
DETECTING PEDESTRIANS

INTENDING TO ENTER A

CROSSWALK USING A HMM
TRACKER AND A NOVEL

PREDICTOR

EMANUEL HASSELBERG

Master’s thesis
2013:E22

Faculty of Engineering
Centre for Mathematical Sciences
Mathematics

C
E
N

T
R

U
M

S
C

IE
N

T
IA

R
U

M
M

A
T
H

E
M

A
T
IC

A
R

U
M

Abstract

There is a demand for a more �uent and more e�cient tra�c. This
can be achieved through more intelligent tra�c light control. This the-
sis presents theory and an application in which people are tracked and
their intentions to cross a crosswalk is predicted with a novel prediction
algorithm based on Markov theory. The background segmentation and
tracking algorithms was based on already known cross-correlation and
HMM-methods.

Based on the relatively small amount of training data the result for
the novel predictor detecting persons "entering the crosswalk" for two
di�erent setups, a straight and a four way crossing, is 70% and 55% true
positives with 5% and 2% false positives. For detection of someone that
is "not entering the crosswalk" when there is a person in the area is 90%
and 85% true positives with 15% and 25% false positive.

The results achived is good enough as a proof of concept that the
theories are worth investigating further for these kind of applications.
However, a lot of work would still be required before this is robust enough
to be in a real tra�c application.

Contents

1 Introduction 1
1.1 Related work . 1

2 Problem Description 1
2.1 Approach and Limitations . 2

3 Background Foreground Segmentation 2

4 Hidden markov models 2
4.1 The States a.k.a. The Grid . 3
4.2 The observation probability bj,t 3
4.3 Rescaling . 5
4.4 Using an integral image . 5
4.5 In�nite Viterbi . 6
4.6 Online Viterbi Optimization . 7

5 Building the predictor 7
5.1 Updating the predictor . 8
5.2 Initial values . 8
5.3 Boundary of the grid . 8
5.4 Using the History . 8
5.5 Markov Matrix G . 9
5.6 Multi person prediction . 11

6 Application 11
6.1 Equipment and Software . 11
6.2 Camera Calibration . 11
6.3 Collecting Data . 12
6.4 Probability Matrix G∞ . 12
6.5 The probability a person will enter the cross walk 12
6.6 Classi�er . 13

7 Results 14
7.1 Background/Foreground Segmentation 14
7.2 Tracking . 15
7.3 One direction Setup . 15

7.3.1 Data collection . 16
7.3.2 Prediction . 18
7.3.3 Validation . 19

7.4 Multiple Direction Setup . 22
7.4.1 Data collection . 22
7.4.2 Prediction . 24
7.4.3 Validation . 25

8 Discussion/Improvements 29
8.1 Background/Foreground Segmentation 29
8.2 Tracking . 29
8.3 Predictor . 29
8.4 Results . 30

8.5 Improvements . 30

9 Conclusions 30

A In�nite Viterbi algorithm 32

1 Introduction

In these times, there is a desire for faster and more e�cient tra�c lights which
could generate a more �uent �ow in tra�c for cars and pedestrians. This thesis
will present a method for following pedestrians approaching a crosswalk and
predict their intention to cross or not. An application has been developed and
will be presented in the end, that could be used to make the tra�c lights more
e�cient.

Figure 1: In the illustration
there is a crosswalk and paths
leading to it. A camera is placed
so it can observe the paths and
the entrance to the crosswalk.
Here we would like to know:
What is the probability that the
person will enter the crosswalk.

1.1 Related work

There are many areas where pedestrian tracking is used as a component in a
more complex system. Such as, tracking system for counting people in dense
crowds [5], bicycle theft detection system [6], player tracking in sports videos
for the analysis of player movement [7] and system for measuring the gaze di-
rections of pedestrians in surveillance video [8]. A closely related publication is
"Trajectory modeling for the identi�cation of unusual incidents" [9], where the
interest in unusual behavior is in focus. This application uses an object tracker
[10] based on Active Shape Models. The trajectory's are predicted using a neu-
ral network and uses the history of the whole trajectory to match one of the
learnt. This method could probably be adapted to work for this application as
well but would require a lot of training data to make it statistically correct.

2 Problem Description

Todays implementations of tra�c lights use as much information as possible,
underground magnetic sensors for cars and radar for bicycles. The radar can
detect fast pacing pedestrians as well, but not as good as desired. This informa-
tion is then processed to make the tra�c lights as optimized as possible, making
tra�c �uent and e�cient.

The goal is to construct a sensor that gives good information to the tra�c
lights. The perfect predictor would give the probability that a pedestrian would
enter the crossing at time t. That sensor would not only be an on o� switch
i.e. a person is coming we don't know for sure or even when. But a probability
distribution over time t would be more informative i.e. a person is coming with
a probability of 80% in 5 s.

1

2.1 Approach and Limitations

In this thesis the approach will be to track the pedestrians using a camera
overveiwing a crosswalk from above. By continiously learning the paths of the
pedestrians observed, the predictor can be built and updated online. No tem-
peral information will be used in the algorithms, they are only based on spatial
data.

The steps throughout the thesis is:
1. Background foreground segmentation, Section 3
2. Tracking the pedestrians using Hidden Markov Models, Section 4
3. Calculate the probability for entering the crosswalk, Section 5
4. Update the predictor, Section 5.1

3 Background Foreground Segmentation

Background/Foreground (bg/fg) segmentation is used to segment out moving
objects from a sequence of images. For example in a video sequence of an empty
street where persons are crossing. The bg/fg segmentation should tag the pixels
the persons are in as fg and the rest as background. The segmentation algorithm
used [1] in this thesis is based on cross correlation features. This section will
only present a brief overview of this method.

When working with intelligent video it is often desirable to have a fast and
reliable foreground/background segmentation to let the CPU work with other
algorithms. First lets de�ne what we want in a foreground/background seg-
mentation. We want a probability image, P, such that 0 ≤ P (x, y) ≤ 1 for all
x, y ∈ I where I is a set of all pixel coordinates in the image. Where P (xk, yk)
is the probability that the pixel at (xk, yk) is foreground. If P can be calculated
for every frame, the foundation for the tracking algorithm is built.

This is to be achieved under the condition that the intensity in the picture
can change very fast, not always global, but locally by clouds covering just some
parts. This is made by comparing patches of 8x8 or 4x4. Call the background
patch p , this is updated to represent the median background patch. Not only
the median value is estimated, also the noise distribution in the patch. This
can vary from patch to patch due to things moving in the background e.g. leafs
moving in the wind. The foreground probability pfg is given by comparing the
current patch to the model with cross correlation. Figure 10c on page 13 shows
an example.

4 Hidden markov models

In this section we present the method used to track pedestrians, based on a
Hidden Markov Model (HMM). The idea behind HMM is to �nd the best track
over a sequence of observations O not only the last observation Oτ . A downside
is that the result is delayed with several frames.

The HMM is de�ned as a discrete stochastic process with a set of n states,
S = {S0, ..., Sn}. The states will be explained in the next section, for now

2

Figure 2: The state q is not di-
rectly observable. Instead the
observation o is observed.

see it as the position where the person is standing. And a transitional proba-
bility distribution, ai,j , the probability a person moves from state i to state
j in one frame, ai,j = p(qt+1 = Sj |qt = Si). The state sequence is de-
noted Q0...τ = (q0, ..., qτ) for the time t = 0, ..., τ , i.e. the positions of the
person at the time t. The initial state distribution i.e. the probability that
a person is standing in a speci�c state at t = 0 is π = (π0, ..., πn), where
πi = p(q0 = Si). The sequence Q0...τ is the true trajectory of the person,
this cannot be directly observed. Instead a sequence of observations is made
through the camera O0...τ = (o0, ...,oτ). The observation probability distribu-
tion bj(ot) = bj,t = p(ot|qt = Sj), is a distribution that gives the probability
that the observation ot is made when the pedestrian has state Sj , more of this
in section 4.2. The markov assumption gives that the next state is only de-
pendent of the current state p(qt+1|qt, qt−1, ..., q0) = p(qt+1|qt), and the same
for observations p(ot|qt, qt−1, ..., q0) = p(ot|qt), i.e. the information the camera
gives about the position the person standing in, is depending only on the current
frame.

4.1 The States a.k.a. The Grid

The HMM work with a set of states, every state is a possible con�guration in
the scene. For tracking, a space-grid is used the represent the states. In the
case of tracking a single person the states are denoted as S1, constructed from
a set the grid points xi ∈ R2, i = 1, ..., n. The grid is spread homogeneous over
the area of interest (AOI). The state Si is the state where a person has it's
center at point xi. A special state is S0 which is analogous to no persons at all
in AOI. For the case when several persons are in the AOI the states in S1 are
inadequate, a bigger state space is required. The expansion Si,j ∈ S2 = S1 × S1
is capable to handle two persons, a bigger expansion is straightforward. Figure
10b on page 13 shows an example of a grid and a state where two persons are
present.

4.2 The observation probability bj,t

In section 4 the observation probability distribution is declared as bj(ot) =
bj,t = p(ot|qt = Sj). In this section we are going to de�ne a way to take a
foreground/background segmentation image denoted Ot(·) and calculate bj,t.
The observation ot is Ot(·) where the dot stands for all pixels in the image.

The general idea to calculate bj,t is to generate a expected observation image

Ôt for state Sj there the set of pixels expected to be foreground are de�ned
CSj . If this matches good against the observation Ot, a high probability for bj,t
should apply. To construct CSj for a person its hard to get a object similar to a

3

person, instead a box wide enough to hold a person is used. For state Sj a box
is placed in the ground plane with position xj and rotated to face the camera.
This is then projected into the image creating the set CSj . For a state with

Figure 3: To the left a box cover-
ing the person. There are big ar-
eas that are outside the body of
the person. By rotating the box
towards the camera, as in the box
to the rigth, there are less area
outside the body.

multiple persons e.g. Sj,k, the set CSj ∪ CSk is used, the same as projecting
two boxes into the image plane. Consider each pixel ot = Ot(x, y), separately.
The generated expected background/foreground segmentation image Ôt, where
ôt ∈ {0, 1} will di�er from the true background/foreground segmentation image
Ô′t, where ô

′ ∈ {0, 1} due to for example,

• using a box as model for a person

• the state space is discrete so the positions don't match exactly with the
true

• background/foreground segmentation is not perfect.

Now look at the probability p(ot|ôt) i.e. that a pixel in the observation concur
with the expected background/foreground segmentation pixel. Given P (A|B) =∑
i P (A|Ci)P (Ci|B) the probability can be re-written as

p(ot|ôt) =
∑

ô′t∈{0,1}

p(ot|ô′t)p(ô′t|ôt) (1)

now we can look at the two parts, p(ot|ô′t) and p(ô′t|ôt).
p(ot|ô′t) is the probability that the pixel is "correct", given that we know

if ot is in the true background/foreground segmentation ô′t. By correct we
mean if ô′t = 1 (the pixel should be foreground) the probability is given by the
foreground/background segmentation ot = pfg|c,l̃(cx) for that pixel. This gives

p(ot|ô′t) =

{
ot if ô′t = 1

1− ot if ô′t = 0

= otô
′
t + (1− ot)(1− ô′t)

which solves the �rst part in (1).

Next is the probability, p(ô′t|ôt) the probability that the true observation is
in the expected observation. It has four binary cases. These has to be estimated

4

using observations with known state qt and are denoted variable names pfg and
pbg.

p(ô′t = 1|ôt = 1) = pfg

p(ô′t = 0|ôt = 1) = 1− pfg
p(ô′t = 1|ôt = 0) = 1− pbg
p(ô′t = 0|ôt = 0) = pbg

These variables are typically well over 1/2 and are assumed constant and inde-
pendent of time and position.

Now we can rewrite (1) as

∑
ô′t∈{0,1}

p(ot|ô′t)p(ô′t|ôt) =

{
otpfg + (1− ot)(1− pfg) if ôt = 1

ot(1− pbg) + (1− ot)pbg if ôt = 0

To combine the evidence from all pixels observed into a single likelihood,
they are considered independent and combined as a product.

bi,t =
∏

ot∈CSi

(otpfg + (1− ot)(1− pfg)) ·
∏

ot 6∈CSi

(ot(1− pbg) + (1− ot)pbg) (2)

4.3 Rescaling

To calculate bi,t in (2) it's needed to iterate over all pixels in the image for all
di�erent sets S. Instead by letting

b̃i,t =
bi,t
b0,t

=

∏
ot∈CSi

(otpfg + (1− ot)(1− pfg)) ·
∏

ot 6∈CSi
(ot(1− pbg) + (1− ot)pbg)∏

ot∈CS0
(otpfg + (1− ot)(1− pfg)) ·

∏
ot 6∈CS0

(ot(1− pbg) + (1− ot)pbg)
.

Where
∏
ot∈CS0

(otpfg + (1− ot)(1− pfg)) is by de�nition 1.

We can rewrite∏
ot 6∈CS0

(ot(1− pbg) + (1− ot)pbg) =∏
ot∈CSi

(ot(1− pbg) + (1− ot)pbg) ·
∏
ot 6∈CSi

(ot(1− pbg) + (1− ot)pbg)

and

b̃i,t =
bi,t
b0,t

=
∏

ot∈CSi

(otpfg + (1− ot)(1− pfg))
(ot(1− pbg) + (1− ot)pbg)

.

Finally we get a way we only have to take the product over the foreground
pixels.

4.4 Using an integral image

Using the logarithm on b̃i,t does not change the optimal sequence , but replaces
the product with a sum.

Li,t = log b̃i,t = log
bi,t
b0,t

=
∑
ot∈CSi

log
(otpfg + (1− ot)(1− pfg))
(ot(1− pbg) + (1− ot)pbg)

5

Making it possible to use an integral image. This will speed up calculations.
The integral image is a intermediate representation that in each pixel x, y

contains the sum of the pixels above and to the left of x, y. That is, I(x, y) =∑
x′≤x,y′≤y

i(x′, y′) where I(x, y) is the integral image and i(x, y) is the original

image.

Figure 4: The sum in area A is
I(x1, y1). To calculate the sum
in area D, its equal to I(x4, y4) +
I(x1, y1)− I(x2, y2)− I(x3, y3)

4.5 In�nite Viterbi

Every frame has now a observation probability bi,t but we dont know what path
the pedestrian is walking. Here is where in�nite Viterbi comes in.

For an observation sequence O0···τ and the HMM λ = (ai,j , bj , π) the algo-
rithm will try to �nd the most likely state sequence

Q∗0···τ = argmax
Q0···τ

p(Q0···τ |λ,O0···τ)

that generated the observations O0···τ .
In�nite Viterbi is an algorithm that can solves this. The di�erence to clas-

sical viterbi [3] where a large state spaces is hard to handle, due to the masses
of internal probability states needed to be stored, even if they are very small.
In�nite viterbi only stores the m larges probability states and a upper bound
on the rest which increases performance. The variable m should be manually
decided by testing or calibration.

The idea behind the algorithm is that p(Q0···τ |λ,O0···τ) can be written as
p(Q0···τ ,O0···τ |λ)

p(O0···τ)
. Because p(O0···τ) does not depend on the state sequence Q∗0···τ ,

we can write Q∗0···τ = argmax
Q0···τ

p(Q0···τ ,O0···τ |λ). To �nd the optimum of this

expression, we de�ne δt(i) = max
qo,...,qt−1

p(q0, ..., qt−1, qt = Si,o0, ...,ot). The path

that gives the highest probability to be in state i at time t. Markov assumption
gives that

p(q0, ...,qt−1 = Sj , qt = Si,o0, ...,ot) =

p(ot|qt = Si)p(qt = Si|qt−1 = Sj)p(q0, ..., qt−1 = Sj ,o0, ...,ot−1) =

bj,taj,ip(q0, ..., qt−1 = Sj ,o0, ...,ot)

and implies that δt(i) could be calculated iteratively.
At the same time, keep track of each δt(i) which δt−1(j) it came from as

ψ(i) = argmax
j

(δt−1(j)aj,i). The optimal state sequence can be found by back-

tracking from q∗τ = argmax
i

δτ (i), the best state at time τ . For t < τ , a backtrack

gives q∗t = ψt+1(q
∗
t+1).

6

4.6 Online Viterbi Optimization

In�nite Viterbi only handles situations where the sequence is of �xed time
0 < t < t1 and not when When δt(i) and ψt(i) has been calculated for the
observations to time t1, the optimum found by backtracking may not be the
global one if more observations after time t1 is added. We want the algorithm
handle situations where τ →∞.

Online Viterbi Optimization solves the situations where τ → ∞ by con-
structing a set of states Xt. This set contains the global optimum q∗t but also
all other possible optimum that future observations can reveal. By letting Xt1
be the entire state space S and for every Xt, t < t1 making it smaller by taking
the image under ψt+1 through

Xt = {Si|i = ψt+1(j) for some Sj ∈ Xt+1}.

At time t1 we have Xt1 containing all states possible. But after iterating
backwards, Xt becomes smaller and smaller. At some time, t2, there is only one
state left in Xt2 . This is the optimal state for q∗t2 , and all other optimal states
q∗t for t < t2 is given by backtracking from q∗t2 for their can only be exactly one
state in Xt for t < t2 because Xt ∈ Xt2 for t < t2.

5 Building the predictor

When tracking is in place and we have the path the pedestrian walked, the next
step is to construct the predictor. The predictor should predict the probability
that a person will enter the crosswalk for each state in S1.

For every position in the grid a probability is calculated for the next con-
nected position. This probability is calculated from statistically collected tracks
that update the predictor.

Only theory for constructing a predictor without history is shown here, the
expansion to use history will be further explained in section 5.4.

Figure 5: Showing the position
(P) and possible way the person
can move next. The predictor
could use none, one (A) or two
steps (A and B) of history.

The tracking from section 4 outputs a track

P = (p0, ..., pτ), pi ∈ S1, i = 1, .., τ,

a sequence of states for each person walking over the grid. Let T = (P0, ..,Pn)
be the collection of all tracks from the tracker. The number of transitions from
state xi to xj can be de�ned as

ni,j =
∑
T

∑
P
zi,j(pt, pt+1),

7

where,

zi,j(x, y) =

{
1 if x = xi and y = xj

0 otherwise
.

In the same way we de�ne the number of visits in a state as ni =
∑
T
∑
P zi(pt),

where

zi(x) =

{
1 if x = xi

0 otherwise

By de�ning the predictor function D(xi, xj) = p(qt+1 = xj |qt = xi), where
xi, xj ∈ S1, the probability that person in state xi will move to state xj . The
estimation of that probability is

D(xi, xj) = ni,j/ni.

5.1 Updating the predictor

It's also good to be able to update the predictor with the tracking data collected
at runtime so the predictor is continuously learning. Because the predictor is
keeping track of the number of samples, ni, collected for each state, this can be
used to continuously update D with new data.

The update is done by:

D(xi, xj) :=

{
(D(xi, xj) ∗ ni + 1)/(ni + 1) if pt = xi and pt+1 = xj
D(xi, xj) ∗ ni/(ni + 1) if pt = xi and pt+1 6= xj

ni := ni + 1
Where pt and pt+1 is the current and previous position of a person given by the
tracker.

5.2 Initial values

When the system is new and there is no values, prede�ned initial values for D
is set, and set ni = a for all i. Where a is a constant depending on how fast
the system should converge from the initial values. If a = 0 the initial values
will immediately be replaced by the single data sample. If a is a large number,
it will take more samples for D to converge. The predictor can for example be
set to D(·) = 1/8, meaning that all directions are equally probable.

5.3 Boundary of the grid

The event of a person leaving or entering the observed area, the data is reaching
the boundary of the grid, needs special treatment in the predictor. By using the
special state S0 and expanding the predictor with this as a position , entering
and exiting of the grid can be used in the prediction. All boundary positions of
the grid connect to this state.

5.4 Using the History

Using only the current position of the pedestrian will not make a good predictor,
we have no way of telling from which direction he came from, and therefore

8

Figure 6: Showing the position
(P) and possible way the per-
son can move next. The position
is on the boundary, so the per-
son might leave the area. This
is equivalent to the prediction of
person going to the out position.

not be able to make a good prediction on further movement. Expanding the
predictor to include more of the history is therefor required.

The predictorD is expanded using one step of history so thatD(xh, xi, xj) =
p(qt+1 = xj |qt = xi, qt−1 = xh).

The update is done in the same manner as before except that the state space
has increased with one dimension. Using two steps or more is handled in more
or less the same way.

The initial values can now be more re�ned than an equal distribution over
all directions. The Values should be de�ned using the knowledge of in which
direction the person is heading and the natural behavior of continuing in the
same direction. For example as in Figure 7.

Figure 7: Showing the position
(P) and possible way the person
can move next.

5.5 Markov Matrix G

The predictor outputs a statistical probability where a person will move next.
With this, it is also possible to calculate the probability of the person entering
the crosswalk. This can be done through 3 steps.

Step 1: Constructing the Markov matrix named G is quite straight forward.
A Markov matrix is the transitions of a Markov chain. A markov chain is a
sequence of random variables X1, X2, X3, ... with the Markov property, namely
that, given the present state, the future and past states are independent. For-

9

mally,

Pr(Xn+1 = x|X1 = x1, X2 = x2, ..., Xn = xn) = Pr(Xn+1 = x|Xn = Xn) [4].

A Markov matrix is the representation of the transition probabilities between
all states, with elements pij = Pr(Xn+1 = j|Xn = j). Every position in the
grid is made a state, when the history is used, the combination of position and
previous position(s) is made a state. The state that represent leaving the grid
is made an absorbing state, see Figure 5.5. The Markov matrix G is then con-
structed from the dataset D.

Figure 8: Here is a visualization
of the markov matrix. Every node
represent a state, and the arrows
are the transitions available from
that node. In this �gure the
edge of the grid is illustrated, and
therefore we have the out state
present.

Step 2: Now we need to decide which positions are considered located on the
crosswalk. These position will be connected to a new absorbing state, which is
considered to be the "Entered the crosswalk" state. The previous connections
are removed. There could also be other crosswalks or pathways of interest.
These could be connected to other absorbing states.

Figure 9: The states that been
tagged as crosswalk will be al-
tered so the transition to the new
state.

Step 3: The altered Markov matrix G now contains the probability for an
object to move from one state to the next. To get the probability of where a
person will be in two steps G2 can be used. The new absorbing state, "Entered
the crosswalk", makes it possible to see what the probability is for a person in
a state to get to the crosswalk in n steps, by calculating Gn. By then making
a approximation of G∞ it is possible to predict what the probability is for a

10

person to end up on the crosswalk. To approximate G∞ it is enough to calculate
Ga with a big enough. At least a > 2 ∗ r ∗ c where r and c is the number of row
and colums in the grid.

The approximated G∞(state, crosswalk) holds the probability that the a per-
son in a state will and up at the crosswalk.

Let,
g(x) = G∞(x, crosswalk),

be a function that returns the probability from the matrix G∞ at a speci�c state
x.

5.6 Multi person prediction

The matrix G∞ now gives the probability for one person ending up on the cross-
walk. If there are more than one person, the interesting question is what the
probability is that at least one of the persons enters the crosswalk. Mathemat-
ically this is described as q = 1 −

∏
(1 − pk) where pk = G∞(posk, crosswalk),

is the probability that person k enters the crosswalk.
An example:

Two persons, A and B, has probabilities pA = 0.45 and pB = 0.35
The formula gives 1− (1− 0.45)(1− 0.35) = 0.6425, so the probability that at
least one of the persons enter the crosswalk is 64.25%

6 Application

A big part of the work done on this thesis was building a working application
using the theory presented in the the previous sections. The application can
run with images from a live camera or loaded from a �le. Images can be saved
to �le with the same application. The application is not tested on a real tra�c
light environment but is simulated on a street under a balcony.

6.1 Equipment and Software

An UEye camera with a 8mm lens was used to capture frames, this was borrowed
from Smart Eye AB [11]. The native resolution is 756x480 but that is more
than needed so the resolution was lowered by binning 2X both horizontally and
vertically. That gave a resolution of 376x240. The camera is connected to a
computer through a usb cable. A frame grabber interface was implemented to
setup the camera and capture frames. The settings except binning is also auto
exposure, that will give a nice white level even if there is sunlight or cloudy
conditions.

As a software platform source code from Cognimatics AB [12] was used as a
foundation. This was written in C code. Also the OpenCV [13] library is used,
especially for camera calibration.

6.2 Camera Calibration

To get screen coordinates from world points, a calibrated camera is needed both
intrinsic and extrinsic parameters. The intrinsic parameters can be found using
OpenCV:s [13] camera calibration and a chessboard. The extrinsic parameters

11

i.e the camera position relative the world is found using relative points in the
world and screen.

6.3 Collecting Data

The camera was positioned on my uncles balcony facing down toward the street.
Here we could control the environment and do data collection without any major
disturbances. The street did not have a crossing at that position but that is not
crucial for the experiments. At �rst it was needed to make reference markings
on the street to do the extrinsic camera calibration. Two persons where then
asked to do a sequence of passes through the tracked area. The passes where
made in di�erent directions in the intersection and the video mark as well. This
video was recorded to �le for o�ine processing.

To generate more data from the collected video, it is possible to make small
adjustment to the extrinsic calibration. That will make the application to see the
tracked persons at another position than they originally was at. The extrinsic
calibration was changed by translating the reference markings 10cm in four
di�erent directions, making it possible to run through the same recording a
total of �ve times.

6.4 Probability Matrix G∞

The video recorded in the previous section was then run through the tracking
algorithms. The tracks updates the predictor as in section 5.1. The red points
illustrated in Figure 10d are chosen to be the start of the cross walk. The
probability matrix G∞ is created as described in section 5.5

6.5 The probability a person will enter the cross walk

We like to calculate the probability that someone is going to the crosswalk for
the current frame. By the theory in Section 5.5 this can be calculated if we have
the state where the person(s) are. In the case with HMM and Online Viterbi,
there is usually not a global optimum in the current frame. That is calculated
later when backtracking is done. Instead by looking at the internal states δt(k)
of the Online Viterbi algorithm a distribution can be calculated for the states.
It might be possible to calculate the correct probability for each state. But in
this study, only a approximation has been made. The approximation is made
using a weight

12

(a) Video Raw (b) Video with grid

(c) Video Bg/Fg (d) Video Area

Figure 10: Lägg till bättre text här

yk =
1

2000
δk + 1− δmax

2000
if yk < 0 then yk = 0.

This function has been derived from empirical tests.
The approximative probability pk for each state δ(k) is

pk =
yk∑
yk
.

When the distribution for the di�erent states is calculated it is straightfor-
ward to use the result in Section 5.5 and get the total probability a person is
going to the crosswalk. It is

pcrosswalk =
∑
k

(pk · g(statek)).

If there is more than one person in the state, the result from Section 5.6 is
used.

6.6 Classi�er

To make it easier for an application to use the probability and also to verify the
result from the predictor, we classify it into three classes.

13

A Someone is going to the crosswalk pcrosswalk > β

B Uncertain α < pcrosswalk < β

C No one is going to the crosswalk pcrosswalk < α

The probability from the predictor is classi�ed by setting thresholds α and β.
Sometime the probability value is around a threshold and the classi�er changes
between two states rapidly. To overcome this problem hysteresis could be used.
Hysteresis is when the value goes over the threshold α to enter a state, it does
not go back to the other state until the value is under α− d. In the application
d is set to 0.1, see Figure 11.

Figure 11: By using hysteresis, quick changes of from states A,B and C can be
avoided when probability p changes. α and β is the thresholds for the classi�-
cations.

7 Results

The results and �gures shown in this section is from my application based on
the data I collected.

7.1 Background/Foreground Segmentation

A sample from the background foreground segmentation is shown in Figure 12.
Here two persons are walking and the resulting image is clearly brighter around
them, indicating they belong to the foreground.

14

Figure 12: Background foreground segmentation.

7.2 Tracking

Figure 13 shows a sample from tracking. The illustrated walk trails are not the
optimum path calculated by the tracker, instead it is the path with the highest
likelihood at that frame.

Figure 13: Walk trails.

7.3 One direction Setup

This setup is meant the simulate a straight pathway to the crosswalk as illus-
trated in Figure 14. The red squares are marked as crosswalk.

15

Figure 14: Included areas in the data set.

7.3.1 Data collection

Data was collected for a predictor not using history and one that uses history
of one step. Using further history was unfortunately not possible due to lack of
the large amount of training data required.

In Figure 15 and 16 the number of collected data samples per state is illus-
trated.

16

Figure 15: Collected data samples per state when not using history. The cross-
walk is located in the top left.

Figure 16: Collected data samples per state using history of one position. The
arrows indicate the direction of movement. The center chart is representing
entry on the boundary. The crosswalk is located in the top left.

17

7.3.2 Prediction

The resulting predictor that doesn't use history, Figure 17, does not give any
promising results as expected. Due to the lack of history no good prediction
can be done. The only interesting to see is that the majority of trails to the
crosswalk has been made on one side and on the opposite side, away from the
crosswalk.

Figure 17: Probability to enter crosswalk when not using history. The crosswalk
is located in the top left.

The predictor that uses history of one, shows much more promising results.
In Figure 18 we can se that a person moving in the direction of the crosswalk is
predicted with a high probability to end up on the crosswalk. In the same way
a person moving away from the crosswalk is predicted with a low probability to
end up on the crosswalk.

18

Figure 18: Probability to enter crosswalk when using history of one position.
The arrows indicate the direction of movement. Center plot is representing
entry on the boundary. The crosswalk is located in the top left.

7.3.3 Validation

I will only do validation on the predictor that uses history.
To validate the predictor �ve recordings where made on normal and tricky

situations. These where hand annotated with di�erent states, like, "Person
in area that will end up on crosswalk", "Person in area that will not end up
on crosswalk" and the combined state. In Figure 19 is the result from one
of these tests. In the illustration we can see that a person is approaching the
crosswalk and the predictor immediately gives a high probability that the person
is entering the crosswalk. The person then stops to wait for green light. As he
stops he leans back witch fools the tracker to believe he is moving in the opposite
direction which can be seen in the �gure that the probability decreases.

When the �rst person has left the tracked area, a new person enters from
the crosswalk. In the �gure the probability is very high at �rst. This is because
the person is actually standing on the crosswalk states in the grid. When the
person is moving further the probability decreases to a very low level.

If we use the classi�er from section 6.6 and compare the result with the hand
annotated test recordings. We can calculate the true positive and false positive
classi�cations from the classi�er. The results of classifying "Someone is going
to the crosswalk" is shown in Figure 20. We can see that there is a gap between
the true positive and the false positive. If 0.5 is chosen as the threshold the
classi�er was able to correctly classify 70% of the time a person walk to the
crosswalk in the tracked area, and incorrectly classi�ed 5% of the time when a

19

Figure 19: Test sequence where a person approaches the crosswalk than another
person comes from the crosswalk and walks away from it.

person was not walking to the crosswalk as such.
Figure 21 shows the result of the classi�cation "No one approaches cross-

walk". Here we can see that if we set the threshold to 0.3 we would have
correctly classi�ed more than 90% correctly when there is a person in the area
not walking to the crosswalk. At the same threshold unfortunately it classi�es
15% wrong i.e. that there is no one approaching the crosswalk in the area when
it actually is.

20

Figure 20: "Someone approaches" classi�cation results relative the threshold.

Figure 21: "No one approaches" classi�cation results relative the threshold.

21

7.4 Multiple Direction Setup

In this setup we simulate a four-way crossing with a crosswalk in one direction
as illustrated in Figure 22. The red squares are marked as crosswalk.

Figure 22: Included areas in the data set.

7.4.1 Data collection

Data was collected for a predictor not using history and one that uses history
of one step. Using further history was unfortunately not possible due to lack of
the large amount of training data requried.

In Figure 23 and 24 the number of collected data samples per state is illus-
trated.

22

Figure 23: Collected data samples per state when not using history. The cross-
walk is located in the top left.

Figure 24: Collected data samples per state when using history of one position.
The arrows indicate the direction of movement. Center plot is representing
entry on the boundary. The crosswalk is located in the top left.

23

7.4.2 Prediction

As earlier in the case with the straight direction,section 7.3, using prediction
without history is pointless as illustrated in Figure 25. In the case with history
of length one as shown in Figure 26, prediction is possible. The probability of
the predictor will not get high until the person has reach a point that turning
in another direction is no longer a feasible option. This is expected because the
data collected had an even spread in the directions the persons walked.

Figure 25: Probability to enter crosswalk when not using history. The crosswalk
is located in the top left.

24

Figure 26: Probability to enter crosswalk when using history of one position.
The arrows indicate the direction of movement. Center chart is representing
entry on the boundary. The crosswalk is located in the top left.

7.4.3 Validation

Because the predictor not using history will not perform well, only vaidation on
the predictor that uses history is done.

To validate the predictor 12 recordings where made on normal and tricky
situations. These where hand annotated with di�erent states, like, "Person in
area that will end up on crosswalk", "Person in area that will not end up on
crosswalk" and the combined state. In Figure 27 the result from the same test as
in the straight case shown in Figure 19. The probability the predictor produces
is very similar to the one from the straight case except from the �rst part where
the probability is lower. This is because the predictor can not decide which
direction the person is going until he passes the intersection.

Figure 28 shows a sequence where �rst a person walks from the top way,
path 1 in Figure 22, and walks to the crosswalk. After a person walks from
the side, path 2, and walk straight to the other side and exits at path 4. The
probability result from the predictor is similar to the previous one except the
probability is low for the second person, which is correct as the person never
near the crosswalk.

If we use the classi�er from section 6.6 and compare the result with the hand
annotated test recordings. We can calculate the true positive and false positive
classi�cations from the classi�er. The results of classifying "Someone is going
to the crosswalk" is shown in Figure 29. We can see that there is a gap between
the true positive and the false positive. If 0.5 is chosen as the threshold the

25

Figure 27: Test sequence where a person approaches the crosswalk than another
person comes from the crosswalk and walks away from it.

classi�er was able to correctly classify 55% of the time a person walk to the
crosswalk in the tracked area, and incorrectly classi�ed 2% of the time when a
person was not walking to the crosswalk as such. Comparing to the straight case
this result is much lower but can be explained by the insecurity the predictor
has before the person change direction.

Figure 30 shows the result of the classi�cation "No one approaches cross-
walk". Here we can see that if we choose the threshold 0.1 we would have
correctly classi�ed more than 85% correctly when there is a person in the area
not walking to the crosswalk. At the same threshold unfortunately it classi�es
25% wrong i.e. that there is no one approaching the crosswalk in the area when
it actually is. The false positive is larger than in straight case. That is because
it is hard for the predictor to predict if the person is going to the crosswalk or
not until the person has passed the intersection.

26

Figure 28: "Someone approaches" classi�cation results relative the threshold.

Figure 29: "Someone approaches" classi�cation results relative the threshold.

27

Figure 30: "No one approaches" classi�cation results relative the threshold.

28

8 Discussion/Improvements

The development of this thesis started out with trying to implement the al-
gorithms on a embedded platform. This was very time consuming and slowed
down development time. The work was not really related to the thesis and a
decision was made to skip the embedded platform and make the development
on a PC instead. A lesson learned is to start of with a PC based solution and
then port to embedded.

8.1 Background/Foreground Segmentation

The chosen bg/fg algorithm uses cross correlation features. It is independent
on global intensity changes and robust for small objects which is good for out-
door scenes. Sometimes the middle of a persons jacket correlate well with the
background resulting in a low probability for foreground. This did not cause
any problem because the edges of the jacket did not correlate with the back-
ground and resulted in a high probability and the total was large enough to be
trackable.

8.2 Tracking

To track the pedestrians, Hidden Markov Model was used. It worked well and
was really robust. In this thesis a rather sparse grid was used. That made the
tracked trails jagged, see Figure 13. Increasing the resolution of the grid makes
the tracking more precise and not as jagged as in this thesis but it also increases
the requirements of processing power and memory. The predictor also needs
more data before converging.

The optimal camera placement is from a birds perspective, but if this is not
possible and a more horizontal view is required, problems with occlusion can
occur. However the HMM tracking worked very well in this regard, except when
the person was occluded the whole way through the tracked area.

8.3 Predictor

The predictor is a novel algorithm based on a Markov theory. The advantage
is that the lookup in the predictor is fast but a predictor that looks at a longer
history walk trails requires a lot of memory. The memory grows with a factor
eight for every history point.

The update algorithm of the predictor requires a lot of computational power,
but it can be done during night time or in a separate thread in the software.

By increasing the length of the history the predictor should be able to per-
form better. But in this thesis it was not possible to test due to the large amount
of data needed for training and validation. For each step of history added, the
amount of data needed for the predictor to converge grows as the memory, by a
factor 8. If a very large history is used, the predictor will be using the complete
track from the moment the person enters.

Another possible improvement to the predictor is to increase the resolution
of the grid. This has not been investigated in this thesis, but a higher resolution
should increase precision in the predictor. If the distance between grid points
is halved, the necessary data collection grows with a factor of four.

29

The initial values are not that important thus they are phased out with time.
If it is possible to make a good assumption of the initial values the predictor
would work directly, without collecting a lot of data.

Initially when a person enters the area,the probability the predictor gives is
based on a approximation of the statistical distribution of persons going to the
crosswalk or not from that position.

8.4 Results

The validation is made for di�erent thresholds on the classi�er. Depending on
the application di�erent behavior on the classi�er is wanted. If a lower threshold
is chosen for the classi�cation "No one is going to the crosswalk" we get less
false positives but that also leads to less true positives.

The validation for "No one is going to the crosswalk" only included frames
when there was a person in the tracked area. If frames would be included that
did not have any persons visible, the rate for true positives would increase a lot
because the predictor outputs near to zero probability when there is no person
in the area.

The results shows that the algorithm works, but is not as robust as wanted.
When a persons stops and waits for green light he tends to have some backwards
movement. Given that we only used a history of one it fools the predictor that
he started to move away from the crosswalk. A solution to this is described in
section 8.5.

8.5 Improvements

Instead of just using some grid points on the edge as the crosswalk, using a area
around the crosswalk would give more robust result. This would increase the
true positive when standing and waiting for green light.

Some simple logics can be added to the classi�cation, for example, persons
that enters from the crosswalk are probably not going to it and should not be
predicted as such.

By looking at velocity the predictor could estimate when the person will
reach the crosswalk.

9 Conclusions

The purpuse of this thesis was to create a detector to decide if a person is
entering the crosswalk or not. With the application developed it has been
showed as a "proof of concept". Using the novel predictor to detect persons
"entering the crosswalk" we get

Setup @ p Threshold % true positive % false positive
Straight 0.5 70% 5%
Four way 0.5 55% 2%

and for detection of someone is "not entering the crosswalk" when there is
a person in the area

30

Setup @ p Threshold % true positive % false positive
Straight 0.3 90% 15%
Four way 0.1 85% 25%

There is a large room for further improvements and given that the predictor has
so large percentage of false positives, improvements needs to be made.

Acknowledgments

References

[1] Håkan Ardö Multi-Target Tracking Using On-line Viterbi Optimisation and

Stochastic Modelling 2009.

[2] P. Viola and M. Jones Rapid object detection using a boosted cascado of

simple feauters. 2001: Random House, N.Y.

[3] L.R. Rabiner A tutorial on hidden markov models and selectes applications

in speech recognition. Proc. IEEE, 77(2):257-286, 1989.

[4] Markov chain, Wolfram MathWorld http: // mathworld. wolfram. com/

MarkovChain. html

[5] Gabriel J.Borstow and Roberto Cipolla Unsupervised Bayesian Detection of

Independent Motion in Crowds. IEEE CVPR 2006: New York

[6] Dima Damen, David Hogg Recognizing Linked Events: Searching the Space

of Feasible Explanations. School of Computing, University of Leeds

[7] Christopher James Needham Tracking and Modelling of Team Game Inter-

actions. 2003

[8] B Benfold and I D Reid Stable Multi-Target Tracking in Real-Time Surveil-

lance Video. Colorado Springs, June 2011

[9] Neil Johnson and David Hogg Learning the Distribution of Object Trajecto-

ries for Event Recognition. School of Computer Studies, The University of
Leeds

[10] Baumberg A. and Hogg D An e�cient method for contour tracking using

active shape models. In IEEE Workshop on Motion of Non-rigid and Ar-
ticulated Objects, pages 194�199. IEEE Computer Society Press, November
1994. IEEE Catalog No. 94TH0671-8.

[11] Smart Eye AB http: // www. smarteye. se

[12] Cognimatics http: // www. cognimatics. com

[13] OpenCV http: // opencv. org/

31

A In�nite Viterbi algorithm

In�nite Viterbi algorithm is listed in Algorithm 1. The di�rence from classic
viterbi is that it only stores the m largest δ(i). The rest of the states will have
a upper bound δmax(i) for the rest. If m is large enough the global optimum
will be found by backtracking. This algorithm will decide if it was the case or
not. If it was not it can be re-run with a larger m.

The algorithm is divided in three parts. The �rst part (lines 1-4) initiates,
second part (lines 5-24) is forward propagation and the �nal part (lines 25-35)
do the backtracking.

Initialization (1-4):
Line 1 sets δ̃0(i) = πibi,0 which is the starting sequence probability's. Line 2-4

creates δ̂0 from the m largest δ̃0 sorted as a decreasing function. It also stores
the permutation h0 that makes it possible to backtrack. The upperbound for
all discarded states is saved as δmax(0).

Propagation (5-24):
This will be executed for all 0 < t < τ . The �rst thing to do (line 6) is to use
the reachable function that is de�ned as R(Ŝ) = {i|ai,j > 0 for some j ∈ Ŝ}.
This function will give all the states that are reachable from the set Ŝ. For
each of the states that are reachable (line 7) calculate which previous state it is
most likely to come from and create temporary δstored. Also store which state
it came from in jmax (line 8). To make sure that there is no previusly discarded
state that might give a higher likelihood calculate δdiscarded (line 9) which is the
largest probability from a discarded state. Here is the constant amax used. It is
de�ned as amax = max

i,j
ai,j , which is the largest transitional probability possible.

If δstored is bigger than δdiscarded (line 10) we store δ̃t(i) and ψ̂t(i) (line 11-12).

If it's not (line 13) we set ψ̂t(i) = −1 and δ̃t(i) = δdiscarded(line 14-15) this
will indicate in backtracking that we don't know the optimum path. When all
reaching states are calculated, the next step is to sort δ̃t and store the m largest
in δ̂t and the permutations in ht (line 18 and 23). Then to decide δmaxcalc, the

biggest discarded δ̂t, and δmaxdisc which comes from previous discarded states
δmax(t − 1). Save the maximum of δmaxdisc and δmaxcalc to δmax(t) and do the
next iteration.

BackTracking (25-35):

Start the backtracking by extracting the best state from δ̂τ (line 25). If the value
is lower then the upper bound of the discarded states (line 26) the optimum can
not be found. Otherwise continue with the backtracking (line 29-35) and look up
which sequence of states gives the highest probability through going backwards
in ψ. If ψ gives −1 anytime during backtrack the optimum could not be found.
Using the permutation ht the optimal sequence q̃t, 0 < t < τ is created (line 34)
and returned.

32

Algorithm 1 In�nite Viterbi

1: δ̃0(i) = πibi,0
2: (δ̂0, h0) = sort(δ̃0)

3: δmax(0) = maxi>m(δ̂(i))

4: Discard δ̂0(i) for i > m
5: for all t = 1 to τ do
6: S = R({ht−1(i)|i = 1, ...,m})
7: for all i ∈ S do
8: (δstored, jmax) = max1≤j≤m(δ̂t−1(j)aht−1(j),i)
9: δdiscarded = δmax(t− 1)amax

10: if δstored > δdiscarded then
11: δ̃t(i) = δstoredbi,t
12: ψ̂t(i) = jmax

13: else
14: δ̃t(i) = δdiscardedbi,t
15: ψ̂t(i) = −1
16: end if
17: end for
18: (δ̂t, ht) = sort(δ̃t)
19: Find some bmax ≥ bi,t for all i 6∈ S
20: δmaxcalc = maxi>m|ht(i)∈S δ̂t(i)
21: δmaxdisc = δmax(t− 1)amaxbmax

22: δmax(t) = max(δmaxcalc, δmaxdisc)

23: Discard δ̂t(i) for i > m
24: end for
25: q̂τ = argmaxi≤m(δ̂τ (i))

26: if δ̂τ (q̂τ) ≤ δmax(τ) then
27: return Optimum not found, retry with larger m
28: end if
29: for t = τ − 1 to 0 do
30: q̂t = ψ̂t+1(q̂t+1)
31: if q̂t == −1 then
32: return Optimum not found, retry with larger m
33: end if
34: q̃t = ht(q̂t)
35: end for
36: return Global optimum found!

33

Master’s Theses in Mathematical Sciences 2013:E22

ISSN 1404-6342

LUTFMA-3245-2013

Mathematics

Centre for Mathematical Sciences

Lund University

Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

