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Abstract 
This master’s dissertation has been performed in cooperation with Tyréns and the 

Dept. of Construction Sciences, LTH. We have investigated if it is possible to increase 

the total stability for excavations with retaining structures and if each side of an 

excavation could be treated as a separate 2D-case with additional theories to 

approximate its 3D-effects. 

End-surface theories from the Commission on slope stability (CSS) report 3:95 could 

possibly be used to consider 3D-effects although they are originally created for slopes 

without structural support. Neither is there any information regarding the interaction 

between these separated 2D-systems. 

The intention of this master’s dissertation is to validate that these theories mentioned 

can be used and that it is reasonable doing so.   

It is done by evaluating three different kinds of systems namely 

 Generalised sloped excavations where corners and thus interactions between 

sides are introduced into the model but without structure to examine end-

surface- and additional 3D-effects where the applied theories are valid. 

 Generalised excavation with retaining structure to determine corner-, end-

surface- and structural effects.  

 The theories evaluated are then applied to a real life case with material- and 

structural parameters evaluated from the Västlänken project. Here the 

possibility of excavating a 70x70x15 m (length, width, depth) is investigated. 

For all of the modelling steps; analytical and numerical calculations have been 

performed, where Slope/W has been used to aid the analytical calculations and Plaxis- 

2D and 3D have been used for 2D and 3D modelling. 

Evident in the results assembled in this work is that 2D-analytical calculations 

underestimates the total stability (FS) for an excavation when compared to numerical 

calculations. Applying the end surface theory from CSS report 3:95 generates results 

similar to the ones generated by 3D modelling, but on the safe side. This final 

comparison was made without considering the stabilising effect that can be 

accounted for due to the retaining structural connections in the corners. 

Keywords: slope stabilization, geotechnical engineering, total stability, 3D-effects, 

factor of safety, Plaxis  
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Notations 
Latin upper case letters 

A Area (cross-section) 

ASlip surface Area of slip surface 

I Unit matrix 

C Stiffness matrix 

Cc Compression index  

Cs  Swelling index or Reloading index 

D Material stiffness matrix 

E Young’s modulus 

E1,E2 Young’s modulus one and two 

EA Axial stiffness 

EI Bending stiffness 

𝐸50ref  Secant stiffness at a reference stress level  

𝐸oedref  Oedometer modulus at a reference stress level 

𝐸urref  Unloading/reloading stiffness at a reference stress level 

FS2D 2D factor of safety (standard analytical FS) 

FSp Factor of Safety, 3:95 increase with planar end surfaces 

FS3-Dim Reduced FSp, due to non-planar end surfaces 

FS2D-Plaxis 2D factor of safety calculated in Plaxis 2D 

FS3D-Plaxis Factor of safety calculated in Plaxis 3D 

G Shear modulus 

H Height of slope 

H Height of retaining structure 

I Moment of inertia 

Ī Invariant 

  ̅ Invariant 

Kα  Hardening parameters 

K0 Coefficient for initial earth-pressure 

KoNC Coefficient for normal consolidated soils at rest 

LSpacing Spacing of supporting anchors 

MResisting Resisting moment 

MActivating Activating moment 

P Normal force 

R Radius 

S Stress tensor 

W Weight 
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Latin lower case letters  

b Width of a slice  

c Cohesion 

cinc Cohesion increase 

c’  Effective cohesion 

cu  Undrained shear strength 

h Thickness (cross section) 

l Length of slice/slope 

n Unit vector 

e Deviatoric strain tensor 

s Stress invariant matrix 

t Thickness 

ui Displacement 

tx, ty, tz Body loads 

w Unit weight 

 

Greek lower case letters  

α Inclination 

αij Kinematic hardening parameter 

𝛾Soil Weight of soil  

𝜀  Strain 

λ Eigen value 

𝜎  Total stress  

𝜎′  Effective stress  

𝜎1, 𝜎2, 𝜎3  Principal stresses 

𝜎n Normal stress 

𝜎y0  Initial yield stress 

𝜎y Yield stress 

κ  Slope of unloading/reloading 

τ  Shear stress  

𝜏𝑖𝑗 Shear stress 

𝜏max Maximum shear stress (failure shear stress) 

δ Kronecker’s delta 

ν  Poisson’s ratio 

𝛾𝑖𝑗 Shear strain 

𝛾𝑠  Deviatoric strain 

θ Arc width 

𝜑′  Internal friction angle 
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Abbreviations  

2D Two Dimensional 

3D Three Dimensional 

FS Factor of Safety  

FE Finite Element 

FEM Finite Element Method 

MS Method of Slices 

CSS Commission on Slope Stability 

IVA “Ingenjörsvetenskapsakademien” 
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1   Introduction 

1.1 Background 
Tyréns and COWI are designing the future underground central station for the new 

railway system in Gothenburg, Sweden. The project is a huge undertaking with a large 

excavation planned where the new central station will be placed.  

This large excavation in very soft clay has raised some concerns regarding the total 

stability of the entire excavation. Due to the circumstances it has been difficult to find 

a solution for a supporting structure that is possible to accomplish in reality with a 

satisfying factor of safety. 

It is normal to use traditional 2D slope stability methods when calculating stability for 

vertical walls surrounding excavation pits, handling each side as a separate 2D-case. 

It has been proposed that it would be of great advantage to be able to account for 3D-

effects when performing these 2–dimensional stability calculations. A method, 

described in the Swedish commission of slope stability report 3:95, is used to account 

for 3D-effects resulting from the shear strength of the end-surfaces for slope stability.  

The method can be applied on slopes with variations in geometry and is especially 

efficient for slopes that have a limited length and a deep slip surface. It seems 

reasonable to think that this is also true for a square excavation where each side of 

the excavation can be seen as a single slope having a limited length. 

If further investigations show that this model and these “3D-effects” is a reasonable 

approximation also for other types of systems i.e. systems with structural support, it 

would be of great advantage. 

Studies have been performed in Singapore where estimated 3D effects around 

corners have been measured in terms of horizontal displacements ((Lee, et al. 1998) 

and (Ou and Shia 1989)). The deformations around and in the excavation have been 

compared to show that there are effects in the system making it more stable around 

the corners. Different relations for the magnitude of these effects that can be expected 

have been concluded from the experiments.  

There is an indication that there is less deformation at the corners. If this is related to 

the 3D-effects (related to the end surfaces theory) is hard to say, but not unlikely. 
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1.2 Objective 
This project has the objective to evaluate if it is reasonable, or at least on the safe side, 

to calculate the total stability for one single side in an excavation by using 2-

dimensional analytical calculation methods with additional approximations of the 3D- 

effects, thereby giving a better approximation of the actual factor of safety. 

In this dissertation, an attempt is made to answer the following questions: 

 Approximating the 3D-effect of a slope by adding the shear forces from the end 

areas of the sliding volume sounds reasonable but does it work if two sliding 

volumes interact as they do at the corner of a square excavation? 

  

 Is it a good approximation? Is it equally as good if constructions are inserted? 

Is the assumption and approximation on the safe side? To what extent is it on 

the safe side? 

When modelling in a true 3D manner there are effects that in reality could influence 

the stability of the system (which are not accounted for in a two-dimensional 

calculation). The FE-programs (in this case Plaxis 2D and 3D) accounts for all sorts of 

different phenomena that could increase/decrease the total stability. The exact 

reason for this increase/decrease is hard or even impossible to pinpoint. 

To simplify for the readers and the authors of this report the objectives has been 

divided into three major parts.  

 Part one is to investigate and evaluate the usage of 3D-effects in 2D-cases 

without supporting structures. Here the evaluation of how good this 

approximation is compared to the numerical 3D-systems factor of safety is 

made. 

 Part two investigates and evaluates the usage of 3D-effects in 2D-cases with 

supporting structures. Here the evaluation of how good this approximation is 

compared to the numerical 3D-systems factor of safety is made. 

 Part three will apply the same approach as for part one and two, but with a 

real life case to evaluate if similar increase in total stability can be accounted 

for. This system will have a different geometry and parameters evaluated from 

tests performed for the Västlänken project.  

Our intention is not to evaluate exactly what is increasing the factor of safety for 

different geometries. It is rather to state that the numerical calculations are (in our 

cases with our geometries) higher than the analytical 2D cases with and without the 

approximation of additional 3D-effects. Neither is it our intension to evaluate the 

performance or accuracy of the FE-programs used.  
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1.3 Method 
The work process for this master’s dissertation project will be divided into three 

parts.  

A thorough literature study will be conducted to enable the authors to obtain the 

necessary theoretical knowledge for the work that is going to be conducted. This 

study will also act as the foundation for the theoretical material. 

The second part is an assembly of the theory chapters, which is a fairly large part of 

the report. This enables the readers to view and understand the underlying 

theoretical principles concerning a finite element analysis of geotechnical mechanics. 

This as well as how the different programs and calculations are conducted and what 

theories they are based on will also be presented. 

Finally the report presents results from the calculations in Slope/W, Plaxis 2D and 

Plaxis 3D and evaluating the tasks stated in the objective.  

 

1.4 Disposition 
In the report the different chapters contain the following: 

Chapter 2 –  Main theory chapter, containing the theoretical knowledge needed to 

understand and conduct the analysis made. 

Chapter 3 –  Material models used in FE-programs are explained. These are the 

Hardening soil material model and the Mohr-Coulomb material model. 

Chapter 4 –  Contains a brief explanation into the programs used as well as the 

calculation and modelling methods conducted. Also the geometries, parameters and 

other inputs are described in detail. 

Chapter 5 –  Contains the results obtained for the two generalised excavation 

problems as well as for the real-life case. 

Chapter 6 –  Discussion, conclusions and suggestions for further work. 

Chapter 7 –  Contains the bibliography. 

The chapters are followed by an appendix. 
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1.5 Limitations 
The analysis is limited to cohesion material and with two different material models 

used in the FE-programs. These material models are Hardening soil and Mohr-

Coulomb. The comparison between models will be in factor of safety and the failure 

mechanism analysed in this dissertation is total stability failure.  

For the different stages of the modelling process a number of different geometries 

have been chosen and presented in Chapter 4. These models are used to analyse the 

impact of change in length which is the focus in the project.  

The project will be limited to include modelling and calculations for analytical 

analysis concerning the factor of safety in slope stability with the help of the program 

GeoStudio Slope/W. For the numerical calculations the programs Plaxis 2D and Plaxis 

3D will be used. The accuracy or performance of these programs will not be 

investigated. 
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2   Theory 
In this chapter the underlying theory for the analytical calculations and the numerical 

calculations applied to soil mechanics will be discussed. The basic FE-theory will 

however not be presented and for these basics the reader is referred to other 

literature such as Ottosen and Ristinmaa (2005). 

 

2.1 Analytical Calculation Theory 

Method of slices 
The method of slices is a method for calculation of slope stability in two dimensions. 

The method does not account for any changes in the topography along the length of 

the specific section that is modelled. For slopes with variations though, this type of 

model can be used due to the fact that the calculations can be performed for an 

infinite number of sections. Thereby the calculations have the ability to deal with 

changes in material, topography and geometry.   

The traditional method of slices was pioneered by Fellenius in 1927-1936. Since then 

it has been modified and further developed to extend the range of application and 

usability for today’s usage and demands (Chowdhury, et al. 2010). 

For the traditional method of slices the circular slip surface viewed below (Figure 2:1) 

is divided into vertical slices. Each slice has its own weight, tangential components 

and normal component acting upon it.  

True for the calculation is that the forces on each slice and forces acting on the entire 

sliding mass must satisfy the conditions of equilibrium (Chowdhury, et al. 2010). 

 

 

Figure 2:1 –Traditional method of slices method with circular slip surface (Chowdhury, et al. 2010) 
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For each slice there are individual parameters, geometrical data and forces acting 

upon the different slices. These can be viewed in Figure 2.2 below. 

 

Figure 2:2 – Parameters, Geometrical data and forces acting on a slice (Chowdhury, et al. 2010) 

 

Symbol explanation: 

    𝑖           𝑠 𝑖   

    𝑖    

         𝑖              𝑠 

𝐸                  𝑠 

      𝑖   𝑖   

                𝑠      𝑠𝑖   

          𝑠𝑖𝑠       

               

     𝑖 𝑠 

             

 

The evaluation of the forces E and T is proven to be difficult due to the dependencies 

on many different parameters.  To simplify the calculations the forces perpendicular 

and tangential to the base are used to obtain the Normal stress.  This means that the 

inter-slice forces T and E are assumed to be zero which yields  

 

    ( ) {(       )     (𝐸  𝐸   )    }      (2:1) 

 

for the overall equilibrium (Chowdhury, et al.  2010). 
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This assumption is an underestimation of the factor of safety i.e. the error is on the 

safe side (Chowdhury, et al. 2010). 

To solve the moment equation a cent of rotation equal to zero is used where the 

activating moment is compared to the retaining moment. 

 

  
 (       (        ))

      
    (2:2) 

 

  
 (   (             )    )

      
   (2:3) 

 

Assuming that the angle      gives:  

 

  
 (  )

      
 

    

      
    (2:4) 

 

From here the slope stability is found by searching the most critical centre and radius 

of the slope. This can be done through experience or more likely software designed to 

test a large number of different variations to find the location of the critical circle 

(Chowdhury, et al. 2010). 

The method of slices is a good method for fast and preliminary calculations for the 

stability of a certain slope. The user of the method should however be aware of the 

errors that can arise due to the simplifications. Even though the errors should be on 

the “safe side” there is a possibility of large errors up to 60 % (Chowdhury, et al. 

2010). 

 

Commission on Slope Stability (3D - effects) 
The CSS is a committee of the IVA (Ingenjörsvetenskapsakademien) founded in 1988 

with the tasks of handling research, development and information concerning 

landslides. 
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Commission on slope stability report 3:95 

In 1995 the Commission released report 3:95 called Instructions for slope stability 

calculations where the calculations and methods for different parameters and testing 

methods in slope stability are explained. This is a complete guide for slope stability 

evaluations with detailed information and help for anyone that are evaluating the 

subject. Even though the guide was published in 1995 it is still used in the Swedish 

Geotechnical industry for analytical 2D calculations. 

 

3-Dimensional effects  

When the slope geometry is highly variable, or if its width is small and the slip surface 

is deep, it may be interesting to account for three-dimensional effects. If the length of 

the slope is short the stability can be calculated with the method of slices described 

above (       ) plus adding the additional resisting shear force in the end surfaces. 

This gives a 3-dimensional factor of safety     based on the assumption that the end 

surfaces are plane. 

According to other surveys mentioned in Skredkommisionen (1995), the critical slip 

surface refers to when the end surfaces have a certain curvature. Therefore a 

standard reduction        is made to modify the 3-dimensional factor of safety given 

when assuming plane surfaces. Below follows the equations with related illustrations. 

 

 

 

        
 (       )

 (       )
 

(2:5) 

  

Figure 2:3 – Illustration of slope with plane end surfaces, FS2-Dim is the normal factor of safety (Skredkommesionen 

1995)  
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             (       )

 (       ) 
 

(2:6) 

 
 

Figure 2:4 - Illustration of slope with plane end surfaces, FSP is the factor of safety including increase from 3D-

effects (Skredkommesionen 1995)  

 

 

 

               

     (
   

       
  ) 

(2:7) 

 

 

Figure 2:5 - Illustration of slope with curved end surfaces, FSP is the factor of safety including increase from 3D-

effects but with reduction due to non-planar end surfaces (Skredkommesionen 1995) 

 

For full insight into the theory surrounding 3-dimensional effects on 2D calculations 

the reader is referred to other literature.  

It should be noted that Skredkommesionens (1995) suggestions for 3-dimensional 

effects only can be considered for cohesive soil materials. Furthermore the entire 

theory is based on the assumption that the surrounding material has the ability to 

withstand the transferred forces from the end surface. When performing these 

calculations it is possible to calculate the maximal length for which the end surfaces 

can absorb excess moment. Thereby the maximum length for a specified FS can be 

calculated.   

The calculations should always be verified to assure that the 3D influenced security 

factor is the lowest of all the calculated 3D-security factors for the entire system. 

Otherwise an overestimate of the actual failure strength of the model may be chosen 

and the factor of safety might not be representable for some areas. 
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Morgenstern-Price model 
This method is based in the previously described method of slices and is the method 

used when performing calculation for critical slip surface in GeoStudio – Slope/W. 

The Morgenstern-Price method bases the variation in factor of safety on the 

summation of tangential and normal forces on each slice. The Newton-Rhapson 

method is used to solve the moment and force equation for lambda and the factor of 

safety in the equation described below.   

The function describing the direction of the interslice forces 

 

  ( )    𝐸. (2:8) 

 

  is a constant and f(x) is functional variation with x (Fredlund and Krahn 1977) 

 

Figure 2:6 – Side force designation, Morgenstern-Price method (Fredlund and Krahn 1977). 
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2.2 Strain invariants 
There are different invariants, common for all is that the invariants have the same 

value in every coordinate system. This fact is the criterion for the invariants and it is 

crucial for the calculations that they are used in. Therefore it is strategic to use the 

invariants when describing the constitutive relations and the yield criteria (Ottosen 

and Ristinmaa 2005). 

 

The principal strains  
The principal strains describe the maximum and minimum elongation of the 

elements. These occur when the shear strains are equal to zero. Finding them is 

therefore a matter of finding a coordinate system (n1, n2, n3) where this occurs. One 

can describe the principal strains using (Ottosen and Ristinmaa 2005) 

 

(    )      (2:9) 

 

For this eigenvalue problem to exist with a nontrivial solution; n has to exist and 

therefore requires the following to be true  

 

   (    )        (2:10) 

 

The cubic characteristic equation provided by the expression is fulfilled by the three 

eigenvalues,  . When these have been determined this provides the solution in which 

these eigenvalues determines the principal strains. 

 

  [

    
    
    

]  [
𝜀   
 𝜀  
  𝜀 

]    (2:11) 

 

Equation 2:10 can be rewritten as the Characteristic equation: 

       
           (2:12) 

where, 
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   𝜀   𝜀   𝜀   𝜀   

   𝜀  𝜀   𝜀  𝜀   𝜀  𝜀   𝜀  
  𝜀  

  𝜀  
  

 

 
  

  
 

 
𝜀  𝜀   

    𝜀  𝜀  𝜀   𝜀  𝜀  
  𝜀  𝜀  

  𝜀  𝜀  
   𝜀  𝜀  𝜀      (𝜀  ) 

 

Generic strain and Cauchy strain invariants 
From the characteristic equation for the principal stresses (2:12) the Cauchy 

invariants can be described with  

 

   𝜀     (2:13) 

   
 

 
  

  
 

 
𝜀  𝜀     (2:14) 

      (𝜀  )  𝜀 𝜀 𝜀    (2:15) 

 

The Cauchy invariants follow a systematic way in their definition and have a unique 

relation to the generic invariants. These generic invariants are defined for their 

systematic manner and are described as 

 

  ̅  𝜀   𝜀  𝜀  𝜀    (2:16) 

  ̅  
 

 
𝜀  𝜀   

 

 
(𝜀 

  𝜀 
  𝜀 

 ) (2:17) 

  ̅  
 

 
𝜀  𝜀  𝜀   

 

 
(𝜀 

  𝜀 
  𝜀 

 ) (2:18) 

 

where the relation between the Cauchy and the generic invariants can be derived 

from (2:5-2:7) and (2:8-2:10), resulting in  

 

  ̅       (2:19) 

  ̅  
 

 
  

      (2:20) 

  ̅  
 

 
  

           (2:21) 

 

The deviator strain invariants can be formed in a matter similar to the form in which 

the generic strains were constructed earlier. In the same way as the generic 

invariants were formed, we start with the strain tensor and for the deviator 

invariants the deviator strain tensor is used (Ottosen and Ristinmaa 2005). 
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    𝜀   
 

 
𝜀       (2:22) 

 

where eij is the deviatoric strain tensor. 

 

This gives that eij and ϵij have identical principal direction 

There is a relation between          and   ̅   ̅   ̅ where a defined analogy with the 

help of the generic invariants; isdefined (Ottosen and Ristinmaa 2005) 

 

  ̅                 (2:23) 

  ̅  
 

 
       

 

 
  (  )  

 

 
(  

    
    

 )  (2:24) 

  ̅  
 

 
          

 

 
  (  )  

 

 
(  

    
    

 )         (2:25) 

 

From the above stated invariants we get the octahedral normal and shear strains 

which can be simplified into (Ottosen and Ristinmaa 2005) 

 

   
 

 
  ̅ Octahedral normal strain    (2:26) 

𝛾   √
 

 
  ̅  Octahedral shear strain i.e. Engineering shear strain (2:27) 

 

2.3 Stress invariants 
In the same manner as the invariants were described in the previous section for the 

strains the invariants can be described for the stresses. 

The stress tensor is symmetric and is defined as 

 

    [

  
 

  
 

  
 

]  [

𝜎  𝜎  𝜎  

𝜎  𝜎  𝜎  

𝜎  𝜎  𝜎  

]  [

𝜎  𝜎  𝜎  

𝜎  𝜎  𝜎  

𝜎  𝜎  𝜎  

]  (2:28) 

 

                                            

          
   

  
    (2:29) 
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With this symmetry proven the traction vector for an arbitrary surface t, can be 

resolved as a component parallel and perpendicular to n (normal vector) through a 

certain point (Ottosen and Ristinmaa 2005). 

 

Parallel component i.e. Normal stress 

𝜎             𝜎      (2:30) 

 

Perpendicular component i.e. Shear stress 

𝜏             𝜎      (2:31) 

 

Principal stresses 
From the previously given equations (2:30 and 2:31) the following can be stated 

 

𝜏 
       𝜎 

   (2:32) 

This gives a preliminary result, a physical interpretation of the eigenvalue problem 

for the stress tensors were the solution of the described problem results in the stress 

tensors (Ottosen and Ristinmaa 2005). 

 

      (𝜎       )        

    

(    )       (2:33) 

 

When comparing the solution to the derived eigenvalue problem for the strain tensor 

(Equation 2:9) there is complete equivalence, therefore the same derivation as 

previously can be used for the stress invariant which gives the characteristic equation 

 

          (    )           

 

From this the three principal stresses are determined and for each   a corresponding 

principal direction is given. 
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Finally we arrive at a similar solution for the stress tensor as for the strain tenser in 

previous derivations (Ottosen and Ristinmaa 2005) 

 

         [
𝜎   
 𝜎  
  𝜎 

] 

        

                (2:34) 

 

Generic stress invariants 
In correlation with the generic strains the stress tensor satisfies the Cayley-Hamilton 

theorem (Ottosen and Ristinmaa 2005); therefore the same calculations are 

performed in the stress case. The coefficients in the characteristic equation are the 

Cauchy-stress invariants and have the following generic stress invariants (Ottosen and 

Ristinmaa 2005) 

 

   𝜎      (2:35) 

   
 

 
𝜎  𝜎      (2:36) 

   
 

 
𝜎  𝜎  𝜎    (2:37) 

 

Deviator stress invariants 
Similar to the deviatoric strain invariants the deviatoric stress tensor forms the stress 

invariants. In the below stated deviatoric stress tensor the term 
   

 
 (b= 

   

 
) is 

referred to as the hydrostatic stress. For the yield criteria in rocks, soils and similar 

materials the hydrostatic stress has a major impact on the calculations while the 

influence is close to nothing for other materials such as steel. Therefore it is crucial to 

take into account when modelling and performing calculations with soils (Ottosen 

and Ristinmaa 2005).  

𝑠   𝜎   
 

 
𝜎       (2:38) 

 

The deviatoric stress invariants are given by 
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   𝑠         (2:39) 

   
 

 
𝑠  𝑠      (2:40) 

   
 

 
𝑠  𝑠  𝑠     (2:41) 

 

Finally the octahedral normal and shear stresses are defined as (Ottosen and 

Ristinmaa 2005) 

 

𝜎  
 

 
   Octahedral normal stress  (2:42) 

𝜏  √
 

 
    Octahedral shear stress  (2:43) 
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2.4 Various cases of stress  
Illustrated below are some of the stress states which will be discussed in the theory 

chapter.  

 

 

Figure 2:7 – Illustration of different states of stress (Spetz, 2010)   
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2.5 Plane Elasticity 

Plane elastic strain 
When performing analytical calculations for geotechnical problems it is often of great 

benefit for computer modelling to reduce the three-dimensional problem into two-

dimensions. For the plane strain case the simplification into a two-dimensional 

calculation (xy-plane) means that no deformations occur out-of-plane in the z-

direction and nothing in the model is affected by the z-coordinate (Ottosen and 

Ristinmaa 2005) i.e. 

 

     (   ) 

     (   ) 

     

 

All z-direction dependent deformations are zero and therefore;  

 

    
   

  
   

   

  
   (2:44) 

    

    
   

  
   

   

  
   (2:45) 

 

Similar to the three-dimensional strain case the plane elastic strain case has the 

following relations derived from the kinematic equation: 

 

  [

𝜀  

𝜀  

𝛾  

]  (2:46) 

 

 ̃  
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  ]
 
 
 
 

 (2:47) 

 

  [
  

  
]  (2:48) 
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For the elastic strain case Hooke’s generalised law for linear elasticity is used and 

therefore the following is given for an isotropic material (Ottosen and Ristinmaa 

2005). 

 

[

𝜎  

𝜎  

𝜎  

]  
 

(   )(    )
[

     
     

  
 

 
(    )

] [

𝜀  

𝜀  

𝛾  

] (2:49) 

 

𝜎   
  

(   )(    )
(𝜀   𝜀  )   (2:50) 

 

𝜎   𝜎        (2:51) 

 

2.6 Plasticity theory 
This section will clarify plastic deformations. Loading and unloading may leave the 

material with plastic strains    if the stresses exceed the initial yield stress 𝜎  , 

shown with the uniaxial stress-strain curve in Figure 2:8. 

 

 

Figure 2:8 – a) Loading without exceeding the initial yield stress; b) Loading, exceeding the initial yield stress 

(Ottosen and Ristinmaa 2005).  

 

The material is assumed to behave linear elastic, with Young’s modulus E (Figure 

2:8a), below the initial yield stress as well as when loading and unloading between A 

and B in the Figure 2:8b. When reloading from B to A the yield stress has changed due 

to a hardening effect. This means that the material retains some of its deformation 

after a loading cycle i.e. the material has sustained plastic deformation. For 

elaboration into post-yield behaviour the initial yield stress needs some further 

explanation (Ottosen and Ristinmaa 2005). 
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Yield criteria 
The failure and initial yield stress in a uniaxial stress state refers to the stress level 

where the material breaks respectively starts to plasticise, Figure 2:8b. The general 

stress state is not as simple as the uniaxial state described above, and is defined by 

the stress tensor (Equation 2:38). We seek an expression, i.e. a function F, which is 

zero when yielding occurs. F has to be invariant meaning the following expressions 

hold in an arbitrary coordinate-system.  

 

 (𝜎  )  𝜎  𝜎           (2:52) 

 (𝜎  )     Elastic      (2:53)  

 (𝜎  )     Yielding starts     (2:54) 

 (𝜎  )     Above yield or failure     (2:55) 

 

We consider the isotropic case where the stresses can be expressed without the 

directions n. Therefore the following relation is generated where the stresses do not 

depend on chosen coordinate system 

 

 (𝜎  )   (𝜎  𝜎  𝜎 )     (2:56) 

 

It is of great advantage to express the criterion using invariants. This way the 

eigenvalue problem that has to be solved when determining the principal stresses can 

be avoided. The failure criterion can be expressed using the invariants explained in 

section (2.1, 2.2). The failure criterion is according to Ottosen and Ristinmaa (2005) 

especially convenient to express as 

 

 (          (  ))      (2:57) 

 

This set of invariants also gives a useful geometrical interpretation separating the 

hydrostatic stress,       from the amount of deviatoric stresses     and the direction of 

the deviatoric stress        
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To simplify the geometrical interpretation we introduce the Cartesian coordinate 

system so-called Haigh-Westergaard coordinate system. Consider a point, P, in the 

stress space 𝜎  𝜎  and 𝜎  and the unit vector n, diagonal in space. 

  
 

√ 
(     )  (2:58) 

 

Along the unit vector   all stresses are equal meaning, 𝜎  𝜎  𝜎   and it is a 

hydrostatic state. The plane perpendicular to the hydrostatic axis is the deviatoric 

plane, Figure 2:9 (Left). Projecting 𝜎  𝜎  and 𝜎  is a common way to visualise these on 

the deviatoric space, also called the         Figure 2:9 (Right). 

 

Figure 2:9 – Diagonal space (Left) and the  -plane (Right) (Ottosen and Ristinmaa 2005) 

 

The cos-function is periodic with a period of 360° and concludes the failure/yield 

curve in the deviatoric plane which is periodic with a period of 120°. Therefore it can 

be shown that the curve-function in the deviatoric plane is symmetric around       

   , 180  and     . From this follows that all states of stress in the deviatoric space is 

known if         is determined. In Figure 2:10, a possible shape of the failure 

and yield curve is showed as a convex curve (Ottosen and Ristinmaa 2005) 

 

Figure 2:10 – Possible shape of the failure/yield curve in the deviatoric plane. T=tensile meridian, C=compressive 

meridian, S=Shear meridian (Ottosen and Ristinmaa 2005) 
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The Figure 2:10 shows three meridians, which are of special interest. The meridian of 

the initial yield or failure surface is the curve obtained from the intersection between 

a plane containing the hydrostatic axis and the yield/failure surface, while   is kept 

constant. It is presented in the meridian plane, as a 
   

√ 
 √    -coordinate system, 

illustrated in Figure 2:11. 

 

Figure 2:11 – Meridian plane, θ is kept constant (Ristinmaa n.d) 

 

We arrange the principal stresses, with positive quantity denoted as tension, 

according to: 𝜎  𝜎  𝜎 . 

 

The points T, C and S intersecting the deviatoric plane, Figure 2:10 

 

𝜎  𝜎  𝜎                                              𝑠𝑖      𝑖 𝑖   

𝜎  𝜎  
𝜎  𝜎 

 
 𝜎                     𝑠        𝑖 𝑖   

𝜎  𝜎  𝜎                                               𝑠𝑠𝑖      𝑖 𝑖   

 

To identify points of intersection between the deviatoric plane, for a certain meridian 

in a multi-axial stress state, a triaxial test can be performed. In the triaxial tests it is 

only possible to test the material along two of the meridians, the tensile and 

compressive meridian (Figure 2:10) (Ottosen and Ristinmaa 2005). 

Presentation of the stress state can be done in different ways; in general geotechnical 

calculations it is presented in the MIT-plane where relation between shear and 

effective mean stress is denoted. For more advanced material models like the ones 
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used in FE-analyses the relations between deviatoric and effective mean stress are 

used. This is called the Cambridge-plane (Triax SGF, 2012). 

Due to the fact that the different planes have the same input parameters 𝜎  𝜎      𝜎  

theoretical relations make it possible to evaluate the corresponding strength 

parameters between the planes. Normally the evaluations are made under the 

assumption that the Mohr-Coulomb failure criterion is valid (            ).  

Two specimens with different pre-consolidation are tested (hydrostatic stress) and 

are then inserted into the diagram from the Mohr-circles. The strength parameters 

are then evaluated from the theoretical relations. 

Before going into specific material models it is convenient to separate friction 

materials from non-friction materials since experimental evidence indicate they 

behave differently. Initial yield of metals and steel is for an example characterised to 

be uninfluenced of the hydrostatic stress compared to friction materials such as 

concrete, soil and rocks where it has a strong influence. These materials also have a 

smooth stress-strain curve making it hard to determine the initial yield stress 

(Ottosen and Ristinmaa 2005). 

As this report is focusing on geotechnical calculations a summation of the friction 

materials experimental evidences is listed below. In Chapter 3 the relevant material 

models for this work are treated further. 

 Hydrostatic stress has a strong influence 

       is important to include. 

 The failure surface is convex in the deviatoric plane. 
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2.7 Post yield 
Having discussed the initial yield criteria i.e. the conditions when plastic effect first 

occurs, and before discussing the general plasticity theory further, some idealized 

stress-strain curves for the uniaxial case are introduced. This is to characterise a 

number of known responses. 

 

Figure 2:12 – Illustration of a known number of plasticity responses (Ristinmaa n.d) 
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Plane plastic strain 
As for the elastic case described earlier the plane plastic strains has to be derived to 

get some insight into the function and behaviour of the strain.  

For the plane strain case the deformations out of plane are equal to zero and the 

incremental strains therefore also have to be zero.     

 

𝜀 ̇  𝜀 ̇  𝜀 ̇    

 

The relation between the incremental stresses and strains are described below 

(Ottosen and Ristinmaa 2005). 

 

�̇�        
  𝜀 ̇    (2:59) 

     
         

 

 
     

  

    

  

    
      (2:60) 

 

The out of plane stresses are not necessarily equal to zero only because the strains 

are. Therefore the out of plane stresses and strain relations are described. 

Furthermore the below stated relations are components in the calculation of the yield 

function and are sometimes used in the calculation of hardening parameters, which 

will be described later on.  

 

�̇�        
  𝜀 ̇    (2:61) 

𝜀 ̇   ̇�̇�      (2:62) 

 ̇  
 

 

  

    
     𝜀 ̇    (2:63) 

 

The stiffness tensor of the isotropic elasticity for the plane plastic strain case is 

described as (Ottosen and Ristinmaa 2005) 

 

        [
 

 
 (             )  

 

    
      ] (2:64) 
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Hardening and Softening 
For understanding the Hardening/Softening phenomenon it is illustrated in Figure 

2:13 and hardening will be discussed in greater detail in Section 2.9. 

 

Figure 2:13 – Hardening and Softening behaviour (Ristinmaa n.d) 
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Post yielding 
Having discussed the stresses in Section 2.5, the current conditions (Post yielding) 

are presented below and illustrated in Figure 2:14. 

 

a) b) 

 

Figure 2:14 –Loading and reloading, σy0=initial yielding stress, σy=current yielding stress, ϵp=plastic strain   

(Ristinmaa n.d) 

 

When plastic loading is being applied plastic strains develop and the yielding 

criterion changes. Consider one load-cycle as in Figure 2:14a and it becomes evident 

that the yield stress has changed from its initial value 𝜎   to 𝜎  with the plastic 

deformations. As mentioned before the initial yield stress is generalised and 

described with the initial yielding surface. How the current surface evolves with the 

plastic loading is called the hardening rule.  What can also be seen in Figure 2:14b is 

that there is no unique relation between 𝜎 and  . Information is missing and the 

material is said to be history dependent.   

 

2.8 Hardening rule 
The initial yield surface is fundamental for the plasticity theory and we will in this 

section describe the mathematical expressions for how the yield surface evolves with 

the plastic strains. 

In general the initial yield surface for isotropic materials is described as 

 

 (𝜎  )     (2:65) 
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The current yield surface can be described by (Ottosen and Ristinmaa 2005) 

 (𝜎          )    (2:66) 

or 

 (𝜎     )     (2:67) 

 

Here the so-called hardening parameters          are introduced to characterise 

the changes of the yield surface, such as shape, size and position of the surface.  

The number of hardening parameters varies and it is therefore convenient to collect 

them in   . Before yielding occurs the hardening parameters    are by definition 

zero. 

To model the fact that    varies with the plastic loading it is assumed that there are 

internal parameters    that characterise the state of the elastic-plastic material. It is 

also appropriate to assume that the hardening parameters depend on the internal 

variables.  

The internal variables memorize the plastic loadings and by which follows that it also 

holds true for      𝑖 𝑖 𝑖     and since the hardening parameters are also zero, due 

to that no plastic strains have developed. 

 

      (  )  (2:68) 

where, 

        

               and for the elastic case 

 

To keep a unique relation between hardening parameters and internal variables it is 

reasonable to assume that the numbers of parameters are equal. We get the relation 

 

 ̇  
   

   
   ̇    (2:69) 

Let us now exemplify some of the different types of hardening, starting with the ideal 

plasticity where the yield surface is unaffected by the plastic deformation. 
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No hardening occurs and therefore no hardening parameters exist. As illustrated in 

Figure 2:15 the yield surface remains fixed in the stress space. And as stated below 

the initial- and the current yield surface coincide (Ottosen and Ristinmaa 2005). 

 

 (𝜎     )   (𝜎  )     (2:70) 

 

 

Figure 2:15 – Yield surface positioning with no hardening, a) Deviatoric plane ( (𝜎     )   (𝜎  )   ), b) 

Meridian plane (Ristinmaa n.d) 

 

For materials that show isotropic hardening where the current yield surface evolves 

with the plastic strains, the change of yield surface is described with the hardening 

function  ( ). 

 (𝜎     )   (𝜎  )      (2:71) 

 

The yield surface holds the same position and shape but differs in size as illustrated in 

Figure 2:16. 
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Figure 2:16 – Yield surface positioning with hardening, a) Deviatoric plane, b) Meridian plane (Ristinmaa n.d) 

 

Due to the uniform expansion of the yield surface the yield stress is predicted to be 

the same for both tension and compression as illustrated in Figure 2:17 (Left). This 

prediction has been proven to be rather inaccurate for steel and metal where the 

plastic strains seem to occur earlier in performed experiments. The Figure 2:17 

(Right) illustrate this phenomenon called the Baushinger effect (Ottosen and 

Ristinmaa 2005). 

  

  
Figure 2:17 – Uniform expansion of the yield surface (current yield stress in 

tension = current yield stress in compression) (Left), Baushinger effect 

(Right), (Ristinmaa n.d) 
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Kinematic hardening 
Kinematic hardening is a way of trying to approximate this effect where the size and 

shape are assumed to be constant but instead the position of the yield surface is 

changed with the plastic loadings.  

 

 

 

 

The so-called back-stress tensor     describes the position of the current yield surface. 

Having the hardening parameters expressed in terms of     we can model the 

kinematic hardening as 

 

 (𝜎     )   (𝜎      )    (2:72) 

 

In the last rule, the mixed hardening rule, the set of hardening parameters    depends 

on both the hardening parameters from isotropic hardening, K, and kinematic 

hardening,    .  

The mixed hardening rule can then be described by 

 

 (𝜎     )   (𝜎      )      (2:73) 

Figure 2:18 – Current yield surface depending on plastic history (Left), Size of current yield surface 

is constant i.e. Kinematic hardening (Right), (Ristinmaa n.d) 
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Figure 2:19 - Current yield surface moves and expands i.e. mixed hardening (Spetz 2012) 

 

For the mixed hardening the yield surface has the same shape but changes position 

and/or size with the plastic loading. 
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3   Material Models 
To accurately model different types of soil material a soil model must be used. 

It is possible to choose and create your own material models in Plaxis but to simplify 

the calculations and modelling, Plaxis have in its software created a number of 

different soil-models that are based on traditional models (Plaxis 3Db 2013). The 

models chosen in this dissertation are presented below. 

 

3.1 Mohr-Coulomb model 
When modelling soil mechanics the Mohr-Coulomb yield criterion is the most used. 

The model is based on the Coulomb criterion established in 1773 by Charles-Augustin 

de Coulomb. The Mohr-Coulomb failure criterion is the first to account for hydrostatic 

stresses and it describes that the maximum shear stress 𝜏    varies with the normal 

stresses 𝜎  (Ronaldo 2013). 

 

𝜏      𝜎      (3:1)  

 

Mohr-Coulomb yield criterion 
If yielding is assumed to be analogous with failure then the Mohr-Coulomb yield 

criterion becomes analogous with Equation 3:1 above. Figure 3:1 illustrates the 

relation between the shear strength 𝜏   , the normal stresses 𝜎 .   is the angle of the 

envelope, c the cohesion that can be evaluated as the intercept of the 𝜏-axis and the 

envelope (Ronaldo 2013).  
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Figure 3:1 – Mohr-Coulomb failure envelope (Ronaldo 2013) 

To be able to apply the yield criterion in three dimensions Equation 3:1 needs to be 

reformulated in terms of an isotropic yield function. Using  (         ) with the same 

convention as in Section 2.7, it is possible to express the yield function as 

 

 (𝜎    𝜎   )          (𝜎    𝜎   )     (3:2) 

 

In Plaxis the Mohr-Coulomb yield condition consists of six yield functions (Plaxis 2Db 

2013): 
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Appearing in the yield functions are friction angle 𝜑 and cohesion c (Equations 3:3-

3:8). The condition (fii = 0) represents a hexagonal cone illustrated in Figure 3:2 

(Plaxis 3Db 2013).  
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Figure 3:2 – Illustration of the failure surface in the principal stress space for a non-cohesive soil 

(Plaxis 3Db 2013) 

 

For the Mohr-Coulomb material model in addition six plastic potential functions are 

used (Plaxis 3Db 2013).  
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The plastic potential function contains the parameter dilatency angle (ψ) which is 

required in order to model positive plastic volumetric strain increments. It should be 

mentioned that clay soils tend to show very low dilatency angles (   ) (Plaxis 3Db 

2013). 
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3.2 Hardening Soil model 
The Hardening soil model is an elasto-plastic model which takes into account 

isotropic hardening. To be able to understand the inner workings of this model, a 

more thorough description will be presented. 

The hardening soil model is compared to the Mohr-Coulomb model not fixed in the 

principal stress space but the yield surface can be expanded due to plastic straining. 

The model is based on the hyperbolical model (Ottosen and Ristinmaa 2005) and the 

model takes into account two different types of hardening, namely shear and 

compression hardening.  

The shear hardening is a result of irreversible strains due to primary deviatoric 

loading and the compression hardening is a result of primary compression in 

oedometer and isotropic loading. 

Due to the very complex nature and calculations performed in the Hardening soil 

model the number of input variables is high. Therefore it should be mentioned that 

even if the model is strong and is a good way of describing real life materials it is still 

dependent of inputs. Without access to these input parameters a different model 

should be used. 

A list of parameters is given in Table 3:1 

 
Table 3:1 –Parameter specification for the hardening soil model (Plaxis 3Db 2013) 

    
  Effective cohesion kN/m2 

𝜑  Effective angle of internal friction   

  Angle of dilatancy   
Eref50 Secant stiffness at a reference stress level kN/m2 
Erefoed Oedometer modulus at a reference stress level kN/m2 
Erefur Unloading/reloading stiffness at a reference stress level kN/m2 
m Power for stress-level dependency of stiffness - 
    Poisson’s ratio for unloading/reloading - 
pref Reference stress for stiffness’s kN/m2 
Knc0 K0-value for normal consolidation - 
Rf Failure ratio - 
zref Reference level m 
c’inc As for Mohr-Coulomb model kN/m3 
Cc Compression index - 
Cs Swelling index or reloading index - 
einit Initial void ratio - 
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From the list of parameters in Table 3:1 we can easily distinguish the ones used for 

the linear-elastic case and the ones that are specific for this method. Due to the fact 

that some of the parameters are the same as in the earlier described model, only the 

new parameters will be presented. 

 

Hardening Soil 
The basics of the model lie in the stress dependencies of soil stiffness and for this 

particular model the oedometer conditions are described through the relation: 

 

𝐸    𝐸   
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  (3:15) 

 

For the cases of soft soils were     the equation is modified (Plaxis 3Db 2013) into 
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Hyperbolic relationship and approximation 

The formulation of the relationship between the vertical strain and the deviatoric 

stress (Hyperbolical relationship) is in primary triaxial-loading described as 
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   (3:21) 

 

This relation between Ei and E50 is plotted in Figure 3:3 and is described with the 

following function (Plaxis 3Db 2013) 

 

𝐸   𝐸  
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 (3:22) 

 

where the Eref50 is the reference stiffness modulus. The stiffness modulus is 

corresponding to the pressure pref in Plaxis (Plaxis 2013). 

The ultimate deviatoric stress is derived through the Mohr-Coulomb criterion 
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 (3:23) 

 

When q=qf the failure criterion is obtained and plastic yielding occurs.  

For the case of unloading and reloading stress paths however, another stiffness-

model is used. This is visualised in Figure 3:3 below and is obtained through the 

equation 
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 (3:24) 
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Figure 3:3 - Unloading and reloading stress paths (Plaxis 3Db 2013) 

With Hooke’s law for isotropic elasticity the conversion between E and G is described 

by E=2(1+ )G, this gives us 

𝐸    (   )      (3:25) 

 

For convenience a restriction to triaxial loading is made to approximate the 

hyperbola by the hardening soil model.  

The approximation of the hyperbola is restricted to 𝜎 
  𝜎 

   and 𝜎 
  as the 

compressive stress. The approximation originates in the shear hardening yield 

function (Plaxis 3Db 2013) 

 

   ̅  𝛾     (3:26) 

 

Where   ̅and 𝛾  is described by 
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This means that 
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Through further derivation of the previously presented equations it is concluded that  

 

 𝜀   𝜀 
  𝜀 

  
 

  

 

  
 

  

     (3:30) 

 

The hardening soil model enables infinite compressive stresses but with the 

introduction of a yield cap these can be limited (Plaxis 3Db 2013). 

 

Introduction of yield surface cap for the hardening soil model 

To explain and include the plastic volume strains in isotropic compression a second 

type of yield surface is introduced to enclose the elastic region for compressive stress 

paths. This cap ensures the possibility to model with independent input from 𝐸  
   

 

respectively 𝐸   
   

. These parameters control the shear yield surface and the 

oedometer modulus. 

 

 

Figure 3:4 – Illustration of the yield surface cap (Plaxis 3Db 2013) 

 

From the Figure 3:4 one can formulate a deeper understanding of the yield surface for 

the hardening soil model. With the yield lines and the yield surface in principal stress 

space visualising that the yield cap has a hexagon shape much like the Mohr-Coulomb 

failure criterion. The cap expands in relation to   (pre-consolidation stress) and is 

described by the function 3:31 (Plaxis 3Db 2013). 
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 ̃ 

  
       

  (3:31) 

 

For full derivations for the equations presented for the hardening soil model the 

reader is referred to the Plaxis Material Model Manual (Plaxis 3Db 2013). 
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4 Calculations and 

Modelling Methods 
To evaluate the outcome, when approximating 3D-effects, two generalised cases (one 

model with no retaining structure, and one with retaining structure) are applied. 

They are both analysed analytically with and without the use of end-surface effects 

and also analysed numerically in Plaxis 2D and 3D. The calculations and modelling for 

each case are performed for a number of different geometries, described later in this 

chapter. 

Neither the 2D-calculations for calculating total stability or the approximation used 

for 3D-effects are originally made for problems involving constructions (such as a 

retaining wall). It is therefore of interest to model and compare the results between 

the two generalised cases.  

The sloped excavations, where corners and thus interactions between sides are 

introduced into the model, are used to compare the analytical and numerical 

calculations on a case that is valid in accordance with the CSS report 3:95. It is also 

used to evaluate what happens around the corners and the interaction between sides.  

The excavations with retaining structures are modelled and compared to the sloped 

excavation. In this model there are stabilising effects from the structures as well. It 

has also been noticed that Plaxis is limited to model the retaining structure with a 

linear-elastic material model. In this model, which we call the boxed excavation, the 

retaining structures are connected between sides and allowed to take unreasonably 

big moment (due to the fact that they don’t plasticise), which is making the calculated 

FS misleadingly high.  

To cope with this limitation in Plaxis 3D the same model has been analysed but with 

the retaining structure along one side and prescriptions in the material illustrating 

retaining structures along the other sides without the connections in the structure 

corners.   

The goal of the created models is to enable generalised cases for which the total 

stability failure can be studied for different lengths of the longest side in the 

excavation. For all of the different models the Factor of Safety is compared for 
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respective calculation-method. This is done to determine how and if they differ from 

each other. 

After the generalised models have been created, a similar work process is applied to a 

real-life case to see if a case with real-life parameters and structures behave in 

accordance with the generalised models. 

This work investigates behaviour in total stability and it is important that the 

calculated FS can be traced to this type of failure mechanism.  For example 

excavations with a width smaller than the length of the critical slip surface at the 

bottom of the excavation can therefore no longer be compared in terms of total 

stability.  Here the failure mechanism is thought to be bottom heave and is therefore 

not included in this project.   

 

4.1 Software introduction 

Slope/W 
Slope/W is a part of the Geostudio-series alongside a number of different analytical 

geotechnical calculation software used for different problems. The Geostudio-software 

is created by Geo Slope International (Geo-Slope International 2012). 

Slope/W is designed to calculate slope stability; it uses moment and force equilibrium 

equations to calculate the stability.  For the calculations in Slope/W the different slip 

surfaces evaluated are split into a number of slices (see Section 2.1) and then 

calculated. The program then evaluates a number of slip surfaces to find the most 

critical one (Geo-Slope International 2012). With the aid of Slope/W the user has the 

possibility to find and calculate a huge number of different slip surfaces much faster 

than possible by hand calculations.  

Slope/W includes a number of different methods for calculations; the one used in this 

work is the Morgenstern-Price method. This method is explained further in Section 

2.1.  

From the calculations performed in Slope/W the user gets useful and necessary 

results. In this work the following results are used from Slope/W: factor of safety, 

activating moment, retaining moment, area of slip surface and radius of slip surface. 

Depending on how the retaining structure is constructed i.e. how the wailing beams is 

supported, different assumptions of the acting force at each level can be made. 
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If the wailing beam is anchored between the retaining structure and the slip surface 

(internally supported) it should in the opinion of the authors have no influence on the 

total stability. If the sliding body on the other hand is externally supported with for 

example beams against the wailing beams it seems reasonable to include these forces 

in the analytical equilibrium equations. This is later verified by comparing the 

analytical calculations to the numerical calculations in 2D-Plaxis.  

 

Plaxis 2D and Plaxis 3D 
Introduction 

Plaxis is one of the most used numerical programs for performing analyses of 

deformation, stability and of water flow in geotechnical engineering.  

In this work two versions of Plaxis are used, the 2D version (Plaxis 2D) and the 3D 

version (Plaxis 3D). Plaxis 2D includes methods for calculating static elastic-plastic 

deformations, stability analysis, consolidation, safety-analysis and steady-state 

groundwater flow.  

Plaxis 3D is similarly equipped with several features to deal with various aspects of 

complex geotechnical structures and construction processes. The workflow in Plaxis 

enables the user to model the real workflow in different phases meaning, for example, 

that different parts of the excavation and activation of retaining structures can be 

modelled in accordance with the actual workflow. 

In this work Plaxis 2D is mainly used for modelling the total stability. This is done to 

be able to verify that the FE-calculations generate the same FS out of the same 

conditions as the analytical 2D calculation does. 

With Plaxis 3D complex 3D-geometries of soil can be defined for soil modelling. With 

a wide variety of different material models it is able to give a good representation of 

the real materials. The material models used in this work are the Mohr-Coulomb 

model and the Hardening soil model. These material models and how they are 

handled by Plaxis are explained more thoroughly in Chapter 3. Information regarding 

which material model the different cases are modelled in is presented in respective 

sections in Sections 4.2-4.4. 

 

Mesh 

In order to perform FE-calculations the geometry has to be to be divided into finite 

elements. A short introduction to the different elements available follows below. The 
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composition of these elements is called the mesh and it is automatically generated by 

Plaxis.  

The resolution of the mesh should be sufficiently fine to obtain accurate finite 

element calculations (Plaxis 3Da 2013). Plaxis recommended mesh is not always 

sufficient and the meshing is of great importance when determining the FS. This has 

become apparent during the modelling process, as well as for other users (Persson 

and Sigström 2010). Therefore the mesh should be created in various levels of 

resolution to ensure that the Factor of Safety in the end does not change with a finer 

setting of the mesh. Examples of meshing for the models conducted in this work can 

be seen in Appendix B. 

 

Elements 

The default and recommended element used for soil and volume clusters in Plaxis 2D 

is the 15-node element. The elements provide a fourth order interpolation for 

displacements and the numerical integration involves twelve Gauss Points as 

illustrated below. Simplified elements are available; they do not give as good results 

as the 15-node element but require less memory (Plaxis 2D 2013). 

 

Figure 4:1 – Illustration of the node and stress points positions in a 15-node element (Plaxis 2D,  2013) 

 

Structural elements used will by Plaxis automatically be assigned elements to be 

compatible with the chosen soil element (Plaxis 2D 2013). 

 

Fixed end anchor 

A point element fixed in the structure in one point and “fixed in space” on the other 

side. The fixed end anchors are used to simulate the shoring supporting the retaining 

structure.  
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Plate Elements 

Plates are structural elements used for modelling slender constructions with material 

parameters EI, EA and     (    is the equivalent thickness). The plates are used to 

simulate the retaining wall, influence from walls and other similar constructions.  

The 5-node plate elements are compatible with the 15 node soil elements. The 

bending moments and axial forces are possible to evaluate from the stresses at the 

stress points shown in Figure 4:2. 

 

 

Figure 4:2 – Illustration of the node and Gaussian stress point positions at the plate elements (Plaxis 2D 2013) 

 

Plaxis 3D elements 

The default soil elements in the FEM mesh is 10-node tetrahedral elements Figure 

4:3. The elements that interact with these soil elements are; beam elements that fit the 

3-node of the soil elements edges, interface elements that are 12-node element for 

simulation of the interaction between soil and structural elements and 6-node plate 

and geogrid elements for plates and geogrid respectively.  

For further information about the elements in Plaxis 3D the reader is referred to the 

Plaxis reference and scientific manuals (Plaxis 3D 2013), (Plaxis 3Db2013). 
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When modelling the constructions for this work the additional element when 

modelling in 3-dimensions is wailing beams supporting the retaining wall in-between 

the supporting shoring.  

 

Figure 4:3 – Tetrahedral 10-node soil element (Plaxis 3Db 2013) 

 

Safety calculation 

The safety calculation mode in Plaxis successively reduces the parameters 𝜑         

over a certain number of steps until failure occurs. The structural strength is not 

influenced by the reduction process.  

The safety calculation is performed with the Load advancement number of steps 

procedure in Plaxis. The multiplier     specifies the incremental strength reduction 

at the first step. At the start of the calculation it is set to 1.0 and the increments is by 

default set at 0.1.  

The strength parameters are reduced successively until failure occurs. Then it 

recalculates the last step in the same manner until the target value of      is reached 

exactly (Plaxis 3D 2013). 

 

     
         

           

 
      

        
 

        

          
 (4:1) 

 

When the last step has resulted in failure the factor of safety is given by; 

 

   
                  

                    
       (4:2) 
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Boundary conditions 

Plaxis 2D automatically sets the deformations along the bottom boundary to fully 

fixed and fixes the deformation in the X-direction      along the symmetry line. 

The corresponding is done for each of the vertical model boundaries in Plaxis 3D as 

shown in Figure 4:4; 

 

Figure 4:4 – Illustration of the outer boundaries of the geometry (Plaxis Tips n.d) 

 

Regardless of the symmetry the slope and excavation in this work are modelled with 

sufficient lengths prior to and after itself so that these lengths do not affect the 

determination of the critical slip surface. The depth of the soil layer is also modelled 

to such depth that the critical slip surface is not affected by chosen boundaries. A 

simple test performed in Plaxis 2D is made to verify that the thought symmetry line 

works in a satisfying manner. This is presented in Appendix C. 

Boundary conditions between the retaining structures and the soil are modelled with 

interfaces. Interfaces are joint elements that enable control of the soil-structure 

interaction. For the models in this work the strength of the interface is to be full, 

meaning          (Plaxis 3Da 2013). Therefore no interface elements have been 

used.  

The assumption of full interaction between soil and structure is based on a survey 

made 2002 at Götatunneln (the same site as for the Västlänken project). Pull-out tests 

were performed showing that the interaction is 98% for diaphragm walls performed 

in bentonite slurry and full interaction for other solutions (Engelstad 2002). 
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Drainage situations 

Plaxis offers a number of different ways to perform the FE-analysis; drained analysis, 

undrained analysis and partially drained analysis. In this work the analysis is 

performed assuming undrained conditions for the clay material and drained for the 

fill material. Undrained analysis suits clay material in short-term perspective, which 

is suitable when calculating total stability for the excavations.  

There are three ways of evaluating undrained behaviour in Plaxis; undrained A, B and 

C. In Plaxis 2D and 3D, undrained B is chosen due to the fact that the friction angle in 

the clay is zero and the cohesion is equal to the undrained shear strength    in the 

models. The authors used Plaxis to generate the pore pressure (Plaxis 3Db 2013). For 

our models the excavations are considered to be time limited and the undrained 

shear strength is the parameter best known for the real-life case. 

 

Initial stress generation 

Initial stress generation can be modelled in two ways in Plaxis, either by the    

procedure or by gravity loading. The initial stress generation in the models for this 

work is done with the    procedure which is a direct input method used when    
  

  
, the ratio between horizontal and vertical stresses is known and defined for each 

soil layer. 

  

4.2 Generalised slope 
The input parameters, geometrical data and other generalisations will be presented 

in this section of the report. It enables the recreation of the results that are presented 

later on.  

The goal when creating this generalised slope has been to choose such geometry and 

material parameters that the generated slope will fail due to its own weight and 

therefore have a Factor of Safety less than one (FS<1) for the 2D-calculations. The 

parameters, simplifications and generalisations made follows below with comments 

on why and how these are made. 
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Geometry 
The slope chosen for the generalised model has a height of four meters and a length of 

six meters. This gives a slope at a 1:1.5 ratio. The height, length and width of the soil 

surrounding the slope are set to values which ensure that the slope itself is not 

affected by the size of the surrounding model.  

 

 

Figure 4:5 – Illustration of the geometry modelled in Plaxis 2D, for the generalised slope, height=4 m, width=6 m. 

The model shown above is cropped and does not show the total depth.  

 

 

Figure 4:6 – Illustration of the geometry modelled in 3D, height=4 m, width=6 m. The model shown above is 

cropped and does not show the total depth.  
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To calculate the critical slip surfaces for the analytical calculations, Slope/W is used. 

The input-parameters used are specified in Section 4.2. 

 

 

Figure 4:7 – Illustration of geometry used for calculations in Slope/W, height=4 m, width=6 m 

 

Water   
Due to the fact that the model is defined for cohesion materials the water level is set 

to follow the ground level. This means that the soil is always fully saturated. The 

drainage type used in Plaxis 2D and Plaxis 3D is Undrained B. After the excavation 

phase the area excavated is considered pumped dry (light area). 

 

Figure 4:8 – Positioning of water level 
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Parameters 
The parameters used for the soil model are presented in the table below (Table 4:1). 

The Mohr-Coulomb material model is chosen for Plaxis 2D- and 3D-analyses and the 

Morgenstern-Price method for the analytical calculations in Geostudio – Slope/W. 

 
Table 4:1 –Parameter specification for the generalised slope 

Input Parameters 
Name Variable Value Unit 
Height of slope h 4 m 
Length of slope l 6 m 

Water level is equal to ground level. i.e. Fully saturated 
Material    
Unit Weight of soil 𝛾     16 kN/m3 
Cohesion c 9 kPa 
Cohesion increase      0.3 kPa/m 
E-modulus E 7500 kPa 
Poisson’s ratio   0.2 - 
Initialising K K0 0.6650 - 

 

Mesh 
The meshing is of great importance when determining the Factor of Safety.  Therefore 

the mesh is done in accordance with the software introduction Section 4.1.  

 

4.3 Generalised excavation pit with retaining structure     
Similar as for the generalised slope without retaining structures this model has 

parameters chosen to achieve a Factor of Safety that is less than one (FS<1) in 2D-

calculations. The length and type of the retaining structure is determined based on 

calculation methods from Ryner, et al. (1996). The material parameters for the 

anchors and beams have also been calculated according to theory stated by Ryner, et 

al. (1996). 

 

Geometry 
This model has the geometry of an excavation pit. The depth of the excavation is four 

meters and the retaining structure continues down another three meters below the 

bottom of the pit. The retaining structure is supported by wailing beams and shoring.  



 

54 
 

The supporting structure is attached at one meter from the top of the wall and the 

shoring is attached every five meters along the sides see Figure 4:9. In the 2D-figure 

the shoring is placed in the z-direction (into the paper).  

 

Figure 4:9 – Illustration of the geometry modelled in Plaxis 2D, for the generalised slope with retaining structure, 

height=4 m, height of retaining structure=7 m. The model shown above is cropped and does not show the total 

depth. 

 

 

Figure 4:10 – Illustration of the geometry modelled in 3D, for the generalised slope with retaining structure, 

height=4 m, height of retaining structure=7 m. The model shows the boxed system 
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To cope with the limitation of just being able to model structures in linear elastic 

material in Plaxis 3D the same model has been modelled but with the retaining 

structure along one side and prescriptions in x-directions in the material simulating 

retaining structures along these sides. This enables the models to be created without 

the problematic structural connections in the corners but the effects of the 

surrounding materials and length limitation is still enabled. The difference can be 

seen by comparing Figure 4:10 and Figure 4:11. 

 

 

Figure 4:11 – Illustration of the geometry modelled 3D, for the generalised slope with retaining structure, 

height=4 m, Prescribed height and height of retaining structure =7 m. The figure shows the model with retaining 

structure on one side and prescriptions on the other two. 

 

To find and calculate the critical slip surfaces Geo Studio – Slope/W is used. The input- 

parameters used are the ones specified in the parameters section. The wailing beam 

force levelled at -1 m has a minor influence in this calculation and is therefore left out. 
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Figure 4:12 - Illustration of geometry used for calculations in Slope/W, height=4 m, height of retaining structure = 

7 m 

 

Water   
Due to the fact that the model is defined for cohesion materials the water level is set 

to follow the ground level. This means that the soil is always fully saturated. The 

drainage type used in Plaxis 2D and Plaxis 3D is Undrained B. After the excavation 

phase the area excavated is considered pumped dry (light area in Figure 4:13). 

 

Figure 4:13 - Positioning of water level, before and after excavation 
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Parameters 
The parameters used for the soil model are presented in Table 4:2. The material is the 

same as for the generalised slope. The Mohr-Coulomb material model is chosen for the 

Plaxis 2D and 3D FE-analysis and the Morgenstern-Price method for the analytical 

calculations in Geostudio – Slope/W.  

 
Table 4:2 - Parameter specification for the generalised slope with retaining structure 

Input parameters 
Name Variable Value Unit 

Height of slope H 4 m 
Height of retaining structure Hsp 7 m 
Height of prescribed sides Hp 7 m 

Water level is equal to ground level. i.e. Fully saturated 
Soil Clay 

Unit weight of soil 𝛾     16 kN/m3 
Cohesion  c 9 kPa 
Cohesion increase      0.3 kPa/m 
E-modulus E 7500 kPa 
Poisson’s ratio   0.2 - 
Initial K K0 0.6650 - 

 
Plate  

Thickness  t 0.006 m 
Thickness (cross section) h 0.22 m 
Elasticity modulus Esteel 210*109 kPa 
Area (cross-section) A 0.00101 m2/m 
Moment of inertia I 6.6*10-5 m4/m 
Unit weight steel 𝛾 78.50 kN/m3 

 
Beam  

Elasticity modulus E 210 GPa 
Area (cross-section) A 0.01314 m2 
Unit weight 𝛾 78.50 kN/m3 
Moment of inertia I2 0.06595*10-3 m4 
Moment of inertia I3 0.1927*10-3 m4 

 
Anchor  

Elasticity modulus E 210 GPa 
Area (cross-section) A 0.002124 m2 
Anchor spacing Lspacing 5 m 
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Mesh 
The meshing is of great importance when determining the Factor of Safety.  Therefore 

the mesh is done in accordance with the software introduction in Section 4.1. 

Example of meshing quality can be seen in Appendix B. 

 

4.4 Real-life case (Västlänken project) 
As for the generalised case with retaining structure this model is conducted in a 

similar fashion as explained previously but with parameters and structures from a 

real-life project. The parameters and geometry used in this model are listed below.  

Another task for this particular case is to evaluate how big sections with a 70 meter 

wide excavation (with retaining walls) that can be dug-out and still satisfy the factor 

of safety used in the Västlänken project (FS>1.56). 

 

Geometry 
The model has the geometry of an excavation. The depth of the excavation is 15 m 

and the retaining structure continues down an additional 23 m below the bottom of 

the pit. The retaining structure is supported by four wailing beams with shoring 

every 10 m. The levels where the wailing beams are installed are at 1, 6, 11 and 13.5 

m beneath the surface. 

To find and calculate the critical slip surfaces Slope/W is used. The input-parameters 

used are specified in the parameters section. 

On the right hand side in Figure 4:14 the length of the excavated area is 35 meters 

from the retaining wall to the symmetry line i.e. the width of the excavation is 

constantly kept to 70 meters. This is done due to the fact that this is the sought length 

of the sections for the project. Also true for this model is that, the conditions for this 

failure mechanism must be allowed in accordance with previous statements. 

In this case the same method as for the generalised case with retaining structure is 

used to deal with the limitations in Plaxis 3D. The 3D-models therefore contain one 

side with retaining structure and prescriptions on the other two.  
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Figure 4:14 – Geometry illustration for Plaxis 2D-model 

 

The model is in correlation with previous models, defined with sufficient length on 

the left hand side of Figure 4:14 so that the placement of the critical slip surface is not 

affected. The depth of the soil layer is also modelled to such a depth that the slip 

surface is not affected. 

 

Figure 4:15 – Illustration of the geometry modelled 3D. The figure shows the model with retaining structure on 

one side and prescriptions on the other two. 
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For the calculations performed in Slope/W the geometry is modelled as can be seen in 

Figure 4:16. In the analytical calculations the method does not allow for a symmetry 

line and the length is therefore set to the full width of 70 meters to allow the critical 

slip surface inside the excavation.  

 

 

Figure 4:16 – Illustration of geometry in Slope/W 

 

When calculating the FS with Slope/W point loads are included in the model to 

simulate the shoring that is used. The magnitude of these point loads are determined 

through 2D calculations performed in Plaxis 2D. The usage of these point loads in the 

analytical calculations is later validated to some degree by comparing the analytical 

FS and the FS calculated in Plaxis 2D. The exact values of the extracted point loads 

(from Plaxis 2D) can be seen in Appendix D. 
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Water   
For this case the water level is found at +0.5 m (1.5 m from the surface). The 

excavation is considered dry in every new excavation step simulating a pump that is 

used to pump the water out at all times. The drainage type used in Plaxis 2D and 

Plaxis 3D is Undrained B.  

 

Mesh 
The meshing is of great importance when determining the Factor of Safety.  Therefore 

the mesh is done in accordance with the software introduction in Section 4.1. 

Example of meshing quality can be seen in Appendix B. 

 

Parameters 
The parameters used for the soil model are presented in Appendix A and the 

structural parameters in Table 4:3. The dimensioning of the structural parameters 

has been made in accordance with Ryner, et al. (1996) for the Västlänken projects 

geometrical and material conditions.   They are presented in term of how they are 

inserted in Plaxis 

The material model chosen in Plaxis 2D and 3D is the Hardening Soil model and for 

the analytical calculations are made in Slope/W using the Morgenstern-Price method. 
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Table 4:3 - Parameter specification for the real-life case  

Input parameters 
Name Variable Value Unit 

Height of slope H 15 m 
Height of sheet pile Hsp 38 m 

Water level is at 0.5 meters. During the excavation process the excavated pit is considered 
dry. 

Soils  
Input parameters for the soil materials can be seen in the Appendix A. The soils are divided 

into Fill 1, Fill 2 and Clays 1 to 7. 
Plate (Retaining wall) Isotropic 

Thickness t 1.0 m 
Thickness (cross section) h 0.22 m 
Elasticity modulus E1       GPa 
Elasticity modulus E2 14.71 GPa 
Shear modulus G 5.658 GPa 
Moment of inertia I 6.6*10-5 m4/m 
Unit weight 𝛾 25 kN/m3 
Poisson’s ratio   0.3 - 

 
Beam 1 (Wailing Beam 1) 1 (1m) 

Elasticity modulus E 210 GPa 
Area (cross-section) A 0.06900 m2 
Unit weight 𝛾 78.50 kN/m3 
Moment of Inertia I2 0.0006407 m4 
Moment of Inertia I3 0.01673 m4 

Beam 2 (Wailing Beam 2,3,4)  (-4m, -9m, -11.5m) 
Elasticity modulus E 210 GPa 
Area (cross-section) A 0.1080 m2 
Unit weight 𝛾 78.50 kN/m3 
Moment of Inertia I2 0.002626 m4 
Moment of Inertia I3 0.03362 m4 

 
Anchors (Shoring)  

Elasticity modulus EA 13.15 GN 
Anchor spacing Lspacing 10 m 
Max, tension Fmax, tension 22.22 MN 
Max, compression Fmax, compression 19.50 MN 

 
Point loads (For Slope/W) Load against retaining wall from inside of excavation. 

+1m PL1 40.5 kN 
-4m PL-4 677.8 kN 
-9m PL-9 1084 kN 
-11.5m PL-11.5 882 kN 
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5   Results 

5.1 Generalised slope 
Two-Dimensional calculations 

From Slope/W resulting FS and the positioning of the critical slip surface is given and 

can be viewed in Figure 5:1. 

 

 

Figure 5:1 – Result generalised slope in Slope/W, FS = 0.92 

 
Table 5:1 – Results generalised slope  

2-Dimensional analytical results 
Factor of Safety 0.92 - 
Areaslip surface 55.675 m2 
MResisting 1752.8 kNm 
MActivating 1906.1 kNm 
Radius 8.575 m 
C (Equation 2:6) 2.793 m 
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The FS calculated in Plaxis 2D is 0.93. It is similar to the one obtained from the 

analytical calculations. 

                 

 

Figure 5:2 – Result, generalised slope Plaxis 2D, FS = 0.93 

 

The deformation shows a similar pattern as for the analytical calculations when 

looking at the Plaxis 2D results seen in Figure 5:2. 

For the 2D-calculations the results are plotted in Figure 5:3. These results do not 

consider any 3D-effects.  

 
Table 5:2 - Result 2D 

Results 2D 
 2D – Analytical Plaxis 2D 

Factor of Safety 0.92 0.93 
 
 

2D-Calculations with 3D-effects 
The results for the 2-Dimensional FS are increased with the additional 3D-effects. In 

correlation with CSS report 3:95, the Factor of Safety has been evaluated for a number 

of different slip surfaces to ensure that the slip surface chosen still is the most critical 

one even after the increase. 

In Figure 2:3 the increased FS is plotted for each length. It is presented, in a 

logarithmic scale. 
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Figure 5:3 – 2D-calculations for the generalised slope 

 

It can be seen that the retaining structure will collapse if calculated analytically in 2D 

(FS=0.92). When considering end surface effects however the system is stable until 

somewhere between 15 and 20 meters (FS   1). This applies for both      and 

        (FSP- Planar end surfaces, FS3-Dim- Reduced due to non-planar end surfaces). 

 

Three- Dimensional calculations 
3D-models for the different dimensions are evaluated to view the overall 3D-effect for 

sloped excavations when the different sides interact with each other. Figure 5:4 

shows the total deformation of the sloped excavation in plane. There is nothing for 

any of the modelled dimensions indicating that the slopes cannot be approximated as 

separate slopes limited by the corners of the excavation. The failure in these models is 

total stability failure (Figure 5:5), arising at the middle of the sides and not in the 

corner why the interaction between sides is no problem for these generalised sloped 

excavations.  
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Figure 5:4 – Result, generalised slope Plaxis 3D, 40m (length of slope) 

 

 

Figure 5:5 – Result, generalised slope Plaxis 3D, 40m (length of slope),  

Critical slip surface in the middle of one side 

 

The FS calculated in Plaxis 3D is compared to the analytically approximated FS in 

Figure 5:6. The values are also presented in  

Table 5:3.  

Studying Figure 5:6 it is apparent that the sloped excavation pits smaller than 15X15 

m has a much higher FS in the FE-models than in the analytical calculations. This is 

thought to be geometrical effects that will be discussed later. 

The analytically calculated FS is on the safe side compared to the numerically 

calculated FS. The difference between FSP and FSPlaxis 3D is presented in percentage in  
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Figure 5:6 – Result summarization – Generalised slopes 

 
 

Table 5:3 - Result summarization – Generalised slopes 

Factor of Safety – all calculation types for different widths of the slope 

Length 
of slope 

(m) 

2D - 
Calculation 

2D- 
Plaxis 

FSP FS3D FS3D Plaxis Diff. FSP and 
FS3D Plaxis 

(%) 
7 0.92 0.93 1.15 1.11 1.48 27.9 % 

10 0.92 0.93 1.08 1.05 1.30 19.7 % 

15 0.92 0.93 1.03 1.01 1.18 14.4 % 
20 0.92 0.93 1.00 0.99 1.15 14.7 % 

30 0.92 0.93 0.97 0.96 1.12 14.7 % 
40 0.92 0.93 0.96 0.95 1.1 14.5 % 
80 0.92 0.93 0.94 0.94 1.05 11.4 % 

160 0.92 0.93 0.93 0.93 0.99 6.3 % 

 

  

0,900

1,000

1,100

1,200

1,300

1,400

1,500

1,600

5 50

Fa
ct

o
r 

o
f 

Sa
fe

ty
 (

-)
 

Length of slope (m) 

Result - Generalised slopes 

3D-Plaxis

2D-Analytic

2D-Plaxis

FS3D

FSP



 

68 
 

5.2 Generalised excavation pit with retaining structure 

Two-Dimensional calculations  

From Slope/W the resulting FS and positioning of the critical slip surface is given and 

can be viewed in Figure 5:7. The shoring has not been considered for the analytical 

calculations, as discussed in Section 4.1. If the shoring is handled as an internal or 

external force makes a difference. This was noticed when modelling the later on 

presented real-life case and is not considered in the generalised case. 

 

Figure 5:7 – Results Slope/W, FS=0.88 

 

Table 5:4 – Results Slope/W 

2-Dimensional analytical results 
Factor of Safety 0.88 - 
Areaslip surface 62.437 m2 
MResisting 1899.2 kNm 
MActivating 2159.8 kNm 
Radius 9.360 m 
C (Equation 2:6) 2.817 m 
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The FS calculated in Plaxis 2D is 0.93. It is similar to the one obtained from the 

analytical calculations but with a small difference due to the shoring. 

 

                 

 

 

Figure 5:8 – Results Plaxis 2D, FS=0.93 

The FS for the 2D-calculations are shown in Table 5:5. 

 
Table 5:5 - Result 2D 

Results 2D 
 2D – Analytical Plaxis 2D 

Factor of Safety 0.88 0.93 
 

 

2D-Calculations with 3D-effects 
The results for the 2-Dimensional FS are increased with the end surfaces shear forces. 

In correlation with the CSS report 3:95, the FS has been controlled for a number of 

different slip surfaces to ensure that the slip surface chosen still is the most critical 

one even after the increase. 
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After evaluating different slip surfaces it is concluded that the critical slip surface has 

changed when considering 3D-effects. This updated slip surface is the one presented 

in Figure 5:7.  

In Figure 5:9 the increased 2-Dimensional FS is shown for each length, calculated 

according to the CSS report 3:95. 

 

 

Figure 5:9 – Results for 2D calculations 

 

It can be seen that the retaining structure will collapse if calculated analytically in 2D 

(FS=0.88). When considering end surface effects however the system is stable (FS   

1) until somewhere between 10 and 15 meters. This applies for both      and 

        (FSP- Planar end surfaces, FS3-Dim- Reduced due to non-planar end surfaces). 

 

Three- Dimensional calculations 
Different dimensions of this generalised case are evaluated to view the 3D-effect for 

excavations that contain retaining structures. The earlier mentioned limitation in 
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Plaxis 3D is dealt with by introducing another modelling method and the result for the 

two different ways of modelling is presented.  

 

Figure 5:10 shows the so called boxed 40x40m excavation with connected retaining 

structures on all sides and Figure 5:13 show the case with retaining structure along 

one side and with prescriptions along the others. 

For the boxed system, Figure 5:12b) visualise that the structure forces the materials 

beneath the construction resulting in a different failure mechanism, bottom heave. As 

mentioned this is due to the structural element in Plaxis 3D which is limited to linear-

elastic material models, therefore the structure never plasticises. The structures 

withstand unreasonable big moment especially in the corners. This phenomena is 

presented more in Appendix E.  

a) 
 

  

b) 
 

 
 

Figure 5:10 a) Resulting total displacement for ”boxed” system (seen from above) b) Section showing bottom 

heave. 

 

The models with prescriptions on the sides do not have the problems from the 

connection of the structures and as can be seen in Figure 5:13b) it is a total stability 

failure. As for the sloped excavations both types of models with retaining structure 

are stable around the corners. 
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Figure 5:11 – Results Plaxis 3D, Boxed system (Total displacements, seen from above) 

 

In Figure 5:12 the FS for the two systems with retaining structure is shown. An 

infinite long slope modelled in 3D with the same retaining structure is also shown. It 

can be seen that the system modelled with prescriptions goes towards the 2D-case 

whereas the boxed does not.  

 

 

Figure 5:12 – Results Plaxis 3D, Boxed systems compared to systems with one retaining wall with prescriptions 
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Further on the models will be defined with prescriptions and the FS in the 

comparisons will be presented from those systems. 

 

Result summarisation – Generalised excavation pit with 

retaining structure 
In Figure 5:13, FS from Plaxis 3D for each length is presented along with the 

analytically calculated FS. There is no distinct deviation in de numerically calculated 

FS for the smaller geometries as could be seen for the sloped excavations. 

As for the sloped excavations the analytically increased FS is on the safe side 

compared to the numerically calculated FS. The difference between FSP and 

FS3DRetaining wall is presented in percentage in Table 5:6. 

It should be noticed that if the shoring would have been accounted for in the 

analytical calculations the analytically calculated FS would become equivalent to the 

FS calculated in Plaxis 2D, (FS=0.93). Starting at this FS when adding the 3D-effects 

would give a more accurate comparison with the later on presented 3D-models 

analysed in Plaxis 3D.  

 

 

Figure 5:13 – Result for generalised slope with retaining structure 

 

0,800

0,900

1,000

1,100

1,200

1,300

1,400

1,500

5 50

Fa
ct

o
r 

o
f 

Sa
fe

ty
 (

-)
 

Length of Retaining wall (m) 

Results - Generalized excavation pit with 
retaining structure 

2D-Analytic

FS3D

FSP

3D-Retaining
Wall



 

74 
 

Table 5:6 – Result summarisation for generalised slope with retaining structure 

 
Factor of safety – All calculation types for different length of retaining wall 

Length of 
slope (m) 

2D 
Analytic 

2D 
Plaxis 

FSP FS3D 2D* in 3D 
FS3D 

Retaining wall 

Diff. FSP and 
FS3D Retaining 

wall  

(%) 
5 0.88 0.93 1.15 1.20 0.96 1.46 18.0 % 

10 0.88 0.93 1.02 1.04 0.96 1.30 20.1 % 
15 0.88 0.93 0.97 0.99 0.96 1.24 21.8 % 

20 0.88 0.93 0.95 0.96 0.96 1.20 21.4 % 
30 0.88 0.93 0.92 0.93 0.96 1.16 19.4 % 
40 0.88 0.93 0.91 0.92 0.96 1.13 19.0 % 
80 0.88 0.93 0.90 0.90 0.96 1.07 15.7 % 

160 0.88 0.93 0.89 0.89 0.96 1.03 13.6 % 

 

5.3 Real-life case (Västlänken project) 
Two- Dimensional calculations  

When first modelling the system without consideration to the shoring the analytically 

calculated FS was lower (FS 1.1) than the one calculated in Plaxis 2D (FS=1.33). The 

difference was found to be dependent on how the shoring is modelled analytically. 

The FS from Slope/W and the positioning of the critical slip surface, when considering 

the shoring, can be viewed in Figure 5:14.  

 

Figure 5:14 – Result Slope/W, FS=1.34 
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Table 5:7 – Results Slope/W 

2-Dimensional analytical results 
Factor of Safety 1.34 - 
Areaslip Slope/W 1722.5 m2 
Areaslip surface Calc 1700 m2 
Areaslip surface Clay 1585 m2 
MResisting 194450 kNm 
MActivating 145210 kNm 
MEnd Surface 1756679 kNm 

 

 

The Factor of safety calculated in Plaxis 2D is 1.33. It is similar to the one obtained in 

the analytical calculations. 

 

                 

 

Figure 5:15 – Plaxis 2D, displacement 

 

Table 5:8 - Result 2D, Real-life case 

Results 2D 
 2D – Analytical Plaxis 2D 

Factor of Safety 1.34 1.33 
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2D-Calculations with 3D-effects 
The approximated area for each soil layer and the respective average shear force is 

then used when calculating the end surface moment MEnd Surface. The difference 

between the summarised approximated areas for the soil layers and the original area 

given by Slope/W is less than 1% and therefore considered a good enough 

approximation. 

MEnd Surface is then used in Equation 2:1 to calculate the new FS considering end 

surface effects. In correlation with the CSS report 3:95, the FS has been evaluated for a 

number of different slip surfaces to ensure that the slip surface chosen still is the 

most critical one even after the increase. The increased 2D FS is shown in Figure 5:16.  

 

 

Figure 5:16 – 2D-calculations results with 3D-effects 

 

The FS is unsatisfying if analysed analytically in 2D (FS=1.34), When considering end 

surface effects, sections up to 70 meters still have satisfying FS (above 1.56 in this 

case). This applies to both planar end surfaces     and        , which is the reduced 

FS due to non-planar end surfaces.  

0,000

0,500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

10 100

Fa
ct

o
r 

o
f 

Sa
fe

ty
 (

-)
 

Length of Retaining wall (m) 

2D-Calculations with 3D-effects 

2D-Analytic

FS3D

FSP



Results  | 
 

77 
 

Three- Dimensional calculations 
In Figure 5:16 the FS3D-Retaining wall for different lengths of the excavation with the width 

of 70 m is evaluated and presented in comparison with the analytical FS.  

As for both the general cases the analytically increased FS is on the safe side 

compared to the numerically calculated FS. The difference between FSP and FS3D-

Retaining wall is presented in percentage in Table 5:9. 

It can also be seen that the 3D-effects decrease drastically for lengths exceeding 40 m. 

This is thought to be due to geometrical effects that will be discussed later. 

It should also be noticed that if one chooses not to consider the shoring and start at 

FS=1.1 the same calculation can be made (for its respective slip surface and area) but 

it will consequently give a shorter accepted section while still having a satisfying FS. 

 

 

 

Figure 5:17 – Result visualisation for real-life case  
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Table 5:9 - Result summarisation for real-life case 

Factor of Safety – All calculation types for different length of retaining wall 

Length of 
slope (m) 

2D 
 Analytic 

2D 
Plaxis 

FSP FS3D 
FS3D 

Retaining wall 

Diff. FSP and 
FS3D Retaining wall  

(%) 
10 1.34 1.33 2.69 3.76 4.00 6.0 % 
20 1.34 1.33 2.02 2.55 2.94 13.1 % 
30 1.34 1.33 1.79 2.15 2.54 15.3 % 
40 1.34 1.33 1.68 1.94 2.21 12.3 % 
80 1.34 1.33 1.51 1.64 1.99 17.8 % 

160 1.34 1.33 1.42 1.49 1.87 20.3 % 
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6 Discussion and 

Conclusion 

6.1 Discussion 
The goal with this project has been to evaluate and answer the stated objectives. The 

goal for us as students has also been to gain a greater level of knowledge into the 

geotechnical industry and geotechnical FE-modelling. 

When analysing the results for the generalised slopes-systems it becomes apparent 

that in addition to the increase in FS when comparing it to the analytical calculations 

(with and without considering the 3D-effects), there are also other stabilising 

phenomena surrounding the corners. This could possibly be some kind of interaction 

between the different sliding volumes in a 3D-system pushing against each other. 

Using the end surface theory to describe the 3D-slope-system is in this case an 

underestimation of the increased stability compared to the FE-calculations. Obvious 

in the results is that considering the 3D-effects is a better determination of the FS 

than not doing so. This is in accordance with the CSS report 3:95. 

Finally we conclude that the 3D-effects can be applied to a 2D-calculation and get 

results that come close to the modelled slope-systems for geometries subjected to 

total stability failure. 

The results show that between 15 and 80m the difference between 2D calculations 

considering 3D-effects and 3D-modeling is similar but with an increase of roughly 

14%. This indicates that the approximation with FSp is on the safe side compared to 

the FE-calculated FS i.e. there is possibility to account for even more stability in the 

2D-calculations. The results indicate the approximation is on the safe side, to 

generally account for more stability in analytical calculations is by the author’s 

believed to be the case. Since this work has only evaluated one generalised case and 

one real-life case further investigations are needed with a more complete range of 

geometries and material parameters. 

Sloped excavation pits smaller than 15X15 m has a higher FS in the FE-calculations 

than the analytical calculations. This is thought to be partly due to stabilising effects 

around corners but mainly due to the fact that it is no longer the same failure 
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mechanism presented from the FE-calculations, as for the analytical calculations. The 

smaller sloped excavation pits give a misleading FS analytically since Slope/W cannot 

handle symmetry and for small excavations the slip surfaces will interact with the one 

from the opposite side.  

In this work (according to analytical calculations) they start to interact at 12m and 

below. If this distance from where the slip surface penetrates the bottom is larger 

than the excavated bottom it should also be considered in the analytical calculations, 

it is not considered in this comparison but the FS would as the FE-model does 

increase drastically. This is also depending on a couple of assumptions made in the 

work, such as assuming that the slope is fixed in the middle.  

When the lengths of the sides in the sloped-excavation are larger than 80 meters the 

factor of safety will become close to the FS of the modelled infinite long slope (2D 

slope) for the 3D-system. This means that the slope starts to behave like a 2D-case 

due to the fact that the sheer force in the end surfaces can no longer transfer the 

excessive moment further. 

According to the CSS report 3:95 theories, the excessive moment can be transferred to 

the nearby masses of the slope section that is being calculated and it is transferred 

through the shear-force of the end surfaces. If comparing the maximal theoretical 

length with the maximal length possible from the FE-modelling it is evident that there 

are additional effects around the corners that either move the boundary of where the 

corner is thought to be stable (still able to carry the transferred moment from the 

slope) or that other effects helps absorb the acting moment from the slope. 

Treating each side in a square excavation with slopes as a 2D-slope appears to be on 

the safe side. This conclusion can be drawn after comparing the modelled results to 

the increased 2D results in this work. Nothing indicates that the corners cannot 

withstand the transferred moment from the slopes on each side.  

The results show that the end-surface forces will influence the FS for some lengths. 

The     has also shown to be a better approximation than the reduced         (with 

our objectives in mind, compared to our models). 

For the questions regarding how well the end surface effects, approximate the FS in 

systems with retaining structures; the results indicate some interesting things. From 

the results one can see a distinct pattern along the length of the excavation and the 

factor of safety. The 2D case modelled in Plaxis has a higher FS than the analytical FS 

for the general models. The reason for this is the fact that the analytical calculations 

was not considering the forces from the retaining-structure itself other than forcing 

the critical slip surface below the retaining wall. When introducing a point load at the 
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level of the wailing beam the 2D-calculations become similar, therefore it is 

reasonable to consider in the analytical 2D-calculation. 

When 2D-methods are used to evaluate how a 3D-system with supporting structures 

behaves the simplifications and underestimations become apparent. There are many 

aspects to consider when moving from a 2D-system into an excavation with several 

sides. In this case the retaining structure forms a boxed-system in the ground. With 

the additional effects from the stiffness of the construction in mind just using the 3D-

effects from the end surface theory is a modest approximation at best.  

In the same manner as mentioned above about the additional effects from the 

corners, which might be more accurately named geometrical effects, the structure 

affects the total stability in a positive way. This is obvious and is also proved when 

modelling a construction around all sides of the excavation. The retaining structure 

works as one connected unit which generates a higher FS compared to the models 

with a retaining structure along one side and prescribed conditions along the others.  

The effect that the supporting structures have on total stability is related to what 

material-model, the structural elements are modelled with and the way they interact. 

One can conclude that whether the retaining structure is geometrically connected or 

not there are positive effects brought to the total stability.  

Unfortunately Plaxis 3D has the limitation of only being able to model plate elements 

(used for retaining-walls) with a linear-elastic material model. This is why a reliable 

and reasonable contribution from the structure is impossible to determine.  

The “unconnected” case does not consider any of the strength in the structure around 

the corner but illustrates the stabilising effects of the surrounding soil which also 

affects the system in a positive way.  

When evaluating the results for the Västlänken case there are some results to discuss; 

When first not considering the forces from the wailing beams in the analytical 

calculations the difference in FS between analytical and numerical calculation were 

unacceptable. When considering these forces as externally acting forces on the sliding 

soil volume we got close to equivalent FS. Evident is that it is advantageous but that it 

needs further investigation. 

From the results presented one can see that a 70x70 m excavation could be possible if 

the increase in stability from the shoring is accounted for in the analytical 

calculations (if the sought FS is 1.56). For the Västlänken excavation there is a high 

probability that an excavation of 70x70 meters is possible to excavate without 

accounting for the stability from the connections between the retaining walls.  
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Throughout this work,     has shown to be a better approximation compared to the 

FE-calculations.     allows for an excavated geometry of 70x110 m compared to 

        which allows for 70x60m (based on FS=1.56). 

It should also be noticed that if one chooses not to consider the shoring in the 

analytical calculation it will consequently give a shorter accepted section for a 

satisfying FS. 

When studying the results from the real-life case, it becomes apparent that the FS 

increase/decrease drastically before and after 40 m. As mentioned the authors 

believe this to be a geometrical effect due to that the influence of the resisting 

moment for sections below 40 meters becomes very large compared to the activating 

moment. This increase is also apparent in the end surface calculations and therefore 

believed to be the main factor for this phenomenon.  

Finally we can see that the generalised case and our real-life case behave similar. 

Approximating a 3D-system with 2D end surface theories is thought to be a safe 

approximation. The numerically calculated FS is probably even higher. 

From our extensive work with Plaxis 3D some observations are made that require 

further discussion and attention. It is our conclusion that the one/ones performing 

modelling in this type of software should always question and try to validate the 

results. For example it has been observed that a minor change in the detail of the 

mesh can generate a difference between having a model that is stable and a model 

that is collapsing.  

Plaxis 3D does not allow for a high amount of control when it comes to structural 

elements; how they interact with other structures and also a number of other 

problems with structural properties which are not possible with our knowledge to 

edit in the Plaxis 3D software.  

Apparent throughout the process of this master’s dissertation is the fact that the 

creation of geotechnical models in Plaxis 2D and 3D is quite easy to do, but the 

consequences of not knowing the underlying calculations and theories could be quite 

catastrophic. 

 

6.2 Suggestions for further work 
From all the things that we have discussed during this project there are some 

phenomena and problems that need to be investigated further and could be suitable 

for further work. 
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The same model could be modelled in other FE-programs, preferably a program 

which can model structures better than Plaxis allows for.  Another thing to look at is 

how the variation of excavated depth relative chosen depth for the retaining wall 

impacts the FS. The calculated 3D-effects will vary with a change in the area of the 

critical clip surface which is directly related to the different depth of the retaining 

structure. 

The aim of this work was limited to evaluate cohesion soils. Similar evaluation for 

friction materials could be performed with the same modelling principles but with 

different material models and other analytical theories. 

For the analytical calculations it would be interesting to further validate the 

possibility and reasonability of including the shoring as point loads in the analytical 

total stability calculations. Is including the shoring a more valid case or is there 

something that happens in Plaxis which generates a higher FS than the analytical 

calculations? Without these loads inserted into the analytical calculations the 

difference is quite significant. 

It would be of great interest to measure the effects when the Västlänken excavation is 

constructed in reality. It would also be valuable to compare these measurements to 

numerical results and evaluate the accuracy of the numerical programs when dealing 

with these types of soils.  
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Appendix 

A - Material parameters 
Real-life Case - Hardening soil 

Clay-parameters (Hardening Soil material model) 

Material   Clay 1 Clay 2 Clay 3 
Top (level) -1 -3 -5 
Bottom (level) -3 -5 -13 
Drainage- type Undrained B Undrained B Undrained B 

γunsat (kN/m3) 16 16 16 

γsat (kN/m3) 16 16 16 

Cu (kPa) 15 15 15 

Cu,inc (kPa) 0 1,6 1,6 

yref (level) --- -3 -3 

E50ref (kPa) 11250 16500 25000 

pref (kPa) 100 100 100 

Eoedref (kPa) 7500 8300 12300 

Eurref (level) 23650 36650 53600 
m --- 1 1 1 

ν'ur --- 0,2 0,2 0,2 

K0 --- 2,381 1,479 1,086 
OCR* --- 10,17 4,28 2,44 
R --- 1 1 1 
Rf   0,9 0,9 0,9 

kx=ky (m/day) 8,64*10-5 8,64*10-5 8,64*10-5 

M0 (MPa) 7,5 7,5 7,5 

M0,inc (MPa) 0 0,8 0,8 

yref,M0 (MPa) -3 -3 -3 

Mul** (MPa) 14 33,3 40 

Mul, inc (MPa) 9,65 3,35 3,4 

yref,Mul (MPa) -1 -3 -5 

σ'0*** (kPa) 6 18 48 

σ'c*** (kPa) 61 77 117 

Cu  (kPa) 23,5 26 30,5 

E50/Eoed (kPa) 1,5 2,0 2,0 

Eurref/E50ref (kPa) 0,48 0,45 0,47 
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Material   Clay 4 Clay 5 Clay 6 Clay 7 
Top (level) -13 -18 -30 -55 
Bottom (level) -18 -30 -55 -80 
Drainage- type Undrained B Undrained B Undrained B Undrained B 

γunsat (kN/m3) 16 16,1 16,5 16,8 

γsat (kN/m3) 16 16,1 16,5 16,8 

Cu (kPa) 15 15 15 15 

Cu,inc (kPa) 1,6 1,6 1,6 1,6 

yref (level) -3 -3 -3 -3 

E50ref (kPa) 35000 48500 78000 118000 

pref (kPa) 100 100 100 100 

Eoedref (kPa) 17500 24300 39100 59100 

Eurref (level) 75700 105800 185100 299300 
m --- 1 1 1 1 

ν'ur --- 0,2 0,2 0,2 0,2 

K0 --- 0,958 0,913 0,743 0,659 
OCR* --- 1,94 1,71 1,50 1,38 
R --- 1 1 1 1 
Rf   0,9 0,9 0,9 0,9 

kx=ky (m/day) 8,64*10-5 8,64*10-5 4,32*10-5 4,32*10-5 

M0 (MPa) 7,5 7,5 7,5 7,5 

M0,inc (MPa) 0,8 0,8 0,8 0,8 

yref,M0 (MPa) -3 -3 -3 -3 

Mul** (MPa) 67,2 84,2 127,6 241,8 

Mul, inc (MPa) 3,4 3,6 4,6 4,6 

yref,Mul (MPa) -13 -18 -30 -55 

σ'0*** (kPa) 87 139 256 423 

σ'c*** (kPa) 169 237 385 585 

Cu  (kPa) 48,5 60 97 147 

E50/Eoed (kPa) 2,0 2,0 2,0 2,0 

Eurref/E50ref (kPa) 0,46 0,46 0,42 0,39 
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Fill-parameters (Mohr-Coulomb material model) 

Material   Fill 1 Fill 2 
Top (level) 2 1 
Bottom (level) 1 -1 
Drainage- type Drained Drained 

γunsat (kN/m3) 18 17 

γsat (kN/m3) 21 21 
ϕ' (°) 38 35 
c' (kPa) 2 2 
ψ' (°) 5 2 
E' (kPa) 45000 20000 

E'inc (kPa) --- --- 

yref (level) --- --- 
ν' --- 0,2 0,2 

K0 --- 0,384 0,426 
R --- 1 1 

kx=ky (m/day) 0,6 0,12 
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B - Slope results 

Generalised slope 
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Generalised slope with retaining structure    
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Meshing quality 

The figure below illustrates the level of resolution that has been used for one of the 

models in the work. In this model the Factor of Safety is not changed with finer level 

of meshing. 

 

Figure – Illustration of mesh for a 3D-model 

 

For this model the Plaxis 3D tool for evaluating meshing quality rates the worst 

element to 0,53. 

 

Figure – Illustration of the meshing quality for the same 3D-model 
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Real-life Case (Västlänken project) 
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Meshing quality 

The figure below illustrates the level of resolution that has been used for one of the 

models in the work. In this model the Factor of Safety is not changed with finer level 

of meshing. 

 

Figure – Meshing performed in Plaxis 3D 

For the models the Plaxis 3D tool for evaluating meshing quality rates the worst 

element to 0, 30. This worst case is for the biggest model evaluated and the Factor of 

Safety does not change with finer meshing. 

 

Figure – Meshing quality for worst case model in Plaxis 3D 
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C - Plaxis 2D Results 

Symmetry validation 
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FS Full model = 5,19  
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D - Real-life case (Västlänken project) 

 

 

 

Structural 
element X [m] Y [m] N [kN] 

Rotation 
[°] 

Length 
[m] 

CC 
[m] 

Fixed-end 
anchor 1-1 3,50E+01 1,00E+00 4,05E+02 0,00E+00 1,70E+01 10  
Fixed-end 
anchor 2-2 3,50E+01 -4,00E+00 6,78E+03 0,00E+00 1,70E+01 10  
Fixed-end 
anchor 3-3 3,50E+01 -9,00E+00 1,08E+04 0,00E+00 1,70E+01 10  
Fixed-end 
anchor 4-4 3,50E+01 -1,15E+01 8,82E+03 0,00E+00 1,70E+01 10  
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E – Structural elements in Plaxis 3D 
The figure below shows the momentum in a) and deformation in b) for the plate 

element (retaining wall) for one side of the boxed case. As mentioned the structural 

element it is not plasticising why it withstand unreasonably large moments. 

In b) it can be seen that the plate has no deformations in the corners. Instead of 

plasticising it generates big moments and form a skirt that forces the material under 

the retaining structure. 

 

a)           b) 

 

 Illustration of the momentum in the plate for the 3D-model seen in Figure 5:10 

 

The moment in the plate for the 3D-model seen in Figure 5:10 

 Max Min 
Moment 2599 kNm/m -334,4 kNm/m 

 

Next figure shows the momentum in a) and deformation in b) for the plate element 

(retaining wall) for one side of the case with prescription along the other sides. The 

plate element is not fixed in the corners and do not take any moment. 

In b) it can be seen that the plate is allowed to deformations in the corners. Instead of 

withstanding unreasonable large moment it deforms and allows for a total stability 

failure. 
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a)        b) 

 

Illustration of the momentum in the plate for the 3D-model seen in Figure 5:11 

 

The moment in the plate for the 3D-model seen in Figure 5:11 

 Max Min 
Moment 52,48 kNm/m -146,5 kNm/m 

 

Reality lays somewhere in between where there is some stiffness to account for from 

the connections in the supporting structure.  
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