0339 0.0029 (L=19,H=0,M=3) -1.67 0.32 

[N]([C]([C](=[C,0])=[O])[N](=[C]([C,0])))|0| 22 -0.0339 0.0029 (L=19,H=0,M=3) -1.67 0.32 
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Figure 3.20 Substructures showing negative influence to Kp,uu,brain. 
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3.10 Descriptor analysis for the individual components (Kp,brain, Vu,brain and 

fu,p) 

While the substructure analysis for Kp,uu,brain proved to be quite complex, it was attempted to 

do such an analysis on the individual models of Kp,brain, Vu,brain and fu,p using the RF VIP value 

analysis and the signature descriptor gradient analysis. 

3.10.1 RF VIP: 

Calculation of RF VIP values for the three component models Kp,brain, Vu,brain and fu,p produced 

results where some clearly vital descriptors came at the top positions. 

The table 3.28 shows the analysis on the Kp,brain model. The top descriptor in the list came up 

to be PSA which has been established as a very important determinant for the Kp,brain. There 

were also other descriptors based on hydrogen bonding properties in the list. 

 

Table 3.28 Top 15 Descriptors based on RF VIP for Kp,brain. 

Descriptor VIP   

PSA 0.013 
Van der Waals radius surface, summed over all N, O and attached hydrogens, 1-3 overlap 

correction. 

SAS_POL_AREA 0.012 Solvent accessible surface polar area. 

MM_VDW_EP_P_MEA
N 0.011 Mean of positive electrostatic potentials on Van der Waals surface. 

HBDmax 0.011 Highest free energy factor for H-bond donors according to Raevsky (HYBOT). 

MM_SAS_EP_P_SUM 0.011 Sum of positive electrostatic potentials on solvent accessible surface. 

MM_VDW_EP_P_SUM 0.01 Sum of positive electrostatic potentials on Van der Waals surface. 

HBD_Selma 0.01 Number of hydrogen bond donors. 

SPEC_SAS_NONPOL_A

REA 0.008 SAS_NONPOL_AREA / SAS_TOT_AREA. 

PAT 0.008 Number of polar atoms (O, N, S, P). 

MM_QO 0.008 Sum of atomic charges on O. 

HBsumTotal 0.008 Sum of donor and acceptor free energies according to Raevsky (HYBOT). 

MWPat 0.008 MW *Pat/AT_TOT Proportion of MW accounted for by the polar atoms (by number). 

SPEC_SAS_POL_AREA 0.007 SAS_POL_AREA / SAS_TOT_AREA. 

SPEC_SAS_HB_D_ARE

A 0.007 SAS_HB_D_AREA / SAS_TOT_AREA. 

MM_SAS_EP_N_SUM 0.007 Sum of negative electrostatic potentials on solvent accessible surface. 

 

On the other hand, for the parameter Vu,brain is highly dependent on the lipophilicity, ClogP 

scored the maximum VIP value, thus coming on top of the list (Table 3.29). This table clearly 

shows many lipophilicity related descriptors. 
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Table 3.29 Top 15 descriptors based on RF VIP for Vu,brain. 

Descriptor VIP   

ClogP 0.025 ClogP is a predicted octanol/water partition coefficient from Daylight/Biobyte 

ACDlogP 0.02 ACDlogP is calculated as the octanol/water partition coefficient for the neutral species. 

Motoc 0.019 Topological distance matrix based index related to ring structures. 

GClogP 0.019 Octanol/water partition coefficient based on Ghose/Crippen atom types 

VDW_NONPOL_AREA 0.017 Van der Waals non-polar surface area. 

NNlogP 0.017 
Octanol/water partition coefficient using a neural network approach based on Ghose/Crippen atom 

types 

SAS_NONPOL_AREA 0.016 Solvent accessible surface non-polar area. 

HuckelResEnergy 0.015 Huckel molecular orbitals, resonance energy. 

MinEV2 0.013 2nd smallest minimum eigenvalue from connectivity matrix, where diagonal has atomic weights. 

M1M 0.013 Moment of inertia along the first principal axis of the molecule. 

Kappa2 0.012 Topological index. 

MWNPat 0.011 

MW * NPat/AT_TOT Proportion of MW accounted for by the excess of non-polar atoms (by 

number) 

FractionIonized 0.011 (1 - FractionNeutral) 

VDW_AREA 0.011 Van der Waals molecular surface area. 

AromCount 0.011 Number of aromatic atoms. 

 

fu,p, a parameter that related to plasma protein binding is highly influenced by the charges and 

lipophilicity of the molecules, which is clearly seen in the results (Table 3.30). 

 

Table 3.30 Top 15 descriptors based on RF VIP for fu,p. 

Descriptor VIP  

Base 0.014 Presence of a basic function. 

POS_charges 0.0118 Number of basic groups likely to be ionised at pH 7.4. 

NNlogP 0.010 
Octanol/water partition coefficient using a neural network approach based on Ghose/Crippen atom 

types 

GClogP 0.010 Octanol/water partition coefficient based on Ghose/Crippen atom types 

Amine3 0.01 Number of tertiary amines. 

ClogP 0.01 ClogP is a predicted octanol/water partition coefficient from Daylight/Biobyte 

ACDlogP 0.008 ACDlogP is calculated as the octanol/water partition coefficient for the neutral species. 

CHARGES 0.008 POS_charges + NEG_charges. 

HOMO 0.008 Huckel molecular orbitals, Highest occupied molecular orbital energy. 

ACDlogD74 0.007 ACDlogD74 is calculated as the octanol/water distribution coefficient at pH 7.4. 

HuckelPiEnergy 0.007 Huckel molecular orbitals, pi electrons energy. 

PIAT 0.007 Number of pi atoms (number of atoms linked to double bonds + number of halogen atoms). 

AromCount 0.007 Number of aromatic atoms. 

MaxPosChargeGH 0.006 Maximum positive charge using the Gasteiger-Huckel partial charge equilibration. 

M1M 0.006 Moment of inertia along the first principal axis of the molecule. 
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3.10.2 Signature Descriptor 

In the signature descriptor analysis of Kp,brain, it was noticed that as expected the groups that 

increase lipophilicity like –CH3 , -Cl substitutions came up in the list of top 15 signatures 

positively influencing Kp,brain(Table 3.31). While groups like amides and ethers were seen in 

the negative influence (Table 3.32) which is due to their hydrogen bonding properties. 

However, some signatures representing aromatic aliphatic esters came up as positively 

influencing Kp,brain possibly due to their poor hydrogen bonding capacities. 

 

Vu,brain is mainly lipophilicity driven. Tertiary and secondary amines, lipophilic substitutions 

like sulphur, methyl groups were seen to influence Vu,brain positively (Table 3.33).  

As expected, ether and amides groups were frequently represented in the negative list (Table 

3.34).  

 

Since fu,p depends on the plasma protein binding, signatures representing groups that are vital 

for such interactions were observed in the analysis like the hydroxyl group, amides, ethers, 

long alkyl chains etc (Table 3.35 and 3.36). 

 

An effort has been made to interpret the machine learning models for Kp,uu,brain by calculating 

the decision function gradient for the descriptors. Some descriptors having large gradient 

values have been provided in the tables below. However, there is still a lack of understanding 

of existence of a clear trend in these descriptors.  In the future work, further exploration of 

the relationship between the descriptors and the Kp,uu,brain would be needed in order to 

improve the model interpretation. 
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Table 3.31 Top 15 positively influencing signatures for Kp,brain. 

Signature  Number of 

occurences 

Gradient 

Values  

Average Experimental  

Value  

Standard Deviation  

[C](p[C](p[N])p[N](p[C]))  14 0.1288 -0.82 0.80 

[C](p[C](p[C][C])p[C](p[C][C]))  23 0.1174 -0.15 0.95 

[C]([C]([C])[C]([C])[N]([C][C]))  14 0.1099 -0.48 1.08 

[O]([C][C])  236 0.0791 -0.85 0.79 

[C](p[C](p[C](p[C,0]))p[C](p[C](p[C,0])[Cl]))  156 0.0745 -0.97 0.65 

[C]([C]p[C](p[C])p[C](p[C]))  62 0.0722 -1.13 0.72 

[C]([C](p[C](p[C])p[C](p[C]))) 62 0.0722 -1.13 0.72 

[C]([N])  330 0.0648 -0.96 0.83 

[N](p[C](p[C])p[C](p[C][O]))  27 0.0639 -0.85 0.55 

[C](p[C](p[N](p[C,0]))p[N](p[C]([C]p[C,0])))  14 0.0639 -0.82 0.80 

[C]([C]([C])[C]([C][N]))  123 0.0637 -0.98 0.74 

[C](p[C](p[C](p[C,0]))p[C]([C]p[C](p[C,0])))  56 0.0627 -1.14 0.74 

[C](p[C](p[C]([C]p[C,0]))p[C](p[C](p[C,0][Cl])))  122 0.0624 -0.94 0.66 

[O]([C][C](p[C](p[C])p[N](p[C])))  41 0.0605 -0.85 0.56 

[O]([C][C](p[C]p[N]))  44 0.0593 -0.84 0.59 

 

Table 3. 32 Top 15 negatively influencing signatures for Kp,brain. 

Signature  Number of 

occurences 

Gradient 

Values 

Average  Experimental 

Value 

Standard 

Deviation  

[C]([C]([C][N])[O]([C]))  21 -0.1175 -1.16 0.66 

[O]([C]([C]([N,0]))[C]([C]([C][N,0])))  14 -0.1173 -1.12 0.66 

[C]([C][S])  35 -0.0777 -1.16 0.59 

[N]([C]([C]([C,0]))p[C]([C](p[C]p[C])p[N](p[N,1]))p[C](p[N,1][N]([C][C,0])))  23 -0.0749 -0.97 0.47 

[C](p[C](p[C](p[C,0]))p[C](p[N](p[C,0]))[C](p[N](p[N])p[N]([C]p[C])))  33 -0.0744 -1.15 0.54 

[C]([N]([C](=[C])[C]([C]=[O])))  31 -0.0742 -1.39 0.40 

[N]([C][C](=[C])[C]([C]=[O]))  31 -0.0742 -1.39 0.40 

[C](=[C][N])  58 -0.0729 -1.48 0.47 

[C]([S]([C]=[O]))  15 -0.0708 -1.61 0.24 

[C]([C](p[C](p[C])p[C](p[C]))p[N](p[N](p[C,0]))p[N]([C]p[C,0]([N])))  47 -0.0694 -0.89 0.63 

[C](p[C](p[C])p[C](p[C])[C]([N]=[O]))  45 -0.0683 -0.66 0.95 

[N]([C]([C]=[O]))  12 -0.0677 -1.13 0.79 

[C]([C]p[N]p[N])  303 -0.0672 -1.12 0.63 

[C]([C]([C]([C,0]))[C]([N]([C][C,0]))) 21 -0.0671 -0.91 0.58 

[N](p[C]([C]p[N])p[N](p[C])) 277 -0.0666 -1.14 0.60 
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Table 3.33 Top 15 positively influencing signatures for Vu,brain 

Signature  Number of occurences  Gradient Values  Average Experimental Value  Standard Deviation  

[C](p[C]p[C])  1014 0.1019 1.64 0.66 

[C]([C]([C]([C,0]))[N]([C,0][C](p[C]p[C])))  22 0.0905 2.21 0.63 

[S](p[C]p[C])  213 0.0815 1.86 0.75 

[C](p[C]p[N][O])  43 0.0805 1.24 0.73 

[S]([C][C])  38 0.0665 1.80 0.75 

[C]([C]([N]([C][C,0]))[N]([C][C]([C,0])))  30 0.0653 1.85 0.66 

[C](p[C](p[C])p[C](p[C])[Cl])  112 0.0652 1.79 0.73 

[Cl]([C](p[C](p[C])p[C](p[C])))  112 0.0652 1.79 0.73 

[N]([C][C])  572 0.0620 1.56 0.72 

[C](p[C]p[C][O])  502 0.0608 1.83 0.58 

[C]([C](p[C]p[C]))  161 0.0601 1.64 0.69 

[C]([C]([C])[C](p[C]p[C]))  48 0.0551 2.08 0.47 

[S](p[C](p[C](p[C])p[C](p[C]p[N,0]))p[C]([N]([C])p[N,0]))  118 0.0543 2.22 0.41 

[C](p[C]p[C]p[N])  217 0.0528 1.99 0.59 

[C](p[C]p[C][Cl])  319 0.0512 1.87 0.66 

 

Table 3.34 Top 15 negatively influencing signatures for Vu,brain. 

Signature  Number of occurences  Gradient Values  Average Experimental Value  Standard Deviation  

[C](p[C](p[C])p[C](p[C]))  439 -0.0838 1.43 0.64 

[C]([C]p[N]p[N])  125 -0.0786 1.13 0.50 

[N]([C]([C]([O,0]))[C]([C]([O,0]))[C](p[C](p[C])p[C](p[C][O])))  38 -0.0774 2.01 0.49 

[C](p[C]p[N])  365 -0.0743 1.30 0.63 

[C]([C][O])  460 -0.0739 1.59 0.67 

[C](p[C](p[C])p[C]([C]p[N]))  56 -0.0652 1.29 0.60 

[C]([C][N]=[O])  877 -0.0647 1.59 0.68 

[O](=[C]([C][N]))  877 -0.0647 1.59 0.68 

[N](p[C](p[C])p[C](p[C][C]))  53 -0.0625 1.24 0.41 

[C](p[C](p[C](p[C,0]))p[C](p[C](p[C,0])[C]([N]=[O]))[Cl])  46 -0.0615 1.90 0.51 

[C]([C]([C]([C,0]))[N]([C]([C])[C,0]))  28 -0.0591 2.13 0.50 

[C]([C]p[C]p[N])  260 -0.0590 1.37 0.60 

[C](p[C][C]p[N])  216 -0.0580 1.28 0.63 

[C](p[C](p[N](p[C,0]))p[C](p[C]([C]p[C,0])))  59 -0.0580 1.03 0.43 
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Table 3.35 Top 15 positively influencing signatures for fu,p 

Signature  Number of occurences  Gradient Values  Average Experimental Value  Standard Deviation  

[C](p[C]p[C])  1014 0.1019 1.64 0.66 

[C]([C]([C]([C,0]))[N]([C,0][C](p[C]p[C])))  22 0.0905 2.21 0.63 

[S](p[C]p[C])  213 0.0815 1.86 0.75 

[C](p[C]p[N][O])  43 0.0805 1.24 0.73 

[S]([C][C])  38 0.0665 1.80 0.75 

[C]([C]([N]([C][C,0]))[N]([C][C]([C,0])))  30 0.0653 1.85 0.66 

[C](p[C](p[C])p[C](p[C])[Cl])  112 0.0652 1.79 0.73 

[Cl]([C](p[C](p[C])p[C](p[C])))  112 0.0652 1.79 0.73 

[N]([C][C])  572 0.0620 1.56 0.72 

[C](p[C]p[C][O])  502 0.0608 1.83 0.58 

[C]([C](p[C]p[C]))  161 0.0601 1.64 0.69 

[C]([C]([C])[C](p[C]p[C]))  48 0.0551 2.08 0.47 

[S](p[C](p[C](p[C])p[C](p[C]p[N,0]))p[C]([N]([C])p[N,0]))  118 0.0543 2.22 0.41 

[C](p[C]p[C]p[N])  217 0.0528 1.99 0.59 

[C](p[C]p[C][Cl])  319 0.0512 1.87 0.66 

 

Table 3.36 Top 15 negatively influencing signatures for Vu,brain. 
Signature  Number of occurences  Gradient Values  Average Experimental Value  Standard Deviation  

[C](p[C](p[C])p[C](p[C]))  439 -0.0838 1.43 0.64 

[C]([C]p[N]p[N])  125 -0.0786 1.13 0.50 

[N]([C]([C]([O,0]))[C]([C]([O,0]))[C](p[C](p[C])p[C](p[C][O])))  38 -0.0774 2.01 0.49 

[C](p[C]p[N])  365 -0.0743 1.30 0.63 

[C]([C][O])  460 -0.0739 1.59 0.67 

[C](p[C](p[C])p[C]([C]p[N]))  56 -0.0652 1.29 0.60 

[C]([C][N]=[O])  877 -0.0647 1.59 0.68 

[O](=[C]([C][N]))  877 -0.0647 1.59 0.68 

[N](p[C](p[C])p[C](p[C][C]))  53 -0.0625 1.24 0.41 

[C](p[C](p[C](p[C,0]))p[C](p[C](p[C,0])[C]([N]=[O]))[Cl])  46 -0.0615 1.90 0.51 

[C]([C]([C]([C,0]))[N]([C]([C])[C,0]))  28 -0.0591 2.13 0.50 

[C]([C]p[C]p[N])  260 -0.0590 1.37 0.60 

[C](p[C][C]p[N])  216 -0.0580 1.28 0.63 

[C](p[C](p[N](p[C,0]))p[C](p[C]([C]p[C,0])))  59 -0.0580 1.03 0.43 
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4. CONCLUSION AND FUTURE PERSPECTIVES 

 

In a drug discovery project, it is very critical to determine whether or not a drug molecule 

will pass through the BBB. Computational prediction of such properties prove to be of great 

utility in reducing the time and resources spent by aiding in the early elimination of 

compounds possessing undesirable qualities. The work thus involved building a predictive 

model that can help in assessing BBB permeability properties of compound. 

Revisiting a previous in-house Kp,uu,brain model and extending the dataset along with applying 

newer techniques saw a further improvement in the performance, where the R
2
 increased to 

0.64 for the best consensus model. This model is composed of 5 different components (using 

different Machine learning algorithms and descriptors) and has a two-class accuracy of 84% 

along with the moderate class precision of 48%, in contrast to the 40% seen in the validation 

results. Here, we see a clear improvement in the overall predictive powers of the model, on 

the other hand, it can be noted that the model complexity has further increased. 

Conformal prediction applied on the SVM model with signature descriptor pointed to the 

possible noise in the experimental data by giving results that were not clearly interpretable. 

However, a consistency was always noted between the model performance, in terms of the R
2
 

and RMSE, and the interval length output by the conformal predictor. The Kp,uu,brain indirect 

model in this case gave a high interval length, also probably due to the formula used for 

calculating the Kp,uu,brain range not being very appropriate. The results from the conformal 

prediction for the Kp,uu,brain indirect can be further studied possibly by defining a more suitable 

equation for calculating the range. It is also important to note that the results from the 

conformal prediction might probably point to the unsuitability of its use with the dataset used 

in the study, as the dataset requires to agree with IID assumptions to be able to successfully 

apply Conformal prediction.  

Model interpretation involving understanding of the factors influencing the Kp,uu,brain values 

based on RF VIP values showed a consistency with previous studies by suggesting many 

descriptors related to topology and polarity as highly influential. The importance of these 

descriptors have been described previously. On the other hand, the substructure analysis 

using the signature gradient showed some unclear trends which still remain to be analyzed 

further. This reflects the fact that Kp,uu,brain is a parameter describing a highly complex 

process, making it difficult to have a clear understanding of concepts like the important 

substructures. Work will continue in an attempt to understand these factors. 
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