
Video Conferencing - Session and 
Transmission Control

Marcus Carlberg, Christoffer Stengren

MASTER’S THESIS | LUND UNIVERSITY 2015

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884 
LU-CS-EX 2015-04



 



Video Conferencing - Session and
Transmission Control

Marcus Carlberg
carlber.marcus@gmail.com

Christoffer Stengren
christoffer_stengren@hotmail.com

February 2, 2015

Master’s thesis work carried out at AXIS Communications AB.

Supervisor: Jimmy Rubin, jimmy.rubin@axis.com

Examiner: Mathias Haage, Mathias.Haage@cs.lth.se

mailto:carlber.marcus@gmail.com
mailto:christoffer_stengren@hotmail.com
mailto:jimmy.rubin@axis.com
mailto:Mathias.Haage@cs.lth.se




Abstract

Video conferencing is a very bandwidth sensitive application, if the available
bandwidth is to low to handle the send rate of the media, packages will be lost
in the network and thus the conference will be disrupted. Axis Communica-
tions would like to know which techniques are used today to ensure optimized
bandwidth usage and as good quality as possible during a video conference
even if the network bandwidth changes. An implementation of such a service
has been made in this thesis which uses three different TCP congestion avoid-
ance algorithms. They monitor and evaluate the network quality to adapt the
video stream rate accordingly. One algorithm is only based on packet loss and
is used as a baseline. The other two uses packet loss in conjunction with round
trip time (RTT) to evaluate the network. The user experience was deemed bet-
ter when using the algorithms. The algorithms that was based on both packet
loss and RTT was deemed superior. There are however still a few things to
adapt in the camera software and hardware before a complete system can be
developed.

Keywords: Video conference, Media streaming, Network congestion control, h.264,
TCP-CUBIC, TCP-CUBIC-FIT, TCP-Illinois, GStreamer.
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• FEC - Forward error correction.

• GOP - Group of Pictures

• PLL - Packet Loss Limit

• QoE - Quality of Experience

• QoS - Quality of Service

• QP - Quantization Parameter

• RTCP - Real time Control Protocol

• RTP - Real time Transport Protocol

• RTSP - Real time Streaming Protocol

• RTT - Round Trip Time

• SVC - Scalable video coding

• TCP - Transmission Control Protocol

• UDP - User Datagram Protocol

9



CONTENTS

10



Chapter 1
Introduction

In this chapter we will first present Axis Communications AB where this master thesis
was done. We will also go through the purpose and goals for the thesis and present our
hypothesis and also present the distribution of work between the two authors.

1.1 Axis Communications
The masters thesis work is carried out at Axis Communications AB which is a company
that specializes in developing and producing new and modern high performing network
cameras. Axis Communications AB was founded in 1984 and has since then become
the global market leader in network cameras. They were the first company in the world
to release a network camera in 1996 and they have currently more than 1600 employees
around the world [1].

1.2 Purpose and Goals
The purpose of this thesis is to investigate how we can use two Axis network cameras
together to create a video conferencing application. The application will stream video and
audio in real-time between the two cameras. The application shall support state of the
art algorithms for maximizing the perceived quality for the users. Another master thesis
has already been able to establish a video link between the two cameras and implemented
some congestion control. Our task is to continue on this work and add audio to the video
conference and make sure the audio is synchronized with the video. We will also continue
to look at how we can counter problems such as varying bandwidth, jitter and loss of
packets with the help of the literature. An implementation and testing of our finding will
then be conducted.
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1. Introduction

1.3 Hypothesis
We believe that it should be possible to set up a video conference call transatlantic between
two Axis network cameras where the QoE is rated high by both parties of the conference
call. The connection is going to be TCP based while the transmission is going to be UDP
based and use one of the hybrid algorithms to adjust the quality and rate for the media. If
a hybrid algorithm was not to be used, we believe delay based is the second best option
if no greedy algorithm is competing. If this is the case however, we believe a packet loss
based algorithm would be the second best choice.

1.4 Contribution
This section presents what tasks the different authors had the main responsibility in.

• Marcus Carlberg - TCP-CUBIC, TCP-FIT, TCP-CUBIC-FIT, Introduction, Back-
ground and Previous work, Evaluation

• Christoffer Stengren - TCP-Illinois, Experimental setup, GStreamer, Discussion

• Marcus Carlberg - Implementation of TCP-Cubic, TCP-Fit, TCP-Cubic-Fit, video_client
video and audio together, updated with newer software

• Christoffer Stengren - Implementation of TCP-Illinois, video_client single audio,
single video, rate controller modifications

All other work was done in collaboration.

1.5 Overview
Chapter 2 will explain the basics of a video conference and what different protocols that
are used to set up the different media streams. Chapter 2 will also explain what TCP
congestion control is and how it has been used solving similar network problems. Chapter
3 will present the environment that we are working in, what hardware and software that
we have available for the video conference. The streaming library GStreamer is explained
in chapter 4 where we will take up the basics of what we used when implementing our
conference application. In chapter 5 we present how we set up the audio stream and which
protocols we used. Chapter 6 goes into detail on which congestion control algorithms we
did choose and also shows how we implemented these. Chapter 7 begins by defining QoS
and QoE and they will then discuss in regards to video conferencing. The chapter also
explains how we collected data, present the resulting data of the collection and how we
evaluated it. Chapter 8 will be a discussion on what we found out and a reflection on what
implications it might have. We will also give suggestions for future work and conclude
our findings.
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Chapter 2
Background and Previous work

We will in this chapter present background material of this master thesis. We will go
throughwhat has already been done in the topic of congestion control and quality switching
on network streams. We will also explain how the most common protocols that are used
in network streaming works and what properties they have.

2.1 Video conferencing
With global partnership increasing a cheap and effective way of having meetings is re-
quired [21]. Video conferencing is therefore getting more and more important in today’s
society. In this section we will explain relevant theory regarding video conferencing.

2.1.1 UDP
User datagram protocol (UDP) is a protocol that is used to send datagrams (also called
packets), from a computer to another. It uses minimal protocol mechanism and thus pro-
vides no guarantees for packet delivery nor correct ordering of packet arrival. UDP re-
quires that the underlying protocol is Internet Protocol (IP) [29, 47].

Having minimal protocol mechanism provides certain advantages as well as disadvan-
tages. As an example, the fact that we do not have packet delivery guarantee makes it very
useful for application that cannot wait for a packet to be resent if it is lost and instead needs
to skip it. On the flip side, if an application really need all the packets, and/or the packets in
order, UDP would not work unless you make your own modification and implementations.

2.1.2 TCP
Transmission control protocol (TCP) is a connection based protocol that are used to trans-
fer data-packets over a network connection. The protocol is used in applications where

13



2. Background and Previous work

it is important that all data packets are received and that they are received in the correct
order. This is guaranteed with a constant connection between the client and the server
where each packet sent results in an ACK-sendback. If a packet is lost and thus no ACK
is received the packet is retransmitted. Since TCP is a connection based protocol it has a
lot of features that is unavailable in UDP. TCP can for instance detect errors in the trans-
mission by comparing the checksum from the packet and the checksum in the ACK that
the client responds with [30, 46]. Another example is congestion control, algorithms that
are designed to check the network for congestion and notify the server of an incoming
congestion so the server has time to adapt. As TCP has a guarantee that all data packet
will be received, it is possible to get reliable network statistics for congestion control. This
is hard with UDP as you have no way of getting reliable statistics due to not having this
guarantee.

2.1.3 H.264
H.264 is currently one of the most popular video compression format. It is used for record-
ing, compression and distribution of videos. It was developed by ITU-T Video Coding
Experts Group and is used in many products such as streaming services (youtube, vimeo,
itunes) and web software(Adobe Flash Player, Microsoft Silverlight). H.264 provides
many useful features such as profiles, levels, SVC, error and loss concealment [6].

Profiles defines specific capabilities that can be used for different applications. Exam-
ple from wikipedia [6] "Extended Profile (XP) - Intended as the streaming video profile,
this profile has relatively high compression capability and some extra tricks for robustness
to data losses and server stream switching." Profiles are with other words very convenient
as you can choose which profile fits your application [6, 56].

Levels defines specific performances on the decoder. This lets you choose a level that
fits your application. Each level determines things such as maximum picture resolution
and bit rate. This gives you the flexibility to for example change compression bit rate
depending on the bandwidth. It is important to know that if you choose a level the decoder
needs to be able to decode any level below it [6, 56].

SVC is short for scalable video coding. SVC divides the media content in different
layers that can be added together. Combined they give you the high quality image. The
different layers are dependent on each other, you must have all of the underlying layers
to be able to reconstruct the stream. This enables you to send different bit streams at the
same time. If however you get low on bandwidth you have the option to drop any of the
bit streams. This yields lower quality images but reduces the bandwidth usage [6, 15, 57].

Loss resilience deals with the fact that losses may occur, such as a part of or an entire
frame is lost. If that occurs and if it is possible, it is concealed by different methods so that
a human will not notice or notice vaguely. It also provides different error/loss robustness
technique [6, 58].

H.264 video stream
A typical video stream is a series of pictures that is shown in sequence. H.264 uses different
types of image frames to try to reduce the size of the media stream. The first frame that it
uses is called the I-frame and it contains a full image. The image is still compressed but

14



2.1 Video conferencing

all data is available. When movement happens in a video stream it is often not the whole
image that changes, but only a fraction. It is therefore unnecessary to use only I frames.
H.264 uses this information to include two types of partial frames, the P-frame and the
B-frame. Both the P-frame and the B-frame contains only the differences (the movement
that has happened since the last frame) from the previous I-frame. One could say that the P
and B frames updates the I frame. By using this technique the data necessary for showing
the stream is reduced greatly without the quality changing noteworthy. However the P
and B frames can’t be decoded without the I-frame, this results in that all P and B frames
gets invalid if an I-frame is lost. Therefore I-frames are sent in regular intervals to make
sure that the stream is not unavailable for a long time because an I-frame was lost. The
difference between the P and B frame is that P frames use data from the previous frames
whiles the B frame can use data from both previous and the next frame in the stream. The
B frame has more information available in the surrounding frames so it will not require as
much data as an P frame. [17]

Figure 2.1: Illustration of how I-frames, P-frames and B-frames
work together.

2.1.4 Jitter
Jitter is simply put the deviation between a signals that is expected to be periodic and its
true periodic form. In our case this will be translated to packets that are presumed to arrive
at a periodic interval but may have some deviations from this interval [23, 31]. In most
video streaming applications jitter will become delay instead of jitter since most applica-
tions uses a image buffer and doesn’t show the next frame until the buffer has reached a
certain size [49].

2.1.5 Packet loss
When sending traffic over the internet it is possible that we lose packets during the trans-
mission for one of many reasons. This is exactly what packet loss is, packets that have
been lost for any reason and does not arrive at its intended destination [23].

2.1.6 Round Trip Time
The round trip time is the time it takes for a package to travel to its destination and back
again. It is important to have a low RTT in videoconferencing since it will translate to
delay in the call. This might cause problems when calls are made over a great physical
distance potentially increasing network delay significantly.
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2. Background and Previous work

2.1.7 RTP
RTP is a protocol that is the standard for transporting both audio and video media stream
data over networks. It has to be used with UDP as transport protocol and thus has no
guaranteed packet delivery [34]. However RTP has features for jitter compensation and
packet reordering if packets arrives in the wrong order. RTP is a very versatile format and
can handle a lot of different formats. The needs of the media type is not hard printed in
the protocol but is instead provided as a profile in the RTP header. By using profiles RTP
ensures that it can handle every new format that is presented on the market whether its a
new video encoding or a new audio encoding. Everything that is needed is that the new
format implements a profile that defines the codecs and payload to be used [13].

Figure 2.2: The structure of an RTP packet. Every bar is 32bit
long. V stands for Version, P padding, X Extension, CC CSRC
count, M marker and PT for payload type

2.1.8 RTSP
Real time streaming protocol is used to control the delivery of data with real time prop-
erties. It works in the application layer and is not concerned with the actual transmission.
This must be done by and other protocol such as RTP. RTSP provides different means to
control the delivery such as delivery via TCP or UDP, or delivery with RTP based mech-
anisms. It also lets you control the stream with commands such as play and pause [11]
[12].

2.1.9 RTCP
The Real-time control protocol is an control protocol and is used for mainly four different
purposes [14]. The first is to provide assessment about the data distribution and its quality.
This is very important as it used in other protocol, such as congestion control protocols,
and is considered its main function. In our congestion control implementations we will
uses precisely this feedback, primarily round trip time and packet loss.

The second one is to keep track of an constant identifier for CNAME, and RTP source.
If for instance an restart happens or a conflict occur, it may be so that other identifiers may
change, and CNAME is needed to keep track on the participants and the identifier CNAME
as it need to be constant. CNAME may also be used for synchronization between audio
and video.
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2.1 Video conferencing

The third purpose is to control the send rate of packets. It is required that all partici-
pants sends RTCP packets to all others. That way each user can see howmany participants
there are and scale it sends rate according to how many there is.

The forth one is optional and is used to provideminimal session control. As an example
the user may want to display all other participants identification in an user interface.

Figure 2.3: The structure of an RTCP packet. Every bar is 32bit
long
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2. Background and Previous work

2.2 TCP Congestion control
TCP congestion control is the topic of how to control the TCP flow to avoid congestion.
Without it the internet would suffer a congestion collapse [18]. Congestion occurs as a
result of two things, router queues are not infinitely long and TCP retransmits packets at
packet loss. When a network is affected by heavy load, the routers don’t have time to route
all the traffic and thus the queue gets full. When the queue is full the packets that arrive at
the router has no place to go andmust be discarded. The sender of the discarded packet will
not receive an acknowledge for that packet from the receiver and will then try to send the
packet again. Every client on the congested network that uses TCP will do the same thing
and thus the queue will never be empty. There are a dire need to control the congestion in
TCP networks and this is done by different congestion control algorithms [23]. The way
they work is by controlling the amount that should be sent. This is done by looking at
something called the window size. The window represent how much it shall send. The
size is then adjusted depending of how much it should and can send. This in turn depends
on many things such as available bandwidth and fairness with regards of other algorithms
running at the same time [19, 32, 33, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 59, 60]. There
is currently three different types of TCP congestion control algorithms: Loss based, delay
based and hybrids.

2.2.1 Loss-based
The loss based uses the loss of packets to determine how to control the size of the window.
If there is a packet loss it will reduce the window size(most commonly by one half) and
then slowly increase it with each ACK it receives from the destination. This process is it-
erated during the duration of the TCP session. Since loss based only reacts when a packet
loss has occurred the congestion is not avoided but instead are handled after it has oc-
curred. Another technique that is better in avoiding congestion all together is delay-based
congestion control [32].

2.2.2 Delay-based
The delay based work by looking at the queue delay instead, also called round trip time
(RTT). By looking at this we can see that when the delay get bigger, it probably is an
indication that a congestion is soon imminent or is starting to build up. It will then reduce
the window size in response. Similarly when the delay is small it will start to increase the
window size but more slowly than it decreased it. Delay based can be seen to try to predict
congestion and adjust its send rate accordingly [39].

2.2.3 Hybrid
The hybrids works by using both the delay and packet loss to determine its send rate. As
an example one might use packet loss to determine if we are to decrease or increase the
window size and use delay to see by how much. This is a method TCP-Illinois use [43].
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2.3 Previous Work
Today streaming media like movies, television series and short clips takes up a large part
of the total amount of internet traffic in Europe and America [51]. This is a lot due to
services like youtube.com and netflix.com that streams recorded media content
stored on a server to it’s users. Since these kind of services takes up most of the bandwidth
compared to other types of streaming [51] most research that we found were based on
that model. The media in these services already exists on a hard drive and is therefore
preprocessed and optimized for different qualities of the media. This optimization of the
data files make it easy to adapt to sudden quality changes. These kind of services can have
the stream delayed by a couple of seconds without the consumer even noticing it more
than on the stream setup time. In video conferencing however the source comes directly
from the camera in real time and therefore some optimizations are impossible or would
require to much processing power to be able to do in real-time. Another problem with
real time streams is the buffer size. When you stream a prerecorded video file the buffers
can be several seconds big, but with real time streams the quality of experience (QoE)
is drastically decreased when the delay is more than 150ms. For that reason the buffer
can’t be to large because the delay may become very large very fast [24] [54]. Since video
conferencing has these requirements we had to focus on two subgroups of research. First
how to identify and solve congestion in the network. Secondly how we can change the
video stream in a way that the frames can fit in the new packet window size without the
stream losing valuable information.

There do however already exist applications that can run a video conference. As a
good example of this is Skype who is the market leader VoIP application worldwide [22].
We would have liked to look more at applications like these but unfortunately most of the
protocols that Skype uses are encrypted and it’s implementation is classified. However
many studies has been done to try to identify what congestion control that Skype uses, one
of them [22] has identified that Skype uses both the RTT and the loss rate as parameters
when calculating the new window size. They did also found out that variations in the
RTT does not impact the input rate a lot. They also mentions that Skype runs in three
different states, the first state is when the network is stable and no congestion is detected.
Skype uses CBR in this state. The next state is the congestion state which Skype enters
when congestion has been found and uses it’s congestion avoidance algorithm to prevent
the congestion. The final state is the loss state. Skype enters this state when running on a
lossy network where the loss is not due to congestion. Skype also uses FEC to minimize
the losses in the network [22].

Skype starts its session with sending lots of packets with varying size for the first 20
seconds to determine what level of bandwidth it can use. It also reacts to packet loss by
increasing the packet size and preferable uses UDP, but switches to TCP if for example a
router does not accept UDP. [20]

2.3.1 TCP congestion control
A lot of research has been done on TCP congestion control. However most of the al-
gorithms were only tested on applications that can handle delays in the size of seconds
and might not guarantee that they are fast enough for a video conferencing application.
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The algorithms will most likely function well or even very well nevertheless since many
algorithms has been used as standards for multipurpose programs in different operating
systems. The main research trends seems to be to have an algorithm that can hog as much
bandwidth as possible and still be friendly to the most common known algorithms that are
used. TCP-CUBIC-FIT is an example of this. It is an hybrid congestion control protocol
that tries to remain friendly with TCP- CUBIC, that was the Linux standard for a while,
and still have the benefits of being both loss based and delay based [36].

For the interested reader here are a couple of the most common algorithms that we have
looked at in the different categories. Every algorithm below either tries to adapt to one
or more of the other algorithms or are one of the most common used congestion control
algorithms.

• Loss-based

– PRR-TCP [45]

– TCP CUBIC [32]

– TCP BIC [42]

– HighSpeed-TCP (HS-TCP) [44]

– Scalable TCP [38]

– TCP-Reno [60]

– TCP-NewReno [35]

• Delay-based

– TCP-Vegas [19]

– FAST-TCP [59]

– TCP-Westwood+ [33] [32]

– TCP-AFRICA [39]

• Hybrid

– TCP-Illinois [43]

– TCP-Compound [40]

– TCP CUBIC-FIT [36]

– TCP-FIT [37]

The current standard congestion control algorithm for Windows server 2008 is TCP-
Compound [8] and for Linux PRR-TCP [9].
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2.3.2 Quality
Changing quality of an image in streaming can be done in many different ways. We have
already talked about different bitstreams in SVC and how we can apply all of them to get
the highest quality. Other ways is simply to compress the image to different degrees. It is
also possible to use predefined profiles such as in H.264. Frame rates can be reduced to
increase quality as will be explained in 3.6. It is also possible to use layered imaging [50].
In another article [55] they describe an quality adapting method that divides the video in
different layers where the fist layer is the lowest quality and the sum of all layer is the
highest quality. This is similar to SVC but instead of bit rates it sends different layers of
the image instead. The receiver then use constraint programming for selecting which layer
at which time that should be downloaded.

There are also a lot of research done to handle sudden shifts in bandwidth, one ex-
ample of this is [41]. They use a deadline based protocol that sorts the most important
frames(generally I-frames) in H.264 and send them first over TCP instead of sending the
frames in playback order. The frames that are sent first are thus those that contain most
information of the playback. Without these frames the playback would not make sense
since we cannot decode the P-frames without it’s corresponding I-frame. The less impor-
tant frames are sent via UDP as they are not as important. A packet of sorted frames are
then given a deadline, if not all of the frames are being transferred when the deadline is
reached the frames are discarded and the next packet of frames can be sent.

2.4 Limitations
In this section we will list various limitations and constraints we had to work around.

2.4.1 Hardware limitations
The camera will be both the client and server. This means that the camera is responsible
for recording, encoding, transfer, decoding and playback of video and audio resulting in
that the available processing power is limited. In a real application you would like to show
the video stream on for example a TV screen. In this thesis we instead recorded the video
stream to an SD card for playback at a later stages.

2.4.2 Software limitations
Here we will list various software limitations we had in this thesis.

H.264
H.264 have some very useful features. At AXIS however we do not have access to all
features but only a subsection of them to work with. To control the image compression we
can use a variable called the QP value that lets us set the compression grade of the video
stream. The modified H.264 format also gives us the possibility to set a maximum bit rate
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and decide if it should prioritize frame rate or quality. It will then try to never go above
this maximum by automatically regulate the compression grade.

Decoder
We didn’t use the decoder as we didn’t have a video output on our cameras. We instead
choose to focus on other areas. This could affect the performance of the camera in several
ways and need to be taken in account in future work. It is for example possible that adding a
decoder might lead to a extra delay and desynchronization of the audio and video streams.
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Chapter 3
Experimental setup

In this chapter we will go through the environment we worked with. We will explain the
hardware setup and also mention any special software we where using.

3.1 Hardware
The hardware we used are two F41 network cameras. The F41 is a camera that can capture
up to 1080p resolution using a camera head that is mounted on a cable. For the interested
reader who want to read more about this camera we recommend this link: http://
www.axis.com/products/cam_f41/. During this thesis we used different setups.
The first one consist of the two cameras connected to a switch. A computer was also
plugged into the switch so we could access the cameras. The second setup consisted of
each camera being plugged into a different router. One computer was then plugged into
one of the routers so that we could access one camera locally and one remotely. We also
used a setup where only one camera was plugged into a router, the other one being directly
plugged into the Ethernet wall socket.

3.2 Software
Our base software is the current available software that runs on the AXIS cameras. This
helped us a lot as we did not need to implement things such as a own made rate controller.
This thesis was a continuation of an previous master thesis. Because of this we used
some of their solutions, such as how to get the RTCP statistics to our algorithms, making
improvements as necessary. Though as we also used two network cameras with a new
software base in it, we had to adapt and change a lot to be able to use those solutions. In
this thesis we programmed our algorithm in C, and used Git as ConfigurationManagement
tool. To build our software we used make tools and gcc . To measure the performance on
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the cameras we used a program called hog_client which was able to monitor the CPU and
RAM-memory performance. To retrieve network statistics we used RTCP packets and
printed the data to a file.

3.2.1 Rate Controller
Axis rate controller is a controller that is able to change both the quality of the picture and
the frame rate of a video stream to adapt to a specified bit rate. The user of the camera
can specify this target bit rate. If there are a lot of motion in the picture and thus more
information has to be sent over the stream, the rate controller responds appropriately by
lowering the frame rate or the quality of the frames sent.

There are some limitations however that we had to take in account. To cope with these
we had to modify the behavior of the rate controller to make it more useful in a video
conference purpose. The first problem encountered was that it is not possible to change
the desired bit rate without restarting the stream which would result in a conference call
running on the same quality for thewhole duration of the call. The second problemwas that
if the network couldn’t handle the specified bit rate, say the available bandwidth suddenly
is halved, frames would be lost as it would send to large or too many packets. On ideal
network links the rate controller works best if the bit rate doesn’t sink below 300 kbps and
not rise higher than 50 000 kbps (though even at max bit rate the bandwidth allocation
seldom rises above 6 000 kbps when using H.264).
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Chapter 4

GStreamer

In this chapter we will go through the basics of GStreamer which is the streaming li-
brary that is used on the AXIS network cameras. For the interested reader we recommend
the official GStreamer manual[5] for more detail and as an excellent starting manual to
GStreamer. If the reader is interested in coding examples there exist some in Appendix A.
The manual [5] is also recommended for this purpose as well.

4.1 Basics

To get a basic understanding on how GStreamer functions we will first explain the funda-
mentals. We will then dig deeper on each of the topics in separate sections.

A fully functional GStreamer stream consists of a number of elements. The main one
is the pipeline. The pipeline can be seen as a container of all the elements of the stream.
If you want a video stream you connect elements of the appropriate types. For example
if you have a H.264 file that you want to stream and save to a disk in another format, you
would first add an element that contains the stream source say a H.264 file source. Then
you may want to parse the stream and then you have to link the source to a parser. To
decode it you would then link it to a decoder that can translate the file format to the data
format that you want. Finally you have to link the decoded stream to a file element that
writes to a file. All these elements are linked together by something called pads and then
put into the pipeline where the stream can be set to playing. We will now go more deeper
into how the different parts work and explain more thoroughly how they are meant to be
used.
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4.2 Pads
Pads can be described as an element that provide communication to the world outside [5].
There exist two kinds of these called source pads and sink pads. An element will use a
source pad to output its data to for example another element. The sink pad works the oppo-
site, an element will use that to receive data. Pads may have different kind of availabilities,
always, sometimes and on request. They work just like they indicate, example on request
only exist if requested to do so.

Figure 4.1: A source pad and a sink pad. The arrow represent the
data flow between the two

4.3 GStreamer elements
GStreamer elements are objects that perform one specific function such as reading from a
file, decoding a signal or sampling a signal [5]. This lets you as a developer easily create
an object that represent one specific function. Various GStreamer elements already exist
and it is possible to make your own or import others. It is possible to change the state
of a GStreamer element. Say you want to pause an element, you simply change it state
to the pause state. It is important to note that an element will not do anything until you
have manually set its state to playing. GStreamer has a class GstElement representing an
element. This is what all decoders, samplers, input and output functionality are classified
as.

4.3.1 Source elements
Source elements are elements that have some form of source to generate data from [5].
We mentioned earlier that we wanted to stream a H.264 file. To read this file we would
typically use a source element which could read and generate data from it. It is important
to note that source elements does only generate data and does not accept any. It is with
other word not possible to have a source element at the end of a chain of elements.

4.3.2 Sink elements
Sink elements are the opposite of source elements. They do not generate but only accepts
data [5]. One example of this is an element that accepts data to output it to the standard
audio output, like the element pulsesink. It is used to send an audio stream to the default
audio output on your computer. Sink elements are used at the end of an element chain.
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4.3.3 Other types elements
There exist a range of other types of different elements such as filters, converters, codecs
and more [5]. They all work like a filter or in a filter like way. A filter have one sink pad
and one source pad. They will receive data on their sink pad, do something with it, and
then generate the modified data to its source sink. One example of this is a volume element
where it accepts audio data, filters the volume, and then output it again. An example of
elements that does not work quite as filters but in a filter like way is demuxers. Just as an
filter element they have one sink pad, but instead of one they have multiple source pads.

Figure 4.2: Three different kind of GStreamer elements, a source,
a filter and a sink element

4.3.4 Data flow
One might be confused to why a source element would have a source pad and not a sink
pad. Surly it would make more sense for it to have a sink pad to where it could "sink" its
data, as a source element only generate data and a sink elements only accepts data? The
other way around can be asked for a sink element.

The terms source and sink however is relative to the flow of the data [5]. In the per-
spective of pads, the flowwill always go from a source pad to a sink pad. In the perspective
of elements, the flow will always go from an source element to an sink element.

4.4 GStreamer bins
A bin is simply an container of GStreamer elements [5]. This is quite convenient as it
lets you treat a bunch of elements as one. You could for example change the state of all
elements in the bin at once to playing. This is due to a bin being a subclass of GStreamer
element. A top level bin is called pipeline and can be looked at as an bin which collects
several elements and bins and connects them from a source all the way to a sink element.

4.5 GStreamer pipeline
If you have many elements you may want to chain them together. As an example you may
have a file that a reader elements shall read, a filter elements to do something with it and
an output element that outputs it to the user. To chain these together a pipeline is created
[5]. The elements are then added and linked together in this pipeline. This lets data flow
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from the beginning of the pipeline to the end, going through all elements in it. A way to
look at a pipeline is as the name suggest as a pipeline. Each element will make up a pipe
in the pipeline and the data will go through all the different pipes in the direction from the
source pipe to the sink pipe. A pipeline can be controlled by setting it to different states
as it is a top level bin. If you want it to start you set its state to the playing state and will
subsequently set the state of all elements in it to play as well. Likewise if you want it to
pause you set it to the pause state. A pipeline will continue to run until data runs out or
you stop it manually.

Figure 4.3: An simple audio pipeline. The arrows represent the
data flow
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Chapter 5
Audio

One important part for a successful conference is audio. In this chapter we will discuss
how we implemented audio in the video conference application on the AXIS cameras and
the importance of synchronization.

5.1 G.711
The audio encoding used in this thesis is the G.711 and it is an old audio encoding standard
[4]. It was released as early as 1972 and we are using it as a first implementation of sound
in the conference system because of it simplicity. G.711 uses a sampling rate of 8 khz
and thus a stable bit rate of 64 kbps. There are several benefits of a simple protocol for us.
First it is easier to use so we can start to work on synchronization and bandwidth allocation
problems that arises with having two streams (one audio and one video) at the same time.
The second part is that as we mentioned before that the camera processing power is not
limitless and using a simple protocol which only runs on one bit rate and one sample rate
will keep the cpu load constant during a call.

Another benefit is that nearly all G.7XX protocols has been used in telecommunication
applications. Thereby we can be sure that the encoding protocol works well on the desired
application [3].

Another audio format that should be better to use is OPUS [7] (harder to implement
but a better codec overall). OPUS provides the user with a few features that comes in
handy when handling video conferences like setting the audio quality while the stream is
live and thus giving us more power when adjusting the rate controller by being able to alter
the sound too and not just the video. The audio quality could also be increased by a large
margin during conditions with very high bandwidth ranging from 6 to 510 kbps (nearly 8
times as many bits as G.711). Unfortunately there were no time to implement OPUS in
this thesis.
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5.2 Audio Synchronization
There exist many methods to handle audio synchronization. The most straight forward
approach is to us time stamps on both the audio and video content and then wait for the
audio and video segment with the same timestamp before showing the stream to the user.
This approach would work fine, but lost packets from the different streamsmust be handled
appropriately. The user would not want the stream to go down if either the audio or video
is missing.

There are algorithms that synchronizes the audio based on lip movement, however
these algorithms are very complex to implement and must often be told where the users
mouth is to be accurate.

Another method is called CAVLC and it uses a special encoding were the audio infor-
mation is encoded into the video segments. This will however lead to that if we loose a
packet we will loose both the audio and the video information [48]. In our implementation
the audio must be superior to the video, a conference can still continue without the video
feed but without the audio this is not possible.

5.3 Implementation
We choose to implement audio synchronization with help of GStreamer inherit synchro-
nization where timestamps are compared and then ordered accordingly to be played at the
same time. Since we already worked with GStreamer it was deemed easiest to try and see
how it worked before testing more advanced audio synchronization mechanisms. To be
able to the synchronization in GStreamer the audio and video needs to be transferred in
the same pipeline. This is easily done by just creating both the audio pipeline and the video
pipeline and linking the pipelines individually and then adding them to the same pipeline.
In GStreamer the audio has priority over the video when synchronization is concerned and
if a video packet is lost the audio will still be played as usual.
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Chapter 6
TCP congestion control algorithms

Asmentioned before, TCP congestion control is an important part in network communica-
tion. We will compare different TCP congestion algorithms to each other to choose which
one to implement. Finally we will discuss our implementation.

6.1 Motivation of Algorithms
The previous master thesis solution that uses TCP-Vegas have one big drawback. As [39]
and [43] mention TCP-vegas cannot compete well with an ordinary TCP congestion con-
trol algorithm such as TCP-Reno. What happen is that TCP-vegas will only get a small
portion of the link capacity as it will release the capacity to a greedy algorithm, such as
TCP-Reno. FAST TCP sound nice, but as [43] mention it is not fair and adapts to TCP-
Reno. Instead the bandwidth allocation between the two depends solely on which enters
first.

The big drawback on only loss based algorithms is the fact that they are not able to
utilize the full bandwidth potential it could actually use. Delay based does not have this
problem and generally work around full utilization. The problem with them however are
that they require accurate measurement of the queuing delay, and this might not always be
possible [43].

Hybrid algorithms that uses both loss and delay tends to try to solve these problems
by using the strengths of both. Some succeed better then others and as more and more
research is done better and better hybrid algorithms has been made. For these reasons we
believe that a hybrid algorithm is the best choice. Wewill thus implement two of those. We
will also implement a pure loss based one and compare the results to the hybrid algorithms.
An pure delay is already implemented.

TCP-Illinois and TCP-CUBIC-FIT are the leading hybrid algorithms that so far looks
to be the most promising for us. Plain CUBIC is our candidate for implementation when
it comes to loss based as it has been standard in Linux up to 3.2 where it was replaced by
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PRR [9]. We choose to not implement PRR because we wanted to see how much benefit a
loss based algorithm(CUBIC) gets when combined with a delay based modification(FIT).

6.2 TCP-Illinois
TCP-Illinois was introduced in 2007 as a new TCP congestion control algorithm using
both delay and loss as its signal [43]. It was designed to be fair with other already existing
algorithms and to take in account high speed networks. The algorithm uses an window
size which it expand if there is no congestion and decrease it if there is congestion. This
is done in a additive increment, multiplicative decrement manner. It has been noted to
outperform TCP-Vegas which is the current existing implementation.

6.2.1 The algorithm
In order to determine if it should increase or decrease the window size the algorithm looks
at packet loss. If we have a packet loss, it will decrease the window size. If instead an
ACK is received from a successfully transmitted packet, it will increase the window size.
This is the primary congestion signal it uses. The reason behind this is that measurements
of RTT can be noisy which could decrease the performance. By instead using the packet
loss as a primary control algorithm it gets more robust. Delay, however, is instead used as
a secondary control signal to determine how much to increase and decrease the window
size. Delay makes it possible to estimate if congestion is imminent by looking at the RTT.
The higher RTT the more likely it is congestion is occurring. The algorithmen uses several
parameters that all have standard settings in [43]. These include the following: αmin, βmin,
αmax, βmax,Wtresh, η1, η2, η3. The window size is defined asW . The first thing the algorithm
do is to determine average RTT Ta, maximum average RTT Tmax and minimum average
RTT Tmin over the last W acknowledgements. It will then calculate the maximum average
queuing delay dm = Tmax - Tmin and the current average queuing delay da = Ta - Tmin. It
then sets di = ηi ·dm. The algorithm proceeds to calculate two variables α and β according
to

α =


αmax da ≤ d1

k1

(k2 + da)
otherwise

(6.1)

β =


βmin da ≤ d2

k3 + k4da d2 < da < d3

βmax otherwise
(6.2)

where

k1 =
(dm − d1)αminαmax)

(αmax − αmin)
(6.3)

k2 =
(dm − d1)αmin

αmax − αmin
− d1 (6.4)

32



6.2 TCP-Illinois

k3 =
βmind3 − βmaxd2

d3 − d2
(6.5)

k4 =
βmax − βmin

d3 − d2
(6.6)

The ki values are then updated each time either Tmax or Tmin are changed so that these
are always up to date. The α and β are updated on each RTT. So far only the secondary
congestion signal has been used. Now the primary is used to determine how the windows
size W should changed. If we received an ACK, W is increased with α/W . If a packet loss
was detected due to triple ACK it is decreased with β ·W . Any time a packet is detected
by a timeout, α is set to be 1, β to 1/2 and W threshold to be W /2.

One important part to the algorithm is when alpha is set we do not allow it to be set to
αmax directly when da > d1. This is to make sure that the windows size is reduced properly
and not suddenly increased due to packet or measurements noise. In order to be set to
αmax, d1 needs to be smaller or equal to da for at least θ · RTT .

The behavior of the algorithm can be described as follows: When it first starts it will
look at the RTT to determine if there is a congestion imminent or not. This will determine
the the value of α and β which are used to change the size of the window. Due to how this
change is done and how α and β is calculated, the window size will drastically be reduced
if a package loss occur to ensure as good performance as possible. Directly after such a
package loss it will start a slow recovery which gradually increases until the maximum
windows size Wtresh is reached. This gradually increase is explained like this. In the be-
ginning we are unsure if the congestion is actually over or not. Thus we increase it slowly
to begin with just to be sure. This uncertainty can be for many reasons, such as a noise
connection, and is an important step. If we have not received a packet loss for a while we
assume the congestion is over and we increase the window size more sharply, as seen in
equation 6.1 where we might even set it to the maximum.

6.2.2 Implementation
When implementing the algorithm some changes had to be done with it to fit our applica-
tion. For one, we could not determine how a package loss was detected, only that it had
happened. Due to this reason the parameterW was always decreased according to if a loss
was detected with triple ACK’s. The timeout was not implemented as we had no way of
determine when one had occurred.

In the algorithm RTT interval and RTT is used, e.g. θ · RTT . However, our algorithm
does not look at every RTT but only once every 0.5 to 1 second due to limitations. We
instead used an increment counter and each time incrementing it with one, representing an
RTT interval. If this was not done the algorithm would simply only look at one RTT, take
it as the average and set both min and max to be that very same RTT making the algorithm
fail.

The window size was replaced by target bit rate as we used the rate controller. This
was used to determine the maximum bit in kbit by multiplying W with a thousand and
making sure the bit rate was never under 300 kbps and never larger then 10000 kbps. This
is due too as explained before how the rate controller works and that the standard Wtresh is
set to 10.
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6.3 TCP-CUBIC-FIT
TCP-CUBIC-FIT was first introduced in [36] where the authors combined the strengths
from the old Linux standard congestion control TCP-CUBIC with TCP-FIT [37]. To un-
derstand TCP-CUBIC-FIT we need to first understand both of these congestion control
algorithms.

6.3.1 TCP-CUBIC
TCP-CUBICwas the standard congestion control algorithm used in Linux between version
2.6.19 and 3.2 [16]. The algorithm is using a loss based approach and is designed to be
friendly with other TCP congestion control algorithms [36] [52]. It is designed around
a cubic function that when a loss occurs reduces the TCP window size and thereby also
reducing the throughput of the service that runs the TCP connection. As time progresses
and no further packet loss is detected the window size grows along the following function:

wcubic = C(t − I)3 + wmax, I = 3
√

(wmax · b)/C (6.7)

In the function wcubic is the new window size that is calculated every iteration. C and
b are constants that decide how sharp the algorithm shall be when it modifies the window
size. Finally t is the elapsed time since we last received a packet loss. This means that when
a packet loss occurs and t is reset to 0, wcubic = −wmax ·b+wmax <=> wcubic = wmax(1−b).
The functions behavior is that when t is small it grow rather fast and as it closes in to wmax
it flattens out. The value wmax was the window size where we last got a package loss and
therefore it is probably here that we have our network bottleneck. After we have passed
wmax the function continuous to grow at an increasing speed. After a while the function
will grow like a cubic function and hence will reach the maximum network speed faster as
time goes on. It is important to keep the networks from congesting but it is also important
that we don’t under-utilize available bandwidth, that is the reason for the function to be
more aggressive if we have been without a packet loss for a long time.

Figure 6.1: TCP-CUBIC growth curve after packet loss
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6.3.2 TCP-FIT
TCP-FIT is used as an accelerator for a loss based algorithm and uses a multiplier N to
increase or decrease the speed of the algorithm based on RTT [37].The value of N is thus
either increased, decreased or stays the same every time there has been a packet loss. N
depends on the average RTT window size ¯rtt and the minimal RTT observed rttmin were
the latter is a estimate of the propagation delay of the network. N is updated according to
the following:

Ni =


Ni−1 + 1 ,Q < α · w̄

Ni−1

Ni−1 ,Q = α · w̄
Ni−1

max1,Ni−1 − 1 ,Q > α · w̄
Ni−1

(6.8)

Where Q is:

Q = ( ¯rtt − rttmin)
w̄
¯rtt

(6.9)

Here w̄ is the average window size of the i-th updating period. We can see that w̄ is
on both sides of the expression and can thus be expressed in a function where Ni is only
dependent on ¯rtt, rttmin and a scaling factor α. Theoretically α should be the quota between
the number of packages that are queued into the buffer and the value of the congestion
window. However these values are hard to measure correctly and an approximation is
done where α = (rttmax − rttmin)/rttmax. This approximation has been proven to bee good
in according to both fairness to other TCP congestion control algorithms and throughput.

6.3.3 Combining TCP-CUBIC and TCP-FIT
TCP-CUBIC-FIT was first introduced in 2013 and is basically an implementation of TCP-
CUBIC that uses the N variable from TCP-FIT to throttle its speed. The concept is easy,
before a new congestion window is calculated the algorithm computes the value of N and
then multiply N with the calculated congestion window size. If we have a low RTT the
algorithm will reach full network utilization faster than it would have with only TCP-
CUBIC. The algorithm then becomes:

wcubic = N ·C(t − I)3 + wmax, I = 3
√

(wmax · b)/C (6.10)

Where N is defined like in TCP-FIT.

6.3.4 Implementation
In proper TCP-CUBIC-FIT we adjust the TCP window size when we get a congestion. In
our implementation that would only affect a minority of the packages that we send since
most of our data is transferred over UDP in RTP packets. The rate controller has been
modified to enable the congestion control algorithms to change the target bit rate by just
providing an integer. Since the CUBIC-FIT functions wcubic and wmax values depends on
each other and grow depending on the size of the other we can change them from being
window sizes to be target bit rates instead. The algorithm will then find the maximum bit
rate that do not causes packet loss. When packet loss occurs it reduce the bit rate by the
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specified coefficient. As mentioned before the rate controller works best in the interval
between 300 kbps and 50 000 kbps and this is not a thing that the algorithm takes into
account. An modification had to be made to ensure that even if wcubic drops bellow 300
kbps or pushes over 50 000 kbps the bit rate that is sent to the rate controller is never below
300 kbps or above 50 000 kbps. The final implementation does not exceed 20 000 kbps
since higher bit rates was not needed and the maximum jump in bit rate is much lower
compared to running on 50 000 kbps.
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Chapter 7
Evaluation

We will now define quality of service, quality of experience and how we did our measure-
ments. Finally we will present our result of said measurements.

7.1 QoS
Quality of service can mean many different thing for different people [25]. Thus we will
start by defining our definition of QoS and then proceed to discuss its importance.

7.1.1 Definition
The service in our case is the transfer and receiving of data between two cameras. We
define the quality as how well the transfer is done by looking at jitter, round trip time,
packet loss, synchronization, target bit rate and actual bit rate the camera sends out. These
will be measured and displayed in graphs.

7.1.2 QoS in video conferencing
The QoS is very important in video conferencing. RTT will have a great impact on the
stream. If then the RTT starts to get high a queue may form which may result in dropped
or delayed frames. Packet loss will also affect the quality as lots of packet loss may mean
lots of lost frames. If the jitter is very large we also may get delayed and discarded frames
as they might arrive to late. If some frames will take double the time to arrive compared
to others they may simply be needed to be dropped as otherwise a delay will occur. The
target bit rate of our algorithms will also have great impact and so will the actual bit rate.
If either is to low we get under utilization of the system. A too high bit rate may mean that
we get packet loss as we send out more than we actually can handle. Frame rate will also
have an impact in video conference. If is very low the video stream will not be smooth.
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As our algorithms is based on round trip time and packet loss these will have a even
greater impact on the quality, as they will directly determine the bit rate which each camera
will send with.

7.2 QoE
QoE differs from QoS in the way that QoS is the technical numbers on how good a service
is and QoE is the measurement of how well the user of the service perceives it. QoE
can have different technical properties and still have a high value. For example in a one
system we might not be that interested in a high frame rate as we instead want the images
to have high quality and the correct colors to be able to identify certain patterns in the
video stream. This may however not be true when we are having a video conference. Here
we may be able to accept a lower image quality as long as the frame rate is high and the
audio is in synchronization with the video.

7.2.1 QoE in video conferencing
One important quality we found early, and one that had high priority by AXIS, was that
the sound should not stutter. The reasoning behind this is that if the sound start to stutter, it
can get very hard and/or frustrating to hear what an other person is saying. This is a major
problem in a conference as hearing what the other part is saying and not get distracted
by bad sound is very important. On the contrary the video might not be so important
and may be even shut off completely as long as the sound works. While jests and such is
very important for communication, or the need to show anything, it is not as important as
audio in our case. Human are also more sensitive to audio distortions then distortions in
video [53]. Thus it might be okay to sacrifice the quality of the video for a good audio
quality. While we can sacrifice video to ensure audio, this may not always be the optimal
solution. One could for example always have the lowest quality of the video displayed no
matter what. This is not a good solution and thus we need to see how good quality we can
actually get with the video without compromising the audio. This is to ensure the users
the maximum quality of experience.

Another quality of experience to regard is delay. We found multiply sources that stated
that the delay should be less or equal to 150 ms [24] [54]. Otherwise the users will start
to notice. While you still may understand what is happening and what the other part is
saying, it get frustrating and distracts from the call [24]. Thus is it very important to keep
the delay to a minimum.

When having both sound and video the quality of synchronization is brought up. If
audio or video is ahead of the other, it will also distract the users from the content of the
call.

It is also important to look at the general quality of the video stream. Can you actually
hear the other user and see him/her?
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7.2.2 Measurment of QoE
According to Brunnström et al. [28] the best way of performing a QoE evaluation of an
application is by using tests on real users of the application. QoE is a subjective entity and
depends on unpredictable factors like users mood, expectation and context. To reduce the
effects of the unpredictable factors test must be done on a sufficiently large group of end
users with different backgrounds and expectations. This process is rather time consuming
an not something we could afford to do. It would however provided the best result. The
most common way to measure QoE is by subjective scoring [26].

There do exist objectivemethods/algorithms standards for testing both audio and video,
such as ITU P.862 and ITU-T J.144 [27]. However they are quite complex and would again
require to much time to implement.

7.3 Limiting bit rate
In the camera there exist a rate control already implemented. To evaluate the implementa-
tion we connected a computer and the camera to a Netgear GS110TP switch. This allowed
us to limit the bit rate to a max of 1024 kbps. First we used no limitation at all to see what
bit rate that was actually needed. This yielded us that when nothing happens or very little
happens the camera used less than 1024 kbps.

However when movement occurred it needed to use more than 1024 kbps. Heavy
movement came close to 7000 kbps. The rate control would not receive information about
the limiting of the switch, resulting in heavy lag where only one out of many frames was
shown. This indicates that when 3000 kbps needed, it will transfer frames with 3000 kbps,
disregarding the actual available bandwidth. Thus there is a need for a network congestion
algorithm.

7.4 Approach
To test the conference application we designed a few tests that will test different video
properties on different types of network. All the tests are run on 720x576 resolution and
audio is turned on. On all test we collect data from the stream and we focus on the data
mentioned in our QoS definition.

The three different networks we used is a local network on Axis, our own home net-
works and a link to a camera in the united states.

• AXIS: The Axis network consist of two network cameras connected to a switch.
The conference call are set up on the cameras via GStreamer launch commands. We
then alter the switch’s throughput by setting the maximum bit rate to 1 Mbps and
then back to 100 Mbps. This is alternated in an interval of forty seconds on all tests
with the exception of the one hour long test and video conference test. The video
conference test will have an interval of one minute instead whiles the hour one will
at all time run at 100 Mbps. The reasoning for altering the switch is to check if
everything is working as it should in extreme changes of available bandwidth. Is the
algorithm adapting? Do we still get audio and video? And so on.
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• Lund The Lund network is the network between the two authors. Since the two
authors both live in the same neighborhood the distance is small but the traffic from
the video conference will compete with other data traffic since it’s no longer a LAN.

• USA This link goes from the home of one author in Lund to an Axis office in the
united states. The link is full of traffic and the distance is large. This test is mainly
to see how delay impacts the streams and if the stream stays synchronized over long
distances. The same tests are run at two different time periods, the first is during
peak hours (between 20:00 and 0:00 local Boston time) and the second is done on
low traffic hours (between 2:00 and 6:00 local Boston time).

On each network we want to verify that a few things work accordingly and thus the
following tests was designed.

• The first test is a 3 minute test where the camera is faced to a wall and thus there is
no motion on the picture. This test we call the no movement test and is supposed to
be a baseline to see how the stream works with a very low load.

• The second test is called the motion test and it has also a duration of 3 minutes.
Here we put the camera in front of a computer screen playing a video clip. The
video clip chosen is a music video. This is because music videos are known to have
a lot of motion in them. Can our application handle a music video it should be able
to handle a video conference as well as generally a video conference does not have
as much movement.

• The third test is called the alternating motion test and is the final 3 minute test. In
this test we play a media clip which is totally still for 30 seconds and then has a lot
of motion for 30 seconds. The clip is then replayed 3 times. This test is designed to
test how well the application can handle big jumps in motion.

• The hour long test is the name of the fourth test. It is basically the third test run for
an hour to check the stability of the application. It is also used to verify how the
synchronization between video and audio fairs after an hour.

• The fifth test is the video conference test. In this test we use both cameras and
connects an audio and video stream from each camera to the other. This test will
verify if our application can handle a full conference call. The test is run for 5
minutes.

7.5 Resulting measurements
When we did our measurements we ended up with a lot of data. In this section we
would like to show the most interesting graphs from tests that addresses the things that
we will bring up in our discussion. Missing graphs will be available at the following web-
site for the interested reader: https://drive.google.com/folderview?id=
0BzWy6HQ8so-Ja1hfV0ZWLXlPalE&usp=sharing.
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7.5 Resulting measurements

7.5.1 AXIS
In the Axis tests we note a change in the switch by a black square. The switch always start
at full capacity. At the first black square it is throttled to it’s minimum capacity and at the
second it is released to its full capacity and it then alternates. A red circle marks when
motion start and ends in the same way as the black square, starting with no motion and
going to full motion at the first red circle.

Target bitrate

Figure 7.1: Target bit rate during the 3 min movement test at
AXIS, We get a lot of packet loss here but we can see that the
algorithms follow the expected behavior after wards

Figure 7.2: Target bit rate during the 3 min alternating test at
AXIS.
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Packet loss

Figure 7.3: Movement packet loss. It is easy to see that the most
of the packet loss occur directly after we limit the switch.

Figure 7.4: Alternating movement packet loss. Note that the we
receive no packet loss when movement starts but after a few sec-
onds with movement and limiting of the switch we got a lot of lost
packets.
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Figure 7.5: Zoomed in alternating packet loss. If we look close
we can see that we get a lot of package loss when we have no
movement at all, more about this in the discussion.

Figure 7.6: Packet loss of the first 3 minutes of the 60 minutes
alternating test.
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RTT

Figure 7.7: The round trip time increases a lot when we limit
the switch wost likely strengthening our assumption that hybrid
algorithms should perform better.

Jitter

Figure 7.8: Jitter also increase when the switch is limited.
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Actual bitrate

Figure 7.9: Here we can see that the actual bitrate is allowed to
be lower than the target bitrate if the rate controller sees that there
are little motion.

Frame rate

Figure 7.10: Frame rate of the 3 min movement test.
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Figure 7.11: Frame rate for the first 3 minutes of the 60 min al-
ternating test.

7.5.2 AXIS-PLL
Trying to improve the QoE we added a packet loss limit(PLL). If the packet loss was
beneath a certain threshold, in this case 10, the algorithms would continue as if nothing
happens. First when the packet loss was sufficiently large the algorithms would adapt.
More about this in the discussion. The changes of movement and the switch are displayed
the same way as previously.

Target bitrate

Figure 7.12: Target bitrate after introduction of PLL. The algo-
rithms run smoother than without the PLL.
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Figure 7.13: Target bit rate during the 3 min alternating test.

Figure 7.14: Target bit rate by TCP-Illinois during the 3 min alter-
nating test. The interval the algorithm is running has been doubled
to one second. We can see that Illinois is acting more stable than
the previous graph.
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7.5.3 Lund
Since the no motion test and the one hour test showed only little new compared to the
other tests at AXIS and the ones to the USA, we only ran the motion, alternating and
the video conference test between the apartments in Lund. In this test we could not limit
the throughput of the switch but instead it should be the competing traffic that causes the
packet loss. As in previous tests the first red dot represent a start in motion and the second
a stop of motion and thereafter it alternates in said pattern.

Target bit rate

Figure 7.15: Target bit rate during the 3 min alternating test Lund.

48



7.5 Resulting measurements

Packet loss

Figure 7.16: Packet loss during alternating movement in Lund.
We can see that packet loss occur in conjunction with movement.
The peaks of packet loss in the end of the graph is from when
we shut down the stream during the tests(it expects that it should
receive a lot of packages but since we interrupt the stream they
never arrive).

RTT

Figure 7.17: RTT during the 3 min alternating test Lund
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Jitter

Figure 7.18: Jitter during the 3 min alternating test Lund

Actual bit rate

Figure 7.19: Actual bit rate sent from the server camera during
the 3 min alternating test Lund
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7.5.4 USA peak hours
The same tests as in Lund was run to the office in Boston. The tests were as mentioned
run during peak traffic hours in USA.

Target bit rate

Figure 7.20: Target bit rate during the movement test to the USA

Figure 7.21: Target bit rate during the alternating test to the USA
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Figure 7.22: Target bit rate during the video conference test to the
USA

Packet loss

Figure 7.23: Packet loss during the movement test to USA. We
can see very small amount of packet loss during the whole test.
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Figure 7.24: Packet loss during the alternating test to USA.

Figure 7.25: Packet loss over the video conference test to USA.
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RTT

Figure 7.26: RTT during the movement test to USA

Figure 7.27: RTT during the alternating test to USA
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Figure 7.28: RTT during the video conference test to USA.

Jitter

Figure 7.29: Jitter during the movement test to USA
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Figure 7.30: Jitter during the alternating test to USA

7.5.5 USA low hours
We chose to do only the alternating and movement test on the low hours test since those
are the tests that has been most interesting. Video conference worked okay during high
peak hours. We had already seen that synchronization was no problem with higher traffic
so the 60 minutes test was deemed unnecessary as well.

Target bit rate

Figure 7.31: Target bit rate during the movement test to the USA
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Figure 7.32: Target bit rate during the alternating test to the USA

Packet loss

Figure 7.33: Packet loss during the movement test to USA. We
can see that we got a lot less packet loss during low peak hours.
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Figure 7.34: Packet loss during the alternating test to USA. Here
we got even fewer packets lost than the movement test during low
peak hours.

RTT

Figure 7.35: RTT during the movement test to USA
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Figure 7.36: RTT during the alternating test to USA

Jitter

Figure 7.37: Jitter during the movement test to USA
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Figure 7.38: Jitter during the alternating test to USA

7.6 Packet loss
A common way of measuring packet loss is by percent. We have here summarized how
much packet loss we got.

7.6.1 AXIS
At AXIS we reduced the bandwidth a lot on the switch for almost half of the playback
time. Therefore the packet loss on these tests are very high.

3 min alternating
Cubic 5.5%
Cubic-fit 3.9%
Illinois 3.1%

3 min movement
Cubic 8.1%
Cubic-fit 6.2%
Illinois 5.7%

60 min alternating
Illinois ran a version of the algorithm that updates twice as fast as the previous two tests.

Cubic 1.1%
Cubic-fit 0.97%
Illinois 0.34%
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7.6.2 AXIS-PLL
As mention we added a PLL to try to improve the QoE. This is the resulting packet loss
rate. On almost all accounts the packet loss increased, but when we did our QoE tests the
video clips with the PLL implemented got a higher score.

3 min alternating
Cubic 11.6%
Cubic-Fit 8.1%
Illinois 10.8%
Illinois one sek interval 7.4%

3 min movement
Cubic 13.6%
Cubic-fit 6.3%
Illinois 5.3%

7.6.3 Lund
In the tests in Lund between the two apartments we got no or close to no packet loss at
all on both the video conference test and the constant movement test. Thus we did not
show the percentages on those. The only time we got significant packet loss was on the
alternating test.

Lund alternating - PLL
Cubic 0.80%
Cubic-fit 1.0%
Illinois 0.5 interval 0.95%

7.6.4 USA peak hours
During peak hours the strain on the network is much higher than on the low peak hours
and thus more packet loss occur. However all our tests had a packet loss of around one
percent, which was the threshold for video conferencing, and therefor passes our packet
loss requirement.

3 min alternating
Cubic 1.1%
Cubic-fit 0.82%
Illinois 1.1%
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3 min movement

Cubic 0.80%
Cubic-fit 1.1%
Illinois 0.97%

5 min video conference

Cubic 1.1%
Illinois 0.61%

The vast majority of the packet loss Illinois experienced happened during the first second.
Ignoring these yields us:

Illinois 0.01%

7.6.5 USA low peak hours
Since the video conference test had shown adequate performance during high traffic hours,
this test was deemed unnecessary during the low peak hours.

3 min alternating

Cubic 0.06%
Cubic-fit 0.038%
Illinois 0.012%

3 min movement

Cubic 0.20%
Cubic-fit 0.16%
Illinois 0.19%

7.7 Hardware Performance
To make sure that our algorithms did not take up to much processor power and memory
we made measurements during our tests. We first measured how much memory and cpu
the camera used when connecting one audio and one video stream to another camera. We
measured both the server and client side to see how much performance the different roles
took respectively. The next performance measurement was conducted on two cameras
running streams to each other to see how demanding it is for the camera to both receive
and send a live stream. Finally we ran the stream for an hour to make sure that everything
was stable.
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7.8 Evaluation process
The evaluation done from the perspective of QoS was done by simply looking at the statis-
tics we had available. We could see as an example how much packet loss we had and
where, letting us draw important conclusions.

From aQoE perspective we simply watched the videos we recorded and analyzed them.
We both have used Skype before as a video conference tool and based on our experiences
we could conclude what we though was okay or not. In order to more easily compare the
result we also started all the videos from the same test at the same time to better see the
differences.
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Chapter 8
Discussion

Here we will discuss our results and our findings. We will also reflect on the results we
got from our QoE evaluation. The video conferencing implementation was not as easy as
we first thought, there were a lot of parameters that we assumed worked as intended but
in fact did not which has affected the results in different ways. These will be addressed as
well.

8.1 Local network tests
The first test was the no movement test. The objective of this test was to let us confirm that
the algorithm was running and that we could get the statistics we wanted. As this worked
fine we quickly moved on to the other tests.

What we noticed quite quickly when looking at the statistics and the videos from all lo-
cal tests, except no movement and video conference, was that we quite often got seemingly
random packet losses. The network in it’s self should be perfect and we expected no packet
loss at all unless we limited the switch. There was no competing traffic on the switch and
it was set at 100 mbps. This can be observed in 7.5. As the algorithms is supposed to
decrease the QP value of the images by reducing the target bit rate when receiving packet
loss, the target bit rate therefore sort of a fluctuating pattern. The target bit rate would
go down simply to then rise quickly only to go down again. This behavior decreased the
QoE of the videos which we will discuss later. Unfortunately we never discovered why
the packet loss occurred when the network was at full speed. Connecting both cameras to
a computer with two network cards and routing the traffic through removed this problem.
Changing switch to an other type did not work. Running the stream to a computer through
the switch instead of camera to camera worked flawlessly. In the end we needed to move
on due to time constraints but our theory is that it might have something to do with how
the cameras communicate an sets up a connection with the switch. Since the cameras can
stream video to a computer without any problems we think that the problem might be sit-
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uated at the communication through the switch. Another theory is that it is the switch in
itself that we used since the packet loss nearly disappeared when we did the tests in Lund.

In order to work around this issue we simply put a limit that 10 packet losses needed
to occur before a change of target bit rate was performed. The limit of 10 packets was
concluded by looking at the statistics. These random packet losses was almost never larger
than 10 packets at a time. This limit had the effect of greatly decreasing the fluctuating
patterns and improved the QoE according to the authors. Two other master thesis workers
was also asked to see if they came to the same conclusion. The video was displayed to
them without explaining what the difference was, just asking them which one they though
had better quality. Both came to the same conclusion as the authors.

Interesting to note though is that these random packet loss reassemble the character-
istics of a wireless network. In wireless networks random packet loss may occur, but
hopefully not as often as we experienced.

8.1.1 Movement
During the movement test when comparing the algorithms reaction time we could see
that Cubic-Fit and Illinois most of the time performed better than Cubic. What we could
observe was that when packet loss occurred due to reducing the bandwidth of the switch
and combining that with high movement, both Cubic-Fit and Illinois reduced the target bit
rate faster than Cubic. They take in account the RTT, and as seen in 7.7, the RTT increases
a lot when a limitation of the switch is done. An increase in RTT is often a clear signal
that a congestion is imminent and soon to happen. This causes Cubic-Fit and Illinois to
respond aggressively. Cubic however do not look at the round trip time and simply see that
packet loss occurs. It will try to slowly decrease its target bit rate to make sure it does not
decrease to fast. In our case we heavily decreases the bandwidth available on the network
which in turn more negatively impact Cubic in regards to its reaction time. This can be
observed in graph 7.1 at around the 50 or 130 second marks. Note that the time it takes
for Cubic to react compared to the others is several seconds.

A solution where instead of prioritizing packet loss as the trigger mechanism for the
algorithms, we could use a delay based algorithm where we look at the RTT as the first
parameter. Such a solution might have a better reaction time since we can see in the graphs
7.7 and 7.3 the RTT increases before we get packet loss when limiting the switch. We can
with other words react even before we have gotten packet loss. But as discussed before,
such as solution have problems too. In our case we can even add a large problem, namely
the RTT threshold. Since a call from another continent has a much higher RTT than a local
call this threshold would have to be manually changed depending on the distance between
the two cameras. Alternatively use, as in our implementation, a ratio of the average RTT
and the current RTT.

If the round RTT is low we probably still can send with the previous bandwidth as
there probably is no congestion. Thus the algorithms tell the rate controller to rise quickly
again. This is generally a good thing as it lets us fully utilize the available bandwidth. This
is something both Illinois and Cubic-fit does but not something regular Cubic do. This can
be observed in 7.1 around the 10 second mark, where the RTT is low. Here both Cubic-Fit
and Illinois increases its target bit rate faster than Cubic will ever do.

In regards to the packet loss rate, it is clear that both Illinois and Cubic-Fit are much
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better than Cubic. In cases the packet loss rate is more than half than that of Cubic. From a
QoS perspective it is clear that Illinois and Cubic-Fit outperforms Cubic. As [10] mention,
1% loss rate is a recommended maximum amount of loss a video conference shall experi-
ence. None of the algorithm passes this. However in this test there is an unusually amount
of movement. We also heavily decreases the available bandwidth to really put the strain on
the algorithms and the random packet loss is still there. All these factors will cause extra
packet loss, in a situations that’s perhaps not likely in a real video conference, making this
acceptable according to the authors. It is at the critical points, such as limiting the switch
with high movement, where this is noticeable and we get heavy lag. This can observed
in 7.3. Otherwise such as when the switch has been limited for a while and we still have
movement the quality appears to be okay as the algorithms have had time to adapt and we
get fewer packet loss. Note that we still get packet loss in the middle of movement intervals
from Illinois and Cubic-Fit. This is because these will probe with higher and higher bit
rate faster than cubic due to low round trip time. As mentioned, we have high round trip
when we have packet loss, otherwise we have a low round trip. Cubic on the other hand
probes more slowly and only get packet loss at the end of the movement interval.

Looking at the frame rate the server camera is sending out Cubic generally at a higher
frame rate. This is seen in all test and is not exclusive to the movement test. It is however
easily seen here 7.10. This suggest that Cubic would be better as it has higher average FPS,
however this is a bit misleading and is not actually the case. The rate control will lower
the FPS if it sees that it can not withhold the current target bit rate with only changing
the quality of the frames. As Cubic react more slowly with changing its bit rate it will
send with higher FPS, but this is actually more than what the current network can handle,
causing more packets to be lost. This results in Cubic having the lowest frame rate when
looking at the stream on the client side. Both Illinois and Cubic-Fit will send with a lower
frame rate, which is more adapted to the current network conditions and thus all or most
of the frames will be received at the client side resulting in a better QoE.

The differences between Illinois and Cubic-Fit was hard to see from aQoE perspective.
The videos with the algorithm looked more or less the same quality wise. It is hard to draw
any other conclusion than that they perform about the same by simply looking at the videos
one at a time. Playing all at once made it clear that Illinois and Cubic-fit performed a bit
better than Cubic, but not by as much as we though. We could see more lag with Cubic
but only because we knew what to look for. Cubic is clearly not as good, but we are not
sure if an ordinary user actually would be able to notice the difference.

8.1.2 Alternating
In the alternating test we discovered an interesting thing, the stream would freeze during
the parts of the clips where there were no motion and run smoothly on the parts where
there were a lot of motion. Graph 7.2 show that the target bit rate fluctuate a lot and stays
low for Cubic-Fit and Illinois during non movement.

One would think that the likelihood of a packet loss would be higher when we have a
higher bit rate caused by a lot of movement since it put more strain on the network than
when we have a low bit rate. The author of the rate controller was contacted and the issue
was discussed. He though it might be because of a setting in the rate controller.

The rate controller used the previous frames as input to calculate if the next frame
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should be dropped to ensure the timings. As the quality goes from very high to very low
the rate controller can see that the last few frames consists of a lot of data and when it looks
at the current rate, it sees that there is no more room for frames with the currently set target
bit rate and thus must throw the frame. In a surveillance system it might be important that
the frames are not lost and therefore we have this setting. When there is no guarantee that
all the images will be received at the client it is better to drop a few images to make sure
that at least some images are received. There is no problem to experience a few moments
of lag, the important thing in this scenario is to be able to identify a perpetrator and this is
possible even if the video is not fluent. However in our case you would prefer a best effort
approach where if a packet is lost we just carry on.

When the movement started and the switch network speed was reduced there were a
period of lag where the algorithms adjusted the bit rate accordingly to the new network
conditions. This delaywas 2-3 seconds shorter on Cubic-fit and Illinois than regular Cubic.
Cubic-fit was about 1 second faster than Illinois. The Illinois algorithms parameters where
tuned to have a shorter update interval resulting in Illinois claiming the fastest adjustment
time of 5 seconds, shortly followed by Cubic-fit at 6 seconds and finally Cubic at 9. Here
we could clearly see that both Cubic-Fit and Illinois outperformed Cubic, reacting a lot
faster.

As mentioned in a previous chapter we introduced a packet loss limit to counteract the
lag we had in the part where there were no motion. The PLL did actually reduced the lag
substantially on these parts of the recording hinting that it is a combination of the settings
in the rate controller and the random packet loss that creates the lag phenomenon.

An interesting note is that we actually got a higher packet loss rate with introduction
of the packet loss limit in this test. This is most likely due to that we do not adjust the bit
rate for every time we get a packet loss, increasing the bit rate we send with. Without the
limit we will instead adjust the target bit rate for every packet loss, causing it to go down
more often and thus the camera will send with a lower bit rate. This will cause smaller
packets to be sent, increasing the chance for them to not be lost. This would imply that
using the limit is actually worse. But from a QoE perspective the videos got a lot better
with the PLL, even though we got more packet loss. As mention in [2] a constant bit rate
is better than constantly changing it. As explained we got the fluctuating pattern when
not having the packet loss limit. This goes against what we just said, to keep a constant
bit rate. By constantly changing the bit rate it gets confusing for a user as the quality
keeps changing. In our case the high rate of changes caused freezes, even when there was
little movement. The algorithm does what they are supposed to do, optimize the use of
the bandwidth, causing less packet loss. But as seen this is not always the best cause for
the user. An important lesson to learn is that even though QoS may say that a specific
algorithm is best, this may not be true from a QoE perspective. This also highlight the
importance of testing from a QoE perspective. In this case the video clips with the PLL
fix and the one without the fix both have lag in them so the conclusion that one can make,
is that if we have a lagging stream, we can accept more freezes if the quality of the images
we get is better than the opposite.

There did however exist points from a QoE perspective that was better without the
packet loss limit. When we limited the switch the use of the packet loss limit would cause
the video to freeze for about 2-3 seconds longer than without. As the bit rate was generally
higher it needed to go from a higher quality than without the packet loss limit to a lower.
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This took a little bit extra time.
Looking at the statistics when using the packet loss limit we can see that Illinois have

more of a squared peaks pattern than both Cubic and Cubic-Fit regarding the target bit rate,
seen in 7.13. This is generally not good as for the same reason as the fluctuation pattern.
The reason for that behavior is the parameter theta in Illinois which currently is set to 7.
This roughly means, as the algorithm ran about every 0.5 seconds, that if the RTT is okay
for around 3.5 seconds it is okay to go to the maximum target bit rate. But at maximum
it will soon experience a new packet loss, going back down. These around 3.5 second
intervals can easily be seen in the graph where Illinois slowly pokes and then suddenly
uses its maximum target bit rate. Increasing this interval will increase the time it probes
and the time we need to have good RTT before going to the maximum allowed target bit
rate. This will likely lead to better result in these situations. On the flip side cases where
we want to go to the maximum fast we will instead probe for longer. This may cause under
utilization of the bandwidth. This parameter is with other words quite important and may
need to optimized depending on the situation at hand. Due to this fluctuation Illinois have
a lot more jitter and packet loss than Cubic-Fit. Cubic-Fit is in this case a clear number
one. From a QoS perspective it seams that CUBIC ones again will perform worse with
Cubic-Fit taking the top spot. It is worth noting that the difference was not as large as the
movement test. CUBIC had for example no longer more than a double loss rate compared
to the other two.

A test was done to see what implication would be of changing how often Illinois was
running. We slowed down the interval the algorithm ran to once every seconds, effectively
having the same implication as changing the theta to the double. This instead gave a packet
loss rate of 7.4%, beating Cubic-Fit and making it overall perform better. The target bit
rate is now slower, as can be seen in graph 7.14. As we can see, the parameters can have
a drastic change on the performance of an algorithm.

Generally we could see that when we had movement it works good, as with the move-
ment test. With alternating however it works worse at the switches in movement. The tests
sudden shifts in bit rate causes problems for the rate controller. This can also be noticed,
as explain, with the use of the PLL.

8.1.3 One Hour
In this test we did not limit the switch since we had already done this in the alternating
three minutes test. As seen, this gave us a lot lower packet loss rates. Not limiting the
switch caused more packets to be able to arrive safely.

It is important to note that the algorithm reacted to the random packet losses during
this test as this was before the packet loss limit was introduced. This is because the 60 min
tests was done primarily to see if we still had synchronization after a long period of time.
We also wanted to see if it was possible to run the algorithms for at least an hour to make
sure that we had a stable system.

As before we could note that we had freezes during no movement and no freezes when
we had movement. It was especially visible due to not changing the switch. As we do not
do this, a closer look at the packet loss graph 7.6 show this phenomenon clearly. Packet
loss still occurs though as seen, still causing lag as we have a fluctuation pattern. These
random packet losses did however actually served this purpose well as we could still see
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the algorithm adapting to them even after 60 minutes, which was one concern of this test.
An interesting note is that during the alternating test two clips was repeated. This can
also be observed as one had clearly more movement, causing more packet loss. Note that
Illinois is a couple of seconds delayed in the graph. It is very important to mention that
Illinois do not get packet loss during the clip with lower movement. This was due to the
computer screens angle being slightly different. The test was not repeated as it did not
affect the main concern of the 60 minutes test.

The FPS is reduced in these interval of packet loss for Cubic-Fit and Illinois, seen in
graph 7.11. The rate controller will try to adjust the FPS to better accommodate the target
bit rate. Cubic-fit does not appear to have the same drop, nor Illinois. Illinois reason is as
explained, due to the change of angle. Cubic as before does not react as fast as the other,
causing it to more or less never go down to its minimum. The movement in the frames
can be handled by the bit rate Cubic uses, but not for example when Cubic-Fit uses its
minimum, so it need to lowers its FPS.

More importantly we could conclude that GStreamer even after 60 minutes was able
to handle synchronization just fine. There was no issue there at all. The packet loss rates
for both Cubic-Fit and Illinois passes the 1% requirement, but cubic does not. As we had a
low RTT when we had packet loss, we did not limit the switch, both Cubic-Fit and Illinois
was able to react faster then Cubic, causing less losses.

From a QoE perspective we conclude that Illinois was a lot better than Cubic and
Cubic-Fit. This comes as no surprise as Illinois had less packet loss and a lot higher target
bit rate due to the angle, subsequently also causing the camera to send out with a higher
bit rate. More importantly the client was able to receive all packets even with the high bit
rate. Between Cubic and Cubic-Fit there was not to much difference, the experience was
pretty much the same. We could however conclude that in the switches from movement
and no movement, Cubic-Fit tended to react a bit faster, causing less lag in these switches.
The difference is however small, around 1-2 seconds. The overall experience will probably
not be affected to much from this difference if there’s not a lot of switches. In that case
Cubic-Fit is probably the better algorithm of the two.

We did redo, not the whole test, but a part of it to see what implication the packet loss
limit would have. With this all algorithms pretty much held the max target bit rate all the
time. The user experience was a lot better for all the algorithms. Instead of low quality
due to the lower target bit rate and lags that happened as we constantly changed the target
bit rate due to packet loss, we got a smooth video with higher quality and a lot less lag.

8.1.4 Video conference
During the video conference test we pretty much had no packet loss at all and the videos
from a QoE perspective was very good. In fact it looked a lot like the no movement test in
terms of quality. What we noticed was that the actual bit rate the camera was sending out
was almost always lower than the lowest bit rate we could set on the switch, seen in 7.9.
This meant that even when we limited the switch there was no packet loss. Apparently
the movement in a video conference is sufficiently low to not affect the bit rate as much.
Running H.264 in conjunction with low movement reduces the bit rate a lot. The P-frames
contains nearly no data at all and therefore the only data that needs to be transmitted is
basically an I-frame once in a while. As we can see in graph 7.9 the bit rate on some places
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were almost as low as the bit rate for the sound which we previously stated already was
quite low. During this test we no longer experienced random packet loss. We are uncertain
as to why this issue no longer occurred. One reason could be that the rate controller settings
doesn’t have any impact here anymore because we always have sufficient movement to not
cause it to appear. As seen in the alternating and 60 min test, when movement occurs
these settings causes no issue. Another factor could be that the movement is not very
high, and as mention it causes a bit rate that is lower than the limit of the switch. Perhaps
the sufficiently high movement and the sufficiently low bit rate in combination may explain
why these random packet losses have disappeared.

8.1.5 Jitter
Looking at jitter in all the local tests we could see that when jitter occurred, due to for
example limiting of the switch, Cubic had a longer period of jitter than the other two
algorithms. However the other two had higher jitter peaks. This can be seen in graph 7.8.
As Cubic does not react as fast as the other two to sudden large changes of bandwidth
we get prolonged jitter periods. The reason for the big spike for the other two algorithms
may be to the aggressive reduction of the bit rate. As seen the target bit rate goes to its
minimum a lot faster than Cubic and this sudden large change requires the rate controller
to adjust itself heavily. This may cause it to send frames a little bit later, causing the extra
jitter peak. From a QoE perspective it is hard to see what is actually the better choice due
to other variables such as target bit rate and round trip time. But we can conclude that
when we have longer jitter periods the quality of the video is also worse. This indicate that
it is okay to have some jitter peaks if it reduces the overall jitter periods.

8.2 Lund tests
In order to get some extra traffic in these tests we opened up a phone call via Skype to
each other, used Spotify, ran two YouTube clips, a Netflix film and used Grooveshark at
the same time. Even with this extra traffic every test except the alternating worked more
or less perfectly. We had close to no packet loss and the video and audio was of very good
quality. As the apartments are not to far from each other it was an expected result. We
did however, also as expected, see an increase in jitter and round trip time compared to
the local tests. This had however no significant impact on the QoE as they still were very
small. What is interesting to note is that the random packet loss that occurred with the
switch did no longer occur, indicating it is something with the switch. The alternating test
showed quite bad quality when movement happened. To get some extra movement in the
test we waved a hand in front of the camera as the other tests ran close to flawlessly. This
caused a lot of video freezes, but no loss of audio. When looking at the statistics we could
see that we got a lot of package losses but not very often in bundles above 10, seen in graph
7.16. As mentioned before we put a limit when the algorithms should actually adjust the
target bit rate. In this case it may be so that we actually should remove or decrease this limit
as we we probably want to adjust even when we have under 10 packet losses. With lower
target bit rate it may have been so that the freezes disappeared as we would also send with a
lower bit rate, making it more likely for the packets to not be lost. This is some fine tuning
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that needs to be done and may be different depending if we are using the switch at AXIS
or other network equipment. We could observe that Illinois performed better than Cubic
and Cubic-Fit in the alternating test. This may be to the fact that Illinois starts at a lower
target bit rate and as in this case the RTT is higher, more slowly reaches the maximum
at the beginning. This can be seen in graph 7.15. Generally Cubic and Cubic-Fit work
with a higher target bit rate as their implementation doubles the maximum compared to
Illinois. When packet loss occurs above 10 they will almost never reduce the target bit
rate under Illinois maximum, effectively running with max quality on the stream. With
the removal of the packet loss limit both Cubic and Cubic-Fit will most likely use bit rates
under Illinois maximum a lot more often, resulting in a better QoE.

In graph 7.19 we can clearly see how much impact motion or no motion has on the
rate controller without adjusting the target bit rate. It becomes quite clear that the target
bit rate is just a target and below that rate the rate controller has the freedom to do as it
seems fit.

Interestingly all the algorithms pass the 1% requirements. Even if this was achieved
the QoE was perceived as bad in the alternating test. A theory we have is that it might
be I-frames that are lost instead of P-frames. As they are key frames and contain more
information it will cause more lag, as explained in 2.1.3. This would explain why we got
such heavy lag but so little packet loss. Looking at these tests it appears that Illinois is
the better choice. We later did a test were we removed the PLL and we cold see that the
QoE improved a lot. So much that all algorithm was hard do distinguish from each other
and was of good quality. However this test was done without a second router, the second
camera was directly plugged into the wall socket. The assumption we made in the local
test chapter that it might be the switch’s fault that we got seemingly random packet losses
is thereby again strengthen.

Going back to the use of a delay based algorithm, we can see in 7.16 and 7.17 why this
would not always work so well. We can see if we look at the round trip time that before
movement even start we suddenly get a high round trip spike. This might be for example
due to round trip noise. This would cause a delay based solution to react, but as seen in the
packet loss graph we actually never get any packet loss at this point. Likewise we can see
that we have a lot more packet loss than we have round trip time peaks, meaning a delay
based might not react as often as we would like to.

8.3 USA tests
An interesting problem we had was that when we wanted to fetch a stream from here in
Lund to USA, we got a GStreamer error concluding that we got data before we actually
got a play request, causing no video and audio to actually be saved at all. When we instead
delayed the camera by making it wait 2 seconds we instead encountered the problem a lot
less. Decreasing this delay to 1 seconds caused the problem to occur more often. This
may be due to a race condition where a play request is sent via TCP and some data via
another TCP connection. As there is a large distance that must be traveled a packet may
be delayed or lost on the way. This may cause the data to reach the camera in USA faster
then the play request, especially if the play request is lost and need to be resent.

Another problem that we encountered when setting up a stream to or from USA was
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that UDP traffic was blocked. This caused GStreamer to change to TCP transmission
instead. Our algorithms currently onlyworks onUDP based transmission and thusmakes it
impossible for us to evaluate how our algorithms work during a transatlantic call. We tried
several things to work around theUDP block. These included things such as limitingwhich
ports GStreamer was using and making sure these were not blocked by the router, making
sure that the port forwarding was correct, giving the UDP more time before switching to
TCP. None of this solved the issue. We encounter a similar problem already when we did
the Lund tests. When we did our tests there we had an old router which blocked UDP
traffic in one direction. Changing the router to a newer one solved this problem. So our
final solution was to try to have the router in the USA changed. This was achieved and
UDP was now forwarded correctly in both directions.

This leads us to conclude that a video conference application should implement a solu-
tion for both TCP and UDP. As some routers don’t seam to want to let UDP traffic through
but are okay with TCP, making an application without support of TCP may alienate a
lot of users. This would also explains why Skype has an implementation that uses both
protocols.

The low peak test was done when the internet traffic was at its lowest peak. This was
done during 10-12 am in Sweden, or 04-06 am in Boston. During these test we got pretty
much no packet loss at all as can be seen in 7.33, 7.34.

The algorithms ran nearly always at the maximum target bit rate in the alternating test
7.32. Due to more packet loss at the movement test the algorithm needed to adapt its bit
rate more andwe no longer could constantly run close to themax target bit rate. This can be
seen in 7.31. As also seen, the bit rate was still quite high. The videos that was produced
was of good quality and was perceived to have a good QoE. The movement videos did
however have some lag in them due to still getting a few packet losses and doing large
jumps in target bit rate. We could see that the RTT has increased since the test in Lund
which was expected in 7.36 and 7.17. But as it still was very low it did not really affect
the QoS or QoE at all.

When we ran the tests during peak hours, 8-11 pm in Boston, we immediately noticed
in the videos that the algorithms had run with a lower target bit rate than in the low peak
tests, as seen in 7.20, 7.21. We could see that this time around we got a lot more packet
loss, seen in 7.23, 7.24. The total were still under or close to 1%, as seen, which is around
the limit of video conferencing. But Cubic and Cubic-Fit kept its target bit rate to almost
be at the lowest at all time. Illinois was also kept low and the fluctuation reappeared. As it
continuously tried to poke, it would often get some packet loss, making it set the target bit
rate low again. From a QoE perspective Illinois was perceived as worse than the others. As
explained this fluctuation pattern is not good as it ruins the QoE, and even though Illinois
generally had higher bit rate, this continuous change from lowest to a little higher target
bit rate was a big distortion when watching the video.

The packet loss in these tests was 4-5 times higher than the test we ran at low traffic
hours indicating that Netflix hours are a thing that must be taken into consideration when
implementing a video conference application.

It is worth noting that the packet loss limit was removed for these tests. As the indica-
tion from the Lund test was that it was not needed, and may have even made the quality
worse. In this test we can see that we do not get a lot of packet loss bursts that are larger
than 10. In this case it might have been beneficial to have this limit, perhaps a little bit
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reduced. This may have causes for example Illinois to not have the fluctuating pattern. On
the other hand this might have simply caused more packet loss as the target bit rate would
have been higher, and just as the Lund test caused a lot of freezes. Overall however, it
appears that it is possible to have a video conference transatlantic with packet loss that is
under 1%, with some small tweaks of some of the algorithms.

Looking at round trip time we could see that during all tests it almost always stayed
below 150ms. Graphs 7.26, 7.27, 7.28 shows this clearly. Only a few times did we get a
spike in round trip time, with the highest peak being just above 160ms. As expected, the
round trip time was a lot higher compared to the Lund test, see graph 7.17. The conclusion
we can draw from this is that in regards to round trip time a transatlantic call is very much
possible. The requirement from mouth to ear was as mentioned before 150 ms. Since the
RTT is below 150 ms and counts both the time between client and server and server to
client, the actual network delay one way in our application is below 75 ms.

One very important point to discuss is synchronization. Even after an hour we still
were in sync between audio and video. Even with higher round trip time and negligible
more jitter than Lund, see 7.18, 7.29, 7.30, GStreamer were able to synchronize just fine, .

We could not do an real video conference as unfortunately our contact could not stay
and help us do one. We did however have the USA camera filming a video clip of an
interview. What we did instead was to use 3 streams. One stream recorded us in Sweden.
Another was showing us what the camera in USA was filming via a web browser. Finally
we had one stream that recorded what the USA camera was filming. One of the authors
then pretended to be the interviewer and the other the one that was interviewed. That way
we could sort of get an idea of the delay when we switched between who was talking as
the view was switched completely, both for us and in the interview. The feed had to travel
from the USA to us so we could change who was talking, and then back so the camera
in USA could record what we was doing. We then stopped the streams at the same time,
using this to be able to synchronize the videos recorded. This gave us an delay around 2
seconds in the switches. As it had to travel both direction, one direction would yield us
around 1 second delay. If we then consider different delays in the camera we estimate that
the real delay ranges from 200-400ms. This does not take in account the human reaction
time for reacting to the switches which may further decrease this.

It is very important to note that this is not a very accurate measurement, but only an
estimate. We would needed to have an actually person talking in the other end to properly
measure the delay. It does however give us some idea of the delay. If the delay is closer
to 200ms we would deem it to be acceptable. If closer or above 400 we would deem it not
acceptable as it would detract heavily from the QoE.

An very interesting point from our video conference test is that Illinois had a very low
packet loss rate. It could run with the highest target bit rate nearly for the whole duration
of the call. This can be for a number of different reasons. One is very likely, and that is, as
the previous test have shown, that during a video conference we have very low movement.
This result in a very low bit rate, which may be fine to transfer transatlantic. But if that is
the case, why would Cubic be so much worse and need to run with such low target bit rate,
seen in 7.22? As shown in 7.25, only Cubic got consistently packet loss. One theory is that
Illinois perhaps is not fair against Cubic. In previous video conference test we have used
Cubic-Fit and Illinois and they have worked fine together. We actually never tested with
Cubic as the articles stated that they are fair against other algorithms, such as TCP-RENO,
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that only looks at packet loss. The Illinois article never explicitly states that is is fair against
Cubic. In other words it might be so that Illinois hogs all the available bandwidth, causing
heavy losses for Cubic. Looking at the target bit rate in graph 7.22 you can see that in
the beginning Illinois does increase its target bit rate in an arc. At the same time Cubic
decreases its target bit rate. When Illinois after a while quickly reaches themaximum target
bit rate you can see that Cubic decreases its target bit rate a lot faster. Looking at this graph
seems to point towards this being true, that Illinois hog all available bit rate. Another thing
to consider is that we are actually sending two streams from the camera in the USA to the
camera in Sweden. It could possible be that the camera in Sweden, running Cubic, need
all the bit rate to be able to receive both streams, and thus could not actually send with a
higher bit rate. Note that the web browser was displaying and requesting Motion JPEG.
This streaming format requires a lot higher bit rate and peaks up to 30-40 Mbit has been
noted, a lot higher than the H.264 stream.

8.4 Reducing the fluctuating pattern
One general problem was that when we have low bandwidth all algorithms still tries to
probe the network to find the maximum bandwidth. Since we have low bandwidth we get
a packet loss and instantaneously go down to a low target bit rate, this was especially clear
with Illinois during the alternating test. This process is then repeated causing a fluctuating
pattern which you can see in graphs 7.20, 7.21. The problem is that Illinois algorithm
after a while of good conditions tries to go for the maximum allowed bit rate defined in
the algorithm implementation. However the network might have seen good enough for the
current bit rate of say 300 kbps but it will probe for a bit rate of 10000 kbps while the
networks current capacity is actually 800 kbps. One way to counter this issue is to probe
for a packet loss, then use this to determine a new maximum target bit rate that is set for a
period and the algorithm is not allowed to exceed this rate. This will reduce the fluctuating
pattern as we will never probe above where we got packet loss, making the overall stream
more stable. If the maximum target bit rate is lower than the current bandwidth available
it will most likely reduce the number of packet losses as we ensure we never over extends.
This would for example probably help Illinois a lot over transatlantic calls. On the flip
side, if we set such a limit on the maximum target bit rate for period and we suddenly get
a lot of excess bandwidth, we will not be able to use this as the maximum will be below
the now available bandwidth. One may try to combine the best of both, having the TCP
congestion algorithms running with a maximum that another algorithm may be able to
change as soon as it notice an increase or decrees in bandwidth. Due to time constraints
and that we wanted to use as much as the bandwidth as possible this was never tried.

8.5 Performance
The cameras performance seems to not be a problemwhen we ran the tests. Even when the
camera acts as an client and server at the same time the CPU usage is low. The only time
it can be considered high is when we start a new stream, but even then the CPU available
would be enough to start more streams. We could see that there was a slight difference
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in running the server side and the client side application. As expected it was a little bit
tougher to run the server side then running the client side. The difference however was not
large, only a percent. We could also note that GStreamer background processes accounted
for half or little more than half of the CPU usage when running either the server or client
on one of the cameras. We first thought that the random packet loss came from an overload
in the camera. But this seems very unlikely when we have looked at the usage of CPU.
The problem is very likely in another area.

The memory grows during the execution at first but we could later see when running
the one hour test that it stabilizes after a certain amount of time. We believe that it might be
GStreamer allocating memory and not deallocating before it is necessary. This assumption
was strengthen as we looked at the memory usage when we ran both the client and the
server stream on the same camera. We could see that the memory usage was roughly the
same and not the double as would be expected otherwise. As of now the camera should
be able to handle several similar streams at the same time without any other performance
enhancing optimizations being implemented.

8.6 Future work
There are many interesting things that can be made in the future. For starters our imple-
mentation only had peer to peer communication. In a video conference you may want to
extend this to have more than just two peers. When having a conversation with multiple
peers there is a need to implement a way to be able to show all peers at the same time and
this is not currently supported in our application.

Currently there is no session initiation protocol, every stream setup is done directly
in GStreamer. In the future you would like to have an easy way of setting up a conversa-
tion using a protocol like Session Initiation Protocol (SIP) to handle the communication
between client and server.

What also could be done more thorough is the actual testing with regards to QoE. It
would be nice to have more input than only the authors if the videos are okay or not. One
may want to let users compare this solutions to others and see which one the users prefer.
This brings us to an other important point:

At the moment we record videos to an SD card. It would be interesting to see if it
instead was possible to let the camera display the person you are talking to live. At the
moment you would need to record the video conference and look at it afterwards, which
is not optimal. To be able to see the other partner live is an important feature in a video
conference and thus is one of the most important future work to look at.

The algorithms themselves has a lot of different parameters that can be tuned. A fine
tuning of these could be looked at. As an example the theta parameter in TCP-ILLINOIS,
as have been already discussed, may be needed to be tuned depending of the network
conditions.

As mentioned in the discussion it would be interesting to try to put a temporary limit
on the maximum target bit rate to see if it would be more stable. This is something that
may be of great value even if the throughput would be less as it may increase the QoE due
to being more stable.

Currently the audio format G711 is used. OPUS is something that could be supported
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on the camera and it should be better than G711. It lets you change the bit rate used on
the audio at will, something G711 does not let you do. This would allow you to adapt the
algorithms to also change the bit rate on the audio so we get better sound than G711 if we
have high bit rate, or the opposite if necessary. At the moment we only change the video
bit rate. We had some trouble with UDP to USA. Instead GStreamer switched to TCP. As
our algorithms work by looking at packet loss, they would simply no longer do anything
as we would never get any packet loss. It would be good if the algorithms, or newer and
better ones, was implemented for TCP as well when UDP can not be used. The algorithms
that we have used in this thesis is in theory used with TCP traffic, and an implementation
of the algorithms where they work on both our UDP interpretation and the original TCP
implementation should possible to do. The UDP variant could be run per default and if a
router block UDP traffic the TCP variant could then be used instead.

A deeper investigation on where the random packet loss came from when running on
the switch could also be made. The cameras clearly had the CPU and memory to handle
the multiple streams. And since the algorithms used in this thesis had packet loss as a
parameter to adjust it’s rate, this caused a lot of disturbances in QoE for the user that
should in practice be unnecessary.

8.7 Conclusion
It is clearly possible to set up a video conference using two AXIS network cameras, even
though there are still a few things to do to get the QoE up on par to market standards. We
could also see that algorithms that are based on both RTT and packet loss perform better
than those only based on packet loss. The algorithm clearly was a better choice than no
algorithm, if no algorithm was used the video feed only got through a few frames but with
the algorithms the quality of the frames is reduced and a fluent stream can be watched.
The previous master thesis had problems running two streams at the same time, however
our implementation gives better results with two streams than on single streams indicating
that our algorithms are fairer than the previous implementation. We also found out that an
implementation that is supposed to support calls abroad must include an implementation
of both TCP and UDP as a transport protocol due to routers blocking UDP traffic. Illinois
tend to have a little bit better QoS than Cubic-Fit. But due to the fluctuating pattern, which
is much greater at Illinois and Cubic-Fit beingmore stable, Cubic-Fit seams to be the better
choice, at least to the USA.
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Appendix A
GStreamer launch examples

The following section shows and explains some examples of how we used GStreamer
pipeline launcher command, gst-launch, to test experimental pipelines before we im-
plemented and used them on the camera.

gst-launch combines GStreamer elements into a runnable pipeline by specifying
the installed elements in the order that they are to be run and connecting them with an
exclamation mark(!). This is a great feature if you want to see if certain elements works
as intended without writing a full client and compile and run it on the camera. Here is a
small example from the GStreamer reference manual

gst-launch filesrc location=hello.mp3 ! mad ! audioresample
! osssink

The following pipelines are more advanced and can be used on the video conference cam-
eras directly to set up different streams. The first launch command sets up a video stream
from the camera to a computer, decodes and shows the video stream live:

gst-launch-0.10 rtspsrc
location="rtsp://username:password@192.168.0.90/axis-media/media.amp?
resolution=1280x720" latency=0 ! rtph264depay ! ffdec_h264 !
queue ! ffmpegcolorspace ! xvimagesink

The next gst-launch pipeline sets up an audio stream between the microfon on one
camera and the audio output on the other camera:

gst-launch-1.0 -v rtspsrc
location="rtsp://username:password@192.168.0.90/axis-media/media.amp?
video=0&audio=1&audiocodec=g711&audiosamplerate=8000&
audiobitrate=64000" latency=0 name=d ! rtppcmudepay !
mulawdec ! audioresample ! audioconvert ! audio/x-raw,
rate=32000, channels=1 ! alsasink
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A. GStreamer launch examples

Finally we have a gst-launch pipeline that combines the two above and muxes both
the audio and video stream into an file that is recorded on the SD card on the camera:

gst-launch-1.0 -v rtspsrc
location="rtsp://username:password@192.168.0.90/axis-media/media.amp?
resolution=1280x720&audio=1&audiocodec=g711&audiosamplerate=
8000&audiobitrate=64000" latency=0 name=d d.! rtppcmudepay !
mulawdec ! audioresample ! audioconvert ! queue ! matroskamux
name=mux ! filesink
location=/var/spool/storage/SD_DISK/cameratocameranewpipeline.mkv
d. ! rtph264depay ! h264parse ! mux.
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Appendix B
Sample code

The following code is the same as the last gst-launch command in the previous chapter
but written in C code instead. It works basically the same way, you first have to create all
the elements, put them in a pipeline and finally linking them together.

GstElement *pipeline = gst_pipeline_new ("media-player");
if(!pipeline){

GST_ERROR("Failed to create pipeline");
}
GstElement *source, *audio_depay, *audio_dec, *audio_resample,
*audio_converter,*audio_queue, *mux, *video_depay,

*video_parse,
*video_queue, *sink;

char full_url[1024];
char file_location[1024];
//Source element
source = gst_element_factory_make ("rtspsrc", "rtsp-source");
//audio elements
audio_depay = gst_element_factory_make ("rtppcmudepay",

"mulawdepay");
audio_dec = gst_element_factory_make ("mulawdec",

"mulaw-deccoder");
audio_resample = gst_element_factory_make ("audioresample",

"audio-resample");
audio_converter = gst_element_factory_make ("audioconvert",

"audio-convert");
audio_queue = gst_element_factory_make ("queue", "audio

queue");
//video elements
video_depay = gst_element_factory_make ("rtph264depay",

"h264-depay");
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video_parse = gst_element_factory_make ("h264parse", "h264
parser");

video_queue = gst_element_factory_make ("queue", "video
queue");

//mux
mux = gst_element_factory_make ("matroskamux",

"matroskamuxer");
//sink
sink = gst_element_factory_make ("filesink", "file output");

//check if the elements could be created
if(!source){

GST_ERROR ("source ");
}
if(!audio_depay){

GST_ERROR ("audio_depay ");
}
if(!audio_dec){

GST_ERROR ("audio_dec ");
}
if(!audio_resample){

GST_ERROR ("audio_resample ");
}
if(!audio_converter){

GST_ERROR ("audio_converter ");
}
if(!video_depay){

GST_ERROR ("video_depay ");
}
if(!video_parse){

GST_ERROR ("video_parse ");
}
if(!mux){

GST_ERROR ("mux ");
}
if(!sink){

GST_ERROR ("sink ");
}
if(!audio_queue){

GST_ERROR ("audio_queue ");
}
if(!video_queue){

GST_ERROR ("video_queue ");
}

// Setting rtspsrc properties
snprintf (full_url, sizeof full_url,

"rtsp://%s:%s@%s/axis-media/media.amp?resolution=%dx%dy&audio=1"
"&audiocodec=g711&audiosamplerate=8000&audiobitrate=64000",
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name, pass, url ,width, height);
g_object_set (G_OBJECT (source), "location", full_url,

"latency", latency, NULL);

//Setting filesink properties
snprintf(file_location, sizeof file_location,

"/var/spool/storage/SD_DISK/%s", file_loc);
g_object_set (G_OBJECT (sink),"location", file_location, NULL);

//Add audio
gst_bin_add_many (GST_BIN(pipeline), source, audio_depay,

audio_dec, audio_resample, audio_converter, audio_queue,
mux, video_depay, video_parse, sink, NULL);

//Link audio elements
if(!gst_element_link_many (audio_depay, audio_dec,

audio_resample, audio_converter, audio_queue, mux, NULL)){
GST_ERROR("Failed to link audio elements: ");
return NULL;

}
g_signal_connect (source, "pad-added", G_CALLBACK

(source_new_pad), audio_depay);

//Link video elements
if (!gst_element_link_many (video_depay, video_parse, NULL)) {

GST_ERROR ("Failed to link video elements");
return NULL;

}
GST_ERROR ("Link audio elements");
gst_element_link(video_parse, mux);
if(!gst_element_link_many (mux, sink, NULL)){

GST_ERROR ("Failed to link mux elements: ");
return NULL;

}
//connect elements that couldnt be linked at start of stream
g_signal_connect (source, "pad-added", G_CALLBACK

(source_new_pad), video_depay);

GST_ERROR("Set state running");
gst_element_set_state(pipeline, GST_STATE_PLAYING);
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Videokonferenser blir allt vanligare i dagens samhälle. Vi kan se många applika-
tioner så som Skype och Facetime på olika plattformar. Vi har implementerat vi-
deokonferensteknik på Axis Communications övervakningskameror och under-
sökt hur olika algoritmer som anpassar nätverkstrafik för att undvika stockning 
(eng:congestion), som till exempel TCP-Cubic, inverkar på kamerornas video- och 
ljudkvalité. Algoritmer har utsatts för ett antal tester för att utvärdera vilken som 
är bäst för videokonferens.

Introduktion
Tecken på en bra videokonferens är att kvalitén håller 
sig jämn och hög. För att uppnå detta måste så mycket 
av bandbredden som möjligt tas tillvara. Det är viktigt 
att paketförlusterna minimeras. Ett förlorat paket upp-
levs ofta som ett hack eller en total förlust av hela media-
strömmen av användaren. Hur uppstår då paketförlus-
ter? Det finns helt enkelt inte utrymme i nätverket för 
så många paket som man försöker skicka. När nätverket 
inte kan hantera mer så uppstår fördröjningar och pa-
ketförluster. 

Stockningskontroll (eng: Congestion control)
Man måste anpassa mängden paket som skickas så att 
de får plats i nätverket. Algoritmer som gör detta ut-
för stockningskontroll. I arbetet implementerades tre 
olika sorters stockningskontroll-algoritmer. Dessa är de-
signade att anpassa överföringshastigheten av en ström 
av paket beroende på nätverkets trafiksituation. Dessa 
algoritmerna jämfördes i flera tester för att undersöka 
styrkor och svagheter.
 Den första algoritmen (TCP-Cubic) baserar överfö-
ringshastighet på paketförluster. De andra två är så kall-
lade hybrider, vilket innebär att de baserar överförings-
hastighet på två olika mått, i detta fall paketförluster och 
tiden det tar för ett paket att gå från klient till server och 
sedan tillbaka igen (eng: Round Trip Time, RTT).
 Flera olika testscenarion sattes upp, bland annat lästes 

en Shakespeare-monolog upp. Det gjordes även tester 
över Atlanten till den amerikanska staden Boston för att 
se hur avstånd inverkar.

Slutsats
Att inte använda någon algoritm var inget alternativ. 
Då försvann i värsta fall all video och allt ljud då mer 
bandbredd än vad som fanns tillgängligt försökte använ-
das. Det var också tydligt att hybridalgoritmer fungerar 
bättre. Hybriderna reagerar både snabbare vid sänkning 
av tillgänglig nätverksbandbredd och återgång till högre 
bandbredd. Vi kunde se att dessa algoritmer skulle gå 
bra att använda sig av i en videokonferensapplikation. 
Ett fenomen som inträffade, kallat fluktuering, var att 
i vissa fall ökade algoritmerna överföringshastigheten 
väldigt hastigt för att sedan minska direkt därpå. I dessa 
fall var det bättre att hålla en lägre men jämn kvalité 
hela tiden. Videokonferensapplikationen kunde leve-
rera ljud och bild synkroniserat och fördröjningen var 
rimlig även till USA. Dock ökade paketförlusterna med 
4-5 gånger under tidpunkter med hög trafik (kvällstid i 
USA, så kallade Netflix-timmar). Värt att notera är att 
paketförlusterna fortfarande är acceptable. Hade man 
även äldre routrar i nätverket så blockerades all UDP 
trafik vilket resulterar i att man måste implementera två 
lösningar, en för UDP och en för TCP för att kunna nå 
alla klienter.
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