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Abstract

Dirichlet’s theorem regarding existence of infinitely many primes in
progressions on the form a, a + n, a + 2n . . . when (a, n) = 1 is well
known and proved by using Dirichlet series. This thesis will mainly treat
the special case when a = 1 without the use of such series. In the first
section of the thesis we show existence of an upper bound as a function
of n for when the first prime occurs in progressions of this form. The
second section contains proofs of the existence of infinitely many primes
in progressions when a = 1 and n being 4, 6, 8 and finally n being an
arbitrary integer, using only elementary methods. In the last section we
look into some results in algebraic number theory.
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0 Introduction

After the dark ages mathematical development made its way back into Europe.
It was during this time the well known mathematician Pierre de Fermat studied
primes of the form p = x2 +ny2 and their characterization. In his investigations
he used two steps, the descent step and the reciprocity step. The problem of
generalizing the latter led others, such as Euler and Legendre, to work on what
is today known as quadratic reciprocity. While Legendre was trying to prove a
version of today’s law of quadratic reciprocity, he encountered the problem of
guaranteeing the existence of primes in certain residue classes. The lemma he
needed was the following.

Lemma 0.1. Let a and n be positive integers; if they are co-prime, then there
exist infinitely many primes ≡ a mod n.

This lemma was proved by Dirichlet and became known as Dirichlet’s theo-
rem on arithmetic progressions, which we will call Dirichlet’s theorem for short.
If Legendre’s lemma and the invalid proof that he presented was the reason for
Dirichlet to study such progressions is not certain. It is worth noting however
that Ernest Kummer, one of Dirichlet contemporaries, called Dirichlet’s theo-
rem “an offspring of the study of quadratic reciprocity”. In the first section of
this thesis we prove the existence of an upper bound for when the first prime
of Dirichlet’s theorem occurs in progressions when a = 1; to do this we use
something called cyclotomic polynomials.

In the second section we present proofs of Dirichlet’s theorem for a few special
cases. The cases a = 1 and n = 4, 6, 8 are proved using quadratic residues. The
case when a = 1 and n is arbitrary, is proved in two ways. For the first proof we
need a few lemmas. We start by proving a Lemma 2.2 using fixed-point sets in
connection to function iterations, which can be regarded from a graph-theoretic
perspective. The lemma is then used to establish a divisibility relation which is
exploited in the proof of this special case together with cyclotomic polynomials.
In the last subsection we prove the previous case once more but in a much
shorter version, this time following a remark made in [9]. All proofs in this
section ultimately follow Euclid’s classic proof-by-contradiction method which
he used to prove that there are infinitely many primes.

In the third and last section we look into the remark made by the authors of
[9]. This remark is regarding the behavior of certain primes when they are lifted
into field extensions were the minimal polynomial is cyclotomic. These fields are
called cyclotomic fields and have been studied extensively in connection to higher
reciprocity laws. The primes we investigate are those that split completely. We
start by treating the well-known Gaussian and Eisenstein integers which are
rings of integers of quadratic as well as cyclotomic extensions over Q. In this
case the splitting is proved using quadratic reciprocity. In the last subsection
we study what happens with the prime 11 when its lifted into the cyclotomic
field generated by a fifth root of unity, which is of degree four. In order to follow
the splitting process in such extensions in general, one needs to be familiar with
Galois theory. However the extension field we get in this case is rather simple in
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comparison to other extensions of high degree; it is in fact simple by definition.
In order to establish the splitting in this case we use Maple, which simplifies
the needed computations.

To follow the proofs and ideas in this text one only needs the knowledge from
introductory courses in number theory and abstract algebra, even though we
touch upon more complicated theory in the last section. The significant results
of the thesis and the main idea of their proofs are found in the references, in
particular [10], [9], [4] and [7]. I present these results in an order and fashion
which I find suitable. Still, a few proofs are entirely my own, which will be clear
from the text. The statements on the history of Dirichlet’s theorem are based
on the first chapters of [3] and [6]. At last I want to thank my supervisor Prof.
Arne Meurman for the guidance and exciting assignments he has given me.
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1 The smallest prime ≡ 1 mod n

In this first section we prove the following,

Theorem 1. For all n ≥ 1 the least prime p ≡ 1 (mod n) satisfies

p ≤ 2φ(n)+1 − 1.

In order to prove Theorem 1 we need a few definitions and lemmas.

1.1 Definitions

Definition 1.1. An integral domain is a commutative unital ring without zero
divisors.

Definition 1.2. The greatest common divisor of a, b ∈ Z will be denoted (a, b).

Definition 1.3. A function f(x) from Z into C is called an arithmetical func-
tion.

Definition 1.4. An arithmetical function f(x) is called multiplicative if

f(nm) = f(n)f(m)

when (n,m) = 1.

Definition 1.5. For n ≥ 1 we define Euler’s φ-function. Let φ(n) denote the
number of positive integers a ≤ n such that (a, n) = 1.

Euler’s φ-function is multiplicative. See [2] for proof.

Definition 1.6. For positive integers n, we define Möbius’ µ-function as

µ(n) =

 1 if n = 1
0 if p2 |n for some prime p

(−1)r if n = p1p2 · · · pr.

Möbius’ µ-function is multiplicative. See [2] for proof.

Definition 1.7. The nth cyclotomic polynomial is defined as

Φn(x) =
∏

0≤k<n
(k,n)=1

(
x− e2iπ kn

)
.
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1.2 Lemmas

In addition to these definitions we need a few lemmas in order to simplify the
proof of Theorem 1.

Lemma 1.1. If f, g are two arithmetical functions such that

f(n) =
∑
d|n

g(d),

then
g(n) =

∑
d|n

f(d)µ
(n
d

)
.

This is known as Möbius’ inversion formula. See [2] for proof.

Lemma 1.1 has a multiplicative version,

Lemma 1.2. If f, g are two arithmetical functions such that

f(n) =
∏
d|n

g(d),

then

g(n) =
∏
d|n

f
(n
d

)µ(d)
=
∏
d|n

f(d)µ(
n
d ).

Proof. By hypothesis f(n) =
∏
d|n g(d) and therefore

∏
d|n

f
(n
d

)µ(d)
=
∏
d|n

(∏
c|nd

g(c)
)µ(d)

.

Since d | n and c | nd if and only if c | n and d | nc we get,

∏
d|n

(∏
c|nd

g(c)
)µ(d)

=
∏
c|n

(∏
d|nc

g(c)µ(d)
)

=
∏
c|n

g(c)
∑
d|nc

µ(d)
.

It is proved in [2] that the exponent vanishes for all values of c but c = n and
in this case it equals 1, hence∏

d|n

f
(n
d

)µ(d)
= g(n).

By letting d = n
d′ we get the seemingly different result. This follows since for

each d | n there exists a d′ and vice versa.
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Lemma 1.2 implies an equality regarding the cyclotomic polynomials namely,

Φn(x) =
∏
d|n

(xd − 1)µ(
n
d )

since
xn − 1 =

∏
d|n

Φd(x).

Next we establish some further properties of cyclotomic polynomials. We start
with a lemma regarding polynomials with coefficients in some integral domain.
If D is an integral domain, then it is well-known that D[x] is an integral domain.
See [5] for proof.

Lemma 1.3. Let D be an integral domain. If f, g ∈ D[x] and g is monic, then
there exist unique q, r ∈ D[x] such that f = gq+r and deg(r) < deg(q) or r = 0.

Proof. If f = 0 or deg(f) < deg(g) let q = 0. Suppose the theorem is true for
g such that deg(g) = m and for all f such that deg(f) < k for some k ≥ m.
Let f(x) = akx

k + · · ·+ a0 and g(x) = xm + bm−1x
m−1 + · · ·+ b0. Set h(x) =

f(x)− akxk−mg(x) which belongs to D[x] since D[x] is a ring. We then get

h(x) = akx
k + · · ·+ a0 − akxk−m(xm + bm− 1x

m−1 + · · ·+ b0)

= akx
k + · · ·+ a0 − akxk−m+m − akbm− 1x

k−m+m−1 − · · · − akb0xk−m

= (ak − 1 − akbm− 1)xk−1 − · · ·+ a0.

By assumption h = qhg+ rh for some unique qh and rh, rh = 0 or deg(rh) < m
both in D[x]. This implies that

qhg + rh = f − akxk−mg.

Or equivalently
f = qhg + akx

k−mg + rh, (1)

where deg(rh) < m or rh = 0. Since g was fixed we can factor the right-hand
side of (1) to f = (qh + akx

k−m)g + rh where qh, akx
k−m and rh all belong to

D[x]. For uniqueness:
Suppose f = q1g + r1 = q2g + r2. Then 0 = (q1 − q2)g + r1 − r2. Since g 6= 0 it
follows that q1 = q2 and r1 − r2 has to be zero which implies that r1 and r2 are
equal as well.

Lemma 1.4. If n ∈ Z and n ≥ 1, then Φn(x) ∈ Z[x].

Proof. By Lemma 1.2,

Φn(x) =
∏
d|n

(xd − 1)µ(
n
d ).
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This implies that,

(xd1 − 1) · · · (xds − 1)Φn(x) = (xds+1 − 1) · · · (xds+t − 1).

The right-hand side belongs to Z[x] and since (xd1 − 1) · · · (xds − 1) is monic we
get from Lemma 1.3 that,

Φn(x) ∈ Z[x].

Lemma 1.5. If Φn(x) is the nth cyclotomic polynomial then Φn(x)
∣∣ xn−1
x
n
q −1

in

Z[x], for all q | n.

Proof. By definition we have xn− 1 =
∏
d|n Φd(x). Factoring out Φn(x) we end

up with

xn − 1 = Φn(x)
∏
d|n
d6=n

Φd(x). (2)

We also have
x
n
q − 1 =

∏
s|nq

Φs(x). (3)

Combining (2) and (3) we get

xn − 1

x
n
q − 1

= Φn(x)
∏
d|n
d6=n
dq-n

Φd(x)

which establishes the divisibility relation.

Next we prove a somewhat different version of the previous lemma which is
needed at the end of the proof of our next lemma.

Lemma 1.6. If Φn(x) is the nth cyclotomic polynomial and n > 2, n ≡ 2

mod 4 , then Φn(x)
∣∣xn2 +1
x+1 .

Proof. We start off just as in the proof of the previous lemma,

xn − 1 = Φn(x)
∏
d|n
d6=n

Φd(x).

Using the identity for the difference of two squares we get,

(x
n
2 − 1)(x

n
2 + 1) = Φn(x)

∏
d|n
d6=n

Φd(x).

Canceling

x
n
2 − 1 =

∏
d|n2

Φd(x),
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we get

x
n
2 + 1 = Φn(x)

∏
d|n
d6=n
2d-n

Φd(x).

Next we use that different cyclotomic polynomials do not share roots and n > 2
was assumed. We can therefore divide by Φ2(x) = x + 1 without changing the
relation of divisibility. Hence,

Φn(x)
∣∣xn2 + 1

x+ 1

The proof of the upcoming lemma is described in [9].

Lemma 1.7. For all b ∈ Z , b ≥ 2, the prime divisors of Φn(b) are either prime
divisors of n or are ≡ 1 mod n. Moreover, if n > 2 then every prime divisor
of n only divides Φn(b) to the power of one.

Proof. We begin by proving the first statement. Suppose p | Φn(b), which by
Lemma 1.5 gives us p | bn − 1 or equivalently bn ≡ 1 mod p. This congruence
relation implies that (b, p) = 1, hence we can define the order of b mod p as t.
From elementary number theory we have that t | n. As it turns out, our two
cases in the first statement of the lemma correspond to t = n and t 6= n. Let us
consider these two cases:
Case(i):
Suppose the order of b mod p is n. As mentioned above, the order of an integer
mod p divides φ(p). In addition φ(p) = p− 1, since p is prime. Hence n | p− 1
or equivalently p ≡ 1 mod n.
Case(ii):
Suppose the order of b mod p is not n. Then there exists at least one prime q
such that q | n and p | b

n
q − 1. According to Lemma 1.5, Φn(b) divides

bn − 1

b
n
q − 1

= 1 + b
n
q · · ·+ b

n(q−1)
q .

Since it was assumed that p | b
n
q − 1 we get

1 + b
n
q + · · ·+ b

n(q−1)
q ≡ q mod p.

By transitivity of division we have,

p | 1 + b
n
q + · · ·+ b

n(q−1)
q .

Therefore q ≡ 0 mod p. Since p and q are both primes we conclude that p = q.
Since q was a proper divisor of n, so is p. This proves the first statement in our
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lemma. We proceed with the proof of the second statement. For Case(i), note
that n | p− 1 and therefore p - n. In Case(ii) we use the notation q as above. It
was established above that b

n
q ≡ 1 mod q, since p = q. This is equivalent to

b
n
q = 1 + c · q for some c ∈ Z. (4)

Raising both sides of (4) to the j’th power and using the binomial theorem we
get:

(b
n
q )j = (1+ c ·q)j =

j∑
k=0

(
j

k

)
1j−k · (cq)k = 1+ j · c ·q+a2(c ·q)2 + · · ·+aj(c ·q)j

where a2, . . . , aj ∈ Z. Regarding this as a mod q2 congruence we get

b
n·j
q ≡ 1 + c · j · q mod q2 for all j ∈ Z,

since every term beyond the second in the binomial expansion is a multiple of
q2. Using this congruence relation,we get

bn − 1

b
n
q − 1

= 1 + b
n
q . . .+ b

n(q−1)
q ,

≡ 1 + 1 + c · q + 1 + 2 · c · q + . . .+ 1 + c(q − 1)q mod q2,

≡ q + c · q
(q(q − 1)

2

)
mod q2.

If q is odd then q is not divisible by 2 and the last congruence reduces to q
mod q2. Hence

bn − 1

b
n
q − 1

≡ q mod q2,

which implies

bn − 1

b
n
q − 1

= q + q2 · k = q(1 + qk).

Therefore q2 - bn−1
b
n
q −1

. As this is an integer multiple of Φn(b), we get that

q2 6 |Φn(b).

The remaining case is if q = 2. That would give us

bn − 1

b
n
2 − 1

≡ 2(1 + c) mod 4, for some c ∈ Z.

If c is even we are done. If c is odd then

b
n
2 ≡ 3 mod 4,
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which follows from

bn − 1

b
n
2 − 1

≡ 2(1 + (2t+ 1)) mod 4,

b
n
2 + 1 ≡ 2(2 + 2t) mod 4,

b
n
2 + 1 ≡ 0 mod 4,

b
n
2 ≡ 3 mod 4.

This implies that b and n
2 are odd. But if n

2 is odd then,

Φn(b)
∣∣ n2−1∑
i=0

(−b)i.

To prove this divisibility relation we consider the following,

Φn(b)
∣∣bn2 + 1

b+ 1
=

n
2−1∑
i=0

(−b)i.

Lemma 1.6 gives us the divisibility and equality follows from use of geometric

series. But
∑n

2−1
i=0 (−b)i is odd since (b, 4) = 1 and n

2 is odd, which implies that

that
∑n

2−1
i=0 (−b)i is a sum of an odd number of odd integers which is odd. But

Φn(b) is even, since p | Φn(b) was assumed, and p = q = 2 so 2 | Φn(b). Since the
divisibility relation is impossible c cannot be odd and we have therefore proved
the case for q = 2 as well. This completes the proof of the second statement.

Lemma 1.8. For all n ∈ Z such that n > 2 and n 6= 6 the following holds,√
n ≤ φ(n).

Proof. Suppose n ∈ Z+ and let n = 2k13k2 · · · pktt , pi ∈ P, ki ∈ Z. Since φ is
multiplicative we get,

φ(n) = φ(2k13k2 · · · pktt )

= φ(2k1)φ(3k2) · · ·φ(pktt )

= (2k1 − 2k1−1)(3k2 − 3k2−1) · · · (pktt − p
kt−1
t )

= 2
k1
2 (2

k1
2 − 2

k1
2 −1)3

k2
2 (3

k2
2 − 3

k2
2 −1) · · · p

kt
2 (p

kt
2
t − p

kt
2 −1
t ).

Hence proving the following is sufficient:

2
k1
2 (2

k1
2 −2

k1
2 −1)3

k2
2 (3

k2
2 −3

k2
2 −1) · · · p

kt
2 (p

kt
2
t −p

kt
2 −1
t ) ≥ 2

k1
2 3

k2
2 · · · p

kt
2
t =

√
n.

Canceling p
ki
2
i on both sides we see that this follows from

p
ki
2
i − p

ki
2 −1
i ≥ 1 for all pkii including 2k1 and 3k2 .

9



This holds for all pkii > 2, since f(x, k) = x
k
2 − x k2−1 is an increasing function

in both arguments, combined with 1 < 3
1
2 · (1 − 1

3 ) = f(3, 1). The monotone
increase is proved by taking partial derivatives of f with respect to x and k.

∂

∂x
f(x, k) =

k

2
x
k
2−1−

(k
2
−1
)
x
k
2−2 = x

k
2

(k
2
x−1−

(k
2
−1
)
x−2

)
=
x
k
2

2x

(
k−k

x
+

2

x

)
.

We have
x
k
2

2x
> 0 since x > 0

and (
k − k

x
+

2

x

)
> 0 since

(
k − k

x
+

2

x

)
> 0 ⇐⇒ k − k + 2

x
> 0 ⇐⇒

⇐⇒ xk > k − 2 ⇐⇒ xk − k + 2 > 0 ⇐⇒ k(x− 1) + 2 > 0.

This holds for all x ∈ R, x ≥ 1 and k ∈ Z, k > 0 and therefore f(x, k) increases
monotonically in x for fixed k, in particular for integral x. To verify monotone
increase in k for fixed x we consider the following.

∂

∂k
f(x, k) = ln(x)(x

ki
2 − x

ki
2 −1)

We have ln(x) > 0 for all x ∈ R, x > 1. Furthermore x
ki
2 − x

ki
2 −1 > 0 for

all x ∈ R, x > 1 and k ∈ Z. Hence f increases monotonically in the second
argument as well. It remains to prove the inequality when 21 is part of the
factorization of n. If n = 213k, then k2 ≥ 2 since n 6= 6 is assumed. We have
monotone increase in the second argument and therefore prove this case by
calculating (21−21−1)(32−32−1) > 1.4 > 1. The smallest possible prime factor
other then 3 to some power is 51. Therefore we need to prove the following:

1 ≤
√

2

2
(p

ki
2
i (1− 1

pi
)) for all pi ≥ 5, ki ≥ 1.

We proceed as above and establish:

1 < 0.7 · 1.79 = 1, 24671 <

√
2

2
(5

1
2 (1− 1

5
)).

We now use the monotone increase of f once more, together with the fact that
any additional prime factors will keep the product above 1. This establishes
the lemma for the case when n has a prime factor 21. The lemma is therefore
proved for all n in our statement.

The proof of the next lemma which is taken directly from [10], uses the
following inequality.

− log(1− x) = x+
x2

2
+
x3

3
+ · · · ≤ x+ x2 + x3 + · · · = x

1− x
, (5)

which holds for 0 < x < 1.
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Lemma 1.9. For any integers n ≥ 2 and b ≥ 2 we have

1

2
· bφ(n) ≤ Φn(b) ≤ 2 · bφ(n).

Proof. From Lemma 1.2, we have

Φn(b) =
∏
d|n

(bd − 1)µ(
n
d ) = b

∑
d|n d·µ(

n
d )
∏
d|n

(
1− 1

bd

)µ(nd )
.

Let

S =
Φn(b)

bφ(n)
=
∏
d|n

(
1− 1

bd

)µ(nd )
.

Then
logS =

∑
d|n

µ(
n

d
) log(1− b−d). (6)

It suffices to show 1
2 ≤ S ≤ 2, which is equivalent to,

− log 2 ≤ logS ≤ log 2.

For the upper bound we have two cases to consider, µ(n) ≥ 0 and µ(n) < 0.
Case (i) :
Suppose µ(n) ≥ 0. Then we get by (6)

logS = µ(n) log(1− b−1) +
∑
d|n
d≥2

µ(
n

d
) log(1− b−d)

≤ −µ(n) log(
b

b− 1
) +

∑
d|n
d≥2

− log(1− b−d)

≤
∑
d≥2

[
b−d +

b−2d

2
+
b−3d

3
+ · · ·

]
≤
∑
d≥2

[
b−d +

b−2d

2
(1 + b−d + b−2d + · · · )

]
=
∑
d≥2

[
b−d +

b−2d

2
(1− b−d)−1

]
=
∑
d≥2

( 1

bd
+

1

2b2d
· bd

bd − 1

)
≤
∑
d≥2

( 1

bd
+

1

6bd

)
=

7

6
· 1

b(b− 1)

≤ 7

12
< log 2.
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The second case, namely µ(n) < 0, is done in the same spirit. In this case n has
an odd number of prime divisors. Furthermore µ(np ) = 1 for all primes dividing

n. Let D = {d; d | n and d has ≥ 2 prime factors } and let q be the least prime
dividing n. Then any d ∈ D satisfies d ≥ q2. Hence we get,
Case(ii):

logS = µ(n) log(1− b−1) +
∑
p|n

µ(
n

p
) log(1− b−p) +

∑
d∈D

µ(
n

d
) log(1− b−d)

= − log
(b− 1

b

)
+
∑
p|n

log(1− b−p) +
∑
d∈D

µ(
n

d
) log(1− b−d)

≤ − log
(b− 1

b

)
+ log(1− b−q) +

∑
d≥q2
− log(1− b−d)

≤ log
( b

b− 1

)
+ log(1− b−q) +

∑
d≥q2

b−d

1− b−d
by (5)

≤ log
( b

b− 1

)
+ log(1− b−q) +

∑
d≥q2

1

bd−1

≤ log
( b

b− 1

)
+ log(1− b−q) +

1

bq2−2(b− 1)

≤ log 2− 1

bq
+

1

bq2−2

≤ log 2

since q2 − 2 ≥ q. The upper bound is therefore established. The lower bound
is established by reversing the inequalities and doing the same thing all over
again.

1.3 Proof of Theorem 1

We are now ready to present the proof of Theorem 1 which is found in [10], a
few comments are added for clarity.

Theorem 1. For all integers n ≥ 2, the least prime p ≡ 1 mod n satisfies

p ≤ 2φ(n)+1 − 1.

Proof. Since our proof depends on Euler’s φ-function, we treat n = 2 separately
at the end. The low value of φ(n) for this number causes problems in an estimate
during the proof. Therefore suppose b > 1, n > 2 and n < Φn(b). Then we get
from Lemma 1.7 that there exists a prime p such that p | Φn(b) and p ≡ 1
mod n. Since p | Φn(b) it follows that p ≤ Φn(b). Using Lemma 1.9 we get,

p ≤ Φn(b) ≤ 2bφ(n).

Letting b = 2 will not only give us our theorem, but also the smallest possible
upper bound using our argument. Hence what needs to be proved is what we

12



assumed above, namely n < Φn(b) but with b = 2 and for all n > 2. We do this
using calculus for the case n ≥ 40 and then we proceed by inspection for the
remaining n. Starting with the case n ≥ 40, we get the following by combining
Lemma 1.8 and Lemma 1.9,

2
√
n−1 ≤ 2φ(n)−1 ≤ Φn(2) for all n > 2 and n 6= 6 .

Thus proving n < 2
√
n−1 will be the next step. Now,

n < 2
√
n−1 ⇐⇒ log n

log 2
<
√
n− 1.

We prove this inequality by considering the real valued function f(x) =
√
x −

1 − log x
log 2 and further its derivative f

′
(x) = 1

2
√
x
− 1

log 2
1
x . We investigate for

which x
1

2
√
x
− 1

log 2

1

x
> 0.

Now

1

2
√
x
− 1

log 2

1

x
> 0 ⇐⇒ 1

2
√
x
>

1

log 2

1

x
⇐⇒ x

2
√
x
>

1

log 2
⇐⇒

x√
x
>

2

log 2
⇐⇒

√
x >

2

log 2
⇐⇒ x >

4

(log 2)2
⇐⇒ x > 8.2.

Hence f is strictly increasing for all x ≥ 9. The first integer for which f is
positive is 40. Therefore f is positive for all integers greater then 40 and we
have established that

n < Φn(2) for all n ≥ 40.

We treat,
n < Φn(2) for 2 < n < 40,

by direct inspection. This proves Theorem 1 for all n except 2. In this case we
find a suitable prime which satisfies our theorem. One does not have to look far
since the bound holds for n = 2 with p = 3. At this point we have,

p ≤ 2φ(n)+1.

We justify the −1 in the theorem by the fact that 2t is always even and every
prime but 2 is odd. Letting p = 2 one realizes that -1 would not violate the
inequality since φ(n) ≥ 2 for n ≥ 3. From our brute force argument for the
case n = 2 one infers that we can subtract 1 in that case as well. We have now
proved the bound for all n ≥ 2 and hence Theorem 1 is true.

While working towards proving Theorem 1, using articles [9] and [10] we
encountered an error. The authors of [9] are assuming

∑
q|n(q − 1) ≤ φ(n), but

n = 2p is a counterexample.
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2 Special cases of a theorem of Dirichlet

In this section we prove the existence of infinitely many primes in progressions of
certain forms. We start by proving that there exist infinitely many primes of the
forms 4k+ 1, 6k+ 1 and 8k+ 1 using Fermat’s little theorem, Wilson’s theorem
and quadratic reciprocity. We proceed by proving existence of infinitely many
primes of the form nk + 1 using some graph theoretic ideas and fixed-points of
function iterations. At the end of the section we use results from the first part
of this thesis to prove that there are infinitely many primes of the form nk + 1
once more.

2.1 Definitions and lemmas

Definition 2.1. An integer a is a quadratic residue modulo n if

x2 ≡ a mod n,

for some integer x.

Definition 2.2. For p prime and a any integer we define the Legendre symbol
as

(a
p

)
=

 1 if if a is a quadratic residue modulo p and a 6≡ 0 mod p
−1 if if a is a quadratic non-residue modulo p

0 if a ≡ 0 mod p.

2.2 There are infinitely many primes of the forms 4k + 1,
6k + 1 and 8k + 1

In this subsection we present proofs of existence of infinitely many primes of the
forms 4k + 1, 6k + 1 and 8k + 1. We start with a lemma which all three cases
rest upon. The proofs and the lemma can be found in [8].

Lemma 2.1. Let p be a prime and f(x) ∈ Z[x] be non-constant. Then,

f(x) ≡ 0 mod p,

is solvable for infinitely many p.

Proof. The statement is equivalent to that there exist infinitely many primes pi
such that for f(x) ∈ Z[x] we have,

pi | f(c), (7)

for some c ∈ Z. We use Euclid’s classic proof-by-contradiction idea which he
used to establish the cardinality of the primes. If f(x) has constant term zero
the lemma becomes trivial. This follows from that p | f(p) in such a case.
Therefore let f(x) = anx

n + · · · + a0 where a0 6= 0 and let p1 . . . pr be all

14



the primes satisfying divisibility relation (7). Let b = p1 · · · pra0 and define
a0g(y) = f(by). Then g(y) = Amy

m + · · ·+ 1 where Ai are integers. Now every
coefficient Ai of g(y) but the constant term is divisible by all the pi’s in (7).
Hence none of the finitely many pi’s can be a prime divisor of g(m) for any
integer m. For each integer m, g(m) | f(bm), hence g(m) = ±1 for all m ∈ Z.
But g(m) = ±1 has at most 2m roots. It is therefore possible to find some
mr+1 ∈ Z such that some prime pr+1 6= pi, 1 ≤ i ≤ r, divides g(mr+1). Our
initial assumption is contradicted and the lemma is proved.

Next we prove the three cases mentioned above.

Theorem 2.1. There are infinitely many primes of the form 4k + 1

Proof. Using Fermat’s little theorem and Wilson’s theorem one can deduce that
the quadratic congruence x2 + 1 ≡ 0 mod p where p is an odd prime has a
solution if and only if p ≡ 1 mod 4. See [2] for proof. It follows that every p for
which x2 + 1 ≡ 0 mod p is solvable is of the form 4k + 1. By Lemma 2.1 there
will be infinitely many such primes. Our statement is therefore established.

Theorem 2.2. There are infinitely many primes of the form 6k + 1

Proof. Consider the congruence x2 + 3 ≡ 0 mod p. This will have solutions for
those p for which −3 is a quadratic residue and these solutions will be infinitely
many by Lemma 2.1. Consider the following equation of Legendre symbols,(−3

p

)
=
(−1

p

)(3

p

)
=
(−1

p

)(p
3

)
(−1)

p−1
2 =

(p
3

)
.

From [2] we have, (p
3

)
=

{
1 if if p ≡ 1 mod 3
−1 if if p ≡ 2 mod 3.

Clearly we have p ≡ 1 mod 2 for all primes except 2. Further we get from the
Chinese Remainder Theorem that every integer satisfying this system is of the
form 6k+ 1, hence so are those primes for which −3 is a quadratic residue.

Theorem 2.3. There are infinitely many primes of the form 8k + 1

Proof. We begin by establishing that the odd primes p for which x4 + 1 ≡ 0
mod p admits solutions are of the form 8k + 1. We know that p = 4k + 1 since
x4 is also a square, x4 ≡ −1 can be regarded as y2 ≡ −1 where y = x2. Further
suppose a was a solution to x4 ≡ −1 mod p. Fermat little theorem gives us,

1 ≡ ap−1 ≡ (a4)
p−1
4 ≡ (−1)

p−1
4 mod p.

The only way for this equation to hold is if p = 8k + 1 and since x4 + 1 ≡ 0
mod p for infinitely many primes by Lemma 2.1 we know that there are infinitely
many such primes.
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2.3 There are infinitely many primes of the form nk + 1
for all n ≥ 2, n ∈ Z

We start with the following lemma, which is a generalization of what is proved
in [7].

Lemma 2.2. Let f be a function from any set S into itself such that fn fixes
only finitely many points for each n ∈ Z+. If we let T (n) denote the number of
points that fn fixes, then

n
∣∣∣∑
d|n

µ(
n

d
)T (d).

Proof. Let n be a positive integer. Let

Xn = {s ∈ S; fn(s) = s},

so that |Xn| < ∞. By definition fn(s) = s will hold for T (n) elements s ∈ S.
Further, each s ∈ Xn will have a least iterate of f call it fd such that fd(s) = s.
This d which will be called the order of s will divide n which follows from
the following considerations. Let fn(s) = s and let f t(s) 6= s for all t < d.
Suppose we have r 6= 0 such that n = qd + r where r < d then we have
fn(s) = fqd+r(s) ⇐⇒ s = fr(s) , r < d which is a contradiction on our
assumption on d being the least integer fixing s, hence r = 0 and therefore
d | n. Next consider

Zn = {s ∈ S; fn(s) = s and f t(s) 6= s∀t < n}

If s ∈ Zn then f i(s) ∈ Zn for all i ∈ {0, . . . , n − 1}. Further f i(s) 6= f j(s) for
all i, j such that 0 ≤ i < j ≤ n − 1 since n was the least integer such that fn

fixes s. We proceed by defining an equivalence relation on Zn in terms of f . For
a, b ∈ Zn let a ∼ b if b = f t(a) for some t. The partitions that this equivalence
relation induces are of the form,

{s, f(s), . . . , fn−1(s)}

each containing n elements. Since equivalence classes are identical or disjoint
we get that |Zn| = nt where t is the number of partitions. This implies that
n | |Zn|. Now since

⋃
d|n Zd = Xn is a disjoint union we get,∑

d|n

|Zd| = T (n),

since each point has unique order. Using Lemma 1.1 i.e Möbius inversion formula
on this gives us

|Zn| =
∑
d|n

µ(
n

d
)T (d).

Our previous result that n | |Zn| now implies that n |
∑
d|n µ(nd )T (d) which was

to be shown.
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The next lemma is from [4].

Lemma 2.3. Let a, n > 1 and n = pk11 · · · pkrr . Further let q be a common

divisor of an−1
a
n
pi −1

for all 1 ≤ i ≤ r. Then n | (a
n−1)(q−1)

q .

Proof. For integers x1, . . . , xn such that 0 ≤ xi ≤ a − 1, let (x1 . . . xn)a =
x1a

n−1 + · · ·+ xn−1a+ xn. This we call an n-digit number in base a. Let S be
the set of all n digit numbers in base a such that q - x1an−1 + · · ·+xn−1a+xn.
We define f(x) = (x2x3 . . . xnx1)a for any n-digit number x. This implies

f(x) = ax − x(an − 1). Since q | an − 1 , f maps S into S. Now assume f
n
pi

fixes some x ∈ S then,

x = (x1 . . . x n
pi
. . . x1 . . . x n

pi
)a

= (x1 . . . x n
pi

)a(1 + a
n
pi + · · ·+ a

(pi−1) npi )

= (x1 . . . x n
pi

)a
an − 1

a
n
pi − 1

.

This implies that q | x since q | an−1
a
n
pi −1

and hence x 6∈ S. The same argument

is used for all d such that d | n. Looking back on notation and conclusion
from Lemma 2.2 we get that T (d) = 0 for all non-trivial divisors of d of n and
hence, that n | T (n). But T (n) = |S|, which implies that n | |S|. Now S was
all the (x1 . . . xn)a not divisible by q and therefore we get |S| by the following
argument. The number of non-zero n-tuples with entries in Za is an − 1 using
elementary combinatorics. Call this set X. Next we calculate the number of
elements in X divisible by q. Since q | an − 1 we get an − 1 = qt and hence,

X = {1, 2 . . . , q, . . . , 2q, . . . , tq}.

The number t of multiples of q in X is given by the equation t = an−1
q . Further

X \ (X ∩ qZ) = S and hence |S| = an − 1− an−1
q . Now n | |S| hence,

n
∣∣∣ (an − 1)(q − 1)

q
.

In the upcoming proof we use the following well known lemma which is
known as Euclid’s lemma. See [2] for proof.

Lemma 2.4. If a | bc, with (a, b) = 1, then a | c.

The next proof is from [4]. What is called g(x) in that article we identify as
Φn(x).

Theorem 2.4. Let n ≥ 2 be an integer. Then there exist infinitely many primes
of the from nk + 1.
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Proof. Suppose q1, . . . , qr are all the primes of the form nk + 1. Let n =
pk11 · · · pkss and consider the polynomials,

xn − 1

x
n
p1 − 1

, . . . ,
xn − 1

x
n
ps − 1

.

By Lemma 1.5,

Φn(x)
∣∣ xn − 1

x
n
pi − 1

, 1 ≤ i ≤ s.

Now for x = 0, Φn(0) = ±1, hence (Φn(b), b) = 1 for all b ∈ Z. Since Φn(x)
is monic there exists t ∈ Z such that Φn(x) > 1 for all x > t. Let now
a = ntq1 · · · qr. Then a > t and Φn(a) > 1. Further let q be a prime divisor of
Φn(a), the integers a, q and n all satisfy the conditions of Lemma 2.3 and hence,

n | (an − 1)(q − 1).

But a = ntq1 · · · qr so n | a and hence (an − 1, n) = 1. Next we use Lemma 2.4
to conclude that n | q − 1 or equivalently q = nk + 1. Since q | Φn(a) and
(Φn(a), a) = 1 we get (q, a) = 1 which imply q 6= qi for all i = 1, . . . , r. This
contradicts that q1, . . . , qr are the only primes of the form nk + 1.

2.4 Section 1 revisited

What was just proved can, as we mentioned above, be proved in a somewhat
different way. Following a comment from [9] we prove the following.

Theorem 2.5. Let n ≥ 2 be an integer. Then there exist infinitely many primes
of the form nk + 1.

Proof. Just as in the argument in Theorem 2.4 we use Euclid’s old idea. We
proved in Section 1 that there exist a prime of the form nk + 1 below a certain
bound. The existence of that prime will serve as a starting case in our induction
argument below. Therefore, suppose p1, . . . , pr are all the primes of the form
nk + 1. Let

∏r
i=1 pi be an integer and consider

a = Φn

( r∏
i=1

pi

)
,

which is an integer since Φn(x) ∈ Z[x]. Next we establish the following,

(

r∏
i=1

pi, a) = 1.

This is realized by letting q be a divisor of a. Hence (
∏r
i=1 pi)

n ≡ 1 mod q
since Φn(x) | xn − 1. Therefore (pi, q) = 1 for all pi. We know from Theorem 1
that there exists some prime ≡ 1 mod n dividing Φn(

∏r
i=1 pi). This prime is,

since it is a divisor just as q above, also relatively prime to all pi and therefore
we have contradicted the assumption that there only were finitely many primes
of the form nk + 1.
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3 Some results in algebraic number theory

In this section we look into a comment at the end of [9]. The comment is
regarding the remarkable behavior of some primes in Z when they are lifted
into cyclotomic fields. In order to look into this we need some definitions from
algebraic number theory.

3.1 Definitions and lemmas

Definition 3.1. Let ω = e
2πi
n and consider the extension Q[ω] : Q and its

subring Z[ω]. If for a prime p ∈ Z

pZ[ω] = P1 · · ·Pφ(n)

and
Pj ∩ Z = pZ

for j = 1 . . . φ(n) and Pj are prime ideals in Z[ω] , we say that p splits com-
pletely in Z[ω].

The splitting of a prime when lifted into an extension of degree two can be
viewed as in the following diagram.

Z ⊂ Z[α]

⊃

pZ //

⊂

P1, P2

Definition 3.2. The ring Z[
√
−1] is known as the Gaussian integers.

Definition 3.3. The ring Z[e
2πi
6 ] is known as the Eisenstein integers.

Definition 3.4. If Q[α] is of degree two with minimal polynomial α2 + bα + c
we define the norm N : Q[α]→ Q by

N(s+ tα) = (s+ tα)(s− t(b+ α)) = s2 − bst+ t2c.

Lemma 3.1. Let Q[α] be of degree two with norm N . Then u ∈ Z[α] is a unit
if and only if N(u) = ±1.

Lemma 3.2. If t ∈ Z[α] and N(t) is a prime in Z, then t is irreducible.

The two lemmas above are slight generalizations of theorems in [5], the proofs
remain the same.

Lemma 3.3. Let p be prime and let (a, p) = 1. Then the congruence

ax ≡ y mod p

admits a solution x0, y0, where

0 < |x0| <
√
p and 0 < |y0| <

√
p.

This is known as Thue’s Lemma. See [2] for proof.
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3.2 Splitting of primes ≡ 1 mod 4 in the ring of Gaussian
integers

Theorem 3.1. Let p be a prime ≡ 1 mod 4. Then p splits completely in Z[i].

Proof. Suppose p ≡ 1 mod 4. Then there exist integers x and y such that
p = x2 + y2 by Fermat’s theorem for sums of two squares, see [2] for proof. Let
P1 = (x+ iy) and P2 = (x− iy) be principal ideals in Z[i]. We start by showing
P1P2 = pZ[i]. Let a ∈ P1P2, then a =

∑
finite bkck for bk ∈ P1 and ck ∈ P2.

Hence,

a =
∑
finite

bkck =
∑
finite

rksk(x+ iy)(x− iy) bk, ck, rk, sk ∈ Z[i]

Since
(x+ iy)(x− iy) = p, (8)

we factor this out and get
∑
finite ukp where uk ∈ Z[i]. Hence a ∈ pZ[i] and

therefore we get,
P1P2 ⊆ pZ[i].

The reverse inclusion follows by reversing the implications. Hence

P1P2 = pZ[i].

Next we show Pj ∩ Z = pZ for j = 1, 2. We start by verifying that P1 ∩ Z is
a proper ideal in Z. That P1 ∩ Z is an ideal in Z, follows from straightforward
verification that it satisfies the definition. Let x ∈ P1∩Z and n ∈ Z. Using that
both P1 and Z are abelian groups under addition we get that they absorb any
n ∈ Z. Since both ideals do, so does their intersection and therefore we have
that P1 ∩ Z is an ideal in Z. By (8)

p ∈ P1 ∩ Z,

hence
pZ ⊆ P1 ∩ Z.

Which also implies that P1 ∩ Z 6= (0). Next we prove P1 ∩ Z 6= Z which is
equivalent to 1 6∈ P1. If 1 ∈ P1 then there exist solutions to the following
equation in Z[i].

(α+ iβ)(x+ iy) = 1.

The solution to this equation is x−iy
p , which does not belong to Z[i]. Therefore

1 6∈ Pj and hence Pj ∩Z is proper. We now have, pZ ⊆ Pj ∩Z ⊂ Z. Since pZ is
prime in Z, and since all prime ideals except (0) are maximal in any commutative
unital principal ideal domain by [1], such as Z, we get from maximality of pZ
in Z that,

pZ = Pj ∩ Z.

We proceed by proving that P1 and P2 are prime ideals in Z[i]. It is well known
that an ideal is prime if and only if the factor ring that it induces is an integral
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domain and that an ideal is maximal if and only if the factor ring it induces is
a field. We show that Pj , j = 1, 2, are maximal and therefore prime since every
field is an integral domain. A sufficient condition for maximality of an ideal A
in a ring R is :

A+ (t) = R for all t 6∈ A.

Therefore suppose t 6∈ P1. By Lemma 3.2 we have that if N(a + ib) is a prime
in Z, then a+ ib is irreducible in Z[

√
−1]. Since we know that N(x+ iy) = p we

get that (x+ iy) is irreducible and all divisors of x+ iy are therefore improper.
Improper divisors are either units or associates. If t is an associate of x + iy
then t = a(x+ iy) for some unit a, this contradicts that t 6∈ P1. If t is a unit we
have (t) = Z[i] and hence (t) +P1 = Z[i] which would give us maximality of P1.
This implies that x + iy and t lack common non-unit factor in the case where
we don’t have maximality immediately. Therefore their gcd is 1, up to a unit.
Since Z[i] is a Euclidean domain we know from [5] that there exist elements
u, v ∈ Z[i] such that (t, x+ iy) = ut+ v(x+ iy). Hence we have that some unit
belongs to the sum of ideals P1 + (t) which is therefore all of Z[i]. Since this
was for an arbitrary t 6∈ P1 we have that P1 is maximal and therefore prime.
The case for P2 is analogous.

3.3 Splitting of primes ≡ 1 mod 6 in the ring of Eisenstein
integers

Theorem 3.2. Let ω = e
2πi
6 and p be a prime ≡ 1 mod 6. Then p splits

completely in Z[ω].

Proof. We begin by showing that p = x2−xy+ y2 if and only if 4p = A2 + 3B2

for x, y,A,B ∈ Z.

p = x2 − xy + y2 ⇐⇒ p = (x− y

2
)2 − (

y

2
)2 + y2 ⇐⇒

4p = 4(x− y

2
)2 − 4(

y

2
)2 + 4y2 ⇐⇒

4p = (2x− y)2 − y2 + 4y2 ⇐⇒ 4p = (2x− y)2 + 3y2 ⇐⇒
4p = A2 + 3B2

where A = 2x − y and B = y. Next we prove that p ≡ 1 mod 6 if and only if
4p = A2 + 3B2 and therefore if and only if p = x2 − xy + y2. Suppose,

4p = A2 + 3B2. (9)

We have that p - B2 = y2 by the following argument. Since p = x2 − xy + y2

we need to have one of x and y odd. Since x and y play identical roles in our
expression we choose y to be odd. Furthermore we have (x, y) = 1 else p = ab
with a, b 6= 1. Hence, since y is odd,

(A,B) = (2x− y, y) = (2x, y) = (x, y) = 1.
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We are now at
4p = A2 + 3B2 where (A,B) = 1.

Suppose p | B. Then B = pu for some u ∈ Z which implies,

4p = A2 + (3pu)2.

Therefore we have p | A, but since (A,B) = 1 we have a contradiction and hence
p - B. This implies that there exists an integer C such that BC ≡ 1 mod p.
Multipliying (9) by C2 we get,

4pC2 = (AC)2 + 3(BC)2.

This becomes
(AC)2 ≡ −3 mod p.

Hence −3 is a quadratic residue of p. From the proof of Theorem 2.2 we have
the following equation of Legendre symbols,(−3

p

)
=
(−1

p

)(3

p

)
=
(−1

p

)(p
3

)
(−1)

p−1
2 =

(p
3

)
.

Combined with that p ≡ 1 mod 2 and the Chinese Remainder Theorem we get
that p = 6n + 1. Now for the converse, let p ≡ 1 mod 6. From the proof of

Theorem 2.2 we know this implies
(
−3
p

)
= 1. Hence that there exists some a

such that a2 ≡ −3 mod p. Furthermore (a, p) = 1 and hence ax ≡ y mod p
has solutions α0, β0 for which Thue’s lemma holds. This gives us,

−3α2
0 ≡ a2α2

0 ≡ (aα0)2 ≡ β02 mod p

or equivalently,
3α2

0 + β0
2 ≡ 0 mod p.

This implies,
3α2

0 + β0
2 = pk for some k ∈ Z . (10)

The bounds of α0 and β0 from Thue’s lemma gives us, 3α2
0 + β0

2 < 4p. This
reduces the possibilities for k in (10) to k ∈ {1, 2, 3}. Suppose k = 3, then
3p = 3α0

2 + β0
2. Therefore 3 | β0 and hence

3p = 3α0
2 + (3β0

′)2 ⇐⇒ p = α0
2 + 3β0

′2,

which essentially is k = 1. Next suppose k = 2, then 2p = 3α0
2 + β0

2. This can
be regarded as a congruence modulo 3 of the following form,

2p ≡ β02 mod 3.

In Legendre symbols this is equivalent to,

1 =
(2p

3

)
=
(2

3

)(p
3

)
= −1.
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This follows from that p ≡ 1 mod 6 which implies that
(
p
3

)
= 1 and that(

2
3

)
= −1, both of which are proved in [2]. Therefore letting k = 2 implies a

contradiction. Furthermore since 4 is a square, we multiply p = 3α2
0 + β0

2 by 4
to get 4p = D2 + 3E2. The remaining part of the proof is identical to the case
p ≡ 1 mod 4 and the split of p in Z[

√
−1]. The only difference is that we got a

new algebraic element ω = e
2πi
6 , our prime ideals have the form P1 = (x+ yω)

and P2 = (x + yω̄) and proving that Pj is prime is done by using the norm
N(a+ ωb) = a2 − ab+ b2 on Z[ω].

3.4 Splitting of 11 in the ring of integers in the cyclotomic
field generated by a fifth root of unity

In the two previous cases we dealt with field extensions of degree two. If we let
ω = e

2πi
5 we get an extension Q[ω] : Q which is of degree 4. Since this increases

the number of steps in the splitting we stick to investigating what happens with
the prime 11 when lifted the two steps from Z into Z[e

2πi
5 ]. To do this we used

Maple. The process can now be viewed in the following way:

Z ⊂ Z[−1+
√
5

2 ]

⊃

⊂ Z[ω]

⊃

pZ //

⊂

A1, A2
//B1, B2, B3, B4 .

Here A1, A2, B1, B2, B3, B4, are prime ideals in their respective rings.

Theorem 3.3. Let ω = e
2πi
5 . Then 11 splits completely in Z[ω].

Proof. What we want to establish is that we can find distinct prime ideals Pi
such that P1 · · ·P4 = 11Z[ω]. In the previous cases we used conjugation in order
to find suitable prime ideals. The first step is finding a suitable automorphism
on Z[ω] that does something similar. Let σ : Z[ω]→ Z[ω] be the automorphism
defined by σ(ω) = ω2. Since ω and ω2 share minimal polynomial we get from
[5] Corollary 10.8 that this is a Z-automorphism. We also know that Z[ω] is
free as a Z-module and therefore σ is determined by how it acts on the basis.
Observe that

σ2(ωi) = ω4i = ω̄i.

This property is essential. Lets factor 11 the two steps into Z[ω]. We start

in the extension Z[−1+
√
5

2 ] which is of rank two. Here we can split 11 into

(4 +
√

5) and (4 −
√

5) by conjugation of the algebraic element
√

5. Next we
consider the splitting of (4 +

√
5) into Z[ω]. Letting this factorization be the

usual complex conjugation we get two elements γ and γ̄. By finding similar
elements for (4−

√
5) we get a final expression

11 = (4 +
√

5)(4−
√

5) = γγ̄γ′γ̄′.
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In terms of σ and after commuting the factors we get,

γγ̄γ′γ̄′ = γσ(γ)σ2(γ)σ3(γ).

Proceeding as in the two previous cases we get that P1 · · ·P4 = 11Z[ω]. Letting
P1 = (γ) we obtain the remaining ideals by applying σ to it. To show that these
ideals are distinct we use Maple. In order to do the necessary computations we
need an actual element γ. After trying some random coefficients for elements of
Z[ω] we find that the element γ = −1 +ω+ω2 +ω3 multiplied by its conjugate
equals (4 +

√
5). The following computations are sufficient to establish that the

ideals are distinct. We have

σ(γ)

γ
=

13

11
ω3 +

1

11
ω2 +

7

11
ω +

15

11
,

σ2(γ)

γ
=

6

11
ω3 +

3

11
ω2 +

10

11
ω +

12

11
,

σ3(γ)

γ
=

9

11
ω3 +

10

11
ω2 +

4

11
ω +

18

11
.

Since these are not elements of Z[ω] for i = 1, 2, 3 we know that the ideals are
not identical. Next we show that all four ideals are prime in Z[ω]. Just as in the
previous cases we prove that the ideals are maximal. This will imply that they
are prime by the same argument as in those cases. The idea is to show that we
have the ring isomorphism,

f̃ :
Z[ω]

(γ)
→ Z

11Z
.

Since 11 is a prime we know that Z
11Z is a field. The problem is therefore finding

a suitable ring homomorphism f : Z[ω] → Z
11Z where the kernel is (γ). Since

both structures are free Z-modules we know that any Z-homomorphism f is
determined by how it acts on the basis of Z[ω]. Clearly f(1) = 1 and since the
remaining elements are multiples of ω we only need to decide where to map ω.
Let f(ω) = 5, since ω ≡ 5 mod γ we get ωk ≡ 5k mod γ for all k ∈ Z and
hence we have the Z-homomorphism defined for the basis. By extending this Z-
homomorphism defined for the basis we get that it preserves the additive group
structure. It remains to show that f also preserves the multiplicative structure
in order for it to be a ring homomorphism. Because of bilinearity we only need
to verify the following,

f(ωkωl) = f(ωk+l) = f(ωk)f(ωl).

Here 0 ≤ k, l ≤ 3. This gives us three cases to consider. The first 0 ≤ k+l ≤ 3 is
clear from definitions. In second case k+l = 4 we use that ω4+ω3+ω2+ω+1 = 0
and hence,

f(ωk+l) = f(ω4) = f(−ω3 − ω2 − ω − 1)

= −[1]11 − [5]11 − [52]11 − [53]11 = [5]411

= ([5]11)k+l = f(ωk)f(ωl).
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For the last case 5 ≤ k + l ≤ 6 we use that ω5 = 1, 0 ≤ k + l − 5 ≤ 3 and
[5]511 = 1 hence,

f(ωk+l) = f(ωk+l−5)

= [5]k+l−511 = [5]k+l11

= f(ωk)f(ωl).

To see that we have a well defined homomorphism with respect to the multi-
plicative structure consider the following:

f(

3∑
k=0

akω
k

3∑
l=0

blω
l) = f(

3∑
l,k=0

akblω
k+l)

=

3∑
l,k=0

[akbl]f(ωk+l) =

3∑
l,k=0

[ak][bl]f(ωk)f(ωl)

=

3∑
k=0

[ak]f(ωk)

3∑
l=0

[bl]f(ωl) = f(

3∑
k=0

[ak]ωk)f(

3∑
l=0

[bl]ω
l).

Next consider,

f(γ) = f(−1 + ω + ω2 + ω3)

= f(−1) + f(ω) + f(ω2) + f(ω3) = 10 + 5 + 3 + 4 ≡ 0 mod 11.

This implies (γ) ⊆ ker(f). For the reverse inclusion note that,

f : Z[ω]→ Z
11Z

is a surjective ring homomorphism as established above. Therefore we have

| Z[ω]
ker(f) | = 11 by the first isomorphism theorem. Further since we have (γ) ⊆

ker(f) we have,

11 =
∣∣∣ Z[ω]

ker(f)

∣∣∣ ≤ ∣∣∣Z[ω]

(γ)

∣∣∣.
Moreover, for every element α ∈ Z[ω] we have

α ≡ r mod γ

where 0 ≤ r ≤ 10. This follows because ωk ≡ 5k for all k ∈ Z and since 11 ∈ (γ).

Hence |Z[ω](γ) | is bounded by 11 which proves the reverse inclusion. We therefore

have our needed homomorphism and hence P1 is prime. In order to prove that
Pi i ∈ 2, 3, 4 are prime we use different isomorphisms. For P2 = (γ′) we define
f2 by f2(ω) = 4, P3 = (γ̄) we define f3 by f3(ω) = 9, P4 = (γ̄′) we define f4
by f4(ω) = 3. The arguments that these are isomorphic to the field Z

11Z are
identical to the case of P1. It remains to show that 11Z = Pj ∩Z. The inclusion
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11Z ⊆ Pj ∩ Z is proved just as in the two previous cases. To prove 1 6∈ Pi is a
bit more complicated but we can use Maple to get,

1

γ
= − 4

11
ω3 − 2

11
ω2 − 3

11
ω − 8

11
1

γ′
=

2

11
ω3 − 1

11
ω2 − 2

11
ω − 6

11
1

γ̄
=

1

11
ω3 − 1

11
ω2 +

3

11
ω − 5

11
1

γ̄′
=

1

11
ω3 +

4

11
ω2 +

2

11
ω − 4

11
.

Since none of these belongs to Z[ω] we reason just as in the case of the Gaussian
and Eisenstein integers to get,

11Z = Pj ∩ Z

This proves the splitting of 11 in Z[ω].
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