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Abstract

Most motor actions are carried out by many neurons acting together
in different areas of the brain. Recently, techniques have been devel-
oped and increasingly used that allow simultaneous recordings of the
activity from a large number of neurons over time ranges as long as
several weeks. At Neuronano Research Center (NRC) at Lund Uni-
versity, neural activity in rodents has been recorded using chronically
implanted 128-channel electrodes. The targets are within areas that
play a prominent role in the planning, monitoring and execution of
movements and, consequently, are strongly affected by motor diseases
such as Parkinson’s disease.

The experiments conducted at NRC naturally produces a large amount
of neural data. This master thesis work aims to perform feature ex-
traction from that data, i.e., find a way to mathematically describe
the disease states of the rodents without a priori knowledge of the
states. This is done by extracting features from the recordings, whose
values later are used to analyse and cluster the data. The results show
that a clear majority of the neurons exhibit a significant difference in
feature values between the disease states. This means that it is possi-
ble to mathematically describe the different disease states. Moreover,
the results show that different neurons behave differently: Some, e.g.,
exhibit increased activity going from one state to another, while others
exhibit decreased activity. Adding to this, some does not exhibit any
change while others exhibit a significant change.

That it is possible to mathematically describe the different disease
states, with a timescale of hours, indicate that the same may be pos-
sible for states with smaller timescales. These states, with a smaller
timescale, do not have to be connected to Parkinson’s disease but
could rather be normal, healthy states such as locomotion or reaching.
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1

Introduction

Most motor actions, as well as sensory and cognitive functions, are
carried out by many nerve cells, or neurons, acting together in different
areas of the brain [1]. In recent years, techniques have been developed
and increasingly used to record the activity from a large number of
neurons, either individually or together as a population. The activity
from a population of neurons can either be in the form of a summed
activity or in a set of activity from related neurons recorded in parallel.
It is not yet clear what knowledge can be gained from these recordings
or if studying a population of several neurons, as opposed to studying
one single neuron, can bring new insights to how the brain processes
and executes information. There are, though, many reasons for want-
ing to study a population of neurons acting together rather than just
one of these separately. In some cases, data recorded from one single
neuron is not sufficient because the final action involves coordination
of responses across multiple neurons. To study one neuron separately
may even, in a worst case scenario, mislead or confuse in the search
for the biological mechanism behind the neural activity. But, whether
the data consists of activity from one single neuron or many acting
together simultaneously, the need for ways to handle and interpret this
massive amount of data, also called big data [2], is apparent.

To extract information from big data one can make use of an an-
alytic process known as data mining (see Sec. 2.2). The ultimate goal
of data mining is prediction or description [2]: During prediction, un-
known variables or future values of variables can be predicted based
on known values. During description, one finds patterns in the data
that is presented in a form which is easily understood by humans |[3].



Chapter 1. Introduction

This is one of the things that the group for Integrative Neurophysi-
ology (Department of Experimental Medical Science and Neuronano
Research Center, NRC') at Lund University, hopes to do. The group is
pursuing rodent experiments, using chronically implanted electrodes
to record neural activity within the cortico-basal ganglia-thalamic loop
(see Sec. 2.1). The basal ganglia are known to play a prominent role
in the planning, monitoring and execution of movements and in addi-
tion, they are strongly affected by motor diseases such as Parkinson’s
disease (see Sec. 2.1) [4]. For these reasons, the collection of deep
brain structures has been chosen as a target for recordings in research
projects addressing questions related to normal motor control of sim-
ple and complex movements. In this work simple movements include
movements that involve most of the body and require gross motor
control, for example straight locomotion and left or right turns, while
complex movements such as reaching require a higher level of coordi-
nation and timing.

Research projects connected to the experiments at NRC, which this
thesis is based on, also address questions related to motor dysfunction
in Parkinson’s disease. The majority of patients suffering from Parkin-
son’s disease is treated with a drug called levodopa, but unfortunately
a long-term usage of this drug results, for most of the patients, in
severe motor complications [5]. These complications include abnormal
involuntary movements collectively referred to as levodopa-induced
dyskinesia. To attempt to identify the neurophysiological mechanisms
underlying parkinsonian symptoms as well as levodopa-induced dysk-
inesia, the group at NRC has recorded activity in the related circuits
over extended time periods during normal, parkinsonian, and dyski-
netic states in awake freely behaving rats.

Common to all the projects related to the experiments conducted
at NRC is the assumption that there is a dynamic change in the
neural activity that can be related to changes between different be-
havioural or disease states. These dynamic changes could, e.g., be an
increase of intensity, i.e., an increase in number of action potentials
(see Sec. 2.1) fired. The timescale, or the dynamic changes, can vary
from a subsecond up to several hours; while subsecond timescales can
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Chapter 1. Introduction

include complex movements such as reaching, the different states of
grooming can last for up to a few seconds, locomotion can take place
during seconds up to a few minutes, and the disease states may occur
in a timescale of up to one hour or even longer.

The overall goal of this master thesis is to explore methods for feature
extraction from the neural activity recorded in the projects mentioned
above, especially projects addressing questions related to the motor
dysfunction in Parkinson’s disease. Some of the features may be ap-
plicable for multiple timescales whereas others may be restricted to
small or large timescales. Ideally, the feature identification will allow
for the data to be clustered into different neural states, which in turn
also allow a conclusion on the corresponding behavioural or disease
states. The main focus will be on single- and multi-unit data (data
recorded from one single neuron and several neurons, respectively) and
the approach is, to begin with, purely data-driven. This means that it
does not require a priori knowledge of the underlying behavioural or
diseased states. To be clear, this is opposed to a classification-driven
approach where the underlying states are known a priori and used in
the training of a classifier.



2

Background

This chapter includes both medical and mathematical theory needed
for this thesis work. The medical background includes Sec. 2.1 about
the nervous system, with information about Parkinson’s disease. The
mathematical background includes Sec. 2.2 about data mining and Sec.
2.3 about spike trains and Poisson processes.

2.1 The Nervous System

The nervous system is a rapid control system that, together with the
endocrine system, regulates and coordinates the cells of the human
body [4]. It consists of a trillion of neurons that constitute the network
of the brain, spinal cord, and periphery. These cells communicate with
each other by means of chemical and electrical signals.

Neurons

There is a large diversity of neurons: They can vary in, e.g., size, shape
and firing properties [4]. But even though they occur in a large variety
there are still properties they all share. Among these are the overall
anatomy and behaviour, both described below, and that they share
features that allow for the cell-to-cell communication mentioned above.

A neuron consists of a cell body, or soma, containing the nucleus and
ribosomes, and is surrounded by a membrane [6]. It has two types of
extensions, the dendrites and the azon, through which it receives and
sends information in the form of electrical signals. While a neuron
can have many dendritic extensions, used to receive and process input
information, its output is sent along a single extension, i.e., the axon.

4



2.1 The Nervous System

The axon of a neuron is connected to the dendrites of one or several
other neurons by junctions called synapses. When a sufficiently strong
electrical signal (i.e., an action potential) reaches the synapses at the
end of an axon, it causes the release of chemical messengers called
neurotransmitters. After this release, the neurotransmitters reaches
the dendrites of the postsynaptic neurons, where they are received
by receptors and translated back to electrical signals that can be
propagated further to the soma of each of these neurons [4]. The
neurotransmitters can be both excitatory and inhibitory and hence
they decide the final strength of the signal reaching the neuron’s
cell membrane. The anatomy of two connected neurons as well as a
visualisation of a propagating action potential can be found in Fig. 2.1.

Figure 2.1: Visualisation of an action potential travelling between neu-
rons [7].



Chapter 2. Background

Before the signal reaches the membrane of a neuron, a summation of
incoming signals is made. The amplitude of the resulting signal is de-
cided by (1) the total number of received signals, (2) how close these
signals are to each other in time and (3) how far away from the soma
they have been received. The input signals can be both excitatory, in-
crease the membrane potential, and inhibitory, i.e., decrease the mem-
brane potential. The level to which the membrane potential is raised
increases with more excitatory signals as well as with an increased
number of signals per time unit. An increase of membrane potential,
from its resting state, is called depolarisation, the return (i.e., decrease
of membrane potential) to the resting state after a depolarisation is
called repolarisation, whereas a hyperpolarisation has occurred if the
membrane potential is decreased below its resting state [8]. If the am-
plitude of a summed signal raises the membrane potential to a certain
threshold it makes the receiving neuron fire an action potential. An
approximate plot of an action potential showing the different states
can be found in Fig. 2.2.

Action Potentials

Action potentials are the main part of the "booster system" that has
evolved to conduct signals over great distances to amend the rather
poor electrical properties of neurons. The potential over the cell mem-
brane is measured as the difference between the interior of a neuron and
the surrounding extracellular medium, and typically of the size —100
to +40 mV [9]. For the receiving neuron to fire an action potential,
the incoming signal must raise the membrane potential of the neuron
to its specific threshold potential, see Fig. 2.2. Action potentials is of
great importance because they are able to travel rapidly over large dis-
tances without being attenuated, which is in contrast to sub-threshold
potential fluctuations [8|.

When an action potential is fired it is in the form of a very brief (~ 1
ms) change of membrane potential from negative to positive [9]. Ac-
tion potentials are all-or-none events, meaning that either they occur
fully or not at all. Here, fully means that all action potentials from a
given cell have a stereotypical shape and duration, see Fig. 2.2 for a
schematic example. The amplitude and duration of an action potential
does not depend on the magnitude of the current that induced it, i.e.,

6
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Figure 2.2: Approximate plot of an action potential showing the dif-
ferent states of polarisation [10].

larger currents does not give rise to larger action potentials. However,
stimuli causing larger currents result in multiple action potentials be-
ing fired: An increased strength in stimulus causes an increased amount
of fired action potentials. This means that the intensity of a stimulus
can be measured through the amount of action potentials fired as a
response to the stimulus, rather than by their amplitudes, shapes and
durations. Different neurons fire action potentials with different firing
rates; However, there is an upper limit for all neurons [8]. This upper
limit is decided by the refractory period, see Fig. 2.2. The refractory pe-
riod has a duration of a few milliseconds, during which it is impossible
for another action potential to be fired.

Motor Control and The Basal Ganglia

The brain, as part of the nervous system, can be divided into the
following subdivisions: the medulla, the pons, the cerebellum, the mid-
brain, the diencephalon, and the cerebrum [4]. Of these, the cerebellum
and cerebrum and their descending pathways are the ones that are
mainly involved when the brain processes and executes information
concerning movement. The cerebrum consists of the right and left
cerebral hemispheres, which have an outer layer called cerebral cortez,
or gray matter, and an inside of white matter. The gray matter mainly

7



Chapter 2. Background

contains the cell bodies and synaptic connections while the white
matter mainly contain the axons (see Fig. 2.3 for coronal slices of the
cerebrum). The cerebrum furthermore comprises a number of deeper
structures, such as the subcortical nuclei and the thalamus, which are
interacting with the cerebral cortex.

The cerebral cortex plays a very critical role in controlling ongoing
voluntary movements as well as planning them. It consists of different
parts that together, as a whole, act to control muscle movements.
Even though these parts are anatomically parted and functionally
different they are heavily interconnected: One single movement may
be controlled by neurons from different parts of the cerebral cortex
and any one neuron may take place in several different movements.

Figure 2.3: Location and anatomy of the basal ganglia in the human
brain; (coloured) the basal ganglia, (dark gray) white matter, (light
gray) gray matter, striatum, (Gpe and Gpi) globus pallidus, (STN)
the subthalamic nucleus, (SN) substantia nigra. Note that the STN
and SN lie farther back (posteriorly) in the brain than the striatum,
GPe and GPi do [11].

The subcortical nuclei can be found in the very inner parts of the cere-
brum. Among these, the basal nuclei, or so also called basal ganglia,
are the most prominent structure [4]. The basal ganglia consist of the
striatum, the pallidum, the substantia nigra and the subthalamic nu-
cleus. These deeper structures, shown in Fig. 2.3, play a prominent role
in the planning and monitoring of movements by establishing the pro-

8



2.1 The Nervous System

grams that determine all parts of a movement to complete an action.
The basal ganglia form a link in the circuits that transmit the activity
in the motor system, some of which facilitate movements and others
suppress movements, thereby keeping the balance between voluntary
and involuntary movements. It is during certain disease states, such as
Parkinson disease, that the importance of the proper functionality of
the basal ganglia becomes most evident.

Parkinson’s Disease

Parkinson’s disease is the second most common degenerative disease
(Alzheimer’s disease being the most common one) and is characterised
by a reduced amount of movement, so called akinesia, slowness of
movements, termed bradykinesia, rigidity in the muscles (extremities
and neck), minimal facial expressions and a tremor at rest [4,9]. The
disease is also associated with dementia and the onset is gradual, usu-
ally between the ages of 50 and 70 [9]. After this it progresses slowly,
leading to death 10 to 20 years later.

In a Parkinson patient the balance between the circuits facilitating
and suppressing movements is impaired, and activation of the motor
cortex is reduced [4,9]. This is due to an initial defect in the neurons
of the substantia nigra in the midbrain, more precisely consisting of a
loss of dopaminergic neurons (neurons related to the neurotransmitter
dopamine [12]). The degeneration of these neurons causes a decreased
amount of dopamine to be delivered to the basal ganglia, which in
turn decreases the activation of the motor cortex, i.e., the region of
the cerebral cortex that controls muscle movement. The cause of the
degeneration of these cells and the subsequent development of Parkin-
son’s disease is still unknown [4]. The majority of Parkinson cases are
sporadic, but some cases indicate that the disease may be inherited.
Some research has, in addition, shown that exposure to environmental
toxins may play a roll in the causing of the disease.

Today, Parkinson’s is treated with drugs that are all designed to restore
dopamine activity in the basal ganglia. The most widely prescribed
drug is the dopamine precursor levodopa (L-dopa). Unfortunately new
problems arise with long-term use of levodopa; it results in severe
motor complications for most patients [5]. These motor complications

9



Chapter 2. Background

consist of abnormal involuntary movements with hyperkinetic ("fast-
paced or frenetic activity" [13]) or dystonic ("any of various conditions
characterised by abnormalities of movement and muscle tone" [14])
features and are collectively referred to as levodopa-induced dyskinesia.

2.2 Data Mining

Recordings of neurons often result in a large amount of data to analyse.
To tackle this size problem one may make use of data mining, which
has been developed as a natural result of the ever increasing amount of
data [3]. It is extensively used to identify phenomena concealed in data,
not just in neural data, faster and better than human experts. The aim
of data mining is to extract previously unknown and potentially useful
information from data, i.e., to predict or describe. Data mining gen-
erally consists of three phases [2[; (1) exploration, (2) model building
and validation and (3) deployment. A general description of all phases
follow below.

Exploration The exploration phase usually involves preprocessing of
the data [2|. The preprocessing could be to apply transforma-
tions, select subsets of the recordings, or to perform preliminary
feature extraction to keep the number of variables to a manage-
able size. After the preprocessing the most relevant variables are
identified, followed by the determination of complexity and/or
general nature of the models that are to be taken into consider-
ation in the next phase.

Model Building and Validation In this stage, the model with the
best predictive performance is chosen among others proposed in
the previous phase [2|. This choice is generally made after appli-
cation of all models to the same data. The predictive performance
is measured in the model’s ability to explain the variability in
question and produce stable results across samples. When the
superior model has been chosen it is applied to other data to
validate its performance.

Deployment During the deployment phase, the model chosen in the
previous phase is applied to data sets of interest in order to
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generate predictions or estimates of the expected outcome [2]. If
the data mining has been successful, this is where it reaches its
ultimate goal, i.e., prediction or description.

Prediction methods use some known values to predict unknown
or future values of variables. There are different kinds of pre-
diction methods, e.g., classification, regression and deviation
detection [3]. Description methods aim to find patterns that can
describe the data in a human-understandable way. Examples
of description methods include, e.g., clustering, association rule
discovery and sequential pattern discovery.

2.3 Spike Trains and Poisson Processes

As mentioned earlier in this chapter, action potentials convey informa-
tion through the frequency of their firing, or their timing [8]. Because
action potentials are very stereotypical they can mathematically be
treated as identical events. Adding the fact that they have a very short
duration, they can be approximated as delta pulses, or spikes. As a
result of this, a sequence of action potentials fired can be described as
a sequence of the time instances for each spike occurrence, a so-called
spike train.

A spike train can be visualised as a series of ones and zeros, where
a one would mean a spike occurred and a zero that no activity was
recorded. Adding a time resolution to the sequence , i.e., a fixed time
period that passes between every one or zero, reveals the firing rate
of the spike train. With a high time resolution, several ones in a row
indicate high firing rate, whereas if there are many zeros between each
one, the firing rate is low. When high-frequency firing-rate fluctua-
tions occur one may wonder whether the pattern of these carry any
significant information. If so, the question of how precisely the spike
times must be measured arises, and with this temporal coding [8]:
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To understand the difference between temporal- and rate coding, con-
sider the two spike trains stated below.

000111100101 11Q0GO0
01 010101010011

As both of these spike trains contain eight spikes during the time ob-
served, calculating the mean firing rate would give the same result for
the first as for the second. However, when looking at the sequence of
ones and zeros it is obvious that they are different. As opposed to the
measure of mean rate, a temporal code would tell them apart. The
question whether firing patterns reveal information on small (millisec-
ond) time scales has given rise to different measures that interpret the
information spike trains carry. Some of these are purely based on the
firing rate, whereas others aim to make an interpretation that is less
dependent of the same.

The Statistics of a Spike Train

One way to characterise a spike train is by the use of statistics [8]. A
good place to start is to consider the probability of a spike occurring
during a time interval, ¢t + At¢. The probability that a spike occurs
during this interval is proportional to the size of the interval when At is
small. In fact, this relation holds for any continuous stochastic variable.
That is, for any continuous stochastic variable X, the probability P|z]
that X takes the value z in the interval 2’ + Az, for small Az, is
plz]Az, where p[z] is the probability density. With this terminology
we can express the probability that a certain spike train occurs as

P[tl,tz,...,tn] :p[tl,tg,...,tn](At)n (21)

where n is the number of spikes during one time period T and t;
the time instances for each spike in the interval [0,7]. The problem,
though, with trying to estimate the probability for a certain spike se-
quence to occur is that the number of possible spike sequences usually
is very large. So large, that even a rough estimation can be considered
impossible. To still be able to characterise the sequence in some way
one can make use of point processes.
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Point Processes and the Poisson Process

A point process can in short be described as a process that simply
consists of points in time. Each point can be seen as a certain event
in time, such as the occurrence of an action potential [15]. Generally,
the probability of any event to occur at a certain point in time could
depend on the entire history of all events that has occurred before that
event. If this dependence only extends as far as to the preceding event,
the process is called a remewal process. It is among these processes
that we find a certain kind of process that makes an "extremely useful
approximation of stochastic neuronal firing" [8]: The Poisson process.

A formal definition of a Poisson process by [15] reads

Definition 1. A Poisson process with intensity X > 0 is a stochastic
process {N(t), t > 0}, such that

(i) N(t) is integer valued, growing and N (0) = 0,
(ii) N(t) has independent and stationary increases,
(iii) N(t) € Po(At).

The one-dimensional probability density function for the Poisson pro-
cess, which determines the probability for x spikes to occur within the
time interval [0, ], is defined by

At)®
PN () |2] Ze_M(x,), r=0,1,... (2.2)

There are two types of Poisson processes: homogeneous and inho-
mogeneous. Homogeneous Poisson processes have constant intensity
A, whereas in inhomogeneous ones the intensity changes over time:
A = A(t) [8]. The focus will be on the homogeneous Poisson process
and on taking steps that show the connection between its distribution
and the modelling of spike trains as stochastic processes.

Spike Trains and the Homogeneous Poisson Process

The intensity of a spike train is the rate, r, at which the neuron fires
action potentials [8]. A constant firing rate means that the process
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generates every sequence of n spikes, within a fixed time interval, with
equal probability. It is possible to express the probability of a certain
spike train P[ty, t, ..., t,] using the probability of an arbitrary sequence
of exactly n spikes occurring within the fixed time interval T: Pr[n].
The use of Pp[n] to formulate an expression for a certain spike train
calls for a conditional probability with a condition on the number of
spikes within the time interval [0, 7]. Recognising this, one can make
use of the following theorem from [15].

Theorem 1. Let T' > 0. The conditional distribution for the events
in (0,T] given N(T) = n is the same as for n points that are indepen-
dently and uniformly distributed over (0,T].

With use of this theorem and remembering that n spikes can be sorted
in n! number of ways, p[t1, ta, ..., t,] in equation (2.1) can be expressed
as n! PT[n]%. Using this, equation (2.1) becomes

P[tl,tQ,...,tn] :TL'PT[TL] (?)n (23)

Now, to finalise the expression for the probability P[t,to,...,t,] of a
certain spike train to occur, an expression for Pr[n] is needed. To find
this expression, it is convenient to divide the time interval T into M
bins of the same size At = T/M. At the end of the process of finding
an expression for Pp[n], the limit At — 0 will be applied, and for
this reason one can assume that At is so small that two spikes will
never occur within a single bin. The expression for Pr[n] can now be
constructed by multiplying three factors:

1. the probability of n < M spikes to occur within a subset of M
bins

2. the probability of spikes to mot occur in the M — n remaining
bins

3. the number of possible ways to put n spikes into M bins
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The first factor becomes clear when considering that the probability
of a spike to occur in one specific bin is rAt and, because of the in-
dependence, the probability of n spikes to occur in n specific bins is
(rAt)™. The same reasoning can be applied to the second factor with
the probability of a spike to not occur in a bin being (1 — At), i.e.
the second factor can be expressed as (1 —r/At)M =" Finally, the third
factor is given by the binomial coefficient (Af) These three factors
together create the expression for Pr[n]:

Prln] = lim Wi‘ﬁ)w(mwm — At)M-m, (2.4)

As At — 0, M grows without bound (recall MAt =T, and T is fixed).
The fact that n also is fixed lets us approximate M —n ~ M = T/At,
and by introducing € = —rAt the limit of the third factor becomes
obvious:

—rT
: _ M-n _ 1 1/e _ T
Al}glo(l rAt) Al}fIEO ((1 +e€) ) e . (2.5)

For large M, M!/(M — n)! =~ M"™ = (T/At)", and finally the expres-
sion for Prin] can be stated as

()"

. _—rT
Prin]=e o

(2.6)

which can be recognised as the Poisson distribution from equation
(2.2) with A=7r,t =T and x = n.

The use of the Poisson process to describe the probability of an
arbitrary sequence of exactly n spikes in the interval 7' (Pr[n]) seems
reasonable when noting that for increasing values of n, the process
reaches its maximum at larger values of T' [8]. This means, in reality,
that if a large number of spikes is desired, a larger T" should be chosen
to maximise the probability for this to happen. This is illustrated by
Fig. 2.4, where the probability of a number of spikes to occur is shown
as a function of rT". In fact, the Poisson process is the most frequently
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used type of stochastic point process when dealing with neuronal
modeling [16]. One important reason is that it is simple enough to
allow generation of computer simulated spike trains, while still not
being too far from real life spike trains that have been recorded from
physiological neurons.

The Poisson Distribution

——p=5

Pyln]

Figure 2.4: The Poisson distribution for different number of spikes (n)
as a function of the rate (r) multiplied by the time period (7).
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3

The Experiments at NRC

At NRC, the experiments are conducted on rats. The reason for this
is that rodents share many similarities with humans in organ struc-
ture and function. Because of this more than 90% of today’s medical
research is done on rodents [17]. The advantages with using rodents
also include their small size, high reproduction rate, low cost and easy
handling.

During the experiments, neural data was recorded from both healthy
and hemi-parkinsonian rats by use of implantable electrodes. The
hemi-parkinsonian rats recieved, three weeks prior to the electrode im-
plantation, injections into the right hemisphere according to the uni-
lateral Parkinson model (see [17]). Thus, the left hemisphere remains
healthy and could be used as a reference, while the right hemisphere
becomes parkinsonistic. Two weeks after lesioning, moderate motor
impairments were apparent.

3.1 Electrodes

The design of the novel electrodes used at NRC faces many chal-
lenges [17]. It has to be possible to mount the electrode on the small
surface of the rat’s skull and the rat must be able to carry it during the
long periods of time that the experiments are conducted under, i.e.,
it has to be compact and light. It needs to be implantable in a single
surgical procedure, i.e. it has to be built in one single piece with a high
precision for each target structure, and it has to record a multiple num-
ber of channels in the target structures. In addition, the implantation
of electrodes into different brain structures often involves the concern
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Chapter 3. The Experiments at NRC

Figure 3.1: Schematic overview of design assembly in its near-to-end
stage. The three-dimensional (3D) aligner and two-dimensional (2D)
array ensure that the wires are positioned correctly [17].

of different vertical positions of the targets, which further complicates
the production process. Fig. 3.1 shows a schematic overview of the de-
sign solving the last stated problems [17]: A three-dimensional aligner
and two-dimensional array assure that each channel is recorded from
the correct vertical and anterolateral (situated in front and to one
side [18]) positions. The anterolateral and vertical coordinates for the
correct positions were retrieved from the literature after decision about
the desired targets (see Fig. 3.2 for the placement of the electrode tar-
gets). The design assembly in Fig. 3.1 is close to its end stage.

Currently, the design of the electrodes used for recordings at NRC
allows for 128 recording channels and thus large amounts of data to
be recorded from one single animal during a time span reaching from
several weeks up to two months [17]. They include extracellular single-
and multi unit data and local field potentials (the summed activity of
many thousands of neurons close to the tip of the electrode). Further,
it allows the animal to be awake and behave freely, rather than being
anaesthetised or restrained in its mobility. In fact, the choice of the
targets for recordings at NRC has been such that neural activity in
all structures of the basal ganglia circuit of an awake, freely behaving
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mm

Figure 3.2: Dorsal view of the rat skull showing the placement of the
electrode targets in the cortico-basal ganglia-thalamic circuit. The elec-
trode spacing is 250 um. Included sites are the rostral forelimb area
(RFA), primary motor cortex (M1), dorsolateral striatum (DLS), dor-
somedial striatum (DMS), globus pallidus (GP), thalamus (Thal), sub-
thalamic nucleus (STN) and substantia nigra pars reticulata (SNr).
[17].

rat has been recorded in parallel for the first time [17]. Details on
the surgical procedures for electrode implantation can be found in,
e.g., [5,17].

3.2 Experimental Setup

The experiments are conducted in one of two ways: (1) During an
open field recording a healthy animal is placed in an enclosed square
area, 7bx75 cm, and its behaviour recorded for an extended amount
of time, up to several hours and (2) During a dyskinetic recording
the animal is placed in a transparent cylinder with a diameter of 250
mm and recorded for 30 min to establish baseline conditions. After
this the animal is injected with levodopa and the recording contin-
ues until the dyskinesia diminish spontaneously. During the dyskinetic
recordings the dyskinesia usually develops 10 to 20 min post-levodopa,
reaches its peak around 60 min post-levodopa and diminishes about 2
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h post-levodopa. During all experiments, the behaviour is documented
through video in parallel with electrophysiological recordings.

3.3 Data Acquisition

For recordings, the implant was connected to head-stages and cables
of the 128-multi-channel recording system [5,17]. The cables were at-
tached to a multi-channel commutator, which allow the animal to move
freely during the experiment. The sampling frequency of the recording
system was 32 kHz. The signals were then directly preprocessed in two
different ways to obtain unit activity (action potentials) and local field
potentials in parallel. The unit activity was obtained through high-pass
filtering at 600-9000 Hz and applying threshold detection. For every
threshold crossing, its time point as well as 32 samples (i.e., 1 ms) of
the signal, representing the waveform of the putative action potential,
were saved for subsequent ofHline-sorting, see Sec. 3.3. In this thesis
work, only the unit activity was employed for further analysis. The an-
imal’s movement was also recorded with a monochrome video camera.
A Master-8 pulse generator was used to synchronise the sampling of
the neural and video recordings.

Spike Sorting

In every channel, the waveforms of the putative action potentials were
sorted into single/multi units (signals recorded from one and sev-
eral neurons respectively) or noise through automatic clustering with
slightly modified algorithms from the Chronux toolbox [19]. All auto-
matically generated clusters were manually reviewed at the NRC to
determine if clusters, waveforms and interspike-interval distributions
were physiologically plausible. Clusters were only modified by merging
and splitting them according to the cluster hierarchy imposed by the
algorithm.

3.4 Datasets

The data used in this thesis work consists of neural data from 4
different recordings: 2 sets from dyskinetic recordings, with hemi-
parkinsonian rats (Dyskinesia Recording 4 and 7) and 2 sets from
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open field recordings, with healthy animals (Open Field Recording 8
and 36). Within each data set there are recordings from a collection
of neurons, individually recorded with time stamps for each action
potential fired, as well as time stamps for events such as, e.g., the
injection of levodopa or start and stop of locomotion.

The main focus of this thesis is on the recordings from the hemi-
parkinsonian rats, and therefore the data obtained from these rats is
presented in greater detail in Table 3.1. The table shows the number of
neurons, and their sites, that were recorded for Dyskinesia Recording
4 and 7.
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# Neurons | Left/Right | Dyskinesia Rec. 4 | Dyskinesia Rec. 7

L &R 15 106

All L 12 71

R 3 35

S — : L
M1 i 3 i
DLS = . ’
DMS = = :
T —
Thal 11% 8 :;
STN = . :
N ; ;
Unknown E 8 :f

Table 3.1: Table presenting the site and number of neurons recorded
for Dyskinesia Recording 4 and 7. Sites included are rostral forelimb
area (RFA), primary motor cortex (M1), dorsolateral striatum (DLS),
dorsomedial striatum (DMS), globus pallidus (GP), thalamus (Thal),
subthalamic nucleus (STN) and substantia nigra (SNr).

22



4

Methods

This chapter describes the methods that were used in this thesis work.
It starts, with Sec. 4.1, by describing the notations and terminology
that will be used from now on and continues with descriptions of how
the data is handled in Sec. 4.2. After these introductory sections the
features, in Sec. 4.3, the process of principal component analysis, Sec.
4.4, clustering, Sec. 4.5 and classification, Sec. 4.6, will be described.

4.1 Notations and Terminology

During each experiment, data is gathered both through video and
neural recor-

dings. Each such experiment will be referred to as a trial. The collec-
tion of time-

stamps gathered over the whole duration of a trial for one neuron will
be referred to as a recording. This means that for each trial, there will
be several recordings, one for each neuron, as well as video material
and event information. The event information is, as described in Sec.
3.2, timestamps for the injection of levodopa, and for the open field
recordings start and stop of locomotion.

Each recording will be defined by timestamps for the action potentials
recorded from a specific neuron. These will be denoted by ¢, meaning
a recording can be expressed as [t; to t3 ... tiy], where N is the total
number of spikes that neuron fired. The number of spikes within a
time period will simply be denoted by n. Note that each neuron may
fire a different total number of spikes, V.
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From the timestamps vector, ¢, a vector containing the interspike
intervals (ISIs), can be computed. A certain ISI is defined as
the time difference between two consecutive action potentials and
is denoted with 7. Hence, a more formal definition of the ith
IS1 is 7; = tijy1 — t; and the ISIs over a whole recording is
[7‘1 T T3 ... TN_1] = [t2 — 11 t3—to t4g—1t3 ... tny — tN—1]~

For calculation of the measurements, a recording will be divided
into segments. Each segment consists of the spikes within a certain
time period, which will be denoted by T'. All segments will be further
divided (or binned) into smaller segments of time, which will be re-
ferred to as bins (see Sec. 4.2). To obtain higher time resolution an
overlap over the segments is implemented and for each segment, a
value for every feature in Sec. 4.3 below is calculated.

4.2 Segmentation

The datasets used in this thesis work is in the form of single trials.
Many methods and measures are formulated to be applied to data
created using repeated trials, as opposed to one single trial. When
using repeated trials one knows what is happening and when. It could,
e.g., be the recording of a rat that has been taught to act in a certain
way when a light goes on. The recording could start just before the
light goes on and be stopped after enough time has passed to record
the reaction of the animal. Making several trials like this enables one
to establish a general characteristic of the response over time. To do
this it is common to align the trials and calculate the mean over the
trials for each time point.

In a single trial recording one can not average the response to eliminate
artifacts or noise components. One advantage of averaging over trials
is that it can result in a more robust estimation of the response. The
reason why this kind of averaging is not possible to perform for single
trial recordings is that one may not have several occasions when the
same behaviour or action is recorded. Even if that exists, the time
points for these occasions can be unknown and the actions could be
results of different stimuli or circumstances.
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Having mentioned this, there are still ways to apply measures based
on this kind of averaging to single trial recordings. When doing so
it is important to keep in mind that the analysis is not completely
analogous to the analysis that can be performed for repeated trials.
Two methods, described below are used here to resolve the problems
faced when dealing with single trials.

Time Segmentation

Each recording is divided into segments with a fixed time duration and
a certain overlap to allow for higher time resolution. Each segment is
further divided into non-overlapping bins with a shorter time duration
to allow for the averaging performed for repeated trials, i.e., after
applying a measure separately to the data in each bin of a segment,
the average measure for the segment can be calculated. The process of
time segmentation, using zero overlap for the segments, is illustrated
by Fig. 4.1.

Recording ‘

- BT

Figure 4.1: Illustration of the time segmentation of the data with zero

overlap between segments.

This procedure was used for Dyskinesia Recording 4 and 7 after the
removal of data close to the injection of levodopa. The segmentation
was made using a sliding window of length 120 s, with 87% overlap.
The bin size were 5 s and no overlap was used when binning within
the segments.
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Trigger Segmentation

A certain kind of event is chosen as a trigger, e.g., start or stop of
locomotion. Around each such event a time window with fixed time
intervals before and after the event is applied. Doing this aligns the
time windows, or event recordings, along the chosen event, see Fig.
4.2, and they can be used in the same manner as repeated trials. The
event recordings is further segmented according to time segmentation.
The mean values of the applied measures are calculated horizontally
over the aligned bins from each and every segment in Fig. 4.2. The
procedure of trigger segmentation was used for Open Field recording
8 and 36.

Original
recording

= -

Event Segments

di (binned)
(egmancs =B
= =
— P

Figure 4.2: Illustration of the trigger segmentation of the data, showing
the event times in red.

Exclusion Criteria

The largest disturbance in the recording process is the injection of lev-
odopa. Around the injection, the animals experience stress. Because of
this, the signals recorded close to the injection are not representative
for the behaviours or states that one wishes to identify. Therefore, to
simplify the calculations, 5 min before the injection are excluded from
the data as well as 5 or 30 min after the injection. The reason for the
choice of the longer time interval, 30 min, is that after that amount of
time, the dyskinesia should be well developed. If one wishes to identify
this state or differentiate it from the state before the injection it should
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be easier if the state is fully developed as opposed to gradually grow-
ing. To perform calculation with data including the gradually growing
dyskinesia, i.e. only 5 min of the data post injection removed, is un-
necessary if no satisfactory results are obtained from the calculations
performed on the data with only fully developed dyskinesia included.

Throughout the rest of this thesis work, the state before levodopa
injection will be referred to as baseline or pre-levodopa state, while the
state after levodopa injection will be referred to as post-levodopa state.

4.3 Feature Extraction

To tell disease states or behaviours apart, different measures are im-
plemented over time. The states to be recognised include, primarily,
the baseline from the post levodopa state and, secondarily, motor
behaviour such as, e.g., start and stop of locomotion. This chapter
presents all measures that have been applied to the data in the current
work. The application of measures is the first step in the process of
feature extraction and classification of behavioural or disease states.

Rate

As mentioned in Ch. 1, the variability of the firing rate of a neuron over
time may convey information that can be used to reveal the underlying
behavioural or disease state of the animal during the recording.

The firing rate, denoted r, is simply calculated by dividing the number
of spikes, n, that has occurred during a certain time period T by the
length of the time period.
n
r=—

T
The firing rate is low when there are few spikes per time unit and
high when there are many, see 4.3. Note that during the time intervals
where the firing rate is constant, e.g. [0,20] and (40, 60] s, the lower
plot does not show constant firing rate. This is a consequence of the
timing of the segment edges relative to the spikes.

The rate was calculated for each bin and the features extracted from
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each time segment the average, <r >, and variance, o2, over the bins

within that segment.

Simulated spike train

Spikes

30
Time (s)

Rate

nbr of spikes/s

Figure 4.3: Visualisation of the firing rate (below) as a measure of
a simulated recording (above). The recording is simulated with con-
stant, low frequency ¢t = [0, 20], increasing frequency t = (20,40] and
constant, high frequency ¢ = (40, 60].

Global Measures of Variability

Fano Factor The Fano factor (FF) is one of the most commonly
used measures for estimating the variability of spike trains [20]. It is
defined as the ratio of sample variance to sample mean of spike counts,
and takes the value 1 for a homogeneous Poisson process, i.e., a Poisson
process with constant intensity [8].

FF:O;’%
(n

~

where o2 denotes the variance and (n) the mean of the spike count.

The Fano factor is a measure of how alike a certain distribution is
the homogeneous Poisson process. The length of the time window, T,
has been documented to affect the estimator strongly. Unfortunately,
it is not yet clear how to choose a suitable time window [20].
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Coefficient of Variation The coefficient of variation (C'V) is an-
other commonly used measure for estimating the variability of spike
trains [20]. When measuring the variability of a spike train it is often
assumed that the spike train satisfies the definition of a renewal pro-
cess (see Sec. 2.3), which is the case for C'V.

The CV is based on the ISIs and calculated by the ratio of the
square root of the variance of the length of these to their mean |[§]:

Or

(r)’

where o2 is the variance of the ISTs and (7) their mean. Like the
FF, the CV takes the value 1 for a homogeneous Poisson process, and
hence it is also a measure of how alike the distribution of a spike train
is to the homogeneous Poisson process.

CV =

In Fig. 4.4, three recordings has been simulated. The first one (left)
was simulated with an underlying homogeneous Poisson process, the
second (center) drawn from the standard normal distribution N(0, 1),
and third (right) created by using two different ISTs, which is visible
in the histogram of the 1.57s. Note that, in the third histogram, there
are 40 1.STs that have the length of 1 s but they are so few that they are
barely visible when compared to the large number (2000) of .57s with
length 0.1 s. As expected, the value of the Fano factor and coefficient
of variation oscillates around 1 for the homogeneous Poisson process.
The second and third simulations are examples of distributions having
low respectively high values of the F'F and CV.

As can be seen in the plots showing the F'F and C'V for the simulated
homogeneous Poisson process, i.e. column 1 of Fig. 4.4, the value of
the F'F varies more than that of the C'V. The values for the homoge-
neous Poisson process should in theory both be 1 since this is how the
measures are constructed but this is not the case for all time segments.
The reason for this is either the timing of the bins within a segment or
that there are sudden changes in firing rate. Another recording, Fig.
4.5, was simulated to explain this further.

In Fig. 4.5, a recording with low constant firing rate in the inter-
val [0, 20], slowly linearly increasing firing rate in the interval (20, 40]

29



Chapter 4. Methods

Visualisation of the fano factor and coefficient of variation
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Figure 4.4: Visualisation of the Fano factor (middle) and the coefficient
of variation (lower) as measures of simulated recordings with different
interspike interval distributions (upper). The first simulated recording
has an underlying homogeneous Poisson process, for the second the
standard normal distribution was used and the third has two different
rates, with IS7s of lengths 0.1 and 1 seconds.

and constant, high firing rate in the interval (40,60] has been simu-
lated. One can clearly see that there are two peaks for both the F'F
and C'V and that these are located close to where the firing rate is
changed. Another thing that is worth mentioning is that the F'F' is 0
around 30 s even though the firing rate is changing. The reason for this
is the timing of the bins within the segments in combination with the
fact that the change of firing rate is small. Even though the firing rate
is changing it so happens that there are the same number of spikes
within every bin in these segments. When comparing this interval to
the same interval for the C'V one notices that the C'V is not equal to
0 here. This is because even though there might be the same number
of spikes within each bin the lengths of the I51s are still different.
This allows the C'V to be a more accurate measure in this specific case.

As now has been made clear, the F'F' and CV are sensitive to sudden
changes in firing rate. This may be somewhat troublesome since they
are not meant to measure variability in firing rate. That the F'F' and
CV changes as the firing rate varies is, unfortunately, a consequence of
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Visualisation of the fano factor and coefficient of variation
Simulated spike train
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Figure 4.5: Visualisation of the global measures Fano factor (middle)
and coefficient of variation (below) as measures of a simulated signal
(above). The recording is simulated with constant, low frequency t =
[0, 20], increasing frequency ¢t = (20,40] and constant, high frequency
t = (40, 60].

the formulation of the measures. What they are meant to measure is,
as mentioned above, how alike a process is the homogeneous Poisson
process: If the distribution is close to a homogeneous Poisson distri-
bution, the F'F' and CV should be close to 1. That the FF' and CV
overestimate the variability when there are sudden changes in firing
rate motivates the introduction of more local measures of variability.
If a measure of variability operate on just a few spikes or I.SIs they
would not overestimate sudden changes in firing rate and the variabil-
ity of slow changes in firing rate would be more accurately measured.

Local Measures of Variability

One problem with the F'F and the CV, as stated above, is that they
overestimate the variability when there are pronounced firing rate
changes [21]. To avoid this problem, temporally local measures of spike
time irregularity have been formulated. Four of these measures, that
are more robust to firing rate changes, are described below. All four
measures are based on consecutive ISIs, 7; and 7;41. For each mea-
sure a metric m; is introduced as a function of the consecutive IS7s. In
general, a metric must be invariant to changing 7; into 7,41, positive,
and equal to zero only if 7, = 7;41. Note that all metrics, and so also
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the measures based on these, are functions of the ratio of consecutive
1S1s. In practice, this means that they are scaled with the instanta-
neous firing rate and, because of this, relatively rate-independent.

The Local Coefficient of Variation The local coefficient of vari-
ation (CVa) is the local version of the global measure C'V, with the

subscript indicating that it depends on only two 1.5 values. The metric
of C'Vy is defined as [21]

T — Tiaq
m?V2:2’Z Z+’7
Ti + Tit1

and the C'V5 by its average

1 M
E: CVs
C‘/Q:Mlmz 2,
1=

The choice of M decides the number of segments for the whole dura-
tion of the recording.

The local coefficient of variation was calculated for each bin and
the features extracted from each time segment the average, < CVs >,
and variance, U%VQ, over the bins within that segment.

The Local Variation The local variation (LV') is a quadratic ver-
sion of C'V; based on the metric [21]

mbV — 3(Ti — Tiv1)”

! (75 + Tig1)?’

and defined by the average

1 M
LV = M;mf‘/.
1=

The local variation was calculated for each bin and the features ex-
tracted from each time segment the average, < LV >, and variance,
O'%V, over the bins within that segment.
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The Irregularity Measure The irreqularity measure (IR) is a mea-
sure of irregularity of spike train data based on the metric [21]

m{" = |log(i/Tis1)],

and defined by the scaled average

IR log Z m

The choice of scaling factor as log(4) ensures that CVo = LV = IR =1
for a Poisson process to fall in the same range as the global measure
CV'. The choice of scaling factor for the measure SI below will be due
to this reason as well.

The local irregularity measure was calculated for each bin and the
features extracted from each time segment the average, < IR >, and
variance, 0% R over the bins within that segment.

The Spiking Irregularity Measure The spiking irreqularity mea-
sure (S1) provides an estimate of the shape parameter of a spike train
in a gamma-distributed assumption of spiking activity. The metric for
ST is defined as [21]

1 4T, ;

SI i Ti4+1

ms = —=log| ——————= ).
’ 9 %8 ((Ti +Ti+1)2)

To average the measure of M individual values, the following expres-
sion is used,

M

11
S/ =———— ST
1—log(2) M ;m

The local spiking irregularity measure was calculated for each bin and

the features extracted from each time segment the average, < ST >,
and variance, J% 7, over the bins within that segment.
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A visualisation of the local measures of variability can be found in Fig.
4.6. The simulated signal is the same as the ones used in Fig. 4.5. The
reason for this is to show whether the implementation of local measures
actually was well motivated. As expected, since all four local measures
are formulated to be equal to 1 for a Poisson process just like the FF
and C'V, the local measures behave rather similar (compare Fig. 4.5).
Note that the scaling of the y-axis is different in Fig. 4.5 and Fig.
4.6 and that the amplitude is much lower for the local measures (Fig.
4.6). Adding to this, the percentual difference in amplitude between
the peaks and the valley is lower than that for the F'F' and CV. This
means that the local measures actually are less sensitive to pronounced
changes in firing rate than the global measures. The local measures are
also able to detect the slow change of firing rate in the interval (20, 40],
in contrast to the F'F. As expected all measures equals zero where the
1S51s are of the same length.

Visualisation of the fano factor and coefficient of variation

Simulated spike train
a 5

0 0

Spikes

0
Time (s)
Local measures of variation

®

Local measure value

Tim?‘eO (s)

Figure 4.6: Visualisation of local coefficient of variation (CV3), lo-
cal variation (LV'), irreqularity measure (IR) and spiking irregular-
ity measure (SI) (below) as local measures of a simulated record-
ing (above). The recording is simulated with constant, low frequency
t = [0,20], increasing frequency ¢ = (20,40] and constant, high fre-
quency t = (40, 60].

The local measures have proven to be less sensitive to pronounced
changes in firing rate [21]. But are they still able to measure the simi-

larity between a given process and the homogeneous Poisson process?
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Fig. 4.7 shows the local measures applied to a simulated recording
with an underlying homogeneous Poisson process. It shows that C'V;
and LV are very close to 1 during the whole recording whereas I R and
ST have values that are above and below 1 respectively. But, they are
still rather close to 1 in comparison with e.g. the F'F (see Fig. 4.4).
Hence, they seem to be able to measure the similarity between a given
process and the homogeneous Poisson process, while at the same time
being less sensitive to sudden changes in firing rate.

Visualisation of the local measures of variation
Interspike interval distribution
T T T T

Interval (5)

Local measures of variation
T

Figure 4.7: Visualisation of local coefficient of variation (CV3), local
variation (LV'), irreqularity measure (I R) and spiking irreqularity mea-
sure (ST) (below) as local measures of a simulated recording with an
underlying homogeneous Poisson process (above).

Irregularity Measures

Neuroscientists long believed that the use of information theory could
enable a deeper understanding of the information processing of neural
systems [22]. A possible issue with this belief is that the issues and
goals of neuroscientists and communication engineers are very differ-
ent: Communication engineers design systems while neuroscientists
analyse existing systems. In spite of these differences, information-
theoretic techniques has proven to provide useful insights in questions
related to neuroscience [23].
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Applying information measures to the data quantify the similarity,
or dissimilarity, of the spike trains. Information measures can also, for
this reason, be referred to as irregularity measures. In this work, two
kinds of irregularity measures, both described below, are calculated:
entropy and spike train metrics.

Entropy, the Direct Method The entropy is calculated for a cer-
tain I.S1 within a spike train. The spike train is defined by the time
segment chosen from the data set. The definition of the entropy of an
ISI, analogue to the one for a stimulus in [22], is given by:

Definition 2. Let D be a discrete-valued ISI that assumes one of M
values, D € {11, 72,....,7as}, and let P[r;] denote the probability with
which each 1S1 within the segment occurs. The entropy of a certain

ISI, H(D), is defined as

M
H(D) % =) Plri]log, P[ri]

=1

In this implementation, P[r;] is approximated as the number of occur-
rences of that ST within the segment divided by the total number of
151s within the segment. The entropy equals zero when an 151 has
unit probability, i.e., all 1.51s within a segment are equal. It reaches
its upper bound, logy M, when all 1SIs are equally likely, i.e., when
all 1S1s are different. This means that the entropy characterises 1.57
uncertainty. A larger value of entropy implies a greater uncertainty and
larger variety of ISTs and vice versa.

Spike Train Metrics Spike train metrics are particularly useful
for neural coding because they operate on time series of all-or-none
events [25], recall that this is exactly what a series of action potentials
are. The spike train metrics quantify the extent to which the patterns
of two spike trains are dissimilar. The two metrics implemented, spike
time metrics and spike interval metrics, are both cost-based metrics,
meaning that a cost is assigned for the process of turning one spike
train into another.

These spike train metrics are best suited for repeated trials, where
similar spike trains are compared due to alignment of events. This
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may not be the case in a single trial recording but the measures can
still be useful with some adjustment. The costs of the both metrics
are kept as they are defined but they are implemented on spike trains,
or groups, within a segment. This means that the groups within a seg-
ment are compared, as opposed to different segments being compared
to each other. After division of a segment into groups, each of these
groups contain a specific number of spikes, n,,. The adjustment results
in the metrics becoming measures of irregularity within a segment. If
all groups of n,, spikes are similar each other the cost will be low and
vice versa. Note that there is a cost for the number of spikes between
groups being different (see below). With the adjustment made for
single trial this cost will be equal to zero for comparisons between all
groups in the segment except maybe for comparisons with the last
group, which may contain less than n,, spikes due to the limited time
interval that defines the segment.

Spike Time Metric: For the spike time metrics (T'M), there are
two kinds of costs defined for turning spike train A into spike train B:

1. the cost of deleting or inserting a spike is equal to 1.

2. the cost of moving a single spike in time, equal to g|t, —tp|, where
t, is the spike time for a spike in A, t; the spike time for a spike
in B and ¢ a tunable weighing factor (in units of 1/sec).

For ¢ = 0, the spike timing is irrelevant and the larger the ¢, the higher
is the relative sensitivity of the metric to spike count and spike timing.

Spike Interval Metric: There are two costs for the spike interval
metrics (IM), as well:

1. the cost of deleting or inserting a spike, equal to 1.

2. the cost of shortening or extending an IS, equal to gt, where
t is the amount that the interval has to be changed by and ¢q a
tunable weighing factor (in units of 1/s).

The parameter g has the same roll here as for the spike time metrics
but note that changing the length of an interval, as in I M, is not the
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same as moving a spike in time, as in T'M. When an interval length is
changed, the spike times of all following spikes are changed, whereas
if a spike is moved in time it does not affect the following spikes.

Fig. 4.8 shows a visualisation of the irregularity measures entropy, 7'M
and I M. Two simulated recordings has been used to illustrate how the
measures behave. The first one (column 1) has constant firing rate,
i.e. only one IST interval, namely 0.5 seconds. The second (column 2)
is drawn from a normal distribution. The plots show that a recording
with evenly spaced spikes (first recording) has low irregularity and re-
sults in lower values whereas a signal with many different 7.57Ts (second
recording) has high irregularity and results in higher values of irregu-
larity. Note that the scale for the entropy and the spike train metrics
are different. In this context a value of 12 for the entropy is high while
very low for the spike train metrics.
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Figure 4.8: Visualisation of the irregularity measures entropy (middle),
spike time metric (T'M) and spike interval metric (IM) (below) as
measures of two simulated recordings (above). First recording (left)
was simulated with constant firing rate, the second (right) with an
underlying normal distribution.

Statistical Significance

The features presented above are meant to be descriptive: In this
thesis work the hypothesis is that they can be used to describe differ-
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ent states, especially differ the baseline from the post levodopa state.
To decide whether the features can be used to differentiate between
two states one can investigate whether the difference between feature
values in two different states is statistically significant. If the difference
between feature values in the two states are statistically significant it
means that one, with some degree of confidence, can state that they
belong to two different distributions [26].

To decide whether the difference between feature values in the baseline
and post levodopa state were statistically significant a paired t-test
were used. The paired t-test used tests the null hypothesis Hy that
two samples, X and Y, come from distributions with equal means.
The difference X — Y is assumed to come from a normal distribution
with unknown variance and the level of confidence used was 95%. To
perform the paired t-test, MATLAB’s function ttest was used.

Feature Vector Extraction

The features presented above, see Table 4.1 for an overview, were
calculated for every segment of the recordingss. More specifically, for
every segment, all feature values were gathered to form a feature vec-
tor. The collection of feature vectors, i.e. the feature vectors gathered
from all segments, allows one to investigate how the feature values
propagate over time.

The hope is that one or several features change over time as the
behaviour or actions of the animals changes. If the feature values
exhibit changes that in some way are connected to changes of the
behaviour or actions of the animal, one may be able to classify, or
connect the clusters formed, to different states. These states could, as
have been mentioned before, be e.g. start, slowing and stop of loco-
motion or the diseased dyskinetic state. At least, these states are the
ones investigated in this thesis work.
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Feature | Description Notation

1 Average rate <r>

2 Variance of rate o?

3 Average number of spikes <n>
4 Variance of number of spikes o2

5 Fano factor FF

6 Coefficient of variation cv

7 Average local coefficient of variation <CVa>
8 Variance of local coefficient of variation O’%VQ
9 Average local variation <LV >
10 Variance of local variation O'%V
11 Average irregularity measure <IR>
12 Variance of irregularity measure O‘% R
13 Average spiking irregularity measure <SI>
14 Variance of spiking irregularity measure a% 7
15 Entropy H
16 Spike time metric TM
17 Spike interval metric IM

Table 4.1: Table over features used for clustering and classification.

4.4 Dimensionality Reduction

The use of all 17 features stated in Table 4.1 presents one with a 17
dimensional space to use for clustering or classification. To investigate
whether the dimensionality of the problem could be reduced, one can
make use of, e.g., principal component analysis (PCA) [26]. Generally,
component analysis is an unsupervised approach to find which fea-
tures that define a d-dimensional feature space. Principal component
analysis projects the d-dimensional feature data onto a new orthogo-
nal d-dimensional space, creating linear combinations of the original
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features. This is done by using a projection matrix P:

FP = Fp,

where F' is the [n x d] dimensional matrix (n being the number of
observations) containing the original feature data, P the [d x d] di-
mensional projection matrix and Fp the [n x d] dimensional matrix
holding the feature data projected onto the new space.

The projection matrix P is constructed so that the projected data Fp
has columns with decreasing variance. This means that the first col-
umn covers the largest amount of the variance in the original space, the
second the second largest amount and so on. Hence, all columns of Fp
covers the entire original space variance. This means that projection
onto the principal component space does not reduce the dimension-
ality: No information in the original data is lost. If one wishes to
reduce the dimensionality to dimension p, one simply keeps the first p
columns in Fp and let them represent the original data. This reduces
the dimensionality while keeping the largest amount possible of the
original data’s variance.

A two-dimensional projection example, where the projection sim-
ply is a rotation, can be found in Fig. 4.9 where each data point (red)
is defined by two features and the principal components are marked by
two arrows (blue and black). If one wishes to reduce the dimensionality
it is preferable to choose the black principal component to represent
the data in the principal component space as the largest variance is
found along its direction.

PCA was performed using MATLABs built in function pca. The fol-
lowing parameters, returned from pca, were used:

e the principal component coefficients: the matrix used to
project the original feature data onto the principal component
space, i.e. P.

e the principal component score: the representation of the fea-
tures in the principal component space, i.e. the projected data
Fp.
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Figure 4.9: Visualisation of a two-dimensional principal component
analysis example with the original data (left) and the data projected
onto the new principal component space (right).

e the principal component variances: the amount of variance
preserved when projecting the features space into the principal
component space.

Based on PCA, two reduced feature spaces were created. The first
approach to create a reduced feature space, the reduced principal com-
ponent space, was to make use of the principal component variances.
These were used to decide the dimension, p, of the new reduced space,
i.e. the number of colums in Fp that had to be kept to cover 90% and
99% of the original feature space variance. Subsequently, the clustering
and classification were performed on the pgg and pgg first columns.

The second approach, creating the reduced feature space, was based on
the weights in the principal component coefficient matrix. The dimen-
sion were, as in the first approach, decided by the principal component
variances (pgyp and pgg). That number of original features were used
for the new space according to the following procedure:

1. The feature with the largest weight in column one of P is chosen
for the reduced feature space.
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2. The feature with the largest weight in column two of P is chosen,
if this feature is the same as the one chosen in step 1., the feature
with the next largest weight is chosen.

3. The feature with the largest weight in column three of P is cho-
sen. If this is the same feature as either the one chosen in 1. or
in 2., the feature with the next largest weight is chosen. If that
feature also is the same as one of those chosen in 1. or 2., the
feature with the third largest weight is chosen.

4. This procedure is continued until pgg and pgg number of original
feature has been chosen.

The reduced number of original features was subsequently used to per-
form clustering and classification.

4.5 Clustering: Unsupervised Learning

Clustering allows for categorisation of the segments into states without
having any prior knowledge as to what state is actually "correct" [26].
Hence, the process of clustering is exploratory and may offer some
previously unknown facts about the nature or structure of the data.

The aim of clustering is to partition the data of n samples, the
segments, into ¢ clusters, the states. Samples within the same cluster
should be alike in some way while they should differ from samples
within other clusters. To create clusters one may start with ¢ = n
number of clusters, where each cluster contains only one sample and
then step by step merge these to form new clusters. This type of
clustering is called hierarchical clustering.

Hierarchical Clustering

The process of hierarchical clustering starts, as stated above, with every
sample being declared one cluster each. After this, two samples are
merged to form a new cluster. This merge results in the new number
of clusters becoming ¢ = n — 1. Which samples that should be merged
is decided by some similarity measure, e.g. shortest Euclidean distance
between feature vectors. After this, either a sample is merged with the
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previously newly formed cluster or with another sample to form yet
another new cluster, and the total number of clusters are ¢ = n — 2.
Continuing this process finally results in all clusters becoming one,
containing the whole data set. This process is illustrated by Fig. 4.10
below, where a distance criteria has been used to form clusters.
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Figure 4.10: Ilustration of the process of hierarchical clustering of a
data set (left) with a distance criteria to form clusters (right) [27,28|.

Depending on how many clusters that is of interest, the process can
be stopped at that number. Another reason to stop the merging of
clusters could be that the two clusters about to be merged does not
have values similar enough to form a new cluster. Similarity could e.g.
be measured in the distance between the clusters.

After performing clustering, the clustering quality can be measured.
The ultimate goal is that each cluster is well separated from the others
and that the dispersion within each cluster is small. This is not always
possible due to the structure of the data to be clustered. A data set
containing only identical, or very similar, samples will never result
in clusters that are well separated and a data set with very different
samples will never have a low dispersion.

A simple way to measure the clustering quality is to calculate the
percentage of segments that has been correctly clustered. Since clus-
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tering is a blind process, i.e. there is no prior knowledge about what
segments belong to which cluster, it is not known what correctly clus-
tered is. Since, in this work, the aim is to separate states from each
other, the labelling of clusters are not really important and the true
clusters can be chosen so that the percentage is maximised. As an
example, if two clusters are used, there will be one percentage of
segments correctly clustered if the baseline is labelled I and the post
levodopa state 2, and another vice versa. Another way to measure the
clustering quality is by help of criterion functions.

Criterion Functions

Criterion functions are generally used to optimise the quality of the
clustering, i.e., to find the partition of the data that optimises them
[26]. But, if the partition has already been made they can be used to
measure the quality of the clustering. The criterion functions used in
this work are presented below.

The Sum-of-Squared-Error Criterion The sum-of-squared-error
criterion is the most widely used criterion function [26]. It measures
the dispersion within a cluster by comparing each sample of a cluster
to the mean centre. One wishes low values for the sum-of-squared-
error, since this means that the samples within the cluster with that
corresponding error are much alike each other.

The sum-of-squared errors is defined by

Je = Z Z H:II—’)’TLZHQ

=1 :BEDZ‘

where ¢ is the total number of clusters, D; is the notation of the ith
cluster,  denotes a sample and m; the sample mean within the ith
cluster. Note that the boldface characters denotes that m,; and x are
vectors. In this case, more specifically, x is a feature vector and m; the
mean over all feature vectors in the ith cluster. The Euclidean distance
is used as distance function.

The Between-Cluster Criterion The between-cluster criterion is
a nice complement to the sum-of-squared-error criterion. It does not
measure the scattering within a cluster, but the scattering between
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clusters. High values of between-cluster scattering is preferable, since
this means that the clusters are well separated, i.e. that the samples
in different clusters are much unlike each other.

The between-cluster criterion is based on the between-cluster-scatter
matrix Spg,

Sp = an(m, —m)(m; —m)’
i=1

where n; is the number of samples in the ith cluster, m the mean of
all samples in the data set and ¢ denotes the transpose. The between-
cluster-criterion is simply the trace of the between-cluster-scatter-
matrix Sp.

Jo = tx[Sp] = nillm; — m|.
=1

Note that the boldface characters denotes vectors here as well. As for
the between-cluster criterion, m; is the mean over all feature vectors
in the ith cluster and here, m is the mean over all feature vectors in
all clusters.

4.6 Classification: Supervised Learning

During classification each feature vector is used to assign every object
to a group [26]. In this case an object is a segment of time and a group,
or class, corresponds to a state.

During classification a class is assigned to each object previous to
the classification. In this case it means that a priori knowledge about
when the animal is in a certain state of behaviour is needed to perform
the classification. Hence, the task of classification is not to find out
what class a certain segment belongs to, but to minimise the cost of
dividing all segments into the previously decided classes. The difficulty
of this task is decided by the variability of the feature values for seg-
ments belonging to the same class relative to the difference between
feature values in different classes. The division of segments into differ-
ent classes is done by using the feature values. Segments with feature
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values that are alike should be grouped into the same class and there
should be a distinct difference in feature values between the segments
grouped into different classes. The process of grouping the segments
into classes can accessibly be visualised by the use of a decision tree.

Decision Trees

A decision tree is characterised by a series of questions that have two or
several possible answers [26]. Depending on the answer, a new question
is asked until either sufficiently many questions has been answered to
decide what class a certain object belongs to or the process is stopped
due to some condition set beforehand. The name decision tree comes
from that the answer to each question is followed by a split of the whole
data set or a data subset. An example of a decision tree is displayed
in Fig. 4.11.

Level 0

Level 1

Level 2

Level 3

Level 4

Figure 4.11: Basic decision tree with 4 levels where the classification
process proceeds from top to bottom.

The creation of a decision tree starts with a base called the root node,
which holds all time segments. In our case a simple yes/no question is
asked, namely if a certain feature value is larger or smaller than the
value that most significantly divides the segments into two different
states. The outcome is that the data is divided into two groups for
which two new questions can be asked to make further divisions. Each
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such division creates a new node, holding a subset of the data, and
if the node is pure enough it is declared a leaf. When the process of
classification reaches a leaf, that trail of divisions is complete. The leaf
furthest from the root node decides how many levels the classification
consists of, with level 0 being the root node. The number of levels is
equal to the number of splits that has been performed to create the
subset in the leaf furthest from the root node. The declaration of a leaf
is where the question of "when to stop splitting" comes into light. If
a very accurate classification is wanted, with the extreme case being
that all segments are correctly classified. In some cases, this can lead
to a very large number of splits which may require a lot of calculations.
Continuing to split the decision tree like this also introduces another
problem: owverfitting.

Overfitting a Decision Tree An optimal setup to perform a classi-
fication would be to have access to a large amount of the same type of
data gathered in different trials, i.e. many repeated trials. One part of
the data would then be used to train the classifier and the other part
of the data to evaluate the performance of the classifier and validate
the result. Unfortunately, a sufficient amount of datasets is not always
available for training and validation on separate datasets, as is the case
in this thesis work. A solution is to train and evaluate the classifier on
the same data set, but this can result in an overfitting of the decision
tree. Overfitting means that the classifier is overly adapted to a certain
data set, which will allow for very successful results when performing
classification on the same data set. To a certain degree, this can be
avoided by dividing the data and using cross-validation.

The cross-validation used in this thesis work is the m-fold cross-
validation, more specifically a 10-fold cross-validation. During a m-
fold cross-validation the dataset is randomly split in m disjoint sets of
equal size n/m, where n is the total number of segments. After this
partition, the classifier is trained m times, one time with each of the
data sets as the validation set and all other sets as training sets.
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4.7 Computation Scheme for Clustering and
Classification

Dyskinesia Recording 4 and 8, recorded at NRC, were used to perform
clustering and classification of each neuron separately. The following
versions of the feature space, with the data 30 or 5 min post injection
removed, were used to identify the baseline and the post levodopa
state:

o Full feature space, i.e. the space based on all features.

e Reduced principal component space, covering 90% and 99% of the
original feature space.

o Reduced feature space, with one and two original features respec-
tively.

The classification was performed twice using MATLAB’s function
fitctree with 10-fold cross-validation and two or trhee true classes
respectively. When two classes were used, one class denoted the base-
line, i.e. the time segments before the injection. The other class de-
noted the segments after the injection. For the data where only 5
min post injection were removed, three classes were used: the third
class denoted the transition state, between 5 and 30 min post injection.

For clustering, the scattering measures were calculated for 1 up to
15 clusters. Based on the progression of these measure values the clus-
tering were finally performed, using MATLAB’s function cluster, for
2 and 3 clusters.

Performance Evaluation

The clustering quality for each neuron was measured by the fraction of
"correctly" clustered segments. A segment was assumed to be correctly
clustered if it was clustered according to the cluster label combination
that maximises the total fraction of correctly clustered segments. More
specifically this means that for, e.g., 2 states, 2 fractions were calcu-
lated:

1. The fraction of correctly clustered segments if the baseline was
labelled "1" and the post levodopa state "2".
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2. The fraction of correctly clustered segments if the baseline was
labelled "2" and the post levodopa "1".

The labelling with the largest fraction of correctly clustered segments
over the whole recording was then used to decide whether a segment
was correctly clustered or not. For the classification, the performance
was also measured by the fraction of correctly classified segments. Here,
however, there is no question of what "correct" is because the classi-
fication is performed based on the key holding the correct labels for
each segment.
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5

Results

5.1 Feature Extraction

The results presented for the feature extraction are based on values
obtained from Dyskinesia Recording 4 and 7. They illustrate whether
the features are able tp differentiate between different states, in this
case the baseline from the post levodopa state. First there will be
one box plot for each feature, Figs. 5.1 - 5.9, showing feature values
before and after injection of levodopa. More specifically, there are
for each neuron in the recording, two boxes: the first one includes
all feature values from the segments before the injection of levodopa
and the second all feature values from the segments after the injection.

The boxes are separated by the median, the upper (brown) part
is the 25th percentile and the lower (gray) part the 75th percentile.
The error bars’ upper and lower limits represent the maximum and
minimum, respectively.

Following the box plots for each feature Tables 5.1 and 5.2 states
how large percentage of the neurons that exhibits a significant change
in feature values after the injection of levodopa. This result is pre-
sented both for Dyskinesia Recording 4 and 7 and serves as a summary
of the results for the feature extraction.

The Rate and Spike Count

In Figs. 5.1 and 5.2, visualisations of the rate and the spike count are
presented. The results for the rate and spike count average, Figs. 5.1a
and 5.2a, are closely related, as are the results for the rate and spike
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count variance, Figs. 5.1b and 5.2b: The rate is simply a scaled version
of the spike count. Because of this close relation their results will be
presented together.

Note that there is a significant change in feature values (well sep-
arated boxes) post levodopa injection for some neurons in Figs. 5.1a
and 5.2a, e.g. the second RFA; Left and GP; Left, while others do not
seem to exhibit any significant change, e.g. SNr; Left. For the rate and
spike count variance (Figs. 5.1b and 5.2b) the large variance of e.g.
the first DMS; Left; post and SNr; Left; pre overshadows the results
from the other neurons. However, the results in Table 5.1 show that
80% of all neurons exhibit a significant change in rate and spike count
variance after the injection of levodopa.

Some of the neurons have increased feature values after the injection,
e.g. the second RFA; Left in Fig. 5.1a, while other have decreased,
e.g. the second GP; Left in the same figure. Note that this variation
exists for all four features and both the left (healthy) and right (le-
sioned) hemisphere as well as within the same site: For example RFA;
Left in Fig. 5.1a has one neuron that has decreased feature values
post levodopa injection and one that has increased feature values post
levodopa injection.

The Global Measures of Variability

Note that some of the neurons, e.g. the first DMS; Left, exhibit a
significant change in feature values (well separated boxes) post lev-
odopa injection whereas others does not exhibit any noteable change,
e.g. the last DLS; Right. Also note that some neurons have increased
feature values after the injection, e.g. the first RFA; Left and DMS;
Left, while others have decreased, e.g. the second DMS; Left and DLS;
Right. This variation exists within both the left (healthy) and right
(lesioned) hemisphere as well as at the same site: For example DMS;
Left has one neurons with increased and another with decreased fea-
ture values after the injection of levodopa.

As for the rate and spike count variance, there are some neurons
that overshadows the results of the others, making it hard to distin-

guish whether the Fano factor and the coefficient of variation well
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separates the baseline from the post levodopa state. Table 5.1 shows
that 47% percent of all neurons exhibit a significant change in Fano
factor after injection and 73% a significant change in coefficient of
variation.

The Local Measures of Variability

In Fig. 5.4 - 5.7, visualisations of the local measures of variation: the
average and variance of the local coefficient of variation, the local vari-
ation, the local irregularity measure and the local spiking irregularity
measure, are presented. Because of the measures close relation math-
ematically the results for the local measures of variability averages
will be presented together as well as the local measures of variability
variances.

Note that, as for the previously presented feature results, there are
neurons that exhibit significant changes in feature values (well sepa-
rated boxes) for the averages, e.g. the first DMS; Left whereas there
are other neurons that do not. Also notice that there is a larger dif-
ference pre and post injection for the first DMS; Left in the < IR >
and < ST >, Fig. 5.6a and 5.7a, than for the < CV, > and < LV >,
Fig. 5.4a and 5.5a. Even though the features are closely related they
do not perform equally in differentiating the baseline from the post
levodopa state: As can be seen in Table 5.1, the < LV > and < SI >
have 80% of the neurons exhibiting a significant change post levodopa
injection while the <CV5> and < IR> only have 67%.

Also note that generally, the local measures of variability do not
have as many neurons exhibiting a significant change in values pre and
post levodopa as the rate and spike count, i.e. there are not as many
well separated boxes for the local measure of variability. This is also
confirmed by the percentages presented in Table 5.1, where they are
generally lower for the local measures of variability.

Some of the neurons have an increase in feature values post injection
while others have a decrease: This is, as for the previously presented
features, a variation that exists both within the left (healthy) and
right (lesioned) hemisphere as well as at the same site.
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Again, the variance of these features Figs. 5.4b - 5.7b have neu-
rons that overshadows the results from the others, e.g. DMS; Left and
DLS; Right. In Table 5.1, however, it is obvious that the variance of
these measures have a lower performance than the average does: J%V2
have a percentage of 67% all neurons exhibiting a significant change
post levodopa injection and the others have a percentage of 73%.

The Irregularity Measures

In Figs. 5.9 and 5.8, visualisations of the irregularity measures: the
entropy and spike train metrics (spike time metric and spike interval
metric), are presented. Note that, compared to the previous features,
there are no neurons that, to the same extent, overshadows the results
of the others. Also note that, for the spike train metrics in Fig. 5.8,
there are some neurons that have decreased values post levodopa injec-
tion while others have increased. This, however is not the case for the
entropy, Fig. 5.9, where all neurons exhibit an increase in feature value
post levodopa injection. But, when investigating the post levodopa
change of entropy for Dyskinesia Recording 7, the same result was not
found. Due to the larger number of neurons (106) in this recording,
this result is simply stated and not visualised like the box plot in Fig.
5.9.

The entropy for Dyskinesia Recording 4, Fig. 5.9, also has a larger
number of well separated boxes than the other features, e.g. more neu-
rons exhibiting a significant change post levodopa injection. The spike
train metrics have some neurons exhibiting very significant changes
post levodopa injections while others do not. This is also mirrored in
Table 5.1 where the entropy has a percentage as high as 93% and the
spike train metrics have 80% and 87% respectively.

Because of the small variance in feature values in the right (lesioned)
hemisphere, Fig. 5.8, it is hard to distinguish whether there are both
increases and decreases of feature values post levodopa, but this vari-
ation obviously exists within the left (healthy) hemisphere and at the
same site, e.g. RFA; Left in Fig. 5.8a.
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Figure 5.1: The rate average (a) and variance (b) pre and post lev-
odopa injection for all 15 neurons of Dyskinesia Recording 4. Neu-
rons from the left hemisphere on the far left: (RFA) Rostral Fore-
limb Area, (M1) Primary Motor Cortex, (DMS) Dorsomedial Stria-
tum, (GP) Globus Pallidus and (SNr) Substantia Nigra and neurons
from the right to the far right: (DLS) Dorsolateral Striatum.
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Number of Spikes Average (<n>)
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Figure 5.2: Number of spikes average (a) and variance (b) pre and
post levodopa injection for the neurons of Dyskinesia Recording 4.
Neurons from the left hemisphere on the far left: (RFA) Rostral Fore-
limb Area, (M1) Primary Motor Cortex, (DMS) Dorsomedial Striatum,
(GP) Globus Pallidus and (SNr) Substantia Nigra and neurons from
the right to the far right: (DLS) Dorsolateral Striatum.
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Figure 5.3: The Fano factor (a) and coefficient of variation (b) pre
and post levodopa injection for the neurons of Dyskinesia Recording
4. Neurons from the left hemisphere on the far left: (RFA) Rostral Fore-
limb Area, (M1) Primary Motor Cortex, (DMS) Dorsomedial Striatum,
(GP) Globus Pallidus and (SNr) Substantia Nigra and neurons from
the right to the far right: (DLS) Dorsolateral Striatum.
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Figure 5.4: The local coefficient of variation average (a) and variance
(b) pre and post levodopa injection for the neurons of Dyskinesia
Recording 4. Neurons from the left hemisphere on the far left: (RFA)
Rostral Forelimb Area, (M1) Primary Motor Cortex, (DMS) Dorsome-
dial Striatum, (GP) Globus Pallidus and (SNr) Substantia Nigra and

neurons from the right to the far right: (DLS) Dorsolateral Striatum.
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Figure 5.5: The local variation average (a) and variance (b) pre and
post levodopa injection for the neurons of Dyskinesia Recording 4.
Neurons from the left hemisphere on the far left: (RFA) Rostral Fore-
limb Area, (M1) Primary Motor Cortex, (DMS) Dorsomedial Striatum,
(GP) Globus Pallidus and (SNr) Substantia Nigra and neurons from
the right to the far right: (DLS) Dorsolateral Striatum.
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Local Irregularity Measure Average (<IR>)
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Figure 5.6: The local irregularity measure average (a) and variance (b)
pre and post levodopa injection for the neurons of Dyskinesia Record-
ing 4. Neurons from the left hemisphere on the far left: (RFA) Ros-
tral Forelimb Area, (M1) Primary Motor Cortex, (DMS) Dorsomedial
Striatum, (GP) Globus Pallidus and (SNr) Substantia Nigra and neu-
rons from the right to the far right: (DLS) Dorsolateral Striatum.
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Local Spiking Irregularity Measure Average (<SI>)
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Figure 5.7: The local spiking irregularity measure average (a) and vari-
ance (b) pre and post levodopa injection for the neurons of Dyskinesia
Recording 4. Neurons from the left hemisphere on the far left: (RFA)
Rostral Forelimb Area, (M1) Primary Motor Cortex, (DMS) Dorsome-
dial Striatum, (GP) Globus Pallidus and (SNr) Substantia Nigra and
neurons from the right to the far right: (DLS) Dorsolateral Striatum.
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Spike Time Metric (TM)
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Figure 5.8: The spike train metrics: spike time metric (a) and spike
interval metric (b) pre and post levodopa injection for the neurons
of Dyskinesia Recording 4. Neurons from the left hemisphere on the
far left: (RFA) Rostral Forelimb Area, (M1) Primary Motor Cortex,
(DMS) Dorsomedial Striatum, (GP) Globus Pallidus and (SNr) Sub-
stantia Nigra and neurons from the right to the far right: (DLS) Dor-
solateral Striatum.
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Entropy (H)
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Figure 5.9: The entropy pre and post levodopa injection for the neu-
rons of Dyskinesia Recording 4. Neurons from the left hemisphere on
the far left: (RFA) Rostral Forelimb Area, (M1) Primary Motor Cor-
tex, (DMS) Dorsomedial Striatum, (GP) Globus Pallidus and (SNr)
Substantia Nigra and neurons from the right to the far right: (DLS)
Dorsolateral Striatum.

Summary of the Feature Extraction Results

Table 5.1 and 5.2 offers a summary of the feature extraction results,
showing the percentage of all neurons, neurons in the left (healthy)
hemisphere and the right (lesioned) hemisphere that exhibit a signifi-
cant change in feature values post levodopa injection.

Note that the values of 100% for the right hemisphere of Dyskine-
sia Recording 4, Table 5.1, are based on three neurons alone. This
amount of neurons is to small to allow for any conclusions whether the
change is more prominent in the right (lesioned) hemisphere than in
the left (healthy). All percentages are as high as well above 60% for
Dyskinesia Recording 4 except from that for the Fano factor (F'F).
The feature that best differentiate the baseline from post levodopa
state is the entropy (H) for which 93% of all neurons exhibit a signif-
icant change in feature values.
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Dyskinesia Recording 7, Table 5.2, has results based on 71 neurons
in the left (healthy) hemisphere and 35 in the right (lesioned). Note
that seven of the features exhibit a more significant change in the
right hemisphere than in the left whereas 10 of them exhibit a more
significant change in the left. Also note that, for four of the neurons,
the percentages between left and right hemisphere differ only by three
or less.

Feature Rec. 4 All | Rec. 4 Left | Rec. 4 Right
(15 neurons) | (12 neurons) | (3 neurons)
<r> 80% 83% 67%
o2 80% 75% 100%
<n> 80% 83% 67%
o2 80% 75% 100%
FF 47% 42% 67%
Ccv 73% 67% 100%
<CVgaz> 67% 75% 33%
odv, 67% 67% 67%
<LV > 80% 83% 67%
oy 73% 75% 67%
<IR> 67% 5% 33%
o 73% 75% 67%
<SI> 80% 83% 67%
03 73% 75% 67%
H 93% 92% 100%
™ 80% 83% 67%
IM 87% 83% 100%

Table 5.1: Table showing the percentage of neurons in Dyskinesia
Recording 4 that exhibit a significant change in feature values after
the injection of levodopa in comparison to before.
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The percentages of all neurons that exhibit significant changes post
levodopa are higher than, or equal to, 65% for all features. The feature
that best differentiates the baseline from the post levodopa state are
the rate average (<r>) and spike count average (<n>), with percent-
ages of 90%, and the lowest performing feature is the local variation
variance (0%y,), with a percentage of 65%.

Feature Rec. 7 All | Rec. 7 Left | Rec. 7 Right
(106 neurons) | (71 neurons) | (35 neurons)

<r> 90% 87% 94%
o2 72% 79% 57%
<n> 90% 87% 94%
o2 72% 79% 57%
FF 76% 79% 1%
Ccv 82% 79% 89%
<CV2> 81% 82% 80%
o2y, 70% 0% 69%
<LV > 75% 79% 69%
o2, 65% 69% 57%
<IR> 75% 76% 71%
o2y 69% 72% 63%
<SI> 76% 76% 7%
o3 71% 69% 74%
H 85% 86% 83%
™™ 80% 7% 86%
IM 85% 83% 89%

Table 5.2: Table showing the percentage of neurons in Dyskinesia
Recording 7 that exhibit a significant change in feature values after
the injection of levodopa in comparison to before.
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Remember that the highest and lowest performing features for Dysk-
inesia Recording 4 were the entropy (H) and the Fano factor (F'F)
respectively. For Dyskinesia Recording 7 there are three features that
has higher, or equal, performance than the entropy and five features
that has lower, or equal, performance than the Fano factor. However,
note that the features performing well for Dyskinesia Recording 7 also
have a better performance for Dyskinesia Recording 4, e.g. the rate
average (< r >), spike count average (< mn >), entropy (H) and local
irregularity measure average (< IM >). The features with poor perfor-
mance for Dyskinesia Recording 7 also have a worse performance for
Dyskinesia Recording 4, e.g. local variation variance (O'%V), local irreg-
ularity measure variance (0?5), local coefficient of variation variance
(U%V2> and local spiking irregularity measure variance (a% 7).

5.2 Dimensionality Reduction

In Fig. 5.10, visualisations of the projection matrices P (see Sec. 4.4)
used for PCA are presented for Dyskinesia Recording 4 and 7 (right).
Red colours correspond to larger weights, whereas blue colours corre-
spond to smaller. Note that all values are the absolute values of the
weights, which means that the principal component space is largely
based on the weights in a reddish colour. The figure also show the
principal component variances (left).

The reduced feature spaces (see Sec. 4.4) were based on the results
for the projection matrices and principal component variances. The
amount of features used for the two reduced feature spaces were one
and two, respectively. These number of features were purely based
on the results for the principal component variances: Note that one
principal component covers about 98% and 96% of the original feature
space variance for Dyskinesia Recording 4 and 7, respectively, see Fig.
5.10 (left), i.e. one column of the projected feature space matrix (Fp)
were chosen to create the first reduced principal component space.
Further, note that two principal components cover more than 99% of
the original feature space variance for both recordings, i.e. the two
first columns of the projected feature space matrix (Fp) were chosen
to create the second reduced principal component space.
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Figure 5.10: The cumulative fraction of the original feature space vari-
ance covered by the principal components (left) and the absolute value
of the principal component coefficients, |P|, (right) for Dyskinesia
Recording 4 (a) and 7 (b). P is the projection matrix used for the pro-
jection to the principal component space whose every column represent
a principal component. The first column covers the largest amount of
variance in the original data, the second the next largest and so on.

As for the reduced feature space (again, see Sec. 4.4), the number of
features used were also decided from the results of the principal com-
ponent variance, i.e. one for the first reduced feature space and two for
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the second reduced feature space. The projection matrices show which
of the features that were chosen for the two reduced feature spaces
respectively: For the feature space reduced to one feature, the spike
time metric (T'M) has been used (largest weight in column one) and
for the feature space reduced to two features the spike time metric,
T M, (largest weight in column one) and the number of spikes variance,

2 or in the plot var(n), (largest weight in column two) has been used.

On

Another feature with a large weight in column one of the projec-
tion matrices is the spike interval metric (IM). Note that these three
features (TM, o2 and IM) all have larger percentages for the right
(lesioned) hemisphere than for the left (healthy) one, see Table 5.2.
The same can not be said for Dyskinesia Recording 4, Table 5.1,
but remember that it only contains recordings from 3 neurons in the
right (lesioned) hemisphere. Also note that the matrix for Dyskinesia
Recording 4, Fig. 5.10a (right), and that for Dyskinesia Recording 7,
Fig. 5.10b (right), are alike: features with large weights for Rec. 4 has
large weights for Rec 7. and vice versa. This, in extension, means that
the data for Rec. 4 is alike that of Rec. 7.

5.3 Clustering

Analysis of the Number of Clusters

In Fig. 5.11 - 5.14, the within- and between-cluster scattering for Dysk-
inesia Recording 4 and 7 are presented for an increased number of
clusters (1:15). For each of the plots, the cluster scattering as well as
its derivative are included. Note, most clearly seen in the plots of the
derivatives, that the cluster scattering change is largest when the num-
ber of clusters are increased from one to two and from two to three
clusters (first to measure points of all derivative plots). This motivates
the choice of the number of clusters as two and three.
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Figure 5.11: The within-cluster scattering (left) and its derivative
(right) for an increased number of maximum clusters (1:15) of Dyski-
nesia Recording 4.

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

Between-Cluster Scattering
Dyskinesia Recording 4

3 4 5 6 7 8 9 10 11 12 13 14 15
# cluster

3500

3000

2500

2000

1500

1000

500

0

Between-Cluster Scattering Derivative
Dyskinesia Recording 4

2 3 4 5 6 7 8 9 10 11 12 13 14 15
# cluster

Figure 5.12: The between-cluster scattering (left) and its derivative
(right) for an increased number of clusters (1:15) of Dyskinesia Record-

ing 4.
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Within-Cluster Scattering Within-Cluster Scattering Derivative
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Figure 5.13: The within-cluster scattering (left) and its derivative
(right) for an increased number of maximum clusters (1:15) of Dyski-
nesia Recording 7.
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Figure 5.14: The between-cluster scattering (left) and its derivative
(right) for an increased number of clusters (1:15) of Dyskinesia Record-
ing 7.
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5.8 Clustering

Clustering to two states: (1) basline (2) post levodopa
injection

In Figs. 5.15 and 5.16 a visualisation of the performance of the cluster-
ing for Dyskinesia Recording 4 is presented in the form of box plots.
The boxes are separated by the median, the upper (yellow) part is the
25th percentile, the lower part (gray) is the 75th percentile and the
error bars’ upper and lower limits are the maximum and minimum
values respectively.

The plots include cluster results for the recording with both 5 and 30
min of data post levodopa injection of levodopa removed and a com-
parison between the clustering in different feature spaces. Each box
contains the fraction of correctly clustered segments for all neurons.
Fig. 5.15 shows the clustering performance over the whole recording
whereas Fig. 5.16 shows the clustering performance for the pre and
post injection data separately.

Percent of whole recording correctly clustered
Dyskinesia Recording 4
5 min compared to 30 min postinjection removed
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Figure 5.15: Clustering performance for two clusters over the whole
recording Dyskinesia Recording 4 for different feature spaces. Every
box contains the fraction of all neurons correctly clustered into the
pre and post levodopa state and each pair of boxes is a comparison
between 5 min and 30 min of data post levodopa removed.
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Note that the performance measured over the whole recording, Fig.
5.15, generally high performance, with almost all boxes above 60%,
which is also true for the post injection part of the data, Fig. 5.16b.
The performance for the pre injection part of the data, Fig. 5.16a, ex-
hibits a large variance (high boxes covering a large part of the fraction
interval [0,1]). Note that the low performance in the clustering of the
pre injection data in comparison to the post injection data is due to
the fact that the dataset is unbalanced: The largest part of the record-
ing duration is post levodopa injection. This means that the neurons
clustered to one single cluster boost the performance for the post in-
jection data, contributing with 100% correctly clustered segments, and
worsens the results for the pre injection data, contributing with a 0%
correctly clustered segments. To be clear, this difference in performance
between the pre and post injection data does not mean that the post
injection part of the data is easier clustered than the pre injection part.

Also note that the difference in performance between the cluster-
ing of the data with 5 and 30 min post levodopa injection removed
is not large (compare first box of every pair to the second) and that
the performance are not significantly worsened by reducing the feature
space (compare first pair of boxes with the other pairs).

In Figs. 5.17 and 5.18 a visualisation of the performance of the cluster-
ing for Dyskinesia Recording 7 is presented. The plots include cluster
results for the recording with both 5 and 30 min of data post levodopa
injection removed and a comparison between the clustering in different
feature spaces. In each box, the fraction of correctly clustered segments
for all neurons are gathered.

Fig. 5.17a shows the clustering performance over the whole recording
for all neurons and Fig. 5.17b the clustering performance over the
whole recording for the 50 neurons that had the largest amount of
time segments correctly clustered. Note that the performance of the
clustering for the data with 30 min post levodopa injection removed
are generally better than that of the data with 5 min removed (first
box of each pair of boxes are lower than the second). Also note that
the performance is worsened, although still good, when reducing the
feature space for the data with 30 min post injection removed (com-
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pare the second box of the first pair with all second boxes in Fig.
5.17a and 5.17b). Note that the worsening of the performance is even
more prominent for the 50 top performing neurons in Fig. 5.17b when
reducing the feature space.

Fig. 5.18 shows the clustering performance for the pre and post injec-
tion data separately. Note that the values are generally high for the
post injection data, Fig. 5.18b whereas they are around 40% to 80% for
the pre injection data, Fig. 5.18a. This difference is, as for Dyskinesia
Recording 4, due to the fact that the largest part of the recording
duration is post levodopa injection, i.e. the difference in performance
should not be interpreted as the post injection part of the data being
easier to cluster than the pre injection part.
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Figure 5.16: Clustering performance for two clusters on pre (a) and
post (b) injection data from Dyskinesia Recording 4 for different fea-
ture spaces. Every box contains the fraction of all neurons correctly
clustered into the pre or post levodopa state and each pair of boxes
is a comparison between 5 min and 30 min of data post levodopa re-
moved.
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Percent of whole recording correctly clustered
Dyskinesia Recording 7
5 min compared to 30 min postinjection removed
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Figure 5.17: Clustering performance for two clusters, on the whole
recording for all neurons (a) and the 50 neurons that that had the
largest amount of time segments correctly clustered (b), of Dyskinesia
Recording 7 for different feature spaces. Every box contains the fraction
of all neurons correctly clustered into the pre or post levodopa state
and each pair of boxes is a comparison between 5 min and 30 min of
data post levodopa removed.
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Percent of pre injection part correctly clustered
Dyskinesia Recording 7
5 min compared to 30 min postinjection removed
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Figure 5.18: Clustering performance for two clusters on pre (a) and
post (b) injection data from Dyskinesia Recording 7 for different fea-
ture spaces. Every box contains the fraction of all neurons correctly
clustered into the pre or post levodopa state and each pair of boxes
is a comparison between 5 min and 30 min of data post levodopa re-

moved.
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Clustering to three states: (1) basline, (2) transistion state
and (3) post levodopa injection

The clustering to three states chosen as pre injection state, transition
state and post injection state were also measured in the fraction of
the states that were correctly clustered. When dividing the states
into these three groups the mean fraction over all neurons that were
correctly clustered for Dyskinesia Recording 4 were 64,7%. For each
state the correctly clustered mean fraction of segments for were: (1)
28,3%, (2) 76,9% and (3) 24,8%. For Dyskinesia Recording 7 the mean
fraction over all neurons that were correctly clustered were 55,8%. For
each state the correctly clustered mean fraction of segments were: (1)
55,4%, (2) 71,0% and (3) 39,4%. Note that the transistion state (2) has
the highest percentage of correctly clustered segments, although not
very high and that the performance of clustering to the pre injection
(1) and post injection state (3) are low.

When dividing the states into two groups instead: (1) pre injection
state and (2) transistion state plus post injection state, the mean per-
centage over all neurons that were correctly clustered for Dyskinesia
Recording 4 were 82,9%. For each group the correctly clustered mean
percentage of segments for were: (1) 28,3% and (2) 89,9%. For Dysk-
inesia Recording 7 the mean percentage over all neurons that were
correctly clustered were 76,5%. For each group the correctly clustered
mean fraction of segments were: (1) 55,4% and (2) 89,9%. Note that
the percentage for the pre injection state (1) are low whereas the
percentage for the combined post injection state is high, indicating
that the problem was not simply to distinguish between the transition
state and post injection state.

5.4 Classification

Classification of two states: (1) baseline and (2) post
levodopa injection

In Fig. 5.19, the classification performance measured in fraction of
time segments correctly classified are presented. Each box holds the
gathered performance for all neurons for both Dyskinesia Recording 4,
Fig. 5.19a and 7, Fig. 5.19b, and results from all neurons (first pair of
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boxes), nerouns in the left (healthy) hemisphere (second pair of boxes)
and neurons in the right (lesioned) hemisphere (third pair of boxes).
Note that the results for the right hemisphere of Rec. 4 are based on
three neurons alone, hence the small or non existing error bars and
large variance.

Note that the performance is generally higher (small and highly placed
boxes) for the post injection part of the data for Rec. 4, Fig. 5.19a,
whereas there is no significant difference in performance between the
pre injection and post injection part of the data for Rec. 7, Fig. 5.19b.
Also note that the performance of the classification are generally
higher for Rec. 7 (all boxes well above 0,8) than for Rec. 4 and that
the classification performance does not significantly differ between the
left (healthy) and right (lesioned) hemisphere for Rec. 7.

Classification of three states: (1) baseline, (2) transistion
state and (3) post levodopa injection

In Fig. 5.20, the classification performance measured in fraction of
time segments correctly classified are presented. Note, again, that the
results for the right (lesioned) hemisphere of Dyskinesia Recording 4
are based on three neurons alone.

The classification performance is generally higher for the pre and
post-end injection part of the data (first and third box of each triplet)
from Rec. 4, Fig. 5.20a, than for the transition state (second box of
each triplet). However, the performance for the post-end injection
data is still low, indicating that the problem in the post injection part
(combined transition and post injection state) is not to distinguish
between the the transition state and post-end injection state.

The low performance of the classification of the two post injection
states is even more evident in the results for Dyskinesia Recording 7,
Fig. 5.20b (second and third box of each triplet low). Note that there
is no significant difference in performance of classification between the
left (healthy) and the right (lesioned) hemisphere.
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Figure 5.19: Classification performance for Dyskinesia Recording 4 (a)
and 7 (b) using two states for classification. Every box contains the
fraction of all neurons correctly classified into the pre and post lev-
odopa state. Fach pair shows the pre and post injection classification
performance for all neurons, neurons from the left hemisphere and neu-

rons from the right hemisphere respectively.
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Figure 5.20: Classification performance for Dyskinesia Recording 4 (a)
and 7 (b) using 3 states for classification. Every box contains the
fraction of all neurons correctly classified into the baseline, transition
state and post levodopa state. Each pair shows the pre, middle and
post injection classification performance for all neurons, neurons from
the left hemisphere and neurons from the right hemisphere respectively.
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Discussion

In this thesis work, a large number of features has been extracted from
the data recorded with novel electrodes at NRC. The assumption that
a dynamic change in the neural activity can be related to changes
between the pre and post levodopa state has been further strength-
ened. As was expected, the feature extraction showed that it is not
sufficient to study a single neuron, as different neurons behave differ-
ently. This can be seen in Figs. 5.1-5.9 where some neurons exhibit
significant changes in feature values post levodopa (both increased and
decreased), whereas others do not exhibit a significant change.

The summary of the feature extraction results (see e.g. Table 5.2)
however, show that a population of neurons can clearly prove a mathe-
matical difference between the pre and post levodopa state. What can
be considered as somewhat surprising is that there were no general
differences between the left (healthy) and right (lesioned) hemisphere
in terms of the fraction of neurons exhibiting a significant feature
value change post levodopa. This can be seen in Table 5.2 where some
percentages are higher for the left (helthy) hemisphere, whereas others
are higher for the right (lesioned) hemisphere. The one result showing
a noticable difference for the three large weight features of PCA (T'M,
02 and I M), which all had higher percentages for the right (lesioned)
hemisphere than the left (healthy) one, see Table 5.2. This could indi-
cate that the difference between pre and post levodopa state is easier
to detect in the lesioned hemisphere.

Adding to the variation of behaviour within the right and left hemi-
sphere, there also seem to be a variation in neurons within the same
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site, see e.g. Fig. 5.1 RFA; Left. The variation within the right and
left hemisphere as well as within the same site is found in all feature
extraction results, Fig. 5.1-5.9, except for the entropy results found in
Fig. 5.9, for which all neurons exhibit an increase of feature values post
levodopa. Unfortunately, because the variations mentioned exist for all
features except one (for which this seem to be a coincidence since the
same result was not found for Dyskinesia Recording 7) it is difficult
to, mathematically, draw a general conclusion of how the brain behave
during the post levodopa state as compared to the baseline. What one
can say, based on the results, is that there is a significant difference
in behaviour of the neurons between the baseline and post levodopa
state, and that this difference can be mathematically quantified.

To handle the large amount of data has been a challenge through
the whole work process: From how to perform the segmentation to
extracting features and their subsequent clustering and classification,
and finally to interpret and present the results. The fact that different
neurons behave differently, in terms of the features applied here, may
motivate one to study the results on a neuron to neuron basis. How-
ever, because of the large amount of neurons, the extended recording
duration and the fact that for every neuron, 17 features were extracted,
it was rather difficult to study and present on that level of detail. But,
in spite of the difficulties faced with the amount of data, the results
for the feature extraction based on Dyskinesia Recording 4 and 7 can
be considered satisfactory: All features for Dyskinesia Recording 7
exhibited a significant change in feature values after the injection of
levodopa for a clear majority of the neruons, see Table 5.2.

The difference in behaviour between neurons did not only compli-
cate the presentation and interpretation of the results: The nature of
some neurons, specifically the fact that there were particularly silent
neurons, made the differentiation between different states difficult.
The reasons for the silence may be that either the signals were not
properly picked up by the recording, or that these neurons simply
does not fire a lot of action potentials: In the striatum, e.g., there are
neurons that are mostly silent. The reason why, e.g., the silent neurons
posed a problem in terms of the feature extraction was that many of
the features were formulated so that they required a certain amount
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of activity, i.e. a sufficient amount of action potentials fired, to be
reliably calculated: For example, if there is not enough activity, the
average or variance values run the risk of becoming biased. To regulate
the amount of data that the feature value for each segment was based
on the length of the time window was changed. This, however, proved
to introduce yet another difficulty: How to choose this time window?

Some of the features, specifically those which were based on the
average and variance, were sensitive to the length of the time window
used for segmentation. The use of an overlap offered a larger amount
of segments to use for analysis with the drawback that multiple of
segments contained more or less the same data. A short time window
rules out a lot of the features because it results in an insufficient
amount of activity to calculate the feature values. A longer time win-
dow results in there not being enough segments to differ states from
each other and that more transient states cannot be differentiated: If
the time window is too long, it results in segments containing states
that one wishes to distinguish from each other. This, of course, makes
it difficult to assign a single state to that segment of time and the
states are "drowned" within the segments.

The choice of time window length were purely based on the timescale
of the state that were investigated. To find subclusters within the
baseline and post levodopa state that could be connected to events
such as start or stop of locomotion was not possible for Dyskinesia
Recordin 4 and 7 because the time window to differentiate the baseline
from the post levodopa state were too long. However, this was not the
main goal with the analysis of these recordings and if the time window
had been shortened there may not have been a sufficient number of
features left to perform a successful clustering or classification.

The decrease of the dimensionality of the feature space showed that
the performance of the clustering did worsen, even if this was not
very significant (see, e.g., Fig. 5.17a). This suggests that some of the
features are redundant, which is probably due to the large correlation
between some of them: For example, the rate and number of spikes
differ only by a constant. The same conclusions could, i.e., be drawn
using a significantly reduced number of features, as the reduction to as
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few as two features still delivered a satisfactory result. Another way to
reduce the feature space could have been to group the features accord-
ing to the correlation between them and choose one of the features in
each group for the new reduced feature space. This would, however,
have called for an additional analysis of which of these features were
the most suitable one to use in each group.

The results for the clustering to three states (see Sec. 5.3) showed
that it is difficult to find a transition state directly after injection
when the dyskinesia is gradually developing. This is even more appar-
ent when performing classification: Even when a priori stating that
this state exists it could not be easily found. This is, however, not very
surprising: Because the dyskinesia is gradually developing during the
transition state there is no reason to believe that the neural activity
is stationary enough for a separate state to be distinguished.

The work to differentiate the smaller time scale states, such as start
and stop of locomotion, for Open Field Recording 8 and 36 were be-
gun but unfortunately, the problems stated above proved even more
challenging for this application: The smaller timescale forces one to
study the data in smaller time windows, which naturally presents one
with less data to analyse within each window. This eliminates a lot of
the features because of the lacking amount of data to calculate, e.g.,
unbiased mean and variance.

One question is if there is a transient change of neural activity prior
to the start or stop of locomotion, or if locomotion as opposed to
no movement could be differentiated from each other. The supposed
transient change is believed to occur on a subsecond scale. This calls
for a subsecond length of the time window for segmentation which for
some events left one with no spikes at all within some segments. One
advantage of the Open Field Recordings, however, is that the amount
of events noted enables the use of repeated trials by cutting out and
timing windows around each event. This should be done with caution
of how precise the annotation of the start and stop of locomotion in
comparison to the assumed timescale of the state one wishes to detect.

One way to increase the time resolution, i.e., shorten the time window
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for segmentation could be to not use the average or variance for the
rate (1), spike count (n) and local measures of variability (C'Va, LV,
IR and ST). While decreasing the length of the time window for these
features the others (F'F, CV, H, TM and I M) can still be calculated
on a larger time window: If one wishes to use all features together
at a higher time resolution, one can simply let these features’ values
remain constant in the duration corresponding to several shorter time
windows. What is important to remember, however, is that decreasing
the time window for segmentation too much can still affect the rate,
spike count and local measures of variation, even if their average or
variance is not used. For example a very small time window would,
for the rate, result in a lot of segments not containing any spikes at
all whereas some contain a single one. The segments containing one
single spike would have very large rate denoted: Imagine, e.g., that
the time window is 1072 s and that one single spike was recorded in
the duration of 1 second. This would result in 999 segments within
the 1 second denoting the rate 0 spikes/s, whereas one would denote
1/1073 = 1000 spikes/s. As the Fano factor (FF) and coefficient of
variation (CV') are based on the rate they will consequently be affected
by a too small time window as well. However, there are methods to
make these measures less dependent of the firing rate that can be
investigated, see e.g. [29] for more information.
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7

Conclusions

The analysis of the features show that there is a significant difference
between the baseline and post levodopa state. This can be considered
an interesting result for the overall goal to explore methods for feature
extraction. It is obvious that different neurons react in different ways:
Some of the neurons, e.g., become significantly more active whereas
others are more silent after the injection than before, and some neurons
do not seem to either increase or decrease their activity. This confirms
the need for studying a population of neurons as opposed to single
neurons separately. In this case, studying a single neuron could very
well have been misleading in the search for the underlying biological
mechanism.
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